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Abstract

Control systems are prevalent in modern technology with applications
ranging from washing machines, hard drives and cars in domestics to
high performance production machines in industry. The ever increasing
customer demands have led to rapid advances in sensing, computing and
actuation technology, in turn increasing the role of advanced control the-
ory. This evolution has led to the introduction of optimization techniques
to obtain superior systems.

A typical application of control theory is computing the signals re-
quired to perform a speci�c task, such as steering the system from one
con�guration to another or following a desired trajectory for one or more
variables in the system. In addition, the system’s performance, such as
the execution time or energy consumption, and limitations must be taken
into account, leading to so-called optimal control problems.

The problem formulation is key for �nding solutions to these problems
reliably and e�ciently and constitutes the main focus of this thesis. To
this end, both the mathematical structure of the system and the signal
parameterizations are carefully chosen. A piecewise polynomial param-
eterization of the signals is adopted, allowing for a small dimensional
optimization problem in which system limitations can be imposed reliably,
either by necessary and su�cient semi-de�nite conditions or a series of
su�cient linear relaxations. In addition, so-called di�erentially �at sys-
tems, a generalization of linear systems, exhibit a mathematical structure
that is particularly well suited for the problems at hand.

For linear systems, the combination of both piecewise polynomials and
di�erential �atness leads to a small-dimensional problem formulation,
which can be solved reliably and e�ciently. Additionally, time-optimality
is achieved through a novel algorithm and system uncertainties are ac-
counted for. For nonlinear di�erentially �at systems, the geometric path
following problem is tackled by projecting the problem onto the path and
by applying a time transformation. By allowing additional freedom in
the geometric path, the more general path planning problem can also be
solved.





Korte inhoud

Regelsystemen zijn alom tegenwoordig in moderne technologie. Je vindt
ze niet alleen in hoogperformante productiemachines maar ook in een
eenvoudige wasmachine, harde schijf of thermostaat. Bovendien hebben
de steeds toenemende klantverwachtingen snelle evoluties in sensoren,
actuatoren en rekenkracht teweeggebracht. Dit heeft geleid tot het gebruik
van optimalisatie in het ontwerp van geavanceerde regelsystemen.

Een kenmerkende toepassing van regeltechniek is het berekenen van
het vereiste actuatorsignaal om een speci�eke taak uit te voeren, zoals
het systeem van één con�guratie naar een andere sturen of een gewenst
pad voor één of meerdere variabelen laten volgen. Ook de gewenste
performantie en de systeemlimieten moeten in rekening gebracht worden.
Dit vereist de oplossing van een zogenaamd optimaal controle probleem.

Het e�cient en betrouwbaar oplossen van zulke problemen vergt
een zorvuldige formulering van het probleem en vormt een belangrijk
aandachtspunt in deze thesis. Zowel de parametrizatie als de wisundige
vorm van het systeem worden nauwgezet gekozen. Een stuksgewijze
polynomiale parametrizatie van de signalen zorgt ervoor dat systeem-
beperkingen betrouwbaar opgelegd kunnen worden, hetzij door nodige en
voldoende semide�niete voorwaarden of eenvoudigere voldoende lineaire
voorwaarden. Bovendien beschikken zogenaamde di�erentieel vlakke
systemen, een veralgemening van lineaire systemen, over een wiskundige
vorm die uitermate geschikt is voor de beschouwde problemen.

Voor lineaire systemen leidt de combinatie van zowel stuksgewijze
veeltermen als di�erentieel vlakke systemen tot een probleemformulering
met slechts enkele onbekenden die e�cient en betrouwbaar opgelost kan
worden. Bovendien worden tijdsoptimale trajecten met een vernieuwend
algoritme bekomen en kunnen ook systeemonzekerheden in rekening ge-
bracht worden. Voor niet-lineaire di�erentieel vlakke systemen, wordt het
padvolg probleem aangepakt door achtereenvolgens de systeemdynamica
langsheen het pad te projecteren en een transformatie van variabelen toe
te passen. Door het pad variabel te beschouwen, wordt tevens het meer
algemene padplanning probleem aangepakt.





Contents

1. Introduction 1
Piecewise polynomials 2 · Di�erential �atness 3 · Flatness
and motion planning 7 · Contributions and outline 9 ·
Notation 12

r

2. Nonnegative univariate polynomial splines 15
Basis splines 16 · Nonnegative univariate polynomials 19 ·
Nonnegative continuous univariate polynomial splines 23 ·
Summary 33

r

3. A convex optimization approach to curve fitting 35
Optimization problem 36 · Examples 38 · Summary 44

r

4. Optimal control of linear systems 47
General problem formulation 48 · Time-optimal point-to-
point motion trajectories 53 · Robust splines for dynamic
systems 66 · Summary 72

r

5. Optimal path following for differentially flat systems 75
Problem statement 77 · Time transformation 79 · Examples 83 ·
Optimal path planning 90 · Summary 97

r

6. Concluding remarks 99
Summary 99 · Ideas for future research 101

r

A. Software tutorial 105
Installation 105 · Software design 105 · Flat systems 106 ·
Path following 107 · Path planning 109





1
Introduction

Control systems are prevalent in modern technology with applications
ranging from washing machines, hard drives and cars in domestics, to
high performance production machines in industry. The ever increasing
customer demands have led to rapid advances in sensing, computing and
actuation technology, in turn increasing the role of advanced control the-
ory. This evolution has led to the introduction of optimization techniques
to obtain superior systems.

Computing the inputs required to perform a speci�c task is a typical
application of control theory. Such a task may be to steer the system
from one state to another, so-called point-to-point problems, or to follow
a desired trajectory for some or all states of the system, so-called path
following problems. Additionally, one must trade o� the performance of
the system, whether it is execution time, energy or something else, for
the actuation e�ort, leading to so-called optimal control problems.

The main focus of this thesis lies on solving the optimal point-to-
point and optimal path following problem e�ciently. Therefore, it is
important to exploit the structure of the optimization problem, which
is determined both by the mathematical structure of the system and the
chosen parameterizations.

Linear systems exhibit the most common and simple structure. For
such systems control theory is well established. However, due to the in-
creasing complexity of systems, a linear system structure often falls short
in describing the system dynamics accurately. So-called di�erentially �at

systems are a generalization of linear systems and can model a much larger
class of systems. Moreover, their mathematical structure is particularly
well suited for the problems at hand. Polynomials constitute a well known
parameterization for the control signals and can be constrained e�ciently.
However, they o�er little �exibility and often result in poor performance.
Piecewise polynomials on the other hand are equally e�cient and o�er
more �exibility.



2 Introduction

This research aims at developing e�cient methodologies using both
di�erential �atness and piecewise polynomials for solving optimal point-
to-point motion problems and path following problems.

This chapter �rst introduces the reader to the concept of piecewise
polynomials, followed by di�erential �atness and its application in mo-
tion planning problems, reviewing recent literature. Subsequently, an
overview of the thesis and the contributions is provided. Finally, the
notation used throughout the text is set.

1.1. Piecewise polynomials
Definition 1.1 · Let ξ = (ξ0 , . . . , ξl ) be a strictly increasing sequence

of points. A function s (x ) de�ned on the �nite interval [ξ0 , ξl ] is called a
piecewise polynomial or pp function of degree k ≥ 0 if s (x ) is a polynomial

pi of degree ≤ k on each interval [ξi , ξi+1):

s (x ) = pi (x ), if ξi ≤ x < ξi+1 , i = 0, 1, . . . , l − 1. (1.1)

The points ξ are called the breaks or breakpoints of s .
The vector space of all pp functions of degree k and break sequence ξ

is denoted by Πk ,ξ with dimension (k + 1)l , since each of the l polyno-
mials has k + 1 coe�cients. The subspace Πk ,ξ ,ν denotes the set of pp
functions that satisfy the continuity conditions given by the sequence
ν = (ν0 , . . . , νl ), where νi counts the number of continuity conditions
required at ξi . In particular, νi = 0 means that no continuity condition
whatsoever is imposed at ξi . This thesis always takes ν0 = νl = 0 such
that the pp function vanishes outside [ξ0 , ξl ]. The dimension of Πk ,ξ ,ν is
д + k + 1 with д = (k + 1) (l − 1) −∑l

i=0 νi .
Figure 1.1 illustrates a parabolic pp function (k = 2) with breakpoints

ξ = (0, 1, 3, 5, 6, 8, 9, 10). It features discontinuous jumps at the edges
x = 0 and x = 10 as well as at the internal breaks x = 1 and x = 9. In the
�rst derivative the pp function has discontinuous jumps at the sites x = 3
and x = 9. Finally the second derivative has jumps at x = 4 and x = 5. It
follows that the continuity vector ν = (0, 0, 1, 2, 2, 1, 0, 0) and д = 12.

Chapter 2 details the de�nition of pp functions through B-splines and
describes the most important properties used throughout the thesis.
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figure 1.1.: A pp function of degree 2 and l = 7 with breakpoints (0, 1, 3, 5,
6, 8, 9, 10)

1.2. Differential flatness
The concept of di�erential �atness was initially introduced by Fliess,
Lévine, et al. 1995. A system is said to be �at if there exists a set of outputs
(equal to the number of inputs) such that all states and inputs can be
determined from these outputs without integration.
Definition 1.2 (Differential flatness) · A system

ẋ = f (x ,u) (1.2)

with states x ∈ Rn and inputs u ∈ Rm is di�erentially �at if there exists a

set of variables, the so-called �at outputs, y ∈ Rm of the form

y = д

(
x ,u ,

du
dt , . . . ,

dqu
dtq

)
such that

x = Φ

(
y ,

dy
dt , . . . ,

dr−1y

dt r−1

)
u = Ψ

(
y ,

dy
dt , . . . ,

dry
dt r

)
,

(1.3)

for some q, r ∈ N.
Determining whether or not a system ẋ = f (x ,u) is �at remains an

open problem. Fortunately, results exist for a wide variety of systems.
The reader is referred to Martin, Murray, and Rouchon (2003) for an
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overview and a catalog of �at systems. The following examples show
some nonlinear mechanical systems that are �at. These systems will be
used throughout the thesis.
Example 1.1 (Linear controllable systems) · As di�erential �atness can
be interpreted as a generalization of controllability for linear systems (Fliess,

Lévine, et al. 1995), it is obvious that all linear controllable systems are �at.

Consider a single-input single-output system with a (strictly proper) transfer

function

H (s ) =
b0 + b1s + . . . + br−1s

r−1

a0 + a1s + . . . + s r
.

This system has the following control canonical state space representation

ẋ =



0 1 0 · · · 0
0 0 1 · · · 0
...

...
...
. . .

...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −ar−1


x +


0
...

0
1

 u ,
z =

(
b0 b1 · · · br−1

)
x ,

with x the states and z the output. Obviously, a �at output y = x1 due to
the chain of integrators. Now, the input u and output z of the system can

easily be written in terms of a �at output y as

u = a0y + a1
dy
dt + . . . + dry

dt r

z = b0y + b1
dy
dt + . . . + br−1

dr−1y

dt r−1 .

Note that the �at output is not unique. Any multiple of y is also a �at

output. It is convenient to scale the �at output by a factor 1/b1 such that

the system output scales with the �at output when the system is at rest.

For multiple-input multiple-output systems the interested reader is referred

to Lévine and Nguyen (2003), Sira Ramírez and Agrawal (2004).

Example 1.2 (Overhead crane (Fliess, Lévine, et al. 1995)) · Consider
an overhead crane as displayed in Figure 1.2. A load with massm is attached
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Y1

Y2

θ
u2

(y1 ,y2)

u1

figure 1.2.: On the overhead
crane a load is a�ached to
a moving trolley via a cable
that can vary in length

via a cable to a moving trolley. Assume the trolley position and the cable

length are the control variables. Neglecting damping, the equations of motion

for the system are

mÿ1 = −T sinθ
mÿ2 = −T cosθ +mд

y1 = u2 sinθ + u1

y2 = u2 cosθ ,

where (y1 ,y2) is the coordinate of the load with respect to a reference frame

Y1Y2, T the tension of the cable, θ the angle between the cable and the

vertical axis, u1 the trolley position and u2 the cable length. From the �rst

two equations we �nd

tanθ = ÿ1
ÿ2 − д

.

Substituting θ in the fourth equation gives

u2 = y2

√
1 +

(
ÿ1

ÿ2 − д
)2
.

Then u1 can be determined as

u1 = y1 −
y2ÿ1
ÿ2 − д

.

It is clear that the system inputs u1 ,u2 and the state θ can be determined

from y1 ,y2 without integration. Hence the overhead crane is a di�erentially
�at system.
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figure 1.3.: Two-dimensional
first principles quadrotor model

Y1

Y2
(y1 ,y2)

u2

u1

θ

Example 1.3 (�adrotor) · Control of quadrotors and other unmanned

aerial vehicles is an active research �eld nowadays. This example discusses

�atness of a simpli�ed �rst principles model in two dimensions from Hehn,

Ritz, and D’Andrea (2012) as shown in Figure 1.3. It is controlled by two

inputs, the thrust force u1 and the pitch rate u2. Furthermore it has three

degrees of freedom, the horizontal and vertical position (y1 ,y2), with respect

to the reference frame XY , and the angle θ .

The equations of motion for the system are described by

mÿ1 = u1 sinθ
mÿ2 = u1 cosθ − д

θ̇ = u2.

Similar to the overhead crane, it is easy to see that

tanθ = ÿ1
ÿ2 + д

u1 =m

√
(ÿ2 + д)2 + ÿ2

1

u2 =
...
y1 (ÿ2 + д) − ÿ1

...
y2

(ÿ2 + д)2 + ÿ2
1
.

Hence, the two-dimensional �rst principles quadrotor model is di�erentially

�at. The three-dimensional quadrotor model is also di�erentially �at with

�at outputs the coordinate of the center of gravity and the yaw angle. A

detailed derivation can be found in Mellinger and Kumar (2011).
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1.3. Flatness and motion planning1

Di�erentially �at systems are particularly well suited for solving motion
planning problems. Consider the problem of steering the system from an
initial to a �nal state. Parameterizing the components of the �at output,
yi , i = 1, . . . ,m as

yi (t ) =
∑
j

Ai jb j (t ), (1.4)

where b j (t ) are basis functions, reduces the problem from �nding a func-
tion in the in�nite dimensional space of su�ciently smooth functions to
�nding a �nite set of parameters Ai j .

For the point-to-point motion problem, given initial and �nal states, x0
and xT at times 0 and T , the corresponding values of the �at output and
its derivatives are determined. To this end, the system of equations

yi (0) =
∑
j

Ai jb j (0), yi (T ) =
∑
j

Ai jb j (T )

dyi
dt (0) =

∑
j

Ai j
db j
dt (0),

dyi
dt (T ) =

∑
j

Ai j
db j
dt (T )

...

dr−1yi

dt r−1 (0) =
∑
j

Ai j
dr−1b j

dt r−1 (0),
dr−1yi

dt r−1 (T ) =
∑
j

Ai j
dr−1b j

dt r−1 (T )

(1.5)

is solved for the coe�cients Ai j . These equations are linear in the coe�-
cients A. In fact, the coe�cients A are required to be in an a�ne subspace
de�ned by the above equations, implying that trajectory generation for
�at systems can be reduced to simple algebra. When the system of equa-
tions is underdetermined, an optimal control problem is formulated to
determine the best choice of coe�cients.

1This section borrows many ideas from the excellent survey paper Martin, Murray, and
Rouchon (2003)
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Consider the standard optimal control problem

minimize
u ( ·) ,x ( ·)

∫ ᵀ

0
L(x (t ),u (t )) dt

subject to ẋ = f (x ,u)

x (0) = x0 , x (T ) = xT ,

for given x0 , xT and T . Assuming the system ẋ = f (x ,u) is �at, one can
parameterize the �at output space as in (1.4) instead of discretizing the
controls, resulting in the unconstrained 2 nonlinear program

minimize
y ( ·)

∫ ᵀ

0
L

(
Φ

(
y ,

dy
dt , . . . ,

dr−1y

dt r−1

)
,Ψ

(
y ,

dy
dt , . . . ,

dry
dt r

))
dt ,

where the �at output y is parameterized as in (1.4). Hence, numerical
sensitivity issues during integration of the dynamics and the problem of
satisfying x (T ) = xT is eliminated. This methodology was �rst proposed
in van Nieuwstadt and Murray (1998). In Fliess and Marquez (2000) it is
considered in a predictive control setting and is subsequently applied on
an industrial application in Petit, Cre�, et al. (2001).

Adding state and input inequality constraints complicates the prob-
lem considerably. Consider a constraint h(x (t ),u (t )) ≥ 0,∀t ∈ [0,T ].
Classical constrained optimization approaches (Milam, Mushambi, and
Murray 2000, Faiz, Agrawal, and Murray 2001, Louembet, Cazaurang,
Zolghadri, et al. 2009, Petit, Milam, and Murray 2001) rely on collocation
in which time sampling is used to impose the constraints. Therefore, in
between time-samples constraints are not guaranteed to be satis�ed such
that a post-analysis is necessary. For linear systems several approaches
have been proposed to ensure h(x (t ),u (t )) ≥ 0 for all t ∈ [0,T ]. Henrion
and Lasserre (2006) use a polynomial basis for the �at outputs and view
the constrained motion planning problem as a polynomial nonnegativity
problem requiring linear matrix inequalities. However, due to the limited
degrees of freedom of a polynomial, the solution space is limited and
higher degrees may lead to unwanted oscillations. Therefore, researchers
have recently turned to piecewise polynomial functions (Louembet, Cazau-
rang, and Zolghadri 2010, Suryawan, De Doná, and Seron 2011, Suryawan,

2After eliminating the interpolation constraints (1.5)
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De Doná, and Seron 2012). Louembet, Cazaurang, and Zolghadri (2010)
generalize the approach of Henrion and Lasserre (2006) towards piecewise
polynomial functions. The authors, however, do not take into account the
�nite support of the polynomial pieces and unwillingly, conservatism is
introduced. Instead of resorting to linear matrix equalities, Suryawan, De
Doná, and Seron (2011), Suryawan, De Doná, and Seron (2012) express the
state and input constraints in a linear fashion based on the total positivity
property of the basis functions. Naturally, these simpli�ed constraints
also introduce a possibly large amount of conservatism (de Boor and
Daniel 1974).

For nonlinear systems, the point-to-point motion problem is much
more challenging. To simplify the problem, it is often decoupled into a
high level path planning stage in which a geometric trajectory is planned
accounting only for geometric constraints, and a low level path following
stage in which an optimal velocity pro�le along the path is determined
taking into account system dynamics and limitations (Bobrow, Dubowsky,
and Gibson 1985, Shin and McKay 1985). I will call this �nal step the path

following problem. Raczy (1997), Raczy and Jacob (1999) were the �rst to
recognize the applicability of path following problems to di�erentially �at
systems. For these systems, the dynamics can be projected along the path
onto a linear system, leading to a small dimensional optimization problem.
These results were further generalized in Faulwasser, Hagenmeyer, and
Findeisen (2011). For the speci�c model structure of a simpli�ed robotic
manipulator, Verscheure, Demeulenaere, et al. (2009) propose a problem
transformation yielding a convex optimization problem, which can be
solved reliably to global optimality.

1.4. Contributions and outline

This thesis aims at developing e�cient methodologies using both di�eren-
tial �atness and piecewise polynomials for solving optimal point-to-point
motion problems and path following problems. Figure 1.4 illustrates the
relationship between the di�erent themes that are treated in this thesis.
Chapter 2 focuses on piecewise polynomials and develops both an exact
and conservative method for imposing semi-in�nite constraints. Chap-
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Nonnegative
univariate

polynomial splines

Di�erential flatness

Optimal control
of linear systems

A convex
optimization approach

to curve fi�ing

Optimal
path following

figure 1.4.: The relationship between the di�erent themes treated in this thesis

ter 3 brie�y deviates from the central theme, i.e. optimal motion control,
and uses the results from the previous chapter to focus on the spline ap-
proximation problem. Chapter 4 deals with optimal control problems for
linear systems through di�erential �atness using pp functions. Chapter 5
continues with the path following problem for nonlinear di�erentially
�at systems. A nonlinear change of variables is proposed, leading to an
e�cient problem formulation. Subsequently, the approach is extended
towards path planning problems. The following subsections summarize
the main contributions for each chapter.

1.4.1. Nonnegative univariate polynomial splines

Chapter 2 considers the problem of imposing a piecewise polynomial
nonnegativity constraint h(x ) ≥ 0 for all x on the support of h. First, the
basics of polynomial splines are covered and well-known results from
polynomial optimization are reviewed. Then, based on recent results,
an explicit and exact nonnegativity conditions for polynomial splines
is derived. Furthermore, a novel linear relaxation method is presented.
These linear conditions are easier to check but inevitably introduce con-
servatism.
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1.4.2. A convex optimization approach to curve �tting

One challenge when optimizing splines is determining the locations of
the breaks, which requires treating the breaks as variables resulting in
a highly nonlinear and nonconvex optimization problem. Consequently,
it is di�cult to obtain and guarantee global optimality. Previously pub-
lished results rely on a good initial estimate of the breaks and cannot
incorporate prior knowledge straightforwardly. Instead of taking the
breaks as variables, Chapter 3 follows an indirect approach by supply-
ing many candidate breaks and using a regularization to favor solutions
with few active breaks as proposed in Demeulenaere, Pipeleers, et al.
(2009), resulting in a convex optimization problem, which can be solved
e�ciently to global optimality. By using a B-spline parameterization of
the pp function numerical stability is improved. Moreover, by using an
iterative reweighing procedure the sparsity is enhanced. Knowledge of
the underlying function is also easily incorporated by adding constraints
to the optimization problem.

1.4.3. Optimal control of linear systems through di�erential �atness

Inspired by Henrion and Lasserre (2006) and Louembet, Cazaurang, and
Zolghadri (2010), Chapter 4 views optimal control problem as a nonnega-
tivity problem with polynomial splines. Contrary to Suryawan, De Doná,
and Seron (2011), Suryawan, De Doná, and Seron (2012), Louembet, Caza-
urang, and Zolghadri (2010), exact solutions are found. Moreover, the
linear relaxations, derived in Chapter 2 are able to approximate these so-
lutions very closely at a low computational cost. For time-optimal motion
problems, instead of resorting to classical binary search (Boyd and Van-
denberghe 2004, Consolini and Piazzi 2009), a novel algorithm is adopted
from Janssens et al. (2013b) that takes into account derivative information.
Furthermore, by regarding the problem as a parametric linear program,
solutions for the entire parameter range can be computed by solving
only a limited set of problems. Moreover, by exploiting �atness, a robust
counterpart for the robust input design problem for uncertain systems is
derived. This way, the usual sampling of the uncertainty region as in Chew
and Chuang (1995), De Caigny et al. (2008), De Caigny (2009) is avoided.
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1.4.4. Optimal path following for di�erentially �at systems

Chapter 5 deals with the optimal path following problem for nonlinear
di�erentially �at systems. For such systems, it has been shown that the
projection of the dynamics along the geometric path onto a linear single-
input system leads to a small dimensional optimal control problem (Raczy
and Jacob 1999, Faulwasser, Hagenmeyer, and Findeisen 2011). Although
the projection simpli�es the problem to great extent, the resulting prob-
lem remains di�cult to solve, in particular in the case of nonlinear system
dynamics and time-optimal problems. Inspired by Verscheure, Demeule-
naere, et al. (2009), this research proposes a nonlinear change of variables,
using a time transformation, to arrive at a �xed end-time optimal con-
trol problem. Numerical simulations indicate that the proposed problem
formulation is solved more e�ciently particularly for highly nonlinear
paths compared to results from literature. Although path following has
many applications it is restrictive to constrain the output to follow a
predetermined geometric path. Therefore, the proposed path following
framework is extended to allow for some freedom in the geometric path.
To this end, the geometric reference is represented as an unknown convex
combination of two or more �xed boundary paths. In this way, optimal
paths for di�erentially �at systems can be determined as well.

1.5. Notation
In the remainder of the text ∂kτ f (τ ) denotes the k-th derivative of f (τ )
with respect to τ . For k = 1, ∂τ f (τ ) is used. The shorthand notation ḟ , f̈
denotes the �rst and second derivative with respect to time. aᵀ denotes
a matrix or vector transpose. Furthermore, 〈·, ·〉 denotes the standard
inner product: for vectors, a,b ∈ Rn 〈a,b〉 = ∑n

i=1 aibi = aᵀb and for
matrices, A, B ∈ Rn×m , 〈A, B〉 = ∑n

i=1
∑m

j=1 Ai jBi j = tr(AᵀB). The space
of symmetric n × n matrices is denoted by Sn . ForA ∈ Sn , A � 0 indicates
that the matrix A is positive semide�nite.
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What to remember

· A function is a piecewise polynomial of degree k if it is a polynomial
of at most degree k on each of its pieces.

· A system is said to be di�erentially flat if a set of variables equal to
the number of inputs exists such that all states and inputs can be
determined from these variables without integration.

· Di�erentially flat systems are particularly well suited for solving
optimal control problems since the integration of the di�erential
equations can be avoided.





2
Nonnegative univariate
polynomial splines

Many engineering problems require determining whether a univariate
function p (x ) is nonnegative on a subset of R, see e.g. Ben-Tal and Ne-
mirovskiï (2001), Lasserre (2010). Usually, nonnegativity is determined by
checking a �nite set of samples from the subset. However, this method
gives no guarantee whatsoever in between samples. In casep (x ) is polyno-
mial, however, nonnegativity can be guaranteed by solving a linear matrix
inequality (lmi). This is due to the equivalence between nonnegativity
and the existence of a sum of squares (sos) decomposition (Laurent 2009).
However, despite their ease of use, polynomials can be in�exible on large
intervals and often generate excessive oscillations when used for interpo-
lation, especially for high order curves. Therefore, nonnegative piecewise
polynomial (pp) functions have recently gained interest (Louembet, Caza-
urang, and Zolghadri 2010, Plaumann 2010), o�ering more �exibility
than traditional polynomials even for low degrees. Rather than naively
imposing nonnegativity of the polynomial pieces, which can result in
an unnecessarily large lmi due to unaccounted continuity conditions,
a sum of squares (of pp functions) decomposition is searched for. To
this end, the seminal work Nesterov (2000) is combined with a sum of
squares decomposition for pp functions, recently derived in Plaumann
(2010). An explicit degree for the piecewise polynomials in the sum of
squares decomposition from Plaumann (2010) is derived. Furthermore, it
is conjectured that examining nonnegativity of a pp function only requires
the solution to a sparse lmi instead of a dense one. As solving large lmi’s
remains computationally challenging to date, a linear su�cient condi-
tion for nonnegativity is determined and a series of linear relaxations is
derived.

The chapter �rst reviews the basics on basis splines. The second section
summarizes well-known results on nonnegativity conditions for univari-
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ate polynomials. These results are generalized in the following section on
piecewise polynomial nonnegativity. Both exact semide�nite conditions
and a novel linear relaxation method are described.

2.1. Basis splines

Basis splines or B-splines are commonly used as a basis for pp functions
in Πk ,ξ ,ν (de Boor 2001). Given a nondecreasing knot sequence

λ = (λ0 , . . . , λд+2(k+1) ),

the normalized B-spline function of degree k , de�ned on [λi , λi+k+1], is
computed using the Cox-de Boor recursive formula (de Boor 2001)

bi ,k ,λ (x ) =
x − λi
λi+k − λi

bi ,k−1 ,λ (x ) +
λi+k+1 − x
λi+k+1 − λi+1

bi+1 ,k−1 ,λ (x ), (2.1)

starting with

bi ,0 ,λ (x ) =

1, if x ∈ [λi , λi+1),

0, if x < [λi , λi+1).
(2.2)

For the space Πk ,ξ ,ν the knot sequence λ can be constructed by repeating
ξi exactly k + 1 − νi times in λ. As there are l − 1 internal breaks, д can
then be interpreted as the number of internal knots, i.e. λi that do not lie
on the boundary of the spline’s support, in λ.
Example 2.1 (basis splines) · Consider a parabolic spline (k = 2) with
break sequence ξ = (0, 1, 3, 6) and continuity requirements ν = (0, 2, 1, 0).
Hence, the knot sequence λ = (0, 0, 0, 1, 3, 3, 6, 6, 6) and д = 3. The six
corresponding B-splines are plotted in Figure 2.1. Each of the B-splines is

piecewise parabolic and at the breaks they clearly exhibit a discontinuity in

either the function itself or its derivatives. The function b0 ,k ,λ is discontinu-
ous at x = 0, and b1 ,k ,λ ,b2 ,k ,λ ,b3 ,k ,λ and b4 ,k ,λ have a discontinuous �rst
derivative at the sites x = 0, 3 and 6. Note that the discontinuity is tied to the
multiplicity of the breakpoint in the de�ning knot sequence, e.g. the de�ning

knot sequence for b3 ,k ,λ is (1, 3, 3, 6), which explains the discontinuous �rst

derivative at x = 3.
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figure 2.1.: Parabolic B-splines for the knot sequence λ = (0, 0, 0, 1, 3, 3, 6, 6, 6)
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B-spline functions exhibit many interesting properties. In particular
the positivity and partition of unity properties are of interest with regard
to nonnegativity. Both properties can be discerned in Figure 2.1.
Property 2.1 (Support and positivity) · The basis function bi ,k ,λ is

a pp function of degree k + 1 with breaks λi , . . . , λi+k+1, vanishes outside
[λi , λi+k+1), and is positive on the interior of that interval.

Property 2.2 (Partition of unity) · The basis bk ,λ provides a partition
of unity

д+k∑
i=0

bi ,k ,λ = 1 on [λ0 , λд+k+1).

Having de�ned the B-spline basis, every pp function s can be repre-
sented as a linear combination of B-spline basis functions

s =

д+k∑
i=0

cibi ,k ,λ = 〈c ,bk ,λ〉, (2.3)

where bk ,λ denotes the B-spline basis of degree k with knot sequence λ.
The B-spline coe�cients c are often called the control points of the spline
and the control polygon is de�ned as the piecewise linear interpolant to
the points (λ∗i , ci ), where λ∗i is the i-th knot average λ∗i = 1/k ∑i+k

j=i+1 λ j . In
Figure 2.5 the thick black line represents the control polygon. A function,
represented as a linear combination of B-splines, is called a polynomial

spline function or a spline.
It follows from properties 2.1 and 2.2 that

Property 2.3 (Convex hull) · A spline is always contained in the convex

hull of the control points. Hence, a scalar spline function is contained within

the minimum and maximum value of its coe�cients:

s (x ) = 〈c ,bk ,λ (x )〉 ∈ [min(c ),max(c )],∀x ∈ [ξ0 , ξl ].

The convex hull property will prove very useful in Section 2.3.2.
The derivative of a spline is itself a spline. Its coe�cients can be

determined using following property:
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Property 2.4 (Differentiation) · The m-th derivative of a degree k
spline s is itself a spline of degree k −m

∂mx s (x ) =
m∏
i=1

(k + 1 − i )
∑
i

c
(m)
i bi ,k+1−m ,µ (x ) ,

where

c
(i )
j =


c j , if i = 0 ,
c (i−1)
j −c (i−1)

j−1
λ j+k+1−i −λ j if i > 0 .

(2.4)

and the knot sequence µ is obtained by reducing the continuity with one

over the breaks.

Property 2.5 (Addition) · The sum of two pp functions in the space

Πk1 ,ξ 1 ,ν1 and Πk2 ,ξ 2 ,ν2 is a pp function in the space Πk ,ξ ,ν , where k =

max(k1 , k2), ξ = ξ 1 ∪ ξ 2
and

νi =


min(ν1

n , ν
2
m ) if ξ 1

n = ξi , ξ
2
m = ξi for some n,m

ν1
n if ξ 1

n = ξi for some n

ν2
m if ξ 2

m = ξi for somem

Example 2.2 · Consider two splines with degrees, breaks and continuity

sequence k1 = 3, ξ 1 = (0, 1, 2, 4), ν1 = (0, 3, 3, 0) and k2 = 2, ξ 2 =
(0, 2, 3, 4), ν2 = (0, 2, 2, 0). The sum of these splines has k = 3, ξ =
(0, 1, 2, 3, 4) and ν = (0, 3, 2, 2, 0).

2.2. Nonnegative univariate polynomials
Before addressing nonnegative polynomial splines, let us �rst summarize
the basics of nonnegative univariate polynomials. The material in this
section is based on the survey paper Laurent (2009), to which the reader
is referred for details and a more comprehensive study. Two methods for
asserting nonnegativity are discussed. The �rst method is based on a sum
of squares decomposition of the polynomial and yields exact results in the
univariate case. The second method describes a series of linear, though
conservative, relaxations.
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2.2.1. Sum of squares

A crucial concept in this chapter is the notion of sum of squares. A
polynomial p is said to be sum of squares of polynomials or sos if p
can be written as p = ∑m

i=1 q
2
i for some polynomials q1 , . . . ,qm . We are

interested in determining the conditions for which p is nonnegative on a
subset S of R.

Obviously, a polynomial which is sos is nonnegative on R. Luckily, for
univariate polynomials the converse holds as well:
Lemma 2.1 · Any nonnegative univariate polynomial is a sum of two squares

Proof. See Laurent (2009). �

It is possible to determine whether a polynomial is sos by verifying
the existence of a positive de�nite matrix. This result was discovered
independently by several authors e.g. Choi, Lam, and Reznick (1995),
Powers and Wörmann (1998).
Lemma 2.2 · Let p (x ) = ∑2d

i=0 pix
i
be a polynomial of degree 2d . The

following assertions are equivalent.

1. p (x ) is sos

2. The following system in the matrix variable X ∈ Sd+1
is feasible

X � 0,
∑

j ,k | j+k=i
X j ,k = pi . (2.5)

Proof. Let v (x ) = (1, x , x2 , . . . , xd )ᵀ and de�ne polynomials

qi (x ) = 〈qi ,v (x )〉.

Thus ∑
i qi (x )

2 = v (x )ᵀ
(∑

i qiq
ᵀ
i

)
v (x )ᵀ . Therefore p (x ) is a sum of

squares of polynomials if and only ifp (x ) = v (x )ᵀXv (x ) for some positive
semide�nite matrix X . By equating the coe�cients of both polynomials
p (x ) and v (x )ᵀXv (x ), the system (2.5) is found. �
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Example 2.3 · Consider the polynomial p (x ) = 4 + 4x − 3x2 − 2x3 + x4
. As

p (x ) is a quartic polynomial, an X � 0 satisfying

p (x ) =
(
1 x x2) a b c

b d e
c e f

︸       ︷︷       ︸
X


1
x

x2


must be determined. By equating the coe�cients, it can be seen that X =4 2 c
2 −3 − 2c −1
c −1 1

 . Therefore X � 0, if and only if −2 ≤ c ≤ 2. For c = −2,

X =

 2
1
−1

 (
2 1 −1

)
,

which corresponds to the decomposition p (x ) = (2 + x − x2)2.

2.2.2. Nonnegative polynomials on an interval

Often, you are only interested in determining whether a polynomial p (x )
is nonnegative on a S ⊆ R. In this case the sos condition on p (x ) has to be
relaxed. The theorems below are presented without proof. The interested
reader is referred to Laurent (2009), Powers and Reznick (2000) for proofs
and a more detailed treatment.
Theorem 2.1 (Pólya-Szegö) · If p (x ) ≥ 0,∀x ≥ 0 then, p = f + xд, where
f and д are sos and deg( f ), deg(xд) ≤ deg(p).
Theorem 2.2 (Fekete, Markov-Lukácz) · If p (x ) ≥ 0,∀x : − 1 ≤ x ≤ 1
then,

1. p = f +д(1−x2), where f andд are sos and deg( f ), deg(д) ≤ deg(p)
(respectively deg(p) + 1) if deg(p) is even (respectively odd).

2. If deg(p) is odd, then p = f (1 + x ) + д(1 − x ), where f and д are sos

and deg( f (1 + x )), deg(д(1 − x )) ≤ deg(p).
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Example 2.4 · Consider the polynomial p (x ) = 4 + 5x − 5x2 − x3 + x4
on

x ≥ 0. To establish p (x ) ≥ 0,∀x ≥ 0, an X ,Y � 0 and satisfying

p (x ) =
(
1 x x2) a b c

b d e
c e f

︸       ︷︷       ︸
X


1
x

x2

 + x
(
1 x

) (
д h
h i

)
︸  ︷︷  ︸

Y

(
1
x

)

has to be found. Choose for example X =

 4 2 −2
2 1 −1
−2 −1 1

 , Y =
(

1 −1
−1 1

)
,

which corresponds to the decomposition p (x ) = (2 + x − x )2 + x (1 − x )2.

2.2.3. Linear relaxations

As the degree of the polynomial increases, the matrix inequalities related
to the nonnegativity conditions quickly grow in dimension and become
increasingly di�cult to solve. The necessary and su�cient semide�nite
conditions for nonnegativity can then be replaced by linear su�cient con-
ditions that are easier to solve. Naturally, the decrease in computational
demand comes at the cost of added conservatism to the problem. For poly-
nomial nonnegativity problems Pólya’s relaxation is often employed (Pólya
1928, Laurent 2009). As this research only consider univariate polynomi-
als, a dehomogenized version of Pólya’s theorem is adopted, which can
be attributed to Bernstein (1915).
Theorem 2.3 · If a univariate polynomial p > 0 on [a,b], then p can be

written as a positive linear combination of polynomials (x − a)i (b − x ) j for
suitable integers i and j.

This essentially means that any positive polynomial can be written as∑d
i=0 ci (x − a)i (b − x )d−i , with ci ≥ 0. Note that no bound on the degree

d is given.
For polynomial optimization the inverse of Pólya’s theorem is often

used, i.e. a positive linear combination of polynomials (x − a)i (b − x ) j
means positivity on [a,b]. By applying Pólya’s relaxation, it is meant
replacing the polynomial inequality by an inequality on the coe�cients
of p (x ) = ∑d

i=0 ci (x − a)i (b − x )d−i for a �xed value of d .
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figure 2.2.: Pólya’s relaxations of αx2 + βx (1 − x ) + α (1 − x )2 > 0 for degrees
d = 1, 3, 5, 7, 9. The true bound is indicated by the dashed line.

Example 2.5 · Consider the polynomial p (x ) = αx2 +βx (1−x ) +α (1−x )2
on x ∈ [0, 1]. From Pólya’s relaxation a su�cient condition for positivity

of p (x ) is α , β > 0. By multiplying the polynomial with x + (1 − x ), one
obtains

p (x ) = αx3 + (α + β )x2 (1 − x ) + (α + β )x (1 − x )2 + α (1 − x )2

and the positivity condition α , α + β > 0, which is less conservative. By

repeatedly multiplying p with x + (1 − x ), the constraints on the coe�cients

converge to the correct conditions, although it may require the degree d to

go to in�nity. Figure 2.2 illustrates the conditions for increasing d . Pólya’s
relaxation approaches for increasing degree the correct constraints α > 0
and α ≥ −β/2.

2.3. Nonnegative continuous univariate
polynomial splines

Having covered nonnegative univariate polynomials and de�ned polyno-
mial splines, we are now ready to tackle polynomial spline inequalities
of the form s (x ) = 〈c ,bk ,λ (x )〉 ≥ 0 for x ∈ [λ0 , λд+k+1). As in the di-
cussion on polynomial nonnegativity, both an exact semide�nite and a
conservative linear method is determined.
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2.3.1. Sum of squares

Rather than naively imposing nonnegativity of the polynomial pieces,
which results in an unnecessarily large lmi due to unaccounted continuity
conditions, a sum of squares decomposition is searched for. In Louembet,
Cazaurang, and Zolghadri (2010) nonnegative pp functions were studied
using the sum of squares formalism. However, as the �nite support of
the piecewise polynomial basis was not taken into account, the authors
only derived su�cient conditions. By providing explicit necessary and
su�cient conditions for nonnegative piecewise polynomials, the results
in Louembet, Cazaurang, and Zolghadri (2010) are extended. To this end,
a sum of squares decomposition for pp functions, which was recently
derived in Plaumann (2010), is used.
Theorem 2.4 · Let µ denote the knot sequence with breakpoints ξ =
(ξ0 , . . . , ξl ) and continuity sequence ν = (0, 1, 1, . . . , 1, 1, 0). The con-

tinuous pp function s with break sequence ξ is nonnegative on its support if

and only if there exist sums of squares fi of continuous pp functions such
that

s = f0 +
l−1∑
i=0

bi ,1 ,µbi+1 ,1 ,µ fi+1. (2.6)

Note the resemblance with Theorem 2.2. In Plaumann (2010) only week
degree bounds are given and the continuity of f0 remains unclear. The
following theorem �lls in these voids.
Theorem 2.5 · The univariate continuous pp function s = 〈c ,b2d ,λ〉 is
nonnegative if and only if there exist matrices Y0 ∈ Sdl+1

and Yi ∈ Sd , i =
1, . . . , l , such that Yj � 0, j = 0, . . . , l and

s = b
ᵀ
d ,µY0bd ,µ +

l−1∑
i=0

bi ,1 ,µbi+1 ,1 ,µb
ᵀ
d−1 ,µYi+1bd−1 ,µ .

Proof. The degree of the spline basis follows from the application of
Theorem 2.2 on the polynomial pieces of s (x )

s (x ) =


д1 (x ) + (x − ξ0) (ξ1 − x ) f1 (x ) if x ∈ [ξ0 , ξ1),

...
...

дl (x ) + (x − ξl−1) (ξl − x ) fl (x ) if x ∈ [ξl−1 , ξl ),
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where дi and fi are sum of squares of polynomials of degree at most d
and d − 1 respectively.

Equivalently

s (x ) = f0 (x ) +
l−1∑
i=0

bi ,1 ,µ (x )bi+1 ,1 ,µ (x ) fi+1 (x ),

with f0 (x ) =
∑l

i=1 дi (x ) |x ∈[ξ i ,ξ i+1)
, a continuous pp function degree ≤ d .

The continuity of f0 follows from the continuity of s since (x − ξi ) (ξi+1 −
x ) fi (x ) = 0 for x = ξi , ξi+1.

Furthermore, each дi (x ) = hi (x )
2 + li (x )

2 can be written as a sum of
two squares (cfr. Theorem 2.1). De�ne h̃i (x ) = hi (x ) sinθi + li (x ) cosθi
and l̃i (x ) = hi (x ) cosθi − li (x ) sinθi , such that дi (x ) = h̃i (x )

2 + l̃i (x )
2.

Due to the continuity of f0 (x ), дi (ξi ) = дi+1 (ξi ). Therefore, there always
exist a rotation θi such that h̃i (ξi ) = hi+1 (ξi ) and l̃i (ξi ) = li+1 (ξi ). This
shows that f0 is also a sum of squares of continuous pp functions. �

Note that the fi for i = 1, . . . , l are sos of polynomials. Therefore, it
is not necessary to use the complete basis bd−1 ,µ in Theorem 2.5. The B-
splines bi (d−1) ,d−1 ,µ up to b(i+1) (d−1) ,d−1 ,µ are su�cient to cover a degree
d − 1 polynomial basis over the knots [ξi , ξi+1]. For convenience, the
notation from Theorem 2.5 will be used in the following.

With the necessary theorems in place, the following provides a conve-
nient way to compute the matrices Yi . First, it is convenient to express
all pp functions in the same basis. Due to the Curry-Schoenberg theorem
(de Boor 2001), b2d ,µ is a basis for all continuous pp functions of degree
≤ 2d . Now, the spline s is reformulated as

s = 〈c ,b2d ,λ〉 = 〈Tc ,b2d ,µ〉,

where T is a linear transformation matrix.
Inspired by the seminal work of Nesterov (2000), the vector coe�cient

l jk ∈ R2dl+1 are de�ned as

b j ,d ,µbk ,d ,µ = 〈l jk ,b2d ,µ〉.
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Furthermore, the matrix valued linear operators Λ0 (b2d ,µ ) : R2dl+1 7→
Sdl+1 are de�ned, such that

Λ0 (b2d ,µ )
( jk ) = 〈l jk ,b2d ,µ〉.

Now, it holds that
bd ,µb

ᵀ
d ,µ = Λ0 (b2d ,µ ),

such that bᵀd ,µY0bd ,µ = 〈Y0 ,bd ,µb
ᵀ
d ,µ〉 = 〈Y0 ,Λ0 (b2d ,µ )〉.

In a similar fashion Λi (b2d ,µ ) : R2dl+1 7→ Sd are de�ned as

bi ,1 ,µbi+1 ,1 ,µbd−1 ,µb
ᵀ
d−1 ,µ = Λi+1 (b2d ,µ ).

The adjoint operator Λ∗0 (Y ) : Sdl+1 7→ R2dl+1 is de�ned by:

〈Y0 ,Λ0 (b2d ,µ )〉 = 〈Λ∗0 (Y0),b2d ,µ〉,∀Y0 ∈ Sdl+1

and similarly for the other Λi .
Then Theorem 2.5 can be reformulated as

Theorem 2.6 · The piecewise polynomial s = 〈c ,b2d ,λ〉 is nonnegative on
its support if and only if there exist matrices Yi � 0 with Y0 ∈ Sdl+1

and the

remaining Yi ∈ Sd such that

Tc =
l∑

i=0
Λ∗i (Yi ).

Example 2.6 · Let’s illustrate the developed theory by means of a simple

example with two polynomial pieces and provide a comparison with Louem-

bet, Cazaurang, and Zolghadri (2010) and with the traditional polynomial

nonnegativity Theorem 2.2.

Consider the continuous degree 2 piecewise polynomial s (x ) = 〈c ,b2 ,λ (x )〉
with knot sequence λ = (0, 0, 0, 1, 1, 2, 2, 2). We are interested for which c
the piecewise polynomial s (x ) is nonnegative.

First the bases b2 ,µ (x ) and b1 ,µ (x ) with continuity requirement one over

the internal breakpoints are determined. These are illustrated in Figure 2.3.
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figure 2.3.: The bases b1 ,µ (x ) and b2 ,µ (x ). Note the discontinuity in the first
derivative at the internal breaks

Then the matrix valued linear operators Λi are determined:


b2

0 ,1 ,µ b0 ,1 ,µb1 ,1 ,µ 0
b1 ,1 ,µb0 ,1 ,µ b2

1 ,1 ,µ b1 ,1 ,µb2 ,1 ,µ
0 b2 ,1 ,µb1 ,1 ,µ b2

2 ,1 ,µ


=


b0 ,2 ,µ b1 ,2 ,µ/2 0
b1 ,2 ,µ/2 b2 ,2 ,µ b3 ,2 ,µ/2

0 b3 ,2 ,µ/2 b4 ,2 ,µ

 = Λ0 (b2 ,µ ),

and

b0 ,1 ,µb1 ,1 ,µI[0 ,1] = b1 ,2 ,µ/2 = Λ1 (b2 ,µ ),

b1 ,1 ,µb2 ,1 ,µI[1 ,2] = b3 ,2 ,µ/2 = Λ2 (b2 ,µ ),

where the indicator function I[ξ i ,ξ i+1] = 1 for t ∈ [ξi , ξi+1] and zero other-
wise.
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Now, the adjoints Λ∗0 (Y ) and Λ
∗
i (zi ) are found as

Λ∗0 (Y ) = (Y11 ,Y12 ,Y22 ,Y23 ,Y33)
ᵀ ,

Λ∗1 (z1) = (0, z1/2, 0, 0, 0)ᵀ ,
Λ∗2 (z2) = (0, 0, 0, z2/2, 0)ᵀ .

In this example, the transformation matrix T is the identity matrix.

We conclude that s (x ) ≥ 0 for x ∈ [0, 2] if and only if there exists

Y � 0 ∈ R3×3
and zi ≥ 0 ∈ R, i = 1, 2 such that c = Λ∗0 (Y ) + ∑2

i=1 Λ
∗
i (zi ).

By eliminating the equality constraints, the non-negativity conditions c0 c1 − z1/2 Y13
c1 − z1/2 c2 c3 − z2/2

Y13 c3 − z2/2 c4

 � 0

and

z1 , z2 ≥ 0

are obtained.

Using polynomial positivity theory on both pieces one would �nd the

equivalent yet larger LMI
c0 c1 − z1/2 0 0

c1 − z1/2 c2 0 0
0 0 c2 c3 − z2/2
0 0 c3 − z2/2 c4

 � 0

and

z1 , z2 ≥ 0,

whereas applying results from Louembet, Cazaurang, and Zolghadri (2010)

yields c0 c1 y
c1 c2 c3
y c3 c4

 � 0.

Clearly this last result is conservative as for example c = (1, 2, 1, 2, 1) would
be excluded from the feasible set.
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figure 2.4.: Matrix structure of Y0
for a fully continuous spline

Note that for a large number of breakpoints the matrix Y0 grows large,
which poses computational problems when solving the lmi, especially
when matrices are dense. However, it appears that depending on the
degree of continuity of s (x ) a speci�c sparsity pattern can be imposed on
Y0.
Conjecture 2.1 · Consider a degree 2d spline with continuity 2d over all

the internal breaks. Then the matrix Y0 from Theorem 2.5 is a block matrix

in which the �rst and last element of each block overlap, as illustrated in

Figure 2.4.

Example 2.7 · Consider a degree two spline with λ = (0, 0, 0, 1, 2, 2, 2).
Applying Theorem 2.6 results in the nonnegativity conditions c0 c1 − t1 y

c1 − t1 c1+c2
2 c2 − t2

y c2 − t2 c3

 � 0 (2.7)

and t1 , t2 ≥ 0.
Conjecture 2.1 claims that y = 0, which can be veri�ed when looking at

the nonnegativity conditions on the individual intervals:(
c0 c1 − t1

c1 − t1 c1+c2
2

)
� 0( c1+c2

2 c2 − t2
c2 − t2 c3

)
� 0
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and t1 , t2 ≥ 0. To see that the above conditions yield (2.7) with y = 0, �rst
consider c1 ≥ 0. In this case, simply take t1 = c1 such that (2.7) can be

decoupled. If c1 < 0, we take t1 = 0. If c2 < 0 the lmi (2.7) can no longer be

decoupled. However, this would render the lmi infeasible as the diagonal

element
c1+c2

2 < 0.
Up to now, the discussion focused on even degree splines. For odd

degree polynomial splines the following corollary from Theorem 2.4 can
be derived.
Corollary 2.1 · A continuous piecewise polynomial s of odd degree is

nonnegative on its domain if and only if there exist sum of squares дi of
continuous pp functions such that

s =
l+1∑
i=1

bi ,1 ,µдi . (2.8)

Proof. Substituting the identity

bi ,1 ,µ = b
2
i ,1 ,µ + bi−1 ,1 ,µbi ,1 ,µ + bi ,1 ,µbi+1 ,1 ,µ

in (2.8) results in (2.6).
On the other hand, multiplying (2.6) with ∑

b1 ,µ = 1, results in

f0

l+1∑
i=1

bi ,1 ,µ +
l∑
i=1

(
bi ,1 ,µb

2
i+1 ,1 ,µ + b2

i ,1 ,µbi+1 ,1 ,µ
)
fi .

where the property bi ,1 ,µb j ,1 ,µbk ,1 ,µ = 0 for distinct i , j , k is used. It is
readily veri�ed that this result is of the form (2.8). �

Similarly to before the operators Λi (b2d+1 ,µ ) : R2dl+2d+1 7→ Sd+2 are
de�ned as

bi ,1 ,µbd ,µb
ᵀ
d ,µ = Λi (b2d+1 ,µ ).

Theorem 2.7 · A piecewise polynomial s = 〈c ,b2d+1 ,λ〉 is nonnegative if
and only if there exist matrices Yi ∈ Sd+2

such that Yi � 0, i = 0, . . . , l and

Tc =
l∑

i=0
Λ∗i (Yi ).
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2.3.2. Linear relaxations

As shown in the previous section, the lmi’s can quickly grow in dimension
for increasing number of knots and degree. Therefore, linear su�cient
conditions similar to Pólya’s relaxation for polynomial nonnegativity
problems are very interesting from a computational point of view.

An obvious su�cient condition for nonnegativity follows from Prop-
erty 2.1. Since all B-spline basis functions are nonnegative,

s (x ) = 〈c ,bk ,λ (x )〉 ≥ 0,∀x ∈ [λ0 , λд+k+1)

if
c ≥ 0.

Although this is a simple condition, it may introduce a large amount of
conservatism in the problem as shown by de Boor and Daniel (1974). To
reduce the amount of conservatism a knot insertion method is proposed.
By a re�nement λ̃ of the knot sequence λ, the spline is reformulated as
s (x ) = 〈c̃ ,bk ,λ̃〉 and a relaxation c̃ ≥ 0 is obtained. The more re�ned
the knot sequence, the closer the control polygon lies to the pp function
as is illustrated in Figure 2.5 and hence the smaller the conservatism.
Note that this method shows some resemblance to a sampling based
approach, where instead of inserting a knot, one directly constrains the
function value s (xi ) ≥ 0 for some xi ∈ [λ0 , λд+k+1]. In this approach
the nonnegativity constraint is overly relaxed; there is no guarantee that
the spline is nonnegative in between samples. By using knot insertion,
nonnegativity is guaranteed albeit with the addition of some conservatism.

Suppose a single knot t is inserted in the knot span (λ j , λ j+1), then the
new spline coe�cients can easily be calculated with

c̃i = (1 − ai )ci−1 + aici , for j − k + 1 ≤ i ≤ j ,

where the ratio ai is determined as

ai =
t − λi

λi+k − λi
for j − k + 1 ≤ i ≤ j .

For i > j and i < j − k + 1 the coe�cients remain unaltered

c̃i = ci , for i < j − k + 1, c̃i = ci+1 for i > j .
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figure 2.5.: The control polygon converges to the spline as the knot spacing
decreases. A�er two midpoint refinements, the control polygon of the spline is
already hard to distinguish from the spline

Example 2.8 · Consider a degree two polynomial on [0, 1], which can be

represented as a degree two spline with knot sequence λ = (0, 0, 0, 1, 1, 1)
and resulting (Bernstein) basis splines

b0 ,2 ,λ = (1 − x )2 ,b1 ,2 ,λ = 2x (1 − x ),b2 ,2 ,λ = x2.

Consider the coe�cients c = (α , β/2, α )ᵀ , such that they match Example 2.5

on Pólya’s relaxation.

Due to the positivity Property 2.1, the obvious relaxation is α , β ≥ 0,
yielding the same relaxation as Pólya’s theorem. However, inserting a knot

at x = 0.5, yields the basis functions

b0 ,2 ,λ̃ = (1 − 2x )2I[0 ,0.5] ,

b1 ,2 ,λ̃ = 2x (2 − 3x )I[0 ,0.5] + 2(1 − x )2I[0.5 ,1] ,

b2 ,2 ,λ̃ = 2x2I[0 ,0.5] − (1 − 2x ) (2 − 3x )2(1 − 4x + 3x2)I[0.5 ,1] ,

b3 ,2 ,λ̃ = (1 − 2x )2I[0.5 ,1]

and corresponding coe�cients c̃ = (α , 0.5(α +β/2), 0.5(α +β/2), α )ᵀ , yield-
ing the relaxation α , 2α + β ≥ 0. This relaxation is exact, whereas Pólya’s

relaxation may require an in�nite degree. A sampling based approach at

xi = 0, 0.5 also yields the correct constraints. However, a knot inserted at

another location will not give exact results, e.g. α , 2α + 3β ≥ 0 for a knot

inserted at x = 0.25, which is more conservative than the Pólya’s relaxation

and the sampling based approach for xi = 0, 0.25, yields α , 10α + 3β ≥ 0,
which is overly relaxed.
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2.4. Summary
This chapter sets the necessary basics for the following two chapters. pp
functions are de�ned through B-spline basis functions and the problem
of piecewise polynomial nonnegativity is tackled. Based on recent results,
necessary and su�cient lmi conditions for nonnegativity are derived.
Furthermore, a speci�c sparsity structure for the matrices is conjectured.
Finally, su�cient linear conditions are also derived and by using a knot
insertion method a series of relaxations is derived.

What to remember

· Piecewise polynomial functions can be represented as a linear
combination of B-spline basis functions. Such a linear combination is
called a spline.

· A spline is always contained in the convex hull of its control polygon.

· A univariate polynomial is nonnegative if it can be wri�en as a sum
of squares. Determining whether a polynomial can be wri�en as a
sum of squares requires solving a semidefinite program.

· A series of relaxations of linear su�icient conditions can also assert
nonnegativity of a polynomial.

· Determining whether a piecewise polynomial function is nonnegative
requires solving a large, sparse semidefinite program.

· The convex hull property of splines provides a su�icient linear
condition for nonnegativity of piecewise polynomial functions. By
using knot insertion, these conditions can be relaxed.





3
A convex optimization approach
to curve fitting

A �rst application of spline based optimization in this thesis is function
approximation. Approximating measured data by a smooth curve is
a frequent problem in motion analysis, computer aided design, image
processing and many other �elds. When the data exhibit a complicated
shape, simple polynomials often fall short. In this case, polynomial splines
are often chosen as parametrization for the underlying function (Dierckx
1993, de Boor 2001).

One challenge when optimizing splines is determining the locations
of the knots. This requires treating the knots as variables, resulting in
a highly nonlinear and nonconvex optimization problem (Dierckx 1993).
Consequently, it is di�cult to obtain and guarantee global optimality.

In the literature many methods have been proposed to solve this prob-
lem. Most methods, however, require a good initial guess of the knot
sequence (Jupp 1978), cannot guarantee global optimality (Hayes 1974,
Dierckx 1993, Molinari, Durand, and Sabatier 2004) or produce redundant
knots (Dierckx 1993). Also, it is often desired to incorporate knowledge
of the underlying function in the optimization. Dierckx (1993) proposes
algorithms to deal with simple constraints such as end-point derivatives,
periodicity and convexity, but more general constraints cannot be incor-
porated.

Demeulenaere, Pipeleers, et al. (2009) propose a convex framework
for optimizing rigid motion trajectories with splines. In their work, the
spline knots are optimized indirectly by supplying many candidate knot
locations and using a regularization to favor solutions with few active
knots, i.e. knots for which the spline exhibits a discontinuity in one of its
derivatives. This approach results in a convex optimization problem for
which the global optimum is guaranteed to be found e�ciently and reliably.
In this chapter we apply their ideas to the curve �tting problem with
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following essential modi�cations: (i) instead of integrating a piecewise
linear function up to the spline degree, B-splines are used as a basis to
evaluate polynomial splines, which enhances numerical stability and
provides an elegant way to enforce semi-in�nite constraints without
gridding (cfr. Section 2.3.2), and (ii) to further increase the sparsity of the
solution a reweighed `1 minimization (Candès, Wakin, and Boyd 2008) is
added to the framework. Also, knowledge of the underlying function is
easily incorporated by adding (convex) constraints to the optimization
problem.

This chapter �rst introduces the optimization problem and describes the
reweighing procedure. Subsequently, three examples of increasing com-
plexity illustrate the power and versatility of the proposed method. The
content of this chapter has also been published in Van Loock, Pipeleers,
De Schutter, et al. 2011.

3.1. Optimization problem

The basic approximation problem that is considered can be formulated
as follows: “given values yr , r = 1, . . . , m, corresponding to values xr ∈
[xmin , xmax], determine a function y (x ) := y (x ;θ ) of known form but
containing a vector θ of n disposable parameters to be determined such
that y (xr ) ≈ yr ” (Hayes 1974). Often, it is also desirable to be able to
include knowledge of the underlying function to improve the quality of
�t.

The classical way to solve this approximation problem with polynomial
splines, is to treat both the spline coe�cients c and the spline knots λ
as the disposable parameters. However, this approach makes the spline
approximation problem nonconvex, because the spline s is a nonconvex
function of the knots. To overcome the nonconvexity we adopt an indirect
spline knot optimization approach proposed by Demeulenaere, Pipeleers,
et al. (2009). Many (typically 500 to 1000) �xed candidate knot locations
are provided, leaving only the spline coe�cients to be determined and in
order to favor solutions with few active knots an `1 regularization is used.
This strategy results in a convex problem of which the global optimum is
guaranteed to be found e�ciently and reliably using dedicated algorithms.
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Given the spline degree k and the knot sequence λ, the spline is com-
pletely determined by its spline coe�cients c , which are taken as the
optimization variables. Given the measurements (xr ,yr ) the basic approx-
imation problem is formulated as

minimize
c

l−1∑
i=0

wi

∣∣∣∣ c (k )i+1 − c (k )i

∣∣∣∣ (3.1a)

subject to
m∑
r=1

(
vr (yr − 〈c ,bk ,λ (xr )〉)

)2 ≤ S (3.1b)

д(c ) = 0 (3.1c)
h(c ) ≤ 0, (3.1d)

with wi and vr chosen weights, S a �xed parameter which controls the
quality of �t and c (k ) are the spline coe�cients of the k-th derivative
of y as de�ned in (2.4). The objective function (3.1a) is a measure of the
nonsmoothness of the �t. Additional constraints to the problem д(c ) and
h(c ) can include prior knowledge of the underlying function. If д(·) is
linear and h(·) is convex, the minimization problem is convex and can be
solved reliably to global optimality.

Although problem (3.1) is similar to the so-called smoothing criterion
for approximation (Dierckx 1975) some important di�erences should be
noted:

· Instead of using the `1-norm in equation (3.1a), Dierckx (1975) uses
the `2-norm

l−1∑
i=0

(
c
(k )
i+1 − c (k )i

)2
. (3.2)

Where the `2-norm only smooths the �t, the `1-norm has a twofold
e�ect:

1. The `1-norm (3.1a) measures the nonsmoothness of s (x ).
2. It is well-known in the area of function approximation that
`1-norm minimization is likely to yield sparse solutions. Ap-
plied to the present problem, sparsity implies few nonzero
elements in

(
c
(k )
i+1 − c (k )i

)
, that is, few jumps in s (k ) (x ) or in
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other words few active knots. This means the optimal number
of knots and optimal knot locations are found automatically,
whereas in other algorithms the number of knots must be
chosen beforehand and often a good initial guess of the knot
locations is required for the algorithm to converge.

· Since we solve a convex problem, arbitrary convex constraints (3.1c)
and (3.1d) can be included without making the problem substantially
more di�cult. In Dierckx (1993) every other constraint requires a
change in algorithm and therefore only algorithms exist for few
di�erent types of constraints (e.g. end-point derivative constraints
and linear inequality constraints).

If still too many active knots are observed in the solution, a reweighted
`1 minimization is performed to improve sparsity of the solution (Candès,
Wakin, and Boyd 2008). Initiallywi = 1. In each reweighing iteration, the
`1 optimization problem (3.1) is solved and the weights wi are updated as:

wi =
1∣∣∣∣ c (k )i+1 − c (k )i

∣∣∣∣ + ε
. (3.3)

In this way, small jumps in the k-th derivative are penalized more heavily.
The value of ε should be chosen slightly smaller than the expected nonzero
magnitudes of c (k )i+1 − c (k )i .

3.2. Examples
3.2.1. An unconstrained example

As a �rst example the titanium heat data from de Boor and Rice (1968) are
�tted. The data are known to be di�cult to �t using traditional techniques
due to the sharp peak in the data (Figure 3.1), and have therefore often
been used to test spline �tting algorithms (de Boor and Rice 1968, Jupp
1978, Dierckx 1993, F. Yoshimoto, Harada, and Y. Yoshimoto 2003, Molinari,
Durand, and Sabatier 2004). The basic optimization problem (3.1) is solved
for a cubic spline (k = 3) with S = 0.0073, vr = 1, r = 1, . . . ,m and 1000
equidistant candidate knots. The value for S is close to the theoretical
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figure 3.1.: A cubic spline (k = 3) fi�ed to the titanium heat data from de Boor
and Rice (1968). The residual quadratic error is S = 0.0073. The vertical lines
represent the locations of the active knots.

method д nonsmoothness (3.2)

Dierckx (1975) 8 0.0899
Jupp (1978) 5 0.0742

Convex approach 7 0.0433

table 3.1.: Comparison with respect to the degree of nonsmoothness of di�erent
fits to the titanium heat data

minimum quadratic error for 5 knots (Jupp 1978) and corresponds to the
value used in Dierckx (1975) so a comparison can be made.

Seven active knots are found after seven reweighing iterations (3.3)
with ε = 10. Figure 3.1 shows the �t and the active knot locations found
with our method. In Table 3.1, the degree of nonsmoothness (3.2) is shown
for our solution and these of Jupp (1978) and Dierckx (1975). Our �t clearly
outperforms the results of Jupp (1978) and Dierckx (1975) in terms of
smoothness. Moreover, our method neither requires an (accurate) initial
guess of the knot sequence, nor is it necessary to choose the number of
knots beforehand.

3.2.2. Convexity Constraints

Prior knowledge of the underlying function, such as shape properties,
periodicity and known function values, should be taken into account
during the optimization to improve the quality of �t. In this example
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we consider stress-strain data from Amos and Slater (1969), of which the
underlying function is known to be concave.

Shape preserving conditions like positivity, monotonicity and convexity
are semi-in�nite constraints. In Chapter 2, we saw how we can impose
such constraints either exactly with lmi’s or conservatively with linear
inequalities on the spline coe�cients. Note that, due to the large amount
of knots, the amount of conservatism will in general be small.

In the following example we consider a cubic spline and add the con-
cavity constraint ∂2

xs (x ) ≤ 0,∀x ∈ [x1 , xm]. This is accomplished by the
constraint c (2) ≤ 0 (cfr. equation (2.4)), which (for the case of a cubic
spline) is exact and hence does not introduce conservatism. The smooth-
ing parameter S is chosen S = 0.0044, as in Dierckx (1980) and the problem
is solved for a 1000 equidistant candidate knots. Five knots are found after
�ve reweighting iterations (3.3) with ε = 10. Figure 3.2 shows the �t (top)
and its second derivative (bottom). The concavity constraint is active on
the �rst and last polynomial segment, resulting in linear segments in s (x ).

Both the convex approach and Dierckx (1980) �nd �ve active knots,
although the latter only allows knots at the measurement points. The
convex framework yields a smoothness value of 500 whereas Dierckx
(1980) �nds 828.

3.2.3. Distance constrained �tting

In this section we discuss a more involved example including multiple
functions with mutual constraints. Consider measurements of n marker
positions Pi , i = 1, . . . , n, at time samples tk , k = 1, . . . ,m, on a rigid body
moving in three dimensional space as illustrated in Figure 3.3 for n = 3.
Through the measured coordinates, xi , yi and zi of each marker, we wish
to �t a spline, sx i (t ), syi (t ) and szi (t ), taking into account that the distance
between two markers remains constant. In the presence of measurement
errors, a constant distance might overly constrain the solution. Therefore
we allow the distance to vary ±δ around the distance µi j between the
markers Pi and P j (i < j). The distance µi j is approximated by averaging
out the distance between the measurements of the marker positions over
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figure 3.2.: A cubic spline (top) and its second derivative (bo�om) fi�ed to the
concave stress-strain data from Amos and Slater (1969), with a residual quadratic
error S = 0.0044. The concavity constraint is active at the first and final segment.
The vertical lines represent the locations of the active knots.

time. Now we wish to impose

(µi j −δ )2 ≤
∑

l=x ,y ,z

(sli (tk )−sl j (tk ))2 ≤ (µi j +δ )2 , for k = 1, . . . ,m (3.4)

with i < j.
However, this constraint is nonconvex due to the concavity of the lower

bound. To overcome this problem, the lower bound in (3.4) is linearized.
Figure 3.4 illustrates the constraints and linearization in two dimensions
(constant z-coordinate). This allows for a simpler visualization. In the
(∆x , ∆y) = (xi − x j ,yi − y j )-plane, constraint (3.4) is visualized by two
concentric circles with radii (µi j ± δ ). Now assume we have from the
measurements a point (dx ,dy) = (xi (tk )−x j (tk ),yi (tk )−y j (tk )). Because
of (3.1b), (sx i (tk ) − sx j (tk ), syi (tk ) − sy j (tk )) will lie close to this point.
Therefore the concave lower bound is linearized at a point (nx ,ny ) on
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figure 3.3.: Three markers, P1, P2 and P3 measure the movement of a rigid body.
At all time instances the distance between the markers is constant.

the lower bound that is closest to (dx ,dy),

nx = sgn(dx ) (µi j − δ )
√

dx2

dx2 + dy2 ,

ny = sgn(dy) (µi j − δ )
√

dy2

dx2 + dy2 ,

(3.5)

resulting in the convex set C , indicated by the gray region in Figure 3.4.
The region is de�ned by the constraints

(sx i − sx j )2 + (syi − sy j )2 ≤ (µi j + δ )2 , (3.6)

nx (sx i − sx j ) + ny (syi − sy j ) ≥ (µi j − δ )2 . (3.7)

Note the sign-function in (3.5) to ensure that the linearization is carried
out in the correct quadrant.

To verify the above approach, �ctitious measurements are generated for
two markers on a rigid body, moving in a plane. The markers are initially
located at (1 m, 0 m) and (−1 m, 0 m) and rotate 180° around the origin
in N = 100 samples with ts = 0.01 s. Gaussian noise with a standard
deviation σ = 0.02 m is added to each coordinate. Figure 3.5 illustrates
the simulated marker measurements and the true trajectories for both
markers.

Four splines are then �tted simultaneously, one for each coordinate
of each marker. Problem (3.1) is therefore extended. First, for each co-
ordinate a one-norm regularization is added to the goal function and
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(dx ,dy)

∆x

∆y

(µi j − δ) (µi j + δ)

ny

nx

C figure 3.4.: Linearization
of constraint (3.4)
in two dimensions.
(sx i − sx j , syi − sy j ) must
lie in the ring delimited
by the circles with radii
(µi j ± δ ). The gray dots
indicate measured values.

constraints (3.1b) are repeated. Furthermore, constraints (3.6, 3.7) are
added to constrain the distance between the markers. For the optimiza-
tion S is chosen equal to Nσ 2 since this is the expected value of the
residual quadratic error, δ = 0.001 m, k = 4, д = 100, and no reweighting
iterations are performed. The resulting splines all exhibit one or none
active knots.

Figure 3.6 shows the resulting distance in function of time for �tted
splines with (solid) and without (dashed) the distance constraints. The
dotted line indicates the evolution of the measured distance. It is clear from
the zoomed (bottom) plot that the constrained splines stay within their
bounds indicated by the gray region. Observe that the true lower bound
is never active due to the conservatism introduced by the linearization.
Consequently δ should not be chosen too small. The unconstrained splines
clearly exhibit more variation in the distance and seem to follow a slower
variation of the measured distance. Figure 3.7 shows the radial di�erence
∆ of the �tted spline with the true trajectories for both markers. Except
for the beginning, the constrained spline (solid line) �ts the trajectories
more accurately.
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figure 3.5.: The simu-
lated marker measure-
ments and true marker
trajectories for both
markers
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3.3. Summary
Instead of taking the knots as variables, this chapter takes an indirect
approach to the spline approximation problem by supplying many candi-
date knots and using an `1 smoothing criterion to favor solutions with
few active knots. To further increase the sparsity, the `1 norm is itera-
tively reweighed. This way, the optimization problem is cast as a convex

optimization problem in which prior knowledge can easily be included.

What to remember

· Treating the spline’s knot locations as variables results in a highly
nonlinear and nonconvex optimization problem.

· An indirect approach supplies many candidate knots and uses an `1
smoothing criterion to favor solutions with few active knots, resulting
in a convex optimization problem.

· Iteratively reweighing the `1 norm can increase the sparsity even
further.
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figure 3.6.: Resulting distances in function of time for fi�ed splines with (solid
line) and without (dashed line) distance constraints. The do�ed line represents
the variation of the measured distance. The bo�om plot shows the constrained
distance in more detail. The distance must lie within the gray region.
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figure 3.7.: Radial di�erence ∆ of the fi�ed splines with the true trajectories for
both markers, with (solid line) and without (dashed line) distance constraints.





4
Optimal control of linear
systems through differential
flatness

Determining an open-loop control law that optimally drives a system
from an initial state to a terminal state without violating input and state
constraints is a classical problem in control. In this motion planning
problem, �atness is a popular concept as it avoids integration of the dif-
ferential equations. Instead of imposing the state and input constraints
on a �nite number of samples, by parameterizing the �at output of a
linear system as a piecewise polynomial, the optimization problem can
be viewed as a piecewise polynomial nonnegativity problem as shown
in Louembet, Cazaurang, and Zolghadri (2010), Suryawan, De Doná, and
Seron (2011), Suryawan, De Doná, and Seron (2012). In Louembet, Caza-
urang, and Zolghadri (2010) the nonnegativity constraints are imposed
through semide�nite programming. The �nite support of the polynomial
pieces, however, is not taken into account, which introduces conservatism.
Suryawan, De Doná, and Seron (2011), Suryawan, De Doná, and Seron
(2012) use the convex hull Property 2.3 to develop a linear programming ap-
proach. Although, it is computationally cheaper compared to semide�nite
programming, a large amount of conservatism is unwillingly introduced.

This chapter bridges both approaches by using either exact semide�nite
conditions or linear relaxations for which the conservatism can be strongly
reduced, as developed in Chapter 2. The �rst section develops the general
problem formulation and benchmarks the proposed problem formulation
to other recent results. Subsequently, in contrast to traditional binary
search approaches (Demeulenaere, De Caigny, et al. 2009, Consolini and
Piazzi 2009, Van den Broeck, Diehl, and Swevers 2011a, Van den Broeck,
Diehl, and Swevers 2011b, Suryawan, De Doná, and Seron 2011), a novel
iterative procedure based on Newton-Raphson’s root �nding algorithm
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for the computation of time-optimal point-to-point motions is presented.
Additionally, the parametric solution of such problems is treated. Flatness
also proves useful for the computation of robust inputs for uncertain
systems, as described in the �nal section. By eliminating the equality
constraints imposing that all outputs originate from the same input, the
robustness constraints amount to semi-in�nite constraints for which a
tractable robust counterpart can be derived. This way, gridding of the
uncertainty region as in De Caigny et al. (2008), De Caigny (2009) and a
reachability analysis is avoided.

4.1. General problem formulation
Consider a controllable linear time-invariant system

ẋ (t ) = Ax (t ) + Bu (t ), z (t ) = Cx (t )

with states x ∈ Rn and inputs u ∈ Rm . We are interested in �nding the
control law u (t ), t ∈ [0,T ] that steers the system from an initial state x0
to a terminal state xT and that minimizes a performance criterion

J (x ,u ,T ) = G (x (T ) ,u (T ),T ) +
∫ T

0
F (x (t ),u (t ), t ) dt ,

while at the same time obeying constraints on states and inputs

H (x (t ),u (t )) ≥ 0,∀t ∈ [0,T ].

We assume the functionsH (·, ·) to be linear and J (·) convex. Two common
performance criteria are time where J = T , such that a time-optimal
solution is determined, and tracking where a given performance output
zref (t ) is tracked as accurately as possible J =

∫ T
0 ‖z (t ) − zref (t )‖2 dt .

4.1.1. Spline parameterization of the �at output

First, this section formulates the problem in terms of a time-scaled �at
output of the system. In Chapter 1, it is stated that a linear system is
di�erentially �at if and only if it is controllable. For these systems the
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states and inputs of the system are a linear combination of the �at output
y ∈ Rm and its derivatives. Therefore, states and inputs are substituted by
the �at output of the system. The initial and terminal states are translated
to conditions on the �at output as in Section 1.3.

Furthermore, to cope with free end-time problems, a time scaling is
adopted by substituting the time parameter t ∈ [0,T ] by τ = t/T ∈ [0, 1].
Hence, the time derivatives of the �at output must be scaled with the
end-time:

∂ty = ∂τy∂tτ = ∂τyT
−1

Then the optimization problem can be written in terms of the time-
scaled �at output of the system

minimize
y ( ·) ,T

Jy (y (τ ) , . . . , ∂
r
τy (τ ),T )

subject to ∂iτy (0) = T iy
(i )
0 , for i = 0, . . . , r

∂iτy (1) = T iy
(i )
T , for i = 0, . . . , r

Hy (y (τ ), . . . , ∂
r
τy (τ ),T ) ≥ 0,∀τ ∈ [0, 1].

(4.1)

Let us now describe each of the components ofy by a polynomial spline
(cfr. Section 2.1), such that the problem reduces to determining the spline
coe�cients of the �at outputs:

yi = 〈ci ,bk ,λ〉,
where the degree k ≥ r and λ is a chosen knot sequence.

As Hy is a linear combination of y and its derivatives, each element
of Hy can be represented by a pp function (cfr. Property 2.5). The spline
coe�cients h j of each element in Hy depend linearly on the coe�cients
of the �at outputs c:

h j =
∑
i

Tici ,

with Ti suitable transformation matrices.
Now, by imposing either semide�nite constraints or linear constraints

on h j (cfr. Chapter 2), the semi-in�nite nonnegativity requirement

Hy (y (τ ), . . . , ∂
r
τy (τ ),T ) ≥ 0,∀τ ∈ [0, 1]

can be ful�lled.
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4.1.2. Benchmark example

This section considers the motorized base-stage high-precision position-
ing system, described in Lévine and Nguyen (2003) and subsequently
treated in Henrion and Lasserre (2006) and Suryawan, De Doná, and
Seron (2012). With the system as depicted in Figure 4.1, he transfer func-
tion matrices are given by(

25s2 0
0 450s2 + 1.1875 × 104s + 6.3955 × 105

) (
ws
wb

)
=

(
1
−1

)
u ,

where the input u is the force applied to the stage, ws is the relative
position of the center of mass of the stage with respect to a coordinate
frame attached to the base with origin wb, the position of the center of
mass of the base in a �xed coordinate frame related to the ground (Lévine
and Nguyen 2003). A �at output y of the system is given by y = ws −
0.0186ẇs + 9.18wb − 0.3342ẇb, such that

ws = y + 0.0186ẏ + 7.0362 × 10−4ÿ

wb = −3.909 × 10−5ÿ

u = 25ÿ + 0.4642...y + 0.0176....y.
(4.2)

The goal is to track a given reference as accurately as possible, while
restricting the movement of the base between −0.17 mm and 0.12 mm.
The system’s initial state is given by ws (0) = 0 m, ẇs (0) = 0 m s−1,

wb

ws
u

figure 4.1.: Base stage high-precision positioning system
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wb (0) = 0 m, ẇb (0) = 0 m s−1, u (0) = 0 N and its terminal state by
ws (0.2) = 0.02 m, ẇs (0.2) = 0 m s−1, wb (0.2) = 0 m, ẇb (0.2) = 0 m s−1,
u (0.2) = 0 N. For the �at output this yields y (0) = 0, y (0.2) = 0.02 and
zero for the derivatives up to order four at the boundaries. Hence, the
minimal degree of an interpolating polynomial is 9. By using knot inser-
tion (cfr. Section 2.3.2) the interpolating polynomial is expressed in the
same basis as y. Its spline coe�cients are denoted by cd. Then, from (4.2)
a tracking reference ws,d for the stage displacement is calculated.

The spline coe�cients of the stage are related to c , the coe�cients
of the �at output, through the transformation matrix Ts. The tracking
performance criterion

∫ T
0 ‖ws (t ) −ws,d (t )‖2 dt is reformulated in terms

of the spline coe�cients of the stage

J = (c − cd)
ᵀT ᵀs Ts (c − cd).

First, the semi-in�nite constraints on the movement of the base are
imposed by using the linear relaxations from Section 2.3.2. Without any
knot re�nement, it has been numerically established by gradually increas-
ing the number of knots that minimally six equidistant internal breaks
for a spline of degree nine are required for the optimization problem to
be feasible. Optimizing over six uniformly distributed knots yields the
optimal value is J ∗ = 1.6083 × 10−5 m2. The resulting movements of the
stage and of the base are shown in Figure 4.2 as the black line. Clearly,
as the true bounds are not even hit, a large amount of conservatism is
introduced by using these linear constraints. The dashed line shows
the reference trajectory for the stage. By using one or two midpoint
re�nements of the knot sequence, the amount of conservatism is signi�-
cantly reduced, as illustrated by the dark and light gray lines in Figure 4.2
with respectively one and two midpoint re�nements and optimal values
J ∗ = 8.4015 × 10−6 m2 and J ∗ = 6.3977 × 10−6 m2. Clearly, the less con-
servative constraints contribute to the improvement of the optimal value.
For comparison a similar framework from Suryawan, De Doná, and Seron
(2012) is also implemented. For this method minimally sixteen equidistant
internal knots are required for the problem to be feasible. The optimal
value is J ∗ = 3.1933 × 10−5 m2, which is larger than our method using
only six internal knots. Moreover the computational time is larger, due to
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figure 4.2.: Optimal tracking of the dashed reference for a base-stage high-
precision positioning system, while limiting the displacement of the base. The
black, gray and light gray lines show the solution for a spline with six inter-
nal knots using linear relaxations with respectively no, one and two midpoint
refinements.

a larger number of constraints in the problem formulation. For the prob-
lem with sixteen internal knots, 3.37 s are required to solve the problem,
whereas our approach only requires 1.62 s with sixteen internal knots
and two re�nements and �nds a more accurate solution than Suryawan,
De Doná, and Seron (2012). Both problem instances are solved using
cvxopt (Andersen, Dahl, and Vandenberghe 2013).

Figure 4.3 shows the stage and base displacements for the exact semidef-
inite approach for a degree nine spline with six internal knots. The optimal
value is J ∗ = 6.0405 × 10−6 m2, which outperforms the linear relaxations
in terms of optimality. However, it should be noted that the linear ap-
proach with double midpoint re�nement (gray line) lies close to the exact
solution. The main drawback of the semide�nite approach is a larger
computational e�ort required to solve the problem compared to the linear
approach. For six internal knots, the semide�nite approach requires 8.44 s,
whereas the linear approach with two knot re�nements only requires
0.45 s.
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figure 4.3.: Optimal stage and base displacements for a base-stage high-
precision positioning system, using an exact semidefinite programming ap-
proach. For comparison the solution of the linear relaxation with 2 midpoint
refinements is shown in gray. The di�erence is marginal.

In this section, the nonnegativity theory developed in Chapter 2 is
applied to a typical optimal control problem. The resulting optimization
problems only contain few variables and constraints, while the benchmark
results indicate a signi�cant improvement over other recently published
results. Up to now, the end-timeT was �xed. Many applications, however,
expect a time-optimal trajectory. This requires T to be an optimization
variable, which would destroy the convexity. As an alternative, the follow-
ing section details how to compute such trajectories by solving a series
of optimization problems.

4.2. Efficient computation of time-optimal
point-to-point motion trajectories

The following sections consider time-optimal, i.e. J = T , rest-to-rest
motion trajectories for linear time-invariant systems with a scalar output.
Instead of treating T as a variable, a parametric optimization problem in
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T is constructed. By repeatedly solving the problem for �xed T , the �rst
section develops an iterative method based on Newton-Raphson’s root
�nding algorithm to compute the optimal time e�ciently. Subsequently,
the algorithm’s e�ciency is illustrated by two benchmark examples. The
�nal section computes a parametric solution to the optimization problem
and avoids the iterative procedure altogether.

4.2.1. Safeguarded Newton-Raphson root-�nding

Many of the ideas in this section have been published in Janssens et al.
(2013a) and Janssens et al. (2013b). These publications focus on discrete
time systems whereas this work considers continuous time systems and
relies strongly on the concept of di�erential �atness.

Due to the quasi-convex nature of the problem, time-optimal point-
to-point motion trajectories are typically solved using a binary feasi-
bility search algorithm also known as bisection (see e.g. Demeulenaere,
De Caigny, et al. (2009), Consolini and Piazzi (2009), Van den Broeck,
Diehl, and Swevers (2011a), Van den Broeck, Diehl, and Swevers (2011b),
Suryawan, De Doná, and Seron (2011)). Starting from an interval [T− ,T+],
that is known to contain the optimal time T ∗, binary search determines
whether T ∗ is in the lower or upper half of the interval by solving a fea-
sibility problem and updates the search interval accordingly (Boyd and
Vandenberghe 2004).

Equivalently, the problem can be cast as a root �nding problem of the
function d (T ) = d∗ (T ) − dd, where d∗ (T ) denotes the maximum travel
range of the system for a given timeT and dd is the desired travel distance.
As the function d (T ) is monotonically nondecreasing, it has only a single
root. Where the bisection algorithm only uses function values ofd (T ) for a
given trial time, our approach aims at also using the value of the derivative,
as in Newton-Raphson’s method, to increase the rate of convergence from
linear to quadratic convergence near the solution (Burden and Faires
2010).

To be able to apply the above ideas, the rest-to-rest maximum reach
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problem is de�ned

d∗ (T ) = maximize
y ( ·) ,d

d

subject to y (0) = 0,y (1) = d
∂iτy (0) = ∂iτy (1) = 0, for i = 1, . . . , r
Hy (y (τ ), . . . , ∂

r
τy (τ ),T ) ≥ 0,∀τ ∈ [0, 1],

(4.3)

in which the reach of the system given the constraints Hy is maximized.
The following discussion considers a single-input single-output system
(m = 1) and assumes that the output of the system scales with the �at
output. For a multiple input multiple output system the reader is referred
to the examples in Janssens et al. (2013a), Janssens et al. (2013b).

By using the proposed spline parameterization for y and transforming
the semi-in�nite constraints Hy to linear or semide�nite constraints,
problem (4.3) corresponds to a parametric optimization problem in T ,
which, in its most general form, can be cast as

d∗ (T ) = maximize
x

cᵀx

subject to Aeq (T )x = beq

Ain (T )x ≤ bin

Asdp (x ,T ) � 0,

(4.4)

where x represents the optimization variables, c , beq and bin are vectors
of coe�cients, Aeq and Ain are matrices of coe�cients (depending on T )
and Asdp (x ,T ) is a matrix depending a�nely on x .

Let x∗ denote an optimal point of the problem for T = Ti and λ∗ , µ∗ ,γ ∗
the corresponding optimal Lagrange multipliers of the equality, linear
inequality and linear matrix inequality constraints. The derivative of d∗
with respect to T evaluated at Ti is given by (Freund 1985, Shapiro 1997):

∂Td
∗ (Ti ) = − (λ∗)ᵀ∂TAeq (Ti )x

∗−
(µ∗)ᵀ∂TAin (Ti )x

∗−
tr((γ ∗)ᵀ∂TAsdp (x

∗ ,Ti )).
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Now, instead of using binary search, a derivative based root �nding
algorithm, such as Newton-Raphson’s method, can be applied to the quasi-
convex time-optimal point-to-point motion planning problem. Moreover,
the evaluation of the derivatives is computationally cheap compared to
solving an optimization or feasibility problem. Therefore, due to the
quadratic convergence of Newton-Raphson’s method, large performance
improvements over binary search are expected.

In Newton-Raphson’s method convergence is not guaranteed for each
initial guess (e.g. when the derivative evaluates to zero), which is an
important drawback. For this reason a safeguarded Newton-Raphson
scheme is adopted (Janssens et al. 2013a, Janssens et al. 2013b, Hedge
and Kacera 2006), that combines Newton-Raphson’s method with binary
search yielding a guaranteed convergence provided that the initial search
interval [T− ,T+] contains the minimal motion time T ∗. When the initial
guess is su�ciently close toT ∗ the safeguarded method only uses Newton-
Raphson iterations.

Each iteration computes the solution to the maximum range prob-
lem (4.3) for the current estimate Ti of the minimal motion time. Depend-
ing on the sign of d (Ti ) the upper or lower bound of the search interval
[T− ,T+] is substituted by the current estimateTi . Then, the next iteration’s
estimate Ti+1 is computed according to Newton-Raphson’s method:

Ti+1 = Ti −
(
∂Td

∗ (Ti )
)−1 d (Ti ).

If Ti+1 < [T− ,T+], a bisection step is performed instead:

Ti+1 =
T− +T+

2 .

The algorithm terminates when |d (Ti ) | ≤ TOL, with TOL a prede�ned
tolerance.

4.2.2. Benchmark examples

We consider two examples from Consolini and Piazzi (2009) and subse-
quently treated in Suryawan, De Doná, and Seron (2011). All presented
results use an equidistant knot spacing for the spline parameterization.
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The �rst example consists of a second order system

H (s ) =
10(s + 2)
(s + 1)2 + 9

, (4.5)

with input constraints u (t ) ∈ [−1.8, 1.8] and overshoot constraints z (t ) ∈
[−0.1, 3.1] on the output, for which we want to compute a minimum time
rest-to-rest transition from z (0) = 0 to z (T ) = 3. Input and output are
related to the �at output via

u (t ) = 0.5y (t ) + 0.1ẏ (t ) + 0.05ÿ (t )
z (t ) = y (t ) + 0.5ẏ (t ).

Therefore, the rest-to-rest conditions require y (0) = 0,y (T ) = 3 and
ẏ (0) = ẏ (T ) = 0. Furthermore, u (0) = 0 and u (T )H (0) = z (T ) is required.

We �rst compare the newly developed Newton-Raphson iteration
scheme with the traditional binary search method. In order to make
a fair comparison in iteration count between both methods, the binary
search method is also applied to the maximum reach problem instead
of the feasibility problem as used in (Demeulenaere, De Caigny, et al.
2009, Consolini and Piazzi 2009, Van den Broeck, Diehl, and Swevers
2011a, Van den Broeck, Diehl, and Swevers 2011b, Suryawan, De Doná, and
Seron 2011), such that the same stopping criterion can be used. Although
the computational cost of solving an optimization problem is somewhat
higher than a feasibility problem, it is assumed the di�erence is marginal
compared to the total computation time of the binary search algorithm.

The �at output is parameterized by a spline of degree 4 with 10 internal
knots. The semi-in�nite constraints are imposed linearly, as described
in Section 2.3.2 with two midpoint re�nements. Figure 4.4 shows the
maximum travel range as a function of the motion time for the chosen
parameterization. The optimal timeT ∗ = 1.983 s for a travel range y (T ) =
3.

The time-optimal point-to-point problem is solved for a range of inter-
val widths w from 0.001 s to 9 s.1 The minimal motion time is located at

1In practice the interval is chosen as the smallest interval known to contain the optimal
time.
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figure 4.4.: Maximum travel range d∗ (T ) as a function of the available time of
the system (4.5) for a degree 4 spline with 10 internal knots

1
5 of the interval and for both methods the initial guess is located in the
middle:

T− = T
∗ − 0.2w ,T+ = T

∗ + 0.8w ,T1 = 0.5(T− +T+). (4.6)

Figure 4.5 shows the number of iterations for both the binary search and
Newton-Raphson’s method for a tolerance TOL = 10−6. The dashed line
illustrates the number of safeguarding steps in Newton-Raphson’s method.
For intervals widths w ≥ 1.8 s, one safeguarding step is required as the
gradient to d (T1) tends to zero for increasing width (see Figure 4.4). As
expected, the proposed algorithm clearly outperforms binary search. The
average computation time per iteration amounts to 0.0040 s for a bisection
step and 0.0046 s for a Newton step on a 2.6 GHz laptop pc using Python
and glpk (Gnu linear programming kit) as a solver.

Due to the limitations of the chosen parameterization, the trajectory
does not exhibit generalized bang-bang behavior as in Consolini and
Piazzi (2009) and therefore it is not truly time-optimal. On the other hand,
the smoothness of the control signals, which depends on the chosen spline
parameterization, puts lower strain on the actuators and avoid excitation
of higher system dynamics. In this example the true minimal motion time
is Topt = 1.812 s. By increasing the number of knots, the spline-based
solution approaches the true solution. Naturally, this comes at a higher
computational cost, as the optimization problem grows in size. Figure 4.6
shows the evolution of the optimal time for an increasing number of
(equidistant) knots from 3 to 50. Initially, adding knots leads to a major
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figure 4.5.: Number of iterations for the binary search algorithm (black) and
the proposed safeguarded Newton-Raphson’s method (gray) as a function of
the interval width w . The dashed line shows the number of safeguarding steps.
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figure 4.6.: The optimal time as a function of the number of knots. For an
increasing number of knots the solution approaches the theoretical minimum
(do�ed line)

performance increase, which subsides when the number of knots grows
larger. Figure 4.7 show the computed inputs and outputs for splines with
10, 20, 30, 40 and 50 internal knots. By increasing number of knots, the
solution tends more to the generalized bang-bang solution. In Suryawan,
De Doná, and Seron (2011) a degree 4 spline with 52 knots yields an
optimal time of 1.885 s, while in our approach, 26 knots are su�cient to
�nd T ∗ = 1.882 s. With 52 knots the optimal time T ∗ = 1.846 s.

The semide�nite programming approach (cfr. Chapter 2) yields similar
convergence results as the linear approach, which was used in the dis-
cussion above. However, for the same number of knots, the semide�nite
approach �nds slightly more optimal results. Figure 4.8 shows the relative
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figure 4.7.: The optimal system inputs and outputs for splines of degree 4 with
10, 20, 30, 40, and 50 internal knots (gray to black). For an increasing number of
knots the solution tends to a generalized bang-bang solution

di�erence between the optimal time found with linear programming, T ∗lin,
(using 2 midpoint re�nements) and semide�nite programming, T ∗sdp, for
an increasing number of knots. For three knots, the di�erence amounts
to 1 %, but as the number of knots increases, the di�erence between both
approaches becomes negligible. Moreover, the relative small improvement
comes at a signi�cantly higher computational cost as the lmi’s quickly
grow in size. For 10 knots the average computation time per Newton iter-
ation amounts to 5.0300 s using Python and cvxopt as a solver, whereas
the linear approach only takes 0.0046 s.

The second example considers a fourth order system with transfer
function

H (s ) =
10(3.5 − s ) (s2 + 25)

(s + 2) (s + 3) (s + 4) (s + 5) . (4.7)

The desired transition is from z (0) = 0 to z (T ) = 3, while constraining the
input u (t ) ∈ [−2, 2] and the output z (t ) ∈ [−0.1, 3.1]. Input and output
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figure 4.8.: The relative di�erence between the optimal time found with linear
programming using two midpoint refinements and semidefinite programming
for an increasing number of knots. As the number of knots increases, the
di�erence between both approaches becomes negligible

are related to a �at output through

u (t ) =
1

875
(
y (4) (t ) + 14y (3) (t ) + 71ÿ (t ) + 154ẏ (t ) + 120y (t )

)
z (t ) =

1
875

(
−10y (3) (t ) + 35ÿ (t ) − 250ẏ (t ) + 875y (t )

)
.

As in the previous example, the �at output is parameterized by a spline
of degree 4 with 10 internal knots. The semi-in�nite constraints are
imposed linearly with two midpoint re�nements. Figure 4.9 shows the
maximum travel range as a function of the motion time for the chosen
parameterization. Note, in contrast to previous example, the sudden
change in slope once the maximum travel range hits the bound on the
output z (t ) ≤ 3.1. For a travel range y (T ) = 3, the optimal time T ∗ =
1.459 s.

The time-optimal point-to-point problem is solved for 500 di�erent
intervals with an interval width w ranging from 0.001 s to 7 s. The initial
search interval and initial guess are again de�ned as in (4.6). Figure 4.10
shows the number of iterations for both the binary search and Newton-
Raphson’s method for a tolerance TOL = 10−6. The dashed line illustrates
the number of safeguarding steps in Newton-Raphson’s method. Because
in this example the optimal time lies close to where the slope of the
maximum travel range is zero, up to three safeguarding steps are required.
Even in this case, the proposed algorithm outperforms binary search. The
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figure 4.9.: Maximum travel range d∗ (T ) as a function of the available time of
the system (4.7) for a degree 4 spline with 10 internal knots. Note the sudden
change in slope once the maximum travel range hits the bound on the output
z (t ) ≤ 3.1

average computation time per iteration amounts to 0.0082 s for a bisection
step and 0.010 s for a Newton step.

Compared to Suryawan, De Doná, and Seron (2011), much less conser-
vatism is introduced by the parameterization and the linear constraints.
To accomplish an optimal time T ∗ = 1.459 s for a degree 6 spline, the
proposed approach only requires 10 knots (with two midpoint re�nements
for constraint imposition) whereas Suryawan, De Doná, and Seron (2011)
require eighty knots. With eighty knots, our approach yields an optimal
time T ∗ = 1.394 s, which lies much closer to the theoretical minimum
Topt = 1.382 s using generalized bang-bang control.

Both benchmarks illustrate a signi�cant performance increase of the
proposed algorithm compared to classical binary search algorithms. Due
to the higher computational e�ort of solving the semide�nite nonnegativ-
ity problem, the linear problem formulation is preferred. Moreover, by
using a linear relaxation with two midpoint re�nements, the amount of
added conservatism is negligible.

4.2.3. Parametric solution to time-optimal control problems

Instead of iteratively searching for the optimal motion time, this section
aims at determining a parametric solution to the maximum reach prob-
lem (4.3). By only solving a few optimization problems, the function d (T )
and corresponding solution can be determined analytically as a function
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figure 4.10.: Number of iterations for the binary search algorithm (black) and
the proposed safeguarded Newton-Raphson’s method (gray) as a function of
the interval width w . The dashed line shows the number of safeguarding steps.

of the travel time T . This allows to precompute and store the solution
o�ine.

Consider a linear program as in (4.4)2 and its dual

d∗ (T ) = minimize
λ ,µ

− bᵀeqλ − bᵀinµ

subject to Aeq (T )
ᵀλ + Ain (T )

ᵀµ + c = 0
µ ≤ 0.

(4.8)

Assume a solution x∗ (Ti ) to (4.4) at a speci�c value Ti . Denote by Ai
in (T )

the active constraint matrix at Ti and associated b iin, the right-hand side
of the active constraints. Around Ti the solution can be parameterized as

x∗ (T ) =
(
Aeq (T )

Ai
in (T )

)−1 (
beq
b iin

)
= Ai (T )−1b i (4.9)

and the optimal value

d∗ (T ) = cᵀx∗ (T ) = cᵀAi (T )−1b i ,

when Ai (T ) is invertible. Note that if the problem is well posed, Ai (T )
will usually be square. In the rare case of (4.9) being overly determined, a
subset of active constraints must be chosen.3

2After omitting the semide�nite constraint
3In practice (4.9) will never be underdetermined as it implies that the optimization

problem is unbounded.
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The parametric solution only holds as long as (4.8) and (4.4) remain
feasible, i.e.

Ain (T )A
i (T )−1b i ≤ bin and − Ai (T )−ᵀc ≥ 0. (4.10)

Alternatively, instead of requiring a matrix inverse, an expression for
the optimal value can be found using determinants (Zuidwijk 2005):

1 + d∗ (T ) = 1 + cᵀAi (T )−1b i

= det
(
1 + cᵀAi (T )−1b i

)
= det

(
I + Ai (T )−1b icᵀ

)
= det

(
Ai (T )−1 (

Ai (T ) + b icᵀ
))

=
det

(
Ai (T ) + b icᵀ

)
det

(
Ai (T )

) .

(4.11)

In a similar fashion the rows of x∗ (T ) and of the conditions in (4.10) can
be found.

To illustrate the methodology consider again the system (4.5). To keep
the problem dimension small and manageable on paper, consider a degree
4 spline with only two internal knots. Using the linear approach with no
knot re�nement and eliminating all equality constraints the following
parametric linear program in two variables is derived

d∗ (T ) = maximize
x1 ,x2

x2

subject to
(

1
12T

2 + 23
120T + 3

8

)
x1 +

(
1
60T + 3

20

)
x2 ≤ 2T 2

5
9Tx1 +

(
2
9T + 1

)
x2 ≤ 3.1T(

1
3T − 17

12

)
x1 +

(
2
3T + 19

12

)
x2 ≤ 3.1T

− 1
2x1 +

(
T + 1

2

)
x2 ≤ 3.1T(

1
10T − 23

40

)
x1 −

(
1
2T

2 + 1
10T − 5

8

)
x2 ≤ 2T 2.

(4.12)

We want to determine the maximum reach curve d∗ (T ) analytically for
T ∈ [0, 6]. We �rst determine a solution forT0 = 6 s. The third and fourth
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constraint are active at the solution. Hence,

A0 (T ) =
1
T

( 1
3T − 17

12
2
3T + 19

12
− 1

2 T + 1
2

)
and b0 =

(
3.1
3.1

)
.

Using (4.11) we determine the maximum reach curve

d∗ (T ) =
det

(
A0 (T ) + b0cᵀ

)
det

(
A0 (T )

) − 1 = 124T 2 − 341T
40T 2 − 110T + 10

.

Mind that this solution is only valid as long as the conditions in (4.10) are
met. We �nd that for T ≤ 4.25 s the dual solution is no longer feasible.

Next, we determine a new solution for T1 = 4 s, at which the second
and third constraint are active. Similarly, we �nd

d∗ (T ) =
744T 2 + 4743T

320T 2 + 930T + 1530

for 0.516 s ≤ T ≤ 4.25 s, where the lower bound on T is the point where
the primal solution is no longer feasible.

The process is repeated until the entire interval from 0 to 6 s has been
covered. We end up with the piecewise function

d∗ (T ) =



124T 2−341T
40T 2−110T+10 for 4.25 < T ≤ 6

744T 2+4743T
320T 2+930T+1530 for 0.516 < T ≤ 4.25
−14700T 3+123390T 2+41850T

2000T 3+8826T 2+18975T+29025 for 0.369 < T ≤ 0.516
800T 4+880T 3+9120T 2

−200T 4−500T 3−750T 2+369T+1539 for 0 < T ≤ 0.369

.

The function is shown in Figure 4.11. Note its resemblance with Figure 4.4,
which shows the maximum range curve for a spline with 10 knots. For a
given travel distance, the motion planning problem now boils down to a
one-dimensional root �nding problem to determine the corresponding
optimal timeT ∗. OnceT ∗ is known, the optimal solution can be evaluated.
Such a strategy can easily be implemented on simple hardware.

We e�ectively determined the maximum reach function by solving
only 4 linear programs. Unfortunately, for an increasing number of knots,
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figure 4.11.: By solving only 4 linear programs the maximum reach curve (in
black) of problem (4.12) is computed parametrically as a function of T . The gray
lines show the individual components of the maximum range curve.

the number of optimization problems to be solved grows quickly, as it
depends on the number of active set changes for varying T . Moreover,
calculating the solution explicitly for larger matrices, requires a symbolic
computation of the determinant or the inverse, which for growing matrix
size quickly becomes expensive. Alternatively, the active constraint set
could be stored instead of its inverse. This way, the maximum range curve
could still be evaluated numerically, without requiring the solution of an
optimization problem.

Both the iterative as the parametric procedure e�ectively yield solu-
tions to the time-optimal point-to-point motion problem. Although the
iterative algorithm yields a signi�cant performance increase compared to
classical binary search, it might still be computationally too demanding
for online use depending on the initial width of the bracketing interval.
The parametric procedure, on the other hand, is ideally suited for online
use since the entire map of solutions is computed o�ine. Here, the di�-
culty lies both in computing the map o�ine for a larger number of knots
and e�ciently determining the region of operation online.

4.3. Robust splines for dynamic systems

In the previous sections, we discussed how to design optimal inputs for
a given system. In practice, however, the model of the system contains
uncertainty. Applying such an optimized input to the uncertain system
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can result in residual vibrations, which naturally are undesirable. This
section considers the design of robust inputs which limit these residual
vibrations for the entire uncertainty range of the system.

4.3.1. Residual vibration of dynamic systems

In a �exible motion system, input u and output z are in the simplest case
related through a second order system:

z̈ (t ) + 2ζω0ż (t ) + ω2
0z (t ) = ω

2
0u (t ),

where ω0 represents the undamped resonance frequency of the system
and ζ the corresponding damping ratio. We are interested to move the
output over a �nite distance while starting and stopping at rest. Therefore,
the input consists of a rise portion for t ≤ T and a dwell portion for
t > T , where the input is kept constant at a �xed value u. During the
dwell portion of the input, the output is a damped oscillation around
u as illustrated in Figure 4.12. To quantify this residual oscillation, it is
convenient to express the system in dimensionless coordinates as

χ̈ (τ ) + 2ζ (2πσ ) χ̇ (τ ) + (2πσ )2χ (τ ) = (2πσ )2θ (τ ), (4.13)

by introducing

τ =
t

T
, θ (τ ) =

u (Tt )

u
, χ (τ ) =

z (Tt )

u
and σ = T

ω0
2π .

A good measure for the residual dwell vibration is the amplitude of its
exponential envelope at τ = 1 (Figure 4.12). It is given by (Thomson 1997)

A =
1√

1 − ζ

√
(χ (1) − 1)2 + 2ζ (χ (1) − 1)

(
χ̇ (1)
2πσ

)
+

(
χ̇ (1)
2πσ

)2
. (4.14)

It is clear that the amplitude of residual vibration depends on σ , which
relates to ω0 and T , the damping factor ζ , and the position and velocity
of the output at τ = 1, which in turn depend on the input trajectory and
again on σ and ζ .

This work assumes σ to be an uncertain parameter, which is often the
case when working with identi�ed data, especially for lightly damped
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figure 4.12.: During the dwell portion of the input, the output is a damped
oscillation.

systems. We are interested in determining an input law θ (τ ) such that
the amplitude of residual vibration is guaranteed to be below a threshold
ε for all possible values of σ ∈ [σ , σ ]:

A(σ ) ≤ ε . (4.15)

Let χσ (τ ) and χ̇σ (τ ) denote a perturbed output position and velocity.
Then, in Demeulenaere, De Caigny, et al. (2009) it is shown that (4.15)
can be accomplished by the linear constraints

− ε

η(ζ )
≤ χσ (1) − 1 ≤ ε

η(ζ )
,

−2πσ ε

η(ζ )
≤ χ̇σ (1) ≤ 2πσ ε

η(ζ )
,

for all σ ∈ [σ , σ ],

(4.16)

with

η(ζ ) =

√
2 + 2ζ
1 − ζ 2 .

4.3.2. A �atness based approach

In order to be able to impose the semi-in�nite constraints (4.16) we choose
to parameterize the output of the system at the nominal value of σ = σ0
as a pp function

χσ0
= 〈cσ0

,bk ,λ〉.
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Naturally, all outputs χσ are required to originate from the same input
θ . Equation (4.13) together with a spline parameterization of the output
yields

〈
( 1
2πσ

)2
b̈k ,λ+ 2ζ

2πσ ḃk ,λ+bk ,λ , cσ 〉 = 〈
(

1
2πσ0

)2
b̈k ,λ+ 2ζ

2πσ0
ḃk ,λ+bk ,λ , cσ0

〉,

with cσ the spline coe�cients of a perturbed output. Equivalently, by
determining the spline collocation matrices (de Boor and Daniel 1974)
Bk ,λ , Ḃk ,λ , B̈k ,λ at appropriate sites τi the above equation is written as a
matrix-vector product.(( 1

2πσ

)2
B̈k ,λ + 2ζ

2πσ Ḃk ,λ + Bk ,λ

)
cσ =( 1

2πσ0

)2
B̈k ,λ + 2ζ

2πσ0
Ḃk ,λ + Bk ,λ

 cσ0

Moreover, by also eliminating the system’s initial state explicitly from
cσ , the spline coe�cients of a perturbed output can be uniquely deter-
mined by

cσ =

(( 1
2πσ

)2
B̈k ,λ + 2ζ

2πσ Ḃk ,λ + Bk ,λ

)−1
·( 1

2πσ0

)2
B̈k ,λ + 2ζ

2πσ0
Ḃk ,λ + Bk ,λ

 cσ0

(4.17)

Constraints (4.16) can then be expressed as

− ε

η(ζ )
≤ bk ,λ (1)ᵀcσ − 1 ≤ ε

η(ζ )
,

−2πσ ε

η(ζ )
≤ ḃk ,λ (1)ᵀcσ ≤ 2πσ ε

η(ζ )
,

for all σ ∈ [σ , σ ],

(4.18)

with cσ as de�ned in (4.17). It is clear that these constraints are a rational
function of the perturbation σ . We will express these constraints in the
following general form

F (x , ∆) ≥ 0,∀∆ ∈ D ,
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where F (x , ∆) is linear in the decision variables x and rational in the
uncertainty ∆, and D is a subspace of Rp×q . In the following section,
well-known results from robust optimization are applied to determine
linear matrix inequalities for the constraints (4.18) to hold for all possible
σ .

4.3.3. Robust solutions using semide�nite programming

We will use following well-known result which traces back to Packard
and Doyle (1993)
Lemma 4.1 · Let F = F ᵀ , L, R ,D be real matrices of appropriate size and

∆ = δI . Let S (resp. G) be the set of symmetric (resp. skew-symmetric)

matrices that commute with each element of ∆.

We have det(I − D∆) , 0 and

F + L∆(I − D∆)−1R + Rᵀ (I − D∆)−T∆ᵀLᵀ ≥ 0 (4.19)

for every ∆, if and only if there exist S ∈ S and G ∈ G such that S � 0 and(
F − LSLᵀ Rᵀ − LSDᵀ + LG

R − DSLᵀ −GLᵀ ρ−2T −GDᵀ + DG − DSDᵀ

)
� 0. (4.20)

A more general formulation of the lemma, in which ∆ ∈ Rn×n , can be
found in El Ghaoui and Lebret (1997) and El Ghaoui, Oustry, and Lebret
(1998).

In order to apply Lemma 4.1, a linear-fractional representation, as
in (4.19), for each of the constraints in (4.18) is determined. First, we
transform the uncertainty parameter

1
2πσ = δ0 + δ ,

with δ0 =
1

2πσ0
= 1

4πσ + 1
4πσ and δ ∈ [ 1

4πσ − 1
4πσ ,

1
4πσ − 1

4πσ ]. For
notational convenience, we de�ne the matrices

N0 = δ
2
0 B̈k ,λ + 2ζδ0Ḃk ,λ + Bk ,λ ,N1 = 2δ0B̈k ,λ + 2ζ Ḃk ,λ and N2 = B̈k ,λ .
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Then, following linear fractional representations for cσ and cσ
2πσ = (δ0 +

δ )cσ can then be derived (see e.g. Zhou and Doyle (1998))

cσ =

I +
(
I 0

)
∆

(
I −

(−N −1
0 N1 I

−N −1
0 N2 0

)
∆

)−1 (−N −1
0 N1

−N −1
0 N2

) cσ0
(4.21)

and

(δ0+δ )cσ =
δ0I +

(
I 0

)
∆

(
I −

(−N −1
0 N1 I

−N −1
0 N2 0

)
∆

)−1 (
I − δ0N

−1
0 N1

−δ0N
−1
0 N2

) cσ0
,

(4.22)
with ∆ = δI . By multiplying the above equations (4.21) and (4.22) with
respectively bk ,λ (1)ᵀ and ḃk ,λ (1)ᵀ , the linear fractional representations
for the constraints in (4.18) follow straightforwardly. Hence, the semi-
in�nite constraints (4.18) can be imposed by repeatedly applying the
lmi (4.20).

4.3.4. Example

To illustrate the developed methodology, consider an uncertain dimen-
sionless second order system (4.13) with ζ = 0.01 and σ ∈ [1.7, 2.3]. A
robust input is determined for ε = 0.02. Hereto, the output is parame-
terized as a degree 4 spline with 9 internal knots. Using (4.21) and (4.22)
a linear fractional representation for each of the constraints in (4.18) is
determined. Subsequently, these semi-in�nite constraints are imposed
using (4.20). Solving the lmi with a feasibility problem results in the
robust input shown in Figure 4.13 (top). The corresponding outputs for
σ ∈ [1.7, 2.3] are all contained in the black region of Figure 4.13 (bottom).

The proposed approach e�ectively avoids sampling of the uncertainty
region. However, for an increasing number of knots the computations
quickly become too expensive. For the chosen parameterization, four
matrix inequalities of dimension 21 and four of dimension 20 have to be
solved, which is already considered as a large lmi problem. Moreover,
when adding a performance objective instead of solving a feasibility
problem the solver often fails to converge as the solution is pushed to the
edge of feasibility. This is a fundamental problem of current semide�nite
solvers.
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figure 4.13.: A degree 4 robust input with 9 internal knots (top) for an uncertain
second order system with ζ = 0.01 and σ ∈ [1.7, 2.3]. The corresponding set of
outputs is shown in black (bo�om).

This section introduced a novel method for computing robust inputs.
By parameterizing all possible outputs and constraining them to originate
from the same input, classical reachability analysis is avoided. For a
second order system with uncertainty on the resonance frequency, a
robust counterpart is derived. The proposed method avoids sampling of
the uncertainty region. A numerical example illustrated the opportunities
of the approach. However, we are currently unable to fully reap its rewards
due to the computational issues related to solving the lmi’s.

4.4. Summary

This chapter illustrates the power and versatility of splines for solving
optimal control problems for linear systems. By using a spline param-
eterization of the �at output, the optimal control problem is cast as a
piecewise polynomial nonnegativity problem. As seen in Chapter 2, such
constraints can be imposed either using exact semide�nite conditions or
conservative linear conditions. By using the linear approach with mid-



4.4. Summary 73

point re�nements, the amount of conservatism is greatly reduced. This
approach is shown to outperform other recently proposed spline-based
methods (Suryawan, De Doná, and Seron 2011, Suryawan, De Doná, and
Seron 2012) both in terms of optimality and e�ciency.

Instead of resorting to classical binary search for time-optimal control
problems, a Newton-Raphson iteration scheme is proposed based on a
maximum reach problem. This approach results in a signi�cant decrease
in computational e�ort. By using a limited number of knots the true
time-optimal generalized bang-bang solution is approximated by smooth
input signals. Moreover, for a limited problem dimension a time-optimal
solution can also be determined parametrically.

A novel approach for robust input design parameterizes all possible �at
outputs and constrains them to originate from the same input. This way,
a robust counterpart for the robust input design problem for uncertain
systems is derived, such that sampling of the uncertainty region as in De
Caigny et al. (2008), De Caigny (2009) is avoided.

What to remember

· For linear systems, the general optimal control problem can be cast as
a piecewise polynomial nonnegativity problem.

· Using the linear relaxation with two midpoint refinements gives
almost identical results to the exact semidefinite conditions.

· By formulating a maximum range problem instead of the classical
feasibility problem for time-optimal point-to-point motions, sensitivity
information can be used for the iterative computation of the optimal
time.

· By regarding the time-optimal problem as a parametric optimization
problem, the maximum range curve can also be expressed analytically
by solving a finite number of linear programs.

· A new approach for robust input design parameterizes all possible
outputs and constrains them to originate from the same input,
allowing for the derivation of a robust counterpart.





5
Optimal path following for
differentially flat systems
through a geometric
transformation

As opposed to trajectory tracking where a reference speci�ed in time is
tracked, path following deals with the problem of following a geomet-
ric path without any preassigned timing information. Many industrial
tasks are in fact path following problems, such as robot path following
in e.g. welding or painting (Shin and McKay 1985, Verscheure, Demeule-
naere, et al. 2009, Bobrow, Dubowsky, and Gibson 1985, Debrouwere et al.
2013), control of autonomous vehicles (Skjetne, Fossen, and Kokotović
2004, Ho�mann, Wasl, and Tomlin 2008), but also control of chemical
reactors (Faulwasser, Hagenmeyer, and Findeisen 2011) and batch crys-
tallization (Nagy 2008). In addition path following is often considered
as the low level stage in a decoupled motion planning problem (Shin
and McKay 1985, Bobrow, Dubowsky, and Gibson 1985). In a �rst step,
a high level planner determines a geometric path accounting only for
geometric path constraints. Subsequently, an (optimal) velocity pro�le
along the geometric path that takes into account the system dynamics
and limitations, such as actuator saturation, is determined.

Most path following methods employ the fact that motion along a path
can be described by a single coordinate, commonly denoted by s . For
di�erentially �at systems, by applying the chainrule, the dynamics are
projected along the path onto a single-input system. Using this projection,
Raczy and Jacob (1999) derive a small dimensional optimal control problem
for an overhead crane. In Faulwasser, Hagenmeyer, and Findeisen (2011)
this approach is generalized for di�erentially �at systems. Furthermore,
the authors provide easy-to-check conditions for determining whether a
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path is exactly followable. Despite its small dimension, the optimization
problem remains di�cult to solve and requires a good initialization, espe-
cially for free end-time problems. Moreover, the optimization variables
enter through the de�nition of the path into the optimization problem.
Hence, even for linear systems, a nonlinear reference path quickly com-
plicates the problem, as shown in Section 5.1.

These problems are largely overcome by assuming a nonnegative ve-
locity along the path such that time can be eliminated from consideration
and the coordinate s can be used as independent variable (Hauser and
Saccon 2006), thus, arriving at a geometric problem formulation. A simi-
lar transformation is used in Verscheure, Demeulenaere, et al. (2009). In
their work a clever time transformation renders the time-optimal path
following problem convex for the case of a simpli�ed robotic manipula-
tors. In Debrouwere et al. (2013), the authors apply sequential convex
programming to broaden the set of models and constraints. The method
however relies on �nding a convex-concave decomposition of the con-
straints, which is di�cult in many cases, hereby limiting its applicability.
This chapter presents a generalization of the approach of Verscheure,
Demeulenaere, et al. (2009) for di�erentially �at systems using the results
from Faulwasser, Hagenmeyer, and Findeisen (2011). Although in general
the convexity of the problem is lost, the proposed problem formulation
remains appealing since (i) the problem dimension remains small, (ii) the
optimization variables no longer enter through the de�nition of the path,
(iii) the problem is transformed into a �xed end-time problem and (iv) nu-
merical experiments reveal that the solver no longer requires an accurate
initial guess and computation times remain comparable to the convex
problem as obtained in Verscheure, Demeulenaere, et al. (2009). Moreover,
the proposed problem formulation allows for an intuitive understanding
of the conditions for which a path is exactly followable.

Although path following has many applications it is restrictive to con-
strain the output to follow a predetermined path. Therefore, in the second
part of this chapter the proposed path following framework is extended
to allow for freedom in the geometric path. To this end, the geometric
reference is represented as an unknown convex combination of two or
more �xed boundary paths. In this way, optimal paths for di�erentially
�at systems can be determined as well.
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The content of this chapter is based on the papers Van Loock, Pipeleers,
Diehl, et al. (2013), Van Loock, Bellens, et al. (2013), Van Loock, Pipeleers,
and Swevers (2013a), Van Loock, Pipeleers, and Swevers (2013b).

5.1. Problem statement

Consider a desired geometric reference yd (s ) ∈ Cr , a parametrized curve
as a function of a scalar path coordinate s for the �at output.1 The time
dependency follows from s (t ). Without loss of generality, it is assumed
that the trajectory starts at t = 0, ends at t = T and s (0) = 0 ≤ s (t ) ≤
s (T ) = 1. Furthermore, it is assumed that the velocity along the path is
non-negative, i.e. ṡ (t ) ≥ 0, that the system performs a rest-to-rest motion
and that the boundary conditions x0 , xT are consistent with the reference
path, such that x0 = Φ(yd (s (0)), 0, . . . , 0) and xT = Φ(yd (s (T )) , 0, . . . , 0).

In this Chapter, the goal is to determine an input signal u (t ) such that
(i) the desired geometric reference is followed exactly by the �at output,
i.e.

y (t ) = yd (s (t )) , (5.1a)

(ii) constraints on states and inputs

x (t ) ∈ X and u (t ) ∈ U , (5.1b)

are respected and (iii) the cost function

J = T +
∫ T

0
F (x (τ ),u (τ ))dτ (5.1c)

is minimized, where the duration T is weighed against a performance
criterion F (·), e.g. energy consumption or other regularization terms.

For an arbitrary nonlinear system this problem is challenging to solve
as it requires integrating a nonlinear state space model and imposing the

1Recall from De�nition 1.2 that r is the number of derivatives of the �at output required
to describe the input u.
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algebraic equations y (t ) = yd (s (t )). However, when considering di�eren-
tially �at systems, the system dynamics can be projected along the path
onto a linear single-input system that is trivial to integrate (Faulwasser,
Hagenmeyer, and Findeisen 2011). By applying the chainrule, we �nd the
time derivatives of yd (s (t ))

ẏd = ∂syd ṡ ,

ÿd = ∂
2
syd ṡ

2 + ∂syd s̈ ,
(5.2)

and so on. Then by substituting (5.2) into (1.3) we rewrite the states and
inputs of the system as

x = Φs (s , ṡ , . . . , ∂
r−1
t s ) = Φs (σ )

u = Ψs (s , ṡ , . . . , ∂
r
t s ) = Ψs (σ ,v ),

where σ (t ) = (σ0 , . . . , σr−1)
ᵀ = (s , ṡ , . . . , ∂r−1

t s )ᵀ and v (t ) = ∂rt s . The
rest-to-rest path following problem can now be reformulated as the
smaller dimensional optimal control problem with states σ and control v

minimize
σ ( ·) ,v ( ·) ,T

T +
∫ T

0
F (σ (τ ),v (τ ))dτ

subject to σ̇ (t ) =

(
0 Ir−1
0 0

)
σ (t ) + (0, . . . , 0, 1)ᵀv (t )

σ (0) = (0, . . . , 0)ᵀ , σ (T ) = (1, 0 . . . , 0)ᵀ

T ≥ 0
σ1 (t ) ≥ 0,∀t ∈ [0,T ]
Φs (σ (t )) ∈ X , ∀t ∈ [0,T ]
Ψs (σ (t ),v (t )) ∈ U , ∀t ∈ [0,T ],

(5.3)

Although the projection simpli�es the problem (5.1) to a great extent,
it su�ers from some important drawbacks.

1. The variable σ0 = s enters the optimization problem through
yd (s (t )). Problems with nonlinear paths (i.e. nonlinear functions
yd (·)) will therefore introduce more nonlinearity into the problem.
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2. The problem is a free end-time optimal control problem for which
the solution can vary quite nonlinearly with changes in T , which
usually results in slower convergence compared to �xed end-time
problems.

3. Due to the above two reasons, an accurate initial guess is often
needed to ensure convergence.

In the following section we show how to overcome these di�culties by a
transformation of variables.

5.2. Time transformation

The key idea is to transform the problem such that, instead of the time t ,
the path coordinate s becomes the independent variable. In this way, the
problem is transformed into a �xed end-time optimal control problem.
Moreover, the optimization variables no longer enter the problem through
the reference path yd (s ). The transformation, proposed in Verscheure,
Demeulenaere, et al. (2009), consists of parameterizing the velocity along
the path as a function of the path coordinate:

b (s ) := ṡ2. (5.4)

By taking the time derivative on both sides of (5.4), we obtain ∂sb (s )ṡ =
2s̈ṡ or

s̈ =
∂sb (s )

2 .

We also require derivatives of higher order, which are obtained by repeat-
edly applying the chainrule

∂3
t s =

∂2
sb (s )ṡ

2 =
∂2
sb (s )

√
b (s )

2 ,

∂4
t s =

∂2
sb (s )s̈

2 +
∂3
sb (s )ṡ

2

2 =
∂2
sb (s )∂sb (s )

4 +
∂3
sb (s )b (s )

2 ,

and so on.
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States and inputs can now be reformulated as a function of s and b (s )
and its derivatives:

x = Φb (s ,b , ∂sb , . . . , ∂
r−2
s b) = Φb (s , β )

u = Ψb (s ,b , ∂sb , . . . , ∂
r−1
s b) = Ψb (s , β ,w ),

where

β (s ) = (β0 , . . . , βr−2)
ᵀ = (b , ∂sb , . . . , ∂

r−2
s b)ᵀ and w (s ) = ∂r−1

s b . (5.5)

Furthermore, using dt = ds
ṡ =

ds√
b

, the objective function is reformulated
as

J =

∫ T

0
1 + F (x (τ ),u (τ ))dτ =

∫ 1

0

1 + Fb (s , β (s ),w (s ))√
β0 (s )

ds . (5.6)

With the transformation (5.4), problem (5.3) is reformulated as the
optimal control problem with pseudotime s , di�erential states β and
control w

minimize
β ( ·) ,w ( ·)

∫ 1

0

1 + Fb (s , β (s ),w (s ))√
β0 (s )

ds

subject to ∂sβ (s ) =

(
0 Ir−2
0 0

)
β (s ) + (0, . . . , 0, 1)ᵀw (s )

β0 (s ) ≥ 0,∀s ∈ [0, 1]
Φb (s , β (s )) ∈ X , ∀s ∈ [0, 1]
Ψb (s , β (s ),w (s )) ∈ U , ∀s ∈ [0, 1].

(5.7)

The initial and terminal values for β are omitted deliberately. These will
be discussed in more detail in Section 5.2.1.

Our problem formulation holds several advantages over (5.3). First, note
that (5.7) has one di�erential state fewer than (5.3). Therefore, it contains
fewer optimization variables. Second, the optimal control problem has
a �xed (pseudo) end-time, namely s = 1, which simpli�es the problem
to great extent. Third, as s is the independent variable, the optimization
variables no longer enter the problem through yd (s ). Instead, only the
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coe�cients of the terms in Φb and Ψb depend on the reference path.
Therefore, nonlinear paths will not introduce more nonlinearity.

Problem formulation (5.7) can be seen as a generalization of the path
following problem for robotic manipulators, described in Verscheure,
Demeulenaere, et al. 2009. In their formulation, k = 2, Φb and Ψb are
linear in the optimization variables,X andU are convex and only F (β ,w )
that result in a convex objective are allowed. For this speci�c case, the
optimization problem is convex and is solved globally and e�ciently. As
we will illustrate in the examples below, the more general problem can
also be solved e�ciently, but global optimality cannot be guaranteed.

5.2.1. Singularities

In order for the system to perform a rest-to-rest transition, the initial
and terminal states must be set to zero. This could be accomplished by
imposing zero initial and terminal values for β in (5.7). However, these
constraints will often result in the integral (5.6) being unde�ned, as shown
in the proposition below.
Lemma 5.1 · If b (0) = 0, ∂sb (0) = 0 and ∂2

sb (0) = c then the integral∫ 1

0

1√
b (s )

ds

is unde�ned.

Proof. Consider b (s ) near 0. Since ∂2
sb (0) = c , there always exists an η

such that b (s ) ≤ cs2 on [0,η] or, equivalently

1√
b (s )

≥ 1√
cs

for s ∈ [0,η].

Consequently ∫ η

0

1√
b (s )

ds ≥
∫ η

0

1√
cs
ds = ∞.

and hence the integral
∫ 1

0
1√
b (s )

ds is unde�ned. �
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In other words, from r ≥ 3 onwards, zero initial or terminal values
for β render (5.6) unde�ned and hence they cannot be imposed. There-
fore, rest-to-rest conditions are imposed indirectly by choosing a suit-
able parametrization for yd (s ). Indeed, by ensuring ∂isyd (0) = 0 for
i = 1, . . . , r − 1, we can impose ∂ityd (s (0)) = 0 regardless of the value
of β (0) (cfr. (5.2)). Any path yd (s ) can easily be reparameterized by
yd (q(s )) with q(·) an odd degree polynomial of su�cient degree such
that q(0) = 0, q(1) = 1, ∂sq(s ) ≥ 0 for s ∈ [0, 1] and ∂isq(0) = ∂isq(1) = 0
for i = 1, . . . , r−1. In the following section we use this reparameterization
to prove under which conditions a given reference is exactly followable.

5.2.2. Path followability

Su�cient conditions to determine whether a given geometric reference is
exactly followable are already derived in Faulwasser, Hagenmeyer, and
Findeisen 2011. However, by using the proposed time transformation and
a suitable reparameterization of the path these conditions allow for an
intuitive understanding and a simpli�cation of the proof. Therefore, we
repeat them here.
Theorem 5.1 (Exact path followability) · Assume that the system (1.2)
starts and stops in steady state and the maps Φb and Ψb are continuous. If

for all s ∈ [0, 1]

Φb (s , 0, . . . , 0) ∈ int(X) and Ψb (s , 0, . . . , 0) ∈ int(U ), (5.8)

then yd (s ) can be followed exactly by the �at system (1.2). Furthermore, the

minimal transition time is �nite for the time-optimal case.

Proof. The proof relies on �nding a feasible solution to (5.7). First, the
path is reparameterized such that the system starts and stops in steady
state, as described in the previous section.

Now choose b (s ) = ϵ > 0, where the constant ϵ is chosen small enough
such that for all s ∈ [0, 1], due to (5.8) and the continuity of the maps Φb
and Ψb ,

Φb (s , ϵ , 0, . . . , 0) ∈ X
and

Ψb (s , ϵ , 0, . . . , 0) ∈ U .
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Hence, b (s ) = ϵ yields a feasible solution to (5.7). Moreover, when con-
sidering the time-optimal case, i.e. F (·) = 0, the minimal transition time
T ∗ ≤ 1/

√
ϵ is �nite. �

Intuitively, the theorem states that yd (s ) is exactly followable if each
point of the reference path can be visited in steady state while staying
in the interior of the constraint set. The proof shows this can be accom-
plished by traveling with very low constant speed b (s ) = ϵ along the path.
Note the theorem only provides a su�cient condition.

5.3. Examples
The robotic manipulator and the quadrotor serve as illustration for the pro-
posed framework. We consider a robotic manipulator with and without
viscous friction in the joints. In the latter case the optimization problem is
convex. We show that calculation times remain comparable for both cases.
For highly nonlinear systems as the quadrotor, solutions are also calcu-
lated e�ciently without requiring a user-de�ned initial guess. Instead, we
rely on automatic initialization of the solver. As the time-optimal problem
is considered more di�cult, we consider the case F = 0 in (5.1c), in both
examples.

To simplify de�ning path following problems, a software package, based
on CasADi (Andersson, Åkesson, and Diehl 2012) and Ipopt (Wächter
and Biegler 2006) is developed. All problems are discretized using direct
transcription (Betts 2001). A tutorial for the software package is provided
in Appendix A. For future benchmarking, the code to solve the examples
is also made available. The problems are solved on a 2.66 GHz pc with
4 GB of ram memory. The computation times are reported as the sum of
the time spent in Ipopt and in nonlinear functions calls.

5.3.1. Robotic manipulator

The equations of motion of an n-DOF robotic manipulator with joint
angles q ∈ Rn , can be written as a function of the applied joint torques
τ ∈ Rn (Spong and Hutchinson 2005)

τ = D (q)q̈ +C (q, q̇)q̇ + д(q),
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figure 5.1.: Planar elbow
manipulator with joints
q1 and q2

q2

x

y

q1

where D (q) is a positive de�nite mass matrix, C (q, q̇) is a matrix account-
ing for Coriolis and centrifugal e�ects and д(q) denotes the gravity vector.
Verscheure, Demeulenaere, et al. (2009) make the critical assumption
that C (q, q̇) is linear in the joint velocities, which renders their problem
convex. However, when a matrix B (q) accounting for viscous friction in
the joints is added, we �nd

τ = D (q)q̈ + (C (q, q̇) + B (q))q̇ + д(q).

Now C (q, q̇) + B (q) is a�ne in q̇ and convexity of the path following
problem is destroyed.

In this example, we consider a two-link planar elbow manipulator in a
vertical plane, as in Fig. 5.1, with and without a viscous friction matrix
B (q), which allows us to compare the convergence of both the convex and
nonconvex problem for the same problem size. Obviously, the joint angles
(q1 ,q2)

ᵀ are a �at output for this system. We consider the geometric
reference for both joints

yd (s ) =
(π

2 s , −πs
)ᵀ
, (5.9)

such that for a robot with equal link lengths the end-e�ector traces a line
along the x-axis. In order to start with zero joint velocity the reference
is reparameterized as described in Section 5.2.1. The joint torques are
constrained to

τ ∈ [−20, 20] N m × [−10, 10] N m.

The discretized problem contains 400 variables, 199 equality and 400
inequality constraints. The solutions of both the convex and nonconvex
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figure 5.2.: Optimized torques (τ1: solid, τ2: dashed) for a planar elbow manipu-
lator with (bo�om) and without (top) viscous friction in the joints following the
reference (5.9)

problem are obtained in 24 iterations or 0.12 s. For the convex problem
0.036 s are spent in Ipopt and 0.084 s in nonlinear function calls, whereas
for the nonconvex problem the computation times are 0.032 s and 0.088 s
respectively. In our approach there is little di�erence in computation
times whereas in Debrouwere et al. 2013, where a sequential convex
programming approach is followed, the cost for solving the nonconvex
problem is approximately four times the cost of the convex problem.

The optimal actuator torques are shown in Fig. 5.2. Both for the convex
(top) and nonconvex (bottom) problem, at least one of the constraints
is active at each time step, which is a typical property for time-optimal
solutions. Also note that the execution time for the nonconvex problem
is slightly larger due to the viscous friction in the joints.

The convergence of problem (5.7) is compared to (5.3) by increasing
the nonlinearity of the reference path. To this end, we de�ne a nonlinear
recursive function

ri (s ) =
1

1 + ecos πr i−1 (s )
, (5.10)

with r0 (s ) = s and the reference path yd (s ) = (ri (s ), −2ri (s ))ᵀ . Table 5.1
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table 5.1.: Number of itera-
tions for formulations (5.3)
and (5.7) of the path follow-
ing problem with path yd (s ) =
(ri (s ), −2ri (s )) and ri (s ) as de-
fined in (5.10)

i Problem (5.3) Problem (5.7)

1 97 28
2 38 32
3 78 30
4 79 32
5 91 31
6 94 32
7 64 34
8 – 32
9 105 32
10 189 34

compares the number of iterations for di�erent values of i for both problem
formulations. It is clear that our approach consistently outperforms (5.3).
Moreover, the number of required iterations hardly changes, whereas
for (5.3) it varies strongly with an increasing trend for increasing i , though
with some outliers. For i = 8, the solver was unable to converge for
formulation (5.3). These �ndings con�rm that, contrary to Faulwasser,
Hagenmeyer, and Findeisen 2011, in our approach the nonlinearity of the
path has little in�uence on the convergence.

5.3.2. Quadrotor

To illustrate that the proposed framework copes well with strongly non-
linear problems as well, this section considers aggressive time-optimal
maneuvers for quadrotors along a predetermined path. Figure 5.3 shows
the notation used. The coordinate (x ,y , z)ᵀ represents the coordinate
of the quadrotor’s center of gravity with respect to a world frame and
the XYZ Euler angles (ϕ , θ ,ψ )ᵀ denote the roll, pitch and yaw angle.
A �at output for the quadrotor is (x ,y , z ,ψ )ᵀ . The reader is referred
to Mellinger and Kumar 2011, for further information concerning �atness.
The control input of the quadrotor u = (u1 ,u2 ,u3 ,u4)

ᵀ consists of the
net body force u4 and the three body moments u1 ,u2 ,u3 and can also be
related to the angular velocities of the rotors Mellinger and Kumar 2011.

A geometric reference trajectory is usually planned only in (x ,y , z)ᵀ

and therefore allows some freedom in the reference trajectory for the
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figure 5.3.: The quadrotor with coordinates (x ,y , z) of the center of gravity and
roll, pitch, yaw angles (θ ,ϕ ,ψ )

yaw angleψ . One possibility is to align one of the quadrotor’s arm with
the tangent dy/dx , i.e. ψ = arctan ∂sy (s )

∂s x (s )
. In this example we consider

following reference

yd (s ) =
(
cos(2πs ) , sin(2πs ) , (0.9(e s − 1) + 0.1 sin(2πs ))2 , 2πs

)ᵀ
(5.11)

The reference is reparameterized as described in Section 5.2.1 such that the
quadrotor’s initial and terminal states are zero. The inputs are constrained
to2

u ∈ [−8, 8] N m × [−8, 8] N m × [−8, 8] N m × [1, 32] N.

A solution is obtained in 22 iterations or 5.824 s, of which 0.12 s in Ipopt
and 5.704 s in nonlinear function calls for a problem with 750 variables,
600 inequality and 596 equality constraints. The optimized control inputs
are shown in Fig. 5.5. Note that at each time instant one of the constraints
is active. Fig. 5.4 illustrates the position and orientation of the quadrotor
for 20 equidistant time steps.

5.3.3. Discussion

An e�cient problem formulation is derived in two steps. First, the di�er-
ential �atness property allows to project the system dynamics along the
path onto a linear single-input system, resulting in a small dimensional

2Note that the rotational speed of the rotors are the true constraints for the system.
These are related to the body forces and moments through a linear transformation
matrix (Mellinger and Kumar 2011).
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figure 5.4.: �adrotor’s posi-
tion and orientation in 20
equidistant time steps

x

y

z

optimal control problem. Despite its small dimension, the optimization
problem remains di�cult to solve and often requires a good initializa-
tion, especially for free end-time problems. Moreover, the optimization
variables enter through the de�nition of the path into the optimization
problem, making the convergence dependent on the geometric reference
path. In a second step, a nonlinear change of variables that expresses the
problem in terms of the progress along the path overcomes the former
issues. These steps are summarized in Figure 5.7.

Compared to the problem formulation (5.3) from Faulwasser, Hagen-
meyer, and Findeisen (2011), we believe our geometric problem formu-
lation has two important advantages. First, the problem is transformed
into a �xed end-time problem, hereby simplifying the problem to a large
extent. Second, the optimization variables no longer enter the problem
through yd (s ), as the path coordinate s becomes the independent variable
instead of the time. Numerical experiments illustrate that our formulation
shows little dependence on the reference path as opposed to Faulwasser,
Hagenmeyer, and Findeisen (2011).

Both numerical examples illustrate that solutions are obtained e�-
ciently within a few CPU seconds, making the method practical in aca-
demic and industrial practice. Moreover, we rely on the automatic ini-
tialization of Ipopt and the user is not required to supply an initial guess,
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figure 5.5.: Time-optimal control inputs for a quadrotor following (5.11)
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figure 5.6.: The overhead crane is writing “optec” time-optimally

as opposed to Lai, Yang, and Wu (2006) where for quadrotors a time-
consuming genetic algorithm is used to generate an initial guess. The
proposed problem formulation (5.7) also allows for other objectives than
time, such as energy consumption, and arbitrary constraints, such as
torque rate constraints in robotic applications, which cannot be included
in the framework of Verscheure, Demeulenaere, et al. (2009).

To illustrate the e�ciency and e�ectiveness of the proposed approach,
a path following demonstrator on an overhead crane is developed in van
Bergen (2013). A user is able to draw an arbitrary reference path for the
load. Subsequently, the developed software computes the time-optimal
inputs required to follow the load. In a �nal step, the inputs are applied to
the setup in feedforward. Figure 5.6 illustrates the overhead crane writing
“optec”.

5.4. Optimal path planning

In the decoupled motion planning approach (Bobrow, Dubowsky, and
Gibson 1985), a high level planner �rst determines a geometric path ac-
counting only for geometric constraints. Subsequently, in the path fol-
lowing stage, which was the focus of the previous sections, an optimal
velocity pro�le along this path is determined. Inspired by this decoupled



5.4. Optimal path planning 91
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High dimensional
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Di�erential algebraic equation
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Path dependent
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flatness

Geometric transformation
of variables making s the
independent variable

figure 5.7.: Di�erent steps towards the proposed geometric problem formulation

approach, we now tackle the optimal path planning problem. Instead of
�xing the geometric path as before, it is now represented as a convex
combination of two or more �xed boundary paths.

We �rst reformulate the problem formulation from Section 5.1 to ac-
commodate for the unknown path. We want to �nd an input signal u (t )
and the a geometric path yd (s ) that allows for the fastest execution time
such that (i) the geometric path is followed exactly by the system output:

z (t ) = yd (s (t )) ,

(ii) without violating constraints on states and inputs

u (t ) ∈ U , x (t ) ∈ X ,
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figure 5.8.: Geometric refer-
ence yd (s ) as a convex combi-
nation of two paths y1 (s ) and
y2 (s ) in a constrained environ-
ment

y1(s)

yd(s)

y2(s)

(iii) without violating geometric constraints

yd (s ) ∈ Y ,

and (iv) in minimal time T .
Due to the possible complex geometry of the environment, imposing

yd (s ) ∈ Y directly in the optimization problem can pose di�culties
when solving the problem. To circumvent this di�culty, the geometric
reference path yd (s ) is de�ned as a convex combination of l feasible paths
yi (s ) ∈ Y , i = 1, . . . , l :

yd (s ) =
l∑

i=1
yi (s )pi (s ),

with
l∑

i=1
pi (s ) = 1 and pi (s ) ≥ 0,∀s ∈ [0, 1],

and pi (s ),yi (s ) ∈ Cr . Figure 5.8 shows two functions y1 (s ) and y2 (s ),
which stay clear of the geometric constraints in the hatched areas. The
geometric reference yd (s ) is de�ned as the convex combination of both
functions. In this example p1 (s ) = 1 − √s and p2 (s ) =

√
s .

Similarly as in previous sections, the system dynamics can be projected
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along the path onto a linear single-input system:

ẏd (s ) =
l∑

i=1
(∂syi (s )pi (s ) + ∂spi (s )yi (s ))

√
b (s ),

ÿd (s ) =
l∑

i=1
(∂syi (s )pi (s ) + ∂spi (s )yi (s )) ∂sb (s )/2

+
l∑

i=1

(
∂2
syi (s )pi (s ) + 2∂spi (s )∂syi (s ) + ∂2

spi (s )yi (s )
)
b (s ),

(5.12)

and so on, such that we can rewrite the states and inputs to the system as

x = Φp (s ,pi , ∂spi , . . . , ∂
r−1
s pi ,b , . . . , ∂

r−2
s b) = Φp (s , ρi , β ),

u = Ψp (s ,pi , ∂spi , . . . , ∂
r
spi ,b , . . . , ∂

r−1
s b) = Ψp (s , ρi , ϱi , β ,w ),

with ρi = (pi , ∂spi , . . . , ∂
r−1
s pi )

ᵀ , ϱi = ∂rspi , i = 1, . . . , l and w , β as
de�ned in (5.5).

The path following problem (5.7) is then extended with the control ϱi
and states ρi :

minimize
β ( ·) ,ρ i ( ·) ,w ( ·) ,ϱ i ( ·)

∫ 1

0

1√
b (s )

ds

subject to ∂sβ (s ) =

(
0 Ik−2
0 0

)
β (s ) + (0, . . . , 0, 1)ᵀw (s )

∂sρi (s ) =

(
0 Ik−1
0 0

)
ρi (s ) + (0, . . . , 0, 1)ᵀϱi (s ) ,

i = 1, . . . , l
l∑

i=1
(ρi )0 (s ) = 1,∀s ∈ [0, 1]

β0 (s ) ≥ 0,∀s ∈ [0, 1]
(ρi )0 (s ) ≥ 0,∀s ∈ [0, 1], i = 1, . . . , l
Φp (s , ρi , β ) ∈ X ,∀s ∈ [0, 1]
Ψp (s , ρi , ϱi , β ,w ) ∈ U ,∀s ∈ [0, 1].

(5.13)
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table 5.2.: Optimal times for horizon-
tal displacements

xT [m] T [s] T ∗ [s]

3 0.8902 0.8977
6 1.223 1.231
9 1.478 1.488
12 1.694 1.705
15 1.885 1.895

Again, note that we have a �xed end-time problem where only a trivial in-
tegration has to be performed. However, due to the path being free, Φp ,Ψp
are vastly more nonlinear compared to the path following problem (5.7).
However, the example below still shows good convergence, albeit more
slowly compared to path following due to the increased nonlinearity.

To benchmark against an analytical method from Hehn, Ritz, and
D’Andrea (2012), consider the simpli�ed two-dimensional quadrotor model
from Section 1.2. The thrust input is constrained to 1 m s−2 ≤ FT /m ≤
20 m s−2 and the rotational rate to −10 rad s−1 ≤ ω ≤ 10 rad s−1. In all
examples, we start and stop in steady state, which is accomplished by a
suitable reparameterization of the outer paths as proposed in Section 5.2.1.

First, we consider purely horizontal displacements from (0, 0) to (xT , 0).
The outer paths are de�ned as

y1 = (xT s , −1)ᵀ and y2 = (xT s , 1)ᵀ ,

The constraints pi (0) = pi (1) = 0.5 for i = 1, 2 are added to the opti-
mization problem such that the quadrotor starts and stops at at a height
z = 0.

Optimal times T are calculated for �ve distances xT = 3, 6, 9, 12, 15 m
and compared to the travel timesT ∗ reported in Hehn, Ritz, and D’Andrea
(2012) in table 5.2. The calculated times consistently outperform the results
of Hehn, Ritz, and D’Andrea (2012) by a small amount. This is probably
due to the explicit parametrization of the controls in Hehn, Ritz, and
D’Andrea (2012), which are either at their maximum or minimum value
or zero. The solver time for these trajectories is around 0.6 s for problem
sizes around 1000 variables.

Assuming the quadrotor is taking o� from the ground, these maneuvers



5.4. Optimal path planning 95

-0.5

0

0.5

z
[m

]

0 1 2 3 4 5 6
-0.5

0

0.5

x [m]

z
[m

]

figure 5.9.: Optimal horizontal maneuver with (bo�om) and without (top)
ground constraint. The quadrotors are drawn in equal time steps.

would require the quadrotor to go underground as z becomes negative
as is clear from Figure 5.9 (top). Our method can easily cope with this
constraint by de�ning the outer paths as

y1 = (xT s , 0)ᵀ and y2 = (xT s , 1)ᵀ ,

ensuring a positive value for z. In Hehn, Ritz, and D’Andrea (2012), these
geometric constraints cannot be taken into account. For xT = 6 m both
trajectories are shown in Fig. 5.9. The trajectory time for the positive
trajectory is 1.227 s, which is only marginally more compared to the
unconstrained case.

Now, consider general two-dimensional displacements from (0, 0) to
(xT , zT ). For geometrically unconstrained problems we de�ne the outer
paths as

y1 = (xT s , −c )ᵀ and y2 = (xT s , zT + c )ᵀ ,

where c is a chosen constant and constraints are added onpi (s ) for s = 0, 1
such that the trajectory start at (0, 0) and stops at (xT , zT ).

As a benchmark, an optimal trajectory is calculated for xT = zT = 5 m.
The constant c is chosen c = 0 m. The optimal trajectory is shown in
Fig. 5.10. Our computations lead to a �nal time of 1.289 s, which is shorter
than the 1.4 s reported in Hehn, Ritz, and D’Andrea (2012).
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figure 5.10.: Optimal general and constrained maneuver to (5 m, 5 m). The
quadrotors are drawn in equal time steps.

Moreover, in the proposed framework geometric constraints can be
easily added to the optimization problem. Consider �ying the quadrotor to
xT = zT = 5 m through a hoop with diameter 0.5 m, positioned vertically
with its center at (2.5 m, 2.5 m). To ensure the quadrotor �ies through
the hoop, we de�ne the outer paths as

y1 =
(
xT s , (xT s − 2.5)2 + 2.75

)ᵀ
and

y2 =
(
xT s , −(xT s − 2.5)2 − 2.25

)ᵀ
,

The optimal trajectory is shown in Figure 5.10 along with the outer paths.
The corresponding controls are shown in Figure 5.11. Note the aggressive
controls causing the quadrotor to �ip and use its thrust for breaking.

These examples show the versatility of the approach. Geometric con-
straints can easily be added by a suitable choice of the outer paths, without
complicating the optimization problem. Moreover, solution are calculated
e�ciently while relying on automatic initialization of the solver and
benchmark results for the quadrotor show improvements over an analyti-
cal method presented in Hehn, Ritz, and D’Andrea (2012).
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figure 5.11.: Optimal controls for a constrained maneuver to (5 m, 5 m).

5.5. Summary

This chapter deals with path following problems for di�erentially �at
systems. For such systems, an e�cient problem formulation is found in
two steps. First, due to di�erential �atness of the system, the dynamics can
be projected along the path onto a linear single-input system, resulting in
a small dimensional optimal control problem. Despite its small dimension,
the optimization problem remains di�cult to solve and often requires
a good initialization, especially for free end-time problems. Moreover,
the optimization variables enter through the de�nition of the path into
the optimization problem, making the convergence dependent on the
geometric reference path. To overcome these issues, the second step
consists of a nonlinear change of variables that expresses the problem in
terms of the progress along the path. This way, the problem is rid from its
time dependence, making the convergence independent of the reference
path. Due to the transformation, singularities may appear in the problem
formulation. These can easily be overcome by a reparameterization of the
path. Furthermore, we prove that if each point of the geometric path can
be visited in steady state, the path can be followed exactly. Two numerical
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examples illustrate the e�ciency and practicality of the proposed method.
By also considering the geometric path as an optimization variable,

the same idea is subsequently used in optimal path planning. To avoid
hard geometric constraints such as collision avoidance, the geometric
path is represented as an unknown convex combination of two or more
geometrically feasible reference paths. By means of a numerical example
the versatility of the proposed approach is illustrated.

What to remember

· Writing the path following problem in terms of the evolution along
the path eliminates the time from consideration and results in an
e�icient problem formulation.

· By also considering the geometric path as a variable, the path
following problem becomes a path planning problem.

· Representing the geometric path as a convex combination of outer
paths avoids hard geometric constraints.



6
Concluding remarks

Over the course of �ve chapters, this thesis detailed contributions to non-
negative polynomial splines, with application in data approximation and
optimal control in linear systems, and optimal path following problems.
A central theme for optimal motion synthesis was the use of di�erential
�atness to simplify the optimization problems. In this �nal chapter we
summarize our contributions and provide suggestions for future research.

6.1. Summary

Chapter 2 detailed our main contributions with respect to polynomial
spline optimization. Based on results regarding nonnegative polynomials,
we derived an exact condition for nonnegativity of piecewise polynomials.
We conjectured that the resulting lmi’s exhibit a block diagonal structure
with overlapping cliqes. Furthermore, based on the positivity property of
the B-spline basis, a novel linear relaxation method using knot insertion
was presented. Although this strategy introduces conservatism, it is
computationally much cheaper.

Chapter 3 focused on the spline approximation problem. Here, the
main challenge lies on �nding the appropriate knot locations. Based on
recent results from literature we tackled the issue indirectly by supply-
ing many candidate knots and using a regularization to favor solution
with only a few active knots. In this way, the optimization problem is
convex, allowing for global solutions to be calculated e�ciently. By us-
ing a reweighting algorithm, the sparsity is enhanced even further. Two
benchmarks illustrated the performance compared to the established lit-
erature. Furthermore, prior knowledge on the function could easily be
incorporated by adding (convex) constraints to the optimization problem.

Another application of spline based optimization was detailed in Chap-
ter 4. Here, we looked at optimal control problems for linear systems
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through di�erential �atness. Inspired by recent results, the optimal con-
trol problem is viewed as nonnegativity problem involving piecewise
polynomials. Using the theory developed in Chapter 2, the problem is
cast both as an exact semide�nite and a conservative linear problem.
Benchmark results indicate improvements with respect to both conser-
vatism and computational e�ort compared to previously published results.
Instead of using binary search for time-optimal problems, derivative infor-
mation is incorporated using a Newton-Raphson method by computing
the sensitivity of the maximum travel range with respect to the available
motion time. In this way, computational performance is vastly improved
compared to binary search. By taking the method even further, a paramet-
ric description of the maximum range curve and corresponding solutions
is obtained by solving only a few optimization problems. Finally, for un-
certain systems a robust input design problem is set up. Using di�erential
�atness, the robustness constraints are expressed as a rational function
of the uncertainty parameter, allowing us to derive a robust counterpart
for the optimization problem. This way sampling of the uncertainty re-
gion is avoided. This method, however, still su�ers from computational
di�culties due to the large lmi’s resulting from the problem formulation.

In Chapter 5 we turned our attention to the so-called optimal path
following problem, for which a geometric trajectory is to be followed
without any preassigned timing information. A projection of the dynam-
ics along the geometric path onto a linear single-input system simpli�es
the optimization problem to great extent. The problem, however, remains
di�cult to solve particularly for the case of time-optimal problems and
highly nonlinear reference paths. By applying a transformation of vari-
ables, we arrived at a �xed end-time optimal control problem that can
be solved e�ciently and shows little dependence on the given reference
path. Two examples illustrated the e�ciency of the proposed approach.
In a subsequent step, we extended this approach towards path planning
problems. We represented the geometric reference as an unknown convex
combination of two or more �xed boundary paths. In this way, we were
able to determine optimal paths as well, without requiring an accurate
initial guess. To easily model path following and planning problems for a
variety of systems, a software tool was developed. It is covered in more
detail in Appendix A.
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6.2. Ideas for future research

In this thesis some theoretical issues remained unsolved and deserve
further attention. Furthermore, per chapter we propose new ideas, which
may provide a basis for future research.

6.2.1. Nonnegative univariate polynomial splines

To strengthen the theoretical results in Chapter 1, a proof for Conjecture 2.1
is necessary. As shown for the degree two case, the lmi conditions for
positivity can always be decoupled. We believe that for higher degrees, a
similar decoupling can be found. However, already for splines of degree
four, we are unable to prove that such a decoupling is possible.

With respect to the linear relaxations as discussed in Section 2.3.2, it is
interesting to extend the results for other totally positive bases such as
trigonometric B-splines (Lyche and Winther 1979). This would provide
us with easy interpretable linear su�cient conditions for nonnegativity
for a variety of functions. Another valuable extension are multivariate
functions, providing an alternative to Pólya’s relaxation and at the same
time broadening the scope of possible applications.

To e�ciently solve the lmi’s resulting from nonnegativity constraints,
dedicated solvers that exploit the structure of the problem are neces-
sary. The solver smcp (Andersen, Dahl, and Vandenberghe 2010) shows
promising results for semide�nite programs with overlapping cliqes and
with band structure. The solver should be tested on our nonnegativity
problems.

6.2.2. Optimal control of linear systems through di�erential �atness

It would be interesting to research the e�ect of other basis functions. In
literature, very often the basis is described by B-splines. Solutions for
other piecewise bases, such as a trigonometric basis, may have desirable
properties and should be researched.

We would also like to extend our results towards linear parameter
varying systems. For such systems, the state space matrices depend
linearly on a varying parameter. Given spline parameterizations for the
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varying parameter and the �at output, we can still express states and
inputs as polynomial splines, which we can constrain e�ciently using
the results from section 2.3.2. Although the optimization problem will
now be nonconvex, its dimensions remain small and we expect to solve it
e�ciently.

For the computation of time-optimal trajectories we used �rst order
information to e�ciently �nd the time optimal solution. By incorporating
higher order information, we could possibly speed up the calculations.
However, it should be noted that for higher order derivatives a matrix
inversion is required, which could possibly slow down computations for
larger problems.

Finally, with respect to computing robust inputs, instead of the linear
conditions (4.16), the exact condition (4.14) should also be considered.
Here, the di�culty lies in �nding a linear fractional representation of this
constraint. Another di�culty related to the method are the computational
issues related to solving the lmi’s. Linear relaxations can be explored to
counter these di�culties at the cost of introducing conservatism. The
proposed method can also be extended towards higher order uncertain
systems by viewing the system as a sum of �rst and second order systems.
Then, by constraining the residual vibration for each subsystem, the total
overshoot can be limited.

6.2.3. Optimal path following for di�erentially �at systems

In each application of the path following framework described in this
chapter, model-plant mismatch is inevitable. As a result the geometric
path is not followed exactly and the optimized motion trajectory may be
suboptimal or even infeasible for the true plant. Assuming the system
executes the same task repeatedly, the performance can be improved us-
ing iterative learning control: the system learns from its previous trials to
improve upon the current trial. Conventional learning controllers, require
the reference to be speci�ed in time and are not able to update the timing
of the motion along a geometric path. Recently, a new iterative learning
control approach for path following problems was proposed in Janssens
et al. (2013c) for the speci�c case of an xy positioning stage. Each it-
eration, a nonparametric model correction is computed, based on the
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model-plant mismatch observed in the previous iteration. Subsequently,
the optimal path following problem is solved for the updated model. A
generalization of this approach for di�erentially �at systems is currently
being researched. Possibly, it could also be applied on the path planning
problem. In this case, the path can also be iteratively computed based on
the updated model.

Another extension aims at developing code that can be run online. In
such a way, when the geometric path is replanned while already being
executed, e.g. to avoid collision with a moving object, we can continue to
follow these paths optimally. For robotic manipulators, such an approach
has been presented in Verscheure, Diehl, et al. 2009. Here, approximate
solutions are determined through a log-barrier batch solution method.
A recursive variant allows the computation of optimal controls for the
already available path data.

Path following also has many applications in the machining industry
such as laser cutting and milling. To specify the paths, G-code is most
widely used. Typically, this code speci�es straight lines and circular arcs
along which the machine has to move with a speci�ed speed. A valu-
able extension consists of interpreting this G-code in our path following
framework to determine the optimal inputs given the dynamic constraints
of the machine. It can be taken even further by also accounting for the
required machining tolerances for which the proposed path planning
framework will provide a solution.

With respect to path the path planning problem, in another approach
we consider to still �x the geometric path for the �at outputs. But instead
of optimizing over one common path coordinate, each coordinate is given
its own parameter. This way, optimal point-to-point motions can, for
instance, be determined by linear geometric trajectories for each �at
output.

Finally, experiments provide the ultimate validation of any contribution.
Therefore, all simulation performed in this thesis have to prove their
usefulness in practice. Initial experimental results for the proposed path
following methods on an overhead crane are promising.





A
Software tutorial

In Chapter 5 an interesting formulation was developed for optimal path
following problems for di�erentially �at systems. As it requires tedious
manipulations to arrive at this formulation, a software package was devel-
oped to aid the user in de�ning his own path following or path planning
problems. The goal of this chapter is to give a short overview of the
software’s functionality and illustrate it with two examples.

A.1. Installation

The software is developed in the Python programming language (Python
programming language) and uses CasADi (Andersson, Åkesson, and Diehl
2012) as a framework for symbolic computations. Furthermore CasADi
provides an interface to Ipopt (Wächter and Biegler 2006), a software pack-
age for large-scale nonlinear optimization. For installation instructions
regarding these software packages, the user is referred to the CasADi
homepage h�ps://github.com/casadi/casadi/wiki. CasADi now o�ers
binaries, which simplify the installation procedure considerably.

Our software is available via h�p://www.kuleuven.be/optec/so�ware.
After downloading the software it can easily be installed by executing

> sudo python setup.py install

A.2. Software design

The code exports three classes. The class FlatSystem supports the de�-
nition of di�erentially �at systems. For a given di�erentially �at system
the class PathFollowing models path following problems and the class
PathPlanning models path planning problems. Both classes provide func-
tionality for de�ning the path and (path dependent) constraints, solving

https://github.com/casadi/casadi/wiki
http://www.kuleuven.be/optec/software
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the problem and plotting the solution. Each class’ functionality is de-
scribed below.

A.3. Flat systems

The class FlatSystem de�nes a �at system. A �at system S with m �at
outputs using derivatives up to order k is de�ned as

S = FlatSystem(m, k)

Its symbolic �at output variables are stored in the instance attribute y. For
example, the j-th derivative of �at output i of system S is S.y[i, j]. The
instance method set_state allows to express the state x of the system S
as a function of the �at outputs:

x = S.set_state(expr, name=None)

Optionally, the state can be given a name. The computation of time
derivatives is facilitated with the instance method dt:

xdot = S.dt(x)

As an example, we model the overhead crane, described in Section 1.2.

from casadi import *
from pathfollowing import *

S = FlatSystem(2, 4)

G = 9.81

y1, dy1, ddy1 = S.y[0, 0], S.y[0, 1], S.y[0, 2]

y2, dy2, ddy2 = S.y[1, 0], S.y[1, 1], S.y[1, 2]

u1 = S.set_state(y1 + y2 * ddy1 / (G - ddy2), ’u1’)

u2 = S.set_state(y2 * sqrt(1 + (ddy1 / (G - ddy2)) ** 2), ’u2’)

theta = S.set_state(arctan(-ddy1 / (G - ddy2)), ’theta’)

du1 = S.set_state(S.dt(u1), ’du1’)

du2 = S.set_state(S.dt(u2), ’du2’)
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A.4. Path following
For the �at system S an instance of a path following problem is created
via

P = PathFollowing(S)

The symbolic path coordinate and its time derivatives are stored in the
instance attribute s. The reference path is set by the instance method

set_path(expr[, r2r=False])

where expr is a list in which each component of the �at output is ex-
pressed as a function of s[0]. When r2r is True, the geometric path is
reparameterized as in 5.2.1 such that a rest-to-rest motion is imposed.

Inequality constraints are set using the instance method

set_constraint(expr, lb, ub)

where lb and ub are the lower and upper bounds. Furthermore, various
solver options are set through

set_options({’option’: value})

Aside from all supported options of IPOPT in CasADi, the following
options are available

· ’N’: The number of discretization steps

· ’Nt’: The number of returned time points in the solution

· ’reg’: A regularization factor added to the goal function to avoid
singular arcs in the solution

Finally, the instance method

solve()

solves the problem. The solution is stored in the instance attribute sol.
The instance method

plot()
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figure a.1.: Time optimal path fol-
lowing of a circle for the overhead
crane in 10 equal time steps

plots all states as de�ned in the �at system and inequality constraints.
Continuing the example from previous section, we de�ne a path fol-

lowing problem for the overhead crane tracking a circular trajectory
with its load. The velocities of the trolley and hoisting mechanisms are
constrained to [−5, 5] m s−1 and [−2.5, 2.5] m s−1 respectively.

P = PathFollowing(S)

path = [

0.25 * sin(2 * pi * P.s[0]),

0.25 * cos(2 * pi * P.s[0]) + 0.5

]

P.set_path(path)

P.set_constraint(du1, -5, 5)

P.set_constraint(du2, -2.5, 2.5)

P.set_options({’reg’: 1e-10})

P.solve()

P.plot()

Figure A.2 shows the resulting velocities of the trolley and hoisting
mechanisms as a function of the path coordinate. At each time instant at
least one of the constraints is active, indicating a time-optimal trajectory.
Figure A.1 illustrates the movement of the crane required to follow the
circular trajectory in 10 equal time steps.
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figure a.2.: Time-optimal velocity signals as a function of the path coordinate
for an overhead crane following a circular trajectory

A.5. Path planning
A subclass of PathFollowing allows to de�ne path planning problems. An
instance of a path planning problem for a di�erentially �at system S is
created via

Q = PathPlanning(S)

Similarly, the symbolic path coordinate and its derivatives are stored in
the instance attribute s.

The outer paths are set with the instance method

set_path(expr[, r2r=False])

where expr is a list. Each element parameterizes one of the outer paths
by another list, in which each element contains a component of the �at
output as a function of s[0].

As before, constraints are set with the instance method

set_contstraint(expr, lb, ub)

and solver options are set with the instance method
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figure a.3.: Time optimal movement of
a planar manipulator in 15 equal time
steps

set_options({’option’: value})

An added option for path planning problems is ’Nc’, which controls the
number of spline coe�cients used for the convex combination functions
pi (s ) (cfr. Section 5.4).

Finally, calling the instance method

solve()

solves the path planning problem.
Let’s look at a path planning example for the two degree of freedom

robotic manipulator from Section 5.3.1. Similar to previous example, we
�rst de�ne the robot as a �at system, for which the code can be found
in the online examples. Now, we want to move the robot time optimally
from an initial con�guration (0, 0)T to (π/2, 0)T . To this end, we de�ne
the outer paths, before reparameterization, as

y1 =
(π

2 s , −32(s − 0.5)2 + 8
)T

y2 =
(π

2 s , 32(s − 0.5)2 − 8
)T
.

Note that, for simplicity, we only allow freedom in the movement of the
second joint.

Suppose we have modeled the robot as the �at system S. Then the path
planning problem can be modeled as follows:
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P = PathPlanning(S)

s = P.s[0]

p = s ** 2 * (s + 3 * (1 - s))

y1 = [np.pi / 2 * p, -32 * (p - 0.5) ** 2 + 8]

y2 = [np.pi / 2 * p, 32 * (p - 0.5) ** 2 - 8]

P.set_path([y1, y2])

P.set_constraint(’tau1’, -20, 20)

P.set_constraint(’tau2’, -10, 10)

P.set_options({’N’: 99, ’Nc’: 10})

P.solve()

Figure A.3 shows the movement of the robot in 15 equal time steps. As
expected, in order to move as fast as possible, the inertia for the �rst joint
is lowered by drawing in the second joint.
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