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Abstract

In industry, guaranteeing good product quality is essential and requires
continuous monitoring and control of the production process. When the quality
is not optimal, the process settings need to be changed. Under laboratory
conditions this would be performed using an experimental design during which
well-chosen combinations of the process settings are imposed so that the optimal
settings can be defined. However, this approach is not feasible when searching
for optimal settings in the case of a full-scale process since it typically requires
exploring the extreme regions of the process where the probability of producing
unsaleable product is very high. In order to overcome the drawbacks of classical
experimentation, methods for improving full scale processes are investigated in
this dissertation. Special attention will be paid to methods which are easy to
implement and which are applicable to processes which involve a large number
of factors that possibly interact, since this is the situation which is found in
contemporary processes.

In the first part of the thesis, a literature survey of methods that are suitable
for Online Sequential Process Improvement was conducted. This literature
study resulted in two potential candidates for online experimentation, being the
Evolutionary Operation (EVOP) and Basic Simplex method. Extensions to the
EVOP methodology were developed to allow for an automated implementation
along with a novel way to deal with the borders of the experimental domain.
Furthermore, a steepest ascent search was combined with the EVOP method.
In conjunction with these extensions, a Matlabr software package was created
that allows the easy execution of these methods for process improvement in
practice. The final part of the methodology research was focussed on presenting
a framework for selecting the starting point for these methods should no prior
be established by process experience or offline experimentation. Space-filling
designs combined with Gaussian Process modelling was shown to achieve a good
initial starting point, using a small number of measurements.

In the second part of the dissertation simulation studies were performed
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iv ABSTRACT

to thoroughly investigate the applicability of the methods on contemporary
processes. The EVOP and Simplex methods were compared and this study
showed that Simplex is the preferred choice when dealing with deterministic
or low-noise systems. The EVOP method proved to be attractive to improve
processes characterized by the presence of a substantial amount of noise and/or
a dimensionality above three factors. Therefore, the feasibility of a more
efficient design—such as a fractional factorial of at least resolution III—was
investigated. It was concluded that applying such minimalistic designs offers a
significant improvement in the total number of measurements required to reach
the optimum and opens up possibilities for the use of EVOP in processes in
which fast decisions are required. In the final simulation chapter, first results
about the statistical power that is required for an efficient improvement was
researched. It was shown that the optimal statistical power increases when the
dimensionality increases. However, the exact choice of the power is not too
critical and shows a broad, almost flat valley for high dimensions. This allows
for much flexibility in the base design for EVOP, depending on the process
under study. For processes with a low sampling rate or with a non-stationary
behaviour a low power is recommended, whereas a higher power is advised when
a high sample rate is possible or the process is stationary.

In the third part, the methodology was validated on a practical case study. Using
the developed method, the energy-efficiency of a badminton robot was improved.
The problem under study was a minimization of consumed energy subject to a
time constraint. A novel approach was presented in which this problem was
treated as a multi-objective problem which was then transformed to a single-
objective criterion using desirability functions. The energy consumption was
reduced by 5% compared to the current implemented energy-efficient solution.
Furthermore—by applying more stringent time constraints—the precision of
the system could be improved to the maximum precision possible, but with a
reduction in energy consumption of 52% compared to the current maximum
precision implementation.

In conclusion, this work presents the extensions necessary for the Online
Sequential Process Improvement methodology to deal with contemporary
processes and shows the potential of using the methodology under practical
conditions. Furthermore, a software package was developed that allows for the
fast execution of the improvement methods, which was shown on a practical
case study.



Beknopte samenvatting

Het garanderen van een kwaliteitsvolle, goede opbrengst is essentieel in de
industrie en vereist het continu monitoren en onder controle houden van
het productieproces. Wanneer de kwaliteit niet optimaal is, moeten de
procesparameters aangepast worden. Op laboschaal wordt dit gedaan door
een experimenteel ontwerp uit te voeren waarin slim gekozen combinaties van
de procesparameters aangelegd worden zodanig dat de optimale instellingen
bepaald worden. Deze aanpak is echter niet valabel indien de optimale
parameters bepaald moeten worden in het productieproces zelf aangezien
er typisch ook in gebieden van het proces gemeten wordt waar de kans om
onverkoopbare producten te produceren zeer groot is. Om deze nadelen van
klassiek experimenteren te overwinnen, werden in deze dissertatie methodes
voor procesverbetering tijdens het productieproces onderzocht. Aangezien in
hedendaagse processen vaak veel instelparameters aanwezig zijn—die mogelijk
een invloed hebben op elkaar—werd hier speciale aandacht aan besteed.

In het eerste gedeelte van deze thesis werd een diepgaande literatuurstudie naar
methodes die geschikt zijn voor online sequentiële procesVerbetering. Deze studie
resulteerde in twee potentiële methodes voor online procesverbetering—met
name Evolutionary Operation (EVOP) en Basic Simplex. Samen met een nieuwe
manier om te kunnen omgaan met de grenzen van het experimenteel gebied,
werden uitbreidingen voor EVOP ontwikkeld om de methode automatisch te
kunnen toepassen. Bovendien werd een steepest ascent search gecombineerd met
de EVOP methode. Samen met deze uitbreidingen werd een Matlabr software
pakket ontwikkeld om de methodes in de praktijk toe te kunnen passen voor
procesverbetering. In het laatste gedeelte methodologie onderzoek werd een
kader voorgesteld om het startpunt van dergelijke methodes te bepalen indien er
geen voorafgaand startpunt bepaald is door proceskennis of offline experimenten.
Ruimte-vullende ontwerpen gecombineerd met Gaussiaanse Procesmodellering
werden voorgesteld om dit startpunt te bekomen, gebruikmakend van een klein
aantal metingen.
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In het tweede gedeelte van dit doctoraatsonderoek werden simulatiestudies
uitgevoerd om de bruikbaarheid van de methodes grondig te onderzoeken voor
hedendaagse processen. De EVOP en Simplex methodes werden vergeleken en
deze studie toonde aan dat Simplex de aangewezen keuze is in deterministische
of lage-ruis situaties. De EVOP methode is de aangewezen keuze bij processen
die gekenmerkt worden door een hoog ruisniveau en/of een dimensionaliteit
hoger dan 3 factoren. Echter—voor situaties waarbij een groot aantal factoren
in rekening werd gebracht—bleek het aantal experimenten dat nodig is voor
het bepalen van de richting van procesverbetering te groot om praktisch
haalbaar te zijn. Daarom werd de mogelijkheid onderzocht om een efficiënter
ontwerp—zoals het fractioneel factorieel experiment met minstens resolutie
III—te gebruiken. Er werd besloten dat dit een duidelijke verbetering gaf
in het totaal aantal metingen die nodig zijn om het optimum te bereiken.
In de laatste simulatiestudie werden eerste resultaten gepresenteerd over het
onderscheidingsvermogen dat benodigd is voor een efficiënte procesverbetering.
Hier werd aangetoond dat het optimale onderscheidingsvermogen stijgt als de
dimensionaliteit stijgt. De keuze van het onderscheidingsvermogen is echter niet
al te kritisch aangezien de functie een brede, bijna vlakke vallei toont voor hoge
dimensionaliteiten. Dit staat toe om het onderscheidingsvermogen te bepalen
afhankelijk van het type proces; voor processen met een lage bemonstering
of niet-stationair gedrag werd een laag onderscheidingsvermogen aangeraden,
terwijl een hoger onderscheidingsvermogen geadviseerd werd indien een snelle
bemonstering mogelijk is of als het proces stationair is.

In het derde deel werd de methodologie gevalideerd met een praktische casestudy.
De energie-efficiëntie van een badminton robot werd verbeterd gebruikmakend
van de ontwikkelde methode. Het gestelde probleem was een minimalisatie
van het energieverbruik onderhevig aan een tijdsbeperking. Een nieuwe
aanpak werd voorgesteld waarin dit werd bekeken als een multi-objectief
probleem dat dan getransformeerd werd tot een enkel-objectief criterium
gebruikmakend van desirability functies. Het energieverbruik werd verminderd
met 5% vergeleken met de huidig geïmplementeerde energie-efficiënte oplossing.
Voorts werd de precisie van het systeem verbeterd—door gebruikmaking van
striktere tijdsbeperkingen—tot de maximum precisie maar met een reductie
in het energieverbruik van 52% vergeleken met de huidige maximum precisie
implementatie.

Samengevat presenteert dit werk de uitbreidingen noodzakelijk om online sequen-
tiële procesverbetering toepasbaar te maken op hedendaagse processen en toont
het het gebruikspotentieel van deze methodes in praktische omstandigheden.
Voorts werd er een software pakket ontwikkeld dat het eenvoudig gebruik van de
procesverbeteringsmethodes toelaat, wat werd aangetoond met een praktische
casestudy.



Abbreviations

2D Two-dimensional
3D Three-dimensional

ANOVA Analysis Of Variance

BLUP Best Linear Unbiased Predictor

CCD Central Composite Design

DACE Design And Analysis of Computer Experiments
DOE Design Of Experiments

EGO Efficient Global Optimization
EOMPC Energy-Optimal Model Predictive Control
EVOP Evolutionary Operation
EVOPFD EVOP Factorial-Design Technique
EVOPSA Evolutionary Operation Steepest Ascent

FFT Fast Fourier Transform
FMTC Flanders Mechatronics & Technology Centre

GA Genetic Algorithm
GP Gaussian Process

i.i.d. independent and identically distributed
IQR InterQuartile Range

LHC Latin HyperCube
LoF Lack of Fit
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MPC Model Predictive Control
MSSD Mean Square of the Successive Differences

OFAT One Factor At a Time analysis
OLS Ordinary Least Squares
OOP Object Oriented Programming
OSPI Online Sequential Process Improvement

PEOS Proximate Energy-Optimal Servo
PTOS Proximate Time-Optimal Servo

REVOP Random Evolutionary Operation
ROVOP Rotating Square Evolutionary Operation
RSM Response Surface Methodology

SD Standard Deviation
SE Standard Error
SFS Single Factor Search, also called OFAT
SNR Signal-to-Noise Ratio

TEVOP Traditional Evolutionary Operation
TOMPC Time-Optimal Model Predictive Control



Definitions

Coded regression coefficient The coefficient in a regression model if
the factors are coded (in the case of this
dissertation between [−1; 1]).

Contemporary process A process with a high degree of complexity
sampled with high frequency and a large
number of factors that possibly interact.

Cycle One execution of a statistical design within an
EVOP phase.

Design region The region bounded by the minimum and max-
imum factor levels of the small perturbations
in the current improvement step.

Experimental domain The domain defined by the factor limits
imposed by the process (in the case of min-
max boundaries a hypercube defined by these
factor limits).

Factor A measurable (and, in the context of this
dissertation, controllable) quantity, usually
used in the context of the independent
variables of an experimental design.

Factor level A specific setting of a factor.

Factorstep The distance between the minimum and
maximum factor levels in the design region
for every factor (determines the size of the
design region).
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In silico Research or experiments conducted or pro-
duced by means of computer modelling or
computer simulation.

Improvement methods Methods that gradually improve the process
but not necessarily find the global optimum.

Online improvement Experimentation is performed while the
process or machine is in standard operation.

Phase A phase in EVOP consists out of a number
of cycles. A phase is concluded when a
decision is taken in which direction to move.
(e.g. replicating a design is executing several
cycles, while the phase would consist out of all
measurements).

Reference condition The current best known combination of factor
levels (at the start of the improvement, later
on the centre of the design region).

Simplex The Simplex improvement method.

simplex A geometric figure defined by k + 1 points, for
k dimensions (factors).



List Of Symbols

1n An n× 1-vector of ones

A391 Spectral amplitude of the bearing setup at 391 Hz

â Acceleration setpoint for badminton robot controller

α The significance level of a statistical test

β The parameter vector in a model

βd Regression coefficient of the linear term for the d-th factor in
a regression model

βd,c A coded linear regression coefficient for the d-th main effect

βdd Regression coefficient for the pure quadratic of the d-th factor
in a regression model

βdd′ Regression coefficient for the interaction term between the
d-th and d′-th factor in a regression model

β̂ The ordinary least squares estimator of the parameter vector
in a regression model

βi Regression coefficient (in the Gaussian Process model)

β0 Intercept in a regression model

cr The number of cycles in a phase (or replications in classical
design)

D Desirability index, the combination of the individual desirabil-
ities using the geometric mean

Dc The global desirability index for the badminton robot
responses using the c-th time restriction
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dE desirability transform of energy

dED The Euclidean distance between the true and estimated optima
of a simulation model

dED,GP The Euclidean distance between the true and an estimated
optima for a GP model

dED,OLS The Euclidean distance between the true and an estimated
optima for a second-order model with a space-filling design

dED,RSM The Euclidean distance between the true and an estimated
optima for a second-order model with a classical design

D-efficiency The D-efficiency of a design

δ EVOPSA step size for the badminton robot improvement

δEV OP The step size amplitude for an EVOP improvement

δEVOP The step size vector for an EVOP or EVOPSA improvement

δEV OP,c,d The coded steepest ascent delta in the d-th direction

dfε Degrees of freedom for error

dd desirability of the d-th response variable

D′c The transformed global desirability index for the badminton
robot responses using the c-th time restriction

dt,c desirability transform of time for the c-th time constraint

dxa Acceleration factorstep (badminton robot improvement)

dxd The factorstep in the d-th dimension

dxv Speed factorstep (badminton robot improvement)

E Energy consumption of the badminton robot

ε The random error term in the simulation models used

fa The number of main effects in the reduced linear model after
stepwise regression

Fax,dyn The peak force generated by the sinusoidal dynamic axial load
under static load (of the bearing setup)
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fax,dyn The frequency of the sinusoidal dynamic axial load (of the
bearing setup)

Fax,dyn,set The peak setting for the sinusoidal dynamic axial load (of the
bearing setup)

Fax,st The static axial load (of the bearing setup)

Frad,st The static radial load (of the bearing setup)

ft The total number of parameters in a regression model,
excluding the intercept

γ The nugget parameter in a Gaussian Process Model

hi Known fixed functions in the Kriging model

I The n× n identity matrix

k The number of factors (dimensions) in a design

l The number of levels for the factors in a design

M The number of succesive reflections in Dynamic Simplex

µ (·) The mean of a quantity

N The total number of measurements during experimentation
or simulation

n The number of measurements in a Latin Hypercube Design

nc The number of times the reference condition is measured (or
centerpoint in classical design)

nT The total number of observations in one design (phase)

ν Degrees of freedom of a distribution

penter The p-value to check in the stepwise regression procedure
whether to enter a term into the model

pf Denotes the 1/2pf fraction of a full factorial

φ The noncentrality parameter of the noncentral t-distribution

π The power to detect a statistical effect or regression coefficient

Π An n×k matrix whose columns are different randomly selected
point permutations of the intervals {1, . . . , n}, used in the
construction of Latin Hypercube Designs
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πD The statistical power value of a D-optimal design (calculated
after design construction)

πorth The statistical power value, specifically for an orthogonal
design (see chapter 7)

πreq The statistical power value as a setting of the simulation model
in chapter 7

premove The p-value to check in the stepwise regression procedure
whether to remove a term from the model

R An n × n spatial correlation matrix in Gaussian Process
modelling

r An n× 1 vector of estimated correlations of the unobserved
responses ŷ (x∗) at new coordinates x∗ based on the observed
data points y (X)

Rγ A spatial correlation matrix in Gaussian Process modelling
with a nugget parameter

r The number of replications of the factor levels in a design

S The normalized design space in Kriging

σ The error (noise) standard deviation

σβd,c
The estimated parameter variance of parameter βd,c

σ2 Process variance

t t-distribution (in chapter 6)

t Time (in chapter 8)

TNC Non-central, t-distribution with non-centrality parameter φ

tc The c-th restriction on the arrival time of the badminton robot

θ A parameter in the spatial correlation matrix of a Gaussian
Process model

tmax Arrival time of the badminton robot

ε The n× 1 vector of random error terms

v̂ Speed setpoint for badminton robot controller

vset Constant rotation speed of the bearing setup
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X The n× k-dimensional matrix of input values or design points

xc The 1× k coordinates for the centre of a design region

xco The initial corner point for the Corner and Tilted methods to
construct the first simplex

xd The value of the factor level to be coded

xd,c A coded factor level value

x−d The minimum value of the factor level in the design region

x+
d The maximum value of the factor level in the design region

Xlim A k × 2 matrix with the lower and upper bounds for every
factor

x−lim A k × 1 vector containing the lower bounds for every factor

x+
lim A k × 1 vector containing the upper bounds for every factor

x∗ A set of unobserved coordinates in Gaussian Process modelling,
i.e. a coordinate set that was not included in the design

xstart The reference coordinates for an improvement

X0 The design matrix of the initial design in an EVOP
improvement

y The response vector in a regression model

y The response variable in a regression model

yact Actual badminton robot position

ȳ The estimate for the average of the response variable

ȳσ=0 The average response when no noise is present

yci,σ=0 The median noise-free response yci,σ=0 in the centre of the
i-th phase for EVOP simulations

ydes Interception reference of the badminton robot (distance to
travel)

ŷ (x∗) The estimated response at unobserved coordinates x∗
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1 Introduction

1.1 Offline Process Improvement In Industry

When a new machine or process is implemented, experimentation is often
required to choose the settings (called factor levels) so that the output quality
is maximized. Since real-life processes mostly involve multiple factors that
possibly interact, a well-defined strategy needs to be followed. This is the topic
of Design Of Experiments (DOE), and a wide range of design types have been
proposed in literature [100, 104, 107, 112, 159] and combining such a design
with an appropriate regression model leads to a comprehensive optimization
strategy.

A widely used method for offline experimentation and optimization within DOE
is Response Surface Methodology (RSM) [1, 56, 93, 105, 107]. Typically, RSM
asks for substantial changes in the factor levels to determine the most influential
factors and to pinpoint the optimal region. Because of those substantial changes,
several experimental measurements will result in unacceptable output quality
which is not desired, especially in full scale production processes. As a result,
RSM is typically an offline, research-oriented approach that is applied on lab
scale processes, and factor levels labelled as optimal for the lab scale process
are then used on the full scale process.

Another approach to offline optimization is performing it in silico. Nowadays,
specialized modelling software as well as strong computational power are
available so that often accurate computer models can be built for a given
process, either by first principle models (a first principles physics model is one
that seeks to calculate a physical quantity starting directly from established
laws of physics) or by more advanced techniques such as finite [8, 28] or discrete
[85, 87, 150] element modelling. Here the approach also consists of two phases:
First, there is an experimental design phase for defining at which factor level
combinations to perform the simulations. This phase is then followed by an

1



2 INTRODUCTION

analysis phase to find the optimum. This approach is labelled Design And
Analysis of Computer Experiments (DACE). Because of its specific nature––the
deterministic nature of the simulations and the high complexity of the response
surface—it uses specialized designs (i.e. space-filling designs) as well as analysis
methods (e.g. Genetic Algorithms [27, 28, 68, 114], Artificial Neural Networks
[5, 55, 101] or Kriging methods [8, 165]). The optimal settings determined from
the analysis step are then applied to the full scale process.

Most often, however, there is a discrepancy when upscaling from the lab to
the full scale process. Figure 1.1 shows an example of such a (hypothetical)
upscaling issue in which a shift and distortion of the process contours manifest
when shifting from laboratory (or pilot scale) to plant scale operation. It is
clear that factor levels found optimal in the lab scale are not optimal on the
full (plant) scale and further improvement on the plant scale is desirable.

0 10 20 300

10

20

30

L

P

x1

x
2

Upscaling Effect

Lab scale
Plant scale

Figure 1.1: Possible appearance of process contour surfaces for a process
conducted on the laboratory scale (L) and on the plant scale (P).

Applying RSM on the full scale process, however, is not desirable. As mentioned
above, classical RSM requires substantial changes to be invoked in the factor
levels with the risk of producing unsaleable product. Besides, in RSM it is
generally assumed that the optimum of the process is stationary, i.e. located
at a fixed point in the input space. In reality this assumption often fails due
to warming up and cooling down of equipment, changes in observable but
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uncontrollable factors such as environmental conditions, machine wear, input
variability commonly encountered in the agro-food industry, sensor drift, etc.

Also, when experimenting in silico, it is usually not possible to capture all
variability of the physical process correctly. This results in a plant-model
mismatch and the estimated optimal factor levels in such a case can be further
improved by experimentation on the physical process.

Due to the aforementioned reasons of upscaling effects, non-stationary optima
and plant-model mismatch, it is evident that a strategy should be implemented
to further improve the process and find or track the true optimum by online
experimentation on the full scale process.

1.2 Online Process Improvement

To efficiently deal with the aforementioned disadvantages of offline optimization
a shift to online, full scale experimentation is advised after offline methodologies
have been used to determine the region of the optimum. As one does not wish to
impede production or standard operation, the term online in this aspect denotes
that experimentation is performed while the full scale process or machine is
running in standard operation, i.e. during regular production. Whereas offline
methods of process improvement have been reported for many years and in
many applications, it is surprising to see that not many methods are described
that can truly be classified as online. Before describing these methods, the
conditions for online methods have to be defined.

Since online methods have to be applied while the production process is running
it necessitates that the optimization may not lead to interruption of the process,
or to unacceptable output quality. This can be achieved by introducing small
shifts in the factor levels around the current best known combination of factor
levels—also called the reference condition—analysing the results, and defining
new factor levels close to the old ones. With this approach, the process is
gradually shifted towards a better output and the risk of producing unacceptable
output is minimized due to the small changes in the factor levels. In most of
the methods currently proposed for online improvement, the analysis step itself
is usually straightforward because of the small perturbations, as the relation
between the output and the input (factors) can be well approximated using a
very simple model (such as a polynomial model) in this small region.

The region in which these small shifts in the factor levels are introduced is
called the design region—the region bounded by the factor levels of the small
perturbations around the current reference condition. It is a small fraction of
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the experimental domain—the domain defined by the factor limits imposed
by the process (in the case of min-max boundaries a hypercube defined by
these factor limits). Although a global optimization is preferred (i.e. find the
global optimum of the process), the restrictions imposed upon the optimization
(only small perturbations around the reference condition are allowed) induce a
gradual shift of the operating conditions towards a higher quality output. If the
current reference condition is close to a local optimum, the methods following
this philosophy are prone to become stuck in this local optimum. However, the
goal of improving the process is still achieved. As such, online improvement
is in no way a substitute for offline experimentation but the logical next step.
Offline experimentation efforts should focus on pin-pointing the region of the
global optimum after which online methods can be used to fine-tune the current
reference condition. The online methods presented under this philosophy shall
be called improvement methods as they gradually improve the process but not
necessarily find the global optimum.

There is a marked difference in the typical settings when working online on
full scale processes as compared to the previously discussed offline methods. In
table 1.1 the typical settings for offline and online methods are summarized.

Table 1.1: Different settings for offline and online experimentation.

Offline methods Online methods

Inline experimentation Production usually has to
be halted.

Production can continue.

Number of experimental
measurements

Should be kept to a strict
minimum.

Typically not limited, i.e.
performed during produc-
tion.

Region in which to experi-
ment

Large in order to find
relevant factors and opti-
mal factor levels (often as
large as the experimental
domain).

Small to avoid the produc-
tion of unsaleable product
(the design region is a
fraction of the experimental
domain).

Stationarity Generally required. Not required.

Condition of final product High probability that some
of the experimental output
is unsaleable.

Low probability that some
of the experimental output
is unsaleable.

Global/Local optimum Can find global optimum,
depending on technique.

Can become stuck in local
optimum close to the initial
reference condition.
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Most traditional methods described for offline optimization are not suitable
for use in online optimization. Of the previously described methods only
Genetic Algorithms (GA) have been used online. However, to adhere to the
principles for online improvement many adjustments have to be made to GA
that are specific to the process under study. Furthermore, GA requires a large
initial population of measurements and it might not be guaranteed that all the
initial measurements are within specifications (i.e. the end product is saleable)
which violates one of the restrictions in table 1.1. An example where GAs are
used in an online industrial setting is published by Yüzgeç et al. [163] where
biomass concentration has to be maximized and ethanol formation minimized
in an industrial fed-batch yeast fermentation process. However, without an
appropriate fitness function (mathematical model) the application would have
failed. This leads to the conclusion that the use of GAs in an online context
requires much (process-specific) experience to perform.

An approach that fully adheres to the principles set forth in table 1.1, was
proposed almost 60 years ago. Based on the principles of RSM, George Box
introduced in the 1950’s [19, 20] the concept of Evolutionary Operation (EVOP).
EVOP has been successfully applied to full scale production processes [69, 83]
and laboratory processes [11, 108, 151] and due to its simplicity and ease of
operation is a strong candidate for use in an online setting.

The denominator Evolutionary Operation has been used in literature both to
describe the original method by Box and all derived methods, as well as the
philosophy behind the approach. A clear distinction will be made in this text to
avoid confusion and the following terminology will be used: the term Traditional
EVOP (TEVOP) will be used for the original method by Box, derived methods
will be referenced by their proper name when they are introduced and the
philosophy driving the methodology will be referred to as “Online Sequential
Process Improvement” (OSPI). The denominator EVOP itself will be used to
refer to the automated software algorithm described in chapter 3.

The basic philosophy behind OSPI is that “it is nearly always inefficient to run
an industrial process to produce product alone. A process should be run so
as to generate product plus information on how to improve the product” [19].
This differs from routine operation were the production process is operating
at the best conditions of operation known at that time (which only fulfils the
requirement of generating product). To generate additional information on how
to improve the product (or output), changes in the factor levels have to be
applied and the subsequent change in response (product quality) observed, as
detailed at the start of this section.

The OSPI methodology was introduced to deal with problems in the chemical
industry where plant processes are usually fine-tuned after considerable
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experimentation on a smaller scale, be it on a pilot plant or on lab scale
(which was exemplified in figure 1.1). However, the optimal operating conditions
on the small scale are usually only a good approximation of the full scale
optimal conditions. These upscaling effects might occur due to the use of
different equipment, changes in the environmental conditions, modification of
the process to work at plant scale and so on. A shift in the optimal operating
conditions can also come into play in discontinuous processes due to a change of
input materials such as in batch-to-batch processes. OSPI can be started when
such a change comes in effect to find the shifted optimal conditions. Another
application of OSPI lies in the tracking of an optimum when the response drifts
in time. Such a dynamic drift can be attributed to, for instance, machine wear
or slowly changing environmental conditions. If the drift in time is slower than
the capability of the OSPI method to react, the optimum can be tracked.

In the two decades after its publication OSPI methods were used moderately
but with great success in industry. During this time, the main limitation of the
methodology was the absence of computational power and sophisticated sensor
technology to fully automate its workings. Most applications in these decades
were manually implemented and therefore also related to low dimensional
applications (i.e. two or three factors under investigation). In the contemporary
setting however, the computational power and sensor technology is available to
fully automate the procedures yet improvement problems often deal with a higher
dimensionality than the three factors that were described in the traditional
approach.

Although OSPI methods have been around for over six decades, not much
research has been devoted to their implementation in modern production
environments, especially related to their automation and the effect of the
increased dimensionality and complexity of modern machines. Neither has
in-depth research been devoted to the comparison of the classical OSPI
methods. It is the goal of this dissertation to adjust the traditional OSPI
methods for automatic use and compare them in-depth to validate their use in
modern, contemporary processes. Furthermore, the increased dimensionality
of contemporary problems warrants a detailed investigation into the use of
sparse designs in OSPI implementations where the number of experiments per
improvement step is the prohibitive factor to implement them on processes.

Indeed, much research has been conducted on experimental designs and models
but has been mainly focussed on lab scale or offline applications. Surprisingly,
very limited research has been devoted to online improvement of processes even
though this is the industry default. Table 1.2 summarizes a topic search on the
Web of Knowledge for publications ranging from 2000 to 2015. When looking
at the keywords for EVOP only 104 publications are found and these contain
a mix of all OSPI methods (both EVOP and all its derivatives) as well as
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some publications in the field of numerical optimization which also refer to the
original EVOP paper as the fundamental concept for Evolutionary Strategies.
For Simplex, a derivative of EVOP, many publications are found. However,
the keyword Simplex is not enough to restrict the search to OSPI methods.
The keyword simplex is also used in numerical optimization and in classical
experimental design (for instance when an experiment is performed using the
simplex-lattice design). A more strict search “sequential simplex” only offers 53
publications which also include applications that do not adhere to the OSPI
requirements set forth here (as will be discussed in the next chapter). When
searching for publications about “online optimization”, one obtains more results,
however many of these results are not related to OSPI. The denominator online
optimization is used extensively when real process evaluations are used, such as
in the tuning of sensors and digital filters. Remark that the distinction made in
this work between offline optimization and online improvement is generally not
made in literature, which leads to confusion as to the exact nature and goal of
the performed experimentation effort.

Table 1.2: Search of Research Topics on Web Of Knowledge for publications from
2000 to 2014.

Topic Search results (2000-2014)

“Response Surface Methodology” 37,135
“On-line optimization” OR “Online optimization” 1,461
“EVOP” OR “Evolutionary Operation” 107
“Simplex” 80,211
“Sequential Simplex” 53
Search of the Web of Knowledge, http://www.webofknowledge.com, search conducted at 24 April
2015. Approximate search results as returned by this search engine.
Both “optimization” and “optimisation” were used in the search.

This search clearly shows that research devoted to OSPI methods is very limited.
Traditionally sensor technology and computational power were very limited and
manual computation and measurement were the OSPI standard. Yet during the
last decades, there is an ever increasing trend towards the implementation of
fast, non-destructive and accurate sensors for monitoring the quality of a broad
range of industrial processes such as, (near) infrared spectra that are taken inline
to monitor chemical processes [39] or the use of vibration sensors for monitoring
(production) processes [147]. The tremendous increase in computational power
has opened up the possibility to process and manipulate large data streams in
very limited time. Having available such process data at any time, combined
with large computational power, opens the door towards automated, online
adaptation and improvement of a contemporary process.
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1.3 Objectives And Outline Of The Dissertation

This dissertation aims to put forth the fundamentals to deal with the
increased dimensionality of contemporary problems and the fully automated
implementation of the OSPI methodology.

The dissertation is divided in three parts: Methodology, Simulation Studies and
Case Study. The Methodology part, which consists of three chapters, introduces
the methodology necessary for the research study. The Simulation Studies part,
also consisting of three chapters, focusses on simulation studies that allow for
an in-depth comparison of several settings that are difficult to replicate on one
physical process. The Case Study part, consisting of the final chapter, presents
a case study on a practical setup which aims to treat a constrained problem by
interpreting it as a multi-variate problem and using desirability functions to
transform it to a uni-variate problem.

1.3.1 A Review Of Methods For Online Sequential Process
Improvement

The two basic OSPI methods used in this text, EVOP and Simplex, are
introduced and explained in detail in chapter 2. A review of pertinent
applications and state-of-the-art research is presented. Existing derivatives of
these two methods are briefly discussed and it is explained why these derivatives
are not used in this dissertation. It is shown that for Traditional EVOP no
clear-cut rules for the direction in which to move in every improvement step
are provided, which is a problem that needs to be addressed for automated
implementations.

1.3.2 Implementation Of And Extensions To Online Se-
quential Process Improvement For Evolutionary Op-
eration

The Traditional EVOP implementation has no formal rules for the direction in
which to move nor for the size of the move, as has been elucidated in chapter 2.
To automate the EVOP procedure, calculations for both directionality and size
of the move are formalized and presented.

An OSPI method which was mentioned but never explored in previous
publications is also presented in this chapter, named Evolutionary Operation
Steepest Ascent (EVOPSA) which combines the statistical part of EVOP and
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the limited sample size in subsequent steps of Simplex (these traits of EVOP
and Simplex are explained in chapter 2).

Additionally, a recommendation is made on how to deal with the borders of the
experimental domain in an automated EVOP or EVOPSA procedure which has
not been described before since the methods have mainly been used manually.

1.3.3 Choosing An Appropriate Starting Point When No
Prior Information Is Available

The OSPI methods start from the currently best known operating settings, or
reference condition. However, such reference condition is not always available.
In such a case, offline experimentation has to be performed to locate the region
in which the optimal settings are located. Classical designs used in RSM are not
always ideal candidates since their use is limited to fitting simple polynomial
models and they might not capture the global optimum in the presence of
local optima and high non-linearity of the process. In this chapter, space-filling
designs and Gaussian Process (GP) modelling—which are used in conjunction
for fitting complex models that stretch beyond polynomials—are proposed as a
flexible framework for fitting a broad class of functions.

The goal of the process model is not to model the process in great detail (i.e.
achieve accurate prediction), but rather to assess with a minimal effort the
factor levels to start from with an OSPI improvement. This methodology is
applied to a simulation study to determine its appropriateness and is compared
with executing classical RSM and Ordinary Least Squares (OLS) regression
on the same simulation study. Afterwards, the GP methodology is applied to
a practical case and the estimated optimal settings are used as the reference
condition for an EVOP improvement to fine-tune the settings.

1.3.4 A Comparison Of Evolutionary Operation And Sim-
plex For Process Methods

To the author’s best knowledge, no in-depth comparison between the two
traditional OSPI methods has ever been made on the same process. Nor
has formally been tested which OSPI settings and level of noise in a process
will favour the use of which method. In this chapter EVOP and Simplex are
compared on a simulation study with varying settings, being: the dimensionality
of the problem, the size of the design region and the level of noise present in the
simulation. To compare the methods in their most basic form and eliminate any
adjustments that might skew the comparison, no replication of any sort is used
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in the measurements and the simulation results are presented and compared in
detail.

1.3.5 Efficient Designs For Evolutionary Operation

It is shown in chapter 5 that EVOP performs better than Simplex when the
dimensionality and the noise-level increase. However, the traditionally used
full factorial design in EVOP becomes more and more prohibitive in sample
size as the dimensionality goes up. To minimize the sample size and ensure
the feasibility of EVOP for a high dimensionality, other designs should be
used within the EVOP framework. This chapter explores the use of classical
designs with a low sample size to determine the impact of the lower sample
size on the performance of the EVOP method. A comparison is made with the
traditional full factorial for the simulations performed in the previous chapter
and additional simulations are executed for higher dimensionalities. It is shown
that it is certainly feasible to use efficient designs but that one has to bear in
mind the efficiency of the improvement.

1.3.6 Optimal Statistical Power For Evolutionary Opera-
tion

The discussion which concludes chapter 6 indicates that finding a good value for
the statistical power is not trivial. The previous simulation results indicate that
the statistical power for OSPI can be taken lower than in classical experimental
design. The question arises how much lower the power value can be compared
to classical experimentation to achieve satisfactory results. This is a topic that
will require study and will really advance the usability of EVOP with a basis
for sample size estimations for sequential experimentation. This chapter will
provide the basis for further study into this domain by presenting simulation
results on a linear model for varying dimensionality and requested powers.

1.3.7 Constrained Online Improvement Using Evolution-
ary Operation Steepest Ascent: A Case Study About
Energy-Optimal Robot Control

In many contemporary processes the quality of output is often of a multi-variate
nature and the combination of several responses define the overall quality. The
use of desirability functions can combine these multiple characteristics into a
global index that can be used for improvement. This chapter shows the use of
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Derringer Desirability functions in the novel context of constrained improvement
on a physical system. The EVOPSA method is used to minimize the energy-
consumption of a badminton robot while motion time is kept within the required
constraints.





Part I

Methodology





2 A Review Of Methods For Online
Sequential Process Improvement

2.1 Introduction

As stated in the introduction, contemporary processes are typically characterized
by a high degree of complexity—they are sampled with high frequency and
involve a large number of factors that possibly interact—and are therefore
difficult to model. This complexity has a direct implication on the optimization
as it might be very tedious or even impossible to develop a model that adequately
describes process behaviour over the whole input space. When a model-based
framework is difficult to develop, other techniques should be used in order to
improve such processes in an online way. Furthermore, due to the problems of
upscaling, non-stationary optima and plant-model mismatch; it is preferred to
switch to an online approach to fine-tune the factor levels.

Online Sequential Process Improvement (OSPI) is a general philosophy that is
applicable for such situations. OSPI uses sequential experimentation, during
which a new experimental run is based on the outcome of previous measurements;
this in contrast with classical experimentation in the framework of Design Of
Experiments (DOE) where the experimental plan is developed in one phase.

The field of sequential improvement is mainly covered by two basic approaches:
one based on statistics developed by Box, and a completely heuristic approach
developed by Spendley et al.. The approach proposed by Box (and its derivatives)
is labelled Evolutionary Operation (EVOP), and the heuristic approach will
be referred to as Simplex. This last method is further divided into the basic
Simplex as proposed by Spendley et al. [143], the Nelder-Mead or Variable
Simplex [109] and the Super Modified Simplex [125].

In the nearly sixty years since the philosophy was introduced a large amount of
methodological and application-oriented papers were published. This chapter

15
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provides an overview of the OSPI philosophy, the main methods used and their
applications. The applications are ordered into several categories to cluster those
that are related in some way and make the material more presentable. In 1966,
Hunter & Kittrell [71] provided an excellent review of literature of traditional
EVOP, Simplex and industrial applications in which companies implemented
these methodologies with great profitability. This text will not rehash all these
references but will focus on papers published after this review, except when the
references are important for the methodology such as the original articles in
which the methods were proposed.

This chapter is structured as follows: one separate section will be devoted to
Evolutionary Operation and another to Simplex. Both sections will be further
divided into an explanation of the method and related derivatives, an overview
of applications and avenues for further research. It is concluded by summarizing
pertinent research questions that have not been answered in literature, and that
motivated the research topic of this dissertation.

2.2 Evolutionary Operation

The term EVOP is used in literature to refer to both the OSPI metholodogy,
the EVOP method as described here and its derivatives (and also to refer to
Simplex). To make a clear distinction between the several EVOP methods, it
was opted to use TEVOP for the traditional method and EVOP from chapter 3
onwards for the adapted, automated scheme presented in this dissertation.

2.2.1 Manual Implementation

Traditional EVOP By Box

The original method proposed by George Box will be labelled Traditional EVOP
(TEVOP) to distinguish it from other implementations that will be discussed
later on. Evolutionary Operation was originally developed to be used manually
by plant personnel to improve a working process. In his original 1957 paper
[19], Box introduces this concept and in a later article [22], Box & Hunter detail
the simplified calculations and worksheets for plant personnel. All relevant
articles about the methodology that have appeared by the hand of Box have
been bundled in a book, originally published in 1969, and republished in 1998
[20].



EVOLUTIONARY OPERATION 17

The methodology is based on the analogy with evolutionary processes in nature
where one has genetic variability in offspring and where the unfavourable
variants of the offspring disappear due to natural selection. In TEVOP well-
chosen but small perturbations to the factor levels of the process around the
current best known factor levels, or reference condition, are introduced (in
analogy with genetic variability). The perturbations are defined based on the
concepts of Design Of Experiments, where the reference condition is taken as
the centerpoint of a design defined in a small design region. Traditionally, a two-
level full factorial design (2-factor example of such a design is given in figure 2.1)
is chosen as a basis, having 2k experimental measurements, with k the number
of factors included in the study. Optionally, the reference condition (point 1
in figure 2.1) can be measured as well, which coincides with the centerpoint of
a factorial design. The number of measurements is then 2k + nc with nc the
number of times the reference condition is measured. More information about
factorial designs can be found in the following chapter.
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Figure 2.1: Design points for a two-factor full factorial with centerpoint included.

Introducing these small changes allows retrieving information about the direction
in which favourable improvement is expected. When this information is obtained,
a move is made in this favourable direction, after which the process of measuring
small perturbations is repeated. The TEVOP methodology consists of four
steps, shown in the flowchart in figure 2.2, which will be discussed in detail.

Design: Factors should be perturbed slightly so that their effect can be
estimated but with the restriction that the output (e.g. produced product) is
still within specification. In TEVOP, small factor level changes are introduced
around the current best known conditions—the reference condition—to gather
information about the process. These changes in the factors should be kept small
to ensure that no output is produced that falls outside of process specifications.
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Design

Measure

Calculate

Decide

Modify operation
End current phase

Gather more information
Run additional cycle

Figure 2.2: Flowchart TEVOP.

If the experimental domain consists of the entire factor space (i.e. all possible
factor combinations) then TEVOP will introduce only very small factor level
changes—which are a subset of the experimental domain—around the reference
condition. These factor changes should be introduced in such a way that
meaningful conclusions can be drawn. This is done using a statistical design,
which will allow making the decisions using a statistical model. Any design can
be used with TEVOP but Box proposed the use of the two-level full factorial
design as it is easy to construct and analyse. For two factors, the design
including one centerpoint consists of five measurements which are presented in
figure 2.1.

Measure: In this second step, the responses at the design points are measured.

Calculate: After measurements are collected, a simple regression model is
fitted to the data. All possible effects (main and possibly two-way interactions)
are estimated and—if centerpoints are included—a lack-of-fit test to check for
curvature is calculated.

Decide: After all effects have been calculated, their statistical significance is
checked. If an effect is significant, it will be considered when taking a decision;
if it is not significant, it is not taken into account. However—since only small
factor changes are allowed—it is possible that no effect is found significant due
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to the noise present in the process. The experimenter has to decide whether
there truly is no effect active (i.e. the process cannot be improved) or that more
information has to be gathered to determine if an effect is significant. This
leads to two main decisions that can be made:

1. Gather more information: By re-measuring the design and adding the
newly collected data to the previous data more information is available to
determine whether effects are significant. Every time a design is measured
(without changing the reference condition and thus the location of the
design) is called a cycle. This can be equated to the replication of a design
in classical DOE.

2. Modify operation: If the experimenter decides that enough information
is gathered to determine which effects are significant (or not significant)
a decision can be made on how to modify the operation. When the
experimenter decides that enough experimental measurements have been
measured to modify operation a phase of TEVOP is concluded and a new
phase started. A phase consists of cr(2k+nc) experimental measurements,
with cr the number of cycles ran. In general, the following decisions could
be made at the conclusion of a phase:

a. Some effects are significant:
i. Adopt one of the design points as the new reference condition

and commence a new phase about this point. An example of
this decision is presented in figure 2.3a;

ii. Explore an indicated favourable direction of advance (by, for
instance, a line search) and commence a new phase around
the best conditions found in this exploration. An example is
presented in figure 2.3b but other decisions are also possible and
it is up to the experimenter to decide on the direction. This
type of decision is also the basis for the extension Evolutionary
Operation Steepest Ascent which is proposed in the next chapter.

b. No effects are significant:
i. Change the design region to one in which the factor levels are

more widely spaced (thus strengthening the signal). For an
example see figure 2.3c;

ii. Additional cycles can be run to increase the probability to detect
an effect;

iii. Substitute new factors for one or more of the old factors (if one
of the factors and the interactions that were included are not
statistically significant, another factor can be selected that might
be of interest);
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iv. No further improvement is possible and TEVOP operation is
stopped.

c. Some effects are significant:
i. Substitute new factors for one or more of the old factors (if one

of the factors and the interactions that were included are not
statistically significant, another factor can be selected that might
be of interest).
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(c)

Figure 2.3: Examples of TEVOP decisions: (a) Adopt one of the design points
as new reference condition, (b) Explore in favourable direction, points with an
x-marker denote the line search, (c) Change design region.

In TEVOP no clear-cut decision rules are given, neither for when to conclude
a phase as for the determination of the direction in which to move. Box
posits that a committee—consisting of plant personnel, management and a
statistician—should decide when and how to move by taking into account their
experience of the process, the specific requirements and recommendations set
forth by management, etc. In every published application of TEVOP, the
authors themselves choose the number of cycles after which to move and in
which manner should be moved from one phase to another. Some examples
can be found in [17, 19, 20, 136]. An example of a possible two-factor TEVOP
improvement is graphically plotted in figure 2.4 on which the contour lines of
the underlying process model are shown.

EVOP Factorial-Design Technique

In TEVOP, no clear decision rules are given for the direction in which to move
after the conclusion of a phase (the direction in which to move was subjective).
It was only after more than 30 years that EVOP was further elaborated by
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Figure 2.4: 2-factor TEVOP optimization.

Banerjee & Bhattacharyya [9, 10] who proposed the EVOP Factorial-Design
technique (EVOPFD) for a three-factor system. Later, it was extended by
Tunga et al [151] for an n-variable system. The term factorial design might seem
contradictory since TEVOP also builds on factorial designs, but the addition
proposed by these authors is to include the principles of Response Surface
Methodology [107] to define decision rules for the direction in which to move, an
option that statisticians undoubtedly incorporated before in TEVOP but which
was never formalized up until now. In table 2.1 the decision rules for EVOPFD
are summarized. Although these give a clear indication on which parameters to
change, they still offer no clear-cut decision on the exact direction in which to
move or how far one should move in a direction.

Other EVOP Techniques

Other modifications of TEVOP have been proposed such as Random
Evolutionary Operation (REVOP) and Rotating Square Evolutionary Operation
(ROVOP) [91]. As far as the author is aware, no publications have been made in
which these adaptations have been used and this was already indicated in 1974
by Lowe [90]. Readers who are interested in the details of these adaptations are
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Table 2.1: EVOPFD decision rules.

Observations on Effects and
significance tests

Action to maximize (minimize) ob-
jective function

Effect(s): positive and significant,
LoF1 not significant

Increase (decrease) the level of correspond-
ing parameter(s) from its initial value

Effect(s): negative and significant,
LoF1 not significant

Decrease (increase) the level of correspond-
ing parameter from its initial value

Effect(s): not significant, LoF1

significant
Maximization (minimization) achieved, if
change in mean2 is negative (positive)

Effects: not significant, LoF1 not
significant

Advisable to select a new search region and
start a new phase of EVOP

1 LoF: Lack-of-Fit test which tests for the presence of curvature. Can be formally tested
only when including centerpoints.

2 change in mean: (average responses at all design points without centerpoint – average
responses at centerpoint)
Rules table derived from: [9, 10, 151]

referred to the following references [20, 90, 91]. These two adaptations will not
be discussed in this text as they have, to the author’s best knowledge, never
been used in industry.

Disadvantages of EVOP Techniques

EVOP has not been widely used in industry which might be attributed to the
disadvantages of the current implementations: (1) there is no clear indication
of when to stop experimenting, this pertains to the number of cycles before
one can conclude that there is no effect and when the complete improvement
procedure should be stopped; (2) The traditional full factorial design requires a
minimum of 2k experiments per cycle for k factors, this restricts the use of the
method to only a few key variables; (3) Achievement of a significant effect of a
factor can depend on the chosen factor levels for this variable, i.e. the closer
the factor levels are located to each other, the more cycles will be necessary to
estimate (small) effects.

Process supervisors usually require the smallest measurable changes in the
factor levels [90], i.e. the smallest change in settings possible (for example a
change in the reference speed of ±0.25 m s−1), and this can become a serious
problem as the sample size (and consequently the number of cycles) necessary
to detect such a small effect will become too large to be practically feasible to
execute.
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2.2.2 Automated Implementation

With the increase in computational power and use of sensors in production
processes, it becomes interesting to develop an EVOP software algorithm that
can automatically adjust the process settings, execute the required measurements
and decide in which direction the process settings must be changed to improve.
In 2002, Holmes & Holmes [67] filed a US patent for a methodology based
on TEVOP that can be used in such a way (evidently the authors included
some decision rules on how to move but these are not documented). This
clearly shows that there is a benefit and will to implement EVOP automatically.
However, not many automated applications have been found and those found
use TEVOP as a basis, that is: they do not formally describe the decision rules
implemented to execute the moves. Currently there is also no (commercially
available) software that can execute an EVOP improvement, which is a must
for automated implementations.

An automated implementation opens possibilities for higher-dimensional
applications and consequently alternative base designs that are more efficient in
terms of measurements. Additionally, more complex designs can be constructed
which provide more flexibility in terms of constraints on the factor levels.

2.2.3 Current Directions Of Research

With the possible inclusion of more than three factors in an EVOP procedure it
becomes worthwhile to advocate the use of base designs that use a more efficient
number of measurements than the 2k of the full factorial design. By reducing
the amount of measurements in each phase, improvement can be achieved faster.
A logical extension is using a fraction of the design points of the full factorial
design in a fractional factorial design. Mathur et al. [97] state that the use of
fractional factorials increases the probability of obtaining incorrect directions of
improvement if there are non-linearities present in the true (noise-free) response
of the process. To deal with this, they proposed a minimax design procedure in
1994 to select two-level fractional factorials that are robust (in their inferences)
to nonlinearities in the true response.

The use of optimal designs to allow for any sample size or restrictions (factor
constraints) on the design region lead Chu et al. [34] in 2002 to propose the use
of D-optimal designs. They compared the improvement of a D-optimal design
with the traditional full factorial design on the simulation of a pulp digester
process with six factors. They found that the D-optimal design outperforms
the full factorial design. Interesting as these results may be, the comparison
they made between the use of the full factorial and D-optimal is biased. The
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comparison was executed on deterministic simulations and there was a difference
in the estimated model between the two designs (interaction for full factorial,
second order for D-optimal) and with a sample size of 33 experiments for the
D-optimal design and 64 experiments for the full factorial design it stands to
reason that the design with the smallest sample size will outperform the other
on a deterministic simulation. Unfortunately, no clear description is given in
the paper which decision rules are applied between phases, it is only indicated
that they were changed when changing from full factorial to D-optimal design,
and it is difficult to ascertain their impact on the comparison.

Not only the dimensionality has increased in contemporary processes, quality
is nowadays also often of a multivariate nature. In order to cope with such
situations, Byun & Kim [25] wrote a short article in 2003 about the use of
desirability functions to improve multiple responses in a TEVOP setting. By
combining several responses into an overall desirability index it is possible to
scale a multi-response problem to a single-response problem using the desirability
index.

As explained previously, after the conclusion of each cycle a decision has to be
made whether additional cycles have to be run (to significantly detect effects)
or whether to conclude the current phase. The question on how many cycles to
run before concluding that no effects are significant, was briefly addressed in
1968 by Box & Draper [21] when they showed—using the concept of statistical
power—that, even with a small number of cycles, a surprising amount of
improvement is possible.

In an EVOP scheme those factors that drive the response(s) under consideration
are often called key factors. When, for any reason, the key factors change during
operation this should be detected. Holmes & Mergen [66] postulate that—when
no additional or new factors are active—the time series of observations should
be stable (if the underlying process is stationary). This is done by comparing
the usual variance estimate s2 (equation 2.1), which is sensitive to changes in
the average of the response variable over time, with the variance estimator q2,
which takes into account the time order of the data (equation 2.2) and is rather
insensitive to movements of the average of the response variable over time.

s2 =

nT∑
i=1

(yi − ȳ)2

nT − 1 (2.1)

with, in equation 2.1, yi the i-th observation of the response variable, ȳ the
average of the response variable and nT the total number of observations. If
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there are movements in the response variable’s average over time, they are
reflected in this estimate.

q2 = MSSD

2 = 1
2 (nT − 1)

nT−1∑
i=1

(yi+1 − yi)2 (2.2)

with, in equation 2.2, yi+1 the i+1-th observation of the response variable. This
variance estimator is based on the Mean Square of the Successive Differences
(MSSD) and looks only at the successive differences (taking into account the
time order of the data) and represents the variation that a process could display
if some of the non-random elements, such as trends and cycles, were eliminated.
If the factors involved in the current design account for the majority of the
variation in the response, these two variance estimates should be essentially
equal (i.e. the current factors are still the key factors). By testing whether
these two variance estimators are statistically different, a conclusion about a
change in key factors can be made. An example of their use is given in the
applications section.

2.2.4 Applications

The following characteristics define processes to which EVOP can easily be
applied [63] and for which its application is most useful:

• High-volume production;

• The potential benefits of process improvements are large (the process is
an important one and not already operating at optimum conditions);

• Important process factors can be identified;

• The identified factors can be perturbed easily;

• The process stabilizes rapidly after a process change;

• The process response can be rapidly obtained and measured.

Although sequential experimentation can offer significant improvements to a
process, its use in industry is not widespread. Both Lowe [90] and Hahn &
Dershowitz [64] provided some insight in their 1974 papers as to why the use of
EVOP was not more widespread after the first two decades it existed. Lowe
argues that process supervisors refuse to accept statistical tests when their
eyes and experience leads them to believe that there just cannot be a real
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difference between the numbers presented. Furthermore, they are not willing
to undertake any experimentation where there is a chance that substandard
product may be made or that worse-than-standard costs may result. Hahn
& Dershowitz conducted a survey and presented their results in their paper.
The most frequently given reason for not using EVOP was “the reluctance to
perturb manufacturing processes”, i.e. why change operating conditions of a
process which is producing? According to them, the key to promoting EVOP
and implementing it in industry has to be found in the active participation
of management and a positive environment suitable for innovative ideas for
process improvement.

Many success stories in industry were reported before 1966 and were summarized
by Hunter & Kittrell [71] but (industrial) published applications in the
subsequent decades are somewhat scarce. There might be two reasons to
which this can be attributed: (1) the advent of modelling techniques in the
1970’s based on first principle modelling shifted the focus towards these methods,
(2) EVOP might still be used in industry but is usually not published unless
there is some academic involvement.

Published applications after 1966 are listed in table 2.2. These have been
grouped by the number of factors in the problem, the EVOP technique used,
application field and the type of application within the field. If the application
type is listed as “R&D” then this application was executed at laboratory scale
and “research study” indicates that these were simulation-based applications.
The “Implementation” column lists if the application was run manually or
automated. In two applications changes to EVOP were made that were very
specific to the case under consideration and require too much detail to explain
fully in this text. For these “Adapted EVOP” is used as denominator for the
technique, indicating that changes have been made that are case-specific and
can be found in the original article.

As can be seen from this table, the EVOP Factorial-Design Technique has
become popular in the field of lab scale biological experiments, most notably
solid state fermentation [11, 115]. In 2002 Shin & Cha [140] improved the
transfection conditions for secretion of foreign proteins from insect Drosophila
S2 Cells using a Green Fluorescent Protein Reporter. In their paper they used
one-factor-at-a-time analysis (OFAT, sometimes called Single Factor Search
– SFS) to do a first improvement; afterwards they selected four factors and
executed a face centred cube design to build a second order model. This
model could not fit the data within the range adequately and they used the
endpoint of the OFAT search as the reference condition to start an EVOPFD
optimization to see if it could pinpoint the direction of the optimum. They used
the factor levels from their RSM-phase as data for the initial EVOP phase . They
reported a 1.8-fold increase in the secreted yield after applying EVOPFD. In
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2010 Pansuriya & Singhal [117] optimized whey-independent serratiopeptidase
production (SRP) from Serratia marcescens NRRL B-23112. Three factors were
improved with EVOPFD and the SRP production was increased 17-fold. Also
in 2010 Bankar & Singhal [12] used a Plackett-Burman design to screen and
select the most significant factors to include in an EVOPFD scheme. Seven
factors were screened and three were determined to be significant and of value
to use in EVOPFD and the yield of the process was increased ∼ 2.3-fold. The
use of screening designs to select the key factors to be included in an EVOP
scheme is preferable if such a screening can be carried out (i.e. in industrial
processes such a screening might not be possible since there is the possibility of
producing substandard product).

In order to teach the principles of TEVOP, Smart [142] published an article
in 2004 that describes how a laboratory setup is used to teach undergraduate
students about TEVOP and give them some hands-on experience with the
method. The students were asked to improve the operation of a gas absorber
with three variables under research which might have an effect on the percentage
reduction of CO2 when using a packed scrubber to remove CO2 from (simulated)
industrial stack gas. The paper describes the setup and an execution of TEVOP
after which a discussion follows that indicates which changes could be made,
and their effect on the process. Such lab scale applications allow a prospective
practitioner to get a good grasp of the concept as well as how to deal with the
physical side of the experimentation.

In 1966 Rickmers [124] proposed TEVOP as a tool for persons in the
photographic processing industry. An example is given where two variables in
a photographic processor—machine speed and developer temperature—might
influence the maximum density of the sensitometric control strip. It was not
indicated if this was run as an example or in a true industrial process.

Bacon [7] published a short exposé in 1967 on the TEVOP methodology and
states that “a limited number of applications have been attempted in the mineral
dressing industry. Some of the successes have been most encouraging. Difficulties
have arisen in other instances primarily because of large uncontrollable variations
in the feed supply” but no example of such an application is given.

Hunter & Chacko [70] published a paper in 1971 that detailed how developing
countries could benefit from the use of EVOP. They describe how TEVOP was
successfully applied to a chemical manufacturing unit in industry; the object
was to improve the optical density of polymer latex. Three key variables were
included in the TEVOP program: addition time, temperature and stirring
rate. After application of the methodology the throughput of the process was
increased by approximately 25% since lower production times could be used to
attain the required response.
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Ramberg [122] prepared a technical report for the Manufacturing Methods and
Technology Program of the US Army Material Command in 1974. A computer
program called MACHOP is proposed to do the calculation and decision step
in a TEVOP program of two key factors, speed and feed rate, for determining
optimal machining conditions. The cost per piece is considered as the response.
The data for an example machine is given in the report, however no data on
a real process is presented. This is not classified as an automated application
since responses have to be entered by hand. In essence all possible combinations
of significant effects have been added to a decision table in MACHOP (for
the specific application) and—after manually entering the response data—the
appropriate decision is selected.

In the biotechnological process industry Kvist & Thyregod [83] published an
article in 2005 in which they used TEVOP on the fermentation process of an
industrial enzyme. Three factors were identified being pH, temperature and
nutrient dosage with as response the yield of the process. The experiments
were split in two blocks to ensure that the trials only require stable conditions
for four or five batches in sequence (in one block) thus making the trials more
robust against longer-term variations in the production process. Applying the
TEVOP methodology increased the process yield by 45%.

The applications discussed up until now were run manually, with the calculations
often done with statistical or spreadsheet software. With the advance of
computational power and sensor technology since the methods conception,
automated implementations have become possible and in the last two decades a
few of these were published. Holmes & Mergen [66] use such an implementation
in the production cycle of a pet food manufacturer. EVOP is executed on
the production step of baking pet food pellets with as response the moisture
content of the finished product as it leaves the cooling stage. Two key factors are
continuously monitored to keep the response at the desired level while there are
eight factors in total. The two factors that are initially included in the EVOP
methodology are two temperatures during the baking process. By looking at
the time series of the data (by comparing s2 and q2 as explained previously)
an instability in the response was noted after 18 hours. This indicated that
extraneous variation has influenced the process and other key variables should
be selected. An investigation was performed and two new factors were identified
as key variables for the EVOP scheme, being the moisture content of the pellets
as they arrive at the entrance of the oven and the flow rate through the oven.
These two factors replaced the previous two ones and the response was kept at
the desired value. Investigation of the potential reason for the shift in control
factors led to the conclusion that the ambient humidity level had undergone
significant increase due to a large rainstorm taking place.
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In 2011, Hulthén & Magnus Evertsson [69] used EVOP for the automatic
control of a cone crusher operation. Two parameters in the control algorithm
were improved, eccentric speed when the run is started and speed change, the
response to be optimized was the product yield. EVOP was implemented since
the process varies continuously due to varying feed material and wear of the
crushers and screens. It is therefore not optimal to choose fixed parameters for
speed control. Using EVOP, the magnitude of improvement after every phase
was around 15%. The authors report that the overall magnitude of improvement
potential compared to a fixed speed operation ranges from 5% to 20%. They
also note their application of EVOP cannot deal with short-term variations
such as changes in the raw material properties.

An area in which it is suggested to use EVOP is the estimation of control
parameters. Box & Luceño [23] indicated that EVOP could be used to optimize
the control parameters of, in this paper, a PI-controller. Another example of
automatic control parameter estimation is published by Jen & Jian [73]. In
their controller algorithm EVOP is used to estimate new model parameters for
the controller at certain times when the algorithm indicates that an update of
the controller parameters is necessary. A simulation study is carried out on a
model of an industrial process that compares the proposed system with the
traditionally implemented self-tuning controller and concludes that the new
algorithm has better control performance.

2.3 Simplex Improvement

2.3.1 General Principles Of Basic Simplex

The Simplex method was originally proposed by Spendley et al. [143] in 1962
and starts from an initial set of design points that constitute the initial simplex;
the response values for these initial points are measured after which heuristic
rules are used to determine where a new measurement should be located.

The initial simplex is a geometric figure defined by k+ 1 points (vertices), where
k is the number of factors under investigation. How to select the initial vertex
points will be discussed later in this text. As a convention the geometrical figure
will be referred to as a simplex, with lower-case lettering, while the improvement
method will be referred to as Simplex, with a capital S.

After measuring the responses of the initial simplex, simple heuristic rules are
implemented to calculate one new vertex. These rules can be summarized as
follows [143, 155]:
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1. Rank vertices in decreasing order of response, label the coordinates of the
worst response as w; the next-to-worst as n and denote the coordinate
matrix of all responses that are better than w by C;

2. Calculate the reflection point r, r = 2
k

∑
C−w;

3. Remove coordinate row w from the simplex;

4. Transfer coordinate row n to coordinate row labeled w;

5. Measure response at reflection point r;

6. Rank the remaining vertices, leaving out row w and return to step 2.

This algorithm is graphically represented in a flowchart in figure 2.5 and a
two-factor example is plotted in figure 2.6.

Create initial
simplex k+1 points

Measure responses

Rank vertices,
decreasing order

of response

Calculate
coordinates of

r, the reflection

Rank vertices,
decreasing order

of response,
leaving out row w

Remove row
w, transfer
row n to w

Measure
response of r

Figure 2.5: Flowchart Simplex.

To deal with noise in stochastic processes step 2 of the procedure is often
amended with the so-called (k + 1)-rule and becomes:
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Figure 2.6: 2-factor Basic Simplex improvement, tilted algorithm.

2.a if a point is retained in (k + 1) succesive simplexes, and is not eliminated
from the simplex, do not move but discard this result and replace it by a
new observation at the same point, i.e. move this point to the row labeled
w. Otherwise, apply rule 2.b;

2.b Calculate the reflection point r, r = 2
k

∑
C−w.

2.3.2 Constructing The Initial Simplex

There exist several ways of constructing the initial simplex. In 1998 Öberg [110]
showed on well-defined functions that the importance of this initial design can
affect the speed of convergence. It is shown on two polynomial functions that
the D-optimal simplex outperforms the tilted simplex, which outperforms the
corner simplex.
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Manual Construction

The initial k + 1 points could be chosen by the experimenter if there is a
strong motivation (based on previous experimentation) to experiment at certain
settings.

Corner Method

In the corner method, one point is fixed and each other point is placed a certain
distance (called factorstep dxd in this text) in one factor from this point. Let
this starting point have coordinates xco = {xco,1, xco,2, . . . , xco,k}, with k the
number of factors under investigation, the vertices of the corner simplex are
then placed according to table 2.3.

Table 2.3: Initial corner simplex.

Vertex Factor 1 Factor 2 Factor 3 . . . Factor k
1 xco,1 xco,2 xco,3 . . . xco,k
2 xco,1 + dx1 xco,2 xco,3 . . . xco,k
3 xco,1 xco,2 + dx2 xco,3 . . . xco,k
...

...
...

...
...

...
k + 1 xco,1 xco,2 xco,3 . . . xco,k + dxk

If all factors are measured in the same metric and the factorsteps are equal for
every dimension d then this method leads—in two dimensions—to an isosceles
right triangle. In such a case the geometry of the resulting simplex is retained
throughout the reflections—of which an example is given in figure 2.7a—but
the Euclidean step size between resulting reflections depends on the point that
is rejected, as graphically shown in figure 2.7b.

Tilted Method

For the tilted algorithm the initial vertex coordinate is given as xco =
{xco,1, xco,2, . . . , xco,k}, which is the one vertex chosen by the experimenter,
the vertices of the tilted simplex are then placed according to table 2.4.

The parameters p and q are calculated using equations 2.3 and 2.4, with dxd
the factorstep in the d-th dimension as before.
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Figure 2.7: Simplex Corner Algorithm (a) Example of 2-factor Simplex reflection,
(b) All 2-factor Simplex reflection possibilities.

Table 2.4: Initial tilted simplex.

Vertex Factor 1 Factor 2 Factor 3 . . . Factor k
1 xco,1 xco,2 xco,3 . . . xco,k
2 xco,1 + p1 xco,2 + q2 xco,3 + q3 . . . xco,k + qk
3 xco,1 + q1 xco,2 + p2 xco,3 + p3 . . . xco,k + qk
...

...
...

...
...

...
k + 1 xco,1 + q1 xco,2 + q2 xco,3 + q3 . . . xco,k + pk

pd = dxd ·
√
k + 1 + k − 1
k ·
√

2
(2.3)

qd = dxd ·
√
k + 1− 1
k ·
√

2
(2.4)

Details about the tilted simplex construction and the origin of the used constants
are discussed by Beveridge & Schechter [16]. The use of these parameters ensures
that, when all factors are measured in the same metric and the factorstep is
equal for all factors (dxd = dx), the resulting simplex is regular (regularity is
achieved when a polygon is equiangular and equilateral). Due to the equations
used to calculate p and q, the sides of such a regular polygon all have length dx.
For a regular, two-factor simplex, an example of the reflection is given in figure
2.8a, figure 2.8b shows that all reflection possibilities in such a regular simplex
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result in the same Euclidean step size between the points labelled w and the
reflection r.
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Figure 2.8: Simplex Tilted Algorithm (a) Example of 2-factor Simplex reflection,
(b) All 2-factor Simplex reflection possibilities.

D-Optimal Method

The initial simplex can also be chosen using a D-optimal design. To select
the points in this way, a D-optimal design for a linear model with k + 1
measurements is estimated. These design points then form the initial simplex.
More information about D-optimal designs will be presented in section 3.2.3.

For the construction of the initial Simplex a coordinate exchange algorithm (see
section 3.2.3 for more information about the algorithm) is used since this does not
require the explicit specification of a candidate set. Since the use of a D-optimal
initial simplex is not wide-spread and is more difficult to implement in low-level
software, it will not be used in the comparison chapter of this dissertation,
which aims to compare the basic EVOP and Simplex implementations.

2.3.3 Dealing With The Borders Of The Experimental
Domain

To ensure that no experiments outside of the boundaries are performed the
Simplex procedure will allocate an infinitely bad response to points outside
of the experimental domain defined by a hypercube, forcing the procedure to
reflect back inside this hypercube. These points outside of the cube are phantom
measurements—that is, they do not require experimentation effort—and they
are set by the procedure.
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2.3.4 Basic Simplex Implementation

The Basic Simplex has been implemented in a Matlabr (Matlab R2010b, The
Mathworks Inc., Natick, Massachusetts USA) class that wraps all the functions
necessary to perform the improvement. The pseudo-code in algorithm 2.1 shows
how Basic Simplex was programmed. To construct the initial simplex the
algorithms described above are used for the corner and tilted method. For
the D-optimal initial simplex, the Matlabr command cordexch is used, which
uses a coordinate-exchange algorithm to generate the D-optimal design. The
algorithm generates several designs and selects the best one from them, currently
the number of designs generated is set at 100, and the maximum number of
coordinate-exchange iterations to arrive at a design is also set at 100. This
D-optimal construction of an initial simplex will not be used in this dissertation
but is included for reference purposes.

In appendix A an example of how to run the developed Matlabr software
package is presented.

2.3.5 Other Simplex Procedures

The most popular derivative of the basic Simplex is the Nelder-Mead Simplex,
also called the Variable or Modified Simplex [109]. In this derivative the
simplex figure is changing size by expansions and contractions. This makes
the procedure more adventurous in its exploration of the process surface and
can lead to more rapid convergence. This is usually not wanted behaviour in
full scale processes: (1) large expansions are not desired as the risk to produce
unacceptable output increases and (2) successive contractions are not desired as
the change in factor levels would become so small that no distinction between
the responses might be made in the presence of noise [14]. Therefore, it is a
technique that is primarily suited for numerical optimization and use in research
and development where it is relatively safe to make large changes in the factor
levels [111]. Also numerical experiments and carefully constructed examples
have revealed that the Nelder-Mead algorithm may be unreliable even in fairly
simple situations [149].

Another derivative is the Super-Modified Simplex [125] where the new
measurement is extrapolated from a second-order polynomial curve. Within
production processes the Super-Modified Simplex method has, to the author’s
best knowledge, never been used. It is primarily used in the field of chemistry
where the method originated from.



SIMPLEX IMPROVEMENT 37

Algorithm 2.1. Basic Simplex pseudo-code.
Require: Input settings: number of factors k, starting point xco, bounds of
experimental domain D, type of initial Simplex (corner, tilted, D-optimal)
1. Generate initial simplex S0, a (k + 1) × k matrix, and randomize the

rows (vertices).
2. Measure responses, gather measured responses y in matrix G, a (k + 1)×

2 matrix consisting of the vertex numbers (the first column) and the
measured responses (second column)

3. Rank and sort rows on descending responses (second column of G)
y1 > y2 > . . . > yk+1

If responses are equal, rank descending on vertex number (ensures that
oldest vertices are removed first).

if current simplex is initial simplex then
Sort rows of S0

else
Sort rows of C

end if
4. Label responses, only for initial simplex

if current simplex is initial simplex then
label w = {xk+1}
label C = {xj}kj=1

end if
5. Calculate reflection r

xr = 2
k

∑
{C} − {w}

6. Check if r is within the experimental domain. If yes, measure response
at reflection. The vertex number of r is k + 1 + i. With i the number of
the current reflection.

if {xr} /∈ D then
yr = −∞

else
Measure response yR at coordinates {xr}

end if
{Gr} = {k + 1 + i; yr}
6. Label rows: previous n goes to w, matrix C becomes the new matrix in

which the responses have to be ranked.
label w = {xk}
label C =

{
{xj}k−1

j=1 ; {xr}
}

label {G} =
{
{G}k−1

j=1 ; {Gr}
}

7. Go to 3
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2.3.6 Current Directions Of Research

For the Basic Simplex method no real innovative advances have been made as
attention in R&D (especially in analytical chemistry) has shifted towards the
use of the Variable and Super-Modified Simplex. Due to the immense popularity
of Variable Simplex in numerical optimization, a vast amount of literature is
devoted to refinements of this method; however this is out of the scope of this
text as the interest is not numerical optimization.

In 2003 Xiong & Jutan [160] proposed a method, called Dynamic Simplex,
for improving processes in which the optimal conditions change with time.
They propose an algorithm to track these moving optima based on a fixed-size
simplex with only reflection operations. Since fixed-size simplexes are used, this
application can be seen as an extension of Basic Simplex. Although Dynamic
Simplex is not used in this dissertation it is presented here for reference purposes
as it could be a valid method to track non-stationary optima. Algorithm 2.2
presents the pseudo-code for Dynamic Simplex for maximizing a response.

The major change compared to the Basic Simplex algorithm is the fact that,
instead of continuously moving towards the optimum by successive reflections
and move the next-to-worst point to worst, M reflections of a simplex are made.
These M simplices represent M choices for the subsequent move. Since the
process is continuously moving (drifting) one cannot always expect an increase
(when maximizing) of the average function value at each successive reflection.
The goal is to track a moving optimum, which sometimes may have a decreased
function value when it drifts in time. Therefore these M directions are explored
and the direction with the best average function value is selected for a move.
The authors tested their algorithm on 2D and 3D functions and on a simulation
of the Williams-Otto Continuously Stirred Tank Reactor of which the tracking
results are presented graphically in the paper. Tracking the optima in these
cases was reported to work satisfactorily.

Simplex is often used to deal with sensory data, since not many measurements
can be performed and one wants to make rapid decisions based upon the sensory
input. The use of intelligent functions to quantify responses made by human
observations is a field that might deserve more attention. The expertise of
operators in an industrial process and their in-line observations might be used
in conjunction with the Simplex technique to rapidly improve processes. In
2004, Curt et al. [36] used fuzzy membership functions to calculate a response
based on sensory data (see also the applications section). The use of fuzzy
membership functions succeeded in transforming expert knowledge (i.e. sensory
information) into functions that can be processed by computers.
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Algorithm 2.2. Dynamic Simplex pseudo-code.
loop
1. Let the starting simplex in iteration d be S0 = {xj}k+1

j=1 and the objective
function values on these vertices be {gj}k+1

j=1

2. Rank in descending order and sort the vertices of the simplex, such that
g1 6 g2 6 . . . 6 gk+1

3. Successive M reflections
A single point of reflection of the worst (g1) point of simplex S0, thus
reflecting the point whose coordinates are labelled x1 after ranking, can
be written as:

xk+2 = 2
k

k+1∑
j=2

xj − x1

This is repeated M times, as below. After the reflection is repeated
M times, the last simplex M has coordinates SM = {xj}k+M

j=M+1 and a
series of simplices now exist {Sp}Mp=1

for 1 to M do
xk+1+M = 2

k

k+1+M∑
j=M+1

xj − xM

end for
4. Choose the start simplex for iteration d+ 1 by calculating the average

function values in every simplex (save the initial simplex S0.

ḡS = 1
k+1

k+p+1∑
j=p+1

gj with p = 1, 2, . . . ,M

5. Select simplex Sq that satisfies:
ḡSq = max

{
ḡSp

}M
p=1

6. Remeasure the response at point xk+1

7. Set Sq as the new start simplex S0 for iteration d+ 1
end loop
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2.3.7 Applications

Simplex is especially suited to improve processes that have one or more of the
following properties [62]:

• The process variables can be perturbed only at special times, such as at
shift change (e.g. tool change in milling, change of temperature of an
oven);

• Process performance is changing over time, i.e. the process is non-
stationary and the response drifts over time;

• Statistical calculations need to be minimized.

Some advantages of using Simplex are [143]:

• The direction of advance depends only on the ranking of the responses and
not on their values on any absolute scale. Thus the procedure can readily
applied even in those instances when a response can only be judged and
not measured;

• A regular simplex (constructed using the tilted algorithm for example) in
k+ 1 dimensions can be derived from a regular simplex in k dimensions by
the addition of only one additional point. Thus a new factor, previously
held constant, may easily be incorporated into a Simplex scheme at any
stage. However, the elimination of factors is less straightforward, either
the method has to be restarted by building a new simplex with fewer
factors or regularity will be lost.

Many Simplex applications have been described, particularly in analytical
chemistry. However, many of these applications use Variable or Super Modified
Simplex rather than the Basic Simplex. Since large steps or successive
contractions are not typically a problem in an R&D environment this is a
logical choice: the focus is on reaching the optimum as fast as possible, not on
keeping the output within acceptable bounds. Due to its popularity in R&D,
and mainly chemistry, a number of reviews of the methodology (Basic, Variable
and Super Modified) have been published throughout the years, such as [15, 43,
44, 126]. In their reference work Walters et al. [155] included an extensive list
of application references, which was updated by Walters in 1999 [154]. In this
reference list, no separation was made as to which Simplex method was used
but it is a valuable reference guide for readers interested in Simplex methods in
general.
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In table 2.5, applications using Basic Simplex are presented to give an idea
about the type of processes for which the method is used, both in- and outside
of R&D environments. Again, the implementation column is added and all
implementations in which the response was not measured automatically are
labelled as manual implementations. For one of the implementations it could
not be determined from the publication if the algorithm was run manually or
not, this has been indicated by putting “?” in the implementation column.

In 1969 Long [89] improved the sensitivity of a p-rosaniline agent for determining
sulphur dioxide. Two factors, formaldehyde and hydrochloric acid, were selected
in a previous factorial experimentation as having the highest effect on the
sensitivity. An initial improvement was performed and a new, smaller, simplex
was constructed around the optimal settings from this initial improvement
further fine-tune them. By shrinking the simplex the response was improved
approximately 1.1-fold from the conditions after the initial improvement.

In 1980 McDevitt & Barker [98] used Simplex to effectively improve the synergic
extraction of a bis-diketo copper(II) complex by optimizing three factors (pH
and concentrations of isoquinoline, acetylacetone). A 2.5-fold increase in the
response was observed between the highest response in the initial simplex and
the endpoint of the improvement.

In 1991 Mathieu et al. [96] used Simplex as a method to follow a discontinuity
in ternary mixtures. These discontinuities can be, for instance, the limit of
miscibility between two liquids, a phase change in a solid, an instability zone
for a catalyst or the limit of appearance of a phenomenon (e.g. occurrence of
errors in production, corrosion of a protective coating). They give two examples,
based on previously published data, in which the tracking of discontinuities by
Simplex is successful.

In 1996 Danzer & Schwedt [37] developed biosensors for pesticide and heavy
metal screening. To minimize the practical expenses a combination of
experimental designs and subsequent Simplex improvements were used. The
paper deals primarily with the testing of the developed biosensors and not much
information is given about the Simplex procedure. This paper is included since
it is an excellent example that Simplex has merit when sampling is expensive
and has to be kept to a minimum.

In 1999 Prater et al. [121] used a two-factor and a three-factor Simplex (with
other reagents in both) to improve the crystal growth of lysozyme crystals. The
authors proposed this method as an alternative to OFAT to conserve materials
when executing crystal growth experiments on the International Space Station.
Each crystal is given a quality score on an ordinal scale and this is used as
the response for Simplex. The authors conclude that the performance of the
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Basic Simplex is sensitive to the size of the initial Simplex. Furthermore, they
remark that, in a two-factor Simplex, no absolute scoring system is necessary
to rank the responses since a comparison has only to be made between the new
crystal and the previously best crystal. Remember, there are three vertices in
a two-factor Simplex, the heuristic rules state that the next-to-worst vertex
becomes the worst in the next simplex, leaving only a comparison between the
previously best and the new reflection in the new Simplex and thus foregoing
any scoring system that would have to assign a rank to all vertices. Additionally,
the Simplex heuristic rules essentially allow to execute two new experiments at
one time if the process or study allows to execute multiple experiments at once
(in this case, several crystal can be grown at once). Again this is due to the
fact that the next-to-worst condition n is moved to the row labelled worst or w
in a new move of Simplex. The calculation of a reflection r is dependent upon
knowing all k + 1 vertex coordinates and the identification of the vertex with
label w (see the rules in section 2.3.1). If a reflection is executed, and this point
should be called r, then all vertex coordinates of the new simplex are known.
The heuristic rules indicate which vertex will be labelled w (the vertex labelled
n previously) and the subsequent reflection r′ can also be calculated. Being
able to conduct the measurements at both r and r′ simultaneously essentially
doubles the rate of improvement.

In 2000 Santos-Delgado et al. [139] improved an esterification reaction in which
the four factors of interest were methylation temperature and time, hexane
volume and shaking time. The improvement led to a decrease in reagents and
shaking time which reduced the costs and the generation of residuals. Also,
the authors note that a very small number of experiments were used and
experimentation time was therefore decreased with respect to performing an
OFAT analysis.

In 2006 Pasamontes & Callao [118] used a fractional factorial design to screen the
key factors from a pool of six candidates in a sequential injection analysis. Two
responses, related to the spectra of the images, are combined using Derringer
desirability functions [45] to obtain a single response. Four key factors were
identified based on the screening step and the Simplex procedure is used to
improve this desirability index. The desirability index is increased from 0.936
to 0.979 after eleven experimental measurements.

The previous applications were all in R&D, some applications of the use of
Simplex improvement in industry are reported but are rather scarce. They are
outlined in the next few paragraphs.

In 1967 Kenworthy [78] described the application of Simplex in the paper
industry in which TEVOP cannot be used because of the fact that (1) sampling
is limited and (2) the optimum may move rapidly in time which results in the
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need for rapid decisions. The author does not state in detail what is meant by
limited sampling, it is expected that in this application sampling can only take
place at certain times (end of a production run) and decisions need to be taken
rapidly as the intervals between measurements can be large. TEVOP cannot
be used in such a situation since it requires a minimum of 2k samples before
a decision can be made in each phase, while Simplex requires a minimum of
one sample. In an initial four-factor example the thickness of building board
across the width of the boards needs to be controlled. Two Simplex studies were
executed which did improve the range of the thickness. Kenworthy describes a
second study in which two factors are controlled to increase the tensile strength
of paper, the increase in tensile strength was of the order of 15%.

In 1972 Cannon et al. [26] described the application of a three-factor Simplex
to a textile heat transfer unit. Two responses needed to be improved and
desirability functions were implemented. In the first phase of the application an
81.3% improvement in the desirability was achieved, in the second (shrinking the
initial simplex and restarting around the end conditions of the initial Simplex
improvement) a 76.3% improvement was achieved. This study was conducted
on an industrial machine in an R&D environment.

In 2003 Holmes [65] used Simplex in a cement plant to increase the time
between the formation of kiln balls. This application is fully automated and
uses software to change the settings and to measure the responses. Two factors,
the use of limestone ore and iron ore, are taken into account. The result is a
37% increase in the time between the formation of kiln balls by decreasing the
expensive limestone ore and increasing the less expensive iron ore. As such the
improvement not only succeeded in increasing the time between formations but
also decreased the material costs.

In 2004 Curt et al. [36] used Simplex to improve two process parameters,
mixing duration and mixer rotation speed, on a meat emulsification process.
The response dealt with sensory characteristics determined by operators in-line.
These characteristics were scaled to a numeric response variable “chopping
degree” using fuzzy membership functions. This allowed for the improvement
of the in-line intermediary sensory quality.

2.4 Conclusions

In this chapter Online Sequential Process Improvement methods have been
discussed, most notably the Traditional EVOP method based on factorial designs,
its derivative the EVOPFD technique and the Basic Simplex method. Where
the former two are based on statistical principles and can rely on inference,
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the latter uses heuristic rules to determine in which direction to move. For
TEVOP and its derivative, EVOPFD, several applications exist. Not that many
publications for industrial applications are reported but in the last decade some
noteworthy publications were made in this context, indicating that there is a
renewed interest in this method.

The Basic Simplex method is a largely forgotten method as its more popular
derivative Variable Simplex has replaced it, most notably in numerical
optimization and in R&D environments. However, the use of Variable Simplex
in an industrial environment is often unwanted as the expansion moves can
increase the probability of producing unacceptable output and the contraction
moves might decrease the difference between responses in such a manner that
they cannot be distinguished from each other in the presence of noise. Moreover
there are some concerns about general convergence of both Simplex methods
[84] that have not been addressed sufficiently.

The main strength of the Basic Simplex method is not its capability to improve
industrial processes but its power to track a previously determined optimum
when it is subject to time-drift. It is the belief of the author that, should a
process be subject to continuously changing optimal conditions (i.e. a drift of
the process mean), the Basic Simplex method or its extension the Dynamic
Simplex, could be a simple and effective tool of tracking these changes.

There are still some questions left unresolved in the literature. In modern,
complex processes, there are often more than three to six key variables that
influence the process and there is no literature that investigates how performant
these methods are if the dimensionality increases. If there are many key variables
for EVOP, the number of experiments per cycle should be reduced to a more
efficient number than the 2k of the full factorial. How do such efficient designs
perform compared with the traditional full factorial implementation?

Also the effect of noise has never been compared on Simplex and EVOP. From
such a study, conclusions may be drawn on when to use which method. Indeed,
no systematic literature has been found that compares EVOP and Simplex.

The multi-variate nature of quality should be taken into account. For Simplex,
optimizations using desirability functions for multi-response improvement have
already been executed. For EVOP, the application was mentioned in literature
but no industrial case study has been found.

In the current process industry, these questions are pertinent and should be
answered in depth to assess the applicability of these two methods and this
dissertation attempts to answer these questions to determine where and how
these methods can best be applied in industry.





3 Implementation Of And Extensions To
Online Sequential Process Improvement
For Evolutionary Operation

3.1 Introduction

In the previous chapter the basic principles of Online Sequential Process
Improvement (OSPI) were explained. Evolutionary Operation (EVOP) and
Basic Simplex were handled in detail, and an overview of recent literature was
provided. It was concluded that most of the applications were still performed
on small scale processes where automation and the restrictions for online
improvement are no issues. As a consequence, the implementation of EVOP in
those cases was performed manually, often using standard spreadsheets such as
Microsoft Excelr. For the purpose of improving full scale processes in industry,
however, these issues are important and require a rigorous framework so that
EVOP can be run in an automated fashion.

For Basic Simplex the automatic implementation is straightforward and the rules
presented for the original method (see chapter 2) can be readily implemented
in software code. For EVOP on the other hand, additional work is required
to extend the basic principles so that automated operation is feasible. This
chapter will describe these extensions in detail.

The extensions discussed and implemented deal primarily with the calculation
of the statistical model during each phase and the calculation of the direction
in which to move. The proposed extensions are created in such a way that
only basic matrix operations are necessary to implement the algorithm. This
ensures that even low level controllers, i.e. controllers that can perform a limited
number of mathematical operations, could be used to run the algorithm. By
choosing for this type of extensions, in the long run, the algorithms could even
be implemented in the machine software itself.

47
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As a basis for extending the EVOP technique, the same principles as presented
in the flowchart of TEVOP, figure 2.2 of the previous chapter, are used. A
design is generated, after which the responses are measured at the factor level
combinations dictated by the design. When all measurements are collected, a
statistical model is estimated (calculated) online and based on this model a
decision is made on the direction in which to move. Most adjustments take
place in the calculation and decision step of the procedure which govern the
statistical model built and the direction in which to move.

The proposed automated EVOP scheme is presented in the flowchart in figure
3.1 and will be explained in this chapter. It also forms the backbone of the
implementation in a Matlabr (Matlab R2010b, The Mathworks Inc., Natick,
Massachusetts USA) program which is used throughout the dissertation.

Create initial
design (centered

around
starting point)

Measure responses

Stepwise
regression of

main effects model

Calculate and
normalize

steepest ascent
direction δEVOP

New design
centered at

previous centre
coordinates

shifted by δEVOP

Figure 3.1: Flowchart Automated EVOP algorithm.

The first step consists of choosing an appropriate base design. Appropriate
here means that the design should be efficient in estimating the direction
of improvement based on a regression model, but should also adhere to the
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basic OSPI philosophy that perturbations should be limited so that the risk of
producing unacceptable output is minimal (the size of these perturbations will
be called factorstep in the remainder of the dissertation). In a next step, the
different experimental measurements are executed and the responses stored to
disk. Furthermore, it is important that the order in which the experimental
measurements are executed should be randomized in order to avoid the risk of
including the effect of unknown factors. After all measurements are collected, a
regression model is fitted to the data points. The estimation of the significant
terms can easily be done using stepwise regression approaches. Once the final
model is available, the direction of the improvement is calculated. The procedure
then ends by moving the base design in the direction of maximal improvement
and starting over at this new location.

Just as it was the case for the factorstep, it is important as well that the step
size is limited. Typically, it will be chosen to equal a predefined amplitude
δEV OP , which equals the magnitude of the step size vector δEVOP.

An improvement using this EVOP algorithm is shown in figure 3.2 for a two-
factor problem.

0 5 10 15 200

5

10

15

20
Initial phase

Final phase

x1

x
2

EVOP Optimization

Figure 3.2: Example of 2-factor EVOP improvement.

Once the direction and size of the movement is defined, a plausible approach
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is to perform only one experimental run and to compare the response with
the past responses of the previous measurements. This is in fact a steepest
ascent procedure as found in many statistical textbooks [82, 107] combined
with the EVOP methodology. This approach will be denoted by Evolutionary
Operation Steepest Ascent (EVOPSA) and can be regarded as the middle
ground between EVOP––using statistical model building principles in every
phase— and Simplex—augmenting the measurements with one point after the
initial simplex is measured.

In order to take the aforementioned steps, several decisions must be made that
will be explained in this chapter. This chapter is organized as follows: the
creation of the initial design will be handled in section 3.2 labelled “Choice Of
Base Design”. The statistical model that is built based on these experimental
measurements is given in a separate section “Choice Of Regression Model”, while
the calculation of the direction of improvement as well as the related step size
are handled in the section “Calculation Of The Move”. In the next section the
implementation of the steepest ascent approach EVOPSA is detailed, followed
by a section that covers the issue of dealing with the borders of the experimental
domain. To conclude the EVOP and EVOPSA software algorithms and their
settings are presented in pseudo-code.

3.2 Choice Of Base Design

In the TEVOP procedure, Box advocated the use of a two-level full factorial
design since it allows estimating the local trend of the response surface of the
process by means of a simple linear model. This reasoning holds well in case
the number of factors k is limited but becomes prohibitive for larger problems
as will be discussed later. As a result, TEVOP improvements are typically
performed when only two or three key variables are present. Based on the
sparsity of effects principle this situation is valid for a substantial portion of real
life applications. Yet, in several contemporary processes it might be interesting
to include more than three key variables. Since the EVOP method does allow
to use any design as a basis [13], it is interesting to investigate the use of more
efficient designs in situations where the number of key factors increases.

3.2.1 Two-Level Full Factorial Design

A factorial design is a design where all the possible combinations of levels from
all factors are used the same number of times. The number of experimental
measurements in such a design can be written as rlk, where k denotes the
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number of factors, l the number of levels for the factor and r the number of
replicates for each design point (or combination of factor levels). When the
number of replications r = 1, the design is called an unreplicated design.

One of the most commonly used designs is the two-level factorial design (l = 2)
and it is this type of design that is proposed by Box to be used in EVOP. Figure
3.3 shows the graphical representation of such a two-level design for two and
three factors. In this figure, the designs are centred on the origin, and scaled to
the interval [−1; 1]. Such a standardisation—often labelled “coding”—has some
interesting properties that will be discussed in the next section.

The full factorial is an interesting design to use when two or three factors
are under investigation (as in TEVOP) but when the dimensionality of the
problem increases, the number of measurements becomes prohibitive. In
classical design of experiments, full factorial designs are almost never used
in experimental studies of over five factors. Indeed, of the 33 applications
discussed in chapter 2, only 4 were performed for k > 5 (two for k = 5
and two for k = 6). For an unreplicated full factorial design of five factors,
32 experimental measurements are necessary per cycle. Every added factor
increases the number of measurements by a factor two. Hence, more efficient
base designs are to be implemented in EVOP for higher dimensions, yet the
literature that has been devoted to efficiently dealing with this increase in
dimensionality is very limited.
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Figure 3.3: A (a) 2-factor and (b) 3-factor full factorial 2-level design.
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3.2.2 Screening Designs

In classical experimental design screening designs are used to “screen” out the
active (statistically significant) factors from a larger set of factors. These designs
can also be used in terms of EVOP. The fractional factorial screening design
will be discussed in this section.

In a fractional factorial design an informative subset of the design points of a full
factorial design is used. The reduction of the number of points will inevitably
lead to some loss in capabilities as compared to the full factorial design, but for
the purpose of EVOP this might be acceptable.

The basic idea behind fractional factorial designs is to drop a number of
measurements from a complete factorial design, in such a way that as much as
possible of the balance is kept. Suppose the fraction of a three-factor, two-level
design that is used corresponds to the coordinates in coded units in table 3.1
and visualized in figure 3.4.
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Figure 3.4: 1/2 fraction of 23 design.

Table 3.1: Fractional factorial: 1⁄2 fraction of 23 full factorial.

x1 x2 x3

-1 -1 1
1 -1 -1
-1 1 -1
1 1 1

The portion of experimental measurements that is dropped from the full factorial
can be deliberately chosen, and some of the often used fractional factorials
in a classical DOE setting (to determine a main effects regression model, as
explained in the next section) are presented in table 3.2.
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Table 3.2: Often used screening designs for k = 6, 8, 10, 12.

# factors Fractional factorial
6 8
8 16
10 16
12 16

The choice of the design inevitably sets the type of regression model that can
be constructed, a topic that is dealt with in the next section. Also, the smaller
the fraction of retained points (so the smaller the design), the more difficult it
becomes to estimate a given effect.

3.2.3 Optimal Designs: D-Optimality

Optimal designs are a class of experimental designs that are optimal with
respect to some statistical criterion, such as D-optimality. In the framework of
this dissertation optimal designs are also called flexible designs since one can
generate an optimal design for any number of measurements (with as limiting
factor the minimal number of measurements for the model structure). Since
accurate parameter estimates are essential for the estimation of the improvement
direction, the D-optimality criterion will be used in this dissertation as this
criterion minimizes the generalized variance of the parameter estimates. The
A-optimality criterion would be a better choice since it seeks to minize the
trace of the inverse of the information matrix and, hence, minimizes the average
variance of the parameter estimates. Yet D-optimal designs are much easier to
generate, especially considering the restriction that in the long run the code
should run on the machine itself.

The D-optimality criterion will be discussed briefly by using the example of
Ordinary Least Squares Regression (OLS). More relevant information on D-
optimal design can be found in other works, such as [3, 6, 42, 58]. In equation
3.1 an OLS regression model is written in matrix notation. In this equation, y
is the n× 1 vector of responses, ε the n× 1 vector of random error terms which
are normally distributed, β the (ft + 1)× 1 vector of parameter estimates and
X is the n× (ft + 1) design matrix, with n being the number of experiments
and ft the number of model terms excluding the intercept.

y = Xβ + ε (3.1)
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The theory behind D-optimal design can be explained by starting with the
OLS estimator β̂ of the parameter vector, which can be written as equation 3.2.
The general principle of D-optimal design can be derived from the variance-
covariance matrix of the vector β̂, which can be written as equation 3.3 [82].

β̂ = (X′X)−1 X′y (3.2)

cov
{
β̂
}

= σ2 (X′X)−1 (3.3)

From equation 3.3, one can see that if (X′X)−1—called the dispersion matrix
(which is the inverse of the information matrix X′X)—is minimized, the
variances of the parameters are minimized and an accurate model can be
obtained. For D-optimal designs, the information matrix is represented by a
scalar that represents the magnitude of this matrix, in this case the determinant
of the information matrix. A design is said to be D-optimal when the parameter
variances are as small as possible by arranging the experiment positions as
broadly as attainable according to the criterion of the maximization of the
determinant of the information matrix: max (|X′X|). Like with all optimality
criteria, an optimal design is constructed for a specific model and might be
sub-optimal for other models.

In most cases computerized algorithms, so-called exchange algorithms, are
necessary to construct D-optimal designs. The two main types of exchange
algorithms will be briefly explained.

The first kind of algorithm is the point-exchange algorithm, also sometimes
called the row-exchange algorithm, which was popularized by Fedorov [50]. A
key feature of point-exchange algorithms is that they require a user-specified
candidate set as input. This candidate set is the set of all possible combinations
of factor levels as specified by the user. Every possible factor level combination
is typically called a candidate point (or a row in the candidate set, hence the
alternative name row-exchange). The point-exchange algorithms use this set
of candidate points to generate a starting design of which at least a part is a
randomly selected subset of the candidate set. It then tries to improve this
starting design by replacing factor level combinations of the current design by
candidate points. The algorithm continues exchanging factor level combinations
until the determinant of the covariance matrix cov

{
β̂
}

can no longer be
improved. The generation of a starting design and the subsequent point-wise
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improvement procedure are repeated a pre-specified number of times to increase
the likelihood that the best design in terms of the D-optimality criterion is
found.

In general, point-exchange algorithms have two drawbacks [42]. First, their
computation time grows exponentially with the number of factors and with
the number of levels considered for each of these. Second, in the presence of
constraints on the factor levels, it may be difficult to produce a good candidate
set. This is because all the combinations in the candidate set have to satisfy
the constraints.

The second kind of algorithm, the coordinate-exchange algorithm, was introduced
in literature by Meyer & Nachtsheim [102] and offers the advantage that it does
not require the explicit specification of a candidate set. The starting design for
this algorithm is determined completely at random in the experimental domain.
Then, the coordinate-exchange algorithm attempts to improve the level of each
factor at each run of the starting design, one by one. If a better value is found
for a level of one of the factors in a run, then that level is changed to the
better value. This coordinate-wise improvement is continued until none of the
individual factor levels can be improved any more. As in the point-exchange
algorithm, the generation of the starting design and the improvement procedure
are repeated a pre-specified number of times. This algorithm often leads to the
most efficient design, in comparison with the point-exchange algorithm, since it
is not bounded by a given candidate set of points. However, since no candidate
set of factor levels is given, the implementation of the design might be more
difficult. In contrast, the point-exchange algorithm draws from a candidate set
of points defined by the experimenter beforehand. The design might not become
as efficient as a coordinate-exchange generated design but might be easier to
implement. If there are very complex constraints on the experimental region,
it might be more tedious to calculate the convex hull with related constraints
when generating a design in a coordinate-exchange approach.

For the construction of the optimal designs in this dissertation a coordinate
exchange algorithm is used since this does not require the explicit specification
of a candidate set.

3.3 Choice Of Regression Model

Before detailing the choice of the regression model the use of coded units has to
be introduced as the properties of coding will be important when calculating the
move. Often, in experimental design, the units of each factor are transformed to
scale the range in every factor to the interval [−1; +1]. By default all calculations
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in the developed software are executed with these coded variables where −1
conforms to the lower bound of the factor and +1 to the upper bound of the
factor in the design region (the region bounded by the factor levels in the current
design). Coding the factors can be done by applying equation 3.4 in which xd is
the value of the factor to be coded, x+

d the maximum factor level in the design
region and x−d the minimum factor level in the design region.

xd,c =
xd −

x+
d

+x−
d

2
x+

d
−x−

d

2

(3.4)

For two-level designs, the low level of the factor conforms to −1 and the
high level to +1. If a centerpoint is included it is located at the midpoint
between low and high level and is coded as 0. As mentioned above, two-level
factorial designs are the basis of the EVOP scheme. This type of designs allows
estimating a model with linear terms and (for a full factorial) all (k − 1)-factor
interactions. However, an experimenter is usually only interested in, at most, a
model with all linear terms (main effects) and two-way interactions since the
effect hierarchy principle [159] states that lower-order effects are (usually) more
important than higher-order effects. A model with main effects and two-way
interactions can be written as equation 3.5, with y the response, β0 the intercept,
βd the parameter estimate of the d-th factor, βdd′ the parameter estimate of
the interaction between the d-th and d′-th factor and ε ∼ N

(
0, σ2) the noise

which is assumed identical and independently distributed (i.i.d.) according to a
normal distribution with mean zero and standard deviation σ.

y = β0 +
k∑
d=1

βdxd +
k∑

d=1,d′>d
βdd′xdxd′ + ε (3.5)

For an interaction model of k factors (main effects + two-way interactions) the
number of parameter estimates tp equals equation 3.6.

tp = k + k!
2 · (k − 2)! (3.6)

In the case of a fractional factorial, however, it is not always possible to estimate
this simple model. Let us take a three factor case as an example, and consider
both the full factorial (eight experimental measurements) and a half fraction
of the points (four measurements, see figure 3.4). Using tables 3.3 and 3.4 the
full factorial and fractional factorial designs can be compared by looking at the
effects. Each row in the table represents a design point, the full factorial having
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eight points (experimental measurements or factor level combinations) and the
half fraction design four points. For each point, the numbers in the columns
“x1”, “x2” and “x3” denote the coordinate of the respective point. For example,
the first row represents the point with coordinates {−1;−1;−1} for the full
factorial, and {−1;−1; 1} for the fractional factorial.

Table 3.3: Effects of full factorial 23 design.

x1 x2 x3 x1x2 x1x3 x2x3

−1 −1 −1 +1 +1 +1
−1 −1 +1 +1 −1 −1
−1 +1 −1 −1 +1 −1
−1 +1 +1 −1 −1 +1
+1 −1 −1 −1 −1 +1
+1 −1 +1 −1 +1 −1
+1 +1 −1 +1 −1 −1
+1 +1 +1 +1 +1 +1

Table 3.4: Effects of 1⁄2 factorial 23 design.

x1 x2 x3 x1x2 x1x3 x2x3

−1 −1 +1 +1 −1 −1
+1 −1 −1 −1 −1 +1
−1 +1 −1 −1 +1 −1
+1 +1 +1 +1 +1 +1

Alias Pattern
If one would use a main effects only model, the first three columns constitute the
design matrix, and the columns of this matrix are orthogonal for both designs.
If one includes also the two-way interactions, the design matrix consists of all
six columns, and those are still orthogonal for the full factorial design, but this
is not the case for the fractional factorial design. Indeed, the main effect of x1
and the interaction between x1 and x3 are completely confounded. When two
effects are confounded, we can only estimate their joint effect. This means that
for the case of three factors and considering only a half fraction, only a main
effects model (as presented in equation 3.7) can be fitted to the data.

y = β0 +
k∑
d=1

βdxd + ε (3.7)
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It will be shown later that such a main effects model will be sufficient for
EVOP if one uses the designs in coded form, i.e. coding the factor levels in the
design region to the interval [−1; 1]. The amount of confounding in a fractional
factorial design is denoted by the resolution of the design, which is written in
roman numerals. The different resolutions and their amount of confounding are
summarized in table 3.5. In general, when the resolution increases, the larger
the fraction of the full factorial that has to be taken (i.e. the larger the sample
size).

Table 3.5: Resolution and measure of confounding.

Resolution Confounding
III Some main effects confounded with 2-factor interactions
IV Some main effects confounded with 3-factor interactions,

some 2-factor interactions with each other
V Some main effects confounded with 4-factor interactions,

some 2-factor interactions with 3-factor interactions
VI Main effects unconfounded by 4-factor (or less) interactions,

2-factor interaction effects unconfounded by 3-factor (or less)
interactions, some 3-factor interaction effects are confounded
with other 3-factor interactions

Besides the confounding pattern, it is also evident that reducing the number of
experimental measurements decreases the power to detect a given effect. Since
EVOP operates at a local scale, the expected effects are quite small so that
power is an important issue when considering using fractional factorial designs
as a base design. The power issue is discussed in detail in chapter 6 and 7
and is used to make recommendations on the type of design to use for a given
dimensionality and signal-to-noise level present.

The notation for a fractional design is rlk−pf

Res with pf indicating that a 1/2pf

fraction of the full factorial measurements is taken and the subscript Res denotes
the resolution in roman numerals. The variable k denotes the number of factors,
l the number of levels for the factor and r the number of replicates, as for the
full factorial.

Summarizing: When the dimensionality increases fractional factorial designs
are plausible options, and can have their merit in EVOP, but face the drawback
of a loss in power and capacity to estimate interactions.

In order to determine the active factors, the regression model has to be reduced
to its significant parameters. Several options exist for model reduction such as
all possible regression (also called all possible subsets regression) in which every
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possible model is estimated from one parameter up to an arbitrary number
of parameters (arbitrary up to a maximum number of pre-defined parameter
estimates, without counting the intercept). Using one, or a combination of,
selection criteria the best model is chosen.

Another approach is the use of stepwise regression in which parameters are
iteratively added or removed from the model to increase the explanatory power
of the model. In stepwise regression the model is fit iteratively and, as a result,
has the possibility to lead to different final models which may not all perform
equally well. Depending on the terms included in the initial model and the
order in which parameters are moved in and out, the method may build different
models from the same potential parameter set. The method terminates when no
single step improves the model. There is no guarantee, however, that a different
initial model or a different sequence of steps will not lead to a better fit. In this
sense, stepwise models are locally optimal, but may not be globally optimal. In
all possible regression one does not have this model dependency on the iteration
since all possible models are fitted. However, since all combinations of models
have to be fitted, all possible regression is computationally much more expensive
then stepwise regression and might not be plausible to implement in industrial
hardware. Therefore stepwise regression is used to reduce the model to its
significant parameters. A stepwise approach with bidirectional elimination is
used, which means that in every step of the algorithm tests are performed for
variables to be in- or excluded.

Matlabr’s stepwisefit procedure is used with a penter = 0.05 and premove = 0.1
and as initial model the full main effects model is selected. This procedure in
Matlabr 2010 begins with the initial model (in this case the full linear model is
used as the initial model) and compares the explanatory power of incrementally
larger and smaller models. At each step of the algorithm, the p-value of an
F -statistic is computed to test models with and without a potential term:

The following hypothesis test is used for every term β:

H0 : β = 0

Ha : β 6= 0

If the term is not in the model and there is sufficient evidence to reject the
null hypothesis (penter < 0.05), the term is added to the model. If the term
is in the model and there is insufficient evidence to reject the null hypothesis
(premove > 0.1), the term is removed from the model. The algorithm proceeds
iteratively as shown in the pseudo-code in algorithm 3.1.
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Algorithm 3.1. Matlabr 2010 stepwise regression pseudo-code.

1. Fit the initial model.

2. If any parameter not in the model has a p-value less than penter (that is, if
it is unlikely that they would have zero coefficient if added to the model),
add the one with the smallest p-value and repeat this step; otherwise, go
to step 3.

3. If any parameter in the model has a p-values greater than premove (that
is, if it is unlikely that the hypothesis of a zero coefficient can be rejected),
remove the one with the largest p-value and go to step 2; otherwise, end.

3.4 Calculation Of The Move

Calculating the move after a phase has been concluded consists of two parts:
(1) estimating the direction and (2) normalizing the step size.

The estimation of the direction to move follows directly from the model fitted
to the data. The basic idea is to move in the direction of the optimum using
the partial derivatives. When including the main effects and the two-way
interactions in the estimated model, the partial derivative of this model in
dimension d includes the main effect βd and the terms βdd′xd′ for every two-way
interaction in which xd is present.

If those calculations are based on the coded design, i.e. in the range [−1; 1],
and if the steepest ascent is defined in the centre of the design (so in {0, . . . , 0}),
the interaction terms βdd′xd′ vanish in the partial derivatives and a simple
main effects regression suffices as a base model. All main effects that are
not included in the model based on the stepwise selection (see higher) have a
partial derivative of zero. The vector which comprises these partial derivatives
determines the direction of the move. If a move is executed by shifting the
centre of the design, one wishes to have control over the length of the vector
between the two consecutive centres. In order to do so, the partial derivatives
are normalized and, since the partial derivatives of the main effects model are
equal to the parameter estimates or betas, these are called the normalized betas.
Afterwards, these normalized betas can be multiplied with a step length δEV OP
after decoding, or a coded step length δEV OP,c before decoding back to the full
range of the factors.

The step length δEV OP,c can be set by the experimenter and either made variable
or be fixed. For the current approach, it was chosen to ensure that, when all
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regression coefficients are of equal importance, a corner of the old and new
design region will coincide as is shown in figure 3.5 for two factors.

dx2

dx1

Figure 3.5: EVOP stepsize for 2 factors.

Defined this way, the step length δEV OP depends on the dimensionality of
the problem k and is expressed, in coded units, by equation 3.8, which is an
application of Pythagoras’ theorem. In this equation fa is the number of main
effects in the reduced model, which is at most equal to the number of factors k.

δEV OP,c =
√

22fa = 2
√
fa (3.8)

In equation 3.9, the coded step size vector δEVOP,c is written as a function
of the normalized betas and its predetermined vector length δEV OP,c. In this
equation β is the 1× k vector of the parameter estimates.

δEVOP,c = 2
√
fa

β√
k∑
d=1

β2
d

(3.9)

The coded, normalized step size vector can be rescaled to uncoded values and
is used to calculate the coordinates of the new design points. The steepest
ascent delta’s can be decoded by using equation 3.10, in which δEV OP,c,d is the
steepest ascent delta in the d-th direction.

δEVOP =
{
δEV OP,c,d ·

x+
d − x

−
d

2

}k
d=1

(3.10)
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By adding δEVOP to the uncoded coordinates of the centre of the current design
region, the centre of the new design region is determined.

3.5 Evolutionary Operation Steepest Ascent

Evolutionary Operation Steepest Ascent is the automatic implementation of the
steepest ascent procedure as described in many statistical textbooks. To the
author’s best knowledge an application of steepest ascent within the framework of
the EVOP methodology has not been published before although such exploration
was already proposed by Box in the first publication about EVOP [19].

EVOPSA works on the same principles as the EVOP algorithm but, instead
of estimating a new steepest ascent direction after every optimization phase,
such a direction is estimated once, after which a line search in the direction of
steepest ascent is performed. A new measurement point is placed at a distance
δEV OP from the centre of the first design. If the response value at this point is
more desirable than the maximum response value of the previously acquired
points a new measurement point is placed, again at a distance δEV OP , in this
direction. This procedure is repeated until a response value is worse than the
previously acquired one. In such a case, a new statistical design is executed
around the previous measurement and a new path of steepest ascent calculated,
after which this procedure is repeated. EVOPSA combines two interesting
properties of EVOP and Simplex: (1) estimation of the direction based on a
statistical design, (2) sequential augmentation with only a limited amount of
measurements in the direction of steepest ascent.

An example of a two-factor EVOPSA optimization is plotted in figure 3.6 and
the flowchart for this algorithm can be found in figure 3.7.

3.6 Dealing With The Borders Of The Experi-
mental Domain

The experimental domain is usually constrained by boundaries, be it either
thresholds that certain factors cannot exceed due to process limitations—so-
called single-factor boundaries—or more complex constraints in which certain
combinations of factor levels are infeasible. The focus lies on single-factor min-
max boundaries, which can be seen as a hypercube that defines the experimental
domain.
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Figure 3.6: Example of 2-factor EVOPSA improvement.

Should a move bring the new design region outside of the experimental domain,
a decision has to be made on how to constrain the direction of steepest ascent
to the experimental domain. If the addition of δEV OP,d in the d-th dimension
should lead to a factor setting that exceeds this factors boundary constraints,
this part of the steepest ascent vector is set to zero, as illustrated for two factors
in figure 3.8.

3.7 EVOP Software Implementation

3.7.1 Settings

Certain parameters have to be set when starting the software to be able to run
an EVOP scheme. They will be discussed here.

Number of factors k: The number of factors that will be taken into the EVOP
scheme, this is important for building the design.

Type of design: A string indicating the design that should be built, currently
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Figure 3.7: Flowchart EVOPSA algorithm.
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Figure 3.8: A 2-factor example of dealing with boundary constraints in EVOP,
(a) Unconstrained improvement path, (b) Improvement path constrained to
experimental region.

“FullFactorial” or “FracFactorialX”, in which the X in the fractional factorial
string is replaced by the numeric value for the resolution of the design. The
resolution must be at minimum 3 to make a useful design.

Replication r: The number of times the design needs to be replicated. Minimum
is one, as the design needs to be measured once.

Factorstep dx: a 1× k vector that denotes the maximum perturbation size (in
original, uncoded units) in every dimension (i.e. the maximum change in factor
levels in one dimension), see figure 3.9.

Starting point xstart: a 1×k coordinate vector denoting the reference condition,
i.e. the point around which the first design region will be centred. The initial
design region will form a hypercube which borders are defined by the coordinates
{xstart,d ± 0.5 · dxd}kd=1.

Boundaries of the experimental domain Xlim =
[
x−lim; x+

lim
]
: a k × 2 matrix

with the lower (first column x−lim) and upper (second column x+
lim) bounds on

every factor.

The combination of the factorstep dx and starting point xstart defines the
initial design region. The design points of a fractional or full factorial design
will always be located at the cube points of the hypercube that defines the
design region. Figure 3.9 shows the design region for a two-factor example with
the design points of a full factorial, which are located at the cube points.
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Figure 3.9: EVOP design region, example for 2-factor full factorial.

3.7.2 Pseudo-Code

The base designs are generated using Matlabr algorithms: ff2n to generate
full factorial designs and fracfactgen in combination with fracfact to generate
fractional factorial designs. The pseudo-code for EVOP is presented in algorithm
3.2.

In appendix A an example is presented on how to run an EVOP improvement
using the developed Matlabr software package.

3.8 EVOPSA Software Implementation

3.8.1 Settings

The settings for the EVOPSA algorithm are exactly the same as for the EVOP
algorithm. Programmatically, the EVOPSA class is a child of the EVOP class
and inherits all its properties from its parent.

3.8.2 Pseudo-Code

The EVOPSA pseudo-code is presented in algorithm 3.3. Since EVOPSA is
programmatically a child class of the EVOP algorithm, all functions to generate
the designs are exactly the same as for EVOP.

In appendix A an example is presented on how to run an EVOPSA improvement
using the developed Matlabr software package.
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Algorithm 3.2. EVOP Pseudocode.
Require: Number of factors k, number of replications r, factorstep dx, design
type “FullFactorial”/“FracFactorialX”, starting point xstart, Boundaries of
experimental domain Xlim

1. Generate and randomize measurements of the initial design X0. Save
coordinates of the center of the design region xc = xstart;

2. Measure responses;
3. Build main effects model and reduce with stepwise regression to

significant terms. Extract the β̂-vector, a 1 × k vector of parameter
estimates (excluding the intercept). Effects not in the model have a
parameter estimate of zero.

4. Calculate δEVOP,coded and transform to δEVOP;
5. Check if new design region is within boundaries of experimental domain;

for i from 1 to k do
if (xc,i + δEV OP,i + 0.5 · dxi) > x+

lim,i then
δEV OP,i = 0

else if (xc,i + δEV OP,i − 0.5 · dxi) < x−lim,i then
δEV OP,i = 0

end if
end for
6. Generate and randomize the measurements of a new design X in design

region centered at xc = xc + δEVOP and go to step 2.

3.9 Conclusions

In this chapter Online Sequential Process Improvement methods were adapted
and described for the contemporary setting. The original Traditional EVOP
algorithm discussed in chapter 2 was adapted to be run automatically on a
computer and the specific calculations for every subsequent step were shown.
Evolutionary Operation Steepest Ascent, a combination of EVOP and a line
search is formally described as well. Since it is a subsidiary of EVOP, all
formal calculations remain the same, only some decision rules were adapted.
Furthermore, a novel method to deal with the borders of the experimental
domain for EVOP and EVOPSA was presented. To conclude, the pseudo-
code for the software implementation for both algorithms was given and these
algorithms will be used throughout this dissertation for EVOP and EVOPSA.
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Algorithm 3.3. EVOPSA Pseudocode.
Require: Number of factors k, number of replications r, factorstep dx, design
type “FullFactorial”/“FracFactorialX”, starting point xstart, Boundaries of
experimental domain Xlim

1. Generate and randomize measurements of the initial design X0. Save
coordinates of the center of the design region xc = xstart;

2. Measure responses yJ for this iteration J ;
3. Build main effects model and reduce with stepwise regression to

significant terms. Extract the β̂-vector, a 1 × k vector of parameter
estimates (excluding the intercept). Effects not in the model have a
parameter estimate of zero;

4. Calculate δEVOP,coded and transform to δEVOP;
5. Save responses of this iteration in vector yJ−1 = yJ

6. Generate coordinates of new point p = xc + δEVOP and check if new
design point is within boundaries of experimental domain;

for i from 1 to k do
if (pi + δEV OP,i) > x+

lim,i then
δEV OP,i = 0

else if (pi + δEV OP,i) < x+
lim,i then

δEV OP,i = 0
end if

end for
6. Measure response yJ at point xc = xc + δEVOP

7. Compare response yJ to maximum of previous response(s) yJ−1

if any element of yJ > max (yJ−1) then
Go to step 5;

else
Go to step 8;

end if
8. Save responses of this iteration in vector yJ−1 = yJ;
9. Generate and randomize the measurements new design X in design

region centred at xc = xc − δEVOP and go to step 2.
An iteration J in the sense of this code is started every time (a set of) responses are measured,
thus in step 2 and step 6.



4 Choosing An Appropriate Starting Point
When No Prior Information Is
Available

4.1 Introduction

In industry, achieving a constant, high quality of the end product at reasonable
cost is essential and requires finding the optimal factor levels of the process that
will achieve such quality. This, in turn, requires knowledge about the process
itself which can be based on historical insight and experience or, in its most
desirable form, on a process model that relates the response (the quality of the
end product) to the factors (input settings of the process). There are several
procedures to construct such a process model, such as first principles models
and data-driven models built with Response Surface Methodology (RSM), as
explained in the introduction.

As explained there, when using first principles models a plant-model mismatch
can occur by incorrect scaling of the factors or failing to capture a source of
variation. This results in a shift between the estimated optimum, as determined
by the model, and the true process optimum. Similarly, for RSM-modelling, or
data-driven modelling in general, it is hard to include all potential variation
into the model so that a mismatch can occur. Although a mismatch is likely,
in practice the result of these models is accepted since it already provides
an improvement when compared to the situation before the experimentation
started.

Results section submitted for publication, under review in Applied Stochastic Models in
Business and Industry
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In order to further improve the process, fine-tuning the factor levels of the
process to reflect more accurately the true optimum can yield additional benefit,
but this follow-up experimentation should be executed on the process itself which
poses serious challenges and restrictions. In order to reduce the cost, Online
Sequential Process Improvement (OSPI) was introduced, to have a minimal
risk of producing unacceptable output products, i.e. the product should be still
saleable at any time.

One of the main disadvantages of OSPI methods—due to the sequential nature
of small changes in the factor levels—is its proneness to get trapped in local
optima. As a result, having available a good prior estimate of the global
optimum as a starting point is an essential aspect. In most applications, prior
knowledge about the process is available and the current best settings can be
used as a starting point for OSPI. However, when such a prior is not available,
experimentation and modelling on the full scale process is still required, with
the higher-mentioned RSM approach as a potential solution.

Yet RSM is based on classical designs and (regression) models inherently posing
limitations for modelling complex processes. Those designs operate at only
two (in case of a full or fractional factorial design) to five (such as a Central
Composite Design) pre-defined factor levels which may not be sufficient to
model complex process behaviour over the full experimental domain. As a
consequence, those designs are not ideal candidates since their use is limited to
fitting simple polynomial models and might not capture the global optimum
in the presence of local optima and high non-linearity of the process. Indeed,
if the non-optimal coverage of the design space excludes points located close
to the global optimum it might be missed completely. The evident question
then is how to pinpoint the global optimum with a limited experimental effort
spanning a sufficiently broad class of models, potentially non-linear and having
local optima.

In this text, the use of so-called space-filling designs, which were popularized in
the field of the Design and Analysis of Computer Experiments (DACE) where
fitting complex models that stretch beyond polynomials are common sense, is
proposed. In the same field of DACE, one does typically not use the simple
polynomial models to fit the complex process behaviour. Instead, Gaussian
Process (GP) modelling is used as a flexible framework for fitting a broad class
of functions.

GP modelling has its origins within the field of geostatistics and borrows its
ideas from a method called Kriging. This method was originally developed
by the French mathematician Georges Matheron [94] based on the master’s
thesis of Danie G. Krige, after whom the method is named. In geostatistics,
the spatial correlation of considered points is an important aspect which is
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explicitly taken into account. Take as an example soil samples that are collected
a certain distance from one another. The composition of these soil samples
is not independent from one another but rather correlated with the distance
between the sampled points—soil characteristics at locations close to each other
do have a tendency to be similar, whilst the properties of remote locations are
less related. Given this specific setting the general idea behind the method is to
interpolate the value of the response (e.g. soil composition) at an unobserved
location from observations of its value at nearby locations (the sample points).
This very same idea forms the basis of GP modelling as introduced by O’Hagan
& Kingman in 1978 [113] in fields other than geostatistics. This was further
developed to the concept of DACE by Sacks et al. [137] in 1989. Gaussian
Processes gained much interest during the late 1990’s, especially when the
concept was introduced to the machine learning community in 1996 by Williams
& Rasmussen [157] since the rapid advance of computational power helped
facilitate the implementation of GP modelling for larger data sets [24, 75, 80,
138]. GP modelling has already been used to model complex industrial [29]
and chemical [148, 162] processes with the focus to accurately predict the
output at untested factor levels and the development of adaptive soft sensors
[61]. The authors of these publications showed that the flexibility of GP for
modelling such processes has clear advantages over the classical RSM approach.
In those cases where the response behaviour is complex, it is evident that the
number of design points that is required to approximate the surface in every
part of the experimental domain can become quite substantial. For the purpose
of providing a good starting point for OSPI methods such as Evolutionary
Operation (EVOP), however, it is not required to approximate the full process
dynamics in the experimental domain, limiting the number of experimental
measurements to perform.

Apart from EVOP, one might use the Efficient Global Optimization (EGO)
approach, proposed by Jones et al. [75], that can be sequentially executed in
conjunction with GP modelling. This has not been done in this text for two
main reasons: (1) The EGO algorithm places additional sequential samples
by balancing the requirement of finding the optimum and sampling in regions
in which the prediction error is high. It is not guaranteed that samples taken
in regions where the prediction error is high, will result in saleable product
(although it could be adjusted to deal with this). (2) EGO combined with
GP modelling is computationally expensive, especially when the sample size
increases, and it is assumed that—once real production is started—executing
algorithms that are computationally expensive might not be desired in a large
part of the process industry.

As its name suggests, the goal of space-filling designs is to spread out the design
points as evenly as possible over the whole experimental domain. This can be
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achieved in several ways leading to design types that are labelled as uniform
designs, maximum entropy designs, Latin Hypercube designs or sphere-packing
designs. For more detail about different types of space-filling designs, the reader
is referred to the book by Santner et al. [138]. Latin Hypercube designs (LHC)
are the most used ones, and were first proposed in 1979 as one of the first
designs for computer experimentation [99]. Their popularity is mainly due to
their good space-filling properties and the fact that they are computationally
inexpensive to generate.

In view of the above, the goal of this text is to provide a strategy for finding
an efficient starting point for online improvement methods when no prior
information is available, based on space-filling designs followed by Gaussian
Process modelling. In order to evaluate the performance of this approach, two
test cases are defined. In the first case a simulation study is performed on a
non-linear test function (Ackley function) having a global optimum as well as
local optima. During the simulation the amount of noise is varied and the effect
on pinpointing the optimum quantified. The proposed methodology is compared
with an RSM approach in which a classical Central Composite Design (CCD)
combined with a polynomial model is used to estimate the optimum. To test
how much the design influences the behaviour of the Ordinary Least Squares
(OLS) regression used in RSM, OLS regression is also applied to the data from
the space-filling LHC designs.

The second case deals with a lab scale setup in which rolling element bearing
behaviour is tested. The specific focus of this case is the application of static
forces to reduce bearing displacement when under a dynamic radial load, or to
pin-point regions where resonant frequencies occur. In the simulation case the
Euclidean distance between the estimated and true optimum can be quantified
and used to assess the methodology, in the bearing case the true optimum is
not known and an EVOP improvement is started to fine-tune the factors.

4.2 Statistical Designs & Methods

4.2.1 The Latin Hypercube Design

Latin Hypercube (LHC) designs are a popular class of space-filling designs,
and will be used here. The LHC design is based on a generalization of the
well-known Latin Square. A Latin Square is an n × n array consisting of n
different symbols, each occurring exactly once in each row and exactly once in
each column. An example of a 7× 7 Latin Square is given in figure 4.1.
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D G A F B C E

E A B G C D F

F B C A D E G

G C D B E F A

A D E C F G B

B E F D G A C

C F G E A B D

Figure 4.1: 7× 7 Latin Square.

A Latin Square in the framework of a space-filling design can generate a two-
factor design. To generate this design one factor is attributed to the column
property, and one to the row property. As such, the row as well as the column
factor is divided into equally spaced intervals (seven in the example of figure
4.1). If one now selects one of the symbols from this Latin Square, say G, a
total of n points in the experimental domain is selected. Those points then form
the different experimental measurements that are to be executed. Evidently, for
a given number of bins, n different Latin Squares can be obtained, some having
better space-filling properties than others. The worst choice is to consider a
reduced Latin Square in which there is a natural order in the symbols used, such
as is represented in figure 4.2a. A randomly selected order for each row allows
for better space-filling properties, as is shown in figure 4.2b where the grey
(“G”) symbols do span the experimental region well compared to the logical
row permutation in figure 4.2a.

The space-filling properties of a design are measured by the discrepancy, which
compares the uniformity of the design against the uniform distribution (the more
uniform, the better the space-filling properties). So one needs an additional
criterion for producing Latin Squares with appealing (space-filling) properties.
There exist several criteria but the one used in constructing the designs in this
text is the maximin criterion which tries to maximize the minimum distance
between design points while maintaining even spacing between the factor levels.

A Latin Hypercube is a generalization of a Latin Square to an arbitrary number
of dimensions. In view of the above, an LHC design can be generated using a
well-chosen Latin Hypercube in a given dimension. The general procedure for
constructing an LHC design of size n given k continuous, independent factors
can be summarized as:
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A B C D E F G

B C D E F G A

C D E F G A B

D E F G A B C

E F G A B C D

F G A B C D E

G A B C D E F
(a)

D G A F B C E

E A B G C D F

F B C A D E G

G C D B E F A

A D E C F G B

B E F D G A C

C F G E A B D
(b)

Figure 4.2: 2-factor, 7-run, Latin Square Design: (a) natural ordering and bad
space-filling properties, (b) no natural ordering, better space-filling properties.

1. Divide domain of each factor into n intervals;

2. Construct an n × k matrix Π whose columns are different randomly
selected point permutations of the intervals {1, . . . , n};

3. Each row of Π corresponds to a cell in the hyper-rectangle induced by
the interval partitioning from step 1. Sample one point from each of these
cells. (This implies that, in an LHC design, there are as many factor levels
as there are measurements).

It is important to note that—since the LHC design is a computer-generated
design with randomly selected point permutations—constructing a new LHC
design can lead to a different placement of the design points, therefore—in the
simulation study—multiple LHC designs will be generated. The JMPr software
(version 11, The SAS Institute, Inc., Cary, NC, USA) is used to generate the
LHC designs in this text. For more information about the generation of LHC
designs, the reader is referred to [80, 138].

4.2.2 The Gaussian Process Model

Gaussian Process modelling [24, 123, 157] is a terminology popularized in
the field of computer experimentation, and the model as discussed here is
related to Simple Kriging. The Kriging model [74, 75, 138] can be thought
of as a two component model, with a linear model part and a departure part:
Response = LinearPart+Departure.
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The first component (the linear part) consists of a general linear model while the
second component is treated as the realization of a stationary Gaussian random
field, denoted Z. Define now S = [−1, 1]k to be the normalized design space and
let X ∈ S be a scaled n× k-dimensional matrix of input values (design points).
The Kriging approach models the associated response y (X) as equation 4.1.

y (X) =
k∑
i=1

βi · hi (X) + Z (X) (4.1)

In the above equation the hi’s are known fixed functions, the βi’s are unknown
coefficients to be estimated and Z (X) is a stationary Gaussian random process
with:

E [Z (X)] = 0 (4.2)

Corr [Z (xi) ,Z (xj)] = R (xj − xi) (4.3)

In other words, the correlation (∼ dependence) of the Gaussian random function
evaluated at the two design points xi and xj depends on the distance function
R(·). This is why the term spatial correlation is often used, and differentiates
Kriging from OLS regression for which the departures (error terms) are supposed
to be independent and identically distributed (i.i.d.). It turns out that modelling
this spatial correlation using a distance function is so powerful that the stochastic
process model in equation 4.1 can be simplified to equation 4.4:

y (X) = µ+ Z (X) (4.4)

where the design matrix X is an n× k matrix, k denotes the dimensionality
of the input space and n the number of observations; µ is the mean of the
stochastic process and Z (X) the Gaussian Random field. The response y is
represented as an n× 1 vector with mean 1nµ̂ (also an n× 1 vector where 1n
denotes an n-vector of ones) and variance-covariance matrix equal to equation
4.5.

Var (y) = σ2R (4.5)
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where σ2 denotes the process variance and R an n×n spatial correlation matrix.
The correlation matrix is modelled using a product distance function which
relates certain properties (dependent on the used product distance function) to
the correlation structure. Several forms of this function are proposed (see [138]),
of which the Gaussian and Cubic correlation function are popular choices. The
Gaussian correlation function is appropriate if the simulation or output is known
to be analytic and is often the preferred choice in computer simulation studies
and takes into account all other points while calculating the correlations at a
specific point. This behaviour might be unwanted in physical processes were
the presence of noise could lead to incorrect conclusions about the correlation
structure by including all measurements. In the context of optimizing real-life
processes, the cubic correlation structure is advisable since it does not take into
account all other data-points when calculating the correlations at a specific
point; only those within a certain distance are considered which reduces the risk
of an inappropriate model due to outliers in the data. In the real-life situation,
the underlying model structure is unknown, therefore the cubic correlation
function is also used on the Ackley function.

If the cubic correlation function is used, an element Rij of this cubic correlation
matrix is given by equation 4.6.

Rij =
n∏
k=1

ρ (dij,k; θk) (4.6)

with dij,k = xik−xjk the distance between points i and j in dimension k where:

ρ (dij,k; θk) =


1− 6 (dij,kθk)2 + 6 (|dij,k| θk)3

, |dij,k| ≤ 1
2θk

2 (1− |dij,k| θk)3
, 1

2θk
< |dij,k| < 1

θk

0, 1
θk
< |dij,k|

(4.7)

where in this notation θk ≥ 0 so that if θk = 0, the correlation is 1 across the
range of the k-th factor (i.e. the surface is flat in that direction and the factor
has no influence).

The JMPr software is used to estimate the GP models in this text. The
notation presented here is the one used in the JMPr implementation which
differs from most literature where θk tends to infinity if the correlation is 1,
i.e. in the formulation as defined here θk is the reciprocal of the parameter
commonly used in literature. This definition is preferred by the author so that it
intuitively coincides with what we classically have as regression parameters—a
value of zero meaning no influence of the considered parameter—and the use of
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the cubic correlation function in this aspect can be considered a generalization
of a cubic spline.

The Best Linear unbiased Predictor (BLUP) is given by equation 4.8 [74, 75].

ŷ (x∗) = µ̂+ r′
(
x∗, θ̂

)
·R−1

(
X, θ̂

)
· (y (X)− 1nµ̂) (4.8)

With ŷ (x∗) the estimated response at unobserved coordinates x∗; and σ̂, µ̂
and θ̂ the maximum likelihood estimates of σ, µ and θ; r an n × 1 vector of
estimated correlations of the unobserved responses ŷ (x∗) at new coordinates
x∗ based on the observed data points y (X). That is, element i of r is ri (x∗) ≡
Corr [Z (x∗) ,Z (Xi)].

The BLUP above interpolates exactly through the response values at the
design points and is suited for deterministic functions or computer simulations.
However, when noise is present, it is not desirable that the GP model interpolates
through the response values but rather includes an estimate of the noise. This
is possible by estimating a so-called nugget parameter γ which introduces a
ridge parameter in the correlation matrix as shown in equation 4.9, where I is
the n× n identity matrix. This ridge parameter allows to deal with additive
Gaussian white noise.

Rγ = R + γI (4.9)

4.2.3 Response Surface Methodology And Ordinary Least
Squares Regression

Response Surface Methodology uses OLS regression to fit polynomial models to
data collected from well-chosen designs. As stated in the introduction, the type
of polynomial model depends on the number of factor levels in the design. In
classical RSM a quadratic polynomial model is often fitted to the data when
a minimum or maximum is expected. In this text, a rotatable CCD design
is used which has five factor levels and a number of measurements equal to
r
(
2k + 2 · k

)
+ nc with k the number of factors under investigation, nc the

number of centerpoints and r the number of times the design points (save the
centerpoints) are replicated. More information about RSM and the design can
be found in many excellent references and textbooks, such as [104, 107, 112]. A
representation of the placement of the design points for a two-factor rotatable
CCD is given in figure 4.3.



78 CHOOSING AN APPROPRIATE STARTING POINT WHEN NO PRIOR INFORMATION IS AVAILABLE

Figure 4.3: 2-factor rotatable CCD.

In general, a second-order design is fitted which can be written for k factors as
equation 4.10.

y = β0 +
k∑
d=1

βdxd +
k∑

d=1,d′>d
βdd′xdxd′ +

k∑
d=1

βddx
2
d + ε (4.10)

With y the response, β0 the intercept, βd the regression coefficient of the d-th
factor, βdd′ the regression coefficient of the interaction between the d-th and
d′-th factor and βdd the regression coefficient for the pure quadratic of the d-th
factor and ε the random error term which is assumed i.i.d. following the normal
distrubution with mean zero and error standard deviation σ, ε ∼ N

(
0, σ2).

In the simulations we did not opt for reducing the full quadratic model using
selection procedures (e.g. stepwise, all possible subsets, etc) because the results
of the study would then depend on the chosen procedure, which is undesirable.
The impact of this should be modestly small since the non-significant terms will
have small coefficients.

In a normal RSM procedure one would first use a screening design to select
the most significant factors, then build a linear regression model (using for
instance a full factorial with centerpoints) and—if a lack-of-fit test indicates
there is a lack of fit—a second-order design might be run (or the full factorial is
augmented to a Central Composite Design) to estimate a regression function
which includes pure quadratics. However, this is out of scope for the Ackley
function as one knows that curvature is present within the model. Indeed, the
full second-order model will not be able to capture the full function dynamics.
It is of interest whether this second-order model captures sufficiently the region
of the optimum.
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4.3 Simulation Study

The simulation study is performed on a non-linear test function that has several
local minima in the region considered. A two-dimensional function was chosen
to be able to visualize the optimization results.

4.3.1 Ackley Function

The Ackley function is a multi-dimensional test function proposed in 1987
[2], that has six parameters that control its shape. A two-dimensional Ackley
function (equation 4.11) is used, with shape parameters a1 = 0.8, a2 = 20, a3 =
0.2, a4 = 2, a5 = 2π, a6 = 5.7.

y (x1, x2) = 1
a1

{
−a2 exp

(
−a3

√
1
a4

(x2
1 + x2

2)
)

(4.11)

− exp
(

1
a4

cos (a5x1) + cos (a5x2)
)

+ a2 + exp (1) + a6

}

The experimental domain for the Ackley function is bounded in this simulation
by:

x1 ∈ [−0.5; 1.5] (4.12)

x2 ∈ [−0.5; 1.5] (4.13)

In this domain, the function has three local minima and one global minimum,
whose coordinates are given in table 4.1. A representation of the function is
given in figure 4.4.

4.3.2 Simulation Procedure

For deterministic computer experiments a sample size of n = 10k, where k is the
number of factors, is a reasonable rule of thumb for an initial experiment [88].
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Table 4.1: Minima of the implemented 2D Ackley function.

Coordinates Minimum type
{0.9522; 0} local
{0; 0.9522} local

{0.9685; 0.9685} local
{0; 0} global
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Figure 4.4: 2-factor Ackley Function in the experimental domain

Although in this study random noise is added to the response, we adhered to
this rule of thumb and created LHC designs consisting of only 20 measurements.
The reason being that the main goal is to pinpoint the region of the global
optimum, rather than fitting the function in the whole space with great detail.
In figure 4.5 the placement of the LHC design sample points of one of the
generated designs is visualized by the black dots on the contour lines.

In contrast with the LHC design, which is computer-generated, the rotatable
CCD is constructed according to set rules and will remain the same for all
measurements. A rotatable CCD is constructed within the experimental domain
of the Ackley function and a representation of the placement of the design points
in the experimental domain is given in figure 4.6 with the actual coordinates of
the design points presented in table 4.2. The number of measurements for the
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Figure 4.5: Contour plot of 2D Ackley function, the dots denote the placement
of the LHC design points.

CCD was chosen to be equal to that of the LHC design, namely 20 measurements.
The design points (save the centerpoints) are replicated once (r = 2) and
four centerpoints (nc = 4) are added, which leads to 2

(
22 + 2 · 2

)
+ 4 = 20

measurements.

Table 4.2: Design points for the rotatable CCD, coded axial points at α =
√

2
used for the Ackley function.

x1 x2 # replicated
-0.5 0.5 2

-0.2071 -0.2071 2
-0.2071 1.2071 2
0.5 -0.5 2
0.5 0.5 4
0.5 1.5 2

1.2071 -0.2071 2
1.2071 1.2071 2
1.5 0.5 2

In order to investigate the influence of the noise level on the accuracy of finding
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Figure 4.6: Contour plot of 2D Ackley function, the dots denote the placement
of the CCD points.

the global optimum a relative measure for noise was used. This Signal-to-Noise
Ratio (SNR), which is often used in engineering disciplines, is defined as the
magnitude (variance) of the noise-free signal (sometimes referred to as the RMS
value) divided by the magnitude (variance) of the noise as presented in equation
4.14.

SNR =
1

N−1

N∑
i=1

(yi,σ=0 − ȳσ=0)2

1
N−1

N∑
i=1

(yi − yi,σ=0)2
(4.14)

where σ is the error (noise) standard deviation, N the total number of
measurements, ȳσ=0 the average response when no noise is present, yi the
i-th response with noise and yi,σ=0 the i-th noise-free response. The SNR was
set at three discrete values being 500, 100 and 10. The error standard deviation
σ is calculated using the SNR setpoint and a calculated magnitude (variance) of
the noise-free signal and this σ is used to generate noise by multiplying it with
the output of Matlabr’s randn function, which generates random numbers
drawn from the standard normal distribution.
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In order to have a clear understanding of the different signal-to-noise levels that
were chosen in this study, the noise-corrupted responses for the Ackley function
are plotted on figure 4.7. As can be seen from this figure, for SNR = 500
the noise has a minimal effect on the shape of the function and in the case
of a low SNR, e.g. SNR = 10, the surface becomes distorted but the general
characteristics are still maintained.
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Figure 4.7: Plot of the noise-corrupted Ackley function for: (a) SNR = 500, (b)
SNR = 100, (c) SNR = 10.

To study the robustness of the proposed approach in the presence of noise,
30 LHC designs were generated for each noise level and 30 GP models were
built based on these designs, which results in a total of 3 · 30 = 90 designs and
90 models. The JMPr software is used to construct GP models, based on
equation 4.8, and for each GP model the estimated optimum was calculated
using the same software. A nugget parameter was estimated for all levels of
the SNR. To compare with RSM, the CCD design is executed 30 times for
every SNR, resulting in 30 measurements of the same design and 90 models.



84 CHOOSING AN APPROPRIATE STARTING POINT WHEN NO PRIOR INFORMATION IS AVAILABLE

To compare GP and OLS modelling on the LHC designs, an OLS regression
model is constructed as well on every LHC design, leading to 90 OLS models.

In order to quantify the precision with which GP modelling and OLS regression
find the global optimum, the coordinates of the fitted global minimum were
compared to the underlying ground truth optimum which is located at {0, 0}.
The Euclidean distances dED between the true and the estimated optima are
calculated and the median of these distances for each SNR are reported as well
as the interquartile range (IQR), which is a measure of the variation of dED.
The median and IQR are chosen as measures of location and variability since
they are more robust to outliers than the mean and standard deviation.

4.3.3 Results

Gaussian Process Modelling

For every SNR, 30 LHC designs were generated, and on each of these a GP
model was fit, totalling 90 GP models. Figure 4.8 presents one realization of a
GP model for each of the noise-levels under consideration.

Given the limited number of 20 design points, the model is not able to perfectly
capture the behavioural details of the real Ackley function. However, the
proposed procedure is sufficient to pinpoint the region of the optimum which
was the goal of this research. This same reasoning holds for all SNR levels.
As expected, increasing the noise-level decreases the quality of the GP model.
Yet in all cases the fitted model succeeds in pinpointing the global minimum
adequately since the GP models always selected the region in which the global
optimum is located and never a region of a local optima.

The Euclidean distances dED,GP between the true and the estimated optima
are calculated and the median of these distances per SNR are reported as well
as the IQR, in table 4.3. As can be clearly seen from this table, the median
dED,GP , and its variation, are very small. The higher the noise in the system,
the larger one expects variation and the median distance to become as there is
more uncertainty about the location of the optimum which is also evidenced in
the table.

In figure 4.9 the estimated optima for the 30 models per noise-level are shown.
As expected, they show to be randomly scattered around the true optimum,
and lower noise scenarios lead to a more precise estimation of the optimum.
From the point of view of determining the region of the global optimum the
GP approach has succeeded even if the fitted models, of which examples were
given in figure 4.8, clearly show that they are over-smoothed (compared to the
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Figure 4.8: GP models of the Ackley function for different noise-levels: (a)
SNR = 500, (b) SNR = 100, (c) SNR = 10.

Table 4.3: Results of Ackley simulation study for GP modelling with LHC
designs, median of Euclidean distance true-estimated optimum, interquartile
range of Euclidean distance.

SNR Median of dED,GP IQR
500 0.0373 0.0315
100 0.0478 0.0416
10 0.0965 0.0811
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deterministic function in figure 4.4). This can be explained by the fact that the
inclusion of the nugget parameter ensures that the estimated model does not
interpolate exactly through the response values at the design points, as would
be the case when using GP modelling on a deterministic simulation, but tries to
fit a smooth function that best describes the data given the presence of noise.
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Figure 4.9: GP-estimated optimal factor settings plotted on deterministic Ackley
function contours for: (a) SNR = 500, (b) SNR = 100, (c) SNR = 10.
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Comparison With Response Surface Methodology

For RSM, second-order models were built according to equation 4.10 for 30
simulations and the three Signal-to-Noise Ratios. It is clear that the polynomial
model will struggle in capturing the process dynamics due to the high non-
linearity of the Ackley function and, given the location of the design points of
the CCD (figure 4.6), it is expected that the resulting second-order polynomial
will have difficulty in pin-pointing the optimal region.

Indeed, the estimated optimum of the constructed second-order models is always
located outside of the experimental domain (outside of the bounds imposed
on the Ackley function). Even more so, for SNR = 10, six of the 30 models
do not have a global minimum. In a practical situation the optimal settings
would be bounded to the experimental domain. In this aspect, the optimum of
the second-order models was searched, constrained to the experimental domain.
This optimum was always located {−0.5,−0.5}, which corresponds to a corner
of the experimental domain.

In table 4.4 the results for this constrained optimization per SNR is shown in
terms of the median of the Euclidean distance dED,RSM between the true and
the estimated optimum as well as the IQR. The distances are not extremely
large, since one of the design points is located close to the global optimum,
which will influence the tendency of the second-order model to decrease in this
direction. However, the estimated RSM factor levels of the optimum are located
further from the true optimum compared to the results from the GP modelling
and more sequential improvement steps would be necessary to find the true
optimal settings when starting from the optimal values determined by RSM.

Table 4.4: Results of Ackley simulation study for RSM, median of Euclidean
distance true-estimated optimum, interquartile range of Euclidean distance.

SNR Median of dED,RSM IQR
500 0.7071 0
100 0.7071 0
10 0.7071 0

The IQR is zero even though the estimated optima can be quite distant from
the true optimum due to the fact that the estimated optima are located at
{−0.5;−0.5}, which is logical as all models are influenced by the design and
will tend to decrease in this direction.
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Ordinary Least Squares Regression On The Space-Filling Design

When applying RSM and examining the placement of the design points of the
CCD (figure 4.6), it was already expected that the model would fail to capture
the optimum. A valid question would be to test whether OLS regression would
perform better if a design is used that spreads the design points more uniformly
throughout the experimental domain, such as the space-filling LHC design used
for GP modelling. For this purpose, the same second-order models as used
for the CCD are built for the LHC designs. The Euclidean distance from the
estimated to the true optimum dED,OLS and the related IQR’s are reported in
table 4.5.

Table 4.5: Results of Ackley simulation study for OLS modelling with LHC
designs, median of Euclidean distance true-estimated optimum, interquartile
range of Euclidean distance.

SNR Median of dED,OLS IQR
500 0.0639 0.0598
100 0.0789 0.0663
10 0.1670 0.2215

To assess the difference between the OLS and GP model built on the
same LHC design, the difference between the Euclidean distances to the
optimum dED,OLS −dED,GP is calculated for every LHC design and graphically
represented in figure 4.10. It can be seen from this figure that the difference in
OLS and GP modelling is not very large but that GP does offer an improvement
over OLS since the median of the distances is positive. A Wilcoxon Signed Rank
test [54] was executed to test whether the median of the differences was different
from zero and for the three SNRs it was concluded that they are statistically
significantly different from zero at the 0.01 significance level.

Furthermore, when looking at the IQR for both GP and OLS in table 4.3 and
table 4.5 it is clear that GP modelling offers less variability in the resulting
distance from the true optimum between the different LHC designs.
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Figure 4.10: Difference in Euclidean distances between OLS and GP models for
the Ackley simulation study.

4.4 Lab Scale Experiment

4.4.1 Bearing Test Setup

The bearing test setup is a lab scale setup developed by the department of
Mechanical Engineering at the KU Leuven to analyse the behaviour of rolling
element bearings subjected to highly varying loads. A detailed description of
the setup can be found in [72], only those settings relevant for the executed
experiment are detailed below.

To test the applicability of GP modelling on a practical setup, the following
problem was considered: a bearing is placed within the bearing housing and
rotated at a constant speed vset of 1000 rpm. A shaker applies a sinusoidal
dynamic axial load Fax,dyn,set with a frequency fax,dyn of 391 Hz. Besides,
static forces were applied in the axial (Fax,st) and radial (Frad,st) direction of
the bearing housing using air springs. The shaker inducing the dynamical loads
is voltage-controlled meaning that a constant voltage is applied to excite it.
Depending on the static forces applied to the bearing housing, the peak force
Fax,dyn generated by this dynamic excitation will change. To get an indication
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of the size of such a peak force, it was measured when Fax,st = 400 N and
Frad,st = 800 N, which resulted in a peak force of ∼69 N.

Due to the dynamic axial load, bearing displacement will happen within the
bearing housing. It was the interest of this experiment to find those input
settings (static forces) that maximize the bearing displacements so to find the
most problematic combination under the given conditions of dynamical load
and rotation speed.

Figure 4.11a shows the bearing setup with all relevant hardware whilst figure
4.11b shows where the forces relevant for this experiment are applied. The
bearing dynamics are measured using a capacitive sensor (Lion Precision Elite
Series CPL190) and the spectral amplitude at the excitation frequency of 391 Hz,
denoted by A391 , is used as an indicator for the bearing displacement. The
spectral amplitude was estimated using a Fast Fourier Transform (FFT) of the
data from the sensor. Table 4.6 presents the variables involved in the experiment
and whether they were included in the experiment as a factor (independent
variable), a response (dependent variable) or not taking into account (constants).

Table 4.6: Variables involved in the bearing setup and their role in the
experiment.

Name Role Setpoint or exp. range
Fax,st factor [0; 800] N
Frad,st factor [0; 1600] N
fax,dyn,set constant 391 Hz
vset constant 1000 rpm
A391 response -

4.4.2 Experimental Procedure

The two factors that were to be varied are the axial and radial static loads,
Fax,st and Frad,st while the response under investigation is the peak amplitude
A391 at the dynamic shaker excitation frequency which was set at 391 Hz.

Since the response was expected to be highly non-linear an LHC design of
25 sample points was constructed, which was the maximum amount of design
points that could be measured within the allotted timespan for model-building.
The experimental domain of interest was bounded, as presented in table 4.6.
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(a) (b)

Figure 4.11: Schematic representation of the bearing setup: (a) a representation
of the complete setup, (b) Detail of bearing housing and applied forces for this
experiment, images courtesy of the department of mechanical engineering, KU
Leuven, Belgium.

The generated settings from the LHC design were rounded towards the nearest
integer as the setup can only accept integer force values for the set-points of the
air springs. After new settings are applied to the setup the machine runs for 60
seconds to remove any transient behaviour that might result from the change
of the forces. After this stabilization period the displacement sensor measures
the axial displacement for 10 seconds at a sample frequency of 10 kHz. On this
raw signal an FFT is performed and the performance indicator A391, defined as
the power (energy content) at 391 Hz is extracted.

Using the 25 responses measured at the LHC design points, a GP model with a
nugget parameter is fitted using the JMPr software. As in this case the real
optimum is not known, the assessment of the quality of this optimum cannot
be investigated by looking at the median distance between the estimated and
real optimum. Instead, this example is used to show the proposed strategy
of applying EVOP as a next step. All estimated parameters from the EVOP
program are also rounded towards the nearest integer for the reasons mentioned
above.

4.4.3 Evolutionary Operation

In this real-life example, the GP modelling was followed by the sequential
improvement step to pinpoint the true optimum. Evolutionary Operation was
chosen as the sequential improvement method.

For each EVOP phase, a replicated 22 full factorial is used as the statistical
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design, resulting in 2 · 22 measurements per phase. The design points are
replicated since it is expected that this increased sample size is necessary to
have a proper estimate of the noise. Based on the full factorial design, a main
effects regression model is fitted as equation 4.15.

y = β0 +
k∑
d=1

βdxd (4.15)

where β0 denotes the intercept and the βd’s denote the regression coefficients. A
stepwise procedure, in which all model terms were included in the starting model,
with a penter = 0.05 and premove = 0.1 was adopted in order to determine the
most appropriate model on which the direction in which to move is calculated
using the partial derivatives. This direction is then normalized such that the
step length δEV OP is constant as determined by equation 4.16.

δEV OP =
√
dx2

axial · faxial + dx2
radial · fradial (4.16)

Where faxial and fradial are binary operators that are one when the
corresponding main effect in the regression model is included and zero when the
corresponding main effect is not included at the end of the stepwise regression.
If the stepwise regression omits all terms from the main effects model the
subsequent phase is stationary (i.e. δEV OP = 0).

A new full factorial is placed at distance δEV OP from the centre of the previous
design and this procedure is repeated sequentially, as explained in the previous
chapters.

The starting point of the EVOP improvement is the centre of the first full
factorial design and coincides with the estimated optimum from the GP model.
The design points for the first phase are then placed at ±0.5dxd from this
point with dxd the factorstep, being the distance between the cube points of
the factorial design in the d-th dimension or factor. For the bearing setup the
settings, the factorsteps were chosen to be dxaxial = 16 N and dxradial = 8 N.
This implies that the cube points are placed ±8 N for the radial force and ±5 N
for the axial force around the coordinates for the reference condition. The
reference condition itself is not measured and no centerpoints are used in the
factorial designs. The practical limitation in this real-life example was the
execution of ten phases (80 measurements) at most.
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4.4.4 Results

Gaussian Process Modelling

A GP model is built from the data of the 25-point LHC design to estimate which
combination of static forces results in the largest bearing displacement. In figure
4.12 the GP model is plotted which shows that a large radial force and a medium
axial force give the largest bearing displacement. The estimated settings for
maximal bearing displacement were Frad,st = 1566 N and Fax,st = 320.95 N, and
coincide with the experience of the mechanical engineers. This last value was
rounded to 321 N since the setup can only accept integers. These settings were
used as the starting point for a sequential improvement method to determine if
they are the actual maximum settings of the setup.
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Figure 4.12: GP model bearing setup.

Online Improvement Of Optimal Factor Levels

The estimated settings for maximal bearing displacement are used as the starting
point for the EVOP improvement step. Table 4.7 details the coordinates of
the centerpoint of each phase, together with the number of phases executed at
this location and the maximum measured value of the performance indicator
A391 at the design points. The full improvement is plotted in figure 4.13 on the
contour lines of the estimated GP model. Executing the improvement increased
the performance indicator A391 by 7.5%.
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Figure 4.13: EVOP improvement from estimated GP optimum.

Table 4.7: Centerpoints of consecutive EVOP phases for the bearing setup
improvement.

Frad,st Fax,st # phases maxA391

1566 321 1 156.961
1584 313 2 158.734
1585 323 4 164.584
1585 331 1 165.845
1585 339 2 168.739
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During EVOP, every decision to move resulted in an increase in the performance
indicator. However, in between the moves, there are some stationary phases
which imply that the signal (underlying slope of the response) was too weak
when compared to the noise present so that the power to detect the direction
of improvement was low. In such cases, it is advisable to increase the amount
of replication (the sample size on which the model is based). The relative high
amount of measurement noise can be attributed to the control of the air springs
that are used in the setup to generate the static forces. A discussion with the
engineers revealed that those springs are hard to adjust so that the repeatability
in generating those forces is quite low.

Looking at the improvement path it can be seen that the endpoint of the
improvement is quite close to the estimated optimum. The radial force Frad,st
was increased by 19 N and the axial force Fax,st with 18 N compared to the
estimated GP optimal values, which is a shift of ∼ 1.2% for the former and
∼ 2.3% for the latter, compared to the full experimental range of the factors.

4.5 Conclusions

Space-filling designs combined with Gaussian Process modelling to determine
the region of the global optimum as a starting point for sequential improvement
methods such as Evolutionary Operation was proposed in cases where the
experimenter has no prior information about the location of the optimum. By
applying the proposed approach, it was shown that even in noisy situations the
region of the optimum was found with a limited number of measurements.

This method allows for fast exploration of the entire experimental domain after
which production can be started in a feasible candidate point. By implementing
an OSPI method, the response can then be sequentially improved during the
production process. It will prove most effective in processes in which the
underlying process model is (expected) to be highly non-linear as the broad
span of models covered by Gaussian Process modelling can deal with such
non-linearities.
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5 A Comparison Of Evolutionary
Operation And Simplex

5.1 Introduction

The era when Online Sequential Process Improvement (OSPI) was introduced
was characterized by the limited availability of sensor technologies (to “sense”
the process status) and virtually non-existent computer power (to process
the information). As a result the first proposed OSPI method, Traditional
Evolutionary Operation (TEVOP), is based on very simple underlying models
and simplified calculations so that the process owner can easily compute it
by hand. However, due to this manual procedure TEVOP was only applied
on a low frequency basis, e.g. the improvement was run only once for each
production lot to compensate for inter-lot variability.

The introduction of the OSPI way of thinking did also inspire other researchers
to search for alternatives that adhered to the framework of OSPI such as Basic
Simplex. Although the Basic Simplex methodology has been advocated as
a technique for process improvement, the literature that deals with practical
examples is rather scarce, as was shown in chapter 2. In general, Simplex
did only modestly impact the process industry, but had a huge impact on the
optimization of numerical functions. This is mainly due to the work of Nelder
& Mead [109] who adapted the basic Simplex scheme to allow for variable
perturbation sizes. Although efficient in numerical optimization this Variable
Simplex procedure is not suited for tracking the optimum of real-life processes

The results section was published in:
K. Rutten et al. “A Comparison of Evolutionary Operation And Simplex For Process
Improvement”. In: Chemometrics and Intelligent Laboratory Systems 139 (Dec. 2014),
pp. 109–120. doi: 10.1016/j.chemolab.2014.09.011
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due to several reasons. As mentioned earlier in this dissertation, perturbations
should be small enough so that the risk of producing nonconforming products
is minimized. On the other hand, due to the noise that is inherent to practical
experimentation, the perturbation size cannot be too small since the Signal-to-
Noise Ratio (SNR) will be insufficient in such a case to pinpoint the direction
of the optimum. Because of those drawbacks, reports on the application of
Variable Simplex on real-life industrial processes are very limited. Variable
Simplex is most often used on numerical optimization studies, an example of
which is the optimization of injection moulding on a finite element model [49].
Usually, this method is used in research and development where it is relatively
safe to make large changes in the levels of the factors [111]. Therefore it is not
a valid technique for use in full scale processes.

Since the introduction of OSPI, the way processes are monitored changed
completely. Modern processes are sampled at high frequency using multiple
sensor technologies; making the original (manual) EVOP and Simplex schemes,
which were typically applied in case of only two or three factors, unfeasible.
This complicated experimental setting is largely compensated by the increased
computation power making both methods interesting for modern processes.

Yet, to the author’s best knowledge, there is no systematic publication discussing
EVOP and Simplex in the modern setting, i.e. in higher (k > 3) dimensions.
The only article found where examples of both methods appear is written by
Lowe [90] where advantages and disadvantages for both EVOP and Simplex are
given, elucidated with different examples. The most distinct advantage listed
for EVOP is that it can be used for either quantitative or qualitative factors.
And the most marked disadvantage of EVOP that is listed is the fact that the
inclusion of many factors would incur too many measurements and make the
experimentation prohibitive. For Simplex a clear advantage is the simplicity
of the calculations and the fact the only a minimal number of experiments
need to be performed to move through the experimental domain. A distinct
disadvantage of the method is that wrong moves can be made more easily in
the presence of noise. However, the paper does not compare the two methods
with each other on the same case. Instead, the conclusions drawn are based
on personal experience only. According to Lowe, process supervisors do not
see the additional benefits of the methods since they are not familiar with the
underlying concepts and want to see a significant improvement as quickly as
possible, while these methods aim to improve a process by small perturbations
only to ensure no non-conforming products are manufactured.

Although two main applications of the methodology exist, being: (1) improving
a stationary process by finding the direction of the optimum and (2) tracking
the optimum of a non-stationary process (i.e. a process that drifts in time),
this chapter is restricted to assessing and to comparing the performance of
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EVOP and Simplex for situations with different dimensions (up to 8 factors),
perturbations sizes and noise levels on stationary processes only. An in-depth
insight in the methodologies is presented and recommendations about when to
use which method are given. The comparison is based on a simulation study
to gain deeper insight in the strengths and weaknesses of both methods under
varying conditions that cannot be replicated on real processes since the number
of factors and the amount of noise in the process are known to be important
and, in general, cannot be changed independently and in a controlled way on a
real process.

For this comparison the automated, EVOP procedure that was developed in
chapter 3 will be used.

5.2 Materials & Methods

EVOP and Simplex are compared based on a simulation study with multiple
scenarios. Main settings studied are (1) the perturbation size in every dimension,
which will be labelled factorstep dxd; (2) the signal-to-noise ratio (SNR) and
(3) the dimensionality k (number of factors) of the problem. The quality of
the improvement is quantified using several criteria, such as the number of
measurements that are needed to attain a well-defined optimal region (see
further), the interquartile range (IQR) as a measure for the repeatability (see
further) and the number of cases the optimal region is reached (“success rate”).

5.2.1 Underlying Model

As mentioned higher, the tested methods are developed especially to seek/track
the optimum when the process is already operating near this optimum as
determined during prior (offline) experimentation. As a result, they are not
designed to optimize multimodal processes with multiple local optima when no
prior information about the region of the global optimum is available. Based on
this philosophy the chosen underlying model has only one global optimum in
the considered design space, so that issues of being trapped in local optima are
excluded. A quadratic function, defined by equation 5.1, was chosen to describe
the region of the optimum.

yi = 200− 128
k∑
d=1

x2
d + εi (5.1)
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In this equation yi is the i-th response variable, xd (d = 1, . . . , k) the k factors
and a random error term ε. The optimal response for any number of inputs k is
200 and is located at {0, 0, . . . , 0}. The number of factors used in the simulations
ranges from 2 to 8. For each factor the experimental domain was bounded by
[−1; 1]. It was opted not to include interactions in the underlying model since
a higher dimensionality enables a higher number of possible interactions (two-
factor, three-factor, . . . , k-factor). Evidently, it is not representative to take all
possible interactions into account, raising the question which number of them to
include, and whether only two-factor interactions should be considered. Besides,
also the size and direction of all interactions would need to be selected as they
will significantly impact the model behaviour. Such a study would completely
lack focus on dimensionality and is therefore avoided here. Furthermore the
effect hierarchy principle [159] states that interactions (especially higher order
interactions) are generally of less importance than the main effects.

The quadratic coefficients are set at the arbitrary value of 128, but its influence
is standardized using a relative amount of noise present in the data through
the use of the SNR comparing the signal (∼ coefficients) to the noise (∼ ε), as
is explained in the following section.

5.2.2 Simulation Settings

Three settings are controlled in the simulation study: the SNR to control
the noise level relative to the amount of information present, the size of
the perturbations which are induced by setting the factorstep dxd and the
dimensionality k of the problem. The definition of these three settings is given
below, as well as other important performance characteristics.

Signal-to-Noise Ratio: In order to investigate the influence of the noise level,
a relative measure for noise is used. This signal-to-noise ratio, which is often
used in engineering disciplines, is defined as the magnitude (variance) of the
noise-free signal (sometimes referred to as the RMS value) divided by the power
(variance) of the noise, and is presented in equation 5.2 (which is the same as
equation 4.14 and is repeated here for ease of reference).

SNR =
1

N−1

N∑
i=1

(yi,σ=0 − ȳσ=0)2

1
N−1

N∑
i=1

(yi − yi,σ=0)2
(5.2)
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The SNR was set at 8 discrete values being ∞ (no noise), 1000, 500, 250, 100,
50, 25 and 10.

Factorstep: The factorstep dxd represents the initial perturbation in every
dimension for both EVOP and Simplex and will be schematically presented in
section 5.2.4 where the Simplex and EVOP starting point is discussed. Since all
dimensions were scaled to the same range (see higher), the factorstep in every
direction is taken equal so that the subscript d is omitted. The factorstep dx
was fixed at three discrete values, being 1%, 5% and 10% of the experimental
range for each variable.

Dimensionality: In order to investigate the properties of EVOP and Simplex as
a function of the dimensionality of the problem, k was varied between 2 and 8.

Number of repetitions: In order to have a clear view on the performance of both
methods in the presence of noise at each combination of SNR, factorstep and
dimensionality the simulation was performed 30 times for each method to be
able to calculate the median value and the IQR which are used as performance
indicators for the methods (see later) within a reasonable time. This leads to a
total of number of improvements of:

2 (methods)× 8 (noise-levels)× 3 (factorsteps)× 7 (dimensions)

× 30 (repetitions) = 10, 080

Starting point: The coordinates of the starting point xstart for all simulations
were kept fixed according to equation 5.3.

{xstart,d}kd=1 = lstart√
k

(5.3)

with k as defined higher and lstart the radius of the chosen contour line. In
this way the starting point is located at the same contour line regardless of the
dimensionality. The radius lstart was chosen to be 0.95 in all simulations thus
fixing the noise-free initial response at 84.48. The exact implications of the
starting point for EVOP and Simplex are explained further for each method
separately.

Stopping criterion: Several stopping criteria are used in literature and have a
large impact on the number of measurements and success rates. Since there
is no equivalent stopping criterion for EVOP and Simplex the introduction of
such different criteria would have a large impact on the comparison. Since the
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interest is in comparing the two methodologies, it was opted not to use any
(subjective) stopping criterion in this comparison study, but only to define the
maximum number of measurements to complete. This number is chosen to
be 51, 200, which is large enough to ensure that a simulation has a reasonable
chance of reaching the optimum in all scenarios. This number is based on the
full factorial design for k = 8, which has the largest sample size (nT = 256). In
that case, 200 phases are allowed to reach the optimum, which is approximately
4 times the required number if the optimal path was followed.

Success rate: A “success” was defined as an improvement that resulted in
attaining a noise-free response value which is equal to or larger than 95% of the
theoretical optimum (in this case 190). When this level was not reached using
the maximum number of measurements it was labelled “failure”.

Median number of measurements: The median of the 30 repetitions for each
simulation setting is used as a measure for the number of measurements needed
to reach the region of the optimum.

Interquartile Range (IQR): The IQR of the 30 repetitions for each simulation
setting is used as a measure for the stability of the method to reach the region
of the optimum, as it gives a clear indication of the amount of randomness
involved in the followed path. The smaller the IQR, the less randomness is
involved.

5.2.3 Sequential Improvement Methods Used

Both Simplex and EVOP were implemented in this study and will be detailed
below. For Simplex, a capital “S” will be used to denote the method, whereas
lower case “s” will be used to denote the geometric figure, as before.

Simplex

Basic Simplex has been implemented as described in chapter 2. The initial k+ 1
vertices were chosen according to the tilted method [143, 155]. A previous study
[143] has indicated that orientation of the initial simplex (i.e. same construction
procedure and rotating the simplex around its point of gravity) has an effect
on the performance, but Spendley et al. illustrated that this effect is negligible
when noise is present and when k > 2. The tilted method was chosen since a
study by Öberg [110] has shown that this method performs better than the
other, classically used, corner method to select the vertex points. This was also
observed here (results not shown).
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For the tilted algorithm the initial vertex coordinate is given as xco =
{xco,1, xco,2, . . . , xco,k}, which is the only vertex that needs to be chosen by the
experimenter, all other vertices are calculated by the rules set forth for the
tilted simplex in chapter 2.

In this simulation study the boundaries are simple single-factor boundaries.
This gives a feasible region in the factor space which lies within a k-dimensional
hypercube. To ensure that no experiments outside of the boundaries are
performed, the Simplex procedure will allocate an infinitely bad response to
points outside of the domain, forcing the procedure to reflect back inside the
hypercube. These points outside of the cube are phantom measurements,
meaning they do not require experimentation effort; they are set by the Simplex
procedure itself.

Evolutionary Operation

Evolutionary Operation was implemented as described in chapter 3 and for each
EVOP phase, a 2k full factorial design is used as the statistical design, as is
common in the classical interpretation of EVOP.

Based on the full factorial design, a main effects regression model is fitted.
The fact that only a main effects model (and not the possible interactions)
are considered, results from the fact that the direction of improvement is
calculated from the centre of the design, which was implemented in coded units,
as explained in chapter 3.

A stepwise procedure, in which all model terms were included in the starting
model, with a penter = 0.05 and premove = 0.1 was adopted in order to
determine the most appropriate model on which the steepest ascent deltas
(β) are calculated using the partial derivatives. This vector of steepest ascent
deltas is then normalized to δEVOP such that the step size is always constant.

To ensure that no experiments fall outside the considered hypercube the
procedure set forth in chapter 3 was implemented: If a calculated steepest
ascent delta for a dimension would cause a new EVOP phase to fall outside the
experimental region, the method is forced to traverse alongside the border of
the experimental domain by setting the steepest ascent delta to zero for that
dimension.
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5.2.4 Definition Of The Starting Point For EVOP And
Simplex

For EVOP, the starting point xstart will refer to the center of the first full
factorial design, so that the first design points are placed at ±0.5 · dx from this
point (see figure 5.1). For the Simplex approach, the initial corner point xco

was defined as {xco,d}kd=1 = {xstart,d − 0.5 · dx}kd=1 so that the initial simplex
vertices lie within the same region as the EVOP points, as illustrated in figure
5.1 for two factors.

dx1

dx2
xstart

Figure 5.1: Initial EVOP (dashed line) and Simplex (full line) design.

5.2.5 Definition Of The Step Size

For EVOP, the vector including the step sizes in each dimension δEVOP =
(δEV OP,1, . . . , δEV OP,k) consists of the normalized steepest ascent deltas in
every dimension. This vector δEVOP determines the distance between the
corresponding points of two consecutive EVOP phases. The step size was fixed
by equation 5.4.

δEV OP = ||δEVOP|| = dx ·
√
fa (5.4)

With fa the number of active effects resulting from running the stepwise
regression model.

In analogy with EVOP, also for Simplex, the step size δSimplex is calculated
based on the factorstep dx and is defined as the Euclidean distance between
the worst point w (that will be omitted in the subsequent Simplex step) and
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its reflection r (the point to measure in the subsequent step, see figure 2.8a for
the 2D example) as presented in equation 5.5.

δSimplex = ||r−w|| (5.5)

With r and w the coordinate vectors of the reflection point and the point
labelled as worst respectively. Since the initial simplex is a regular polygon
every reflection also results in a regular polygon with the same hypervolume
and geometry. As a result the step size is the same, irrespectively of the rejected
vertex w, (but still a function of the dimensionality) as was already illustrated
in chapter 2 (figure 2.8b).

5.3 Results & Discussion

5.3.1 Visualisation Of The Effect Of The Signal-To-Noise
Ratio

In order to have a clear understanding of the different signal-to-noise ratios that
were chosen in this study, the noise-corrupted response for several Signal-to-
Noise Ratios were plotted for the two-factor model (figure 5.2). The noise effect
becomes clearly visible when the SNR value drops below 250, whereas for an
SNR of 1000 the noise has only a marginal effect.

5.3.2 Comparing Step Sizes

As mentioned in 5.2, the EVOP step size δEV OP is determined by the active
factors included in the reduced linear model. As a consequence the maximum
step size is obtained when all factors are active and is defined solely by the
dimensionality of the problem and the size of the factorstep. On the contrary,
the Simplex step size δSimplex is completely defined by the initial simplex that
is used. Since it is a regular polygon, the step size remains constant during an
improvement and is also solely dependent on the dimensionality of the problem,
as the constants p and q of the tilted algorithm (see 2) only depend on the
dimensionality for a given factorstep.

Given the settings that are applied in this study the maximum EVOP step
size is smaller than the Simplex step size for two dimensions, whilst for higher
dimensions the reverse holds. As the dimensionality of the problem increases,
the EVOP step size will increase while the Simplex step size will decrease
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Figure 5.2: Plot of several signal-to-noise ratios for two factors: (a) SNR =∞,
(b) SNR = 1000, (c) SNR = 250, (d) SNR = 100, (e) SNR = 50, (f) SNR = 10.

slightly. Figure 5.3 shows this behaviour as a function of k for one noise-free
improvement, for which all factors are active.

One can argue that the larger EVOP step size for high dimensions gives the
method an unfair advantage to Simplex, but the cost of one additional EVOP
phase is much higher than one Simplex phase. Indeed, one Simplex phase
augments the number of measurements by one, whereas 2k measurements are
added during each EVOP phase, resulting in a much higher experimental cost.
In addition, while the Simplex procedure is always forced to move to a new
point based on the heuristic rules, this is not the case for the EVOP procedure.
If at least one term is found to be significant by stepwise regression, it results
in moving the full factorial; if no terms are found to be significant (due to noise
or to approaching the optimum at which the derivatives go to zero), the step
size equals zero ( “stationary phase”). In the noise-free case depicted in figure
5.3, EVOP always finds significant terms in the model if it is not yet at the
optimum, thus no stationary phases are performed.
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Figure 5.3: Step sizes for EVOP (X) and Simplex (O) with SNR = ∞: (a)
dx = 5% and (b) dx = 10%.

5.3.3 Comparison Of The Number Of Measurements

Table 5.1 and 5.2 provide an overview of the simulation results with respect
to the number of measurements that are needed to reach the region of the
optimum. Relevant information is shown for each combination of the factorstep
dx (expressed as a percentage of the experimental range), for each SNR and for
each dimensionality k. All values in these tables have been rounded towards
plus infinity for readability. As stated before; the median is presented as a
measure of the location of the number of measurements necessary to reach the
optimal region, while the interquartile range is a measure for the stability of the
method. The noise-free case will be discussed first as this is a special scenario
representing deterministic simulations. Afterwards, the effect of each of the
changed settings will be discussed in detail.

Results For Deterministic Simulations

A situation where no noise is present (SNR = ∞) is never found in practical
(physical) systems, but is often present when dealing with computer simulations
or analytical functions. In such cases, Simplex always outperforms EVOP in
terms of the number of measurements that are needed to reach the region of the
optimum (see table 5.1 and 5.2). Due to the higher number of measurements



110 A COMPARISON OF EVOLUTIONARY OPERATION AND SIMPLEX

Ta
bl
e
5.
1:

EV
O
P

sim
ul
at
io
n
da

ta
[m

ed
ia
n
of

nu
m
be

r
of

m
ea
su
re
m
en
ts

to
re
ac
h
op

tim
um

|i
nt
er
qu

ar
til
e
ra
ng

e
(n
um

be
r

of
tim

es
op

tim
um

wa
s
re
ac
he
d)
].

N
u

m
b

er
of

F
ac

to
rs

d
x

S
N

R
2

3
4

5
6

7
8

1
%

∞
10

0
|

0
(3

0)
16

0
|

0
(3

0)
28

8
|

0
(3

0)
51

2
|

0
(3

0)
96

0
|

0
(3

0)
1,

79
2

|
0

(3
0)

3,
32

8
|

0
(3

0)
1,

00
0

64
2

|
16

8
(3

0)
93

6
|

16
0

(3
0)

1,
34

4
|

30
4

(3
0)

2,
04

8
|

25
6

(3
0)

2,
88

0
|

51
2

(3
0)

4,
35

2
|

64
0

(3
0)

6,
14

4
|

76
8

(3
0)

50
0

87
0

|
25

6
(3

0)
1,

27
2

|
30

4
(3

0)
1,

98
4

|
43

2
(3

0)
3,

07
2

|
67

2
(3

0)
4,

64
0

|
57

6
(3

0)
6,

52
8

|
76

8
(3

0)
9,

85
6

|
1,

28
0

(3
0)

25
0

1,
14

0
|

31
2

(3
0)

1,
71

6
|

35
2

(3
0)

2,
71

2
|

1,
00

8
(3

0)
4,

67
2

|
64

0
(3

0)
6,

84
8

|
1,

21
6

(3
0)

10
,3

68
|

1,
28

0
(3

0)
13

,8
24

|
2,

56
0

(3
0)

10
0

1,
79

8
|

55
6

(3
0)

3,
00

8
|

1,
06

4
(3

0)
4,

69
6

|
1,

44
0

(3
0)

7,
05

6
|

2,
08

0
(3

0)
11

,6
16

|
2,

30
4

(3
0)

17
,7

92
|

3,
32

8
(3

0)
25

,2
16

|
5,

12
0

(3
0)

50
2,

46
4

|
1,

01
2

(3
0)

3,
88

8
|

1,
54

4
(3

0)
5,

97
6

|
1,

74
4

(3
0)

11
,1

04
|

2,
52

8
(3

0)
16

,7
36

|
2,

88
0

(3
0)

24
,6

40
|

6,
78

4
(3

0)
35

,5
84

|
8,

06
4

(2
9)

25
3,

44
6

|
1,

37
2

(3
0)

5,
38

0
|

2,
40

0
(3

0)
9,

87
2

|
5,

23
2

(3
0)

16
,9

92
|

6,
24

0
(3

0)
22

,6
24

|
8,

06
4

(3
0)

39
,3

60
|

11
,0

08
(2

6)
46

,0
80

|
6,

08
0

(7
)

10
5,

41
6

|
2,

60
8

(3
0)

9,
17

6
|

6,
54

4
(3

0)
15

,5
20

|
8,

35
2

(3
0)

23
,9

36
|

9,
88

8
(2

9)
37

,0
56

|
9,

92
0

(2
0)

40
,7

04
|

11
,1

04
(5

)
/

5
%

∞
24

|
0

(3
0)

40
|

0
(3

0)
64

|
0

(3
0)

12
8

|
0

(3
0)

25
6

|
0

(3
0)

51
2

|
0

(3
0)

76
8

|
0

(3
0)

1,
00

0
42

|
12

(3
0)

40
|

0
(3

0)
64

|
0

(3
0)

12
8

|
0

(3
0)

25
6

|
0

(3
0)

51
2

|
0

(3
0)

76
8

|
0

(3
0)

50
0

52
|

24
(3

0)
48

|
16

(3
0)

64
|

16
(3

0)
12

8
|

0
(3

0)
25

6
|

0
(3

0)
51

2
|

0
(3

0)
76

8
|

0
(3

0)
25

0
64

|
32

(3
0)

56
|

16
(3

0)
80

|
16

(3
0)

16
0

|
32

(3
0)

25
6

|
0

(3
0)

51
2

|
0

(3
0)

76
8

|
0

(3
0)

10
0

98
|

40
(3

0)
84

|
32

(3
0)

14
4

|
48

(3
0)

24
0

|
96

(3
0)

32
0

|
64

(3
0)

51
2

|
12

8
(3

0)
1,

02
4

|
25

6
(3

0)
50

10
2

|
48

(3
0)

15
2

|
64

(3
0)

22
4

|
64

(3
0)

32
0

|
96

(3
0)

51
2

|
12

8
(3

0)
76

8
|

12
8

(3
0)

1,
02

4
|

25
6

(3
0)

25
12

0
|

76
(3

0)
19

6
|

12
0

(3
0)

31
2

|
14

4
(3

0)
49

6
|

22
4

(3
0)

64
0

|
19

2
(3

0)
1,

02
4

|
25

6
(3

0)
1,

79
2

|
51

2
(3

0)
10

17
2

|
68

(3
0)

37
6

|
26

4
(3

0)
53

6
|

35
2

(3
0)

81
6

|
41

6
(3

0)
1,

37
6

|
38

4
(3

0)
1,

79
2

|
51

2
(3

0)
2,

56
0

|
76

8
(3

0)

10
%

∞
12

|
0

(3
0)

24
|

0
(3

0)
48

|
0

(3
0)

64
|

0
(3

0)
12

8
|

0
(3

0)
25

6
|

0
(3

0)
51

2
|

0
(3

0)
1,

00
0

12
|

0
(3

0)
24

|
0

(3
0)

48
|

0
(3

0)
96

|
0

(3
0)

12
8

|
0

(3
0)

25
6

|
0

(3
0)

51
2

|
0

(3
0)

50
0

12
|

4
(3

0)
24

|
0

(3
0)

48
|

0
(3

0)
96

|
0

(3
0)

12
8

|
0

(3
0)

25
6

|
0

(3
0)

51
2

|
0

(3
0)

25
0

16
|

12
(3

0)
24

|
0

(3
0)

48
|

0
(3

0)
96

|
0

(3
0)

12
8

|
0

(3
0)

25
6

|
0

(3
0)

51
2

|
0

(3
0)

10
0

20
|

12
(3

0)
24

|
8

(3
0)

48
|

0
(3

0)
96

|
0

(3
0)

12
8

|
0

(3
0)

25
6

|
0

(3
0)

51
2

|
0

(3
0)

50
28

|
12

(3
0)

32
|

16
(3

0)
48

|
0

(3
0)

96
|

0
(3

0)
12

8
|

0
(3

0)
25

6
|

0
(3

0)
51

2
|

0
(3

0)
25

36
|

12
(3

0)
44

|
16

(3
0)

64
|

32
(3

0)
96

|
32

(3
0)

12
8

|
64

(3
0)

25
6

|
0

(3
0)

51
2

|
0

(3
0)

10
60

|
44

(3
0)

76
|

40
(3

0)
12

8
|

64
(3

0)
19

2
|

96
(3

0)
25

6
|

12
8

(3
0)

38
4

|
25

6
(3

0)
51

2
|

25
6

(3
0)



RESULTS & DISCUSSION 111

Ta
bl
e
5.
2:

Si
m
pl
ex

sim
ul
at
io
n
da

ta
[m

ed
ia
n
of

nu
m
be

ro
fm

ea
su
re
m
en
ts

to
re
ac
h
op

tim
um

|i
nt
er
qu

ar
til
e
ra
ng

e
(n
um

be
r

of
tim

es
op

tim
um

wa
s
re
ac
he
d)
].

N
u

m
b

er
of

F
ac

to
rs

d
x

S
N

R
2

3
4

5
6

7
8

1
%

∞
79

|
0

(3
0)

11
4

|
0

(3
0)

15
7

|
0

(3
0)

20
6

|
0

(3
0)

25
7

|
0

(3
0)

31
3

|
0

(3
0)

37
3

|
0

(3
0)

1,
00

0
44

9
|

1,
24

8
(3

0)
34

,0
64

|
26

,7
38

(1
2)

/
/

/
/

/
50

0
2,

94
5

|
2,

48
9

(2
3)

/
/

/
/

/
/

25
0

12
,4

39
|

28
,2

28
(1

4)
/

/
/

/
/

/
10

0
/

/
/

/
/

/
/

50
/

/
/

/
/

/
/

25
/

/
/

/
/

/
/

10
/

/
/

/
/

/
/

5
%

∞
17

|
0

(3
0)

26
|

0
(3

0)
34

|
0

(3
0)

45
|

0
(3

0)
55

|
0

(3
0)

64
|

0
(3

0)
77

|
0

(3
0)

1,
00

0
17

|
0

(3
0)

28
|

2
(3

0)
43

|
7

(3
0)

83
|

30
(3

0)
14

3
|

44
(3

0)
27

9
|

24
1

(3
0)

94
8

|
1,

04
5

(3
0)

50
0

17
|

0
(3

0)
31

|
7

(3
0)

70
|

20
(3

0)
18

1
|

20
8

(3
0)

47
2

|
51

3
(3

0)
2,

48
7

|
5,

76
1

(2
9)

8,
22

1
|

11
,4

06
(2

7)
25

0
17

|
3

(3
0)

44
|

25
(3

0)
14

2
|

13
5

(3
0)

72
9

|
1,

40
0

(3
0)

2,
46

3
|

5,
08

2
(2

9)
14

,6
93

|
16

,1
68

(2
3)

27
,6

13
|

16
,8

07
(5

)
10

0
22

|
10

(3
0)

11
6

|
18

8
(3

0)
83

3
|

2,
00

3
(2

8)
5,

74
7

|
14

,7
42

(2
2)

35
,4

57
|

24
,8

19
(9

)
/

/
50

35
|

40
(3

0)
31

5
|

95
6

(3
0)

6,
15

7
|

10
,5

76
(2

5)
27

,6
63

|
13

,0
47

(3
)

/
/

/
25

78
|

28
3

(3
0)

2,
85

5
|

9,
42

2
(2

7)
19

,5
53

|
26

,0
27

(8
)

29
,9

02
|

0
(1

)
/

/
/

10
19

5
|

1,
33

3
(2

7)
19

,4
16

|
15

,0
26

(1
2)

/
/

/
/

/

10
%

∞
11

|
0

(3
0)

15
|

0
(3

0)
19

|
0

(3
0)

23
|

0
(3

0)
30

|
0

(3
0)

35
|

0
(3

0)
40

|
0

(3
0)

1,
00

0
11

|
0

(3
0)

15
|

1
(3

0)
20

|
2

(3
0)

26
|

2
(3

0)
31

|
4

(3
0)

42
|

7
(3

0)
54

|
15

(3
0)

50
0

11
|

0
(3

0)
16

|
0

(3
0)

21
|

2
(3

0)
28

|
6

(3
0)

37
|

14
(3

0)
53

|
17

(3
0)

85
|

54
(3

0)
25

0
11

|
0

(3
0)

16
|

2
(3

0)
24

|
5

(3
0)

34
|

8
(3

0)
52

|
32

(3
0)

11
0

|
77

(3
0)

19
6

|
20

2
(3

0)
10

0
11

|
0

(3
0)

19
|

3
(3

0)
33

|
35

(3
0)

58
|

87
(3

0)
19

7
|

23
1

(3
0)

47
2

|
77

5
(3

0)
3,

37
9

|
3,

77
7

(2
9)

50
11

|
2

(3
0)

22
|

7
(3

0)
74

|
96

(3
0)

24
1

|
45

8
(3

0)
96

3
|

1,
25

7
(3

0)
3,

40
4

|
9,

83
9

(2
8)

15
,2

38
|

20
,6

01
(2

3)
25

15
|

9
(3

0)
45

|
40

(3
0)

20
0

|
42

2
(3

0)
83

4
|

2,
95

0
(3

0)
3,

26
3

|
9,

43
8

(2
8)

5,
84

5
|

17
,7

13
(1

1)
16

,1
80

|
21

,8
51

(5
)

10
24

|
35

(3
0)

84
|

40
2

(3
0)

1,
32

2
|

2,
40

9
(2

9)
11

,6
20

|
33

,6
29

(2
1)

21
,6

46
|

26
,2

23
(7

)
17

,6
19

|
13

,3
14

(2
)

/



112 A COMPARISON OF EVOLUTIONARY OPERATION AND SIMPLEX

in each single phase (one for Simplex but 2k for EVOP), the total number
of measurements required to reach the optimum is higher in EVOP since
both methods traverse along the fastest path possible. This difference is most
pronounced for high dimensions. For k = 8, EVOP will need 256 measurements
for each new phase, while Simplex still needs only one. An illustration of
the improvement path for k = 2 is given for each method in figure 5.4. This
superior behaviour of Simplex explains the huge success of it and especially its
derivative method, Variable Simplex or Nelder-Mead Simplex [109], in numerical
optimization.

The effect of the number of measurements for each phase is far more pronounced
than the relatively small increase in step size for EVOP (figure 5.3) which gives
EVOP a small advantage. In general, choosing a large factorstep seems a good
choice for lowering the number of measurements necessary to attain the optimal
region. However, choosing the factorstep too large can have negative effects: the
optimum might not be located accurately enough or might be missed completely,
should the method step over the optimal region. In the simulations discussed
in this paper, this did not occur, not even with the chosen maximal step size of
10%.
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0
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−1 −0.5 0 0.5 1
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2

Simplex
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Figure 5.4: 2-factor improvement for dx = 5% and no noise; optimum region
denoted by central black circle: (a) EVOP, (b) Simplex.
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Influence Of The SNR

As explained above, a measure for the robustness of the methods against noise
is the IQR of the number of measurements necessary to reach the region of
the optimum for all 30 repetitions and consequently, it quantifies the amount
of random behaviour in the improvement path. This random behaviour is
illustrated for a two-factor improvement in figure 5.5 where two repetitions of
EVOP and Simplex improvements are plotted for the same simulation settings
(the Simplex results are mirrored on the figure to show both EVOP and Simplex
simultaneously). Remark that in an EVOP improvement a stationary phase
can be encountered and that for Simplex new measurement points can coincide
with older points if one point is retained (incorrectly) as the optimal settings
long enough so that the method circles around it. This behaviour is not visible
in the figure so that the number of measurements denoted in the tables might
seem higher when compared to the plotted ones.
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Figure 5.5: EVOP 2-factor improvement, dx = 5%, SNR = 50, optimum region
denoted by central black circle, EVOP in top right part of figures, Simplex in
bottom left part: (a) First repitition, (b) Second repitition.

Increasing the noise-level (decreasing the SNR) while keeping the factorstep and
number of factors constant, shows that EVOP is more robust to the introduced
noise than Simplex. This can be validated by looking at the change in IQR for
the EVOP and Simplex method respectively. For example for dx = 5%, k = 6:
the IQR for EVOP stays zero until the SNR is lowered to 250, while the IQR for
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Simplex increases by 44 measurements between the deterministic case and the
simulations with SNR = 1000. Examining table 5.1 and 5.2, this observation
holds in general: the increase in IQR for EVOP is much slower than the increase
for Simplex, when keeping the dx and k constant and lowering the SNR.

The power to deal with noise in the EVOP method is contained in the fact that
the variation of the underlying process can be estimated by statistics because
more points are measured than there are parameters in the used model.

Influence Of The Number Of Factors k

Increasing the dimensionality k will increase the number of measurements
in every EVOP phase to 2k, while for Simplex only the number of initial
measurements (k+1) changes and in every following phase only one measurement
is used. The increase of measurements in every EVOP phase has a direct positive
impact on the robustness of the method against noise. Since a main effects
only model is fitted in every EVOP phase, only a small amount of the degrees
of freedom for error are used to estimate the model. When estimating a main
effects model, k + 1 degrees of freedom are necessary for the estimation of the
model terms, all other degrees of freedom are used for the error sum of squares.
For the two-factor case, there are three model degrees of freedom and only
one degree of freedom is left for the error sum of squares. Contrarily, for eight
factors there are nine model degrees of freedom and (256− 9) = 247 degrees of
freedom for the error sum of squares, increasing the power of the method for
higher dimensions. So inherently, EVOP as implemented in this study has a
higher power at higher dimensions—an observation that was also made when
discussing the influence of the SNR above.

As an example: for a fixed factorstep dx = 5% and fixed signal-to-noise ratio
SNR = 500, increasing the number of factors k, increases the power of EVOP
which results in a decrease in the IQR to zero when k > 5. It is important
to note that the IQR is expressed in number of measurements and that each
EVOP phase consists out of 2k measurements. Expressed in EVOP phases the
IQR decreases from six (k = 2), to zero (k > 5) phases.

When considering the same fixed SNR and dx for the Simplex methodology, the
IQR increases rapidly when the number of factors is increased. Simplex only
adds one measurement in every phase and estimates no model, using only the
acquired response values to decide on a new direction. It is for this reason that
the method performs poorly when the dimensionality of the problem increases
for the decision of the direction is solely based on k + 1 response values from
which a new direction is estimated, not taking into account noise or the relative
importance of each direction.
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The (statistical) power of the traditional full factorial design that forms the base
of EVOP is also its weakness and chapter 7 will investigate how statistical power
influences the EVOP improvement. While the power of the method increases
with increasing k, the experimental cost per phase increases with a power of
two. In practice, EVOP improvements with more than five variables become
too big to run. For instance, with six factors each EVOP phase will need 64
measurements and depending on the process this might make the improvement
so costly that its benefit does not outweigh the experimentation cost.

The EVOP procedure could be improved for higher dimensions by using more
efficient base designs. Since only a main effects model is estimated a fractional
factorial might be used to drastically reduce the number of measurements, e.g.
a full factorial for eight factors has 256 measurements while a fractional factorial
can have as few as 16 measurements, this is investigated in chapter 6. Also,
instead of running the classic EVOP where in each phase a full base design
is performed, a pure steepest ascent approach could be used, as described in
chapter 3. These are not the only improvements possible, and the whole field
of online improvement based on EVOP-related methods is largely unexplored
and deserves further attention, as the state of most contemporary processes is
quantified by online sensors that can give immediate feedback on the response.

Influence Of The Factorstep dx

The factorstep determines the spread of the points within the same phase, and
thus influences the differences in responses in this phase. How it affects this
difference depends on the underlying “true” model behaviour. Two extreme
situations are graphically shown for a simple one-variable quadratic function in
figure 5.6: figure 5.6a depicts a situation far away from the optimum and figure
5.6b a situation where the two design points are located at either side of the
optimum. Changing dx in the right hand case has no effect whatsoever on the
response due to the fact that the points are located symmetrically around the
optimum.

The left side figure shows a situation where the points are taken away from
the optimum. This is the practical situation at the start of the simulations.
Here, an increase in dx will result in an increase in the difference in response
values, giving the method more power to detect the right direction of process
improvement. Additional to the increased power, increasing the factorstep dx
also results in a lower number of phases that is required to step towards the
optimum, since the step size is proportional to the factorstep (see section 5.2.5).

When noise is introduced into the system the size of the factorstep plays an
important role in the ability to discriminate the difference in response values.
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Figure 5.6: Simple example of the effect of the factorstep dx: (a) “away” from
optimum, (b) around optimum.

For instance in the case of k = 2,SNR = 1000, an increase in dx decreases the
relative IQR, showing that there is less uncertainty in the path the method takes
towards the optimum. The interquartile range IQR is very large for most of the
simulations where dx = 1% (or impossible to calculate when the method never
reached the optimum in the 30 repetitions). This indicates that the factorstep
is too small and the movement of the methods, especially Simplex, is largely
driven by randomness (the method does not have the power to detect the effects,
it cannot discriminate the response values in a correct way).

It is concluded from the results shown in table 5.2 that one should take the
step size in Simplex large enough, relatively larger than for EVOP, to cope with
the noise in the system. Setting the factorstep dx requires more attention for
Simplex compared to EVOP, especially when the dimensionality increases. In
any case, the difference in the measured responses should be significantly larger
than the variation introduced by noise; otherwise the movement of the method
will be largely driven by randomness.

In table 5.2 these influences can be observed clearly. In the most extreme case
where dx = 1%, even the introduction of a small amount of noise increases
the number of measurements drastically. If dx increases, more noise can be
introduced before the number of measurements increases to the same values of
these related to a lower dx.

5.3.4 Overall Recommendations

In general, the Simplex method performs well for low-noise situations, and in
the two-factor case it also outperforms EVOP in many high-noise situations. It
is therefore not surprising that Simplex is used on lab scale equipment for the
improvement of HPLC setups [15, 144] where the number of factors remains
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limited, and SNR is typically high. For higher dimensionalities the increasing
freedom of directions in which to move will hamper Simplex performance
when dx or SNR decreases. For both methods the accuracy for estimating
the direction of improvement has to be high enough, either by increasing the
number of replications (not executed in this research since basic algorithms are
compared) or by increasing dx.

All changed simulation settings have an effect on the performance of the methods
and it is often the combination of these settings that is of importance. In figure
5.7 the comparison of both methods is visualized, where black denotes Simplex
outperformed EVOP and white for the reverse (gray denotes where both methods
performed poorly). For every combination of factorstep dx, number of factors
k and signal-to-noise ratio SNR it is visualized which of the two methods
performed best in terms of the combination of number of successes, median
number of measurements and interquartile range.
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Figure 5.7: Binary comparison matrices of the methods (gray means no success
for both methods).

This graphical comparison shows clearly that the factorstep is one of the most
important settings to determine which method should be used as it not only
affects the step size between improvement phases but also the ability to detect
the direction of the optimum. Simplex is more susceptible to changes in the
factorstep than EVOP. This can be clearly seen for dx > 1% where Simplex
only outperforms EVOP in low-noise cases, while increasing the factorstep will
allow Simplex to outperform EVOP in more cases.

However, the true effect of the factorstep on the response is often unknown at
the start of an improvement and can change during the improvement depending
on the behaviour of the underlying process. A change from the situation in
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figure 5.6a to something similar to figure 5.6b has a large impact on the effect of
the factorstep. Since this effect is unknown, the success of Simplex is uncertain
as it heavily relies on the effect of the factorstep (i.e. Simplex fails with small
changes in response values (determined by factorstep) and large noise-level).
Moreover, in online improvement one usually starts the improvement close to
the optimum and wishes to make the probability of unsaleable product as small
as possible, thus making the factorstep small. For these improvements, Simplex
is not suited since it performs poorly with small factorsteps. The decreasing
performance of the Simplex method when the factorstep decreases also explains
why the use of the Variable Simplex in production environments might be
unreliable: when the Variable Simplex method reaches a perceived optimal
region, it will start to shrink which will result in a decrease in the factorstep.
Apart from the smallest factorstep, the Simplex method performs quite well
for low-noise cases. Depending on dx, even in higher dimensionalities Simplex
outperforms EVOP if the noise-level is low enough.

This leads to the decision tree in figure 5.8 which allows a user to select the
most suitable method for his circumstance. Specific values in this tree are based
on this simulation study and should not be taken as a rule for a specific case.
Experience with the process under study should allow to make appropriate
assumptions for the decision rules.

The combined effect of factorstep and noise on the Simplex method is as expected
from previous publications, such as the 1974 paper by Lowe [90] which was
discussed in the introduction.

5.4 Conclusions

In this chapter the basic EVOP and Simplex sequential improvement methods
were compared in a simulation study. Three settings were varied in the
simulation: the signal-to-noise ratio SNR––which controls the amount of
random noise––, the factorstep dx––which quantifies the distance between
the initial measurement points––and the number of factors k. The simulation
data showcases the strengths and weakness of both methods, as well as the
importance of choosing an appropriate factorstep.

The factorstep dx is an essential parameter when performing the improvement,
not only because the step size is a function of the factorstep, but also because
it influences the robustness of the methods against noise. Choosing it too
small will drastically decrease the robustness of the method against noise, while
choosing it too large might not pinpoint the optimum accurately enough. In
the presence of noise, the EVOP method is more robust to changes in the
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Figure 5.8: Decision tree for which method to use.

factorstep than the Simplex method since it incorporates an estimation of the
noise present in the measurements. However, the effect of this setting is often
unknown at the start of the improvement which decreases the usability of the
Simplex method since its performance is tied in directly with the effect of the
factorstep. If the goal of the improvement is the determination of the optimal
region, and one expects that this region lies far away from the current operating
conditions, the factorstep will be chosen larger and Simplex is the best choice
for the improvement, otherwise EVOP is a safer choice that is more robust to
changes in the factorstep.

Overall, EVOP proved to be an attractive method to improve processes
characterized by a high amount of noise present in the system and/or a
dimensionality above three factors. The higher the dimensionality, the higher
the accuracy of estimation. As a disadvantage, a higher number of factors render
the number of measurements prohibitive when implementing the full factorial
design. Further research devoted to implementing more efficient designs in the
EVOP methodology, such as fractional factorial designs, should be performed to
make EVOP applicable to high dimensional cases. Additionally when no effect
is active during one complete unreplicated design (which is called a cycle), the
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same design can be repeated to get a better estimate of the process variance to
discern the effects. As such one improvement phase consists of multiple cycles.
In this study every phase consists out of only one cycle, resulting in multiple
stationary phases (no effect is detected). The power to combine these to increase
the accuracy of the estimated process variance is a powerful property of EVOP
that was not incorporated in this study since the basics of both methods were
to be compared.

Simplex, on the other hand, is the preferred choice when dealing with
deterministic or low-noise systems and is also very susceptible to changes
(for non-deterministic cases) in the factorstep setting, the smaller the factorstep
becomes, the more unsure one is about the accuracy of the Simplex methodology.
This implies that the implementation of Simplex needs more knowledge about
the process to accurately determine the factorstep or that the factorstep should
be chosen quite large. It is therefore a technique better suited to quickly reach
the region of the optimum, if one is far away from it, and then switch to EVOP
to accurately pin-point the optimum.

In a real process, the SNR is usually known and the influence of the factorstep
might be derived from process knowledge. This allows us to make an initial
determination about the method which is suited using the conclusions of the
previous paragraphs. The proposed decision tree in figure 5.8 can then be used
as a guideline to refine the design selection even more.



6 Efficient Designs For Evolutionary
Operation

6.1 Introduction

In the previous chapter, the performance of EVOP and Simplex was compared
based on a simulation study with up to eight factors. It was shown that Simplex
performed poorly when dimensionality increased, especially when there was
noise in the data (the practical setting). Because of this poor performance, even
with low noise levels, Simplex is not a valid option when further increasing the
dimensionality. EVOP on the other hand performed well but faces the drawback
that the number of measurements that are required for each phase becomes
prohibitive when one adheres to the full factorial design as a basis. Based on
those observations, this chapter aims at investigating the use of more efficient
designs in the framework of EVOP for higher dimensions.

Compact designs that still offer good properties can be generated by allowing
for some degree of confounding (see chapter 3) which was recognized by Sir
R.A. Fisher in 1926 [53]. It took some years before the main framework that
detailed the concept of confounding was firmly developed by Yates around 1935
[161]. This framework lead to the use of designs such as the fractional factorial
that—as the name suggest—considers only a fraction of the full factorial design.
Fractional factorial designs were first discussed in this context by Finney in
1943 [52]. Information on fractional factorial designs was set forth in chapter 3
and will not be repeated in this chapter.

In order to investigate the appropriateness of fractional factorials in the EVOP
context a simulation study was performed, much in analogy with the simulation
settings in the previous chapter. The dimensionality of the study is extended
to 16 factors, compared to eight factors in chapter 5. Simulations up to eight
factors will be referred to as the “low dimensional cases” and a comparison
between the full and fractional factorial will be made for these cases. For
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the high dimensional cases (k > 8), using a full factorial is not feasible, and
only results using the fractional factorial as a base design will be listed and
discussed. For interpretation purposes, the concept of statistical power will be
used extensively.

6.2 Materials & Methods

The designs were compared based on a simulation study with multiple scenarios.
In analogy with chapter 5, the main settings under study are: (1) the
perturbation size in every dimension (so for every factor), denoted factorstep
dxd; (2) the signal-to-noise ratio (SNR) and (3) the dimensionality k (number of
factors) of the problem. The improvement is quantified using the same criteria
that were previously used, being (1) the number of measurements that are
needed to attain the defined optimal region, (2) the interquartile range IQR
as a measure for the repeatability and (3) the number of cases in which the
optimal region is reached (“success rate”).

6.2.1 Underlying Model

The simulation model described by equation 6.1 is used, which is the same as in
chapter 5. By using the same model it is possible to compare the results of the
efficient designs with those of the previous full factorial simulations for “low” k.
The experimental domain for each factor was bounded by [−1; 1].

yi = 200− 128
k∑
d=1

x2
d,i + εi (6.1)

The number of factors k used in the simulations ranges from 4 to 16. This study
does not start from two factors—as the previous simulation study—since no
fractional factorial designs exist for two factors.

6.2.2 Simulation Settings

Three settings are controlled in the simulation study: the signal-to-noise ratio
(SNR) to control the noise level, the size of the perturbations which are induced
by setting the factorstep dxd and the dimensionality of the problem k. The
definition of these three settings was given in chapter 5. Most settings will be
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kept the same as in the previous study. For ease of reference, the used settings
are briefly summarized below:

Signal-to-Noise Ratio: The SNR was set at eight discrete values, being ∞ (no
noise), 1000, 500, 250, 100, 50, 25 and 10. To test whether the improvements
perform better than a random walk, additional simulations were performed in
which the simulation model was replaced by Gaussian white noise with µ = 0
and a chosen σ. These simulations are presented in the results under SNR = 0
as there is no signal, only noise.

Factorstep: The factorstep in every direction is taken equal so that the subscript
d is omitted. The factorstep dx was fixed at three discrete values, being 1%,
5% and 10% of the experimental range for each factor.

Dimensionality: In order to investigate the properties of EVOP as function of
the dimensionality of the problem, k was varied between 4 and 16.

Number of repetitions: The simulation was performed 30 times for each design
in order to have a clear view on the performance of both designs in the presence
of noise; at each combination of SNR, factorstep and dimension. This leads to
a total of number of simulations of:

2 (designs)× 8 (noise-levels)× 3 (factorsteps)× 7 (dimensions)

× 30 (repetitions) = 10, 080

Starting point: The starting point for all simulations was kept fixed at the
coordinates determined by equation 6.2. With k as defined higher and lstart
the radius of the chosen contour line, as before. The radius lstart was chosen to
be 0.95 in all simulations thus fixing the noise-free initial response at 84.48.

{xstart,d}kd=1 = lstart√
k

(6.2)

Stopping criterion: As before, it was opted not to use any (subjective) stopping
criterion in this comparison study, but only to define the maximum number
of measurements to complete. This number was chosen to be 51, 200 and was
chosen to allow the design with the largest sample size per phase (the full
factorial for k = 8) to use 200 phases.

Success rate, number of measurements needed, number of phases needed: A
“success” was defined as an improvement that resulted in attaining a noise-free
response value which is equal to or larger than 95% of the theoretical optimum.
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The data in the tables is presented in the median number of measurements
needed to have at least one of the noise-free responses of a phase within the
optimal region, median (N), and the median number of phases, median (N/nT )
with nT the sample size per phase.

6.2.3 Evolutionary Operation And Statistical Power

The implemented algorithm is the same as the one described in detail in chapter
3 and implemented in the previous simulation study. The definition of the step
size δEV OP is the same as in the previous simulations (equation 6.3).

δEV OP = ||δEVOP|| = dx ·
√
fa (6.3)

where fa denotes the number of active (significant) factors after using a stepwise
regression procedure with penter = 0.05 and premove = 0.1. As before, the
starting point xstart will refer to the centre of the first design, with the design
region bounded by {xstart,d ± 0.5 · dx}kd=1. Fractional factorials will be used as
the efficient designs in the simulations. A main effects model is fitted to the data
points and forms the basis of the calculation of the direction of improvement as
explained in chapter 3.

To easily distinguish between the designs, the design notation introduced in
chapter 3 is used. The two-level full factorial design is denoted by writing the
number of measurements as r2k with r the amount of replication (in these
studies one and thus omitted) and k the number of factors. The fractional
factorial design is denoted by writing the number measurements as r2k−pf

Res , the
number of measurements in such a fractional factorial are a 1/2pf fraction of the
full factorial measurements and the subscript that denotes the resolution Res
in roman numerals. For the fractional factorial designs used in the simulation
study, the resolution is minimum III.

Reducing the number of measurements (from full to fractional factorial) while
estimating the same model as we did for the full factorial, will also reduce
the number of degrees of freedom for error dfε. The reduced sample size and
thus dfε, will have a direct impact on the statistical power of the design. The
statistical power is the probability of accepting the alternative hypothesis when
the alternative hypothesis is true—that is, the ability of a test to detect an
effect, if the effect actually exists. In this case the power is the probability to
detect a main effect (of a certain size), given a certain noise-level (determined
by the SNR), if this main effect actually exists.



MATERIALS & METHODS 125

Consider the general test on a main effect coefficient βd from a regression
context:

H0 : βd = 0

Ha : βd 6= 0

For an orthogonal two-level design in coded units (the low factor level
transformed to −1 and the high factor level to +1), the power π of this test
is given by equation 6.4. In this equation TNC is the noncentral t-distribution
with degrees of freedom ν = nT − 1 − ft and φ the noncentrality measure; t
the t-distribution with degrees of freedom ν on which a two-sided test with
significance level α is executed. The degrees of freedom for the distributions
are defined by nT the total number of measurements and ft the number of
parameters in the estimated model (excluding the intercept), which in this case
is the number of active main effects fa when fitting a stepwise linear regression
model (ft = fa).

π =P {−t (1− α/2;nT − 1− ft) < TNC}

+ P {t (1− α/2;nT − 1− ft) > TNC} (6.4)

The noncentrality measure φ to detect a coefficient for a given coded (linear)
regression coefficient βd,c can then be written as equation 6.5 with σ the error
standard deviation.

φ = βd,c
σ√
nT

= √nT
βd,c
σ

(6.5)

As can be seen from equation 6.4 and 6.5, the statistical power to detect a
difference is directly related to the sample size nT , the amount of noise in
the system σ, the number of parameters in the model ft and the size of the
coded effect βd,c (size of the regression coefficient for coded factor levels) one is
interested in detecting. For more information about power analysis, the reader
is referred to [57, 82, 95]. For all power calculations in this text the level of
significance is set at α = 0.05. In appendix B, an example Matlabr (Matlab
R2010b, The Mathworks Inc., Natick, Massachusetts USA) program is given
that implements these equations to calculate the power.



126 EFFICIENT DESIGNS FOR EVOLUTIONARY OPERATION

In a classical DOE setting one would execute a power analysis before actually
starting the experiment, as to determine the sample size necessary to detect
a difference βd,c of a certain size. However, the true size of the main effects
is not known at the start of the experiment (indeed if they were known there
would be no need for experimentation), nor might an estimator of σ be known.
Therefore a sample size estimation is often done by defining the ratio βd,c/σ,
which quantifies the size of the effect to be detected relative to the size of the
noise in the system σ.

In this text, the sample size is kept to the bare minimum: no replication of the
designs is performed and the smallest feasible fractional factorial is used which
is of resolution III or IV , depending on the number of factors. This leads to
designs which have a limited power to detect a given effect, and the discussion of
the results are backed using the power of those designs, which show to be quite
different for the different dimensions. It is noted that in the field of Optimal
Design one could choose designs with a (close to) fixed power irrespective of the
dimensionality, but this falls beyond the scope of this comparison study and is
reserved for future research directions and will be used extensively in chapter
7. A lower power will result in more randomness in the improvement paths, a
measure of which is expressed by the interquartile range IQR.

Table 6.1: Number of measurements nT in the full(F) and fractional factorial
(Fr) designs, degrees of freedom for error (dfε) when estimating a main effects
model and power for βd,c

σ = 0.5, α = 0.05.

Full Factorial Fractional Factorial
# Factors Design nT dfεF

πF Design nT dfεF r
πFr

4 24 16 11 0.45 24−1
IV 8 3 0.17

6 26 64 57 0.98 26−3
III 8 1 0.09

8 28 256 247 1.00 28−4
IV 16 7 0.41

10 - - - - 210−6
III 16 5 0.37

12 - - - - 212−8
III 16 3 0.29

14 - - - - 214−10
III 16 1 0.13

16 - - - - 216−11
IV 32 15 0.75

When the dimensionality increases, the number of measurements and
subsequently the power increases. However, the number of measurements
becomes prohibitive and the resulting power is excessively high. A lower power
could still be acceptable and opens the door for using compact designs, such as
the fractional factorial. Table 6.1 shows—for the full and fractional factorial
designs used—the number of measurements, the degrees of freedom for error
dfε when the full main effects model is estimated and the power π to detect a



MATERIALS & METHODS 127

ratio β/σ = 0.5. The example ratio is chosen to detect effects smaller than the
noise present in the system as this is often the case when applying EVOP in a
small design region and which usually leads to small parameter estimates.

One can easily see that the minimalistic fractional factorial designs are generally
not suitable for finding small effects; only for k = 16 the power for detecting an
effect half the size of the error standard deviation is larger than 0.7. The power
is especially low for k = 4, 6 and 14. It is expected that the EVOP simulations
using such designs will perform weak. However, as will be explained later on, a
surprising amount of improvement is still possible.

The aforementioned tables are an example when one wishes to detect βd,c/σ = 0.5.
If the ratio is larger, the power will also increase, whilst the power will decrease
when the ratio is smaller. When performing classical design of experiments
the design region usually equals the experimental domain. In EVOP, however,
the design region is much smaller than the experimental domain and moves
through the experimental domain after the conclusion of each phase. This has
two implications: (1) the main effects in EVOP are, in general, smaller than in
classical experimentation, (2) in every phase the main effects will be different
as the behaviour of the underlying model in this small region changes.

The fact that the main effects in EVOP are, in general, smaller than in classical
experimentation leads to a reduced power if the same design is used. Therefore,
replication of the design can be considered to increase the power. However, such
replication is not necessarily required depending on the demands imposed on the
improvement as will be discussed based on the simulation results. The simulation
results involve no replication, to showcase the most extreme possibility.

As stated previously, when moving in the experimental domain the main effects
in EVOP can (and in this simulation will) change from one phase to another
due to the fact that the underlying process model exhibits other behaviour in
the new region. Since in this study the underlying simulation model is known,
one can calculate the true main effects for a given factorstep and design region
to get a feeling how they change. Since the function is pure quadratic and is
approximated in every design region by a linear model, the first order partial
derivatives of the simulation function (equation 6.6) give a clear indication on
how the relative magnitude of the main effects will change when moving through
the experimental domain.

∂y

∂xd
= −64xd (6.6)

It is evident from this equation that, the closer one gets to the optimum, the
smaller the main effects become, which will lower the ratio βd,c/σ. As a result,
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the power to detect an effect becomes lower if one approaches the optimum. This
observation suggests that the type of design that fits the improvement procedure
“from start (far away from optimum) to finish (near optimum)” changes along
the procedure. However, in the typical setting considered throughout this Ph.D.
one does not know how far the optimum is and what real size of the β’s is. This
implies that in a real situation an appropriate sample size to use throughout
the improvement should be determined with careful consideration.

Decreasing the sample size also decreases the power and leads to more
randomness in the improvement paths. The number of phases that is needed is
the most informative indicator when quantifying the amount of randomness in
these paths. Indeed, when comparing the full and fractional design for a given
k, the number of measurements nT within a phase is very different, so that the
number of measurements is not ideal for comparison purposes. Remark, however,
that the total number of measurements N (sum of all measurements in every
executed phase, thus a multiple of nT ) required for improvement is of utmost
importance in practice, since typically this number needs to be minimized.
Therefore both the number of measurements as well as the number of phases
(and their related IQR) are calculated for discussion purposes.

For the non-deterministic cases (SNR 6=∞), changing the simulation settings
will have a direct effect on the statistical power of the method. Equations 6.4
and 6.5 show that the degrees of freedom for error dfε, the sample size nT , the
amount of noise in the process as expressed by σ and the size of the main effects
βd,c will change the power. These four parameters can be directly related to
the three simulation settings. (1) Changing dx will change the size of the coded
main effects βd,c: the smaller dx, the smaller the main effects, the lower the
power. (2) Changing the signal-to-noise ratio SNR will change the amount of
noise in the process σ: the lower the SNR, the higher σ, the lower the power.
(3) Changing the dimensionality k has an impact on the degrees of freedom
for error dfε and can have an impact on the sample size nT (always in case
of the full factorial, in case of the fractional factorial the sample size will not
increase with every increase of the dimensionality). Summarized for the full
factorial: the higher the dimensionality k, the higher nT and dfε, the higher the
power. For the fractional factorial the influence is not as straightforward since
the sample size nT does not necessarily increase when increasing k, this has an
effect on the degrees of freedom for error dfε and it is easiest to reference table
6.1 to see the changes in power when changing the dimensionality k.
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Example Of Power Analysis For Classical Design

This section shows how an a priori sample size estimation to determine the
minimal sample size is executed for a classical experimentation procedure i.e.
only one phase is measured, usually as large as the experimental region. This
section is presented to exemplify how the concept of statistical power can be
used—a priori—for sample size estimation. This minimal sample size can be
used to determine an appropriate statistical design and the degree of replication
for this design (if needed). A sample size estimation based on statistical power
can be performed using formulas to approximate the sample size [95], using
look-up tables and interpolating between the presented values in the tables [82]
or by using software, such as the example Matlabr program that is presented
in appendix C for orthogonal two-level designs.

In this example an experiment with six factors (k = 6) and a model with all
linear terms and intercept has to be estimated (ft = k). One wishes to be able
to detect a coded main effect that is half the size of the error standard deviation
(βd,c/σ = 0.5) with a power of π = 0.5 (usually the power is significantly higher
in classical experimentation, but 0.5 will be used to allow some more freedom
in design selection) at a significance level α = 0.05. Using the program in
appendix C shows that the sample size has to be at least nT = 19 to achieve
a power that is 0.5 or higher (in case of nT = 19, the program calculates the
power as π = 0.52). This Matlabr program uses the formulas for power in
equations 6.4 and 6.5, which hold for a (coded) orthogonal, two-level design.
Thus the experimenter has to find an orthogonal two-level design which has
a sample size of at least nT = 19. An unreplicated fractional factorial design
of resolution III, 26−3

III , has 8 measurements, a fractional factorial design of
resolution IV , 26−2

IV , has 16 measurements. One could replicate these designs to
get a sample size that fits the requirements: replicate the resolution III design
three times for 3 · 26−3

III = 24 measurements or replicate the resolution IV design
two times for 2 · 26−2

IV = 32 measurements. Other types of orthogonal two-level
designs could also be used, such as a Plackett-Burman design [120] which can
be constructed for several sample sizes where the sample size is a multiple of 4.
The nearest multiple of four to nT = 19 is a sample size of nT = 20.

Table 6.2 summarizes the sample sizes of these three two-level designs with the
resulting power to detect β/σ = 0.5. The experimenter can now choose which
design to use. If the sample size is the limiting factor, the Plackett-Burman
design will be selected as it fits the requirements for the power and has the
smallest sample size of the three proposed designs.
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Table 6.2: Summary of different two-level designs for sample size estimation for
k = 6, π = 0.5, βd,c

σ = 0.5, α = 0.05.

Design nT π

PB 20 0.54
3 · 26−3

III 24 0.64
2 · 26−2

IV 32 0.78

6.3 Results & Discussion

The fractional factorial simulations were compared to the full factorial
simulations (up to eight factors) of the previous simulation study given in
chapter 5. The results of these previous simulations are pertinent for the
comparison and are represented, for ease of reference, in table 6.3. For the
high dimensional case, it is no longer feasible to execute a full factorial design
sequentially and therefore no comparison between the two designs is possible.
In table 6.4 an overview of the simulation results for the fractional factorial
EVOP is given in the number of measurements. Table 6.5 shows the results
in phases for both full and fractional factorial EVOP (rounded towards plus
infinity for readability) for the low dimensional cases. Relevant information is
shown for each combination of the factorstep dx (expressed as a percentage of
the experimental range), SNR and dimensionality k. All values in these tables
have been rounded towards plus infinity for readability.

6.3.1 Influence Of Simulation Settings For The Low Dimen-
sional Case

The influence of the effect of the different simulation settings (signal-to-noise
ratio SNR, factorstep dx and dimensionality k) on EVOP was already discussed
in detail in chapter 5 of this dissertation. In this section, the simulations for
the traditional (full factorial) and efficient (fractional factorial) designs will be
compared for the low dimensional case (k 6 8).

Deterministic Simulations

When the simulation is deterministic (SNR =∞), the shortest path towards
the optimum was taken irrespective of the dimensionality. In this case, the
fractional factorial has a clear advantage as the number of measurements per
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Table 6.3: EVOP full factorial simulation data [median of number of
measurements needed to reach optimum | interquartile range (number of times
optimum was reached)], number of experiments per phase denoted as nT .

Number of Factors
dx SNR 4 (nT = 16) 6 (nT = 64) 8 (nT = 256)

1% ∞ 288 | 0 (30) 960 | 0 (30) 3,328 | 0 (30)
1,000 1,344 | 304 (30) 2,880 | 512 (30) 6,144 | 768 (30)
500 1,984 | 432 (30) 4,640 | 576 (30) 9,856 | 1,280 (30)
250 2,712 | 1,008 (30) 6,848 | 1,216 (30) 13,824 | 2,560 (30)
100 4,696 | 1,440 (30) 11,616 | 2,304 (30) 25,216 | 5,120 (30)
50 5,976 | 1,744 (30) 16,736 | 2,880 (30) 35,584 | 8,064 (29)
25 9,872 | 5,232 (30) 22,624 | 8,064 (30) 46,080 | 6,080 (7)
10 15,520 | 8,352 (30) 37,056 | 9,920 (20) /
0 / / /

5% ∞ 64 | 0 (30) 256 | 0 (30) 768 | 0 (30)
1,000 64 | 0 (30) 256 | 0 (30) 768 | 0 (30)
500 64 | 16 (30) 256 | 0 (30) 768 | 0 (30)
250 80 | 16 (30) 256 | 0 (30) 768 | 0 (30)
100 144 | 48 (30) 320 | 64 (30) 1,024 | 256 (30)
50 224 | 64 (30) 512 | 128 (30) 1,024 | 256 (30)
25 312 | 144 (30) 640 | 192 (30) 1,792 | 512 (30)
10 536 | 352 (30) 1376 | 384 (30) 2,560 | 768 (30)
0 12,448 | 11,404 (11) / /

10% ∞ 48 | 0 (30) 128 | 0 (30) 512 | 0 (30)
1,000 48 | 0 (30) 128 | 0 (30) 512 | 0 (30)
500 48 | 0 (30) 128 | 0 (30) 512 | 0 (30)
250 48 | 0 (30) 128 | 0 (30) 512 | 0 (30)
100 48 | 0 (30) 128 | 0 (30) 512 | 0 (30)
50 48 | 0 (30) 128 | 0 (30) 512 | 0 (30)
25 64 | 32 (30) 128 | 64 (30) 512 | 0 (30)
10 128 | 64 (30) 256 | 128 (30) 512 | 256 (30)
0 8,920 | 11,312 (30) 17,248 | 15,328 (4) /

phase is smaller, i.e. for less experimental effort the region of the optimum was
reached. For the fractional factorial the experimental effort is 50% less for k = 4
and up to 93.75% less for k = 8. This decrease is explained by the reduction
of the number of measurements per phase (see table 6.1). Since the step size
(equation 6.3) depends on the factorstep dx and the number of active effects,
and all main effects are significant, the number of phases for both fractional
and full factorial EVOP in the deterministic case are the same for a given
dimensionality k and factorstep dx, and independent from the used design. One
can also see that the number of phases necessary to reach the optimal region
decreases as the dimensionality increases. This can be attributed to the increase
in the stepsize as defined by equation 6.3.

Simulations With noise

Further comparisons will always refer to the situations in which noise is present
in the process (the practical case). Looking at table 6.5, it can be seen that
the full factorial is much more robust against noise as the number of phases
and IQR increase much less than for the fractional factorial. However when one
looks at tables 6.3 and 6.4, it shows that even though the EVOP scheme for
the full factorial is more efficient, the total amount of measurements to reach
the optimum is lower using the fractional factorial.
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The dissimilarity in the improvement efficiencies can be explained using the
concept of statistical power. The power denotes the probability of detecting
the right direction, and should be high for attaining a high efficiency in the
improvement path. When the power becomes too low, the efficiency is lower
causing a longer path in terms of the number of phases. When the difference in
power between the full and fractional factorial is smallest, as is the case for k = 4,
the results (table 6.5) of the full and fractional factorial are comparable in terms
of the median number of phases and IQR. When increasing the dimensionality
the results are not as comparable since the difference in power between the two
designs is much larger, so that the fractional factorial designs require more phases
to reach the optimum. A clear example is the case when k = 6, dx = 5% where
it can be seen that the results (in phases) of the full factorial for SNR = 25 are
comparable with those of the fractional factorial for SNR = 250. The mentioned
case of k = 6 is an extreme one as mentioned above, with the full factorial
having a power of 0.98 when βd,c/σ = 0.5 and the corresponding fractional
factorial showing a power of only 0.09. It is of interest to investigate whether
this smaller power—which requires more phases—is counteracted by the fact
that each phase has less measurements when compared to the full factorial
design.

To ensure that the large number of measurements (51, 200) before an
improvement is labelled a failure does not allow the simulation to reach the
optimal region 30 times by chance, additional simulations were executed, labelled
SNR = 0. These simulations consist of random walks in which the simulation
model was replaced by Gaussian white noise. Comparing the results of the
random walk with the other simulations, it is clear that EVOP performs better
than a random walk for all simulation settings. For those random walk results for
which the median and IQR were not zero, Kruskall-Wallis tests were performed
to formally test whether the results for the random walk and EVOP simulations
came from different distributions. These tests all indicated that the results
came from different distributions at the 0.01 significance level.

In essence, one wishes to maximize the amount of information (high power)
and expend a minimal experimental effort (low number of samples). These
two requirements contradict each other since a higher power, while keeping all
other settings the same, will require a larger sample size. Take, for instance,
dx = 5%, k = 8,SNR = 100: the full factorial EVOP needs 4 phases while the
fractional factorial needs 13 phases which again shows that the improvement
path for the former is more efficient. However, the experimental effort to reach
the optimal region is almost five times smaller for the fractional factorial (208
points compared to 1024 points for the full factorial). Even though the fractional
factorial improvement might be less efficient in number of phases, it is much
more efficient in terms of experimental effort. So from a practical point of view,
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the fractional factorial is advisable in this situation. Balancing the requirements
of high power and minimal experimental effort is one of the challenges when
executing any type of experimentation.

Apart from the dimensionality, the factorstep dx has also a marked influence on
the efficiency. It determines the perturbation size in every dimension according
to the definition in section 6.2.3. As explained in chapter 5, an increase in dx
will result in an increase in the statistical power for the used simulation model.
Such an increase also increases the size of the coded main effects βd,c (the factor
levels are coded between -1 and 1, changing the range of the uncoded factor
levels, will change the coded β’s) and the effect will be easier to detect in terms
of a statistical test. If one would perform a power analysis for two values of β
where β1 < β2, when the noise-level stays the same, then, in general, the power
to detect these effects is π1 < π2.

Summarizing the above observations, the statistical power is an essential
parameter to determine the sample size for the improvement and should be
high enough. The power can be increased in the simulations by increasing the
factorstep dx (increase the coded regression coefficients β), by increasing the
sample size (changing the design or amount of replication) or by changing the
SNR (this can be achieved in the real process by increasing the number of
samples per phase nT , which results in a smaller σβd,c

).

An example of changing the factorstep and SNR in the simulations shows this
clearly: when k = 8 and dx = 10% the IQR for the full factorial does not change
(zero phases) when decreasing the SNR from 1000 to 25. When the factorstep is
decreased to dx = 5% the IQR does not change from SNR = 1000 (zero phases)
to SNR=250, after which it slowly increases until the IQR is three phases for
SNR = 10. For the fractional factorial, on the other hand, the increase in IQR
when decreasing the SNR is much larger when decreasing the factorstep from
dx = 10% to dx = 5% for the same dimensionality. This is evidenced by looking
at SNR = 10 where for dx = 10% the IQR is five phases while for dx = 5% the
IQR is 30 phases. This shows that dx and SNR, which lower the power for both
methods when decreased, will have a more marked influence on the fractional
factorial then on the full factorial EVOP scheme.

The time to conclude one phase is much more important from the viewpoint
of sequential experimentation (and related to this, the experimental effort per
phase). Consecutive phases (“steps” in the improvement) are executed to
gradually move the process towards the optimum. When a machine is not
continuously operated (only during working hours, a limited batch of a certain
product) the amount of time available for sampling is limited. Since EVOP
is a sequential process with only small shifts in the factor settings, a number
of consecutive phases is usually necessary to determine the optimal factor
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levels. Should the sampling time per phase be large compared to the total
available sampling time then it is not feasible to run the method. Therefore the
number of measurements per phase should be kept to a minimum. This aspect
is also important when optima drift in time as the rate of improvement (i.e.
moving from one phase to the other) should not be slower than the speed of
the time-drift.

Interpreting The Results From An Improvement Perspective

There are situations in which an EVOP simulation does not reach the optimal
region. For instance for the full factorial for k = 8, dx = 1%, SNR = 10, EVOP
never reaches the optimal region. It is wrong to conclude that EVOP failed
to improve the response since these simulations were labelled a failure. EVOP
is an improvement method, so in real processes in which the response is not
known, the interest is in seeing whether the application of EVOP did in fact
improve the response. Let us compare two situations for k = 8, dx = 1%: the
situation of interest, SNR = 10, and a situation with less noise, SNR = 1000.
In figure 6.1, the median noise-free response yci,σ=0 in the centre of the i-th
phase is plotted against the number of measurements. This implies that yci,σ=0
is plotted after the conclusion of each phase (after each 256 measurements for
the full factorial and 16 measurements for the fractional factorial) up to 51, 200
measurements. In addition the region of the optimum is displayed to show when
a simulation is labelled as a success.
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Figure 6.1: Median of noise-free response yci,σ=0 for full factorial, k = 8;
dx = 1%; SNR = 10, 1000.

As can be seen from this figure, even in the case of SNR = 10 there is a
definite improvement in the response but since there is more noise, the median
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improvement in every phase is much smaller than in the case of SNR = 1000.
This, combined with the small factorstep—which results in small moves between
phases as per equation 6.3—and the large sample size per phase, ensures that
the 51, 200 samples are insufficient to reach the region of the optimum (maybe it
won’t ever reach the optimum since the power will also keep on decreasing when
one approaches the optimum due to the smaller coded regression coefficients).
Yet EVOP does succeed in improving the response, as is its goal.

To investigate the effect of different sample sizes —and thus powers— between
the full and fractional factorial designs, figures are created for k = 6, the case for
which both full and fractional factorial are simulated and where the difference
in power between the two designs is the most extreme. Both fractional and full
factorial improvements are plotted with factorstep dx = 5%. For each design
two figures are created: on the first figures (figure 6.2a and 6.3a) the median
noise-free response response (yci,σ=0) at the centre of each phase is plotted for
SNR = 10 and SNR = 1000; and on the second figures (figure 6.2b and 6.3b)
the median power of each consecutive phase for the aforementioned SNR-values
is plotted. The power calculation is based on the largest linear effect βd,c of the
full coded linear model (including a, intercept) for the current design region,
which can be calculated since the underlying model is known.

When one approaches the optimal region (effect size becomes smaller and the
response moves closer to the dotted line on figures 6.2a and 6.3a), the power
drops and, since the power for the fractional factorial is lower than the power of
the full factorial, it will stop—on average—further away from the optimum (the
fractional factorial fails to detect the smaller effects near the optimal region).
This can be seen when comparing figures 6.2a and 6.3a where the median
response at the centre of the design region after the improvement is larger for
the full factorial compared to the fractional factorial. This difference becomes
more pronounced when the noise decreases (SNR = 10 versus SNR = 1000).

Figures 6.2a and 6.3a show that the median end response for the full and
fractional factorial after improvement is within the optimal region but that
the full factorial will reach a higher response level than the fractional factorial.
These figures also show that the initial improvement (slope) in the total number
of measurements for both full and fractional factorial is equal for this SNR.
Since the sample size per phase is smaller for the fractional factorial, the amount
of improvement after every phase for the fractional factorial is much smaller
than for the full factorial. Yet, the time it takes to conclude one phase is much
shorter for the fractional factorial (smaller sample size) which is an advantage
when the process is non-stationary (drifting in time).

Looking at the plotted examples, for the fractional factorial in case SNR = 10 the
resulting power is extremely low and the power curve is almost completely flat
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Figure 6.2: Full factorial, k = 6; dx = 5%; SNR = 10, 1000: (a) median of
noise-free response yci,σ=0, (b) median of power for consecutive phases.
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Figure 6.3: Fractional factorial, k = 6; dx = 5%; SNR = 10, 1000:(a) median of
noise-free response yci,σ=0, (b) median of power for consecutive phases.
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and it might come as a surprise that the method still achieves an improvement
when the power is extremely low. This can be attributed to the use of the
stepwise regression. The power to detect an effect depends on the degrees of
freedom for error dfε that are related to the number of parameters fa in the
model. The more parameters are removed from the model, the higher the power
to detect the remaining effects. This will play an important role when the effect
size β is relatively large (“far away” from the optimum) but will have less and
less effect as the effect size decreases.

When the degrees of freedom for error are small, every parameter removed from
the model will have a large impact on the power. This is elucidated in table
6.6 where—for the used 26−3

III design—the power is calculated for main effects
models ranging from all main effects (fa = 6) to one main effect (fa = 1) for
a ratio β/σ = 0.5. The removal of one parameter from the full main effects
model will increase the power by 5%, removing an additional parameter will
only result in an additional increase of 3%. The higher the degrees of freedom
for error, the less the influence of the removal of one parameter on the power. It
should be noted that the removal of parameters from the model and the relation
between degrees of freedom for error and power is generally more complex—see
equations 6.4 and 6.5—but the previous example gives a good indication of how
the change in dfε changes the statistical power.

Table 6.6: Number of parameters fa , degrees of freedom for error dfε in model
and related power π for a 26−3

III design with βd,c

σ = 0.5, α = 0.05.

fa dfε π

6 2 0.09
5 3 0.14
4 4 0.17
3 5 0.19
2 6 0.21
1 7 0.22

This evidently leads to the question when which design should be implemented
in EVOP. The answer to this is not straightforward as it depends on the quality
of the improvement. In section 6.3.3, an overview of how such quality might be
rated in industry is given.
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6.3.2 Feasibility Of Using Efficient Designs In The High-
Dimensional Case

When the dimensionality is high—and a full factorial is used—one would expend
too much experimental effort, i.e. every phase would require too much time
to conclude to achieve the desired improvement when experimentation time is
limited (e.g. a machine that runs only 8 hours a day). Even if the improvement
path is not as efficient as is the case for the full factorial, the significantly
reduced experimental effort makes it clear that efficient designs are a much-
needed improvement over the traditional full factorial design.

Although no comparison can be made with the classical full factorial in the high
dimensional case (k > 8), the simulations allow to draw conclusions about the
feasibility of using the fractional factorial for this case. Using the data in tables
6.5 and 6.7—fractional factorial results for the low and high dimensional case in
phases respectively—one can surmise that the results for the number of phases
are comparable when the noise-level is not too high (SNR > 50). The data from
these tables for k = 4, 8, 12, 16 is represented graphically in figure 6.4. It can
be seen clearly that the fractional factorial designs perform equally efficient in
high dimensionalities (when compared to low dimensionalities) unless the SNR
becomes too small. This is logical since the small sample size of the fractional
factorial will have a very low power at low SNR values. The question arises
once more what the optimal power for an EVOP improvement is. This will be
handled in the next chapter.
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Figure 6.4: SNR versus median number of phases for k = 4, 8, 12, 16.
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Table 6.7: EVOP fractional factorial simulations for the high dimensional case,
expressed in phases: [median of phases to reach the optimum | interquartile
range of phases to reach the optimum (success rate)].

Number of Factors
dx SNR 10 (nT = 16) 12 (nT = 16) 14 (nT = 16) 16 (nT = 32)

1% ∞ 12 | 0 (30) 11 | 0 (30) 10 | 0 (30) 9 | 0 (30)
1,000 117 | 21 (30) 113 | 26 (30) 87 | 23 (30) 112 | 28 (30)
500 157 | 55 (30) 156 | 86 (30) 138 | 46 (30) 164 | 56 (30)
250 250 | 98 (30) 274 | 60 (30) 267 | 121 (30) 282 | 139 (30)
100 429 | 158 (30) 544 | 327 (30) 643 | 662 (30) 518 | 298 (29)
50 820 | 365 (30) 790 | 647 (30) 1,348 | 996 (24) 1,020 | 415 (19)
25 1,424 | 1,163 (28) 1,003 | 700 (13) 2,062 | 916 (8) 1,062 | 258 (9)
10 2,258 | 921 (12) 2,331 | 1,527 (4) / /

5% ∞ 3 | 0 (30) 3 | 0 (30) 3 | 0 (30) 3 | 0 (30)
1000 5 | 2 (30) 6 | 2 (30) 5 | 2 (30) 4 | 1 (30)
500 7 | 2 (30) 7 | 2 (30) 6 | 2 (30) 6 | 2 (30)
250 8 | 2 (30) 8 | 4 (30) 9 | 4 (30) 9 | 3 (30)
100 17 | 6 (30) 16 | 9 (30) 17 | 13 (30) 14 | 7 (30)
50 19 | 13 (30) 24 | 15 (30) 31 | 27 (30) 23 | 14 (30)
25 36 | 16 (30) 43 | 66 (30) 90 | 175 (30) 53 | 41 (30)
10 99 | 85 (30) 170 | 204 (30) 907 | 640 (29) 270 | 421 (30)

10% ∞ 2 | 0 (30) 2 | 0 (30) 2 | 0 (30) 2 | 0 (30)
1000 2 | 0 (30) 2 | 0 (30) 4 | 2 (30) 2 | 0 (30)
500 2 | 0 (30) 3 | 1 (30) 4 | 2 (30) 2 | 0 (30)
250 3 | 1 (30) 3 | 1 (30) 4 | 2 (30) 3 | 0 (30)
100 4 | 2 (30) 5 | 2 (30) 6 | 2 (30) 5 | 1 (30)
50 6 | 4 (30) 6 | 3 (30) 7 | 5 (30) 8 | 6 (30)
25 9 | 4 (30) 10 | 10 (30) 16 | 11 (30) 17 | 11 (30)
10 13 | 11 (30) 21 | 16 (30) 69 | 64 (30) 29 | 32 (30)

6.3.3 Improvement Quality

When talking about the improvement of a process a clear distinction can be
made between two measures of improvement “quality”, being:

1. The quality of output after improvement compared to the quality before
improvement;

2. The rate of improvement while running EVOP, which is the change in
average response (quality) between phases.

The first measure “quality of output” relates to the improvement in quality after
an EVOP scheme is run. In other words: how much better (or worse) is the
output compared to the initial situation. Since the true optimum is not known
when these methods are applied in practical situations, this is the only way to
quantify the overall improvement in response.

It is shown that—for the executed simulations—the effect size decreases as the
method gets closer to the optimum and, by extension, the power drops. At a
certain point, the power might become insufficient to detect an effect with a
high enough probability and the method will stop moving. This can be seen
in figures 6.2 and 6.3. In general one can say that the design with the highest
power will move closest towards the optimum and have a higher quality of
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output. Thus the full factorial (high power) achieves a better end-result, in the
presence of noise, than the fractional factorial.

Yet the quality of the output is not the only determining factor to take into
account when choosing the design to use. Experimental effort plays an important
role as well. In the case of this simulation study, the full factorial always achieves
a higher final response value (in the presence of noise) than the fractional
factorial. For the case of SNR = 1000, the rate of improvement (in total number
of measurements) in figures 6.2a and 6.3b is almost equal and is equated with
the slope of the improvement in response. However, the rate of improvement
can only be measured at the conclusion of every phase and if one takes this into
account it is not always feasible to wait for a long period of time (design with
high sample size, full factorial) for a decision on the move. The main reasons
why this is not desired can be summarized by (1) a constraint on the number
of experiments (e.g. production might be limited in time or sampling the
process might be slow which puts a constraint on the number of measurements
one can use), and (2) possibility of non-stationarity of the process (e.g. when
measurement time is longer than a process drift in time the improvement method
will fail).

These measures of how well the improvement scheme performed have to be
taken into account when deciding on an appropriate design to use.

Furthermore, experimental time can be equated to cost (e.g. the cost of running
the machine for the duration of the improvement process or the cost of a machine
supervisor during the improvement process). This cost cannot be uniquely
quantified as every process supervisor or production facility might have different
requirements, equipment and personnel. Relating the number of measurements
to a cost function will help set limits to the maximum measurements allowed
in one phase or during the improvement if it is only run for a limited time.
Such a cost function can, for example, be comprised of: the time to acquire one
sample, operating cost, cost of personnel, profit of the produced product, cost
of supplies, etcetera. Such a cost function is a good way to visualize the various
demands the improvement method should take into account.

6.4 Conclusions

The traditional base design of EVOP, the two-level full factorial, uses 2k
measurements per phase which becomes more and more prohibitive in higher
dimensions. In this chapter the two-level fractional factorial design is
investigated as an alternative base design for EVOP. It is shown that even in
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high dimensions a fractional factorial base design is often preferable since a lot
of improvement is still possible using the reduced sample size.

In classical design the statistical power of a design is often π > 0.80. In
EVOP, however, it is shown that even with a very low power a large amount
of improvement is still possible. The simulations prove that EVOP has the
capacity to correct its improvement path after every phase, whereas in classical
experimentation only one “phase” is performed.

The observation that the statistical power can be lower compared to classical
design leads to the question what the optimal power for the EVOP methodology
is. This warrants further investigation and is dealt with in chapter 7.

To conclude, more efficient designs offer a significant improvement in total
number of measurements to the optimum. Their improvement rate might be
slower after every phase than for the full factorial base design but, since the
sample size of the efficient designs is lower, faster decisions (in time) can be
taken. This is an advantage in non-stationary processes in which a time-drift
is present. One does have to take into account that, in general, the efficient
designs have a tendency to stop farther away from the optimum if the noise-level
increases as the statistical power will become too low to detect the very small
effects. The statistical significance of an effect should always be balanced with
the practical relevance, i.e. very small shifts in the response might become
statistically significant when increasing the sample size (power) but might not
be relevant for the experimenter (e.g. detecting an increase of 0.01% in the
response is not worth the experimental effort) .



7 Optimal Statistical Power For
Evolutionary Operation

7.1 Introduction

In the previous chapter efficient designs were introduced as a solution to reduce
the sample size in each phase. In contemporary processes were the possibility
exists that many settings have a significant influence, this is of the utmost
importance to allow for a feasible improvement in an acceptable time. However,
it is generally known that the power to detect an effect is often quite low when
using such sparse designs, and the concept of power was used extensively to
explain the observations that were made. One of the striking results of the
previous chapter was that the power does not need to be as high as classically
assumed for experimental design (where values of 0.7–0.9 are common). Indeed,
even with powers as low as 0.2 good results were obtained. Even more surprising,
the improvement using a low power was often faster than when a high power
was chosen.

This leads to the question what power to use for EVOP schemes. To the author’s
best knowledge, research into the required power for EVOP is completely lacking,
and this chapter provides first results and recommendations in that direction.
In order to focus on the power, the effect of changing the factorstep and the
SNR will be excluded here for obvious reasons. The effect of the power on the
improvement will be studied by changing the sample size of the design, and this
will be done for different dimensions of the problem. In order to make results
interpretable, a simple linear function will be used throughout the simulation
study.
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7.2 Materials & Methods

7.2.1 Underlying Model

In the previous chapters a quadratic model was used for running the simulations
since it is reasonable to assume that such a model approximates the region
around the optimum well. However, such a model complicates research into
optimal power as the slope of the function and thus, the coded linear effect,
changes when one moves closer to the optimum. To exclude the changes in
power due to the changing slope of the underlying function, a simple linear
model (equation 7.1) will be used, where k is the dimensionality of the problem.

y =
k∑
d=1

0.5 · xd + ε (7.1)

The noise ε ∼ N
(
0, σ2) in this equation is assumed independent and identically

distributed (i.i.d.) according to a normal distribution with mean zero and
standard deviation σ = 1.

7.2.2 Simulation Settings

The goal of the simulation study is to determine whether there is an optimal
statistical power in an EVOP improvement scheme. This will be achieved
by studying two settings: (1) the power πreq and (2) the dimensionality k of
the problem. The performance characteristics used to indicate how good the
EVOP improvement performs are the median total number of measurements,
median (N), required to reach the optimal region (as defined later) of the
simulation and the median number of phases to reach the optimal region,
median (N/nT ), with nT the number of measurements per phase.

Dimensionality: The dimensionality k of the problem was varied from 2 to 16
to investigate its influence on the optimal power.

Statistical power : The statistical power will affect the sample size (as explained
in the next section) and is changed from 0.05 to 0.99 using a linearly spaced
vector of 21 levels.

Random walk: To test whether the improvement performs better than just
randomly moving through the experimental domain additional simulations were
performed where the model terms were removed from the simulation model,
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keeping only the noise term. To significantly reduce computation time, these
simulations were stopped when the number of measurements reaches 67, 700 (or
the nearest sample size that is larger than this number).

Number of repetitions: In order to have a clear view on the performance
indicators the simulation was performed 100 times for each combination of power
and dimensionality and the median value of the total number of measurements
is reported. This leads to a number of simulations runs of:

22 (power-levels + random walk)× 15 (dimensions)

×100 (repetitions) = 33, 000

7.2.3 Evolutionary Operation Implementation

Evolutionary Operation Settings

To make the interpretation of the results more clear, the simulation settings
and definition of the step size in this chapter are simplified when compared to
the previous chapters. All this information is represented in figure 7.1 where
examples of EVOP improvements are visualized for k = 2 for several different
powers. The following paragraphs will refer to the relevant information on this
figure. Since the sample size will change, depending on the requested power,
D-optimal designs will be used as the base designs in this chapter (see next
section).

Starting point: The starting point xstart, which is the center of the base design
as was the case in previous chapters, was fixed at {0, . . . , 0} for all simulations.

Factorstep: The factorstep was fixed for all dimensions at dx = 1 as shown by
the EVOP phases depicted in figure 7.1.

Step size & direction of the move: The step size δEV OP is defined equivalently
to the previous chapters, and is given by equation 7.2. Contrary to the previous
chapter the direction of the move will be restricted here in every dimension
to only three options: +1 if a regression coefficient is significant and positive
(correct move in this direction), 0 if the regression coefficient is not significant
and −1 if a regression coefficient is significant and negative (incorrect move in
this direction).

δEV OP = dx ·
√
fa (7.2)
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Figure 7.1: Representation of the experimental domain and an example of one
improvement run (moving design region) until the optimal region is reached for
k = 2 and different powers: (a) πD = 0.430 and nT = 53, (b) πD = 0.614 and
nT = 83, (c) πD = 0.757 and nT = 115, (d) πD = 0.990 and nT = 296.
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Region of the optimum: There are several options on how to choose the optimal
region. Contrary to previous chapters, the optimal region is not defined as a
percentage of some desirable (maximum) response value. Since the simulation
model is linear in the parameters, the response value will keep increasing if the
factor levels are increased. An optimal region could be determined by defining
a noise-free response that needs to be reached. However, as the dimensionality
increases, the possible factor level combinations to reach such a response would
also drastically increase. Since all dimensions are of equal importance in the
simulation model in equation 7.1, it was opted to fix the optimal region a
number of steps in every dimension from the starting point. It is now defined
by the region where ∀xi : xi > 30. This definition of the optimal region is
exemplified by the shaded areas in figure 7.1. Defined this way, the minimal
number of phases to reach the region of the optimum is 31, irrespective of the
dimensionality.

Number of phases to optimal region: the number of phases to the optimal region
is calculated by dividing the number of measurements N required to reach the
region of the optimum by the sample size nT per phase.

Boundaries of the experimental domain: No boundaries are imposed on the
movement of the design region. Since the regression coefficients are the same,
irrespective of the location of the design region, constraining it to a bounded
experimental domain does not make sense from the perspective of this simulation.

Statistical Power And Design Selection

As explained in the previous chapter, for an orthogonal two-level design in
coded units (the low factor level transformed to −1 and the high factor level to
+1), the power π of the statistical significance test is given by equation 7.3.

π =P {−t (1− α/2;nT − 1− ft) < TNC}

+ P {t (1− α/2;nT − 1− ft) > TNC} (7.3)

In this equation TNC is the noncentral t-distribution with degrees of freedom
ν = nT − 1 − ft and φ the noncentrality measure; t the t-distribution with
degrees of freedom ν on which a two-sided test with significance level α is
executed. For both distributions the degrees of freedom are defined by nT
the total number of measurements and ft the number of parameters in the
estimated model (excluding the intercept), which equals the number of active
main effects ft = fa when fitting a main effects model.
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The noncentrality measure to detect a coded coefficient of size βd,c is then given
in equation7.4 with σ the error standard deviation.

φ = βd,c
σ√
nT

= √nT
βd,c
σ

(7.4)

The statistical power to detect an effect is directly related to the sample size nT ,
the amount of noise in the system σ, the number of parameters in the model
fa and the size of the effect βd,c (size of the coded linear regression coefficient)
one wishes to detect.

The noise σ in the system is constant throughout the simulations, all main
effects are nonzero in the true model and βd,c = 0.25, fixed at the coded slope
of the linear simulation model (equation 7.1) in the design region. This ensures
that the only parameter in equations 7.3 and 7.4 that can affect the power is the
sample size nT as all others are fixed for the given significance level α = 0.05.
The Matlabr program in appendix C can be used to recursively search for the
sample size that matches the requested power most closely.

The sample size that gives a resulting power closest to the requested value can
be any number equal to or greater then k + 2 samples. The sample size is at
minimum k+ 2 since saturated designs are not allowed as no classical statistical
tests can be executed. This leads to a minimum degrees of freedom to estimate
the k main effects, the intercept and at least one degree of freedom for error to
estimate the noise.

Requiring fixed set points for the power poses a challenge for design selection
as the classical designs used up until now will not allow to build designs
for arbitrary sample sizes. The use of optimal designs which can generate
near-orthogonal designs for an arbitrary sample size will be used to allow for
the necessary flexibility in sample size. Since in EVOP accurate parameter
estimates are important as the direction of improvement is directly derived from
these coefficients, the D-optimality criterion was chosen for the generation of
the optimal designs. This criterion minimizes the generalized variance of the
parameter estimates for a pre-specified model which, in this case, is a linear
model of the dimensionality required by the simulation. In other words, the
algorithm tries to maximize the D-efficiency of the design, which is expressed
for this specific case by equation 7.5. More information about the construction
of D-optimal designs can be found in section 3.2.3.

D-efficiency = 100 · |X
′X|

1
k+1

nT
(7.5)
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One D-optimal design is constructed for each combination of requested power
and dimensionality and this generated design is used for every phase and for
every repetition to exclude correlating the results with a change in the design
matrix. Such a change could happen since the possibility exists that different
runs of the construction algorithm lead to different designs. It is important to
remember that the designs are computer-generated and not every generated
design will have the same D-efficiency. To ensure that a design with a high
D-efficiency is selected, the cordexch algorithm in Matlabr is used and set to
perform 100 iterations to generate a design (default is 10). Furthermore, 100
designs are generated and the design with the highest D-efficiency is selected.

It is important to note that the use of equation 7.3 is valid as long as a two-level
design is used. Since the pre-specified model structure is linear, this requirement
is met and one does not need to generalize the power equations. However,
equation 7.4 for the noncentrality parameter only holds for coded orthogonal
designs. In general, the non-centrality parameter for coded designs can be
written as equation 7.6, with σβd,c

the estimated parameter variance.

φ = βd,c
σβd,c

(7.6)

The construction of a D-optimal design does not necessarily lead to orthogonality.
This implies that equation 7.4 for the noncentrality measure no longer holds.
Therefore, the exact statistical power can only be calculated after design
construction. However, D-optimal designs do often lead to orthogonal or near-
orthogonal designs and therefore equation 7.4, which defines the noncentrality
measure for orthogonal designs, is an acceptable choice to determine the sample
size and significantly reduces the computational time necessary to select a
sample size.

The procedure for design generation can be summarized as follows:

1. Based on the required power πreq, calculate the sample size using equations
7.3 and 7.4 (implemented in the Matlabr program in appendix C);

2. Generate a D-optimal design with the required sample size;

3. Check the actual power of the parameters of the D-optimal design (using
equation 7.6) after it is generated and select the smallest power πD .

Since only a limited amount of power levels are simulated (21 levels) and
the interest is in investigating the effect of power on the total number of
measurements and the number of phases for increasing dimensionality, two
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models will be fitted on the grid of simulation data. Since it is expected that
the underlying behaviour is highly non-linear, Gaussian Process (GP) modelling
will be used, as described in chapter 4.

The JMPr software (version 11, The SAS Institute, Inc., Cary, NC, USA)
will be used to estimate two GP models in which a nugget parameter is
included since the simulation data is noisy. The independent variables of
the model are: (1) the statistical power πD for the used D-optimal design
and (2) the dimensionality k for which this simulation is executed. The
dependent variables used for the models are the median1 total number of
measurements (of the 100 repetitions)—median (N)— and the median2 number
of phases—median (N/nT )—to reach the optimal region for each combination
of the independent variables. Using the GP model for the median number of
measurements, the JMPr profiler is used to find the minimal median total
number of measurements for each dimensionality, which corresponds to the
optimal power for this model. Contrary to chapter 4—where the cubic correlation
function was used—the gaussian correlation function is implemented since the
responses are the median of the number of measurements and phases, a large
amount of the noise will already be filtered out and therefore using the gaussian
correlation—as represented in equation 7.7—is a good choice. The correlation
between two points xik and xjk is always non-zero, no matter the distance
between the points (i.e. taking into account all information).

rij = exp
(
−

n∑
k=1

θk (xik − xjk)2

)
(7.7)

7.2.4 Simulation Pseudo-Code

Algorithm 7.1 represents the pseudo-code of the software algorithm as
implemented in Matlabr. It can be seen from this pseudo-code that the
worst case scenario is simulated:

1. The data from previous stationary phases will be forgotten and not used
to get a more accurate estimate of the noise;

2. Since the same design is used for every subsequent step, unbalanced designs
will tend to favour a move in a specific direction (i.e. if k = 2, nT = 5 one

1The full data of the simulations, i.e. the total number of measurements N to reach the
optimal region for each combination of the independent variables could not be used since the
amount of data was too large for the JMPr software. Therefore, median (N) was chosen as
the dependent variable.

2The same remark as in footnote 1 holds for the number of phases N/nT .
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of the design points is replicated which will always be the same point in
every subsequent phase).

It should also be noted that—for the very specific simulation settings
here—another simulation approach is possible. One can conceptually view
the estimation of the statistical model in every phase as a chance to “succeed”
or “fail” to detect a move in any dimension. This can be seen, in essence, as
a Bernouilli trial since the probability of success is the same every time the
estimation is conducted.

Based on this observation, one can use negative binomial distributions (a discrete
probability distribution of the number of successes in a sequence of independent
and identically distributed Bernoulli trials) to construct a much faster, analytical
simulation. The reader is referred to [59] for an introduction on the negative
binomial distribution and to [60] for a theoretical explanation about the mean
of the maximum of N random variables distributed by the negative binomial
distribution. Since this chapter aims at laying the foundations for this type of
simulation studies in general, the approximate approach as described above will
be used. It was verified for certain combinations of power and dimensionality
that the approximate solution does approach the analytical solution quite well
for the specific settings used in this chapter.

7.3 Results & Discussion

7.3.1 Statistical Power And Sample Size

The actual power πD is always close to the requested power πreq. To illustrate
this, table 7.1 presents the powers and sample sizes for k = 2 and k = 14.
This table presents the requested power πreq, the power πorth for the closest
orthogonal design (as given by the Matlabr program in appendix C), the power
πD (as calculated based on the generated D-optimal design), the D-efficiency
of the selected design and the sample size per phase nT .

7.3.2 Results Of The Random Walk

In none of the power × dimensionality combinations the optimal region was
reached within the maximum number of measurements allowed (67, 700). This
maximum number of measurements is more than double the highest number of
measurements ever encountered in any other simulation (33, 839), which leads
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Algorithm 7.1. Optimal Power Simulations Pseudocode.
for dimension from 2 to 16 do

for every power πreq do
Calculate sample size nT
Generate D-optimal design X with dx = 1, xstart = {0, . . . , 0}
Calculate power πD
for repetition from 1 to 100 do

count = 0
∆ = 0
while any element of ∆ 6 30 do

Simulate response for design X
Execute stepwise regression
Move design region by δEVOP, calculated in every dim. as:
• +1 for positive sign. coefficient;
• -1 for negative sign. coefficient;
• 0 for non-sign. coefficient.
∆ + δEVOP
count = count+ 1

end while
Save total number of measurements N = count · nT

end for
end for

end for

to the conclusion that for all powers, even the lowest value of only 0.05, EVOP
outperformed a simple random walk in the experimental domain.

7.3.3 Total Experimental Effort And Path Efficiency

The Gaussian Process models that were fit to the simulation data are visualized
in figure 7.2. Using the JMPr profiler function the minimum median total
number of measurements as fitted by the GP model was determined for each
dimension. These minima are plotted as dots for each dimensionality k on figure
7.2a.

When considering the total experimental effort (measurements) for reaching
the region of the optimum, it can be seen from figure 7.2a that when the
power is very low (πD < 0.25) and the dimension is high (k > 10) the number
of measurements required to reach the optimal region increases drastically.
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Table 7.1: Requested power πreq, power for the orthogonal design πorth generated
by the sample size program, power for the D-optimal design πD calculated after
design generation, D-efficiency and sample size nT per phase for k = 2, 14.

k = 2 k = 14
πreq πorth πD D-eff. nT πreq πorth πD D-eff. nT

0.050 0.055 0.054 96.4 5 0.050 0.068 0.068 > 99.9 16
0.097 0.102 0.102 98.6 10 0.097 0.116 0.112 97.0 18
0.144 0.151 0.151 > 99.9 16 0.144 0.148 0.139 97.7 20
0.191 0.199 0.197 99.7 22 0.191 0.194 0.181 98.2 24
0.238 0.238 0.238 99.9 27 0.238 0.240 0.234 98.9 29
0.285 0.292 0.292 99.9 34 0.285 0.291 0.283 99.0 35
0.332 0.337 0.337 > 99.9 40 0.332 0.338 0.333 99.4 41
0.379 0.381 0.381 99.9 46 0.379 0.383 0.379 99.5 47
0.426 0.431 0.430 > 99.9 53 0.426 0.426 0.423 99.7 53
0.473 0.478 0.478 > 99.9 60 0.473 0.474 0.469 99.8 60
0.520 0.522 0.522 > 99.9 67 0.520 0.526 0.521 99.8 68
0.567 0.570 0.570 > 99.9 75 0.567 0.568 0.565 99.8 75
0.614 0.614 0.614 > 99.9 83 0.614 0.618 0.616 99.9 84
0.661 0.665 0.665 > 99.9 93 0.661 0.663 0.662 99.9 93
0.708 0.710 0.710 > 99.9 103 0.708 0.709 0.707 99.9 103
0.755 0.757 0.757 > 99.9 115 0.755 0.757 0.756 99.9 115
0.802 0.804 0.804 > 99.9 129 0.802 0.804 0.803 > 99.9 129
0.849 0.851 0.851 > 99.9 146 0.849 0.850 0.850 99.9 146
0.896 0.896 0.896 > 99.9 168 0.896 0.896 0.896 > 99.9 168
0.943 0.943 0.943 > 99.9 203 0.943 0.943 0.943 > 99.9 203
0.990 0.990 0.990 > 99.9 296 0.990 0.990 0.990 > 99.9 296

However, when the dimensionality is low, a low power still results in reaching
the region of the optimum the fastest. Another observation is the fact that for
all dimensions, there is a quite flat region in between the very low and the very
high power values. In other words, the exact choice of the power is not so critical
but the optimal power shifts towards a higher value when the dimensionality
increases. This is logical as the probability to make a wrong move or no move
is present in every dimension. The higher the number of dimensions, the higher
the number of coefficients that can be incorrectly estimated.

Besides the total number of measurements required, also the efficiency—expressed
as the number of phases that is required—can be considered. The median number
of phases to the optimal region for an increasing power (increasing sample size
per phase) for three selected dimensions (k = 2, 8, 14) are plotted in figure
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Figure 7.2: Gaussian Process models for the power simulations: (a) Model
for the median total number of measurements, (b) model for the median total
number of phases.

7.3. One can clearly see from this figure that the higher the power, the higher
the efficiency (lower median number of phases). Due to the way the optimal
region is defined, the most efficient improvement path from start to optimal
region always counts the same number of phases—namely 31—regardless of
the dimensionality. Figure 7.3 also shows that the efficiencies for the three
dimensions are rather close to each other when, say, πD > 0.50. This observation
is not surprising when inspecting table 7.1, from which can be derived that the
number of measurements per phase for k = 2 and 14 are always identical from
a power of 0.661 onwards. A similar observation can then also be made from
figure 7.2a where the total experimental effort for low and high dimensions are
quasi identical at the highest power levels. The fact that the values are not
completely identical results from the fact that the power denotes the probability
of correctly detecting one main effect. When dimensionality increases for a
given power, there is thus a probability in each dimension that the effect is
overlooked, explaining why the experimental effort in the higher dimensions is
higher than in lower dimensions, even if the sample size per phase is identical.
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Figure 7.3: GP model - Phases versus power for k = 2, 8, 14.

7.3.4 Optimal Power

As mentioned above and visualised in figure 7.2a, the number of measurements
that is required to reach the region of the optimum greatly depends on the
dimensionality of the problem and the considered power. When visualizing
the power at which the minimal experimental effort is achieved for each
dimension—see figure 7.4—it can be observed that for low dimensions this
optimal power is surprisingly low, namely the lowest power considered in this
study when k = 2. The reason here is mainly the fact that the sample size for
each phase increases drastically for low dimensions when the power is increased.
Indeed, for k = 2 the sample size doubles when increasing the power from ∼ 0.05
to 0.1, while for k = 14 the sample size increases with only 12.5%. In other
words, the modest increase in power comes at a great cost (experimental effort)
in low dimensions, favouring low power. When moving into higher dimensions,
figure 7.4, complemented by table 7.1, shows that the gain in path efficiency
does weigh more than the increase in sample size for each phase, but how much
it weighs depends on dimensionality. For the highest dimension considered,
k = 16, the optimal power is about 0.7, and for all other dimensions this
optimum comes lower. The way the optimal power depends on dimension is not
straightforward. It can be clearly seen that there are two important regions:
for k < 8 a low power is preferable, for k > 8 there is a flat, broad valley with
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almost equal experimental effort for a broad range of powers (π ∈ [0.4; 0.8]),
which will allow considerable freedom in choosing a power (see next section).
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Figure 7.4: Cross sections of GP model for optimal power, bottom line is k = 2,
top k = 16.

7.3.5 Practical recommendations

As discussed above, for low dimensions choosing a base design with a low power
results in the least experimental effort that is required to reach the region of
the optimum. As for practical recommendations, it is thus recommended to use
very sparse designs where the power is lower than 0.4. Although the efficiency of
the path might not be ideal in those cases, it is clearly the fastest way because
of the great experimental cost that comes with an increase in power.

The situation is somewhat more open for the larger dimensions, since the
experimental effort for a broad range of power values is nearly equal. In those
cases, the recommendation strongly depends on the type of process and how it is
sampled. For processes where each measurement takes a substantial effort, it is
advised to use a low power, and, thus, a low sample size for each phase, so that
eventual drifting of the process behaviour can be well tracked. For processes
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where one can sample (experiment, measure) very fast at low cost, this issue
does not play an important role, and choosing a higher power so that a more
efficient path is followed is advised. The reason for this is mainly because that
way each phase will have a larger probability of producing improved output.

7.4 Conclusions

In this chapter a first framework for investigating the optimal statistical power
in EVOP improvements was presented. The optimal statistical power shows up
to be a function of the dimensionality and increases when the dimensionality
increases.

The experimental effort required to reach the region of the optimum shows a
broad, almost flat, valley for high dimensionalities (k > 8). So it is possible
to choose any power in this broad range (π ∈ [0.4; 0.8]) without affecting the
effort to a large extent. The choice which power—and, hence, which sample size
for one phase—to choose is then completely determined by the type of process
under study; for processes with a low sampling rate or non-stationary process
prone to time drift a low power is recommended, whereas a higher power is
advised when a high sample rate is possible, or when the process is stationary.

It is stressed here that these observations are first results, and that more data
should be gathered for different simulation cases to confirm these numbers.
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8 Constrained Online Improvement
Using Evolutionary Operation
Steepest Ascent: A Case Study About
Energy-Optimal Robot Control

8.1 Introduction

In modern processes the output is often of a multi-objective nature and this
work would not be complete without investigating such processes. This chapter
presents a way to deal with multi-objective or constrained improvement problems
by using EVOPSA.

The choice of EVOPSA was motivated by the following constraints: the
measurement time for improvements is limited and thus the total sample size
has to be kept to a strict minimum. This leaves the Simplex method, or the
proposed EVOPSA method which combines the best of EVOP and Simplex.
Initial tests, which are not included in this chapter since they were executed
using another measurements system and are not comparable with the results
of the measurement system used for the improvements, indicated that of these
two methods, EVOPSA performed best. It was therefore chosen to execute this
study using EVOPSA.

The goal of this chapter is to show the switch from offline optimization to a
completely automated online constrained improvement method using a case

The results section was published in:
K. Rutten et al. “Constrained On-line Optimization Using Evolutionary Operation: A Case
Study About Energy-Optimal Robot Control”. In: Quality and Reliability Engineering
International (2014). doi: 10.1002/qre.1662
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study about a badminton robot. The starting point of the research was the
availability of the optimal region which was determined offline using Genetic
Algorithms on a computer simulation model of the robot [146]. Based on these
results, follow-up online experimentation was executed to fine-tune the settings.
The additional challenge of the constrained nature of the problem was dealt
with by handling it as a multi-objective improvement. First the badminton
robot case study will be described in detail, then the settings for EVOPSA are
documented. After this a benchmark test is described in order to evaluate the
performance of the methods which is followed by the results of the study, which
are concluded in the final section.

8.2 Case Study: The Badminton Robot

Typical requirements of industrial motion controllers are to realize fast and
accurate motions in order to optimize the system’s productivity [146], the
so-called time-optimal motion control. The raising energy prices and growing
environmental awareness have initiated a shift in these requirements to find a
trade-off between time-optimal and energy-optimal motion control.

In order to investigate the potential of time and energy-optimal controllers,
a case study was implemented at the Flanders Mechatronics & Technology
Centre (FMTC). It deals with the optimization of a badminton robot: the robot
should consume the least amount of energy possible, subject to the constraint
that it arrives on time to intercept a shuttle. The robot, of which a schematic
representation is given in figure 8.1, has three degrees of freedom: a rotationary
axis to rotate the racket, a linear axis to move the badminton robot and a hit
axis to let the racket hit the shuttle. More information about the design of the
badminton robot and its subsystems can be found in the relevant articles [145,
156]. The improvements executed in this study will focus on the main energy
consumer of the badminton robot, namely the linear axis.

The initial motion controller for the linear axis was a Proximate Time-Optimal
Servo (PTOS) controller [158], as described in detail for the badminton robot by
Stoev et al. [145]. The control scheme can be described as follows: a camera is
used in combination with an interception algorithm to calculate the distance to
move ydes (interception reference) and the time tmax that is available to move
in position to be able to hit shuttle before it is out of reach. In the classical
PTOS approach, the interception reference is fed to the PTOS controller which
has two tuning parameters, acceleration a and velocity v, both set at their
maximum values to ensure time-optimal motion. The PTOS controller generates
the reference signals necessary for linear movement (trajectory generator).
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(a) (b)

Figure 8.1: Schematics of the badminton robot: (a) a representation of the
complete setup, (b) detail of the robot itself, images courtesy of Flanders
Mechatronics & Technology Centre, Belgium

Energy-optimal motions can be achieved by taking the interception time
parameter tmax into the control strategy. Not every move should be executed
as fast as possible, since slower movement modes might consume less energy.
By making the control parameters dependent on interception reference and
interception time, the amount of consumed energy during badminton play might
be reduced. To achieve this, a simulation model of the badminton robot was
constructed and a Pareto front was built using a genetic algorithm, which
permits to construct the functional maps (based on a regression function, see
[146, 156]) presented in equation 8.1 and 8.2.

(tmax, ydes)→ â (8.1)

(tmax, ydes)→ v̂ (8.2)

These maps were used to create the Proximate Energy-Optimal (PEOS) â and
v̂ lookup tables which are a subset from these functional maps. This subset was
selected in such a way that the controller parameters â and v̂ can be calculated
by linear interpolation from these lookup tables for a specific motion ydes within
time interval tmax if this combination (tmax, ydes) is not present in the lookup
tables. An advantage of this approach is that the implemented controller does
not need to be changed, but only the controller settings â and v̂ have to be
adjusted. Further details of this procedure are published by Stoev et al. [146]
and Wang et al. [156].

A drastic decrease in energy was reported during benchmark testing while the
overall capability of the badminton robot to intercept the shuttle, the precision of
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the robot, lowered slightly. Another energy-optimal approach was implemented
in Wang et al. [156], where a model predictive control (MPC) approach, based
on time-optimal MPC (TOMPC) [153], was used and this approach was labelled
Energy-Optimal MPC, EOMPC. The EOMPC approach outperformed the
PEOS approach both in energy as well as in precision for the badminton
case. However, this approach faces its challenges during implementation: (1)
it requires more performant hardware than PEOS, and (2) it relies on the
availability of a cost function, in this case a quadratic function describing the
energy consumption. These type of cost functions are often very hard to obtain.
In addition, (3) the presence of some model-plant mismatch may even further
jeopardize the applicability of the method.

In current practice at the FMTC, the PEOS lookup tables generated in
simulation are implemented on the real system. Online improvement techniques
will be used to try and improve the PEOS lookup tables to further decrease
energy consumption. The proposed online improvement is simple and easy to
implement and does not require the availability of an accurate parametric model
of the full process.

8.3 Online Improvement

There are two performance criteria that need to be improved: (1) the consumed
energy and (2) the precision, defined here as the percentage of hits intercepted
during benchmark testing. These performance criteria will be compared in
benchmark tests after improvement. As a reference, the PTOS approach will
also be measured as this time-optimal motion results in the highest consumed
energy and precision. For the PEOS case, the current standard, two functional
maps are present: one for velocity v̂, one for acceleration â. These lookup
tables were generated during offline optimization and already offer a significant
improvement in energy compared to the PTOS. Each of the (tmax, ydes) pairs in
these lookup tables will be used as the starting point of an online improvement.
Thus, as much improvements as there are pairs in the lookup table are executed.
In order to protect the system against eventual warming-up or other systematic
but uncontrollable disturbances, a pair was selected from the lookup tables at
random after which all improvements are performed for this coordinate set. The
settings for the EVOPSA algorithm are explained below.
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8.3.1 Settings For Evolutionary Operation Steepest Ascent

Evolutionary Operation Steepest Ascent (EVOPSA) is, as explained previously,
a procedure where statistical estimation of a steepest ascent direction is combined
with a line search. Instead of calculating a new design every phase —a phase
being every set of measurements necessary to complete before moving step size
δ in the suspected steepest ascent direction–– as would be done in EVOP, a
steepest ascent direction is estimated after which a line search in this direction
is executed. When the last response of the line search becomes worse than
the previous response, a new statistical design is executed around the previous
response and a new steepest ascent path is estimated.

Usage of the EVOPSA algorithm requires following settings, of which most are
visualized in figure 8.2.
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Figure 8.2: Visualization of first and second EVOPSA phase.

Starting point xstart: this is the point around which the primary measurements
(points 1–4 in the figure) will be spread. In the case of the badminton robot,
there are two factors in the improvements, which are the acceleration â and
velocity v̂ of the robot.

Factorstep dxd: the factorstep represents the distance in every factor between
the measurement points when using a full factorial design. In case of the
badminton robot, there are two inputs: acceleration and velocity. Subsequently
there are two factorsteps: one for acceleration, chosen as dxa = 0.3 m s−2 and
one for velocity set at dxv = 0.03 m s−1. Determining appropriate values for the
factorsteps is not straightforward. Usually experience with the process offers
values for the factorsteps.

Stepsize δ: The step size between two consecutive phases is calculated according
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to the rules set forth in chapter 3. When both factors are active, this results in
a distance δ =

√
dx2

a + dx2
v.

Boundaries of the experimental domain: Both acceleration and velocity have
minimum and maximum constraints. If during improvement such a boundary
is met, the setting is restricted to its nearest limit. The experimental range
stretches from 0.01 m s−2 to 30 m s−2 for acceleration, and from 0.01 m s−1 to
3 m s−1 for velocity.

Number of measurements: the number of measurements for each complete
improvement run was limited to 40. This number was chosen based on practical
considerations The number of measurements was calculated in such a way that
all improvements could be executed in the timespan the setup was available.

8.3.2 Constrained Nature Of The Problem

The problem deals with the minimization of energy E subject to an arrival time
constraint tmax (for a given interception distance ydes). This can be considered
as the one-parameter improvement of E subject to the time constraint tmax.
In this research, another approach was adopted: the problem was treated as
a multi-objective problem using desirability functions by incorporating the
interception time tmax and the energy E as the two responses to be improved
(see further). The desirability functions as proposed by Derringer & Suich [45,
46] are used extensively in statistical multi-response optimization as evidenced
by a sample out of the body of recent literature [35, 51, 76, 119, 141] and
were previously proposed to be used within the framework of EVOP [25]. This
motivated the choice to use desirability functions for this study.

With desirability functions, one wishes to attain the best balance among several
different response variables or objectives. During this approach, every response
is transformed into a desirability function dd having a range between zero and
one, zero being undesirable and one being the most desirable outcome for this
response. All these separate desirabilities are then combined into the global
desirability index D using the geometric mean as presented in equation 8.3.

D = (d1 · d2 · . . . · dd)
1/d (8.3)

This implementation of the geometric mean ensures that, when one response
is undesirable (zero), the desirability index will also be zero. The badminton
problem can be considered as a dual-response system: Energy E, which needs
to be minimized, and interception time tmax which cannot surpass a certain
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value. The interception time tmax can be treated as follows: it does not really
matter in which timespan the move is executed as long as it is below or equal
to the interception time tmax and the energy is minimized.

From the previous benchmark results for the PTOS and PEOS case [146, 156],
one can surmise that there is a definite trade-off between the time to travel a
distance, the energy consumed and the precision of the robot. To investigate
this trade-off, five desirability transformations for time were implemented.

These transformation functions for time dt,c (with c = 0, 1, 2, 3, 4) and energy
dE are represented schematically in figure 8.3.
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Figure 8.3: Desirability transforms for time and energy.

Mathematically, these transformations can be written as equations 8.4 and 8.5.

dt,c =


0, t ≥ tmax
(tc − t)/(tmax − tc), tc < t < tmax

1, t ≤ tc
(8.4)

dE =


0, E ≥ EPTOS|ydes

1− E/
(
EP T OS|ydes

)
, 0 < E < EPTOS|ydes

1, E = 0
(8.5)

With t and E the time and energy to transform, tmax the interception time,
EPTOS|ydes

the consumed energy in PTOS operation for the current interception
reference ydes and tc < tmax. The value for tc changes depending on the
implemented time-constraint with c = 0, 1, 2, 3, 4 and can be written as equations
8.6 through 8.10.
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t0 = tmax − 0.005 (8.6)

t1 = tmax − 0.05 (8.7)

t2 = t1 −
1
3 · (t1 − t4) (8.8)

t3 = t4 + 1
3 · (t1 − t4) (8.9)

t4 = tPTOS|ydes
(8.10)

Let tPTOS|ydes
be the smallest time possible to move a certain distance ydes

(under PTOS operation)—being the time-optimal motion—and tmax the on-
time constraint (the movement has to be executed within this timespan, the
on-time constraints are taken from the currently implemented lookup tables).
The difference between these two times is divided in five parts, numbered zero
to four (tPTOS|ydes

). This leads to five full improvement schemes of the lookup
tables and subsequently five new lookup tables from which to choose. The
decision to differ t0 slightly from tmax was made to assure that the desirability
gradually drops to zero when approaching the time constraint. This ensures that
the method still has a strong estimation of directionality if all measurements in
a phase would be located around the time constraint tmax. Constraint t1 was
chosen a fixed value from t0 to investigate how strong the effect is of changing all
time-constraints by a fixed time-interval. The other time-intervals are dependent
upon the values of tmax and tPTOS|ydes

.

The global desirability index can be written as equation 8.11, a function of the
used desirability transforms for time and energy with c = 0, . . . , 4.

Dc =
√
dt,c · dE (8.11)

Since the global desirability is a proportion (always between zero and one),
the response transformation of equation 8.12 is used to be able to do pairwise
comparisons later on, as described in [82].

D′c = 2 · arcsin
(√

Dc

)
(8.12)

These transformed global desirabilities D′c will also be used for the estimation
of the steepest ascent parameters in EVOPSA.
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8.4 Benchmark Testing

After improvement, the PTOS, PEOS and new lookup table implementations
have to be compared with each other during a validation procedure. In this
chapter, the procedure described in Stoev et al. [146] was adopted, which is
summarized below. Since it is impossible for a human player to hit exactly
in the same manner during each validation run, a play sequence was recorded
and fed into the badminton robot to perform a benchmark test of the different
control methods. The test sequence contains 84 shuttle hits and has a duration
of approximately 8.5 minutes. This sequence is repeated three times to test if
there is a significant difference in consumed energy between the implemented
methods. The benchmark testing of PTOS, PEOS and the five EVOPSA lookup
tables result in 21 benchmark tests which were executed randomly.

No changes to the controller were made. The same control scheme as in PEOS
is used for the EVOPSA lookup tables, meaning that only the lookup tables
themselves have been changed, not the interpolation code or the underlying
controller.

The total sum of consumed energy in the linear motor during the benchmark
test will be measured and the position errors are calculated. This position error
is calculated as the difference between the actual position yact and the desired
position as given by the interception reference ydes. The position error helps
to determine the precision of the badminton system during play. Precision
is measured as the percentage of hits out of the total of 84 hits during the
benchmark test that the robot is able to intercept. A hit cannot be intercepted
when |yact − ydes| ≥ 0.05 m.

From the benchmark tests the following information will be extracted and
tabulated:

• Method: the controller method implemented; either PTOS, PEOS or
PEOS-improved using one of the five desirability transforms. For ease of
reference, the improved lookup tables were labelled with the name of the
improvement method (EVOPSA) and the number of the time constraint
that was used (c = 0, 1, 2, 3, 4).

• Consumed energy: The mean energy consumed on the linear axis during
the benchmark tests.

• Standard Deviation of Energy: The standard deviation of energy on the
three benchmark tests.
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• % improvement versus PTOS : Percentage improvement in average energy
consumption when compared to the average PTOS energy consumption.

• % improvement versus PEOS : Percentage improvement in average energy
consumption when compared to the average PEOS energy.

• Precision: The percentage of hits intercepted during the three benchmark
tests. There was no difference in precision between the three repeats of
each method thus only one value is shown.

The interest is in comparing the new lookup tables with the current PEOS
lookup tables. A one-way ANalysis Of VAriance (ANOVA) model was built
with the optimization method as the factor and the consumed energy during a
benchmark test as the response. A Dunnett Multiple Comparisons Procedure
[48] was used to compare the sample means of the energy of the different
EVOPSA results (treatments) with the PEOS method, which is the control.
The joint significance level α for all tests was set at 0.05.

8.5 Results & Discussion

After constructing the five new lookup tables, all methods were benchmarked to
compare performance. The methods under consideration are PTOS (no lookup
tables, time-optimal motion), PEOS (current approach, lookup tables generated
offline) and EVOPSA (lookup tables improved online, starting from the PEOS
tables).

With EVOPSA, five different sets of lookup tables were constructed. The five
implementations change the time constraint from on-time motion (c = 0) to
time-optimal motion (c = 4). The results of the benchmark tests are summarized
in table 8.1.

The results for the Dunnett’s Multiple Comparisons Procedure are given in
table 8.2. All improvements are significantly different from the PEOS control
and will be included in the final comparison of the results.

The goal of the initial improvment, EVOPSA-0, was the fine-tuning of the
current PEOS lookup tables to reduce the energy consumption. From the
results, it can be seen that a reduction of approximately 4 kJ is achieved, which
is an improvement of 5% compared to PEOS operation. This shows that the
offline lookup tables can indeed be fine-tuned on the full scale system using
online methods. In this case, the offline optimizations already did an excellent
job of pin-pointing the region of the optimum and the simulation model used
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Table 8.1: Summary of benchmark test results.

Method Consumed Energy impr. impr. Precision
± SD vs. PTOS vs. PEOS
[kJ] [%] [%] [%]

PTOS 226.527 ± 2.94 - - 97.62
PEOS 83.782 ± 0.18 63.02 - 94.05
EVOPSA-0 79.823 ± 0.16 64.76 4.73 94.05
EVOPSA-1 82.982 ± 0.11 63.37 0.95 94.05
EVOPSA-2 91.091 ± 0.01 59.79 −8.73 95.24
EVOPSA-3 109.317 ± 0.10 51.74 −30.48 97.62
EVOPSA-4 109.943 ± 0.08 51.47 −31.22 97.62

Table 8.2: Dunnett Multiple Comparison, control = PEOS, α = 0.05.

Difference with PEOS Difference SE Difference p-value
[kJ] [kJ]

EVOPSA-0 −3.960 0.098 < 0.001∗
EVOPSA-1 −0.800 0.098 < 0.001∗
EVOPSA-2 7.309 0.098 < 0.001∗
EVOPSA-3 25.536 0.098 < 0.001∗
EVOPSA-4 26.161 0.098 < 0.001∗

does not exhibit a large plant-model mismatch in the region of interest. In
situations where this plant-model mismatch is larger, online methods will yield
larger improvements.

The four additional improvements were executed to investigate the trade-off
between consumed energy and precision of the system. As was expected, the
more stringent the time-constraint (higher c), the higher the precision and
consumed energy. When comparing methodologies, there are two contrasts that
are of special interest: the contrast between EVOPSA-0 and EVOPSA-1, which
shifts all time constraints with 0.045 seconds, and the contrast between PTOS
and EVOPSA-4, which both yield the highest precision but differ in consumed
energy. The tests for both of these contrasts indicated that the difference in
consumed energies was statistically significant.

The shift in time from EVOPSA-0 to EVOPSA-1 (0.045 seconds difference
between t0 and t1) increases the energy by 3.2 kJ, which is approximately 4%,
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while keeping the precision the same. It is interesting to note that even with
these more stringent time-constraints, the improved lookup tables still perform
1% better in terms of energy than the PEOS tables.

When examining the other implementations, the behaviour was as expected:
the more stringent the constraint on arrival time (higher c), the better the
overall precision of the system became. The results of precision and average
consumed energy are plotted in figure 8.4 for the five improvements to visualize
the trade-off between precision and consumed energy.
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Figure 8.4: Trade-off between energy and precision.

From c ≥ 2, the energy increased above the PEOS benchmark but also increased
the precision above those of the PEOS case. EVOPSA-3 and EVOPSA-4 are
equivalent in terms of performance, since one cannot increase the performance
above the maximum performance of the currently implemented PTOS controller.
In studying figure 8.4 a secondary, interesting result is found: the same precision
as the time-optimal (PTOS) method could be reached with EVOPSA-3 but
with an energy consumption that is 117.2 kJ lower, or 52% lower, compared to
PTOS operation. For high precision operation, this is an extremely important
improvement on the energy consumption.

Based on these results, a decision can be made on which implementation to
run. If minimization of energy consumption is of paramount concern, then
implementation c = 0 should be chosen for it has the same precision as the
currently implemented tables but consumes less energy. If precision is most
important, then implementation c = 3 should be selected since it has the highest
precision possible at the lowest energy consumption for this precision.
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It is clear from these results that the applied EVOPSA method offers an
improvement over the currently implemented PEOS case. The main advantages
are that the proposed method works online and is easy to implement. If the
optimum of a process shifts over time, due to machine wear for instance, the
method can be started at the current best known settings and the process can be
shifted towards the new optimal settings with a low probability of undesirable
output being generated by the improvement. These properties immediately
lead to the disadvantages of the method: since it estimates local approximate
models, the method cannot deal with local optima. Indeed, it is not the goal
of this type of improvement to pin-point the global optima but to gradually
improve the process to better operating conditions without sudden, drastic
changes. Since the probability of undesirable output should remain low, the
settings are changed in small steps during each optimization phase, making the
method slow compared to a more adventurous exploration of the experimental
domain. Such exploration could be included in the method by varying the step
size δ between phases, yet this could also increase the probability of undesirable
output.

The inability to deal with local optima and the speed of the improvement clearly
indicate that this method needs a good parameter set to start from. In the case
of the badminton robot, offline simulations provided the current starting sets
(PEOS). In other processes where such a good set of settings is not at hand,
a rough exploration of the entire experimental domain is needed, for instance
using classical [107] or optimal [58] designs, or by using sparse, space-filling
designs, as discussed in chapter 4, to try and extract as much information as
possible with a low number of experiments.

8.6 Conclusions

The case study handled in this chapter shows that there is an added value in the
further online improvement of processes. After a first offline optimization—in
this case a first principles model optimized with Genetic Algorithms— OSPI
schemes can be used to fine-tune the optimum. For badminton robot motion,
traditionally, the motion controllers are to realize fast and accurate motions in
order to optimize the system’s productivity, the so-called time-optimal motion
control. The raising energy prices and growing environmental awareness have
initiated a shift in these requirements to find a trade-off between time-optimal
and energy-optimal motion control. In this paper, a constrained optimization
dealing with this shift in requirements—minimize energy subject to a time-
constraint—was dealt with.
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The original time-optimal control (PTOS method) was previously optimized
offline using a simulation model and the resulting lookup tables (PEOS
method) already provided a drastic improvement over PTOS operation. In
this chapter Evolutionary Operation Steepest Ascent—which combines the
statistical estimation of a local approximate model with a line search—is used
to improve a badminton robot online with as starting parameters the offline
optimization results.

The constrained nature of the problem was dealt with by treating it as a multi-
objective problem which was then scaled to a single-objective criterion using
Derringer Desirability functions. By using the combination of EVOPSA and
Derringer desirability functions, the lookup tables could be further improved
and a reduction of energy consumption of 5% was achieved while keeping the
precision of the system at the same level as the PEOS approach.

Introducing more stringent time-constraints increased the precision of the robot,
at the cost of an increased energy consumption. One of the resulting lookup
tables with more stringent time-constraints manages to increase the precision to
the maximum achievable precision but with a reduction in energy consumption of
52% compared to the current implementation with maximum precision, namely
time-optimal motion under PTOS operation. These results clearly indicate that
online, full scale process improvement can provide additional benefits to offline
optimization.
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9 Conclusions

9.1 General Conclusions

Improving full scale processes is a challenge that is usually tackled by using
offline methods on small scale versions of the process (lab, pilot) and to use
the optimal settings of those processes as inputs for the production plant.
Alternatively, physics-based computer models that mimic the real-life process
are built, and the optima of those “in silico” models are then applied to the
real process. Besides issues related to upscaling and plant-model mismatch,
non-stationary optima are also a relevant problem, especially in processes
where biological material is involved. Also influences that induce a sudden
shift in the optima such as changes due to batch-to-batch variation, shifts in
environmental conditions and varying machine behaviour after maintenance
require an additional adjustment step on the process itself when they occur.
Methods that can cope with these situations are required, and are an integral
part of this dissertation.

In view of the above limitations of traditional (offline) process improvement, a
shift to online process improvement is required. In this dissertation methods
of Online Sequential Process Improvement (OSPI) were investigated. The
goal was a thorough research of the validity of traditional OSPI methods for
contemporary processes, i.e. processes with a high amount of sensors and factors.
To achieve this goal, three research objectives were set: (1) an investigation of
the methodology and eventual extensions for contemporary processes, (2) an
in-depth investigation of the methods through simulation studies and (3) the
application to a practical case study. The general conclusions will be discussed
per research objective in the following sections.

This dissertation contributes to the state-of-the-art by (1) providing automated
procedures for direction selection for EVOP, (2) providing a software package
to apply OSPI methods, (3) comparing Simplex and EVOP in a systematic
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manner—which was never done before—(3) investigating the use of efficient
designs in higher dimensions, (4) presenting the foundations the optimal
statistical power and related sample size for EVOP improvements and (5)
highlighting the use of desirability functions for multi-objective processes.

9.1.1 Methodology

The traditional OSPI methods, EVOP and Simplex, did not evolve much in the
decades since their inception. When reviewing the literature it is shown that
Simplex is a largely forgotten method for process improvement as its derivative,
the Nelder-Mead or Variable Simplex, has accrued considerable attention in
numerical optimization. However, this Variable Simplex method is not suited
for online process improvement due to its variable step size which is problematic
for noisy systems (when the step size becomes small) and might violate the
restrictions of small changes to the factor levels, i.e. low probability of unsaleable
output (when the step size becomes large).

While the simplicity of Simplex—due to its heuristic rules—allows for easy
automated implementation, the EVOP method is still mostly applied manually
with few (i.e. two applications) reports of automated implementations. For an
automated implementation formal rules are necessary for defining the direction
and step size of the move. Such rules were formalized in this work based on the
first order derivatives of the main effects model built in every EVOP phase.

The use of steepest ascent within the EVOP framework—which was already
suggested in the original paper—was formally presented as well. Since EVOP
was run manually before, no computational logic was needed to deal with the
boundaries of the experimental domain. In a truly automated procedure keeping
the method inside of the experimental domain requires some computational
logic and a novel method to deal with an experimental domain bounded by a
hypercube was presented.

All OSPI methods depend on a good prior estimate of the factor levels where to
start from since they are known for their proneness to get stuck in local optima.
This is logical since only small changes in the factor levels are allowed during
every improvement phase to conform to the requirement that there should
be a low probability of unsaleable output. The availability of a good prior
estimate of the factor levels is of paramount importance to the success of OSPI
methods. However, when no such initial estimate is available experimentation
has to be carried out to select this prior. Contemporary processes are often
characterized by nonlinearities and possible local optima. To deal with this, a
framework to establish the region of the optimal factor levels was proposed that
uses a limited experimental effort and spans a sufficiently broad class of models,
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potentially nonlinear and having local optima. The combination of space-filling
designs with Gaussian Process modelling established this prior. This framework
was compared extensively with classical Response Surface Methodology and
Ordinary Least Squares regression on a simulation study and it was confirmed
that this framework offers a good prior estimate of the settings. Afterwards, it
was successfully applied to a practical case to establish the prior for an EVOP
improvement. Starting from the settings of initial prior, an increase of 7.5% in
the output of the system was achieved.

Summarizing, the two traditional OSPI methods, EVOP and Simplex, are
reviewed and it is found that Simplex is not applied to processes often. When
it is applied, it is usually on processes with a high SNR (low noise) and when
rapid improvement is necessary. EVOP on the other hand is still applied but
the original method lacks formal rules for the direction or step size of the
move impeding automatic implementation. Formal rules for EVOP and a novel
method to deal with the boundaries of the experimental domain are presented
to enable automation. In order to have a good starting point for EVOP a
framework consisting of the use of space-filling designs and Gaussian Process
modelling is proposed to determine this prior with limited experimental effort.

9.1.2 Simulation Studies

There is no systematic literature which compares EVOP and Simplex and their
performance which is a serious gap when one wishes to asses which method
performs best under which conditions. To asses this shortcoming, a study was
performed in which the dimensionality of the problem, the amount of noise in
the simulation and the size of the perturbations (controls the size of the design
region, called factorstep in this dissertation) were varied. Since all these settings
cannot be changed on a physical process, it was chosen to execute a simulation
study to compare the two methods.

From this study it was evident that the factorstep is one of the most essential
parameters when performing an improvement and has a direct effect on the
robustness of both EVOP and Simplex. The effect of the factorstep cannot
be uniquely quantified as it is process-dependent and will require experience
with the process or historical data to assess. From the two methods, the EVOP
procedure is more robust against changes in the factorstep, meaning that the
performance of the Simplex method is directly tied to the effect of the factorstep.

From the simulations it was concluded that Simplex is the preferred choice
when dealing with deterministic or low-noise systems, but the method is very
susceptible to changes in the factorstep. This implies that more process
knowledge is needed to start a Simplex improvement to accurately determine
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to factorstep. In general, if the goal of the improvement is the determination
of the optimal region, and one expects that this region lies far away from the
current operation conditions, the factorstep will be chosen larger and one can
use Simplex. In the other cases EVOP is the safer choice. The EVOP method
is advised when the process is characterized by a high amount of noise present
in the system and/or a dimensionality above three covariates.

Due to the full factorial that is traditionally used in EVOP, the experimental
effort (number of measurements) might become prohibitive as the dimensionality
increases. Indeed, using the full factorial with more than five or six covariates
might be inefficient as 32 or more measurements need to be performed for every
improvement phase. In chapter 6, efficient designs were proposed to tackle the
issue of a large experimental effort that is required when a full factorial is used
as a base design for cases with more than five covariates. It was shown that
such efficient designs provided not only a solution to this issue, but allowed
to reach the region of the optimum using less experimental effort. This is an
advantage for non-stationary processes in which time-drift is present. It was also
shown that they tend to stop farther away from the optimum, especially if the
noise-level increases (since the statistical power will become too low to detect
the very small effects present in this design region). Moreover, this simulation
study showed that the required power for detecting the effects could be much
lower than what is classically used in experimental design, but it remained
unclear how low this value can be to be acceptable, and how this optimal power
depends in the dimensionality of the problem.

This question concerning the relation between optimal power and dimensionaltiy
was investigated in chapter 7 were a simulation study on a linear model was
performed to offer first insights into this relation. D-optimal designs were used to
allow for a varying sample size (dependent on the requested power) and Gaussian
Process models were built on the simulation data. It was concluded that the
optimal power is a function of the dimensionality: for low dimensionalities
(k < 8) a very low power (π < 0.4) leads to a minimal number of measurements,
while for high dimensionalities (k > 8) a broad, almost flat valley (π ∈ [0.4; 0.8])
was observed. It is possible to choose the power in this valley without affecting
the sample size to a large extent. Therefore, a choice can be made base solely
on the type of process under study: for processes with a low sampling rate
or non-stationary process prone to time drift a low power is recommended,
whereas a higher power is advised when a high sample rate is possible, or when
the process is stationary. The results from this chapter gave insight into the
relation between the optimal power and the dimensionality yet are only initial
results and should be verified and further investigated on different simulation
cases.

Summarizing, Simplex is a technique better suited to quickly reach the region of
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the optimum—if one is far away from it—by using a relatively large factorstep
after which one switches to EVOP to accurately pin-point the optimum.
However, the traditional full factorial base design for EVOP becomes prohibitive
when the dimensionality increases and other, more efficient designs need to be
incorporated. The sample size of these designs can be determined by performing
a sample size estimation using the concept of statistical power.

9.1.3 Case Study

After extensive testing on simulation studies, the OSPI methodology was applied
to a practical case. The controller parameters for a badminton robot were
improved starting from tables of optimal (offline estimated) parameter settings
for different motion distances and times. These tables provided the prior
estimates for the controller parameters and as many improvements as parameter
sets available were performed.

Since the amount of measurements that could be performed was very limited
traditional EVOP was not feasible to execute. This left the Simplex and
EVOP Steepest Ascent method. The EVOPSA method delivered a higher
improvement than the Simplex method, therefore it was selected to perform
the improvement. This method combines the best of EVOP, statistical model-
building and inference, and Simplex, sequential augmentation with only one
point in the line search step.

The constrained nature of the improvement, minimize energy subject to the
arrival time constraint, was dealt with by interpreting it as a dual-objective:
minimize energy and keep arrival time below a certain threshold. This multi-
objective problem was scaled to a single-objective by using Derringer desirability
functions. The primary objective of the study—being to improve the offline
set of lookup tables (one per controller parameter) in an online fashion—was
achieved and a 4.7% decrease in energy consumption was attained, without a
loss in motion precision. This was measured during benchmark testing and
compared to the offline generated lookup tables. The secondary objective of the
study was the search for a set of lookup tables which increased motion precision
to the precision of time-optimal motion but at a lower energy consumption.
This objective was achieved by implementing more restrictive transformations
for the arrival times and resulted in the identification of lookup tables with the
same precision as time-optimal motion but with an energy consumption that is
52% lower than time-optimal motion.

Summarizing, EVOPSA was used in a case were the number of samples was
severely limited to profit both from the model-building capabilities of EVOP
and the augmentation with only one measurement during the line search. The
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use of desirability functions to deal with the constrained nature of the problem
by redefining it as a multi-objective problem proved a valid approach. And
apart from the proposed applications in the process industry, this case study
also shows the validity of OSPI methods for controller parameter tuning. In
analogy with the process industry, every improved parameter set can be seen as
one production line that was fine-tuned.

9.2 Future Perspectives

The fundamental work to prepare OSPI methods for their introduction in
contemporary processes has been presented in this work yet many avenues of
research are still to be considered. There are three main aspects that future work
must take into consideration: (1) extensions and refinement of the methodology,
(2) a proof-of-concept of a process that fully integrates OSPI and (3) effectively
using OSPI in industry.

9.2.1 Methodology

Flexible designs. The use of efficient designs already drastically reduces the
number of measurements in every EVOP phase but one is always bound by
the construction rules of the designs—which in the case of the efficient design
discussed in this text is a 1/2pf fraction of the design points of a full factorial.
Being able to choose an arbitrary number of design points per phase opens up
the possibility of even more performant improvement, as demonstrated in the
simulation study for optimal power. The field of optimal design allows to build
designs with an arbitrary number of design points (with the restriction that at
least the minimum number of points necessary to estimate a previously defined
model have to be measured, this number being ft + 1 with ft the number of
model terms excluding the intercept).

This concept was already used in chapter 7 but should be extended since
computer-generated optimal designs allow for the inclusion of additional
restrictions. When there is a time-drift, a blocking factor can easily be introduced
to try and estimate the effect of this drift. Blocking could also be used to test
for the variability between small batches (note: blocking is also possible using
classical designs, however in optimal design one has much more freedom in
choosing the blocking factors and the levels of these factors). Furthermore,
if certain factors are harder to change then others, an optimal design can be
generated that incorporates the hard- and easy-to-change factors. For instance,
the temperature of an oven could considered hard-to-change since changing the
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temperature will have a slow effect on the response, if one is not interested in
transients one will have to wait until the temperature is at the correct level.
Therefore changing the temperature should be done minimally and not every
experimental measurement.

Using computer-generated optimal designs (such as for instance the D-optimal
design) poses some additional challenges that need to be investigated. With
the main concern being the fact that constructing an optimal design might
be computationally more intensive than is possible to execute on a low-level
controller. If optimal designs are used, several options need to be investigated:
(1) should an optimal design be generated in every EVOP phase, possibly
leading to a slower software since the construction is carried out at the start of
every phase or (2) should an initial (coded) optimal design be created and the
placement of these design points be re-used in every subsequent phase. This
second possibility might even lead to the recommendation (3) to use a design
library of optimal designs at a low-level controller from which the algorithm
can select one. However, running a construction algorithm several times might
lead to different optimal designs and, consequently, this different placement
of the design points might have its impact on the improvement capability in
every EVOP phase and should be investigated thoroughly before making any
recommendation on their use.

Inclusion of interaction terms. A powerful feature of EVOP based on a full
factorial base design is the fact that interaction terms—which appear quite often
in production processes—can be estimated as well. In the approach proposed
in this dissertation, where coded designs were used and where the calculation
of the steepest ascent parameters were derived from the centre of the design
region, the need for interaction terms was partly removed. However, in a next
step the performance of the EVOP method needs to be compared against an
implementation that takes into account interaction terms. To take advantage of
the interaction terms, the direction of the move should not be calculated from
the centre of the design region since the interaction terms would disappear but
from the estimated optimal settings within the design region. It is expected
that such an adaptation will have a large effect on the EVOPSA procedure
during—what is now called—the line search step were the direction will no
longer be situated along a line but along a curve due to the inclusion of the
interaction terms. When many factors are taken into an EVOP improvement it
becomes unfeasible to use the full factorial, but interactions that are expected to
be relevant might be included by using optimal designs or fractional factorials
of resolution IV in which some two-way interactions can be estimated.

Lack-of-Fit test. The inclusion of centerpoints in the factorial designs allows
doing a formal lack-of-fit test. Such a test will indicate if the model fitted to
the design region exhibits a lack of fit, i.e. if there is an indication of curvature
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within the design region. The presence of curvature indicates that the design
region might encompass an optimum. In such a case the design could be
augmented to be able to fit quadratic terms (e.g. by the addition of star points
to form a Central Composite design from a fractional or full factorial design)
and try to accurately pin-point the optimal settings within the design region.

Stopping criterion. Some attention should be given to an intelligent stopping
criterion for the methods. For Simplex stopping criteria are already proposed
in literature, most of them specifically tailored for the Variable (Nelder-Mead)
Simplex. One simple criterion for the Simplex is to stop the method after a
particular point is retained an arbitrary number of times. Since the Simplex
has the tendency to retain the best point and (in 2 dimensions) circle the
optimum, the retention of a point after several reflections is a fair indication
that the Simplex method will no longer advance. For EVOP possible criteria to
investigate are: (1) criteria based on a formal lack-of-fit test when centerpoints
are included since the presence of curvature indicates the possible presence of an
optimum in the design region or (2) those based on the steepest ascent vector.

When all terms in the steepest ascent vector are zero (i.e. when no coefficient in
the regression model is found to be significant) no move is executed (the next
phase is “stationary”). If an arbitrary number of such stationary phases are
performed the method should also stop since the procedure is no longer moving.
If the steepest ascent vector changes signs in between phases (i.e. the EVOP
procedure keeps on jumping from one phase to the previous one and vice-versa)
no improvement is made and this can be an indication that the optimum is
located somewhere in the vicinity of the design regions of these two phases.

Non-stationary processes. In this dissertation only stationary processes are
considered yet part of OSPI is its professed ability to track non-stationary
optima. Almost no literature has been devoted to this topic and with the
current automated extensions proposed it becomes interesting to investigate this
further. For Simplex, an extension which is called Dynamic Simplex is proposed
in literature [160]. For EVOP such an extension targeted at nonstationarity is
not proposed and should be investigated. The same simulation models used
in the publication about Dynamic Simplex could then be used both for Basic
Simplex and EVOP to compare performances with the Dynamic Simplex.

Sequential Gaussian Process modelling. Although not elucidated in
this text, GP modelling is a powerful tool in which an initial design can
be sequentially augmented with additional design points to refine the model.
Techniques such as the use of the Expected Improvement Criterion (see for
instance Boyle’s PhD thesis for an explanation [24]) which indicates where the
uncertainty about prediction is highest and as such the expected improvement
of the model by placing an additional design point is highest, or region-searching
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[148] where the design is augmented with points in the region of the expected
optimum are an excellent avenue for further research. Replacing current EVOP
methods with such an incrementally increased model seems interesting but
one has to bear in mind that GP modelling is computationally expensive and
becomes drastically more so when the sample size increases. Besides, in order
to adhere to the OSPI philosophy, also restrictions related to the maximum
step size from one setting to a next one should be implemented. This warrants
further investigation to determine whether GP modelling or a combination of
current techniques and GP modelling for sequential augmentation might yield
promising results. This is a feasible option when no prior knowledge about
the initial starting conditions is known and space-filling designs, that span the
entire experimental domain, are executed as the initial design.

Optimizing the direction of the move. Currently the steepest ascent
parameters are determined by the first order derivatives of the linear model
and the direction of the move is plotted from the centre of the (coded) design
region. Another valid approach might be to numerically optimize the statistical
model and finding the best settings within the design region (which in case of
a linear model without interactions will always be located at the edge of the
design region). These settings can then be used as the starting point for the
move, or for the determination of the steepest ascent vector which does not
make use of the first order derivatives (and might be computationally more
intensive). Additionally quadratic models could be used and this quadratic
information could be included to determine the direction of the move. In such
a case Newton’s method could be used to approximate the step size (while
satisfying the Armijo-Wolfe criteria, i.e. ensure that there is a sufficient decrease
in step length and slope of the path in each step). A comparison of the Newton
step with a gradient descent procedure is shown in figure 9.1. From this figure,
it can clearly be seen that the Newton step is more efficient than the gradient
descent procedure (provided quadratic information is available).

Sequentially augmented improvement direction. As implemented in this
Ph.D, at every new EVOP phase the data of the previous phase is no longer used.
However, this data could be used to more precisely estimate the improvement
direction. For instance one could restrict the path of steepest ascent to a smooth
curve, i.e. by adding a penalty for the difference between the previous steepest
ascent vector and the current estimated one (e.g. is the difference is large, the
new direction will be more restricted along the slope of the previous direction).
Furthermore if a phase is stationary (i.e. no move is executed) the measurement
data of all stationary phases in the same design region can integrally be used to
enhance the statistical power.

Variable step size. A variable step size could increase the rate of improvement
in both methods. Yet, as stated before, a more adventurous exploration
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start

end

Figure 9.1: Comparison of gradient descent (full) and Newton’s method (dashed)
for minimizing a function (with small step sizes). Figure adapted from http:
//en.wikipedia.org/wiki/Newton’s_method_in_optimization.

of the experimental domain might be unwarranted since the probability to
produce unacceptable output might increase. It is interesting to test this theory
by implementing a variable step size with restrictions on the minimum and
maximum size to avoid problems of the changing length of the move.

9.2.2 Using Online Sequential Process Improvement In
Industry

Popularisation & Application. Not many applications in industry are
published in the last decades. There is some resurgence in applications since
the turn of the century but their number is still quite limited. Often the
practical mentality in industry requires methods to be proven before the process
supervisor would take the chance of applying it to a process. Therefore more
practical case studies need to be performed to convince industrial partners
to apply the methods. This can be an arduous road since one has to find
companies willing to implement the methods on a practical process and which
allow dissemination of the results. Another stumbling block is the total absence
of commercial software that implements OSPI. Before becoming acceptable
industry-wide, those case studies should trigger software companies to invest in
OSPI as a useful tool.

Incorporating Operator Experience. As Box stated when initially
introducing the OSPI concept, operator experience is of paramount importance
to start up an OSPI improvement. In most cases operators have a good

http://en.wikipedia.org/wiki/Newton's_method_in_optimization
http://en.wikipedia.org/wiki/Newton's_method_in_optimization
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understanding of which parameters influence the process and how they possibly
interact. This experience can be used to select the key factors and to select
new ones should external influences change the key factors of a process. It is
important in the contemporary, automatic setting to not forget this valuable
input.

Challenges. Although the OSPI methodology is sound and easy to understand,
its application in industry is still lacking. Apart from the reluctance of
process supervisors to incorporate little known methods, the available sensor
technology is also often an obstacle. The methods require some (automatically)
measured characteristics that one wishes to improve. Not in all industries such
measurements are readily available or easy to implement. An example of an
industry in which such might be readily available is the chemical industry (e.g.
measurements of yield, pH, and concentration [69]). In other environments
sensor measurements are becoming more and more the norm and, often,
sensors implemented in the machines for maintenance might correlate to the
characteristics one wishes to improve (e.g. torque of a conveyer belt could
correlate with yield). The challenge is to identify these sensors and, if they
are not present, convince management to procure them. A manual or a non-
integrated automatic OSPI improvement could be executed to prove the validity
of the approach and convince management of the procurement of the necessary
sensors.

Integrating OSPI In The Machine. Currently the developed software is
connected to existing machines by writing an extension or connector for sensor
measurements and machine control but the best way to validate the use of OSPI
methods would be a production machine which incorporates OSPI algorithms in
the machine software. The methods could then be started automatically by the
machine when it deems necessary to improve the process (e.g. when changing
batches, at first start-up during the week, continuously, when a shift in response
is detected, when a change in key variables is detected as presented in chapter
2). Ideally, such a machine should be compared to one without OSPI integration
and their performance over a longer period of time should be assessed.

Economic value of running OSPI. Convincing management to use OSPI
in conjunction with classical optimization techniques or by implementing it
stand-alone should be done by showing them the economic value of running the
OSPI scheme. There are two major economic advantages of running the scheme:
(1) The process is being gradually improved which can increase throughput,
quality, customer satisfaction and decrease defect rates and complaints. (2)
Compared to classical optimization strategies the gradual improvement of the
production process allows to keep the production within acceptable bounds.
In contrast, a classical RSM approach usually involves halting the production
process during experimentation, which will cost the company money without
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a guaranteed return on investment. It is the main philosophy of OSPI to not
influence the production process too much, therefore it can be run while still
producing saleable product and without influencing the production process
too much. It would be beneficial to calculate the cost of running a classical
approach compared to an OSPI approach for a specific process as a case study.
Furthermore additional research is necessary to investigate and optimize the costs
and benefits. The simulations in this Ph.D were focussed mainly on a minimal
amount of measurements without taking into account the costs of producing
product of less than the intended quality. Furthermore implementation and
running costs should be investigated to determine whether the method is
economically relevant for specific cases.

Opportunities. During the course of this research several visits to
companies were made and it was observed that—in for instance the packaging
industry—every operater has his own machine settings (factor levels), which can
be vastly different. This shows that there is a large room for improvement and
that an automated approach that finds the optimal combination of factor levels
is much needed. Furthermore several processes are sensitive to environmental
conditions (see for instance [66]) and batch-to-batch variations. In such
production environments an increased stress-level was observed for the operators
since trial-and-error changes to the settings are applied to move the process
within acceptable bounds once a significant deviation in the output is observed.
Using OSPI could offer an automated tool to keep, or move, the process within
acceptable bounds. It is even possible to use environmental data (e.g. humidity,
temperature, . . . ) within the OSPI approach. Moving towards industry 4.0
which will bring more sensors, and sensor fusion, to the production enviroment
will offer more and more data for automated improvement methods to take into
account while trying to keep a process within bounds (or when improving it).
This shows that there is a large, potential application area for the methods
within industry.
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Appendix





A Examples And Documentation OfMat-

lab Software Package For OSPI Meth-
ods

A.1 Introduction

A significant effort was delivered to develop a framework of Matlabr classes
that make it easy for a user to work with the presented Online Sequential
Process Improvement methods.

Object Oriented Programming (OOP) was used for this software package and
the following terminology is used in this context: one improvement method is
called a class, creating an improvement method with settings for executing an
improvement is called an instance of this class, functions applied to data which
are only specified for a specific class or instances of this class are called methods.
Without going into further detail, this terminology will be used here to explain
generally, the advantages of an OOP framework.

• All relevant methods for an improvement are “packaged” together, there
is no confusion possible. This allows us to use the same method name for
every class, which will make it much easier to switch between improvement
methods;

• One placeholder variable will hold the entire instance, i.e. all relevant
settings and the improvement method are saved using this one variable
which makes (global) variable management much easier;

• It is possible to extend classes, in the OOP terminology make a child
class of its “parent”. This allows the child class to inherit all methods
from the parent. This is used for EVOPSA, which is a special application
of the EVOP improvement. This allows us to maintain the relevant
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settings, which are identical for both methods, in one class. EVOPSA will
automatically inherit all methods from EVOP.

The software code was structured in such a way that it is easy to convert it into
other programming languages, foreseeing the implementation of the methods in
other programming languages and hardware platforms. This appendix chapter
will describe the functions that are made available to the user of the classes as
well as (pseudo-) examples of improvements to illustrate how simple running
the algorithms is.

Every improvement that is executed on a physical process will adhere to the
following flow:

• Use process knowledge to determine relevant factors, responses, noise-level
and factorstep;

• Determine hard- and software necessary to run the process, measure its
responses and influence the factors and interface with the improvement
software;

• Use the developed software package to run the improvement.

Process knowledge will be abstracted here by choosing one response (unnamed),
a process with four factors (k = 4), a center of the first design region xstart,
factorsteps dx for the four factors and boundary constraints Xlim for the four
factors. These settings are summarized in table A.1. Hardware and hardware
interfacting will be abstracted by representing the interfacing with the software
by two generic functions: (1) IOsetFactors(factorSettings) which expects
a 1× k vector holding the settings for the factors as the input. The response is
gathered from the process by IOgetResponse(), it is assumed that the function
waits until the measurement procedure is completed before sending data to
the program. The examples will be run without a stopping criterion for the
improvements, this is something that will have to be chosen by the experimenter.
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Table A.1: Improvement settings for the software examples

Setting Value
k 4

xstart {0; 0; 0; 0}
dx [1; 0.8; 0.5; 3]

Xlim


−50 10
−40 30
−80 55
−100 100



A.2 Software Methods

This section documents the software methods available to the user. To simplify
use, all improvement methods share some basic methods, these will be given
once under “General Methods” while methods related to a specific improvement
scheme are presented seperately.

A.2.1 Simplex

S = Simplex(k,initialSimplex,xco,dx)

Constructor of the Simplex class, creates an instance of the Simplex
method with all proper parameters set

Inputs k The number of factors to measure

initialSimplex The initial simplex, either “D-
optimal”, “corner” or “tilted”

xco A 1 × k vector with the starting
coordinates, see chapter 2

dx A 1× k vector with the factorsteps,
see chapter 2

Outputs S An instance of the Simplex class
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resetInitialSimplex(coords)

Overwrite the initial simplex by one that is set manually

Inputs coords A (k + 1)× k coordinate matrix for
the k + 1 simplex points

Outputs -

setReplications(r)

Set the number of replications for every point. Every point will
be measured this number of times and the average response of all
measurements will be used internally, see [155]

Inputs r A positive integer denoting the
amount of replications, the minimum
(and default) is 1, meaning every
point is measured once

Outputs - -
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A.2.2 Evolutionary Operation

E = EVOP(k,dx,xstart,nc,r,design,varargin)

Constructor of the EVOP class, creates an instance of the EVOP
method with all proper parameters set

Inputs k The number of factors to measure

xstart A 1× k vector with the centerpoint
of the first design region, see chapter
3

dx A 1× k vector with the factorsteps,
see chapter 3

nc Number of centerpoints in the design

r The number of times the factor
levels (excluding the centerpoint)
in a design should be measured to
complete a phase

design An integer indicating the type of
design to use: (0) full factorial,
(1) fractional factorial (mininum
resolution III), (2) D-optimal design

varargin Optional argument that only needs
to be set when a D-optimal design
is used. Then it should be set as
an integer which denotes the sample
size of the design (excluding the
centerpoints)

Outputs E An instance of the EVOP class
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A.2.3 Evolutionary Operation Steepest Ascent

ES = EVOPSteepestAscent(k,dx,xstart,nc,r,design)

Constructor of the EVOPSteepestAscent class, creates an instance
of the EVOPSA method with all proper parameters set

Inputs k The number of factors to measure

xstart A 1× k vector with the centerpoint
of the first design region, see chapter
3

dx A 1× k vector with the factorsteps,
see chapter 3

nc Number of centerpoints in the design

r The number of times the factor
levels (excluding the centerpoint)
in a design should be measured to
complete a phase

design An integer indicating the type of
design to use: (0) full factorial,
(1) fractional factorial (mininum
resolution III), (2) D-optimal

Outputs ES An instance of the EVOPSteepesAs-
cent class

A.2.4 General Methods

setLogFolder(folder)
Set the path to a folder for logging the configuration (settings given
in the constructor) and the raw data (if data logging is enabled)
Inputs folder String describing the path to the log

folder, either relative or absolute
Outputs - -
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setEnableData(setData)
Enable or disable logging of the data, data is logged in the folder
which is set by setLogFolder
Inputs setData A boolean which is set to True to

enable logging and set to False to
disable logging

Outputs - -

setEnableCon�g(setCon�g)
Enable or disable logging of the configuration to a file, this file is
logged in the folder which is set by setLogFolder
Inputs setConfig A boolean which is set to True to

enable logging and set to False to
disable logging

Outputs - -

setEnableLimits(setLimits)
Enable or disable constrained improvement, the hypercube limits
of the experimental domain are set by setLimits
Inputs setLimits A boolean which is set to True to

enable constrained improvement and
set to False to disable it

Outputs - -

setLimits(factorLimits)
Set the factor limits for constrained improvement (i.e. constrained
to an experimental domain defined by a hypercube). This method
must be called before enabling constrained improvement!
Inputs factorLimits A k×2 matrix with, for every factor,

the minimum and maximum factor
level that bounds the experimental
domain hypercube

Outputs - -
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coords = readPoint()
Get the coordinates of the points that need to be measured next
(this method will always return the same set of coordinates until
the setResponse method is called)
Inputs - -
Outputs coords A 1× k coordinate vector of the new

measurement point

numpoints = getPhasePointsRemaining()
Gives the number of points remaining in the current phase,
necessary in toplevel programs to determine if a cycle is finished
(for Simplex always gives 0 after the initial cycle since Simplex is
augmented with only one point)
Inputs - -
Outputs numpoints An integer with the number of points

remaining in the current cycle

setResponse(response)
Enter the response, this function will call a step procedure
internally once a cycle is completed
Inputs response A floating point number defining the

response of the finished measurement
Outputs - -

close()
Finish the improvement: force last data to be written to file and
write configuration with current timestamp
Inputs - -
Outputs - -
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A.3 Examples

Algorithm A.1. Matlabr example program for using Simplex improvement
in the developed software package.

1 %% Define settings
2 k = 4;
3 xstart = [0 0 0 0];
4 dx = [1 0.8 0.5 3];
5 initialSimplex = 'tilted';
6 xco = xstart−dx/2;% The initial point of the Simplex can be

defined from the centre of the first design region
7
8 %% Create Simplex instance
9 S = Simplex(k,initialSimplex,xco,dx);
10
11 %% Set the folder in which everything is logged (default 'log')
12 S.setLogFolder('data');
13 S.setEnableData(1); %Log measurement data
14 S.setEnableConfig(1); %Log measurement configuration data
15
16 %% Set factor level limits
17 % Constrain the improvement to the hypercube bounded by these

factor levels (one row for every factor)
18 factorLimits = [−50 10; −40 30; −80 55; −100 100];
19 S.setLimits(factorLimits);
20 S.enableLimits(1); % Constrained improvement
21
22 while 1,
23 % Get the factor levels of the next point to measure
24 factorSettings = S.readPoint();
25 % Set factor levels on process
26 IOsetFactors(factorSettings);
27 % Wait until measurement is finished, get response
28 response = IOgetResponse();
29 % Feed response to improvement method
30 S.setResponse(response);
31 end
32 S.close(); % Write last data to file, save configuration
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Algorithm A.2. Matlabr example program for using EVOP improvement in
the developed software package.

1 %% Define settings
2 k = 4;
3 xstart = [0 0 0 0];
4 dx = [1 0.8 0.5 3];
5 nc = 1;
6 r = 1;
7 design = 1; % Fractional factorial min Res III
8
9 %% Create EVOP instance
10 E = EVOP(k,dx,xstart,nc,r,design);
11
12 %% Set the folder in which everything is logged (default 'log')
13 E.setLogFolder('data');
14 E.setEnableData(1); %Log measurement data
15 E.setEnableConfig(1); %Log measurement configuration data
16
17 %% Set factor level limits
18 % Constrain the improvement to the hypercube bounded by these

factor levels (one row for every factor)
19 factorLimits = [−50 10; −40 30; −80 55; −100 100];
20 E.setLimits(factorLimits);
21 E.enableLimits(1); % Constrained improvement
22
23 while 1,
24 % Get the factor levels of the next point to measure
25 factorSettings = E.readPoint();
26 % Set factor levels on process
27 IOsetFactors(factorSettings);
28 % Wait until measurement is finished, get response
29 response = IOgetResponse();
30 % Feed response to improvement method
31 E.setResponse(response);
32 end
33 E.close(); % Write last data to file, save configuration
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Algorithm A.3. Matlabr example program for using EVOPSA improvement
in the developed software package.

1 %% Define settings
2 k = 4;
3 xstart = [0 0 0 0];
4 dx = [1 0.8 0.5 3];
5 nc = 1;
6 r = 1;
7 design = 1; % Fractional factorial min Res III
8
9 %% Create EVOPSteepestAscent instance
10 ES = EVOPSteepestAscent(k,dx,xstart,nc,r,design);
11
12 %% Set the folder in which everything is logged (default 'log')
13 ES.setLogFolder('data');
14 ES.setEnableData(1); %Log measurement data
15 ES.setEnableConfig(1); %Log measurement configuration data
16
17 %% Set factor level limits
18 % Constrain the improvement to the hypercube bounded by these

factor levels (one row for every factor)
19 factorLimits = [−50 10; −40 30; −80 55; −100 100];
20 ES.setLimits(factorLimits);
21 ES.enableLimits(1); % Constrained improvement
22
23 while 1,
24 % Get the factor levels of the next point to measure
25 factorSettings = ES.readPoint();
26 % Set factor levels on process
27 IOsetFactors(factorSettings);
28 % Wait until measurement is finished, get response
29 response = IOgetResponse();
30 % Feed response to improvement method
31 ES.setResponse(response);
32 end
33 ES.close(); % Write last data to file, save configuration





B Power Analysis Program In Matlab

For Coded, Orthogonal, Two-level De-
signs

Algorithm B.1. Matlabr example program for calculating the power of
coded, orthogonal, two-level designs

1 clear all
2 close all
3 clc
4
5 % SETTINGS
6 alpha = 0.05; %significance level
7 sigma = 1; %error standard deviation
8 beta = 0.5; %size of coded linear regression coefficient one

wishes to detect
9 k = 6; %Number of factors
10 p = k; %Number of parameters in the model, excluding intercept
11 nt= 20; %Sample size, total number of measurements
12 nu1 = nt−1−p; %Degrees of freedom for error
13
14 % CALCULATE POWER
15 phi = beta/sigma*sqrt(nt); %Non−centrality measure
16 criticalHigh = tinv(1−alpha/2,nu1); %Critical t−value t*
17 criticalLow = −tinv(1−alpha/2,nu1); %Critical t−value t*
18 power = (nctcdf(criticalLow,nu1,phi))+ (1−nctcdf(criticalHigh,nu1,

phi)) %Power by using the cumalative non−central t−distribution
density function
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C Estimate Sample Size For Orthogonal,
Coded, Two-Level Designs In Matlab

Algorithm C.1. Matlabr example program for calculating sample size of
orthogonal, two-level designs starting from a coded regression coefficient (Part
1)

1 % SETTINGS
2 power = 0.5; %The power one wishes to attain
3 alpha = 0.05; %significance level
4 sigma = 1; %error standard deviation
5 beta = 0.5; %size of coded linear regression coefficient to detect
6 k = 6; %Number of factors
7 p = k; %Number of parameters in the model, excluding intercept
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Algorithm C.1. Matlabr example program for calculating sample size of
orthogonal, two-level designs starting from a coded regression coefficient (Part
2)

8 % RECURSIVELY SEARCH FOR MATCH
9 for step = 1
10 startnt = (k+2);
11 endnt = (k+2)*1000;
12 for nt = startnt:step:endnt
13 nu1 = nt−1−p; %Degrees of freedom for error
14 phi = beta/sigma*sqrt(nt); %Non−centrality measure
15 criticalHigh = tinv(1−alpha/2,nu1); %Critical t−value t*
16 criticalLow = −tinv(1−alpha/2,nu1); %Critical t−value t*
17 powerC = (nctcdf(criticalLow,nu1,phi))+ (1−nctcdf(

criticalHigh,nu1,phi));
18 if(powerC >= power)
19 endnt = nt;
20 break;
21 end
22 end
23 end
24 % DISPLAY SAMPLE SIZE AND POWER
25 disp(['Minimum sample size: ' num2str(nt) ', Power: ' num2str(

powerC)])
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