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- their main credit providers. The use of industry-specific sentiment indicators results in a

high-dimensional forecasting problem. To identify the most predictive industries, we present
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1 Introduction

Sentiment indicators are often considered to be among the most important leading indicators

of the real economy (Dreger and Kholodilin, 2013) and are therefore closely followed by busi-

ness cycle analysts, central banks and business owners (Vuchelen, 2004, Claveria et al., 2007,

Martinsen et al., 2014). However, studies on the predictive power of sentiment indicators

find mixed results. While many studies find that sentiment indicators have predictive power

for future economic developments (Kumar et al., 1995, Hansson et al., 2005, Lemmens et al.,

2005, Abberger, 2007, Klein and Oezmucur, 2010, Christiansen et al., 2014), others conclude

that sentiment indicators provide only limited information for predicting economic variables

(Cotsomitis and Kwan, 2006, Claveria et al., 2007, Dreger and Kholodilin, 2013 and Bruno,

2014).

An important communality between these studies is the use of aggregate sentiment in-

dicators. This paper, instead, examines the predictive power of disaggregate sentiment

indicators. Especially in the context of business sentiment – as is the topic of this paper –

some segments have more predictive power than others. Here, we segment firms according

to their industry. Our methodology takes into account that the different industry segments

might contain predictive power for different macro-economic indicators.

To study the predictive power, we use a Granger Causality approach. A (set of) time

series is said to Granger Cause another time series if the former has incremental predictive

power for predicting the latter. Granger Causality tests in low-dimensional time series set-

tings have a long history. They are used, among others, in macro-economics to study the

predictive power of monetary aggregates for output and price variables (Sahoo and Acharya,

2010), in operational research to study the predictive power of academic literature for prac-

titioner literature (Ghosh et al., 2010), or in finance to study the predictive power of volume

for stock prices (Blasco et al., 2005). Because predictive analysis based on disaggregate

sentiment indicators requires handling a large number of such indicators, we introduce a

Granger Causality testing procedure applicable to high-dimensional time series.

Recently, a small but growing literature on inference in penalized regression models for
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cross-sectional data has arisen, such as Wasserman and Roeder (2009), Meinshausen et al.

(2009) and Chatterjee and Lahiri (2011). We extend the residual bootstrap procedure of

Chatterjee and Lahiri (2011) to high-dimensional time series data. The bootstrap test

statistic, based on the Adaptive Lasso (Zou, 2006), identifies those industry segments whose

predictive power is statistically significant. Our simulation study shows that this test statis-

tic is more powerful than the standard Wald test statistic in a high-dimensional setting.

Furthermore, important gains in forecast accuracy are obtained by not using all industry

segments but by first selecting the most predictive ones using the bootstrap test statistic.

We use a unique data set that not only measures the sentiment of firms towards their own

situation (“business sentiment”) – as is classical for sentiment indicators – but also measures

the sentiment of firms towards the banking industry (“bank sentiment”). For the economy to

be able to grow, it is essential that firms have access to credit, typically provided by banks.

Especially in the aftermath of the recent economic downturn and banking crises, distressed

banks can constrain the economy (Kroszner et al., 2007, Dell’Ariccia et al., 2008, Fernandez

et al., 2013). To the best of our knowledge, we are the first to study the importance of

sentiment towards the banking industry.

The remainder of this article is structured as follows. Section 2 describes the data on the

business and bank sentiment, as well as the macro-economic indicators. Section 3 introduces

Granger Causality Testing in high-dimensional time series models. In Section 4, a simulation

study shows the good performance of our methodology in terms of size and power of the test

statistic and forecast accuracy. In Section 5, we apply the proposed methodology to identify

the most predictive industry segments for several future macro-economic indicators. In

Section 6, we show that forecast accuracy can be improved by using only the most predictive

industry segments instead of all industry segments. Finally, Section 7 concludes.
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Table 1: Industry Segments. Businesses are divided into 10 industry segments.
Industry Description Sector

Industry 1 Agriculture, forestry, fishing, mining and quarrying and other industry Primary

Industry 2 Manufacturing Secondary

Industry 3 Construction Secondary

Industry 4 Wholesale and retail trade, transportation and storage accomodation and food and service activities Tertiary

Industry 5 Information and communication Quaternary

Industry 6 Financial and insurance activities Quaternary

Industry 7 Real estate activities Quaternary

Industry 8 Professional, scientific, technical administration and support service activities Quaternary

Industry 9 Public administration, defence, education, Quaternary

Industry 10 Other services Quaternary

2 Data

We use a unique data set provided to us by EUWIFO, the European Economic Research

Institute. EUWIFO is an owner-managed business that conducts business climate interviews.

By conducting interviews with firms spread over Germany, EUWIFO gathers information on

the confidence these firms have in their own economic situation and in the banking sector.

Firms are divided into segments according to the industry in which they are active based on

their NACE code. These 10 industry segments are listed in Table 1.

The interviews consist of two parts. In the first part, the Business Survey, firms are asked

to assess their own situation. In the second part, the Bank Survey, firms are asked to assess

the German bank sector.

Business Survey Each firm receives 9 questions to assess their own economic situation.

They are asked to assess changes (this year compared to last year) in (1) turnover, (2) earn-

ings, (3) number of employees, (4) investments, (5) incoming domestic orders, (6) incoming

foreign orders, (7) utility and maintenance costs, (8) tax burden, and (9) cost through gov-

ernment red tape. For each question, answers are favorable, neutral or unfavorable. For all

the firms within an industry segment, a balance of opinion indicator is calculated for each

question, being the percentage of favorable answers minus the percentage of unfavorable

answers. As we construct 9 sentiment indicators for each of the 10 industries, this amounts
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Table 2: Macro-economic indicators. All time series are seasonally adjusted (Eurostat).
Indicator Description

IP-A1 Production in industry: Mining and quarrying; manufacturing; electricity, gas, steam and air conditioning supply

IP-A2 Production in industry: Construction, Mining and quarrying; manufacturing; electricity, gas, steam and air conditioning supply

IP-M Production in industry: Manufacturing

IP-E Production in industry: Energy

IP-CaGo Production in industry: Capital goods

IP-CoGo Production in industry: Consumer goods

RT Retail Trade, except of motor vehicles and motorcycles

WS Wholesale Trade, except of motor vehicles and motorcycles

to 90 business sentiment indicators.

Bank Survey Each firm is asked to assess the German bank sector. In total, 243 German

banks are included in the Bank Survey. Each firm first has to indicate which of these 243

German banks they know. For the banks they know, they are asked to assess their consider-

ation towards that specific bank and the reputation of that specific bank. Answers are either

favorable or unfavorable and a balance of opinion indicator is calculated for each question.

We include three indicators: the average consideration indicator, averaged over all German

banks, the consideration indicator towards the Sparkassen, and the consideration indicator

towards the Volksbanken. The latter two are the most well known banks in Germany. We

also construct three reputation indicators per industry segment following an analogous ap-

proach. As we construct three bank consideration and three bank reputation indicators for

each of the 10 industries, this amounts to 60 bank sentiment indicators.

Joining the 90 business sentiment indicators and the 60 bank sentiment indicators results

in a total of 150 time series. We combine all 150 sentiment indicators in one high-dimensional

data set. All time series are observed over T = 40 months (January 2012-April 2015).

We study the predictive power of these sentiment indicators for 8 German macro-economic

indicators (Table 2).

The 150 time series are grouped into blocks by industry segment (cfr. Table 1). For each

industry segment, we have one block of 9 indicators from the Business Survey and one block

of 6 indicators from the Bank Survey. Our methodology is such that we select either all 9
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business sentiment indicators for an industry, or none. Similarly, we will select either all 6

bank sentiment indicators for an industry or none. This way, we can investigate the difference

in predictive power between the business and bank sentiment indicators for the 10 industries.

To identify the most predictive blocks, we perform joint hypothesis tests. We test if the set

of indicators in a particular block Granger Causes a particular macro-economic indicator.

This predictive analysis involves a large number of disaggregate sentiment indicators. In the

next section, we introduce a Granger Causality testing procedure that can handle such a

high-dimensional situation.

3 High-dimensional Granger Causality Testing

Performing Granger Causality tests on a data set with many time series relative to the

length of the series is challenging. In these high-dimensional settings, estimation by standard

procedures becomes inaccurate. In our sentiment application, the number of time series (i.e.

k = 150) even exceeds the length of the time series (i.e. 40), making it impossible to use

standard estimation procedures. Penalized estimation brings an outcome.

3.1 Penalized Maximum Likelihood estimation

Let yt be a one-dimensional stationary time series. We assume that yt follows a ARX(p)

model, i.e. an autoregressive model of order p with k predictor time series collected in the

(k × 1) vector xt:

yt = b1yt−1 + b2yt−2 + . . .+ bpyt−p + a1xt−1 + a2xt−2 + . . .+ apxt−p + et , (1)

where b1 to bp are the autoregressive parameters, the parameters a1 to ap are (1× k) vectors

and the error term et is assumed to follow a N(0, σ) distribution. We assume, without loss

of generality, that all time series are mean centered such that no intercept is included.

If the number of components in xt is large, the number of unknown parameters in equa-

tion (1) explodes. To ensure accurate estimation, we use Penalized Maximum Likelihood
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estimation (e.g. Zou, 2006 in a regression context, or Gelper et al., 2015 in a time series

context). Write model (1) in matrix notation as

y = Xβ + e , (2)

where y is the column vector (y1, . . . , yT ), and the matrix X = (Y1, . . . ,Yp,X1, . . . ,Xp).

Here Yj is (T × 1), containing the values of the time series at lag j in its column; and Xj is

an (T ×k) matrix, containing the values of the k predictor time series at lag j in its columns,

for 1 ≤ j ≤ p. The vector β contains the parameters values b1, . . . , bp, a1, . . . , ap, and has

length p(1 + k). In case p(1 + k) > T , the Maximum Likelihood estimator does not exist.

The Penalized Maximum Likelihood estimator is, however, still computable.

The penalized estimator of the regression parameter β is obtained by minimizing the

negative log likelihood with a penalization on the elements of β:

β̂λ = argmin
β

1

T
(y −Xβ)′(y −Xβ) + λ

p(1+k)∑
i=1

ŵi|βi| , (3)

where ŵi are weights and λ > 0 is a sparsity parameter. This estimator is the Adaptive

Lasso (Zou, 2006). It generalizes the popular Lasso (e.g. Hastie et al., 2009, Chapter 3)

which shows good performance in operational research (e.g. Ballings and Van den Poel,

2015, Huang et al., 2014). The Adaptive Lasso ensures that the bootstrap (Section 3.3)

is consistent (Chatterjee and Lahiri, 2011). We take the weights of the Adaptive Lasso

ŵi = 1/|β̂ridge
i |, where the Ridge estimator (Hastie et al., 2009, Chapter 3) is

β̂
ridge

λ = argmin
β

1

T
(y −Xβ)′(y −Xβ) + λridge

p(1+k)∑
i=1

β2
i .

The sparsity parameter λ and the order of the ARX, p, are selected using the Bayesian

Information Criterion (BIC) (e.g. Abegaz and Wit, 2013 and references therein):

BICλ = T · log

(
1

T
(y −Xβ̂λ)

′(y −Xβ̂λ)

)
+ dfλ · log(T ),

where dfλ equals the number of non-zero estimated regression coefficients. We solve (3) over

a range of values for λ and select the one with lowest value of the BIC. To select the order of
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the ARX model, we estimate the ARX model for different values of p, each time using the

optimal value of λ for that value of p. We then select the order p of the ARX model again

by minimizing the BIC.

3.2 Granger Causality in the ARX framework

We partition the vector xt in different blocks, and denote the jth block of xt by xt,j, con-

sisting of kj time series. In the ARX model (1), denote the jth block of coefficients at lag i

corresponding to xt,j by ai,j. The multivariate time series xt,j is said to Granger Cause yt if

the former has incremental predictive power for the latter. We say that xt,j does not Granger

Cause yt if the coefficients on all lags of xt,j are equal to zero, i.e. a1,j = . . . = ap,j = 0.

The Adaptive Lasso estimator in (3) is sparse, meaning that some of its elements are

exactly zero. The larger the value of λ, the sparser the estimator. The “Granger Lasso

Selection” method (e.g. Fujita et al., 2007, Bahadori and Liu, 2013) says that a time series xt,j

Granger Causes yt if at least one of the corresponding parameters a1,j, . . . , ap,j is estimated

as non-zero. Our approach is different, we infer Granger Causality relations from a bootstrap

testing procedure.

3.3 Granger Lasso test

The null hypothesis that a block of time series xt,j is not Granger Causing yt can be stated

as

H0 : Rjβ = 0, (4)

where Rj is a suitable pkj × p(1 + k) matrix. The elements of Rj are either zero or one. We

assign the value one to the elements of Rj corresponding to the autoregressive parameters

a1,j, . . . , ap,j. The corresponding Wald test statistic is given by

Q = (Rjβ̂)′(RjCov(β̂)R′j)
−1(Rjβ̂). (5)

To bootstrap this test statistic, we use the following residual bootstrap procedure (Kreiss

and Lahiri, 2012):
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1. Estimate the model under the null hypothesis, i.e. model (1) with the block xt,j removed

at the right-hand-side. Compute the centered residuals ε̂t, for t = 1, . . . , T .

2. Let B = 500 be the number of bootstraps. For b = 1, . . . , B:

(a) Construct the bootstrap time series y∗t from model (1) with the parameter esti-

mates from step 1 and with bootstrap errors ε∗t = ε̂Ut with Ut, t = 1, . . . , T an

i.i.d. sequence of discrete random variables uniformly distributed on {1, . . . , T}.

The predictor time series are kept fixed.

(b) Apply the Penalized Maximum Likelihood estimator of equation (3) to the boot-

strap sample. Denote the bootstrap estimate by β̂
∗
b .

(c) Compute the bootstrap statistic Q∗b = (Rjβ̂
∗
b)
′(RjCov(β̂)R′j)

−1(Rjβ̂
∗
b).

3. Compute

mid p-value =
1

B

B∑
b=1

(
I(Q∗b > Q) +

1

2
I(Q∗b = Q)

)
,

with Q∗b (for b = 1, . . . , B) B independent bootstrap statistics. I(·) is an indicator

function that takes on the value one if its argument is true and equals zero otherwise.

We use the mid p-value (Lancaster, 1949) since it may occur that the value of the test

statistic and the bootstrap test statistic are both equal to zero.

4 Simulation study

By means of a simulation experiment, we (i) evaluate the size and power of the Granger

Lasso test and (ii) conduct a forecast exercise. We generate yt according to the following

ARX(1) model

yt = 0.5yt−1 + a1xt−1 + et, (6)

where et ∼ N(0, 0.1). The predictors are generated as autoregressive processes xt = Cxt−1 +

ut, with ut ∼ Nk(0, 0.1I), C = 0.5I and I the k-dimensional identity matrix. The model

parameters are chosen according to the four designs detailed in Table 3. The first three

9



Table 3: Simulation designs.
Design under H0 under HA

T = 100, k = 25 a1 =
[
0.21×5 01×5 01×5 01×(k−15)

]
a1 =

[
0.21×5 0.21×5 01×5 01×(k−15)

]
T = 100, k = 50 a1 =

[
0.21×5 01×5 01×5 01×(k−15)

]
a1 =

[
0.21×5 0.21×5 01×5 01×(k−15)

]
T = 100, k = 75 a1 =

[
0.21×5 01×5 01×5 01×(k−15)

]
a1 =

[
0.21×5 0.21×5 01×5 01×(k−15)

]
T = 40, k = 150 a1 =

[
0.41×9 01×9 . . . 01×9 01×6 . . . 01×6

]
a1 =

[
0.41×9 0.41×9 01×9 . . . 01×9 01×6 . . . 01×6

]

designs are the same except for the number of time series k. In design two and three, we add

more non-informative time series to the model, i.e. time series with a coefficient equal to zero.

The standard Maximum Likelihood estimator is computable in these three designs. The last

design corresponds to the design of our sentiment application, with k = 150 predictor time

series and T = 40. Here, only the Penalized Maximum Likelihood estimator is computable.

For each design, we consider a data generating process under the null hypothesis H0 and

under the alternative hypothesis HA. We divide the time series xt and the corresponding

coefficient vector a1 into several blocks, as can be seen from Table 3. The first block of time

series Granger Cause the response both under H0 and under HA. The second block of time

series Granger Cause the response only under HA. The remaining blocks of time series never

Granger Cause the response. In the first three designs, block one to three each contain five

time series, the fourth block contains the remaining ones. In the last design, there are 20

blocks, similar to our sentiment application.

4.1 Size and power of the test statistic

We test the null hypothesis that the second block of time series does not Granger Cause the

response. We compare the performance of Granger Lasso test to the standard Wald test

computed from the standard Maximum Likelihood (ML) estimator.

To study the size of the test statistic, we simulate N = 1000 time series under the null

hypothesis and compute the simulated size, i.e. the proportion of simulation runs were the
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Table 4: Simulated sizes for the Wald test and Granger Lasso test.

Simulation design Wald test Granger Lasso test

α = 0.01 α = 0.05 α = 0.01 α = 0.05

T = 100, k = 25 0.017 0.064 0.013 0.058

T = 100, k = 50 0.025 0.079 0.010 0.052

T = 100, k = 75 0.035 0.082 0.015 0.051

T = 40, k = 150 NA NA 0.007 0.051

null hypothesis is rejected:

Simulated size =
1

N

N∑
j=1

I(pH0
j < α), (7)

where pH0
j is the mid p-value obtained in simulation run j = 1, . . . , N , and α is the pre-

specified significance level. We consider α = 0.01 and α = 0.05.

Results. Table 4 shows the simulated sizes for the standard Wald test and the Granger

Lasso test. The simulated sizes of the Granger Lasso test and the standard Wald test are

both close to the nominal size α in the design with T = 100, k = 25. When the number of

time series increases relative to the length of the time series (i.e. second and third design),

the Granger Lasso test remains accurately sized whereas the standard Wald test statistic

gets distorted: its simulated size deviates strongly from the nominal size. In the last design,

only the Granger Lasso test is available. For both α = 0.01 and α = 0.05, the Granger Lasso

test is reasonably accurately sized.

To study the power of the test statistic, we use size-power curves (see Davidson and

MacKinnon, 1998). Size-power curves are constructed using two empirical distribution func-

tions. We carry out the following steps:

1. Simulate N = 1000 time series under the null hypothesis. Compute for each simulation

run j = 1, . . . , N the mid p-value pH0
j . Calculate the empirical distribution function of

the p-values:

F̂H0(xi) =
1

N

N∑
j=1

I(pH0
j ≤ xi),
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Figure 1: Size-power curve of the Granger Lasso test (solid gray line) and the standard Wald

test (dashed line), for increasing number of time series k = 25 (left), k = 50 (middle) and

k = 75 (right) with time series length T = 100. The 45◦line is indicated as well.

for a grid of values xi, i = 1, . . . ,m between zero and one.

2. Simulate N = 1000 time series under the alternative hypothesis. Compute for each

simulation run j = 1, . . . , N the mid p-value pHA
j . Calculate

F̂HA(xi) =
1

N

N∑
j=1

I(pHA
j ≤ xi).

3. Plot F̂H0(xi) against F̂HA(xi), for xi, i = 1, . . . ,m.

Results. Size-power curves of the Granger Lasso test and standard Wald test are shown

in Figure 1 (first three designs). The larger the difference between the size-power curve and

the 45◦line, the more power the test has. For k = 25 (i.e. left panel) both curves are rapidly

increasing and very similar. When the number of time series increases (i.e. middle and right

panel), the size-power curve of the Granger Lasso test is hardly affected, and achieves a

much larger power than the standard Wald test.
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4.2 Forecast exercise

For forecasting the time series yt, we use a two-step procedure. First, we select predictor

time series. Second, we estimate the model with only the selected predictor time series. We

consider four selection and four estimation techniques, yielding 16 selection-estimation com-

binations. We investigate the performance of each combination in forecasting the response.

As selection techniques we consider: (1) use all time series, (2) use the standard Wald test

to discard blocks of time series that are not Granger Causing the response, (3) use Granger

Lasso Selection (cfr. Section 3.1) to discard blocks of time series that are not Granger

Causing the response, (4) use the Granger Lasso test to discard blocks of time series that

are not Granger Causing the response. Selection technique (4) is our proposed selection

technique. The tests are carried out at a 1% significance level.

After selecting the predictor time series, we forecast the response using either (1) Max-

imum Likelihood, (2) the Adaptive Lasso estimator, (3) Bayesian shrinkage with the Min-

nesota prior (Litterman, 1986), (4) the Factor Model of Stock and Watson (2002). These

are all leading methods for macro-economic forecasting (Inoue and Kilian, 2008). Methods

(2) and (3) perform shrinkage. Where the Adaptive Lasso puts some of the estimated coeffi-

cients exactly to zero, the Bayesian estimator only shrinks the estimated coefficients towards

zero. Factor Models reduce the dimension of the predictor time series by extracting a small

number of common factors using principal component analysis.1

To evaluate forecast accuracy, we conduct a rolling window forecast exercise. We use a

window of size S = b0.90·T c. At each point t = S, . . . , T−1, the models are re-estimated and

one-step-ahead forecasts are calculated. We evaluate the forecast accuracy of each selection-

estimation technique combination by calculating the Mean Absolute Forecast Error2

MAFE =
1

T − S

T−1∑
t=S

|ŷt+1 − yt+1| , (8)

1The number of factors r is determined by calculating the maximum eigenvalue ratio criterion r̂j =

λ̂j/λ̂j+1 for j = 1, . . . , k− 1 from the eigenvalues λ̂j , . . . , λ̂k and selecting r = argmaxj r̂j .
2Similar conclusions can be drawn by looking at the Mean Squared Forecast Error.
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Table 5: Average MAFE for the four selection techniques (rows) and four estimation tech-

niques (columns).

Simulation design Selection technique Estimation technique

ML Adaptive Lasso Bayesian Factor Model

T = 100, k = 25 All 0.093 0.089 0.116 0.129

Wald test 0.082 0.082 0.121 0.086

Granger Lasso Selection 0.089 0.085 0.118 0.121

Granger Lasso test 0.082 0.082 0.120 0.086

T = 100, k = 50 All 0.126 0.092 0.122 0.138

Wald test 0.087 0.084 0.124 0.089

Granger Lasso Selection 0.119 0.092 0.122 0.137

Granger Lasso test 0.084 0.083 0.124 0.086

T = 100, k = 75 All 0.208 0.089 0.123 0.141

Wald test 0.117 0.088 0.121 0.107

Granger Lasso Selection 0.170 0.091 0.123 0.140

Granger Lasso test 0.083 0.080 0.119 0.085

T = 40, k = 150 All NA 0.189 0.315 0.322

Granger Lasso Selection NA 0.181 0.305 0.300

Granger Lasso test NA 0.165 0.379 0.199

where ŷt+1 is the predicted response for time t+1. The MAFE is computed for each simulated

time series, and their average over N = 100 simulation runs is reported in Table 5.

Results. Table 5 shows that selecting predictor time series is better than taking all

series, for all estimation techniques (except the Bayesian shrinkage estimator). Among the

selection techniques, improvements are larger with our Granger Lasso test compared to the

Granger Lasso Selection approach. Granger Lasso Selection discards less blocks of time series

compared to the Granger Lasso test, yielding less parsimonious models and reduced forecast

performance. When the number of time series increases relative to the length of the time
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series, the Granger Lasso test also performs substantially better than the standard Wald

test. Paired t-tests confirm that (in the majority of cases), the improvements of the Granger

Lasso test compared to the other selection techniques are significant. More precisely, the

good performance of the Granger Lasso test is most pronounced in the high-dimensional

designs: it performs significantly best - among the four selection techniques - in 8 out of 12

cases (design T = 100, k = 50), 12 out of 12 cases (design T = 100, k = 75), and 6 out of 9

cases (design T = 40, k = 150).

For all simulation designs, the best forecast always involves the Granger Lasso test.

Among the estimation techniques, the Adaptive Lasso performs best. After the first selection

of predictive blocks of time series, the Adaptive Lasso can further reduce the number of

predictor time series in the second step. This is most suited for settings with a few number

of relevant predictor time series and a large number of irrelevant, noise predictor time series.

Similar conclusions are obtained by Bühlmann and Hothorn (2010) who discuss a “Twin

Boosting” procedure for improved feature selection and prediction.

5 The role of business and bank sentiment for macro-

economic forecasting

We identify the most predictive industry segments for future macro-economic developments

using the Granger Lasso test from Section 3.

5.1 Model

We estimate 8 ARX models, one for each macro-economic indicator to predict. The time

series yt entering model (1) is one of the 8 macro-economic indicators of Table 2 taken in

first differences. The vector xt contains the k = 150 business and bank sentiment indicators

in first differences at time t. We use differences to ensure stationarity of the time series.3 We

3Following standard practice, we first test for stationarity. A stationarity test of all individual time series

using the Augmented Dickey-Fuller test indicates that most time series in levels are integrated of order 1.
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estimate each ARX model using the Penalized Maximum Likelihood estimator from Section

3. Then, we perform Granger Causality tests, one for each of the 20 blocks of sentiment

indicators (cfr. Section 2). As such, we test if the opinion of a particular industry segment -

as measured through the Business Survey - has incremental predictive power for the German

macro-economic indicators. We repeat this exercise for each industry segment using the

Bank Survey.

5.2 Identifying the most predictive industries

For each industry, Table 6 reports the p-value of the test that the opinion of that particular

industry does not Granger Cause a particular macro-economic indicator. Significant results

at the 1% level are in bold. We discuss the results by building on the sectoral classification

framework which distinguishes the primary, secondary, tertiary and quaternary sector.

Business Survey. The primary sector, unlike the other sectors, has almost no incre-

mental predictive power. The primary sector’s contribution to Germany’s GDP is also the

smallest. The secondary industry has most incremental predictive power for the macro-

economic indicators to which these sectors contribute most (IP-A1, IP-A2, IP-M and IP-E).

Firms active in the tertiary and especially the quaternary sector have incremental predictive

power for several macro-economic indicators. This sector consists of the knowledge-based

part of the economy, and accounts for roughly 65% of Germany’s GDP. Firms active in these

sectors are at the heart of the whole economy.

Bank Survey. The Bank Survey contains less incremental predictive power than the

Business Survey. The predictive power of bank sentiment for predicting future macro-

economic developments is limited. This is in line with Dell’Ariccia et al. (2008) who find

that the real effects of a banking crisis are limited in developed countries, in countries that

have more access to foreign financing, and countries where banking crises are less severe,

which all apply to Germany.
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Table 6: P -values of the Granger Causality test with null hypothesis that the opinion of a particular

industry segment (rows) does not Granger Cause a particular macro-economic indicator (columns).

Significant results at the 1% level are in bold.
Macro-economic indicators

Industry segment Sector IP-A1 IP-A2 IP-M IP-E IP-CaG IP-CoG RT WS

Business Agriculture, mining & other industry Primary 0.03 0.04 0.03 0.99 0.01 0.01 0.01 0.84

Survey Manufacturing Secondary 0.01 0.07 0.00 0.00 0.00 0.01 0.00 0.37

Construction Secondary 0.01 0.00 0.01 0.04 0.00 0.70 0.00 0.50

Wholesale, retail trade, transportation, food & service Tertiary 0.02 0.00 0.04 0.01 0.02 0.923 0.27 0.06

Information & communication Quaternary 0.92 0.02 0.90 0.00 0.02 0.50 0.04 0.04

Finance Quaternary 0.56 0.03 0.13 0.00 0.06 0.04 0.13 0.39

Real estate Quaternary 0.96 0.84 0.26 0.01 1.00 0.00 0.00 0.60

Administration & support Quaternary 0.01 0.03 0.01 0.00 0.00 0.01 0.21 0.00

Public services Quaternary 0.00 0.02 0.23 0.04 0.00 0.02 0.86 0.04

Other services Quaternary 0.05 0.00 0.01 0.00 0.00 0.07 0.66 0.12

Bank Agriculture, mining & other industry Primary 1.00 1.00 1.00 0.59 1.00 0.92 0.86 0.90

Survey Manufacturing Secondary 0.05 0.20 0.06 1.00 0.99 0.14 0.85 0.39

Construction Secondary 0.82 0.82 0.92 0.01 1.00 0.70 0.84 0.03

Wholesale, retail trade, transportation, food & service Tertiary 1.00 0.76 0.98 1.00 0.00 0.04 0.53 0.23

Information & communication Quaternary 0.72 0.02 0.09 1.00 0.04 0.53 0.05 0.79

Finance Quaternary 0.98 1.00 1.00 0.01 1.00 0.40 0.09 0.08

Real estate Quaternary 0.76 0.90 0.60 1.00 1.00 0.73 0.80 0.62

Administration & support Quaternary 0.01 0.29 0.00 1.00 0.80 0.78 0.68 0.00

Public services Quaternary 0.03 0.07 0.01 0.03 0.03 0.03 0.03 0.05

Other services Quaternary 0.46 0.77 0.82 0.47 0.69 0.05 0.16 0.98

5.3 Robustness checks

Our main research question is whether the sentiment of different industry segments has

predictive power for macro-economic indicators. Our methodology is also applicable to other

ways of segmenting firms, as region in which the are located or according to their company

size. For our data, there are 10 regions and three company sizes. We re-estimate the 8 ARX

models and perform the Granger Causality tests for the 20 regional blocks (i.e. 10 blocks for

the Business Survey, 10 blocks for the Bank Survey). Likewise, we re-estimate the 8 ARX

models and perform the Granger Causality tests for the 6 company size blocks (i.e. 3 blocks

for the Business Survey, 3 blocks for the Bank Survey).

Similar as for the industry results discussed in Section 5.2, we find that the business senti-
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ment has more incremental predictive power compared to the bank sentiment. Furthermore,

Germany’s largest geo-economical regions, Ruhr area and the Southern states, have most

incremental predictive power for the macro-economic indicators to which their day-to-day

business contributes most, i.e. IP-A1, IP-A2, IP-M, IP-E and IP-CaGo, IP-CoGo respec-

tively. Finally, small- and medium-sized companies have more incremental predictive power

than large companies. Germany is dominated by small- to medium-sized companies who

are global market leaders in their segments, and, hence, those might be best at evaluating

Germany’s economy. Detailed results are available from the authors upon request.

6 Forecasting German macro-economic developments

We perform a rolling-window forecast exercise using a window of length S = 30. For each

time window, we estimate the 8 ARX models. We use the same selection and estimation

techniques as in Section 4.2, except for the standard Wald test and the ML estimator which

are not available since the number of time series exceeds the time series length. Next, one-

step-ahead forecasts are computed for t = S + 1, . . . , T . We report the Mean Absolute

Forecast Error, see equation (8), for each macro-economic indicator and each selection-

estimation technique combination in Table 7.

Among the selection techniques, the proposed Granger Lasso test performs best. It

attains the lowest value of the MAFE in 20 out of 24 cases (84% of the cases). The MAFEs

when either all industries are used or when Granger Lasso Selection is used are close to each

other. It turns out that the latter (overall) does not discard any of the industry blocks. In

contrast, a much more parsimonious model is obtained using the Granger Lasso test. These

parsimonious models lead to an improved forecast accuracy, in the majority of cases.

For the Adaptive Lasso, the Granger Lasso test leads to the lowest MAFE for 7 out of 8

macro-economic indicators. The MAFEs with the Granger Lasso test are, on average, 40%

lower compared to the other selection techniques. After the first selection step where either

an entire block of business or bank sentiment indicators is selected or not, the Adaptive
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Table 7: Mean Absolute Forecast Error for the three selection techniques (rows), the three

estimation techniques (columns), and the 8 macro-economic indicators (blocks).
Selection technique Response Estimation technique Response Estimation technique

Adaptive Lasso Bayesian Factor Model Adaptive Lasso Bayesian Factor Model

All IP-A1 1.460 0.921 1.275 IP-CaGo 2.734 1.892 3.147

Granger Lasso Selection 1.460 0.921 1.275 2.734 1.892 3.147

Granger Lasso test 1.138 0.962 0.937 3.707 1.834 2.926

All IP-A2 1.462 0.817 1.207 IP-CoGo 1.142 0.609 0.918

Granger Lasso Selection 1.462 0.817 1.207 1.142 0.609 0.918

Granger Lasso test 0.567 0.640 1.006 0.777 0.617 0.915

All IP-M 1.720 1.117 1.641 RT 2.025 1.109 1.723

Granger Lasso Selection 1.720 1.117 1.641 2.025 1.109 1.723

Granger Lasso test 1.688 1.090 1.342 1.140 1.035 1.510

All IP-E 2.237 1.171 2.105 WS 1.524 0.530 0.800

Granger Lasso Selection 2.237 1.171 2.105 1.524 0.530 0.800

Granger Lasso test 1.249 0.959 1.601 0.566 0.685 0.677

Lasso allows some of the time series belonging to a one of the selected blocks to be discarded

in this second stage. Further reducing the number of relevant predictor time series within

the selected blocks improves forecast accuracy.

In line with the results of our simulation study, pre-selecting based on the Granger Lasso

test is less favorable for the Bayesian shrinkage estimator compared to the other estimation

techniques. Nevertheless, the Granger Lasso test in combination with the Bayesian shrinkage

estimator still leads to the lowest MAFE for 5 out of 8 macro-economic indicators, with an

average reduction in MAFE of 10%.

For the Factor Model, the Granger Lasso test consistently leads to the lowest MAFE.

The MAFEs with the Granger Lasso test are, on average, 20% lower compared to the other

selection techniques. Discarding the least predictive industry blocks in this high-dimensional

data set and estimating the factors based on the most predictive industry blocks thus leads to

important gains in forecast accuracy. This result is in line with Bai and Ng (2008) who find

important gains in forecast accuracy from diffusion index models by not using all predictors
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but by using fewer, informative predictors.

Robustness checks. We investigate the robustness of the results to the choice of seg-

mentation criterion. We repeat the same forecast exercise using the region segments and

company size segments instead of the industry segments (cfr. Section 5.3). The conclusions

obtained with either the industry, region or company size segments are very similar. For

the regional segments, the Granger Lasso test is the best performing selection technique and

attains the lowest value of the MAFE in 71% of the cases (17 out of 24). Similarly for the

company size segments where the Granger Lasso test leads towards the lowest MAFE in 71%

of the cases (17 out of 24). Detailed results are available from the authors upon request.

7 Discussion

This paper presents a high-dimensional Granger Causality test. It detects the most pre-

dictive industry segments for future macro-economic developments. For this purpose, we

use both business and bank sentiment surveys answered by firms across Germany. Not

all industry-specific sentiment indicators are equally predictive for all macro-economic in-

dicators. Industries contain most predictive power for the macro-economic indicators most

closely tied to their day-to-day business activities.

Our forecast exercise shows that important gains in forecast accuracy can be obtained

by not using all industry segments, but by first selecting the most predictive ones using the

Granger Lasso test. This selection of the most pertinent industry segments provides impor-

tant information for institutes conducting these sentiment surveys. For instance, instead of

equally spreading respondents among all segments, the number of respondents in predictive

segments could be increased, whereas the number of respondents in non-predictive segments

could be decreased. Alternatively, non-predictive segments could even be completely dis-

carded, which provides an opportunity to obtain cost savings.

The identification of pertinent respondents also applies to consumer sentiment surveys.

In the large literature on consumer sentiment, this topic has received little attention. We
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perform a similar exercise as described in this paper using a consumer sentiment survey data

set from the National Bank of Belgium. Sentiment indicators are available for different classes

of consumers’ net disposable income, profession, employment status, education, age and

gender. We study their predictive power for several retail trade indicators. The profession,

education, and age sentiment indicators contain most predictive power. Again, important

gains in forecast accuracy can be obtained by first selecting the most predictive sentiment

indicators (for a specific target variable of interest) instead of using all indicators.

In our sentiment application, the Business Survey contains more predictive power than

the Bank Survey. Future research could further deepen our understanding on the usefulness

of bank sentiment. It would be interesting to investigate if this sentiment differs between,

for instance, countries that are more or less severely hit by banking crises, and developed

or developing countries. The study of sentiment with respect to the banking sector opens a

rich area of new research on sentiment surveys.
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