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Abstract

Many oversubscribed planning problems with multiple (po-
tentially jointly unachievable) goals can be cast in the Markov
decision process (MDP) framework when appropriate reward
functions and objective criteria can be defined. Recent real-
time, search-based solutions to MDPs maintain upper and
lower bounds on the value function at all stages of execution
prior to convergence. While many algorithms already use this
information to detect convergence and to prioritize state ex-
ploration, we propose a novel Bayesian interpretation of these
bounds to evaluate the myopic value of perfect information
(VPI) of exactly knowing a state’s value. This VPI analysis
permits two general Bayesian search control modifications to
existing algorithms: (1) we can use it to dynamically adapt
the backup depth in real-time, search-based bounded dynamic
programming approaches, and (2) we can use it for real-time
policy evaluation with a bounded value function produced
by an anytime algorithm. We empirically evaluate both of
these modifications to existing algorithms and analyze their
performance. While real-time Bayesian search control may
reduce the number of backups until convergence for (1), it
offers more substantive improvements for (2), making it an
attractive real-time policy evaluation approach for MDPs.

Introduction
The Markov decision process (MDP) is an appropriate
model for oversubscribed decision-theoretic planning prob-
lems where all goals may not be jointly achievable, but an
appropriate numeric reward can be assigned to each goal and
an objective criterion can be optimized that places prefer-
ences on how these rewards are obtained over time.

In order to maximize future expected reward w.r.t. some
MDP objective criterion in a real-time setting, there is often
a need to deliberate about the optimality of a current solu-
tion in order to focus computation where it will most greatly
impact solution quality. However, assuming that time cost
and reward can be expressed in commensurate units, de-
liberative computation should only be performed when its
expected benefit outweighs its time cost. This deliberative
search control problem is well-known in AI and decision-
theoretic planning as we discuss further in Related Work.

In this paper, we aim to investigate the decision-theoretic
tradeoff between computation time and reward in the asyn-
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chronous dynamic programming (DP) solution (Bertsekas
1982) and anytime policy evaluation of MDPs. Specifically,
we focus on the class of real-time dynamic programming
(RTDP) (Barto, Bradtke, & Singh 1993) algorithms that per-
mit both asynchronous value updates (ideal for evaluating
DP search control techniques) and also provide a solution es-
timate at all times of execution (ideal for evaluating search-
based anytime policy evaluation approaches). While noth-
ing in this paper is specific to RTDP approachesper se, they
provide a useful family of algorithms that serve as a test-bed
for evaluating our proposed modifications.

Recent advances in asynchronous DP solutions to MDPs
have proposed various optimizations of the original RTDP
approach (Bonet & Geffner 2003b; McMahan, Likhachev, &
Gordon 2005; Smith & Simmons 2006), including maintain-
ing upper and lower bounds and prioritizing exploration ac-
cording to these bounds. In this work, we introduce a novel
analysis of these bounds in a Bayesian decision-theoretic
setting that allows us to trade off the potential information
gain of search-based updates vs. their computational time
cost in a value of information framework (Howard 1966).

One major benefit of the Bayesian decision-theoretic anal-
ysis in the derivation of our search-control approach is that
its solution leads to a univariate integral that can be calcu-
lated analytically. Furthermore, the enhancement we pro-
pose is a technique that can be easily integrated into many
search-based MDP solution approaches in various ways:

(1) Bayesian search control for dynamic adaptation of the
backup depth in (real-time) dynamic programming.

(2) Bayesian search control for real-time policy evaluation
with value bounds produced by an anytime algorithm.

Empirically, while Bayesian search control may reduce the
number of backups required for (1), it offers more substan-
tive improvements for (2), making it an attractive anytime
policy evaluation approach for the MDP framework.

Preliminaries
Markov Decision Processes
We assume familiarity with the standard definition
of a Markov decision process (MDP) as a tuple
〈S,A, T,R, γ〉 (Puterman 1994).S = {s1, . . . , sn} is a fi-
nite set of fully observable states.A = {a1, . . . , am} is a



finite set of actions.T : S × A × S → [0, 1] is a known
stationary, Markovian transition function.R : S × A → R

is a fixed known reward function associated with every state
and action.γ is a discount factor s.t. 0 ≤ γ ≤ 1 where
rewardst time steps in the future are discounted byγt.

If γ < 1 then we say the MDP isdiscounted. If
γ = 1 then we make the following additional restrictions
and we say the MDP is astochastic shortest path(SSP)
problem (Bertsekas & Tsitsiklis 1996): (1) we have an ab-
sorbing set of non-empty goal statesG whereG ⊂ S and
∀a ∈ A, s ∈ G R(s, a) = 0, (2) negative rewards (i.e.,
costs)∀a ∈ A, s /∈ G R(s, a) < 0 for all actions in non-goal
states, and (3) some goal state is reachable with non-zero
probability from every state. Additionally, we will assume
there is a potentially restricted initial state setI ⊆ S.

A policy π : S → A specifies the actiona = π(s) to
take in each states. Our goal is to find a policy that maxi-
mizes the value function, defined using the infinite horizon,
expected discounted reward criterion:

V π(s) = Eπ

[

∞
∑

t=0

γt · rt

∣

∣

∣
s0

]

(1)

wherert is the reward obtained at timet (assuming start
states0 at timet = 0).

Dynamic Programming
Value iterationis a dynamic programming (DP) solution to
an MDP. Starting with arbitraryV 0(s), we perform the fol-
lowing Bellman update(or backup) that derives the optimal
value functionV t(s) with t-decision-stages-to-go w.r.t. the
value functionV t−1(s) with t − 1-decision-stages-to-go:

V t(s) := max
a∈A

{

R(s, a) + γ
∑

s′∈S

T (s, a, s′) · V t−1(s′)

}

(2)
We repeat this process for each staget, obtainingV t(s) from
V t−1(s), until we have computed the intendedt-stage-to-go
value function. This algorithm is demonstrated graphically
in Figure 1(b).

Rewriting Equation 2 into two steps, we define the Bell-
man update for states asV t(s) = UPDATE(V t−1, s) where

Qt(s, a) := R(s, a) + γ ·
∑

s′∈S

T (s, a, s′) · V t−1(s′) (3)

V t(s) := max
a∈A

{

Qt(s, a)
}

. (4)

Puterman (1994) shows that for discounted MDPs, termi-
nating once the following condition is met

max
s

|V t(s) − V t−1(s)| <
ǫ(1 − γ)

2γ
(5)

guaranteesǫ-optimality w.r.t. the optimal value function
V ∗(s), i.e.,maxs |V

t(s) − V ∗(s)| < ǫ.
The greedy policyπ(s) = GREEDYACTION(V t, s) w.r.t.

V t and states is defined as follows:

π(s) := arg max
a∈A

{

R(s, a) + γ
∑

s′∈S

T (s, a, s′) · V t(s′)

}

(6)

Algorithm 1: RTDP (for SSPs)
begin

// Initialize V̂h with admissible value function
V̂h := Vh;
while not converged and not out of timedo

// Pick initial state
Draws from I at random;

while s /∈ G do

// Use Eqs. (3) & (4) to updatêVh(s)

V̂h(s) = UPDATE(V̂h, s);

// Use Eq. (6) to get greedy action fors, V̂h(s)

a = GREEDYACTION(V̂h, s);

// Pick next state according to transition dist.
s := s′ ∼ T (s, a, s′);

return V̂h;
end

For discounted problems, the greedy policy derived from
V t(s) (satisfying Equation 5) loses no more thanǫ in value
over the infinite horizon in comparison to the optimal pol-
icy. While similar error bounds do not hold forǫ-optimal
value functions in SSPs, convergence to anǫ-optimal value
function is a commonly used stopping criterion for SSPs.

Asynchronous Dynamic Programming and Search
If we reexamine Equation 2, we note that we could compute
this recurrence in a forward-search manner by starting at an
initial state, unfolding the recurrence to horizonh, and then
computing the expectation and maximization as we return to
the initial state. A graphical representation of the unfolding
of this computation is shown in Figure 1(a). Furthermore,
asynchronousDP methods (Bertsekas 1982) retain conver-
gence properties even if states are updated in an arbitrary or-
der (e.g., by searching forward to a non-uniform depth and
backing up values for all states encountered).

The Real-time dynamic programming (RTDP) (Barto,
Bradtke, & Singh 1993) algorithm provided in Algorithm 1
is one popular asynchronous DP approach that updates states
encountered during trial-based simulations of an MDP. This
approach uses limited-depth, forward-search backups from
Figure 1(a) to update the value function of the set of states
visited during on-line trials, assuming that initial states were
generated according to some fixed distribution. The policy
used for the trials is the optimal policy for the current value
function. Since updated and cached values from one step are
used by other steps, this approach can be viewed as an asyn-
chronous form of DP from Figure 1(b) (with non-uniform
update depth). Convergence of RTDP requires thatVh(s) be
an admissible upper boundvalue function, which overesti-
mates the true value, i.e.,∀s ∈ S. Vh(s) ≥ V ∗(s).

One of the key advantages of the RTDP framework is that
it may only need to explore a small subset of states to obtain
an optimal policyπ∗ w.r.t. the set of initial states if the subset
of states reachable from the initial states underπ∗ (therele-
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Figure 1:a) Asynchronous forward-search update for a specific state and b)synchronous value iteration update for all states.

vant statesfor π∗) is small. This can often be more efficient
than synchronous DP approaches when the set of reachable
states is small compared to the total number of states.

Theorem 1 ( Barto, Bradtke, & Singh, 1993 ) If V̂h is ini-
tialized with an admissible value function then it eventually
converges toV ∗ on the set of relevant states of an optimal
policy under repeated RTDP trials for (a) any discounted
MDP and (b) any SSP with restricted initial state where at
least one policy reaches the goal with probability one.

As noted in the original description of the RTDP al-
gorithm (Barto, Bradtke, & Singh 1993), thedepth of
UPDATE(V̂h, s) can be optimized. However, this is not gen-
erally done in the current literature, with the exception ofa
pass to backup all states in a trial in reverse order, e.g., as
done in Labeled RTDP (LRTDP) (Bonet & Geffner 2003b).

Policy Evaluation and Search
We note that most dynamic programming approaches to
solving MDPs areanytime algorithms, i.e., they can be
stopped at any point during execution before convergence
and provide a solution estimatêV . It is typically assumed
(and often easily proved) that the more time an anytime DP
algorithm is given, the closer̂V is to convergence.

When an anytime DP algorithm returns a value function
estimateV̂ that has not converged, one important question
is how to evaluate a policy w.r.t.̂V ? We could evaluate the
greedy policy forV̂ as given in Equation 6, but we note that
this may be suboptimal sincêV itself may not be optimal.
Noting that policy evaluation in Equation 6 is the same as
anarg maxa applied to the Bellman update of Equations 3
and 4, we couldoptimize the depth of a forward-search up-
dateas previously discussed in order to obtain a potentially
better value estimate and thus a potentially better policy.

But then the same question arises here as did for the case
of the RTDP update discussed previously. How do we opti-
mize the update search depth in both of these cases to ensure
that this search computation (and thus time) is not wasted?
We answer this in a Bayesian search control framework next.

Bayesian Search Control
The current UPDATE(V̂h, s) procedure used in most algo-
rithms is the uniform depth-one update of Equations 3 and 4.
However, as motivated previously, the question we now want
to ask is how we can dynamically adapt this update depth?
That is, given the task of updatingV (s) for somes ∈ S
w.r.t. the valueV (t) of potential successor statest ∈ S of
s, how do we determine whichV (t) to recursively update,
and whichV (t) to use as currently estimated? More pre-
cisely, we ask whether the information gain of knowingV (t)
more precisely justifies the time for the additional search re-
quired?

We answer this question through a Bayesian value of in-
formation framework (Howard 1966) where we balance the
potential gain of exploration with its additional cost based
on our current beliefs. To obtain a Bayesian framework, we
need some manner of assigning probabilities to our current
value beliefs, which we provide shortly.

First, however, we define a simple vectorial notation that
will simplify the notation throughout our analysis. We often
switch between function notationV (s) for our value func-
tion and a vector~V of length|S|. Noting that theQt(s, a)

computation in Equation 3 is a linear function of~V t−1, we
extract the coefficients of~V t−1 from Equation 3 and store
them in a vector~Γa,s of length |S|. Then we can rewrite
Equations 3 and 4 in the following form:

Qa,s := ~Γa,s · ~V t−1 (7)

V t(s) := max
a∈A

Qa,s (8)

Bounds and Belief Distributions
Let ~Vl and ~Vh respectively represent an entire vector of
lower and upper bounds for all states and let specific ele-
ments of these vectors be denoted byVl(s) andVh(s). Let
~θ = 〈~Vl, ~Vh〉. While the boundsVh(s) andVl(s) for states
may be correlated with the boundsVh(s′) andVl(s

′) for any
states′ reachable froms under some policyπ on account
of the Bellman equations, determining these correlations is



tantamount to performing DP backups and thus they cannot
be determined without solving the underlying MDP.

Given that we have no additional immediate knowledge
about possible belief valuesvs ∈ [Vh(s), Vl(s)] for state
s, we can only reasonably assume thatvs is uniformly dis-
tributed between these lower and upper bounds.1 Overload-
ing notation, we let~V = R

|S| represent a random vector of
value beliefs. Then~θ can be used to parameterize a multi-
variate uniform distributionP (~v|~θ) for ~v ∈ ~V that is consis-
tent with the upper and lower bounds~θ. We can explicitly
representP (~v|~θ) =

∏

s P (vs|~θ) whereP (vs|~θ) is a univari-
ate uniform density over the valuesvs ∈ [Vl(s), Vh(s)] for
states (and a Dirac delta functionδVl(s)(vs) in the special
case that[Vl(s) = Vh(s)]).

Before we defined admissibility for the initial upper
boundVh(s), now we must also define initialadmissible
lower boundsVl(s): ∀s ∈ S. Vl(s) ≤ V ∗(s). We assume
that both upper and lower bounds are respectively admissi-
ble and note that subsequent DP updates preserve this prop-
erty (McMahan, Likhachev, & Gordon 2005).

Optimizing the Update Depth
With a uniform parameterization over our value beliefs, we
can write out the integral for ourexpectedvalue ofQ(a, s)
under the current beliefs and evaluate it in closed form:

E[Qa,s|~θ] =

∫

~v

∏

s′

P (vs′ |~θ)
[

~Γa,s · ~v
]

d~v

= ~Γa,s ·
~Vh + ~Vl

2
(9)

Now we return to the original question of how to deter-
mine the statest ∈ S for which the potential information
gain of updating valueV (t) exceeds the time cost required
for this additional update. Given that we do not know this
gain exactly, we use a value of perfect information frame-
work (Howard 1966) where we assume that a clairvoyant
source informs us of the true valuev∗

t = V ∗(t) for statet.
Since we can assume external knowledge ofv∗

t , we can
use this to refine our beliefs wherev∗

t replaces the previous
upper and lower bounds for statet in P (v|~θ):

E[Qa,s|~θ, v
∗
t ] =

∫

~v

δv∗

t
(vt)

∏

s′ 6=t

P (vs′ |~θ)
[

~Γa,s · ~v
]

d~v (10)

Now, whereas Equation 9 evaluated to a constant since all
values in~Vh and~Vl are known, this equation evaluates to a
linear function ofv∗

t since all values except forv∗
t are con-

stants. This linear function may simply be expressed as

E[Qa,s|~θ, v
∗
t ] = c(a,s,t,~θ) + d(a,s,t,~θ)v

∗
t (11)

1We note that this assumption is not simply one of convenience.
Without knowing how values were updated or being able to deter-
mine correlations between them, we have no more reason to believe
that the true valuev∗

s is at the mean[Vh(s) + Vl(s)]/2 rather than
at one of the boundariesVh(s) or Vl(s), or anywhere in between. It
is important to note that for model-based DP, the value updates are
not sampled in a statistical sense and thus the central limit theorem
and associated normality assumptions do not apply.

wherec(a,s,t,~θ) andd(a,s,t,~θ) are constants that can be easily
determined from Equation 10 given their subscripts.

To evaluate the gain of knowingv∗
t , we use the analytical

framework of Deardenet al.(Dearden, Friedman, & Russell
1998) adapted to our setting. Leta∗ = arg maxa E[Qa,s|~θ]
(i.e., the current best action in expectation for states). We
can evaluate the gain of knowingv∗

t by determining how
much it will increase future reward:

Gaint(v
∗
t ) = (12)

max
(

0, max
a∈A

{E[Qa,s|~θ, v
∗
t ] − E[Qa∗,s|~θ, v

∗
t ]}

)

In short,Gaint(v
∗
t ) is only non-zero when knowledge ofv∗

t

indicates that some other actiona is more optimal than the
current best choice ofa∗ and then the gain is the difference
in utility. Since we are looking at the gain over multiple
actions, we must take the maximum positive gain possible.

In reality, we do not knowv∗
t , but we do have current

beliefs over its value. Thus, we can write out the expected
value of perfect information aboutv∗

t :

VPI (t) =

∫ ∞

v∗

t
=−∞

Gaint(v
∗
t )P (v∗

t |
~θ)dv∗

t

=
1

Vh(t) − Vl(t)

∫ Vh(t)

v∗

t
=Vl(t)

Gaint(v
∗
t )dv∗

t (13)

VPI (t) now provides us with an optimistic upper bound es-
timate on the myopic value of perfect information for updat-
ing the value of statet. If we consider the cost for this node
expansion to be some constantη measured in units commen-
surable with reward2, then our analysis shows that we should
recursively update the valueV (t) if V PI(t) > η.

Implementation
At first, VPI (t) might seem difficult to evaluate due to the
integral and implicit maximization in theGaint(v

∗
t ) equa-

tion. But in Figure 2 we show that the calculation only re-
quires a univariate integral over a piecewise linear function
and it also admits a simple and efficient approximation.

Algorithmically, Bayesian search controlreduces to per-
forming recursive applications of UPDATE(s) to all reach-
able statest that haveVPI (t) > η (with an additional
modification to avoid infinite loops). This provides us with
the new UPDATE(~Vh, ~Vl, s) in Algorithm 2 that together
with maintaining admissibly initialized upper and lower
bounds is the only modification required to convert RTDP
to Bayesian RTDP3 (or its variant using the approximation
to VPI from Figure 2). We can also defineBayesian policy
evaluation(and its approximate variant) simply by calling
UPDATE(~Vh, ~Vl, s) to refine the value ofs’s successor states
before evaluating the actiona to take in states.

2Or it could scale with the number of actions and/or next states,
which might be pre-cached for some problems.

3We trivially note that Theorem 1 still holds for Bayesian RTDP
since additional DP updates can never hurt the convergence of
asynchronous value iteration methods such as RTDP.
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Figure 2: A graphical representation of theV PI(t) calculation.
Note thata∗ is the current optimal action (for the current mid-
point belief estimates) and the only values for whichGaint(v

∗

t )
is non-zero are indicated by the black filled area. Thus theVPI (t)
calculation in Equation 13 simply corresponds to the black area
multiplied by1/(Vh(t) − Vl(t)). Theapproximationof this is the
union of the black and gray area; it bounds the maximumVPI (t)
by evaluating only the endpoints and the midpoint.

Preliminary Empirical Results
We evaluated Bayesian search control for the DP solu-
tion and real-time policy evaluation of racetrack benchmark
problems (Barto, Bradtke, & Singh 1993; Smith & Sim-
mons 2006) shown in Figure 4. The state in this problem
is a combination of a car’s coordinate position〈x, y〉 and
velocity 〈x′, y′〉 in each coordinate direction. A car be-
gins at one of the initial start states (chosen uniformly ran-
domly) with velocity 〈x′, y′〉 = 〈0, 0〉. Actions 〈x′′, y′′〉
available to the car are integer accelerations{−1, 0, 1} in
each coordinate direction. If the car hits a wall, then its
velocity 〈x′, y′〉 is reset to〈0, 0〉. A car may skid with
probability .1, thus resulting in an action outcome equiv-
alent to0 acceleration in each direction. With probability
.1 the wind may perturb the commanded acceleration by
a uniform choice of{〈−1,−1〉, 〈−1, 0〉, 〈−1, 1〉, 〈0,−1〉,
〈0, 1〉, 〈1,−1〉, 〈−1, 0〉, 〈1, 1〉}. Finally, if the car passes
over a grayed “rough” patch in the diagram, the immediate
reward is−10, for all other “clear” patches, the immediate
reward is−1. We use discountγ = 1.

While these problems represent a smallsubsetof possible
oversubscribed MDPs (i.e., only one goal state of many can
be achieved, each with a different cumulative cost), these
preliminary results are indicative of the ability of Bayesian
search control methods to reason about the trade-offs of
achieving each goal in oversubscribed planning.

Dynamic Programming and Search Results
We have already defined theBayesian RTDPalgorithm for
dynamically adapting the backup depth along with its ap-
proximate variant that we evaluate. We also evaluate other
RTDP algorithms and their (approximate) Bayesian vari-
ants: Labeled RTDP (LRTDP) (Bonet & Geffner 2003b) and

Algorithm 2: UPDATE(V̂h, V̂l, s) for Bayesian Search

begin
// Mark state as visited
s.visited := true;
foreach t ∈ {states reachable froms} do

// Updatet if its VPI exceeds the computation cost
if (¬t.visited ∧ VPI (t) > η) then

UPDATE(V̂h, V̂l, t);

// Unmark state as visited
s.visited := false;

// Update upper and lower bounds (after recursion)
V̂l(s) := maxa∈A R(s, a)+γ

P

s′∈S
T (s, a, s′) · V̂l(s

′);

V̂h(s) := maxa∈A R(s, a)+γ
P

s′∈S
T (s, a, s′)·V̂h(s′);

end
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Figure 3: Time to convergence for different values ofη for
Bayesian RTDP on various problems.

Focused RTDP (FRTDP) (Smith & Simmons 2006). We dis-
cuss these variants in the Related Work, it suffices to state
that the Bayesian variants of these algorithms simply use
the same dynamic backup depth modification as Bayesian
RTDP. As one final algorithm variant to evaluate, we replace
theVPI (t) calculation in UPDATE(~Vh, ~Vl, s) with thebound
gapcorresponding to~Vh(t) − ~Vl(t) that represents the true
value uncertainty for statet. The bound gap is a heuristic
used to focus trial trajectories in Bounded RTDP (McMa-
han, Likhachev, & Gordon 2005) and FRTDP.

We examined the performance of the various RTDP al-
gorithms initialized with uninformed admissible upper and
lower bounds set to respective maximum and minimum val-
ues for a max trial length of100. We foundη = 1 to gen-
erally yield good results for both Bayesian and bound gap
RTDP. In Figure 3 we analyze the performance of Bayesian
RTDP for various settings of the computation-information
tradeoff parameterη. If η is too small, it encourages use-
less exploration that costs time, while ifη is too large then
it does not take advantage of value of information except in
extreme cases, thus effectively wasting the time required to
compute it. We note that empirically, the best setting forη
across these four problems seems to be between0.1 and1.
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Corner-1 Corner-2 Large-B Large-Ring Hall-1 Hall-2

RTDP 7.8 (1.7e+04) 42.0 (8.8e+05) 85.6 (6.4e+07) 38.8 (1.3e+07) 23.2 (1.9e+07) 426.7 (2.9e+08)
Bound Gap RTDP 10.4 (2.9e+04) 50.1 (3.5e+05) 28.5 (5.4e+06) 28.6 (3.1e+06) 10.1 (2.4e+06) 63.6 (1.1e+07)
Approx. Bay. RTDP 9.8 (3e+04) 42.3 (7.9e+05) 153.3 (7.9e+07) 40.0 (8.6e+06) 12.8 (1.9e+06) 775.2 (1.4e+08)
Bayesian RTDP 8.3 (9e+03) 52.5 (2.7e+05) 92.0 (3.6e+06) 43.1 (9.8e+06) 17.2 (5.7e+06) 557.5 (8.7e+07)

LRTDP 7.4 (1.9e+05) 26.2 (9.5e+04) 28.7 (1.9e+06) 34.3 (1.0e+06) 9.2 (1.5e+05) 54.9 (7.6e+05)
Bound Gap LRTDP 7.1 (1.8e+05) 29.3 (1.1e+05) 29.1 (2.4e+06) 32.5 (9.4e+05) 8.7 (1.5e+05) 54.8 (7.4e+05)
Approx. Bay. LRTDP 7.4 (1.8e+05) 29.3 (1.3e+05) 29.5 (2.2e+06) 32.9 (9.8e+05) 8.9 (1.3e+05) 54.7 (7e+05)
Bayesian LRTDP 7.6 (1.7e+05) 29.2 (1.1e+05) 29.6 (2.1e+06) 32.7 (9.3e+05) 9.1 (1.3e+05) 55.1 (7.5e+05)

FRTDP 7.2 (1.6e+05) 29.0 (1.3e+05) 22.1 (5.6e+05) 28.7 (4.3e+05) 9.0 (1.3e+05) 49.0 (3e+05)
Bound Gap FRTDP 7.1 (1.7e+05) 29.7 (1.4e+05) 21.3 (5.8e+05) 27.1 (4.4e+05) 8.7 (1.4e+05) 52.0 (3e+05)
Approx. Bay. FRTDP 7.6 (1.6e+05) 29.9 (1.2e+05) 22.1 (5e+05) 28.5 (3.8e+05) 8.9 (1.1e+05) 52.9 (2.9e+05)
Bayesian FRTDP 7.7 (1.7e+05) 30.1 (1.3e+05) 22.1 (5e+05) 28.8 (3.8e+05) 9.0 (1.1e+05) 53.0 (2.9e+05)

Table 1: Time (s) and (# of backups) to convergence (ǫ = 10−3) for RTDP variants on each problem (statistically indistinguishable best
values within 95% confidence bounds for a problem are bolded). Overall, Bayesian approaches often require the least number of backups.

Time and number of backups to convergence on the race-
track benchmarks are recorded in Table 1. Values were
averaged over 30 runs. One feature of the top four rows
is that Bayesian RTDP (and its approximate variant) often
converged with an order of magnitude fewer backups than
plain RTDP. However, the computational overhead of (ap-
proximate) Bayesian RTDP can be substantial and thus this
backup savings did not always translate to time savings. The
bound gap approach to dynamically adapting the backup
depth also performed well for reasons we discuss later.

The bottom eight rows of Table 1 show the performance
of other RTDP variants on these same problems demonstrat-
ing the same general trends as before, although with lower
variance among search approaches for any given algorithm
and problem. It appears that unlike RTDP, the heuristics and
other provable mechanisms for restricting search in LRTDP
and FRTDP perform well at focusing the search so that addi-
tional dynamic backup depth modifications do not contribute
substantial additional savings.

To further investigate the performance of Bayesian RTDP
vs. RTDP, in Figure 5 we provide a plot of the area between
the lower and upper bounds for both algorithms on Corner-
2. As a function of the number of backups it is immediately
clear that Bayesian RTDP manages to quickly reduce its er-

ror bounds demonstrating that the expected value of infor-
mation analysis in the backups has a substantial payoff in
terms of reducing error early on.

So, if Bayesian variants of RTDP reduce error more
quickly and perform fewer backups, why is convergence
time not substantially improved? One obvious issue is the
computational overhead of theVPI (t) calculation. Another
important issueseemingly unacknowledged in the Bayesian
search-control literature(see Related Work) is thatVPI (t)
is not always an informative heuristic for obtaining dynamic
programming convergence.4 An example of this is shown
in Figure 6 where we see thata∗ completely dominates the
other actions, resulting inVPI (t) = 0. However, the value
of Qs,a∗ is still highly uncertain asvt varies; thus further re-
fining the value ofQs,a∗ could be useful for the convergence
of other states thatdependon the accuracy ofQs,a∗ . While
VPI (t) may not yield ideal search control for the conver-
gence of dynamic programming, it is sensitive to how value
changes may affect the optimal policy, indicating that it may
be better applied to policy search as we evaluate next.

4The bound gap serves as a surrogate for such a heuristic al-
though it may not always focus computation where uncertainty can
be reduced. E.g., bound gap needlessly explores the “room” at the
bottom of Hall-1 where it may be difficult to reduce uncertainty.
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Figure 5: Plot of area between lower and upper bounds on the
initial state value for RTDP and Bayesian RTDP vs. the number
backups made for an uninformed solution to Corner-2. Note that
the Bayesian RTDP bounds overlay on the RTDP bounds. A line
following the midpoint of the bounds is shown for each algorithm.

Policy Evaluation and Search Results

We experimented with various policy evaluation approaches
using the upper and lower bound value function estimates
produced by an anytime version of RTDP stopped before
convergence. The four approaches that we evaluate are
no search(just direct policy evaluation from Equation 6),
Bayesianand its approximate variant as previously dis-
cussed, andbound gapthat uses the same approach as the
Bayesianpolicy evaluation methods except thatVPI (t) is
replaced with the bound gap corresponding to~Vh(t)− ~Vl(t).

Results of these policy evaluation approaches for non-
converged value functions on various problems are provided
in Table 2 and at various stages of convergence for Large-
Ring in Figure 7. The overall result is that given a fixed
time budget, Bayesian search control methods always per-
form as well as other methods and most often outperform
the other methods by a large margin (e.g., Large-B, Hall-1,
and Hall-2 in Table 2 and at most time points in Figure 7).
These results are consistent with our previous analysis —
Bayesian VPI analysis will avoid updating uncertain statesif
it knows a better value estimate is unlikely to change the op-
timal policy, thereby leading to effective search-controlfor
policy evaluation. On the other hand, policy search priori-
tized by bound gap shows major deficiencies w.r.t. Bayesian
approaches indicating that the uncertainty bound gap may
not be the best search heuristic for policy evaluation.

Related Work
Trading off computation time and reward in a fully decision-
theoretic framework where deliberative actions are afforded
the same status as actions that directly interact with the
environment is a well-known problem in AI and decision-
theoretic planning. We refer the reader to Russell and We-
fald (Russell & Wefald 1991) for an excellent historical re-
view of such ideas as well as a meta-reasoning approach that
can be seen as a high-level motivating thread of the research
presented here. Search control itself is major focus of the
planning community and thus we focus our related work dis-
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Figure 6: A hypothetical case whereVPI (t) = 0, yet further
refining the value ofQs,a∗ could be useful for other states that
depend on this value.

cussion on search control methods used for RTDP as well as
other Bayesian search control approaches.

Various extensions of RTDP provide different search con-
trol strategies. Labeled RTDP (LRTDP) (Bonet & Geffner
2003b) improves on basic RTDP by labeling states as solved
when their values (and the values of states reachable from
them) have converged, thus not needing to consider them
for updates later on. Heuristic Dynamic Programming
(HDP) (Bonet & Geffner 2003a) combines an even stronger
version of this labeling approach with a heuristic algorithm
that searches for states with inconsistent values to update.
Bounded RTDP (BRTDP) (McMahan, Likhachev, & Gor-
don 2005) uses the bound gap5 to focus trial trajectories and
thus updates, on the states with most uncertainty. Focused
RTDP (FRTDP) (Smith & Simmons 2006) improves on this
by taking into account the state occupancy probability un-
der the current policy. However,noneof these RTDP ex-
tensions optimize the dynamic programming backup depth
using Bayesian VPI search methods nor do they propose us-
ing Bayesian search methods for the anytime policy evalua-
tion of their unconverged solutions. As such, the Bayesian
search control approaches introduced in this paper can be
easily integrated into the above RTDP variants as we par-
tially demonstrated in the experimental results.

There are also a variety of search control strategies that
attempt to exploit value of information in some manner.
Bayesian Q-learning (Dearden, Friedman, & Russell 1998)
presents a technique to balance exploration and exploitation
in a model-freeQ-learning approach. To estimate the ex-
pected gains on future decisions, a normal-gamma distri-
bution is assumed for the utility values ofsampledstate-
action pairs, which allows the computation of an informa-
tion value for actions (not states as done here). Work on
control strategies (Tash & Russell 1994) also enables a plan-
ning agent to choose where to focus its computational effort,
but requires externally provided variance estimates of state-
values. The DRIPS planner (Haddawy, Doan, & Goodwin
1995) searches for plans using a hierarchical approach, start-

5See the experimental results for a detailed discussion of how
the bound gap used by BRTDP and FRTDP differ from the
Bayesian VPI approach in this paper.



Corner-1 Corner-2 Large-B Large-Ring Hall-1 Hall-2

No Search -44.6± 3.6 -92.9± 2.7 -54.6± 1.5 -47.5± 1.5 -86.1± 1.7 -191.1± 5.7
Bound Gap -30.6 ± 1.6 -74.9± 1.7 -53.1± 1.3 -40.1 ± 1.1 -89.1± 1.6 -149.4± 3.7
Approx. Bayesian -33.4 ± 2.0 -57.9± 1.1 -54.8± 1.5 -38.2 ± 0.9 -65.5± 1.5 -141.8± 3.5
Bayesian -33.0 ± 2.4 -53.5 ± 1.2 -44.1 ± 0.8 -40.6 ± 1.0 -57.0 ± 1.3 -103.2 ± 2.8

Table 2: Average cumulative reward per trial (with 95% confidence intervals andbest values bolded) using various (search-based) pol-
icy evaluation approaches on the non-converged value function produced by stopping RTDP (with upper and lower bounds) after running
approximately 1/4 of the time it would need to converge. Search-based methods usedη = 1 and were given a maximum of100ms.
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Figure 7: Average cumulative reward per trial (with 95% confi-
dence intervals) using various (search-based) policy evaluation ap-
proaches on the non-converged value function produced by stop-
ping upper- and lower-bounded RTDP on Large-Ring at various
times (on the x-axis). The search-based methods usedη = 1 and
were given a maximum of100ms.

ing from an abstract, high-level plan and iteratively special-
izing it until a ground plan is computed. Estimates of plan
performances are used both to eliminate suboptimal plans
and a sensitivity analysis of these performances is used to
select which abstract actions to specify first. The sensitivity
analysis used in DRIPS resembles a crude approximation of
the value of perfect information we derived here that only
evaluates alternate actions at the upper and lower bounds,
but we note that even better approximations provided here
did not perform as well on policy evaluation as the exact
Bayesian VPI calculation that we derived. The work of
Dearden, et al. (2003) uses plan value estimates in planning
problems with temporally extended actions and continuous
resources. Employing a seed-plan, their approach tries to
find beneficial contingent branches through a value of infor-
mation analysis similar to what we employ here, however,
they express beliefs over the resources, but not over the value
function itself as we do here. Finally, Goodwin (1996) pro-
vides a general reference list of other meta-level search con-
trol heuristics although none of these approaches adopt the
Bayesian value framework and value of information analysis
proposed here.

Concluding Remarks
We presented a novel Bayesian value of information analysis
that can be used for various search control tasks in the real-
time solution of MDPs (and thus many oversubscribed plan-

ning problems as explained in the Introduction). We then
applied these Bayesian search control ideas to dynamically
adjust the backup depth in RTDP algorithms and to per-
form search control for real-time policy evaluation. While
Bayesian search control for RTDP often reduces the number
of backups required to converge, this did not always translate
to a clear time savings for various reasons that we analyzed.
A key observation, however, was that Bayesian search con-
trol proved an excellent tool for avoiding state updates that
do not change the optimal policy, thus leading to excellent
empirical performance on real-time policy evaluation exper-
iments. As such, Bayesian search control poses an attractive
real-time policy evaluation approach for MDPs; certainly,
the encouraging results here warrant further exploration of
such ideas.
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