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Summary: Risk measures have been studied for several decades in the actuarial literature, where
they appeared under the guise of premium calculation principles. Risk measures and properties
that risk measures should satisfy have recently received considerable attention in the financial
mathematics litetare. Mathematically, a risk mea® is a mapping from a class of random
variables to the real line. Economically, a risk measure should capture the preferences of the
decision-maker.

This paper complementséhstudy initiated in DenuitPhaene & Van Wouwe (1999) and
considers several theories foeasion under uncertaiyt the classical exgcted tility paradigm,
Yaari's dual approach, maximexpected tility theory, Choquet expectedtility theory and Quig-
gin’'s rank-dependent utility theory. Building on the actuarial equivalent utility pricing principle,
broad classes of risk measures are generatedhimhwnost classical risk measures appear to be
particular cases. This approach shows thattmisk measures studied recently in the financial
mathematics liteaiture disregard thatility concept (i.e., correspond to kar utilities), restricting
their applicability. Some alteatives proposed in tHeerature are discussed.

1 Introduction and motivation
1.1 Theneed for risk measures

One of the major needs for risk measures is related to pricing in incomplete markets.
In complete financial markets, hedging anbimage-free pricing are two sides of the
same problem: the arbitrage-free priceatontingent claim equals the price of the
hedging (in this case: replicating) portfolio. When the market is incomplete, however,
there may be no replicating portfolio and the hedging strategy could involve a risky
position. Moreover, there exists an infinitember of martingale measures and each of
them generates a different price for the contingent claim. This leads to a set of possible
prices. Now, since the hedging of the contingent claim involves risk, the price of the
hedging portfolio depends explicitly on the agent’s attitude towards risk.
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2 Denuit - Dhaene - Goovaerts - Kaas - Laeven

Note that the problem of market incompleteness is particularly relevant in insurance.
This is due to several reasons: the stochastic nature of insurance processes (with jumps
the fact that many insurance risks are noivety traded in the (financial) market and
the fact that securitized insurance risks often have an underlying index rather than a
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underlying traded asset. g
Recent years have witnessed the emergentieei financial mathematics literature of 3

a sophisticated theory of risk measures. However, risk measures have been extensivel§
studied in the actuarial literature for neothan 30 years, under the guise of premium 3
calculation principles; see, e.g.jBimann (1970) and Goovaerts, De Vijlder & Haezen- ;3
donck (1984). A risk measure is defined as a mapping from a class of random variables=
defined on a measurable space (represegitiie risks at hand) to the real numbers. §
kS

8

1.2 How todefinearisk measure? <
=3

There are basically two ways to define atmardar risk measure. In both cases, a set o
of axioms is given, but the axioms either describe how the risk is measured or descrlbe%_
how individuals make their decisions under risk or uncertainty. More specifically, this &
means that we can either axiomatize a riskasure directly by imposing axioms (e.g., =

with respect to ordering and aggregation, such as those discussed in Section 1.3 belovg
on random variables, or we can axiomatize a functional representing preferences (whichg
in fact is also a risk measure) and use economic indifference arguments to obtain risks'
measures. The axioms in (actuarial and finallenathematics are just phrased differently
from the axioms in economics. In (actuarial and financial) mathematics we impose axiomszg
on random variables (risks) whereas in economics we impose axioms on acts. That t
two approaches coincide is explained nicely llifier & Schied (2004). Let us now
briefly explain these two approaches.

First, a set of axioms for risk measuremeanh be given that is regarded as reasonable
in the situation under consideration. Then, the form of the risk measure is deduced from
the agreed axioms. Risk measures are apprapifiaand only if, their characterizing
axioms are. Axiomatizations can then be used to justify a risk measure but also to
criticize it.

Second, a paradigm for decision under uncertainty can be selected, for instanc
the Von Neumann-Morgenstern expectedity theory, Yaari’s dual utility theory or
other generalized utility principles, for irssice. Note that this ssdtion also amounts to
opting for a set of axioms, but this set explains how decision-makers choose betweenz.
uncertain prospects; see, e.g., Wakker (2004) for more details. The risk measure isz
then obtained by an equivalence principle: the decision-maker is indifferent between%’
the cash-flowp[X] — X (corresponding to the case wheXeis covered) and 0 (no
coverage).

Both approaches for measuring risk will be considered in this paper. It will be seen
that many classical risk measures can be oletiin both ways, which allows for a better
understanding of their intrinsic propewieThis will also enlighten the fact that most
risk measures studied recently in the finahaiathematics literature disregard utilities
(considering only linear utility functions). This restriction explains some problems, like
insensitivity to liquidity risk, for instance.
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Risk measurement 3

1.3 Theaxiomatic approach to risk measurement

Axioms to characterize a risk measure can galebe divided into three classes: ratio-
nality axioms, additivity axioms and technical axioms. First there are the basic rationality
axioms such as monotonicity, which are satisfied by most risk measures. Additivity
axioms deal with sums of risks. They describe the sensitivity of the risk measure with re-
spect to risk aggregation. Let us mention dlokelitivity for independent random variables,
the additivity for co-monotonic random variables, the subadditivity or the superadditivity.
These additivity requirements often are the most characteristic for the corresponding risk
measure. Finally, there are technical requirements, mostly continuity conditions. They are
usually necessary for obtaining mathematical proofs and are typically difficult to validate
or to explain economically.

Let us now detail some of the properties that risk measures may or may not satisfy:

Objectivity The risk measurg does not depend on the risk itself but only on its under-
lying distribution, i.e.o[ X] = o[ Fx] whereFy is the distribution function oK.

The objectivity requirement implies thaisk measurement can be entirely based on
distribution functions. This is usually the case in actuarial science. This condition ensures
that Fx contains all the information need to measure the riskinessXf This property
is sometimes called “law invariance”, and phrase&asy Y = o[ X] = g[Y] where=¢
denotes the equality in distribution.

Two monotonicity requirements can then be envisaged: either we impose that the risk
measure agrees with almost sure comparisongék monotonicity) or with stochastic
dominancexg; (strong monotonicity).

Weak monotonicity For anyX andY, P[X < Y] = 1 implieso[ X] < o[Y].

Strong monotonicity For anyX andY such thatX < Y, i.e. P[X > t] < P[Y > t] for
allt € R, implieso[X] < o[Y].

Co-monotonicity is a useful notion in decision theory; see, for example, the review
papers by Dhaene, Denuit, Goovaerts, Kaas & Vyncke (2002a,b) and the references
therein. Recall that the random variablésandY are said to be co-monotonic if they
satisfy

P[X <x, Y < yl=min{P[X < x], P[Y < y]} forallx, y € R.

For two co-monotonic random variabl@sandY, we have thalk <5t Y < P[X < Y]

= 1. In the absence of co-monotonicitygak monotonicity will not imply strong mono-
tonicity. However, ifo is objective, then both requirements have the same force. We
refer the reader to &uerle & Miller (2006) for a careful examination of objectivity and
monotonicity properties.

Positive homogeneity For anya > 0, p[aX] = ag[X] .

In the literature it is often stated that positive homogeneity is equivalent with currency
independency. This is however a wrong interpretation. Take as an exalfi¥fle=
E[(X — d)4+] with &+ = max(§&, 0}, which is clearly currency independent (changkg
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from dollars to euros only makes sense if alde changed in that way), but not positively
homogeneous. Hence, positive homogeneity is about multiplying all euro amounts of theg
claims by a constant factor. Let us also mention that future currencies are random s0%
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that the constard involved in the definition of positive homogeneity cannot be used to %
convertX from euros to dollars, say. It is rather related to the “volume” of the risk and 3
has a close relation with additivity for co-monotonic risks (see below). 3
(2]
(=]
Trandlation equivariance For anyb € R, o[ X + b] = o[ X] + b. %
=
Translation equivariance might be considered desirable for a risk measused to “s_’
calculate provisions or premiums. Indeed it seems to be reasonable when the risk containg'

a certain amour thato[b+ X] = b+ o[ X] in both cases. This is of course not the case
for risk measures used for the calculation of solvency (regulatory or economic) capital. 5
These quantities constitute amounts of money for safety, in addition to the provisionsv
and premiums. Such risk measures are of the g = o'[(X — o[X]).] for some
appropriate risk measur@$ and . Consequently, ip is translation equivariant them
satisfiesg[ X + b] = ¢[X], so that we have translation invariance in this case. It is of
course not forbidden to take translation equivariance as an axiom for the constructions
of risk measures in this situation, but it cannot be interpreted in the economic concept--
of solvency. The prescribed rules in therfrawork of Solvency 2 for the calculation
of solvency capital (the difference between the Value-at-Risk at level 99.5% and the
Value-at-Risk at level 75 %) recognizes this reality. Related of course is the requirement=
o[b] = b which can be defended in the case of insurance pricing (to avoid free lunches
and/or the no-ripoff condition) but in the definition of a risk mease[id might be equal
to a functionu(b), the utility.

Combining positive homogeneity with translation equivariance guarantees that
linear, that is, whatevea > 0, o[aX + b] = ag[X] + b.
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Subadditivity o[ X+ Y] =< o[X] + o[Y] whatever the dependency structure Xf
andY.
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The rationale behind subadditivity can be summarized as “a merger does not creat
extra risk”. Subadditivity reflects the idea that risk can be reduced by diversification. Z
According to Rootzen & Kippelberg (1999), subadditivity is a convenient mathematical
property that does not hold in reality. The behavior of a risk measure with respect to g
the aggregation of risks is manifested by the award of diversification discounts and the
imposition of penalties.

When equality holds, we speak of additivity. In this case, the dependence struc-
ture betweenX andY is often specified: for example, additivity for independent risks
or additivity for co-monotonic risks (see below). We refer the interested reader to
Dhaene, Laeven, Vanduffel, Darkiewicz & Goovaerts (2004) for a detailed discussion
on the desirability of the subadditivity axiom when setting solvency capital require-
ments.

In Artzner, Delbaen, Eber & Heath (1999), arisk measure that satisfies the propertiesofm
monotonicity, positive homogeneity, translation equivariance and subadditivity is called €

a “coherent” risk measure. As explained below, coherent risk measures coincide Wlth='
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Risk measurement 5

upper expectations introduced by Huber (1981) in robust statistics. Coherent risk measures
satisfying the objectivity requirement have been studied by Kusuoka (2001); see also Inoue
(2003) and Bwuerle & Miller (2006) for an extension to unbounded random variables.
The terminology “coherent” is somewhat flawed in the sense that it may suggest that
any risk measure that is not “coherent” is always inadequate. It is worth to mention that
coherency is defined with respect to a searioms, and no set is universally accepted.
Modifying the set of axioms regarded as dabie leads to othersk measures that may

be called “coherent” with just as much reason.

Convexity Foranyx € [0, 1], o[AX + (1 — A)Y] < 20[X] 4+ (1 — A) o[ Y] whatever the
dependency structure of andY.

Follmer & Schied (2002), and independently Frittelli & Rosazza Gianin (2002), intro-
duced the concept of convex risk measures, which satisfy the properties of monotonicity,
translation equivariance and conitgx It has been further developed by d&schmer
(2005). The class of coherent risk measures can be characterized as the class of con-
vex risk measures that satisfy the positive homogeneity property. As the class of convex
risk measures is an extension of the clabsaherent risk measures, it is sometimes
called the class of weakly coherent risk measures. It is worth to mention that the
work by Deprez & Gerber (1985) already contains many nice results on convex risk
measures.

Additivity for co-monotonic risks o[ X + Y] = o[ X] + o[ Y] for co-monotonic random
variablesX andY.

Co-monotonic risks are bets on the same event and in this sense neither of them provides
a hedge against the other. Because of thbedge condition, no redtion in the risk-load
is awarded for a combined policy, resulting in co-monotonic additivity.

Additivity for independent risks o[ X + Y] = o[X] + o[Y] for independent random
variablesX andY.

Additivity for independent risks may be a reasonable requirement for a premium cal-
culation principle, since it ensures thaetpolicyholder has no interest in splitting the

risk in independent components asking for coverage to several insurers. It is also justi-
fied by premium computation from top to down; see, e.g., Borch (1962)ibirBann
(1985). The most general representation of risk measures that are additive for in-
dependent random variables is due to Gerber & Goovaerts (1981) and is known as
the mixed Esscher principle. Despite the numerous appealing features of the Esscher
principle, it does not satisfy the strong monotonicity requirement. Counterexamples
have been provided by Van Heerwaarden, Kaas & Goovaerts (1989). This is why
Goovaerts, Kaas, Laeven & Tang (2004) provided a new axiomatic characterization
of risk measures that are additive for independent random variables, involving an axiom
that guarantees monotonicity. The obtained risk measure is a restricted version of the
mixed Esscher principle that can be regarded as an ordinary mixture of exponential
premiums.
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6 Denuit - Dhaene - Goovaerts - Kaas - Laeven

1.4 Risk measuresand economic decision under uncertainty

Goovaerts, Kaas, Dhaene & Tang (2004) gave several examples where evidently th
properties that risk measures should have are determined by the realities of the actuari
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applications (namely, insunae-reinsurance, premium calation, premium calculation E
from top to down, capital allocation, solvency margin and setting provisions). See also 3
Dhaene, Vanduffel, Tang, Goovaerts, Kaas & Vyncke (2004). p

Instead of stating a set of axioms that risk sig@s should satisfy and then determining 2
mathematically the corresponding functibmepresentation, one could determine the t§,
functional form of the risk measure via economic indifference arguments. For instance, é—'
the equivalent utility premium principle defined byiBimann (1970) is obtained by <
considering an insurer whose preferences are characterized by expected utility (EU, ing

short). The distortion premium principle proposed by Denneberg (1990) and Wang (1996)&
can be obtained via indifference arguments based on distortion utility (DU, in short). 8
The distortion-exponential premium principle has been similarly derived by Tsanakas
& Desli (2003) and Heilpern (2003) usingmadependent expected utility (RDEU, in
short) theory. See also Luan (2001). The present paper follows Denuit, Dhaene & Van
Wouwe (1999) where only EU and DU were considered (with a brief excursion to
RDEU).

Utility theories are typically presented in an axiomatic form. The axioms are intended
as reasonable consistency requiremetis:concept of rationality is embodied in the
axioms, with the possible addition of the postulate of risk aversion. The difference is
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case for the sets of axioms defining risk measures, the preference foundations typicallys
use intuitive axioms such as transitivityhigh refer to directly meaningful empirical
properties of preferences, and technical axioms such as continuity, which describe th
structural richness of the model and serve to simplify the mathematical analysis.

Fishburn (1982) and Yaari (1987) considered the following four axioms on the pref-
erence relatiorx:

9

Objectivity If X andY have the same distribution function then the decision-maker is
indifferent betweerX andY, that is,X < Y andY =< X both hold.

Weak order < is complete, transitive and reflexive.
Strong monotonicity If X <5 Y thenX <.

Continuity The sef{Y|Y > X} is closed for every, the closure being often meant with
respect to the topology of weak convergence, associated with'therm.

ad uapLIM Y3IM pamoyje Kjuo si asn Jayjo “Ajuo asn fBuosi

Then, a fifth axiom is added that specifies the particular form of the indicator of prefer-
ences. Whereas there is a rather large consensus about the four axioms listed above, tize
last one continues to be subject to debate. The EU axiomatization hinges on the inde£.
pendence axiom, which requires preferentcebe separable across mutually exclusive
events. Alternative theories proposed by Quiggin (1982), Yaari (1987) and Schmeidler
(1989) replaced this condition by a type @f-monotonic independee axiom, an in-
tuitive and appealing condition requiring that the usual independence axiom only holds
when hedging effects are absent.
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Risk measurement 7

In this paper, we will consider in addition to the classical EU and DU theories several
alternative paradigms for decision undecartainty: the Choquet expected utility (CEU,
in short) theory proposed by Schmeidl&B89), the maximin expected utility (MEU, in
short) theory proposed by Gilboa & Schmieid(1989) and the rank-dependent expected
utility (RDEU, in short) theory proposed b®uiggin (1982). The application of the
actuarial equivalent utility pricing principle in these paradigms will generate most classes
of risk measures considered so far in the financial mathematics literature.

1.5 Risk and uncertainty

Decision-making under risk and decision-making under uncertainty are differentiated
according to the condition that in the formemse the probabilitiesf@vents are given
while in the latter case they are not. With regard to decision-making under uncertainty,
models have been introduced which associate some kind of probabilities to events.

In the financial mathematics literature, and the actuarial papers in the realm of financial
mathematics, the probability distribution of a risk does not need to be fixed (a risk is just
arandom variable defined on a measurable space, and the probability measure can be left
unspecified). The majority of actuarial papers uses the framework of probability theory
and statistics, in which a random variable is defined on a particular and fixed underlying
probability space, not on just a measurable spattemany possible probability measures.

The probability measure may be unknown, but it is fixed and unique. This does not prevent
that many weight functions operating on events can be used to calculate the premiums. For
instance, the actuarial practice in life insurance consists in replacing the distribution of the
remaining lifetime by a “more dangerous dme order to generate a safety loading. We

will also see below that in economics termiogy, for example, a coherent risk measure

is not a measure of risk but a measure of uncertainty.

Uncertainty is often represented with the help of capacities. Specifically, we assume
that the uncertainty a decision maker faces can be described by a non-empty set of states,
denoted af2. This set may be finite or infinite. Associated withis the set of events,
taken to be a sigma-algebra of subset$2ofdenoted bys. Capacities are real-valued
functions defined o8 that generalize the notion of probability distributions. Formally,

a capacity is a normalized monotonic set function. More precisely,3 — [0, 1] is

a capacity ifC[#] = 0, C[2] = 1 and for anyA, B € B, A C B = C[A] < C[B].
Otherwise, the capacity has little structure. In particular, the sum of the capacities of two
disjoint subsets magxceed 1. Or the sum of the capacities of two subsets may be strictly
less than the capacity of the wmiof these sets. The capaadilys called coherent if there
exists a non-empty st of probability measureB : B — [0, 1] such that

C[A] = sup P[A]forall A e B.
PeMm

As we will see, coherent capacities are closely related to coherent risk measures.
_To each capacitg we can associate a dual capacity. The dual capacity dénoted
asC, is defined by

C[A]=1-C[Q\ Al forall A € B.
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8 Denuit - Dhaene - Goovaerts - Kaas - Laeven

The dual capacity is useful when losses are considered instead of gains. Given a cohere
capacityC, a natural and widely used measure of the degree of uncertainty (orimprecision,
vagueness, ambiguity) associated with an eveats is given by the interval

[CIAl C[A]] = [SQL P[A], sup P[A]]. (1.1)

The interval (1.1) captures uncertainty in the sense of Knight (1920 = C[A],
the eventA does not involve any vagueness and all pridrs M agree orA.

Decisions under risk are usually performed in the EU or RDEU paradigms. In sit-
uations of uncertainty (i.e., in situations where there does not exist a given objective
probability distribution available to the ds@n-maker), these paradigms are replaced
by the subjective utility theorgnd the Choquet expected utility (CEU, in short), respec-
tively.

1.6 Aversiontorisk and uncertainty

There are many notions of risk aversion. Chateauneuf & Cohen (2000) distinguish five

kinds of risk aversion: weak, monotonic, left monotonic, right monotonic and strong. In

this paper, we restrict ourselves to the following two standard concepts of risk aversion.

The first one defines an individual to be risk averse if the surelifanis always preferred

to the random prospe itself. An alternative definition of risk aversion requires a risk

averse individual to behave according to the concave order, denoteg,eend defined

by X <cv Y & E[¢(X)] < E[¢(Y)] for all concave functiong : R — R, provided the

expectations exist. This order extends the concept of mean preserving increase in risk.
We thus have a concept of weak risk aversiBpX] is preferred oveK) and a concept

of strong risk aversionX <y Y = X is preferred ovel). It is interesting to note that

strong risk aversion is defined with the help of a stochastic order relation. Relations like

the dispersive order have been used to define alternative attitudes towards risk; see, e.

Chateauneuf & Cohen (2000) and Gésineuf, Cohen & Meilijson (2004).
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1.7 Outlineof the paper
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This paper aims to demonstrate that, as pointed out by Geman (1999), in the funda-=.
mental subject of financial sk analysis, some valuable lessons may be drawn from z
insurance. Actuaries have used indifference arguments based on economic theories fog
decision under uncertainty for decades, aftéhBrann (1970) introduced the equivalent

utility principle in the context of setting insurance premiums. Considering this simple
and appealing approach taski measurement, most risk measures can be obtained in
a way that enlightens their intrinsic properties. Unfortunately, apart from some authors 2.
including Follmer & Schied (2004), the close connections between risk measurement =
and economic decision theory have been disregarded by financial mathematicians, Wh@
independently developed their own axiomatic theories. This paper tries to reconcile the2
two approaches.
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Risk measurement 9

2 Equivalent utility risk measuresin EU theory

2.1 EU theory

The classical expected utility (EU, in short) theory is identified by the independence
axiom. Every EU decision-maker possesses some utility functigrand acts in order
to maximize the expected utility. The prospécts then evaluated by

Ugy[X]u] = f u(X)dP = E[u(X)]

and X is preferred ovel if Ugy[X|u] > Ugy[Y]u]. A classical reference for EU is
Von Neumann & Morgenstern (1947). Thelgective utility theory of Savage (1954) for
decision under uncertainty differs from EU only by its interpretation of the underlying
probability distributionP.

If the decision-maker, with initial wealthy and utility functionu(-), has to choose
between random lossesandY, then he compare8gy [w — X|u] with Ugy[w — Y|u]
and chooses the loss which gives rise to the highest expected utility.

2.2 Risk aversion

The two definitions of risk aversion are equivalent under EU theory, where they both
coincide with the concavity of the utility function: for an EU decision-maker, weak risk
aversion implies automatically strong risk aversion.

Note that in the EU framework, the agent’s attitude towards risk and the agent’s at-
titude towards wealth are forever bonded together (since they are both derived from the
characteristics ofi): risk aversion and diminishing marginal utility of wealth are syn-

onymous. Nevertheless, risk aversion expresses an attitude towards risk while decreasing

marginal utility expresses an attitude towards wealth. Thus, in EU theory, the concept of
risk aversion being encapsulated in the utility function is a property of attitudes towards
wealth rather than of attitudes towards risk.

2.3 Equivalent EU risk measures

Consider a decision-maker with initial wealithand with a utility functionu(-). Facing
arandom los, he sets its price for coveraggX] as the solution of the equation

Ueu [w + o[X] = X|u] = Ueu[wlu] = u(w). (2.1)

Condition (2.1) expresses thatX] is fair in terms of utility: the right-hand side of (2.1)
represents the utility of not not covering; the left-hand side of (2.1) represents the
expected utility of the decision-makassuming the random financial loXs Therefore
(2.1) means that, provided an amounppX] is obtained wheiX is covered, the expected
utility of wealth with X is equal to the utility withouX. Puttingw = 0 and normalizing
the utility functionu, we get the so-called “equivalent utility principledf X] calculated
according to this principle is the root of the equation

Ueu[e[X] — X|u] =0 (2.2)
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10 Denuit - Dhaene - Goovaerts - Kaas - Laeven

which can be interpreted as an equality between the expected utility of the income
o[ X] — X and the utility of not accepting the risk.

If we assume that the moment generating functiorXoéxists and that the utility
function of the insurance company is of the form

ux) = ﬁ, x>0, (2.3)

for some positive constar, then (2.2) admits an explicit solution ardiX] can be
expressed as

o[X] = (—1: InE[exp(cX)]. (2.4)

Adoo Kew no\ 'me| JybliAdos uewlas Aq peyasjoud si ajdiue sty

Note that the exponential principle (2.4) also possesses an appealing interpretation |rg
terms of ruin theory; see, e.g., Kaas, Goovaerts, Dhaene & Denuit (2001, Section 5.2) oro-
Tsanakas & Desli (2003).

3 Equivalent utility risk measuresin DU theory
3.1 DU theory

Under the same set of axioms but with a ni@tl independence axiom, Yaari (1987) has
shown that there must exist a “distortion functioh’such that a prospeet is valued at
its “distorted expectationlUpy [ X| f] defined as

+0oo

0
UbulX]| ] =_f (1— f(Ex(x)))dx+/ f(Fxo0)dx.  (3.1)
X=—00 X

Here the distortion functiorf : [0, 1] — [0, 1] is non-decreasing witH(0) = 0 and

f(1) = 1. Instead of using the tail probabilitisx (x), the decision-maker uses the
distorted tail probabilitiesf(Fx (x)). Yaari's model has been further developed byRo
(1987), and an alternative axiomatization is proposed in Guriev (2001). We also refer to
Carlier & Dana (2003) for interesting representation&gf [ X| f].

3.2 Risk aversion

Contrary to the EU case, the two concepts of risk aversion are no more equivalentin DU.
For the weak risk aversion, it suffices thigip) < p, p € [0, 1], as we immediately find
that

Upu[X|f] < E[X] = Upu [E[X]| f]. (3.2)

For the strong risk aversion, the distortion functibhas to be convex.
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Risk measurement 11

3.3 Equivalent DU risk measures
Let us introduce the dual distortion functidnfor each distortion functiorf :

fx)=1- f1-x), x €[0,1]. (3.3)

The dual distortion function is again a distortion function. Itis clear that f and that
f convex< f concave. Furthermore, we have thagy[—X| f]1 = —Upu[X| f].

The equivalent DU risks measures are obtained as the solution of the indifference
equation

Upul0] f]1=Upu[e[X] — X|f]. (3.4)
Solving (3.4) gives
o[X] = Upu[X|f]

o0

= _fo (1—T(Ex(x))>dx+fo T(Fx00)dx. (3.5)

—00

One immediately finds that(Fx(x)) is a non-increasing function afwith values in the
interval [0, 1]. The risk measure (3.5) can be interpreted as a “distorted expectati®n” of
evaluated with a “distorted probability meae” in the sense of a Choquet-integral, see
Denneberg (1994). Risk measures (3.5) are often called distortion risk measures. In the
actuarial literature, distortion risk maags have been introduced by Denneberg (1990)
and Wang (1996). Axiomatic characterizations of insurance prices leading to distorted
premiums have been proposed in Goovaerts & Dhaene (1998) and Wang, Young & Panjer
(1997).

Many risk measures can be cast into the form (3.5). Let us give some prominent
examples.

Example 3.1 (Value-at-Risk) For any pin (0, 1), the p-quantilerisk measure (or Value-
at-Risk) for a random variable X with given distribution function Fx is defined by
Fl(p) =inf {x e R| Fx(x) > p}, p € (0, 1). Itcanbeshown that F5 *(p) corresponds
to (3.5)with distortion function

1ifq>1-—p,

0 otherwise, o7 0= N

o= {
Example 3.2 (Tail-VaR) The Tail-VaR at level p, denoted by TVaRp [ X], is defined by

1 1
Ry [X] = 1 [ Fl@da  pe©d). (3.6)
p

It is the arithmetic average of the quantiles of X, from p on, and corresponds to (3.5)
with distortion function

f(x) = min <ﬁ3 1) , 0<x<1 (3.7)
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12 Denuit - Dhaene - Goovaerts - Kaas - Laeven
VaR’s are the building blocks of the distortion measures (3.5). To see this, itis enough

to replacef (Fx(x)) by fOEX(X) df(q) in (3.5) and to revert the order of the integrations.
One then finds that any distortion risk measure can be written as

1
oX] = /O Fl(1— 9dT (). (3.8)

Note that when the distortion functiohis differentiable, (3.8) can be rewritten as

olXl = E[F'a-n)Tw)]. (3.9)

no "me| JybrAdos uewiag Aq pajasjoud si ajoiue sy

Formulas (3.8)—(3.9) show that the spectral risk measures of Acerbi (2002) are particula@
cases of distortion risk measures. It can be further shown that coherent distortion riskg

measures can be represented as mixtures of Tail-VaR'’s, as pointed out by Inui & Kijima%
(2005); see also Bassett, Koenker & Kord28@4) for portfolio allocation with mixtures 3
of Tail-VaR’s, and Pflug (2002). &

Distortion risk measures (3.5) with concave are subadditive. The VaR therefore &
fails to be subadditive. Danielsson, Jorgensen, Samorodnitsky, Sarma & de Vries (2005);';_
proved that for most practical applications VaR is subadditive. More precisely, they @
demonstrated that VaR is subadditive for the relevant tails of all fat tailed distributions, 2
provided the tails are not super fat (i.e., distributions with so fat tails that the first moment g
is not defined, such as the Cauchy law, with tail index strictly less than 1). Inui, Kijma & <
Kitano (2005) demonstrated the considerdhibes of the VaR when used for a portfolio 5

with fat-tailed distributions.

Note that the class of distortion risk measures (3.5) with conéase strict subclass
of the class of coherent risk measures, as is shown by the following example, taken from
Dhaene, Vanduffel, Tang, Goovaerts, Kaas & Vyncke (2004).

SN |euos.a

Example 3.3 (Dutch risk measure) For any randomvariable X, consider the risk mea-
sure

o[X] = E[X] + E[(X — E[X])4]. (3.10)

This is a particular case of the “ Dutch premium principle’, defined for non-negative
random variables by Kaas, Van Heerwaarden & Goovaerts (1994).

The Dutch risk measure (3.10) is in general not additive for co-monotonic risks.
Hence, the Dutch risk measure (3.10)is an example of a risk measure that is coherent,
although it is not a distortion risk measure. The example also illustrates the fact that
coherent risk measures are not necessarily additive for co-monotonic risks.

4 Equivalent utility risk measuresin CEU theory

4.1 CEU theory

A possible device to construct a capacity is to take a probability me#&sang3 together
with a distortion functionf, and then defin€ = f o P. Such a capacit is then called
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Risk measurement 13

a distorted probability measure. Conversely, for a given cap&itgne may wonder
whether there exists a probability meast#esuch thatC = f o P for some distortion
function f. The answer is in general negative: eveRifs finite, there exist capacities
that cannot be obtained as non-decreasing transformations of probability measures. See,
e.g., Laeven (2005) for a simple counterexample.

Schmeidler (1989) modified the indepkence axiom into co-monotonic indepen-
dence. This gave rise to the Choquet expdattility (CEU, in short) theory. In CEU
theory, the prosped is evaluated by

Uceu[X|u, C] = fu(X)dC

0 400

= f (Clu(X) > t] — 1)dt + f Clu(X) > t]dt
—00 0

whereu is a utility of wealth functionC is a capacity and integration is in the sense of

Choquet; see Choquet (1953). The functidiigky representing the preference relation

in the CEU model is thus the Choquet integralugiX) with respect to the capacity.

Note that the integrals on the right-hand side are Riemann integrals and they are well

defined sinc€[u(X) > t]is a monotonic function ib Moreover, withC defined directly

on events, there is no necessity for any intermediate evaluation of probabilities.

4.2 Uncertainty aversion

Risk refers to situations where the perceived likelihoods of events of interest can be rep-
resented by probability distributions, whereas uncertainty refers to situations where the
information available to the decision-maker is too imprecise to be summarized by a prob-
ability measure. Schmeidler’'s (1989) CEU mbudeset in the framework of uncertainty

as defined by Anscombe & Aumann (1963).

Due to the absence of an objective probability distribution, the definition of uncertainty
aversion has to be based on the random variables themselves. Schmeidler (1989) suggests
the idea that a convex combination of non-co-monotonic random variables smooths
the outcomes and makes an uncertainty-aveescision-maker better off. Specifically,

a decision-maker is uncertainty-averse if, for every pair of random variablasdY,

if X is preferred ovelY thenaX + (1 — @)Y is preferred ovelY for any« € [0, 1].

The corresponding preferences are thus convex. Chateauneuf, Dana & Tallon (2000)
established that the decision-maker is uncertainty-averse if, and only if, the capaity
convex, that is,

C[AUB]+ C[AN B] > C[A] + C[B]forall A, B € B, (4.1)

and the utility functioru is concave. See also Leitner (2005) for related results.

If the reverse inequality holds in (4.1) then the capacity is called concave. Note that
if the dual capacityC is convex therC is concave. Furthermore, @ is convex therC
is concave and satisfi&®{ A] < C[A] for any A € B. The decision weights used in the
computation of the Choquet intedjmill overweight large outcomes i€ is concave and
will overweightlow outcomes i€ is convex. Additivity is a spcial case that characterizes
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14 Denuit - Dhaene - Goovaerts - Kaas - Laeven

uncertainty neutrality. Probability distributions are special cases of capacities which are
both concave and convex. In the case of a distorted probaBiliy} = f(P[A]), A € B,
if fis convextherC is convex, and iff is concave theg is concave.

The core of the capacit@ is defined as

corg(C) = {probability measureB|P[A] > C[A] for all A € B}.

Since Schmeidler (1986), it is well-known that when the capacity is convex, its core is
non-empty and the Choquet integral is given by

/u(X)dC = inf fu(X)dP.
PecorgC)
This relates the CEU model to the MEU one, presented in the next section.
There are thus two properties of special istd concerning the uncertainty aversion

in CEU theory, namely the non-emptiness of the core and the convexity of the capac-g
ity. Chateauneuf & Tallon (2002) consideree threference for diversification in CEU.
The agent is said to exhibit preference for diversification if, for any random variables
X1, ..., Xp that are all considered as equivalent by the agent {lggy[X1|u, C] =

-+ = Ucgu[Xn|u,Clin CEU),Z{‘=l aj X is preferred oveXq for anyas >0, ..., an

> 0 with 3/, @ = 1. This concept is obviously related to the convexity for risk mea-
sures. They established that preference for portfolio diversification is equivalent to the
agent having a convex capacity and a concave utility function.

4.3 Equivalent CEU risk measures

Most often in the financial mathematics literatunds taken to be the identity function
and C is assumed to be convex. We then get for the preference indicator simply the
Choquet integral oK with respect taC, that is,

400
Uceu[X|identity, C] = f XdC = / CIX>1t]— l)dt —i—/ C[X > t]dt.

This integral is positively homogeneous, monotonic and translation equivariant.
The risk measurg is then deduced from the indifference equation

0 = Uceu [o[X] — X|identity, C] = o[X] = — / —XdC.

Note that, in general/ XdC < — [ —XdC. Equality holds for all random variables

if, and only if, C is additive. This inequality can be used to explain the bid-ask spread
observed in some financial markets, according to Chateauneuf, Kast & Lapied (1996).5:
The integrals/ XdC and — [ —XdC are sometimes called lower and upper Choquet
integrals, respectively. More precisely,

/XdC: inf /XdP and —/—XdC: sup XdP
PecorgC) PecorgC)
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Risk measurement 15

so that the length of the interva) XdC, — [ —XdC) is intimately connected with the
size of corgC).

After Denneberg (1990), the risk measyr&dC has been considered in insurance,
e.g., by Wang (1996), Wang, Young & Panjer (1997) and De Waegenaere, Kast & Lapied
(2003) under the name of Choquet pricing. An overview paper on the applicability of this
type of risk measures for solvency purposes is Dhaene, Vanduffel, Tang, Goovaerts, Kaas
& Vyncke (2004). Chateauneuf, Kast & Lapied (1996), Wang (2000, 2002) and Hamada
& Sherris (2003) used the same mechanism for pricing in financial markets; see also
Pelsser (2004). This risk measure is continuous, monotonic and co-monotonic additive.
It is subadditive if, and only ifC is concave; it is superadditive for convex

Castagnoli, Maccheroni & Marinacci (2004) noticed that the presence on the market
of assets without bid-ask spreads turns Choquet prices into standard expectations. More
precisely, if an insurance company sete safety loading aceding to a probability
distortion in agreement with the increasing concave ordgr (defined byX <icy Y <
E[¢(X)] < E[¢(Y)] for all non-decreasing concave functiohs R — R, provided the
expectations exist) then it assigns either strictly positive safety loading to all contracts
or zero safety loading to all contracts. Despite its theoretical interest, this result should
not prevent the use of Choquet risk measures (since actuarial risk theory imposes strictly
positive safety loading, to avoid almost certain ruin).

Kadane & Wasserman (1996) considefed= [0, 1], B the Borel subsets a2 and
symmetric capacities (that is, capaciti@such thatu[A] = u[B] = C[A] = C[B],
with 1 the Lebesgue measure). They characterized coherent symmetric capacities (as
those with doubly star-shaped distortion ftinos; see Kadane & Wasserman (1996) for
a definition). If the capacity is further assumed to be concave then Section 4 in Kadane &
Wasserman (1996) proves that the distortion functityps = min{p/«, 1} correspond to
the extreme points of the set of all distortion functions. This directly implies that spectral
risk measures can be repretahas mixtures of Tail-VaR.

Note however that Marinacci (1999) proved that symmetric and coherent Choquet
capacities turn out to be additive under a fairly mild condition. More specifically, the
existence of a single non-trivial unambiguous event (in the sense that the interval (1.1)
reduces to a single point) is enough to make them additive. This is a very strong property
since excluding the existence of even a single non-trivial unambiguous event seems in
general a very stringent assumption (redadittin the additive case, all events are unam-
biguous). This is obviously related to the result of Castagnoli, Maccheroni & Marinacci
(2004) mentioned above.

5 Equivalent utility risk measuresin MEU theory

51 MEU theory

Gilboa & Schmeidler (1989) suggested theiimin expected utility (MEU, in short)
model, also called multiple prior model. In this context, preference relations have a rep-
resentation by the functional

Umeu[X[u, M] = inf {/u(X)dP|P e M|
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whereu is a utility function andM is a closed and convex set of additive probability
measures. Thus, CEU coincides with MEU when the &e€tis the core ofC, that

is, Uceu[X|u, C] = Umeu[X]u, corgC)]. Moreover, when an arbitrary (closed and
convex) setM is given and one defing3[ A] = inf{ P[A]|P € M}, C is not necessarily
convex. Furthermore, even@ happens to be conveX does not have to be its core.

In addition to the usual assumptions on the preference relation such as transitivity,
completeness, continuity and weak monotityj Gilboa & Schmeidler (1989) postulated
uncertainty aversion and certainty-independence to derive MEU theory. The certainty- 3
independence axiom is weaker than standard independence (since only mixings with®
degenerate distribution functions corresponding to certainty are considered).

BlAdoo uewlag Aq peyasjoud si ajdiue sy

5.2 Equivalent MEU risk measures

Takingu(x) = x gives the class of coherentrisk measures in the sense of Artzner, Delbaen
Eber & Heath (1999). More precisely, the equivalent utility principle then yields

OZUMEu[ X}u M mf / [X] —
whence it follows that

o[X] = sup | XdP. (5.1)
PeMm

d 1noA 1oy ajone siy aynquisip pue Adoo Aew noj ‘me

Risk measures of this type have beerdipy Castagnoli, Maccheroni & Marinacci
(2002) to compute insurance premiums. Huber (1981) already considered functionals:
(5.1) in robust statistics. The elements/afare called generalizestenarios in Artzner,
Delbaen, Eber & Heath (1999). Huber (1981) proved for the case of a finite,sbat
a risk measure is coherent if, and only if, it has an upper expectation representation. ThiZ
result remains valid for more generaleses (see Delbaen (2002)), though in that case @

“the important conceptual aspects are buried under a mass of technical complications OE
a measure theoretic and topological nature,” as is stated by Huber (1981).

Risk measures of the form (5.1) have been considered for a long time in actuarial
science, especially whett is a moment space (or more generally, witdrnis defined by
a setof integral constraints); see, e.g., Section 5.3 of Goovaerts, De Vijlder & Haezendoncks
(1984) for a detailed account.

0 9Sh |euos.td

6 Equivalent utility risk measuresin RDEU theory

6.1 RDEU theory

In this section, we present a theory which combines the EU and the DU assumptions, tog.
a certain extent. The rank-dependent expected utility (RDEU, in short) theory was first 5.
proposed by Quiggin (1982). It is a generalization of EU and DU theories that preserves';-.
the properties of continuity, transitivity and weak monotonicity. The name comes from E
the fact that cumulative probabilities are transformed, so that the new weight assigned2
to a particular outcome depends on its rank among possible outcomes. We do not glvé—
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the set of axioms connected with RDEU since the modified version of the independence
axiom appearing in Quiggin (1982) does not admit a clear behavioral interpretation. For
other sets of axioms, see e.g. Chateauneuf & Wakker (1999) and Abdellaoui (2002). The
RDEU approach combines the utility functiord-) from EU with a distortion function
f(-) from DU. For interesting applications to insurance, see, e.g., Chateauneuf, Cohen &
Meilijson (1997).

Under the rank-dependent expected utility model, a decision-maker is characterized
by a utility functionu (that plays the role of utility on certainty) in conjunction with
a distortion functionf (that plays the role of a probability perception function). Such
a decision-maker prefers the fortuvi¢o the fortuneX if, and only if, Urpeu [ X|u, f] <
UrpeulY]u, f]1where

0 +00

(f(P[u(X) >t])—1)dt+/ f(P[U(X) > t]) dt

Urpeu[X|u, f] = / .
t=

t=—00

with a similar expression fo¥. Itis easy to see that i p) = p, we getthe EU model, that
is, Urpeu [ X]u, identity] = Ugy[X|u], whereas ifu(x) = x we get the DU paradigm,
that is,Urpey [ X|identity, f] = Upy[X]| f].

Just as in EU, the utility functioun is normally taken to be concave or linear. There is
less consensus concerning the appropriate shape for the distortion fuhdtimrdescrip-
tive purposes, Quiggin (1982) originally proposed an S-shaped function, overweighting
extreme low probability outcomes. Other authsuggested to consider convex distortion
functionsf (this property is akin to risk aversion, as shown above).

Simple distortion functions are those given by the one-parameter fafpily) =
min{ p/«, 1} for somewx € [0, 1]. In this case, we have

1 [ _
Urpeu[X|u, fel = &/0 u(F'(p)dp.
This family has been considered, e.g., in Bassett, Koenker & Kordas (2004).

Remark 6.1 Followingtheusage of Knight (1921) indistinguishing uncertainty (i.e., am-
biguity) andrisk, Gilboa (1987) and Schmeidler (1989) do not take objective probabilities
asgiven but consider subjective probabilities. Capacities are then used and prospectsare
compared on the basis of Choquet integrals. Wakker (1990) established that, provided
weak monotonicity isfulfilled, thisapproachis equivalent to RDEU. The subtle difference
between the two approaches can be summarized as follows. in RDEU, decision-makers
know the objective probabilities but distort them when choosing among risky prospects.
In CEU, decision-makers use their own (possibly non-additive) subjective probabilities,
derived from some capacity.

6.2 Risk aversion

As RDEU distinguishes attitudes towards @wnes and attitudes towards probabilities,
risk aversion in RDEU must combine two difient concepts. First, there is outcome risk
aversion, associated with the idea that the marginal utility of wealth is declining. This is

“1ap|oy ybrAdos ayy Aq uoissiwiad uapum yym pamoje Ajuo si asn JayjQ "Ajuo asn jeuosiad InoA 1o} ajone siyy anquisip pue Ados Aew no A mej JybrAdos uewsas) £q pajosjoud si 9ja1ue siyL



18 Denuit - Dhaene - Goovaerts - Kaas - Laeven

the standard notion of risk aversion from the EU theory defined by concavity of the utility
function. Second, there are attitudes spedifigprobability preferences. Risk aversion
in probability weighting corresponds to passm: the decision-maker adopts a set of
decision weights that yields an expected value for a transformed risky prospect lower
than the mathematical expectation. An alteirggtmore restrictive, characterization of
pessimism leads to a definition of risk aversion in termsg§. Note that the restriction
to concave utility functions does not prohibit risk seeking behaviors in RDEU. Itis indeed
possible to model risk seeking with diminishing marginal utility of wealth.

The transformationf may be regarded as pessimisticfifp) < p for all p. This
comes from the fact that(p) < pfor all pif, and only if, for any random variabl¥ and
concave utilityu

Urpeu[X|u, f] < Urpeu[E[X]

u, f] = u(E[X]),

thatis,E[ X] is preferred oveK. Therefore, concavity af and pessimism are reasonable
conditions for risk aversion.

Let us now turn to the definition of risk aversion as preservatior;gf. It can be
shown that a decision-maker will be consistent wath, if, and only if, u is concave and
f is convex (see, e.g., Quiggin (1993)). Convexity of the distortion funcfiomplies
a strong form of pessimism that can be roughly summarized as follows: the worst outcomes,
is overweighted most, and the best outcome underweighted most. Unlike the situation in&
EU theory, preservation ofcy is not equivalent to preference for certainty over risk. g

sy} ajnquysip pue Adods Aew noy "mej JybrAdos uewiag Aq pajasjoud si ajoiue sy

6.3 Equivalent RDEU risk measures

Heilpern (2003) and Tsanakas & Desli (2003) introduce a class of risk measures which&
can be considered as the solutions of the indifference equations for RDEU. Lemma 1%
in Heilpern (2003) establishes that provided is non-decreasing and concave,
Urpeul[X|u, f] < u(Upuy[X|f]) whatever the distortion functiori. The equivalent
RDEU risk measure solves

o0sJad unok Jo.

u(0) = Urpeu[elX] — X]|u, f]. (6.1)

In general, there is no explicit solution to this equation. A notable exception is with utility
function of the form (2.3) for which

+00
o[X] = %In (/ f(PlexpcX) > t])dt) ) (6.2)
0

The equivalent utility risk measures solving (6.1) are great variety. Proviéeedon-
decreasing and concave ahts a convex distortion function, Heilpern (2003, Theorem 1)
proved that the resulting risk measure is translation equivariant, preseryesnd does
not entail unjustified safety loading, thatdgc] = c for all real constants. If u(x) = x,
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variables only in very speai cases (broadly speakinguifs linear or exponential andl
is the identity).
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In particular, the risk measure (6.2) is additive for independent random variables
only if f(p) = p (that s, in the EU case). Moreover, the risk measure (6.2) is strongly
monotonic, translation equivariant and convex. Tsanakas & Desli (2003) studied in detail
the properties of this risk measure regagiisensitivity to portfolio size and to risk
aggregation. They conclude that this risk measure behaves approximately as a coherent
risk measure for smaller portfolios of risks, while for larger portfolios the risk aversion
induced by the utility function becomes prevalent, and the sensitivity to liquidity and risk
aggregation issues gradually increases.

7 Discussion

In this paper, we have derived the great majority of the classical risk measures using
the actuarial equivalent utility principle infterent theories for decision under risk and
uncertainty. As such it makes clear the economic rationale behind these risk measures.

It is now also clear that risk measures encountered in the financial mathematics
literature correspond to linear utility of wealftnctions. Disregarding utility of wealth
does not always seem reasonable from an economic viewpoint. The linearity of the
utility function makes risk meases insensitive to liquidityisk: for example, according
to positive homogeneity, changes in the size of a portfolio, given that its composition
is unchanged, should only affect a proponil change in capital requirements. This
disregardsthat very large portfolios might produce very large losses that, in turn, can make
it difficult for the holder of the portfolio to raise sufficient cash to meet his obligations.
This has been pointed out, e.g., by Dhaene, Goovaerts & Kaas (2003).

The RDEU framework simultaneously accounts for utility functions and distorted
probabilities: the agentis equipped with both a utility function and a probability distortion.
Risk measures emerging from RDEU inherit properties from both EU and DU: in the
case of a linear utility function equivalent DU risk measures are obtained as special cases
while, in the case of a linear probability distortion function, equivalent EU risk measures
are found. In general, the properties of equivalent RDEU risk measures lie somewhere
in between of these two extreme cases. Theilegal behavior is nevertheless difficult to
determine since it is difficult to know at which point the utility or the distortion function
will have the most influence. As pointed out by Tsanakas & Desli (2003), equivalent
RDEU risk measures are convex under mild conditions. Note that CEU is even more
general.

In particular, the distortion exponential risk measure (6.2) proposed by Tsanakas &
Desli (2003) combines the properties of the DU equivalent and (2.4) risk measures. It
is obtained as a special case of equivalent RDEU risk measures when an exponential
utility function (2.3) is used. It inherits properties from both (2.4) and DU equivalent
risk measures. Whether the properties of the distortion exponential risk measures are
closer to those of (2.4) or those of equivalent DU risk measures depends to some extent
on the underlying risks that are examined. For relatively small portfolios, the distortion
exponential risk measure is approximately equivalent to the equivalent DU risk measures
and inherits their properties. For larger portfolios, for which liquidity and risk aggregation
become anissue, the effect of the utility function (2.3) becomes prevalent and the distortion
exponential risk measure inherits its properties from (2.4). The definition of what a large
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portfolio is depends on the specific situation and preferences of its holder. It can be
controlled by modifying the risk aversion parameter of the exponential function. The
numerical illustrations in Tsanakas & Desli (2003) support this evidence.

Alternativesto (6.2) can be obtained by substituting other classes of utility functions to
the exponential one (2.3). One could think of CARA (for constant absolute risk aversion)
utility functions given byu(x) = % for y # 0 and Inx wheny = 0 that are often used
in economic applications.
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