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Abstract A new methodology for selecting a Bayesian network for continuous data outside the widely
used class of multivariate normal distributions is developed. The ‘copula DAGs’ combine directed acyclic
graphs and their associated probability models with copula C/D-vines. Bivariate copula densities intro-
duce flexibility in the joint distributions of pairs of nodes in the network. An information criterion is
studied for graph selection tailored to the joint modeling of data based on graphs and copulas. Examples
and simulation studies show the flexibility and properties of the method.
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1 Introduction

In recent decades there has been a fast increase in the ease with which multivariate data are gathered.
General multivariate techniques have been developed to deal with such data. One class of techniques for
analyzing and interpreting multivariate data is based on graphical models (see, e.g., Lauritzen, 1996;
Cox and Wermuth, 1996). By representing a random variable as a node, a graphical model depicts
relations between such variables, either in an associative or causal form, by drawing edges between the
nodes. Allowing edges to be of different types (directed, undirected, bi-directed) defines different types
of graphs with corresponding interpretations for relations between the components of the associated
random vector.

In this paper we focus on Bayesian networks (see, e.g., Heckerman and Geiger, 1995; Spirtes et al,
2000; Koller and Friedman, 2009), that comprise first the graphical representation in the form of a
directed acyclic graph (DAG) for which all the edges between the nodes have a single direction and no
loops are allowed, and second the decomposition of a joint probability density function as a product of
conditional and marginal density functions according to the graph. For example, the absence of edges
between two nodes can be interpreted as a conditional independence between the variables associated
with those nodes conditionally on other random variables.
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The main contribution of the paper is to present a new methodology for selecting a Bayesian network
for continuous data outside the widely used class of multivariate normal distributions. We introduce
flexibility in the distribution by using bivariate copula densities to model connections between pairs of
nodes in the network and present a new score criterion for graph selection tailored to the joint modeling
of data based on graphs and copulas. In order to deal with the high-dimensional aspect of the data,
the C- and D-vines, short for canonical and drawable vines (Bedford and Cooke, 2001), play a central
role, due to the fact that these decompositions of a multivariate density employ a series of bivariate
conditional and unconditional copulas to represent a general multivariate density.

Unlike social networks where connections are observed (e.g., who is sending text messages to whom),
in probabilistic graphical models a random vector (or a sample of vectors all from the same underlying
multivariate probability distribution) is observed. A statistical analysis will try to discover the relations
between the components of the multivariate vectors. In other words, one aims to discover the structure
of the graph e.g., where to draw edges in the graphical representation. The goal in graphical modeling
is thus, to estimate a plausible decomposition of a general multivariate density, that can be linked
visually to a graphical object, in which certain simplifying assumptions of marginal and conditional
independencies are made.

When using Bayesian networks (BN), one is faced with two possibilities: either use external expert
advice and put forward a plausible model, or estimate such a plausible structure from the data. When
one is working with continuous data, most often one uses models that, for ease of computational burden
and efficient algorithmic implementations, rely on the multivariate normality assumption. In this paper
we allow for other continuous distributions via copula models. The estimation of the graph structure is
usually done either by a testing procedure, where one is trying to discover conditional independencies
using formal hypothesis tests, or by using a scoring procedure where one selects the graph that optimizes
a certain score. We start by presenting a simple example for which two estimated graphs are presented.
The dataset used for illustration, is a subset of the ‘Wine’ dataset that comes from the UCI Machine
Learning repository. It contains 178 sample cases (different wines) and 11 chemical measurements among
which alcohol, malic acid, magnesium content or color and hue. We refer to Bache and Lichman (2013)
for more information about the dataset.

In Figure 1 we present two estimated DAGs, one based on the PC algorithm (Spirtes et al, 2000)
which uses hypothesis testing for discovering edges in the graph and one based on a Bayesian Gaussian
equivalent scoring criterion abbreviated by ‘BGe’ (Heckerman and Geiger, 1995). Both approaches
assume multivariate normality. The immediate observation one can make, is that the BGe based graph
estimates more edges than the PC based graph and this impacts the conditional independencies that can
be read from the graph. For example, in the PC graph one reads that the alcohol level (Alch) of a wine
is independent of the proanthocyanins level (Prnt) if one conditions upon the flavanoids level (Flvn).
It is thus crucial, that one models the data in an appropriate manner to reveal a graph that is most
informative, as different graphs might lead to different assumptions being made about the underlying
data generating process.
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Fig. 1: Wine data. Estimated DAGs using (a) the PC(α = .1) algorithm and (b) the BGe score, (c) the
first tree of a C-vine using Alch as central node.
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Another quite different technique for analyzing multivariate dependencies is by using copulas (Nelsen,
2006; Mari and Kotz, 2001), which are joint distribution functions evaluated at the values corresponding
to the marginal distribution functions. The key aspect distinguishing copulas from Bayesian networks
is that, when modeling data one is generally focusing on the probabilistic aspect and not considering
the additional information provided by visual aids such as a graph. Vine copula models (Bedford and
Cooke, 2001) are multivariate copulas using bivariate copulas as building blocks and can be represented
by using graphical objects in which edges connecting two nodes have the explicit meaning of presenting
which two variables in the graph are modeled together using a copula distribution. Figure 1(c) presents
the first tree of a C-vine construction where the alcohol level (Alch) is used as a central node connected
to all other nodes.

As further explained in Section 2, the edges in these graphical objects serve two different purposes. In
the DAG they represent to a large extent an interventional aspect of the type ‘X determines Y’ (X → Y ),
whereas in the vine graph they show bivariate dependencies of the type ‘X and Y are dependent and
modeled bivariately by a copula’ (X − Y ). One other important difference is that the vine graphs have
a hierarchical structure, as there is not a unique graph as a result of the procedure, but several graphs,
see Figure 2, all hierarchically linked in the sense that as we move down in the hierarchy, bivariate data
are modeled conditioning on larger and larger sets.

Our proposed procedure combines directed acyclic graphs and their associated probability model
with copula C/D-vines in order to construct ‘copula based DAGs’, or short ‘cDAGs’. We exploit certain
connections and similarities that exist between these two statistical techniques with the explicit purpose
of estimating a graphical model, a network, for continuous data that are not necessarily normally
distributed. The approach we use is a score based learning scheme, where one modifies an initial graph
based on improvements in the score, until a local optimum score is reached. For this purpose, given a
collection of copula families, we construct a nodewise decomposable score based on a series of implied
C/D-vine decompositions which can be used to select both the graph and the copulas that nodewise
optimize the score.

To researchers active in the copula field, our approach brings in an estimated DAG that shows
causal paths between variables while exploiting low dimensional copulas, while for researchers using
Bayesian networks the methodology offers flexibility in modeling dependencies between nodes allowing
a wide range of continuous distributions. Both the construction of the graph as well as the copula family
selection are incorporated into a novel information criterion, for which we investigate some theoretical
properties.

In the literature, several other procedures linking copulas to graphical models are encountered.
Elidan (2010, 2012) parametrizes the conditional density of a node given its parents in terms of higher
dimensional copulas, while Bauer et al (2012) use a ‘pairwise copula construction’ (PCC) for the entire
joint density with the additional need to specify an ordering of the nodes (which node is allowed to be
an ancestor of other nodes) and this is generally hard to specify in practice. In Harris and Drton (2013)
the constraint based PC algorithm is used to estimate DAGs using rank-based measures of association
for a Gaussian copula. Liu et al (2009) use copulas to estimate sparse high dimensional undirected
graphs. Kurowicka and Cooke (2002) show how using an elliptical copula one can associate a Bayesian
net to a vine construction or vice versa. Hanea et al (2010) and Hanea (2011) construct non-parametric
belief networks using D-vine decompositions to represent the conditional independencies in the graph.
In contrast, our approach has the advantage of allowing more flexibility since we model the parent-
to-child edges using C-vine models and the parent-to-parent edges with D-vines. The approach used
in Hanea (2011) cleverly maps the conditional independencies that hold in the directed graph to a
D-vine which in turn forces some conditional correlations to be zero, whereas our approach allows for
full local vine decompositions. Our main starting point is represented by the undirected connections
in the moralized graph which dictate which nodes are involved in the copula decompositions. Several
other search procedures require formal hypotheses testing, which requires care to avoid accumulating
probabilities of type-I errors, or need to specify a threshold, e.g. for the size of a conditional correlation
coefficient in order to decide on the inclusion of an edge. Our approach uses an information criterion to
select the final model which is used to select both the directed structure and the best fitting copulas.

Stepping outside the multivariate normality assumption for graphical modeling is mainly addressed
for undirected graphical models, see for example, Wainwright and Jordan (2008), Jalali et al (2010),
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Yang et al (2012), Lee and Hastie (2014), or Loh and Wainwright (2013) to name just a few, where
most often one models each node assuming its distribution is a member of the more general exponential
family.

The outline of the paper is as follows: Section 2 provides an introduction to both Bayesian networks
and copula modeling. Section 3 presents the main ideas based on which we combine the two statistical
approaches. A motivating example is presented in Section 4, while Sections 5 and 6 detail the selection of
the network and copula families at both a theoretical and algorithmic level. Sections 7 and 8 evaluate the
method empirically using simulated data and the ‘Euro Stoxx 50’ financial dataset. Section 9 concludes.

2 Background information on Bayesian networks and copulas

Some of the main concepts involved in modeling multivariate data are briefly revised, first based on a
Bayesian network and second on a copula approach.

2.1 Bayesian networks

Bayesian networks represent an important class of graphical models with wide applications in many
different fields ranging from biomedical studies (Lucas, 2007), transportation (Madsen and Kjærulff,
2007) and aeronautics (Morales Nápoles, 2010) to language processing (Peshkin et al, 2003) among
others. Their popularity rests upon a relative ease of interpretation and implementation of such models,
accompanied by a solid mathematical and statistical theoretical framework. In a multivariate context,
the starting point of such graphical models is a basic factorization property of joint density (or probabil-
ity mass) functions. For a random vector X = (X1, X2, . . . , Xp) of length p coming from a multivariate
density denoted as f(x1, x2, . . . , xp), based on the chain rule property of densities the following decom-
position holds true:

f(x1, . . . , xp) = f1(x1)f2|1(x2|x1)f3|1,2(x3|x1, x2) · . . . · fp|1,2,...,p−1(xp|x1, x2, . . . , xp−1), (2.1)

where for example, the function fp|1,2,...,p−1(xp|x1, x2, . . . , xp−1) is used to denote the conditional density
of Xp when the conditioning set comprises all variables in the set {X1, X2, . . . , Xp−1}, and only those.
Analogous definitions hold for all other conditional densities in (2.1). The marginal density of a variable
Xl is denoted throughout the paper as fl(xl).

With large p, the last factors in the product (2.1) are quite cumbersome, in the sense that they
contain many variables in the conditioning set. For a statistical modeler, this phenomenon alludes to
a variable selection problem, namely whether all of the variables are actually needed in the condi-
tioning sets in order to get an accurate construction of the joint density. For example, when Xp is
conditionally independent of say {X1, X2, . . . , Xp−3} given the variables {Xp−2, Xp−1} (we write it as
Xp ⊥ X1, X2, . . . Xp−3|Xp−2, Xp−1) the last factor in (2.1) can be replaced by a more parsimonious
conditional density since

fp|1,2,...,p−1(xp|x1, x2, . . . , xp−2, xp−1) = fp|p−2,p−1(xp|xp−2, xp−1)

and thus, knowing such independencies is beneficial for modeling purposes when representing the joint
density f(x1, . . . , xp).

To state it concisely, the main objective is to re-specify joint density functions of multivariate random
variables as functions of densities that involve conditioning on only a small number of variables, which
is equivalent to specifying and assuming a number of conditional independencies.

Let G(E, V ) be a graph based on a set of nodes (V ), a set of edges (E), and a set of random variables
{Xi : i ∈ V }. Each of the variables X1, . . . , Xp has a corresponding node in the set V = {1, . . . , p} and the
set of edges E is a subset of V ×V , the set of ordered pairs of distinct nodes. A directed edge i → j in E is
denoted by (i, j) and we refer to node i (or variable Xi) as a parent of node j (or variable Xj), while node
j is referred to as a child of node i. A directed path between nodes i and z is a sequence of nodes that
starts in i and by following the directionality of the arrows leads to node z (e.g. i → j → . . . → y → z).
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Node i is said to be an ancestor of z if there exists such a directed path between the two nodes, or if
i = z. Node z is referred to as a descendant of i.

BNs are defined as a class of statistical models, consisting of a graph G(E,V ) and a probability
density f , with two particular characteristics. First, the graph contains only directed edges between
pairs of nodes, such that there are no feedback loops (referred to as the ‘acyclicity’ property). That is,
any directed path starting at node i cannot lead back to i. Second, the joint multivariate probability
density function (pdf) of (X1, . . . , Xp) factorizes as

f(x1, . . . , xp) =

p∏

l=1

fl|pa(l)(xl|pa(xl)), (2.2)

where the conditioning is on pa(xl), the set of parental variables of Xl (see Lauritzen, 1996). Graphically,
this is represented by a directed arrow from each of the ‘parents’ to the ‘children’.

We further say that f has the local Markov property with respect to G, or equivalently f decomposes
according to G, if

for all l ∈ V, l ⊥ nd(l)|pa(l)
where the symbol ⊥ denotes independence and nd(l) denotes the set of non-descendants (excluding
the parents) of node l. That is, any node is independent of its non-descendants when conditioned on
its corresponding parents. Since we create a one-to-one correspondence between each variable Xi and
a node in the graph G, in the remaining parts of the article we will sometimes use the two terms
interchangeably.

2.2 Copulas and vines

A copula C is a multivariate distribution for which all marginal distributions are uniform on the interval
[0,1]. More formally, let {U1, . . . , Up} be a set of p random variables uniformly distributed on [0,1]. Then
a copula function C : [0,1]p → [0,1] is a joint distribution function such that

C(u1, . . . , up) = P (U1 ≤ u1, . . . , Up ≤ up).

Most importantly, Sklar (1959) proved that for any multivariate distribution F (x1, . . . , xp) there exists
a copula function C such that

F (x1, . . . , xp) = C(F1(x1), . . . , Fp(xp))

meaning that every joint distribution can be obtained from the marginal distributions Fj , j = 1, . . . , p
through the copula function.

For absolutely continuous random variables the quantile function is uniquely defined. Hence, since
C(u1, . . . , up) = F (F−1

1 (u1), . . . , F
−1
p (up)) differentiating this expression with respect to the marginal

distribution leads to the copula density expression, assumed to exist,

c(u1, . . . , up) =
f(F−1

1 (u1), . . . , F
−1
p (up))∏p

l=1 fl(F
−1
l (ul))

⇔ c(F1(x1), . . . , Fp(xp)) =
f(x1, . . . , xp)∏p

l=1 fl(xl)
. (2.3)

Bedford and Cooke (2001, 2002) based on Joe (1996) as well as Kurowicka and Cooke (2006) studied
the ‘vine’ as a general graphical model to describe how multivariate copulas can be reconstructed from
simpler bivariate copulas (also referred to as ‘pair copulas’). The ‘pair-copula constructions’ decompose
multivariate probability densities into a product of bivariate copulas, where one copula can be chosen in-
dependently from any other bivariate copula involved, which offers the advantage that high-dimensional
multivariate problems can be tackled through bivariate modeling.

Aas et al (2009) and Czado (2010) described statistical frequentist estimation and inference tech-
niques for what is now known as C- and D-vines, while Bayesian approaches can be found in Min and
Czado (2010, 2011), Smith et al (2010) and Czado et al (2011). Another development are the ‘regular’
vines, referred to as R-vines, of which the C- and D-vines are subclasses, see Brechmann et al (2012)
and Dißmann et al (2013).
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By ci,j{Fi(xi), Fj(xj)} we denote the unconditional pair-copula density corresponding to variables
Xi and Xj evaluated at the marginal cumulative distribution functions Fi(xi) and Fj(xj) (with marginal
density functions fi and fj). The function

cj,j+i|1,...,j−1{Fj|1,...,j−1(xj |x1, . . . , xj−1), Fj+i|1,...,j−1(xj+i|x1, . . . , xj−1)} (2.4)

denotes the pair copula corresponding to variables Xj and Xj+i conditioned on the set of variables
{X1, . . . , Xj−1}. Similarly, the function

ci,i+j|i+1,...,i+j−1{Fi|i+1,...,i+j−1(xi|xi+1, . . . , xi+j−1), Fi+j|i+1...i+j−1(xi+j |xi+1, . . . , xi+j−1)} (2.5)

is used to denote the pair copula corresponding to variables Xi and Xi+j conditioned on the set of
variables {Xi+1, . . . , Xi+j−1}. When one of the indices is zero, the conditioning set is defined to be
the empty set, and conditioning on an empty set is understood to be the same as no conditioning. A
conditional copula reflects interest in modeling the dependence structure of a bivariate vector given the
variables in the conditioning set and knowing whether this relationship changes as a function of that
set. We refer to Gijbels et al (2011) for an exposition on conditional bivariate copulas and associated
conditional dependence measures.

The functions (2.4) and (2.5) play a crucial role in this paper, because they are the building blocks
on which a C-vine and a D-vine representation of a joint density function is constructed. Based on a
C-vine representation the joint density f(x1, . . . , xp) can be decomposed as

p∏

l=1

fl(xl)

p−1∏

j=1

p−j∏

i=1

cj,j+i|1,...,j−1{Fj|1,...,j−1(xj |x1, . . . , xj−1), Fj+i|1,...,j−1(xj+i|x1, . . . , xj−1)}. (2.6)

To better understand such a decomposition, Figure 2 gives a graphical representation of the under-
lying connections between the variables. For brevity of exposition, in the following whenever we speak of
node ‘1’, ‘2’, etc. all statistical statements refer to the variables that are associated with the nodes and
the undirected edges are used to denote the fact that two nodes i and j are coupled in a conditional (or
unconditional) copula function ci,j . We use the convention that if the set {i, i+ j} and the conditioning
set {i+ 1, . . . , i+ j − 1} contain the same elements (which happens in both the C-vine and D-vine case
only at the first level, when j = 1) then one is using the unconditional copula function ci,i+j .

A C-vine starts with one central node which in Figure 2 is the node with label ‘1’. All other nodes
(2 to 6 in this example) connect to the central node in a tree structure. Inspecting the above C-
vine decomposition, this situation corresponds to setting the index j = 1 and using the convention
that if j − 1 < 1 then we are actually not conditioning on any variables. This means that at the
first level we are using in the decomposition in (2.6), the following unconditional bivariate copulas:
{c1,2, c1,3, c1,4, c1,5, c1,6}. At the second level (j = 2) we combine the nodes that were connected at
the previous level, in this case ‘12’, ‘13’, . . . , ‘16’ which now become the new nodes of the tree. This
corresponds to using the conditional copula functions {c2,3|1, c2,4|1, c2,5|1, c2,6|1}. At the third level (j =
3) one uses the set {c3,4|1,2, c3,5|1,2, c3,6|1,2} and the same procedure is repeated until one reaches level
j = 5, which involves using only one conditional copula, namely c5,6|1,2,3,4. In order then to obtain the
value of the joint density one proceeds by multiplying all the bivariate copulas that were specified at all
levels, as in (2.6).

In a roughly similar manner, a decomposition of the same density f(x1, . . . , xp) based on a D-vine
representation is

p∏

l=1

fl(xl)

p−1∏

j=1

p−j∏

i=1

ci,i+j|i+1,...,i+j−1{Fi|i+1,...,i+j−1(xi|xi+1, . . . , xi+j−1), (2.7)

Fi+j|i+1...i+j−1(xi+j |xi+1, . . . , xi+j−1)}.

Figure 3 graphically depicts the structure underlying a D-vine on 6 nodes. Now, all the nodes are linked
sequentially to each other to form a ‘chain’-like structure. At the first level (j = 1) one is using the
bivariate unconditional copulas {c1,2, c2,3, c3,4, c4,5, c5,6}. At the second level (j = 2), one is using the
following conditional copula functions {c1,3|2, c2,4|3, c3,5|4, c4,6|5} and the remaining bivariate conditional
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Fig. 2: Graphical representation of a C-vine with six nodes. The different trees graphically represent all
bivariate copula functions needed to reconstruct the six dimensional joint density.

1 2 3 4 5 6

12 23 34 45 56

13|2 24|3 35|4 46|5

14|23 25|34 36|45

15|234 26|345

16|2345

Fig. 3: Graphical representation of a D-vine with six nodes. The different trees graphically represent all
bivariate copula functions needed to reconstruct the six dimensional joint density.

copulas for higher levels are obtained following the same reasoning. Once all copulas are specified for
all levels, one reconstructs the joint density by multiplying all the copula functions as in (2.7).

While the trees and chains underlying C- and D-vines serve the purpose of creating a simple structure
on pairs of nodes from which a multivariate copula can be constructed, the assumed connections between
the random variables might not reflect true connections. For example, a C-vine relies on specifying one
of the nodes as being a central node and then connects in a tree all other nodes to this one node. Also
the ‘chain’ structure in a D-vine is quite specific and relies on an ordering of the variables, which may
or may not make sense in practical applications. Our idea is to use the beneficial aspects of C- and
D-vines, but to combine them with a DAG structure where a child node takes a central node and gets
connected to its set of parents only (not necessary to all other nodes), with no particular order between
the parental nodes.

3 Marrying DAGs and C/D-vines

We first construct a relation between a univariate conditional density and a C/D-vine representation.
Next, using basic properties of copula density functions we show that a general multivariate density
function can be decomposed into a product of vine ratios, where each vine can be further expressed as
a product of bivariate conditional copulas. The DAG structure of the network indicates that the C/D-
vines should be placed on particular nodes that are involved in moralized subgraphs in which the child
node is a central node. Corollary 1 determines a precise structure which allows a rapid identification of
the involved conditional copulas.

Without loss of generality assume we concentrate on a particular node, say xl in the graph G.
Conditional densities of the form fl|pa(l)(xl|pa(xl)), where xl is the child node and pa(xl) denotes the
set of parents of node xl, are the backbone of the entire factorization process involved in modeling data
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using Bayesian networks. We assume that if the set of parents is the empty set then the conditional
density is the same as the marginal density fl(xl), and if |pa(xl)| = 1 (|S| denotes throughout the
paper the cardinality of the set S), say pa(xl) = {xi} then the definition of a copula density implies
that the conditional density can be modeled as fl|i(xl|xi) = cl,i{Fl(xl), Fi(xi)}fl(xl). For the case where
|pa(xl)| = 2, say pa(xl) = {xi, xj} the density fl|i,j(xl|xi, xj) can be rewritten (non-uniquely) following
basic definitions as fl|i,j(xl|xi, xj) = cl,j|i{Fl|i(xl), Fj|i(xi)}ci,j{Fi(xi)Fj(xj)}fl(xl).

The above situations are to be contrasted with cases where |pa(xl)| > 2 for which Lemma 1 spec-
ifies a particular ratio-based decomposition. For such cases, consider a general conditional density
fl|pa(l)(xl|pa(xl)) with pa(xl) = {pa1(xl), pa2(xl), . . . , pad(xl)} and define the extended set l ∪ pa(l) =
{xl, pa1(xl), pa2(xl), . . . , pad(xl)} containing d + 1 elements. We further associate to this set, a corre-
sponding index set ⋆l ∪ pa(l). For example, if a variable X3 is conditioned on variables X2, X5, X7, then
the set l ∪ pa(l) in this particular case contains the variables {X3, X2, X5, X7} with corresponding re-
named index set ⋆l∪pa(l) = {1, 2,3, 4} having cardinality |⋆l∪pa(l)| = 4. Thus the set {⋆X1,

⋆X2,
⋆X3,

⋆X4}
corresponds to the set {X3, X2, X5, X7}. The purpose of this notation is to avoid ambiguity when writing
the C/D-vine decompositions.

Lemma 1 For a general conditional density fl|pa(l)(xl|pa(xl)) with |pa(xl)| > 2 there exist a C-vine and a

D-vine representation such that

fl|pa(l)(xl|pa(xl)) =
CVl
DVl

fl(xl), (3.1)

where

CVl =

|⋆l∪pa(l)|−1∏

j=1

|⋆l∪pa(l)|−j∏

i=1

cj,j+i|1,...,j−1{Fj|1,...,j−1(
⋆xj |⋆x1, . . . ,

⋆xj−1),

Fj+i|1,...,j−1(
⋆xj+i|⋆x1, . . . ,

⋆xj−1)},

DVl =

|⋆l∪pa(l)|−1∏

j=1

|⋆l∪pa(l)|−j∏

i=2

ci,i+j|i+1...i+j−1{Fi|i+1,...,i+j−1(
⋆xi|⋆xi+1, . . . ,

⋆xi+j−1),

Fi+j|i+1,...,i+j−1(
⋆xi+j |⋆xi+1, . . . ,

⋆xi+j−1)},

and ⋆xj denotes the j-th random variable in the set l∪pa(l). The reverse is also true: starting from all bivariate

copulas involved in CVl and DVl and all marginal distributions fl, eq. (3.1) defines a valid conditional density

function.

Proof From the definition of vines any joint density can be rewritten as either a C-vine or a D-vine.
For this reason, without loss of generality assume a C-vine factorization for f(xl, pa(xl)) and a D-vine
factorization for f(pa(xl)). After simplifications the above expression follows. The reverse follows by
using that both a C-vine and a D-vine decomposition determine a joint density function. So, we choose
a C-vine that determines the joint density f(xl, pa(xl)) and a D-vine that determines f(pa(xl)). The
ratio between the two densities is the conditional density fl|pa(l)(xl|pa(xl)).

The requirement in Lemma 1 of having more than two parents is needed for the D-vine decomposition.
Although it seems notationally involved, Lemma 1 actually specifies at the level of the index set (rather
than using the labels of the variables) where one needs to place bivariate copulas in a C- and D-vine
construction in order to obtain a valid conditional density function. For example, the first factor in
the C-vine decomposition (obtained when j = i = 1) is the unconditional copula c1,2{F1(

⋆x1), F2(
⋆x2)}.

Continuing with the example preceding Lemma 1, a bivariate copula function involving variables X3

and X2 is used. The ‘1’ and ‘2’ refer thus to the positions of the variables included in the set l ∪ pa(l).
For example, to investigate the conditional distribution f(x3|x2, x5, x7) we construct the corresponding
sets pa(l) = {X2, X5, X7}, where l = 3, l∪pa(l) = {X3, X2, X5, X7}, ⋆l∪pa(l) = {1, 2,3, 4} and as a result
the set {⋆X1,

⋆X2,
⋆X3,

⋆X4} will correspond in our approach to the set of variables {X3, X2, X5, X7}.
Inspecting Figures 2 and 3, our approach seems natural and is in line with the relations assumed

by the researcher as we further elaborate. In a C-vine, at the first level, one node plays a central role,
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in the sense of it being connected to all other nodes. Referring to any Bayesian network most of the
knowledge discovery process concentrates on grasping which are the parents that influence the child
node, or equivalently we concentrate first on ‘incoming’ edges at a child node. Looking at the C-vine,
we see that its construction serves a similar purpose, since it links in the first tree a child (the central
node) to all of its parents. While any node can be central, if one accepts the child as a central node
then a nice concordance emerges between the vine and the subgraph of the Bayesian network where we
focus on the child. Thus using the child as the central node has the advantage that all the incoming
edges to a child (and only those) in the DAG are represented by undirected edges in the first tree of a
C-vine. Moreover, since the remaining variables play the role of parents, it seems natural to give them
equal importance, and a D-vine representation fits well for this purpose. In order to get a conditional
density f(child|parents) we specify the joint density f(child, parents) by using a C-vine decomposition.
For the density of the parents, one could use a C-vine decomposition too, but conceptually this puts
one parent as a root parent linking it with all others, which contradicts the aim of treating parents as
‘equally’ important. The D-vine decomposition more closely reflects such an interest.

The key point in our method, is that the root node is selected according to a DAG structure. Czado
et al (2012) guide this choice by inspecting bivariate association measures and choosing the one that
maximizes it, as an alternative to arbitrarily placing a root node based on preferences.

Lemma 2 motives why we represent a ratio decomposable copula density function with the help of
BNs. If f(x1, . . . , xp) decomposes according to G, then also c(x1, . . . , xp) decomposes according to the
graph. This makes the first link between modeling Bayesian networks and copulas by specifying that
a general multivariate copula density function can be decomposed based on the nodes in the DAG.
Going from the joint density to a DAG is not a one-to-one process, as two or more DAGs might be
Markov equivalent (which is to say they represent the ‘same’ list of conditional independencies) and
thus represent the same joint density. This holds too when switching from a joint density function to a
joint copula density.

Lemma 2 Let G be a DAG with nodes corresponding to each variable from the random vector X = (X1, . . . , Xp)
and let the joint density f(x1, . . . , xp) be decomposable as f(x1, . . . , xp) = c(F1(x1), . . . , Fp(xp))

∏p
l=1 fl(xl).

If f(x1, . . . , xp) decomposes according to G then, under the conditions of Lemma 1, the joint copula density

also decomposes according to G,

c(F1(x1), . . . , Fp(xp)) =
∏

l

CVl
DVl

.

Proof From (2.2) we have that f(x1, . . . , xp) =
∏p

l=1 f(xl|pa(xl)) and based on Lemma 1 we have the

identity fl|pa(l)(xl|pa(xl)) = CVl

DVl
fl(xl), which, put together, leads to

f(x1, . . . , xp) =

p∏

l=1

CVl
DVl

p∏

l=1

fl(xl).

Since it is assumed that one can rewrite the joint density as in (2.3),

f(x1, . . . , xp) = c(F1(x1), . . . , Fp(xp))

p∏

l=1

fl(xl)

we have after simplification the equality c(F1(x1), . . . , Fp(xp)) =
∏p

l=1
CVl

DVl
.

Of interest is also the reverse. Given one starts from a graphical structure and associates vine ratios
at each node in the graph based on the graph structure, can we then recover a multivariate joint density?
Lemma 3 can be thought of as a reverse of Lemma 2. It shows that associating the ratio {CVl

DVl
} at each

node l in the graph G, leads to a valid joint density.

Lemma 3 Let G be a DAG with nodes corresponding to each variable from the random vector X = (X1, . . . , Xp)
and let the set of functions {CVl

DVl
; l = 1, . . . , p} be associated with the nodes of G. Under the conditions of
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Lemma 1, if all independencies that can be read from G are the same as those that are present in the joint den-

sity f (that is we do not make from the graph any conditional independence assumption that is not consistent

with the joint density), the function

p∏

l=1

CVl
DVl

p∏

l=1

fl(xl) = f(x1, . . . , xp)

determines a valid density.

Proof Starting from the DAG G one has information about the structure of the parental set. Based on
the parental set, associated with the nodes in the graph G and based on a fixed copula density c, one
can construct the corresponding nodewise ratios {CVl

DVl
; l = 1, . . . , p}.

According to Lemma 1 the following holds CVl

DVl
fl(xl) = fl|pa(l)(xl|pa(xl)) and thus

p∏

l=1

CVl
DVl

fl(xl) =

p∏

l=1

fl|pa(l)(xl|pa(xl)) = f(x1, . . . , xp),

where the last equality follows from the decomposition of the joint density according to graph G.

It is a well-known property (Lauritzen, 1996) that if f admits a factorization according to G then
A ⊥ B|C if the set of nodes A and the set of nodes B are separated by the nodes in set C in the graph
Gm

an(A∪B∪C), which is a moralized graph containing the ancestral set of A ∪ B ∪ C. More intuitively
this means that in this moralized graph all paths from any element in A to any element in B must
pass through a node in the set C, so if one were to remove the set C and all the links connecting its
elements to elements from A and B, then all elements from the set A are completely separated from
the ones in B. By moralization we mean the process where ‘unmarried’ parents having a common child
get connected (or ‘married’) by an undirected link and all arrows get dropped. The moralized graph is
thus an undirected graph. Moreover, if the joint density function f(x1, . . . , xp) admits a factorization
according to G then the density factorizes also according to the moralized graph Gm and obeys the
global Markov property relative to Gm (see Lauritzen, 1996, Lemma 3.21).

Let Gl be the subgraph obtained after eliminating all nodes that are not parents of node l in G, and
let Gm

l be the moralized graph obtained after marrying all unmarried parents in Gl that have a child,
and disregarding directionalities. Let Gm∗

l be the subgraph obtained from eliminating all undirected
links that connect to node l in the graph Gm

l . Figure 4 depicts such graphs.

Theorem 1 makes the connection between copulas and Bayesian networks even more explicit. The
main idea of our approach is the following: since the joint density factorizes according to a DAG and as
well according to its moralized version, Theorem 1 specifies that in order to model data using bivariate
copulas, one places a bivariate copula on each pair of variables that is connected by an edge in the
moralized subgraphs. Thus the moralized graphs contain the key information about which variables
need to be modeled with bivariate copulas in order to have a valid decomposition.

Theorem 1 Let G be a DAG with nodes corresponding to each variable from the random vector X =
(X1, . . . , Xp) and let the joint density f(x1, . . . , xp) decompose according to G. Under the conditions of

Lemma 1, the joint density can be factorized as f(x1, . . . , xp) =

p∏

l=1

fl(xl)
∏|⋆l∪pa(l)|−1

j=1

∏|⋆l∪pa(l)|−j
i=1 cj,j+i|1,...,j−1{F (⋆xj |⋆x1, . . . ,

⋆ xj−1), F (⋆xj+i|⋆x1, . . . ,
⋆ xj−1)}

∏|⋆l∪pa(l)|−1
j=1

∏|⋆l∪pa(l)|−j
i=2 ci,i+j|i+1,...,i+j−1{F (⋆xi|⋆xi+1, . . . ,⋆ xi+j−1), F (⋆xi+j |⋆xi+1, . . . ,⋆ xi+j−1)}

where

(i) each bivariate copula cj,j+i|1,...,j−1 is set on each edge in Gm
l and,

(ii) each bivariate copula ci,i+j|i+1,...,i+j−1 is set on each edge in Gm∗
l .
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(e) Moralized parental subgraph
Gm∗
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Fig. 4: (a) DAG, (c) subgraph of the DAG, and moralized graphs (b, d and e).

Proof The expression follows from the application of (2.2) and Lemma 1. The joint density can be
factorized as

f(x1, . . . , xp) =

p∏

l=1

fl|pa(l)(xl|pa(xl)) =
p∏

l=1

CVl
DVl

fl(xl)

and replacing CVl and DVl by their corresponding products of bivariate copulas, yields the density
decomposition offered in the theorem.

For the decomposition

f(xl, pa1(xl), . . . , pad(xl)) = f(xl|pa1(xl), . . . , pad(xl))
d∏

i=1

fi(pai(xl)),

the subgraph Gl corresponds to the conditional density f(xl|pa1(xl), . . . , pad(xl)). We need to show that
the moralized subgraph Gm

l can be used to represent the joint density function f(xl, pa1(xl), . . . , pad(xl))
through bivariate copulas. We start by noting that Gm

l is a complete subgraph for which any pair of
different nodes is linked and this implies that the graph contains (d + 1)d/2 distinct edges. This is
the same as the number of pairwise copulas used by a C-vine decomposition involving d + 1 variables
(d parents and 1 child node) where a copula function (conditional or unconditional) is placed on any
two different nodes i and j. Both the C-vine and the graph Gm

l are constructed on the same nodes.
Thus starting from the child node as the root node, one can construct the C-vine numerator by using
(d+1)d/2 copulas where the pair of nodes (j, j+1) is necessarily linked by an edge in Gm

l , because due
to the completeness of the subgraph, to all different pairs (j, j+1) there exists an edge that links them
in the moralized graph Gm

l .
The second claim is obtained analogously. A D-vine is now used to model the parents and this gives

rise to d(d−1)/2 different bivariate copulas involving two different nodes, the graph Gm∗
l is again a fully

connected graph, and the same reasoning as above applies. The simpler structure of Gm∗
l as compared

to Gm
l indicates that only in a C-vine the child-parent dependence is modeled.
The proof continues by induction. Assume the above holds for an arbitrary number of nodes n.

Then having n+1 nodes does nothing else than enlarge the moralized subgraph with n extra edges, one
connecting it to all other nodes and the number of bivariate copulas increases by the same amount.
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TC
1 1 2 3 4 5 6 TD

1 2 3 4 5 6

TC
2 12 13 14 15 16 TD

2 23 34 45 56

TC
3 23|1 24|1 25|1 26|1 TD

3 24|3 35|4 46|5

TC
4 34|12 35|12 36|12 TD

4 25|34 36|45

TC
5 45|123 46|123 TD

5 26|345

TC
6 56|1234

Fig. 5: Tree-by-tree description of copulas involved in the numerator (left panel) and denominator (right
panel), see Corollary 1.
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Fig. 6: Graphical representation of a D-vine with 5 nodes. Undirected edges couple nodes in bivariate
copulas for different trees.

Our approach is different from Elidan (2010, 2012), since there higher dimensional copulas are used
to model variables in the set {l ∪ pa(l)}.

Corollary 1 shows that there is a systematic way in which pairwise copulas are introduced. We denote
by TC

r and TD
r the r-th tree from the C-vine or D-vine and by TC

r,s, resp. T
D
r,s we denote the s-th node

from the r-th tree in a C-vine, respectively D-vine.

Corollary 1 Let fl|pa(l)(xl|pa(xl)) = CVl

DVl
be the conditional density of variable Xl with the conditioning

set of parents pa(xl) following the condition stipulated in Lemma 1. By construction, the nodes TC
r,s and

TD
s+1,r−2 involved in CVl

DVl
, where r = 3, . . . , |pa(l)| + 1 and s = 1, . . . , |pa(l)| + 2 − r require the bivariate

copulas ci,j|{h:<min(i,j)} in the case of the C-vine and ci,j|{h:min(i,j)<h<max(i,j)} in the case of the D-vine,

with i, j, h ∈ ⋆l ∪ pa(l).

The example in Figure 5 shows a tree-by-tree description of the copulas to help appreciate the
corollary. For r = s = 3 we have in the third tree, as the third node the bivariate copula c2,5|1 in the
C-vine decomposition. Based on the corollary, in the D-vine decomposition in the fourth tree, as the
first element, we have a conditional copula on the same variables, the parents, but using the set {3, 4}
as conditioning set. All copulas involved in both panels can be recovered from Figures 2 and 3 where
we also explained how the vine graphs can be read.

Corollary 1 clearly expresses which variables should be involved in the numerator and the denom-
inator and how moving from one tree to another impacts the respective conditioning. Keeping the
same order for the parents in both the C-vine and the D-vine results in the compact representation of
Corollary 1, see also Figure 5.

The same information from the right hand side of Figure 5, can be graphically expressed by starting
from the first tree of a C-vine where we retain only the leafs that act as parents. Figure 6 lists graphically
all the nodes that get connected and all the pairwise connections in the D-vine. On each edge a bivariate
copula is set, and the conditioning set is represented by all nodes in between. For example, in the third
tree (panel b) one has the conditional copula c2,4|3 (alongside c3,5|4 and c4,6|5), in the fourth tree (panel
c) the conditional copula c2,5|3,4 (alongside c3,6|4,5) is being used and in the fifth tree (panel d) the
conditional copula c2,6|3,4,5 is used.
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4 Motivating example

We now return to the ‘Wine’ data and present a practical application of the cDAGs method. A rigorous
explanation of the computational aspects is postponed to Sections 5 and 6. We restrict here to applying
the proposed procedure.

Figure 7 presents two estimated cDAGs for the Wine data, for which the structure is estimated as
described in Section 5. For illustration we omit the variable ‘Hue’ when estimating the cDAG in panel
(a). In both cases the Gaussian, Clayton, Gumbel, Frank and Joe copula families have been used as
candidate families in the cDAG procedure.

(a) (b)

Alch

Mlca

AshAloa
Mgns

Ttlp

Flvn

Nnfp
Prnt Clri

Alch

Mlca

AshAloa
Mgns

Ttlp

Flvn

Nnfp
Prnt Clri

Hue

Fig. 7: Wine data. Estimated cDAGs using either 10 (a) or 11 (b) variables.

Compared to the PC and BGe graphs presented in Figure 1(a),(b) in Section 1 it is apparent that the
cDAG is slightly denser and estimates more edges than the other two techniques for this dataset. The
main difference is that in Figure 7 a series of bivariate copulas has been used instead of a multivariate
normal distribution. Compared to the C-vine in Figure 1(c) the new approach places bivariate copulas
on nodes that are in a sense ‘causally’ connected whereas the C-vine decomposition is more rigid and
given a central node, all others get connected to it, although modeling such a dependence structure
might not be warranted in the multivariate distribution. On the other hand a BN tries to capture
exactly the way in which variables influence each other.

The benefit of incorporating the structure of the DAG for deciding which two nodes need to be
coupled by the copula is observed in a higher log-likelihood as compared to a C-vine as implemented
in Brechmann and Schepsmeier (2013), for which we have used the BIC criterion to obtain the final
model and for selecting the best fitting copulas from the same list of copula families as for the cDAG.
For the 10 variables case the log-likelihood values are 477 for the cDAG and 420 for the C-vine and for
the 11 variables case the log-likelihood values are 557 for the cDAG and 494 for the C-vine. Interesting
to note is that for the 10 dimensional data the cDAG method achieves a higher log-likelihood with less
bivariate copulas than the C-vine method, while in the 11 dimensional case, cDAG needs more copula
terms than the C-vine. Moreover, an out-of-sample prediction evaluation, described in Section 7, on two
measures of dependence, namely Kendall’s τ and Gini’s index, the cDAG outperforms the C-vine by
incorporating the structure of the data.

Regarding structure resemblance, we have compared the obtained cDAG structures with the fol-
lowing DAG finding algorithms: hill-climbing (HC) based on AIC/BIC or BGe, the PC algorithm as
described in Kalisch and Bühlmann (2007) and the SIN algorithm (Drton and Perlman, 2008). We
emphasize that all these algorithms make the explicit assumption of multivariate normality. We expect
some overlap in the identified edges by cDAG and these procedures, but not to a very high degree, be-
cause of the different distributional assumptions. See Section 5 for details regarding the model selection
criterion we use. Table 1 shows for both data examples an overlap between the estimated graphs. For
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this dataset, the cDAG method estimates graphs which are closer to the hill-climbing based on the AIC
and further away from the SIN estimated graphs using the cut-off value of α = .1.

10 variables 11 variables
HC-BGe 40% 42%
HC-BIC 38% 40%
HC-AIC 42% 42%

PC(α =.1) 40% 36%
PC(α =.05) 38% 35%
SIN(α =.1) 31% 31%

SIN(α =.05) 33% 31%

Table 1: Wine data. The graphs presented in Figure 7 are compared to DAGs estimated with popular
algorithms with respect to the proportion of common edges in the skeleton of the estimated DAGs. The
dataset contains either 10 or 11 variables.

5 Model selection in parametric families

We start by presenting a parametric estimation framework and proceed by studying an information
criterion for simultaneously selecting the copula family and the structure of the DAG.

5.1 Parametric copula families

The cDAG method is developed in Section 3 at the probabilistic level. From a statistical viewpoint we
estimate such structures along with corresponding parameters from samples, as has been done for the
example in Section 4.

Given n realizations of a p-dimensional random vector Xk = (Xk1, . . . , Xkp) with k = 1, . . . , n we
construct the pseudo-observations, by first retaining the rank rki of the variable Xki among all variables
{X1i, . . . , Xni} and then scale it by a factor n+ 1 to ensure that all values are inside (0,1),

X̃ki =
rki

n+ 1
=

∑n
t=1 1(Xti ≤ Xki)

n+ 1
=

n

n+ 1
Fn,i(Xki),

with Fn,i the empirical distribution function of the ith component of the p-vector. We will use everywhere
in our calculations the pseudo-observations instead of the real observations. The pseudo-observations
have marginal distributions that are approximately uniform on [0, 1] and hence we set the values of the
densities equal to 1.

All the bivariate copulas ci,j|k,l(·, ·; θi,j|k,l) are modeled with an unknown generally low-dimensional
vector of parameters θi,j|k,l that can be estimated from the data. In this paper we have used the following

parametric copulas (other choices are possible): the Gaussian copula with Cθ(u, v) = Φθ(Φ
−1(u), Φ−1(v)),

the Clayton family with Cθ(u, v) = {max(u−θ + v−θ − 1, 0)}−1/θ, the Gumbel family with Cθ(u, v) =

exp[−{(− logu)θ+(− log v)θ}1/θ], the Frank family with Cθ(u, v) = − 1
θ log(1+ {exp(−θu)−1}{exp(−θv)−1}

exp(−θ)−1
)

and the Joe family with Cθ(u, v) = 1− {(1− u)θ + (1− v)θ − (1− u)θ(1− v)θ}1/θ.
In a parametric framework, Theorem 1 gives a factorization of the joint density as

f(x1, . . . , xp; θ) =

p∏

l=1

CVl(θCVl
)

DVl(θDVl
)

p∏

l=1

fl(xl),

where θCVl
and θDVl

are vectors of parameters resulting from the copula families and θ = (θCVl
,θDVl

)
is the combined parameter vector.

Given n realizations of the random vector Xk, the log-likelihood of the data is ℓ(θ;X1, . . . , Xn) =∑n
k=1

∑p
l=1(logCVl,k − logDVl,k), where the subscript k in CVl,k and DVl,k indicates the use of the kth

observation.
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Note that the log-likelihood is not in general monotone in the number of parameters, since a ‘bad’
model for the C-vine might outweigh a ‘good’ model for the D-vine. This likelihood may be nodewise
decomposed as ℓ(θ;X1, . . . , Xn) =

∑p
l=1 log-Lik(θ; nodel).

Parameter estimation proceeds sequentially, see Czado et al (2012) and Hobæk Haff (2013). Using a
tree-by-tree decomposition as in Figure 5, the estimates at a level q are found by plugging-in estimates
obtained at the level q − 1, and so on.

5.2 A nodewise information criterion

We define at each node l in the graph the nodewise penalized score

ICl = −2log-Lik(θ̂; nodel) + p̂en(n, θ̂), (5.1)

where the first part is the nodewise log-likelihood value of the model at the estimated parameter θ̂ and
the second part is a penalty expressing the complexity of the model as a function of θ̂ and the sample size
n. The smaller the value of the information criterion, the better the model. The penalty can take various
forms and popular penalties have been proposed in the literature, the most famous ones are the Akaike
information criterion (Akaike, 1973) AIC with p̂en(n, θ̂) = 2 length(θ̂) and the Bayesian information
criterion (Schwarz, 1978) BIC with p̂en(n, θ̂) = length(θ̂) logn. In a nodewise information criterion the
penalty is based on the parent configuration of the considered node. A value of the information criterion
of the complete graph G is defined as the sum of the nodewise values, IC(G) =

∑p
l=1 ICl.

We motivate the use of a new penalty which bridges two aspects: the DAG structure and the copula
based representation of the nodewise conditional density. As in (5.1) we define a nodewise information
criterion using p̂encDAG(n, θ̂) = 2

∑n
k=1 logDVl,k/{|pa(xl)| logn},

cDAG-ICl = −2
n∑

k=1

(logCVl,k − logDVl,k) +
2
∑n

k=1 logDVl,k
|pa(xl)| logn

,

where the log-likelihood expresses how the conditional density is represented by ratios of C/D-vines to
model the child-to-parents and the parents-to-parents relation. The corresponding graph score is then
cDAG-IC(G) =

∑p
l=1 cDAG-ICl.

The penalty part uses the number of estimated parents of a node and the relative ‘cost’ per parent
as opposed to the number of estimated parameters. Thus the larger the cost of modeling the parents the
higher the reduction in the likelihood part and the larger the penalty. The reasoning behind it is that we
are interested in nodewise models where the benefits of modeling the parents (which we have argued is
of secondary importance, but nonetheless informative) should not come at the expense of modeling the
child-parents relation. The proposed penalty satisfies consistency properties (see Section 5.3), though
other definitions of p̂en(n, θ̂) can be explored too. Note that by Lemma 4 we could replace the logn
factor by any sequence an such that an → ∞ and an = o(

√
n) as n → ∞.

By estimating the structure from the data, the cDAG method might often be more complex than
using a simple C- or D-vine. Hence only counting the number of parameters as in an information criterion
such as AIC or BIC, is not appropriate (see Section 7).

The nodewise decomposability of both the models and the information criterion allows for fast
parallel estimation using the algorithms of Aas et al (2009).

5.3 Consistency of nodewise model selection

Without loss of generality, consider two models to choose from at any given node l. The models can
specify different copula families or can differ in the structure of the parental set. A superscript indicates
the model used, e.g., CV m

l , DV m
l , pam(l) denote the quantities CVl, DVl and pa(l) for model m ∈ {1, 2}.

We adapt the general assumptions of Sin and White (1996, Propositions 4.1 & 4.2(a,b)) to our
context, which for completeness are stated in the appendix.
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Lemma 4 (Adapted from Proposition 4.2 of Sin and White (1996)) Under the assumptions as stated

in the appendix, for both models, let ∆cDAG-ICl = cDAG-IC1
l −cDAG-IC2

l , and with the expectation computed

with respect to the true density, let ∆n = n−1(E[log-Lik1(θ1
0n; nodel) − log-Lik2(θ2

0n; nodel)]) with θ
m
0n the

least false parameter value (see condition iv in the Appendix) and ∆p̂en = p̂en1(n, θ̂1)− p̂en2(n, θ̂2) > 0.
(i) If lim infn→∞ ∆n > 0 and the penalty satisfies that ∆p̂en = oP (n), then weak consistency holds, that is,

limn→∞ P (∆cDAG-ICl < 0) = 1.
(ii) If limsupn→∞ n1/2∆n < ∞, for m = 1,2 the terms in log-Likm(θm0n; nodel) satisfy a central limit

theorem and P (n−1/2∆p̂en → ∞) = 1, then limn→∞ P (∆cDAG-ICl ≥ 0) = 1.
(iii) If log-Lik1(θ1

0n; nodel) − log-Lik2(θ2
0n; nodel) = OP (1) and P (∆p̂en → ∞) = 1 then it holds that

limn→∞ P (∆cDAG-ICl ≥ 0) = 1.

The consistency result for the graph information criterion holds by the nodewise decomposability of
IC(G). In the appendix it is shown that the conditions on ∆p̂en in (i)–(iii) of Lemma 4 (short, the
penalty conditions) hold for cDAG-ICl.

The penalty requirement in (i) is satisfied for AIC, BIC and also for the cDAG-IC. When there is
one clear winner in terms of Kullback-Leibler distance to the true density of the data, all three criteria
choose with probability going to one the Kullback-Leibler best model. For the situation of graphical
modeling, a situation with lim infn→∞ ∆n > 0 occurs for example when one graph (say G2) is missing
one or more true edges and the other graph G1 includes the needed edges. In the limit, the information
criteria are able to identify G1 as the better graph.

The penalty conditions in (ii) and (iii) hold for the BIC and for cDAG-IC though not for AIC. As
a consequence, when the models are close BIC and cDAG-IC select with probability going to one the
model with the smallest penalty, often referred to as the most parsimonious model. For example, in the
case of graphical models such a situation occurs when one graph contains one or more edges too many.
If it truly holds that Xi ⊥ Xj |pa(Xj) but graph G1 still includes an edge between i and j and graph
G2 does not, both graphs are decomposing the same density (conditioning on an independent variable
causes no harm), having ∆n = 0. Under the stronger assumption on the penalty in (ii), then the more
parsimoneous graph G2 is correctly identified with probability going to one. For some consistency results
for selecting graphs, see also Chickering (2002).

In a similar way we can show that, provided the conditions for strong consistency as in Sin and
White (1996, Proposition 5.2(a)) hold, the proposed penalty in cDAG-IC satisfies that ∆p̂en = o(n)
almost surely, and thus strong consistency may be obtained.

5.4 Across-class model selection

The cDAG-IC has been constructed to select and compare models within the class of cDAG models.
Selecting from distinct non-nested models (e.g., a DAG, a cDAG, a C-vine) requires additional care.
Traditional AIC and BIC can be used for this purpose since they compare the overall fit of the graph
and penalize it with a function of the number of parameters estimated by the model. For a small number
of comparisons one may perform alternatively hypothesis testing as in Vuong (1989) and Clarke (2003).
In Section 8 we apply such an across-classes selection using AIC, BIC and Vuong’s likelihood ratio
hypothesis tests.

6 Computational aspects

We implemented the cDAG procedure using the statistical software R (R Core Team, 2014). We start
by specifying a set of copula density families. At each node l, the algorithm computes the cDAG-IC
score based on the parental set at that step of the algorithm (see below) and for each copula family
in the candidate set. We retain the copula that has the smallest cDAG-IC value. For each node we
simultaneously select a copula family used per ratio CVl

DVl
and a parental set. The final result is an

estimated DAG and a set of copula families which are used in the ratio decomposition at each node.
For computational simplicity once a copula family is selected at node l then both the numerator

and denominator in CVl

DVl
use it for all involved bivariate copulas. However, at different nodes different
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Algorithm 1 Information criterion based search method for cDAGs

Ĝ← empty graph

cDAG-IC(Ĝ)←∞
F lag ← False;
while F lag == False do

compute Add based on Ĝ;

compute Delete based on Ĝ;

compute Invert based on Ĝ;
Allmoves← append Add,Delete, Invert;
Length← the length of Allmoves;

for Ĝcurrent ∈ Allmoves do

compute cDAG-IC(Ĝcurrent) score as follows:

for l ∈ updated nodes do

cDAG-ICl ← −∞
for copula ∈ Used copula family set do

cDAG-ICcopula
l

← compute cDAG-ICl using copula

if minimum(cDAG-ICcopula
l

) < cDAG-ICl then

cDAG-ICl ← cDAG-ICcopula
l

Selected Copula ← copula

end if

end for

cDAG-IC(Ĝcurrent)←
∑p

l=1 cDAG-ICl

end for

end for

if minimum(cDAG-IC(Ĝcurrent)) < cDAG-IC(Ĝ) then

position← position of minimum(cDAG-IC(Ĝcurrent));

Ĝ← Ĝcurrent[position];

cDAG-IC(Ĝ)← minimum(cDAG-IC(Ĝcurrent));
else

F lag ← True;
end if

end while

copula families can be selected. Our methodology generalizes directly to cases where one desires to select
different copula families at the level of the numerator or denominator, but this is much more computer
intensive and for large dimensional problems it can be quite cumbersome.

The presented procedure is based on a ‘divide and conquer’ approach, where a relatively complex and
‘hard-to-solve’ problem is split into several smaller manageable problems which can be quickly solved
using nodewise modeling.

Algorithm 1 contains pseudo-code for the implementation. The algorithm starts from an empty
graph and updates its structure according to a hill-climbing procedure, if the updated graph improves
the current value of the information criterion. In a hill-climbing procedure three steps are allowed: add
a directed edge between two nodes, remove a directed edge or invert the directionality of an edge. The
DAG is updated and modified according to the smallest value of the information criterion.The algorithm
ends when the value of the information criterion cannot be improved.

This procedure is a local optimization technique in the space of DAGs, which avoids the (sometimes
impossible) listing of all graphs. Since at each step at most two nodes change their parental sets, only
at most two values of the nodewise information criterion need to be updated. To make the nodewise
procedure more clear, we present in Algorithm 2 pseudo-code for the followed steps at each node. For
any given graph we analyze the nodes separately. Based on the implied parents of the current node, C-
vines and D-vines decompositions are obtained. Next, based on the estimated parameters we construct
the nodewise contributions to the total graph score cDAG-IC. We retain incrementally the best fitting
copula family as well as the best fitting set of parents. Note that in the search algorithm it is quite
possible for the best fitting copula family to change as every time different sets of parents are used.
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Algorithm 2 Nodewise procedure

1. For each node l in a given graph G based on directed edges, extract the set pa(l);

2. For each copula family in a specified list of families, estimate parameters for all bivariate copulas in CVl

DVl

;

3.1. For CVl, using the set l ∪ pa(l) perform the C-vine decomposition;
3.2. For DVl, using the set pa(l) perform the D-vine decomposition;
4. Using the estimated parameters calculate the value nodewise contribution to the total graph score, i.e, cDAG-ICl

5. Select the copula family which minimizes the value cDAG-ICl;
6. Accept directed arrow (or the set pa(l)) if total graph score has improved over the baseline

7 Simulations

To evaluate the performance of the cDAG method we have set-up in this section a simulation study
under a variety of settings which differ in number of nodes, sample sizes, estimation method and ways
of generating data used in the estimation proces.

7.1 Simulation settings A

We have generated data (i) from a DAG, using the ‘pcalg’ package (Kalisch et al, 2012) in R , where
at each node we have added random errors that have either a Student t(df=4) distribution (denoted
t4 throughout the section) or a standard Gaussian distribution; (ii) from a general multidimensional
copula. The popular Clayton, Gumbel and Frank families have been used with θ ∈ {3.3, 1.3, 0.5} as
parameters for the three copula families. Data have been generated using the ‘copula’ package (Hofert
et al, 2014) in R. Using the same families we have also generated data from hierarchical Archimedean
copulas using the ‘HAC’ package (Okhrin and Ristig, 2014), where the parameter vectors were drawn
at random uniformly in the interval [2,6]. In case the data were generated from a DAG, the probability
(π) of connecting two nodes was either 0.1 or 0.4, the lower the value, the less directed edges the DAG
contains. The sample size was 200 or 1000 and the number of nodes p varied in the set {5, 10, 20,25}.

For the cDAG method we have used the cDAG-IC to simultaneously select the final structure and the
copula families. We also investigated the case of fixing the Gaussian copula and only select the structure
of the DAG. For the C-vine approach we used the publicly available R package ‘CDVine’ (Brechmann
and Schepsmeier, 2013) to select a copula for each term in the decomposition based on their standard
BIC implementation, and considered also a second case where the Gaussian copula models all terms. We
have also compared our approach against a more general R-vine, as implemented in the ‘VineCopula’
package (Schepsmeier et al, 2014).

For all techniques the list of copulas from which selection was desired was set to contain the Gaussian,
Clayton, Gumbel, Frank and Joe copula families.

For the C- and R-vines we allowed also the independence copula to be in the list of copulas to be
chosen in order to reduce the complexity of the vine models. The independence test offered in Genest and
Favre (2007) was used. Since the test uses formal hypothesis testing which is applied to each bivariate
term in the decomposition, for large dimensional problems it can result in accumulating type-I errors.
We did not use any correction factors to account for the multiple testing problems arising when selecting
the independence copula and just used the vines software as is offered.

We compare the cDAG method to the competitor procedures using four characteristics:

1. the estimated log-likelihood of the data under the specified model;
2. the number of parameters of the models;
3. SSQτ =

∑
all pairs (i,j)(τ

obs
ij −τsimij )2: the sum of squared differences between the observed Kendall’s

τ computed on nodes i and j and a corresponding τ estimated on simulated data based on the model;
4. SSQGini =

∑
all pairs (i,j)(Giniobsij −Ginisimij )2: the sum of squared differences between the observed

Gini’s index computed on nodes i and j and a corresponding Gini’s index estimated on simulated
data based on the model.

In characteristics 3–4 (but not in 1 and 2) a further level of simulation is used. The purpose of investigat-
ing these two characteristics is to show the potential benefits a local or nodewise structure delivers when
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Algorithm 3 Simulation settings

Data coming from DAG
1. Set the number of nodes p← 5, 10, 20 or 25 and sample size n← 200 or 1000 cases;
2. Set the probability of connecting two nodes π ← 0.1 or 0.4;
3. Set random edge weights with values between w ∈ [.05, .3];
4. Generate a DAG G with p nodes, probabilities π and weights w;
5. Based on G generate multivariate data (of size n× p);
6. At each node add random noise coming from N(0,1) or Student-t (df=4) distribution;
7. Transform data to pseudo-observations to be used in all calculations;

Data coming from Clayton/Gumbel/Frank copulas;
1. Set the number of nodes p← 5, 10, 20 or 25 and sample size n← 200 or 1000 cases;
2. Set copula families to Clayton(θ = 3.3), Gumbel(θ = 1.3) and Frank (θ = 0.5);
3. From each of the copulas generate multivariate data (of size n× p) to be used further;

Data coming from hierarchical Clayton/Gumbel/Frank copulas;
1. Set the number of nodes p← 5, 10, 20 or 25 and sample size n← 200 or 1000 cases;
2. For each copula families generate a vector of parameters θ of length p− 1 uniformly on in the interval [2,6];
3. From each of the copulas generate multivariate data (of size n× p) to be used further;

Estimation and selection;
1. Set list of plausible copula families to {Gaussian, Clayton, Gumbel, Frank, Joe};
2. For cDAGs estimate the structure of the graph and the copula families for each ratio using the cDAG-IC criterion;
3. For C- and R-vines estimate the best fitting copula families using BIC and allow for independence screening;

Evaluation;
1. For all competitors investigate the estimated log-likelihood (ℓ) and the number of estimated parameters;
2. For each pair of nodes compute on the observed data Kendall’s τ and Gini’s index i.e., τobsij and Giniobsij ;

4. For each fitted model (using estimated parameters) simulate new data of size n2 × p, where n2 = 100;
5. For each pair of nodes compute on the new simulated data Kendall’s τ and Gini’s index i.e., τsimij and Ginisimij ;

6. Compare all obs to sim quantities.

controlling for the influence of the copula. We wish to see experimentally if bringing information about
the parental sets improves the accuracy of estimating these quantities, as small parental sets would be
indicative that some of the extra terms involved in a regular C- or R-vine would be superfluous.

For every pair of nodes, on the observed dataset we compute Kendall’s τ and Gini’s index, and label
them with the superscript obs. Next, a cDAG using the cDAG-IC criterion is constructed. Based on
the estimated graph and its corresponding C-vine numerators and estimated parameters, we generate
a new dataset for which we again compute for each pair of nodes i, j the τ value and Gini’s index, this
time denoted with the superscript sim. We stress that the new dataset is generated based on the cDAG
proposed model in order to evaluate its performance.

We repeat the process of generating new data for the vine models as well. To evaluate the effect of
the structure of the cDAG has on the estimation of the two quantities, we keep the copula effect under
control, by using for both the C- and R-vine models the copula families selected by the cDAG. We then
estimate the C- and R-vine models and based on the estimated parameters of the fitted vine models,
we generate a new dataset. We then compute again for each pair of nodes i, j the τ value and Gini’s
index, which are labeled also with superscript sim to denote that they come from a generated dataset.

In the end, for each technique we take as a measure of performance the squared differences between
the quantities estimated on the observed dataset and the quantities estimated on the generated datasets.
Differences between quantities will thus be the effect of modeling the structure of the graph and will be
unrelated to the choice of the copula whose effect is alleviated. In this way, if the estimated cDAG reflects
an appropriate structure for the data, then generating data using the sets l ∪ pa(l) with l = 1, . . . , p, is
expected to produce on average samples which come closer to the original data, than when sampling from
the global C- or R-vine where all nodes are involved in the data generation. Hence, smaller differences
between such observed and simulated values indicate a better performance.

A total of 350 different observed datasets are generated and for each of them, we each time simulate
three new datasets that come from the cDAG model and the C- and R-vine models for evaluating
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Estimated copula Gaussian copula
log-likelihood No. Parameters log-likelihood No. Parameters

Data p n cDAG C-vine R-vine cDAG C-vine R-vine cDAG C-vine R-vine cDAG C-vine R-vine
t4 5 200 10.7 5.4 * 5.5 * 14.3 1.1 1.1 8.6 8.5 8.5 15.8 10 10
t4 5 1000 25.6 20.6 * 20.5 * 13.9 1.3 1.3 23.3 23.2 23.2 15.4 10 10
t4 25 200 278.2 177.4 * 181.4 * 846.6 33.8 33.5 252.6 277.2 277.2 762.9 300 300
Gaussian 5 200 23.3 17.8 * 18.0 * 12.4 2.8 2.8 20.8 19.9 19.9 13.1 10 10
Gaussian 5 1000 84.8 77.8 77.7 10.7 4.1 4.0 82.6 78.9 78.9 11.2 10 10
Gaussian 25 200 879.1 767.9 * 754.4 * 245.1 92.4 79.8 842.8 861.9 861.9 147.5 300 300
Gaussian 25 1000 3871.3 3656.1 3647.6 106.2 164.5 156.6 3861.0 3707.1 3707.1 98.4 300 300
Clayton 5 200 1372.0 892.4 * 892.8 * 7.0 9.1 9.4 994.4 655.4 * 655.4 * 7.0 10 10
Clayton 5 1000 6775.3 4453.3 * 4453.3 * 7.0 10.0 10.0 4838.4 3228.7 * 3228.7 * 7.0 10 10
Clayton 25 200 23185.5 12843.5 * 12613.1 * 47.0 127.3 118.0 16329.6 9466.5 * 9466.5 * 47.0 300 300
Frank 5 200 385.4 285.0 * 284.3 * 7.0 9.1 9.2 351.1 259.9 * 259.9 * 7.0 10 10
Frank 5 1000 1852.9 1391.7 * 1384.9 * 7.0 10.0 10.0 1683.4 1275.7 * 1275.7 * 7.0 10 10
Gumbel 5 200 1940.7 1227.7 * 1199.6 * 7.0 9.3 9.6 1614.3 1018.9 * 1018.9 * 7.0 10 10
Gumbel 5 1000 8504.1 5522.0 * 5518.5 * 7.0 10.0 10.0 7949.7 5055.3 * 5055.3 * 7.0 10 10
Gumbel 25 200 34303.3 18616.2 * 18382.2 * 49.9 128.9 119.9 26137.7 14461.3 * 14461.3 * 47.0 300 300
hClayton 5 200 1090.9 708.8 * 708.5 * 7.0 8.5 8.5 795.4 530.1 * 530.1 * 7.0 10 10
hClayton 5 1000 5394.6 3523.8 * 3524.6 * 7.0 9.7 9.8 3880.6 2607.1 * 2607.1 * 7.0 10 10
hClayton 20 200 6139.0 3780.9 * 3734.0 * 37.0 84.9 74.9 4561.5 2968.2 * 2968.2 * 37.0 190 190
hClayton 25 200 7869.4 4857.7 * 4781.9 * 47.0 117.5 102.2 5873.5 3853.5 * 3853.5 * 47.0 300 300
hFrank 5 200 253.4 190.0 * 189.3 * 7.0 8.1 7.8 230.7 174.5 * 174.5 * 7.0 10 10
hFrank 5 1000 1236.9 935.0 * 934.5 * 7.0 9.7 9.8 1124.2 860.7 * 860.7 * 7.0 10 10
hFrank 10 1000 3169.8 2427.4 * 2415.7 * 17.0 39.0 39.2 2886.6 2252.7 * 2252.7 * 17.0 45 45
hFrank 20 200 1595.1 1204.0 * 1171.8 * 37.2 80.2 68.9 1470.1 1166.0 * 1166.0 * 37.0 190 190
hFrank 25 200 2074.7 1578.1 * 1527.2 * 47.3 111.0 93.4 1913.8 1550.3 * 1550.3 * 47.0 300 300
hGumbel 5 200 1490.5 1005.3 * 975.5 * 7.0 8.4 8.3 1215.4 780.1 * 780.1 * 7.0 10 10
hGumbel 5 1000 6443.9 4177.8 * 4177.2 * 7.0 9.5 9.7 5975.8 3849.9 * 3849.9 * 7.0 10 10
hGumbel 10 1000 16086.6 9957.4 * 9949.4 * 17.0 37.5 36.9 14953.0 9156.7 * 9156.7 * 17.0 45 45
hGumbel 20 200 8622.2 4858.3 * 4735.4 * 37.0 86.1 75.8 6868.5 4161.6 * 4161.6 * 37.0 190 190
hGumbel 25 200 11777.4 6444.8 * 6319.3 * 47.0 120.0 103.3 8782.5 5351.3 * 5351.3 * 47.0 300 300

Table 2: Simulated data. Average log-likelihood values over 350 simulation runs (larger is better) and the number of parameters of the estimated
cDAG, C-vine and R-vine. The letter ‘h’ indicates that data are generated from a hierarchical copula. The ‘*’ symbol indicates that based on a
one-sided Mann-Witney test, the p-value for testing the null hypothesis of identical distributions, against the alternative ‘the distribution for the
quantity of interest coming from the cDAG model is shifted to the right of the distribution for the C-vine (R-vine) model’, is lower than 5%. Due
to multiple testing a Bonferroni correction has been applied to keep the familywise error rate at 95%.
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SSQτ and SSQGini. Averages across all 350 simulation runs are presented. A schematic overview of the
simulation procedure is contained in Algorithm 3.

From Table 2 we observe that the cDAGs result in similar or larger log-likelihood values for a
multitude of simulation settings. Even for settings where there is a fixed Gaussian copula there is a gain
by using the cDAG approach, and as expected for all methods the log-likelihood values are increasing
when the copula is selected rather than fixed to the Gaussian copula.

Out-of-sample prediction is used for Kendall’s τ and Gini’s index. A one-sided Mann-Witney test
(with Bonferroni correction) indicates significant lower values for the cDAG as compared with the C- or
R-vine, see Table 3. We have repeated the simulation study by using only the Gaussian copula. That is,
the structure of the graph is estimated freely, but for all terms in the decomposition we use the Gaussian
copula. For the C- and R vines, that meant using the Gaussian copula for all p× (p− 1)/2 terms. The
results are presented in Table 3 and indicate that taking advantage of the local decompositions as in
the cDAG can lead to improvements in the fit. This indicates the benefit of including the structure of
the DAG in the modeling aspect. Similar conclusions (not reported here) have been reached inspecting
Spearman’s ρ and Blomqvist’s β as dependence measures.

While the cDAG has the possibility of using more bivariate copulas than in a C-vine approach,
the estimated number of parameters presented in Table 2 shows that this is not always the case. The
range of values indicates that for some simulated settings a simple and sparsely estimated DAG suffices,
whereas for other settings one needs to estimate a complex and dense structure in order to adequately
capture the features of the data.

7.2 Simulation settings B

Instead of evaluating the log-likelihood on the same dataset as used to estimate the parameters, we also
evaluate it on an external, independent ‘hold-out’ sample. The number of observations for the hold-out
sample was taken equal to 1200. For the evaluation part (see Algorithm 3) we now simulate datasets
of size n2 × p where the number of simulated cases n2 was set at 1000 and p is the number of nodes in
the graph. One last modification to the approach we took so far, is to replace the sequential estimation
of parameters (where the estimation of the copula parameters involved in the bivariate decompositions
at the T -th tree depends on the parameters estimated at tree T − 1) by a joint estimation of all
parameters (where the full log-likelihood is numerically optimized, starting from suitable initial values).
The latter, is computationally more involved than the sequential estimation scheme. Based on these
three modifications to the approach in simulation settings A, we present in Table 4 the out-of-sample
log-likelihood, the number of estimated parameters, SSQτ and SSQGini when the full joint estimation
of parameters is used. The number of nodes in the graph was p = 5, 10,15 and the sample size n used in
the estimation step was set at 1000 cases. We also present the results of a two-sided Mann-Witney test
to test the null hypothesis of identical distributions, with a Bonferroni correction for multiple testing.
This table leads to similar conclusions as Tables 2 and 3. In several instances the C- and R-vines seem to
gain more in performance than the cDAGs. Most notably, there is a tendency for the vines to provide a
higher out-of-sample log-likelihood value when the data are generated from a DAG with t4 or Gaussian
errors with low sparsity. Moreover, when the data were generated from a Clayton copula the vines were
also producing lower squared errors than the cDAG. The main message of the comparison is that none of
the methods is everywhere the best, and that the joint estimation method, albeit more time consuming,
can lead to better performances especially for the vine models.

8 Euro Stoxx 50 dataset

We use a financial dataset that contains the daily log-returns in the four-year period May 22, 2006 to
April 29, 2010 for the Euro Stoxx 50 index, five national indices (DAX-Germany, CAC-France, IBEX-
Spain, FTSE-UK and AEX-The Netherlands) and 45 stocks: 12 from the German financial market, 18
from the French market, 6 from the UK market, 5 from the Spanish market and 4 from the Dutch
financial market. The dataset was constructed from financial data stored on the Yahoo Finance servers
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Estimated copula Gaussian copula
SSQτ SSQGini SSQτ SSQGini

Data p n cDAG C-vine R-vine cDAG C-vine R-vine cDAG C-vine R-vine cDAG C-vine R-vine
t4 5 200 0.064 0.126 * 0.133 * 0.051 0.094 * 0.100 * 0.077 0.125 * 0.131 * 0.061 0.098 * 0.103 *
t4 5 1000 0.061 0.100 * 0.110 * 0.047 0.074 * 0.083 * 0.073 0.119 * 0.129 * 0.056 0.090 * 0.098 *
t4 25 200 4.487 6.252 * 6.105 * 3.352 4.566 * 4.476 * 4.116 4.267 4.139 3.135 3.257 * 3.175
Gaussian 5 200 0.069 0.125 * 0.129 * 0.055 0.094 * 0.097 * 0.069 0.131 * 0.123 * 0.056 0.100 * 0.097 *
Gaussian 5 1000 0.060 0.112 * 0.111 * 0.047 0.084 * 0.084 * 0.062 0.122 * 0.116 * 0.048 0.091 * 0.090 *
Gaussian 25 200 1.552 2.008 * 2.208 * 1.132 1.443 * 1.566 * 1.003 1.089 1.038 0.742 0.806 0.778
Gaussian 25 1000 0.772 0.871 * 0.845 0.551 0.616 * 0.609 * 0.724 0.827 * 0.780 0.516 0.586 * 0.562 *
Clayton 5 200 0.024 0.042 * 0.047 * 0.010 0.017 * 0.020 * 0.033 0.038 * 0.068 * 0.019 0.022 * 0.041 *
Clayton 5 1000 0.019 0.037 * 0.041 * 0.006 0.013 * 0.016 * 0.030 0.032 0.067 * 0.019 0.021 * 0.044 *
Clayton 25 200 0.026 0.034 * 0.039 0.007 0.010 * 0.013 * 0.306 0.233 0.268 0.116 0.087 0.104
Frank 5 200 0.038 0.048 * 0.061 * 0.031 0.032 0.035 0.046 0.059 * 0.067 * 0.038 0.044 * 0.052 *
Frank 5 1000 0.035 0.046 * 0.061 * 0.028 0.030 0.033 * 0.040 0.055 * 0.060 * 0.034 0.042 * 0.048 *
Gumbel 5 200 0.009 0.014 * 0.024 * 0.004 0.006 * 0.010 * 0.006 0.013 * 0.017 * 0.003 0.005 * 0.008 *
Gumbel 5 1000 0.006 0.010 * 0.022 * 0.003 0.004 * 0.009 * 0.003 0.010 * 0.016 * 0.002 0.003 * 0.007 *
Gumbel 25 200 0.104 0.114 * 0.127 * 0.052 0.055 * 0.060 * 0.005 0.006 * 0.006 * 0.002 0.002 * 0.002 *
hClayton 5 200 0.030 0.053 * 0.068 * 0.020 0.027 * 0.030 * 0.031 0.047 * 0.066 * 0.021 0.029 * 0.041 *
hClayton 5 1000 0.023 0.049 * 0.059 * 0.016 0.024 * 0.024 * 0.025 0.042 * 0.061 * 0.019 0.027 * 0.040 *
hClayton 20 200 0.230 0.237 0.348 * 0.118 0.112 0.177 * 0.301 0.366 * 0.318 0.177 0.227 * 0.203 *
hClayton 25 200 0.298 0.348 * 0.355 * 0.150 0.172 * 0.184 * 0.372 0.322 0.431 * 0.230 0.198 0.271 *
hFrank 5 200 0.050 0.071 * 0.089 * 0.038 0.051 * 0.056 * 0.054 0.083 * 0.074 * 0.047 0.061 * 0.055 *
hFrank 5 1000 0.043 0.070 * 0.079 * 0.032 0.049 * 0.047 * 0.048 0.078 * 0.067 * 0.044 0.058 * 0.048
hFrank 10 1000 0.099 0.203 * 0.167 * 0.078 0.140 * 0.118 * 0.129 0.270 * 0.232 * 0.115 0.219 * 0.191 *
hFrank 20 200 0.329 0.521 * 0.726 * 0.234 0.365 * 0.497 * 0.474 0.519 * 0.510 0.394 0.425 0.404
hFrank 25 200 0.413 0.585 * 0.965 * 0.296 0.403 * 0.667 * 0.581 0.553 0.648 * 0.487 0.437 0.531 *
hGumbel 5 200 0.013 0.027 * 0.037 * 0.008 0.014 * 0.017 * 0.010 0.030 * 0.030 * 0.007 0.016 * 0.015 *
hGumbel 5 1000 0.010 0.023 * 0.031 * 0.006 0.011 * 0.014 * 0.006 0.027 * 0.028 * 0.005 0.014 * 0.013 *
hGumbel 10 1000 0.030 0.120 * 0.063 * 0.011 0.062 * 0.032 * 0.021 0.080 * 0.063 * 0.009 0.043 * 0.033 *
hGumbel 20 200 0.134 0.228 * 0.278 * 0.060 0.114 * 0.141 * 0.107 0.128 * 0.126 * 0.056 0.070 * 0.071 *
hGumbel 25 200 0.176 0.273 * 0.394 * 0.090 0.134 * 0.194 * 0.147 0.145 0.133 0.082 0.075 0.075

Table 3: Simulated data. Averages over 350 simulation runs of SSQs for Kendall’s τ and Gini’s index for the estimated cDAG, C-vine and R-vine;
lower is better. The letter ‘h’ indicates that data are generated from a hierarchical copula. The ‘*’ symbol indicates that based on a one-sided
Mann-Witney test, the p-value for testing the null hypothesis of identical distributions, against the alternative ‘the distribution for the quantity of
interest coming from the cDAG model is shifted to the left of the distribution for the C-vine (R-vine) model’, is lower than 5%. Due to multiple
testing a Bonferroni correction has been applied to keep the familywise error rate at 95%.
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log-likelihood (Out-of-sample) No. Parameters SSQτ SSQGini
Data p cDAG C-vine R-vine cDAG C-vine R-vine cDAG C-vine R-vine cDAG C-vine R-vine
t4 (Sparsity .9) 5 15.3 19.1 * 19.1 * 14.3 1.3 1.3 .0091 .0190 * .0205 * .0074 .0137 * .0157*
t4 (Sparsity .9) 10 85.8 98.4 * 98.6 * 85.2 6.6 6.5 .0560 .0971 * .0930 * .0448 .0731 * .0696*
t4 (Sparsity .9) 15 202.8 225.4 226.6 209.9 15.8 15.4 .1282 .2187 * .2169 * .1025 .1636 * .1627*
t4 (Sparsity .6) 5 99.6 95.2 * 95.2 * 11.3 4.3 4.1 .0083 .0164 * .0190 * .0066 .0121 * .0146*
t4 (Sparsity .6) 10 479.7 443.5 * 444.4 * 41.9 21.5 19.8 .0286 .0512 * .0483 * .0231 .0397 * .0377*
t4 (Sparsity .6) 15 1234.1 1145.8 * 1146.3 * 79.7 54.9 5.7 .0540 .0815 * .0836 * .0446 .0639 * .0659*
Gaussian (Sparsity .9) 5 12.7 16.5 * 16.6 * 14.8 1.4 1.4 .0097 .0198 * .0212 * .0080 .0144 * .0164*
Gaussian (Sparsity .9) 10 72.0 85.0 * 85.2 * 85.5 6.5 6.5 .0564 .0980 * .0942 * .0452 .0740 * .0707*
Gaussian (Sparsity .9) 15 171.0 195.0 * 196.1 208.2 15.3 15.0 .1288 .2210 * .2172 * .1034 .1647 * .1620*
Gaussian (Sparsity .6) 5 86.0 82.5 * 82.8 * 1.8 4.2 4.1 .0090 .0164 * .0186 * .0070 .0119 * .0141*
Gaussian (Sparsity .6) 10 427.9 395.8 * 396.9 * 42.9 2.5 19.2 .0306 .0528 * .0494 * .0246 .0404 * .0382*
Gaussian (Sparsity .6) 15 1119.8 1039.6 * 1039.5 * 82.5 52.4 48.2 .0575 .0846 * .0829 * .0469 .0655 * .0639*
Clayton 5 5722.8 3852.8 * 3852.8 * 7.0 1.0 1.0 .0544 .0487 * .0800 * .0319 .0291 .0438*
Clayton 10 21087.5 13345.8 * 13344.1 * 17.0 44.7 44.9 .1737 .1626 * .1680 * .0777 .0709 * .0767*
Clayton 15 4079.1 25087.4 * 2508.3 * 27.0 10.6 103.1 .2921 .2575 * .2631 * .1108 .0994 * .1016
Frank 5 1956.8 1515.4 * 1515.4 * 7.0 1.0 1.0 .0248 .0353 * .0628 * .0278 .0377 * .0564*
Frank 10 11296.1 7908.9 * 791.7 * 17.0 44.4 44.9 .1346 .1348 .1370 .1009 .0999 * .1056*
Frank 15 25617.9 16997.1 * 17002.2 * 27.0 98.7 102.2 .2585 .2569 * .2735 * .1488 .1477 * .1551*
Gumbel 5 9443.9 605.2 * 605.2 * 7.0 1.0 1.0 .0046 .0027 * .0085 * .0021 .0015 .0036*
Gumbel 10 3636.7 21488.1 * 21409.2 * 17.0 44.3 44.8 .0034 .0026 * .0031 * .0014 .0011 * .0014*
Gumbel 15 70559.0 40205.2 * 39532.8 * 27.0 98.4 101.7 .0023 .0027 * .0026 * .0009 .0010 * .0010*
hClayton 5 4598.4 3111.7 * 3111.7 * 7.0 1.0 1.0 .0381 .0379 * .0685 * .0244 .0238 * .0406*
hClayton 10 11318.9 7549.2 * 7549.5 * 17.0 41.8 42.6 .1009 .1011 * .1015 * .0627 .0618 * .0668*
hClayton 15 18051.4 12155.2 * 12152.8 * 27.0 89.9 91.5 .1603 .1619 * .1721 * .1028 .1045 * .1091*
hFrank 5 1304.7 1014.5 * 1014.9 * 7.0 9.8 9.9 .0148 .0278 * .0508 * .0193 .0298 * .0481*
hFrank 10 3274.0 264.4 * 2641.3 * 17.0 4.2 41.1 .0990 .1181 * .1282 * .1089 .1248 .1335*
hFrank 15 5256.7 4389.9 * 4383.9 * 27.0 85.0 86.7 .0506 .0739 * .0669 * .0583 .0774 .0730*
hGumbel 5 7113.1 4602.4 * 4602.7 * 7.0 9.7 9.8 .0045 .0033 * .0140 * .0024 .0020 * .0070*
hGumbel 10 17629.7 10901.9 * 1090.7 * 17.0 38.7 38.9 .0113 .0101 * .0114 * .0061 .0055 .0065*

Table 4: Simulated data. Averages over 350 simulation runs of out-of-sample log-likelihood, number of bivariate terms, SSQs for Kendall’s τ and
Gini’s index for the estimated cDAG, C-vine and R-vine. The letter ‘h’ indicates that data are generated from a hierarchical copula. The ‘*’ symbol
indicates that based on a two-sided Mann-Witney test, the p-value for testing the null hypothesis of identical distributions, is lower than 5%. Due
to multiple testing a Bonferroni correction has been applied to keep the familywise error rate at 95%.
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Fig. 8: Euro Stoxx 50 data. Pairwise scatterplots and contour lines of empirical copulas for the five
national indices and the Euro Stoxx 50 index (left panel) and for individual stocks from the FTSE
index (right panel). The numbers below the main diagonal represent the observed Kendall’s τ measure
of association.

(http://finance.yahoo.com/). We refer to Brechmann and Czado (2013) for a description of the dataset
(which contained data on one extra stock from the French financial market, for which we have not found
publicly available data) and for an application of several vine-based financial models. We have first fitted
an ARMA(1,1)-Garch(1,2) for each times series, retained the residual observations from which we have
then constructed the pseudo-observations, a vector of 965 data points for each series. In all calculations,
we have estimated models using the pseudo-observations as input data.

In Figure 8 we present pairwise scatterplots of the five national indices and the European index
using the pseudo-observations (left panel), as well as scatterplots for the stocks from the UK market
(right panel). For each variable the marginal distributions seem close to uniform distributions, with all
data between 0 and 1. Therefore, plots of the marginal distributions and the axes have been omitted
for ease of presentation. Contour lines corresponding to the bivariate empirical copula with uniform
margins have been superimposed in each scatterplot. Below the main diagonal we present the observed
Kendall’s τ values for each pair of variable. The conclusion of the figure is that for some pairs of nodes
a bivariate Gaussian copula model might be less appropriate than for others. The scatterplots of the
national indices seem to show a strong dependence, larger than that shown by the stocks from the UK
market and some of the pairs show signs of bimodality with respect to the empirical distributions.

We compare the cDAG estimated model in Figure 9 to the tree structure of an R-vine in Brechmann
and Czado (2013). We have redrawn Figure 4 from their article using the same layout as for the cDAG,
see Figure 9(b). We observe that both the cDAG approach, see Figure 9(a), as well as the first level
tree from an R-vine procedure as implemented in the above work, place the Euro Stoxx 50 index as
a central node linked to the five national indices. Both approaches illustrate nicely the expected links
between the national indices and the individual stocks from the five countries. A bonus of the cDAG is
the added information contained in the DAG, namely, first, within a country index there seems to be
a quite high level of stock interaction as the log returns of certain stocks influence the log-returns of
others. Second, at the European level the national indices interact with each other.

In order to list which conditional independencies can be read from the graph, we have applied the
‘d-separation’ criterion (Geiger et al, 1990) to the estimated cDAG according to which, if two variables
are d-separated relative to a set of variables Z, then they are also independent conditionally on Z (see
the Appendix for a definition of d-separation). The analysis indicates that conditioning on the general
Euro Stoxx 50 leaves any pair of national indices still conditionally dependent.
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Fig. 9: Euro Stoxx 50 data. (a) Estimated cDAG using the cDAG-IC criterion and (b) the first tree of
an R-vine model redrawn from Figure 4 from Brechmann and Czado (2013) using the same layout as
in (a).
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A first interesting observation resulting from the application of the d-separation criterion, is that
conditioning on the evolution of the general Euro Stoxx 50 index and on the French CAC index, makes
any couple of the remaining national indices independent, highlighting that the French market played a
central role in terms of log-returns among these markets in the analyzed period. Second, when focusing
on the French market we observe that conditioning only on the national index leads to having any
couple of stock conditionally dependent, showing that in the French financial market there is more
heterogeneity in the log-returns than the index can capture. The same holds for the four other markets
in this analysis.

Considering stocks from different sectors, we can for example, conclude that conditioned upon the
log-returns of stocks from the bank sector such as BNP Paribas (BNP), Credit Agricole (ACA) or
AXA Group (CS) makes the evolution of the log-returns for Société Générale (GLE) independent of the
evolution of stocks of a different sector, for example, L’Oreal (OR), Carrefour (CA) or Louis Vuitton
(MC).

As explained in Section 5.4, for an across-class comparison we now compare via AIC, BIC and
Vuong’s hypothesis test (see Vuong, 1989) the estimated cDAG against 19 other models which include:
several C- and R-vine models (estimated using either AIC or BIC and with or without independence
tests between nodes), several Bayesian networks estimated using the BGe/AIC/BIC score in conjunction
with a hill-climbing (HC) procedure (as implemented in Scutari, 2010), the estimated Bayesian networks
using the PC (as implemented in Kalisch et al, 2012) or SIN algorithm (as implemented in Drton and
Perlman, 2008) in both cases using α=0.05 or α=0.1 and the Bayesian network estimated using the
nonparametric Bayesian belief net (NPBBN) described in Hanea et al (2010) and Hanea (2011). In the
case of NPBBN for the estimation of the DAG, we have used the software provided by the authors. We
started from a fully connected graph and eliminated edges for which the empirical correlation values
were low, until a sparse graph was obtained that passed all offered tests in that software. Afterwards,
the graph structure has been mapped to a D-vine in the R software using the CDVine package, where
we used a Gaussian copula to fit certain edges associated with conditional correlation coefficients and
independence copulas to alleviate all unnecessary terms.

Except for the cDAG, the C-vines, the R-vines and the NPBBN method, all other models make the
explicit assumption of multivariate normality which is likely to be violated in this case. We compute
the AIC and BIC values (smaller values indicate better performance) for each estimated graph as
AIC = −2log-Lik(θ̂;G) + 2length(θ̂) and BIC = −2log-Lik(θ̂;G) + log(965)length(θ̂). Table 5 shows the
in-sample and the 3-fold crossvalidated log-likelihood values, the number of estimated parameters, the
AIC and BIC values for each model and the number of seconds the estimation process took. For the
C-vine and R-vine approaches, AIC and BIC happened to select the same best model.

Out of tested models the best BIC value was obtained by the cDAG, which provided a log-likelihood
value 1.36 times higher than the second best model, namely the C-vine specification where we use
BIC (with the same selection as AIC) for model selection and allow for model simplifications by using
independence testing, and 2.11 times higher than the best performing Bayesian network assuming mul-
tivariate normality. When inspecting the 3-fold cross-validated log-likelihood, the C-vine method with
independence testing was second best.

Testing each competitor model against the cDAG model using either adjusted (based on AIC or
BIC penalties) or unadjusted versions of the Vuong tests (where we apply a Bonferoni correction for the
multiple testing issue) leads to the conclusion that the cDAG is the preferred model. Allowing flexibility
in the distribution improves the fit, and coupling distributional flexibility with the DAG structure
improves the fit even more.

One simple way to try to apply methods requiring a normality assumption to non-normal data
is to use a transformed version of the pseudo-observations, where at each node we apply the normal
quantile function to the pseudo-observations. Such a transformation has the explicit purpose of making
each marginal distribution closer to a normal distribution. This marginal near-normality, however, is not
sufficient. Estimating a DAG using this transformed dataset resulted in very similar log-likelihood values
as compared to using the untransformed data. This holds for both the in-sample and the cross-validated
case. See Table 5 for a comparison.
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Model Seconds log-Lik Par. AIC BIC log-Lik(CV)
cDAG 1525.78 38206.9 (1) 94 -76225.9 (1) -75767.9 (1) 37531.4 (1)
C-vine, BIC&AIC, Indep Test 502.68 28082.1 458 -55248.2 -53016.8 (2) 25974.1 (2)
R-vine, BIC&AIC, Indep Test 217.00 27979.1 434 -55090.2 -52975.7 25950.9
C-vine, BIC&AIC, No Indep Test 660.96 29016.5 (2) 1275 -55483.0 (2) -49271.0 25725.6
R-vine, BIC&AIC, No Indep Test 220.95 28908.9 1275 -55267.9 -49055.9 25706.2
NPBBN 124.13 15904.6 253 -31303.2 -30070.6 15400.9
HC, BGe, No Transf. 37.35 18291.2 331 -35920.5 -34307.8 18123.1
HC, BIC, No Transf. 2.89 18102.0 271 -35662.1 -34341.8 17961.1
HC, AIC, No Transf. 10.44 18669.2 540 -36258.4 -33627.5 18671.5
PC, α = .1, No Transf. 64.92 12942.0 199 -25486.0 -24516.4 12699.0
PC, α = .05, No Transf. 39.43 13715.4 187 -27056.7 -26145.6 13173.2
SIN, α = .1, No Transf. 0.14 16350.4 158 -32384.8 -31615.0 15137.4
SIN, α = .05, No Transf. 0.11 16043.8 149 -31789.6 -31063.7 14712.8
HC, BGe, Normal Transf. 43.96 18243.5 339 -35809.1 -34157.4 18116.7
HC, BIC, Normal Transf. 4.35 18072.0 283 -35578.0 -34199.2 17898.5
HC, AIC, Normal Transf. 15.17 18595.8 557 -36077.6 -33363.8 18679.2
PC, α = .1, Normal Transf. 102.0 13113.9 194 -25839.9 -24894.7 12419.6
PC, α = .05, Normal Transf. 48.6 13324.4 184 -26280.9 -25384.4 12829.3
SIN, α = .1, Normal Transf. 0.29 16577.1 169 -32816.1 -31992.8 14940.1
SIN, α = .05, Normal Transf. 0.12 16097.4 159 -31876.7 -31102.1 14712.8

Table 5: Euro Stoxx 50 data. Summary measures for 20 estimated models. Ranks (1) and (2) indicate
the first two best scoring models. The columns ‘log-Lik’ and ‘log-Lik (CV)’ refer to the log-likelihood
values obtained when using, respectively, the entire sample and the values obtained using 3-fold cross-
validation. ‘Par.’ refers to the number of parameters estimated by the method.

9 Discussion

For computational reasons the current approach uses one copula family per CVl

DVl
ratio at a node l,

although for different nodes we allow for different families. With an increased computational cost one
can allow different copula families in both the numerator and denominator as our method is directly
extendable to deal with such cases. Additionally, different ordering of the parents could be used in the
numerator and denominator and as such a quick way for performing a rough sensitivity analysis could
be obtained.

The current method is a fully parametric method where one selects copula families from a predefined
list of relevant copulas for the problem at hand. At this stage, we did not allow the copula parameter
to depend on covariate values, as all copula models used here make this simplifying assumption. An
interesting extension could be to introduce such functional dependence where the parameters may de-
pend on the covariate values as implied by the conditioning set, resulting in a semiparametric model
where smoothing methods such as local polynomial estimation, regression splines, etc. could be investi-
gated. Working fully nonparametrically would introduce even more flexibility in the modeling process,
by estimating nonparametrically appropriate copulas at each of the nodes.

Instead of using classical DAGs, conceptually our method could be extended towards using chain
graphs (that contain combinations of directed and undirected edges) or graphs that account for a tem-
poral or ordering aspect of the data by using hidden Markov models or by introducing time dependence
and allowing the parameter θ to functionally depend on the time. Local likelihoods could be introduced
to model such time dependence. Such extensions and open problems are subject to future research.
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Appendix A: Technical details

Assumptions of Proposition 4.1 adapted from (Sin and White, 1996). For every node l in the graph,
let qlk(·,θ) = logCVl,k(θCVl

) − logDVl,k(θDVl
), q̃lk(·,θ) = logDVl,k(θDVl

) and log-Lik(·,θ; nodel) ≡
Qln(·,θ) =

∑n
k=1 qlk(·,θ) with θ = (θCVl

,θDVl
) and k = 1,2, . . . , n. For ease of exposition we state

general conditions that need to be satisfied by qlk(·,θ), q̃lk(·,θ), Qln(·,θ) and θ for every model m.

Let (Θ,F , P ) be a complete probability space and Θ be a compact subset of Rd with d ∈ N. For all
n ∈ N let Qln : Ω ×Θ → R be such that:

i ∀θ ∈ Θ, Qln(·,θ) is F-measurable.
ii ∀ω ∈ A ∈ F with P (A) = 1, Qln(ω, ·) is continuously differentiable on Θ.
iii The expectation E(Qln(·,θ)) exists and defines a function which is continuously differentiable on Θ

and ▽E(Qln(·,θ)) = E(▽Qln(·,θ)) where ▽ is the gradient operator.
iv The least false parameter θ0n = arg supθ∈Θ

1
nE(Qln(·,θ)) is interior to Θ uniformly (in n).

v Given ǫ > 0 there existsN0(ǫ) < ∞ and δ(ǫ) > 0 such that inf{min{K∗
n(θ) : θ ∈ N ∗

n(ǫ)
c}, n > N0(ǫ)} ≡

δ(ǫ), where K∗
n(θ) ≡ n−1E(Qln(·,θ0n)) − n−1E(Qln(·,θ)), N ∗

n(ǫ)
c is the compact complement of

N ∗
n(ǫ) ≡ S∗

n(ǫ) ∩Θ in Θ and S∗
n(ǫ) is an open sphere centered at θ0n with fixed radius ǫ.

vi For P -almost all ω, qlk(ω, ·) is twice continuously differentiable as a function of θ, for k = 1,2, . . .
vii qlk and q̃lk satisfy a uniform weak law of large numbers (UWLLN) on Θ.
viii Each element of ▽qlk(·,θ0n) satisfies a central limit theorem.
ix ∃ǫ, α > 0 such that for P-almost all ω and for all n sufficiently large and for all θ ∈ N ∗

n(ǫ), det(n
−1▽2

Qln(ω,θ)) ≥ α, with N ∗
n(ǫ) as in Asumption v.

x For all n sufficiently large and for all θ ∈ N ∗
n(ǫ), E[n−1 ▽2 Qln(·,θ)] is O(1).

xi Each element of ▽2qln satisfies a UWLLN on N ∗
n(ǫ).

We assume that the copula densities are such that the above conditions are satisfied. These are
basic assumptions that guarantee that θ̂n − θ0n = Op(n−1/2) and Qn(·, θ̂n) − Qn(·,θ0n) = Op(1). The
asymptotic normality of

√
n(θ̂n−θ0n) for the models we consider has been shown in Hobæk Haff (2013).

Penalty conditions in Lemma 4 for the penalty in cDAG-IC

Proof Define ∆p̂encDAG = p̂en1
cDAG(n, θ̂1)− p̂en2

cDAG(n, θ̂2). For (i) it holds that

∆p̂encDAG/n =
(E logDV 1

l

|pa1(l)| − E logDV 2
l

|pa2(l)|
) 1

logn
+ oP (1) = oP (1).

The first equality holds due to Assumption vii.

For (ii) and (iii) it follows that

∆p̂encDAG√
n

=
(E logDV 1

l

|pa1(l)| − E logDV 2
l

|pa2(l)|
) √

n

logn
+ oP (

√
n),

∆p̂encDAG =
(E logDV 1

l

|pa1(l)| − E logDV 2
l

|pa2(l)|
)

n

logn
+ oP (n).

By the assumed positiveness of the penalty difference, the conditions hold.

Definition of ‘d-separation’ between X and Y by Z (Barber, 2012). For every node x ∈ X and
y ∈ Y, check every path U between x and y (that is, a sequence of nodes that starts in x and by following
the directionality of the arrows leads to y). A path U is blocked if there is a node w in U such that
either: (i) w is a collider (a collider node has two incoming arrows to it) and neither w nor any of its
descendants is in Z, or (ii) w is not a collider on U and w is in Z. If all such paths are blocked then the
sets of nodes X and Y are d-separated by Z. If the sets of nodes X and Y are d-separated by Z, they
are independent conditional on Z.
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parameters. In: Rüschendorf L, Schweizer B, Taylor M (eds) Distributions with Fixed Marginals and
Related Topics, Lecture Notes-Monograph Series, vol 28, Institute of Mathematical Statistics, pp
120–141
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JM (eds) The Winter Simulation Conference, pp 270–278

Kurowicka D, Cooke R (2006) Uncertainty analysis with high dimensional dependence modelling. Wiley
Lauritzen S (1996) Graphical Models. Oxford University Press
Lee J, Hastie T (2014) Learning the structure of mixed graphical models. Journal of Computational

and Graphical Statistics (In press)
Liu H, Lafferty J, Wasserman L (2009) The nonparanormal: Semiparametric estimation of high dimen-

sional undirected graphs. Journal of Machine Learning Research 10:2295–2328
Loh PL, Wainwright MJ (2013) Structure estimation for discrete graphical models: Generalized covari-

ance matrices and their inverses. The Annals of Statistics 41(6):3022–3049
Lucas PJ (2007) Biomedical applications of Bayesian networks. In: Lucas PJF, Gámez J, Salmerón Cer-
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