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Summary: Risk measures have been studied for several decades in the actuarial literature, where
they appeared under the guise of premium calculation principles. Risk measures and properties
that risk measures should satisfy have recently received considerable attention in the financial
mathematics literature. Mathematically, a risk measure is a mapping from a class of random
variables to the real line. Economically, a risk measure should capture the preferences of the
decision-maker.

This paper complements the study initiated in Denuit,Dhaene & Van Wouwe (1999) and
considers several theories for decision under uncertainty: the classical expected utility paradigm,
Yaari’s dual approach, maximinexpected utility theory, Choquet expectedutility theoryand Quig-
gin’s rank-dependent utility theory. Building on the actuarial equivalent utility pricing principle,
broad classes of risk measures are generated, of which most classical risk measures appear to be
particular cases. This approach shows that most risk measures studied recently in the financial
mathematics literature disregard theutility concept (i.e., correspond to linear utilities), restricting
their applicability. Some alternatives proposed in theliterature are discussed.

1 Introduction and motivation

1.1 The need for risk measures
One of the major needs for risk measures is related to pricing in incomplete markets.
In complete financial markets, hedging and arbitrage-free pricing are two sides of the
same problem: the arbitrage-free price ofa contingent claim equals the price of the
hedging (in this case: replicating) portfolio. When the market is incomplete, however,
there may be no replicating portfolio and the hedging strategy could involve a risky
position. Moreover, there exists an infinitenumber of martingale measures and each of
them generates a different price for the contingent claim. This leads to a set of possible
prices. Now, since the hedging of the contingent claim involves risk, the price of the
hedging portfolio depends explicitly on the agent’s attitude towards risk.

AMS 2000 subject classification: Primary: 91B06, 91B30; Secondary: 62P05
Key words and phrases: risk measures, theories for decision under uncertainty, axiomatic characterization,
equivalent utility, risk aversion
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2 Denuit -- Dhaene -- Goovaerts -- Kaas -- Laeven

Note that the problem of market incompleteness is particularly relevant in insurance.
This is due to several reasons: the stochastic nature of insurance processes (with jumps),
the fact that many insurance risks are not actively traded in the (financial) market and
the fact that securitized insurance risks often have an underlying index rather than an
underlying traded asset.

Recent years have witnessed the emergence in the financial mathematics literature of
a sophisticated theory of risk measures. However, risk measures have been extensively
studied in the actuarial literature for more than 30 years, under the guise of premium
calculation principles; see, e.g., Bühlmann (1970) and Goovaerts, De Vijlder & Haezen-
donck (1984). A risk measure is defined as a mapping from a class of random variables
defined on a measurable space (representing the risks at hand) to the real numbers.

1.2 How to define a risk measure?
There are basically two ways to define a particular risk measure. In both cases, a set
of axioms is given, but the axioms either describe how the risk is measured or describe
how individuals make their decisions under risk or uncertainty. More specifically, this
means that we can either axiomatize a risk measure directly by imposing axioms (e.g.,
with respect to ordering and aggregation, such as those discussed in Section 1.3 below)
on random variables, or we can axiomatize a functional representing preferences (which
in fact is also a risk measure) and use economic indifference arguments to obtain risk
measures. The axioms in (actuarial and financial) mathematics are just phrased differently
from the axioms in economics. In (actuarial and financial) mathematics we impose axioms
on random variables (risks) whereas in economics we impose axioms on acts. That the
two approaches coincide is explained nicely by Föllmer & Schied (2004). Let us now
briefly explain these two approaches.

First, a set of axioms for risk measurementcan be given that is regarded as reasonable
in the situation under consideration. Then, the form of the risk measure is deduced from
the agreed axioms. Risk measures are appropriate if, and only if, their characterizing
axioms are. Axiomatizations can then be used to justify a risk measure but also to
criticize it.

Second, a paradigm for decision under uncertainty can be selected, for instance
the Von Neumann–Morgenstern expectedutility theory, Yaari’s dual utility theory or
other generalized utility principles, for instance. Note that this selection also amounts to
opting for a set of axioms, but this set explains how decision-makers choose between
uncertain prospects; see, e.g., Wakker (2004) for more details. The risk measure is
then obtained by an equivalence principle: the decision-maker is indifferent between
the cash-flow�[X] − X (corresponding to the case whereX is covered) and 0 (no
coverage).

Both approaches for measuring risk will be considered in this paper. It will be seen
that many classical risk measures can be obtained in both ways, which allows for a better
understanding of their intrinsic properties. This will also enlighten the fact that most
risk measures studied recently in the financial mathematics literature disregard utilities
(considering only linear utility functions). This restriction explains some problems, like
insensitivity to liquidity risk, for instance.
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Risk measurement 3

1.3 The axiomatic approach to risk measurement
Axioms to characterize a risk measure can generally be divided into three classes: ratio-
nality axioms, additivity axioms and technical axioms. First there are the basic rationality
axioms such as monotonicity, which are satisfied by most risk measures. Additivity
axioms deal with sums of risks. They describe the sensitivity of the risk measure with re-
spect to risk aggregation. Let us mention theadditivity for independent random variables,
the additivity for co-monotonic random variables, the subadditivity or the superadditivity.
These additivity requirements often are the most characteristic for the corresponding risk
measure. Finally, there are technical requirements, mostly continuity conditions. They are
usually necessary for obtaining mathematical proofs and are typically difficult to validate
or to explain economically.

Let us now detail some of the properties that risk measures may or may not satisfy:

Objectivity The risk measure� does not depend on the risk itself but only on its under-
lying distribution, i.e.�[X] = �[FX] whereFX is the distribution function ofX.

The objectivity requirement implies that risk measurement can be entirely based on
distribution functions. This is usually the case in actuarial science. This condition ensures
that FX contains all the information needed to measure the riskiness ofX. This property
is sometimes called “law invariance”, and phrased asX =d Y ⇒ �[X] = �[Y ] where=d

denotes the equality in distribution.
Two monotonicity requirements can then be envisaged: either we impose that the risk

measure� agrees with almost sure comparisons (weak monotonicity) or with stochastic
dominance�st (strong monotonicity).

Weak monotonicity For anyX andY , P[X ≤ Y ] = 1 implies�[X] ≤ �[Y ].

Strong monotonicity For anyX andY such thatX �st Y , i.e. P[X > t] ≤ P[Y > t] for
all t ∈ R, implies�[X] ≤ �[Y ].

Co-monotonicity is a useful notion in decision theory; see, for example, the review
papers by Dhaene, Denuit, Goovaerts, Kaas & Vyncke (2002a,b) and the references
therein. Recall that the random variablesX andY are said to be co-monotonic if they
satisfy

P[X ≤ x, Y ≤ y] = min
{

P[X ≤ x], P[Y ≤ y]} for all x, y ∈ R.

For two co-monotonic random variablesX andY , we have thatX �st Y ⇔ P[X ≤ Y ]
= 1. In the absence of co-monotonicity, weak monotonicity will not imply strong mono-
tonicity. However, if� is objective, then both requirements have the same force. We
refer the reader to B̈auerle & Müller (2006) for a careful examination of objectivity and
monotonicity properties.

Positive homogeneity For anya > 0, �[aX] = a�[X] .

In the literature it is often stated that positive homogeneity is equivalent with currency
independency. This is however a wrong interpretation. Take as an example�[X] =
E[(X − d)+] with ξ+ = max{ξ, 0}, which is clearly currency independent (changingX
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4 Denuit -- Dhaene -- Goovaerts -- Kaas -- Laeven

from dollars to euros only makes sense if alsod is changed in that way), but not positively
homogeneous. Hence, positive homogeneity is about multiplying all euro amounts of the
claims by a constant factor. Let us also mention that future currencies are random so
that the constanta involved in the definition of positive homogeneity cannot be used to
convertX from euros to dollars, say. It is rather related to the “volume” of the risk and
has a close relation with additivity for co-monotonic risks (see below).

Translation equivariance For anyb ∈ R, �[X + b] = �[X] + b.

Translation equivariance might be considered desirable for a risk measure� used to
calculate provisions or premiums. Indeed it seems to be reasonable when the risk contains
a certain amountb that�[b + X] = b + �[X] in both cases. This is of course not the case
for risk measures used for the calculation of solvency (regulatory or economic) capital.
These quantities constitute amounts of money for safety, in addition to the provisions
and premiums. Such risk measures are of the form�̃[X] = �′[(X − �[X])+] for some
appropriate risk measures�′ and�. Consequently, if� is translation equivariant theñ�
satisfies̃�[X + b] = �̃[X], so that we have translation invariance in this case. It is of
course not forbidden to take translation equivariance as an axiom for the construction
of risk measures in this situation, but it cannot be interpreted in the economic concept
of solvency. The prescribed rules in the framework of Solvency 2 for the calculation
of solvency capital (the difference between the Value-at-Risk at level 99.5 % and the
Value-at-Risk at level 75 %) recognizes this reality. Related of course is the requirement
�[b] = b which can be defended in the case of insurance pricing (to avoid free lunches
and/or the no-ripoff condition) but in the definition of a risk measure�[b] might be equal
to a functionu(b), the utility.

Combining positive homogeneity with translation equivariance guarantees that� is
linear, that is, whatevera > 0, �[aX + b] = a�[X] + b.

Subadditivity �[X + Y ] ≤ �[X] + �[Y ] whatever the dependency structure ofX
andY .

The rationale behind subadditivity can be summarized as “a merger does not create
extra risk”. Subadditivity reflects the idea that risk can be reduced by diversification.
According to Rootzen & Kl̈uppelberg (1999), subadditivity is a convenient mathematical
property that does not hold in reality. The behavior of a risk measure with respect to
the aggregation of risks is manifested by the award of diversification discounts and the
imposition of penalties.

When equality holds, we speak of additivity. In this case, the dependence struc-
ture betweenX andY is often specified: for example, additivity for independent risks
or additivity for co-monotonic risks (see below). We refer the interested reader to
Dhaene, Laeven, Vanduffel, Darkiewicz & Goovaerts (2004) for a detailed discussion
on the desirability of the subadditivity axiom when setting solvency capital require-
ments.

In Artzner, Delbaen, Eber & Heath (1999), a risk measure that satisfies the properties of
monotonicity, positive homogeneity, translation equivariance and subadditivity is called
a “coherent” risk measure. As explained below, coherent risk measures coincide with
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Risk measurement 5

upper expectations introduced by Huber (1981) in robust statistics. Coherent risk measures
satisfying the objectivity requirement have been studied by Kusuoka (2001); see also Inoue
(2003) and B̈auerle & Müller (2006) for an extension to unbounded random variables.
The terminology “coherent” is somewhat flawed in the sense that it may suggest that
any risk measure that is not “coherent” is always inadequate. It is worth to mention that
coherency is defined with respect to a set ofaxioms, and no set is universally accepted.
Modifying the set of axioms regarded as desirable leads to other risk measures that may
be called “coherent” with just as much reason.

Convexity For anyλ ∈ [0, 1], �[λX + (1 − λ)Y ] ≤ λ�[ X] + (1 − λ) �[Y ] whatever the
dependency structure ofX andY .

Föllmer & Schied (2002), and independently Frittelli & Rosazza Gianin (2002), intro-
duced the concept of convex risk measures, which satisfy the properties of monotonicity,
translation equivariance and convexity. It has been further developed by Krätschmer
(2005). The class of coherent risk measures can be characterized as the class of con-
vex risk measures that satisfy the positive homogeneity property. As the class of convex
risk measures is an extension of the class of coherent risk measures, it is sometimes
called the class of weakly coherent risk measures. It is worth to mention that the
work by Deprez & Gerber (1985) already contains many nice results on convex risk
measures.

Additivity for co-monotonic risks �[X + Y ] = �[X] +�[Y ] for co-monotonic random
variablesX andY .

Co-monotonic risks are bets on the same event and in this sense neither of them provides
a hedge against the other. Because of the no-hedge condition, no reduction in the risk-load
is awarded for a combined policy, resulting in co-monotonic additivity.

Additivity for independent risks �[X + Y ] = �[X] + �[Y ] for independent random
variablesX andY .

Additivity for independent risks may be a reasonable requirement for a premium cal-
culation principle, since it ensures that the policyholder has no interest in splitting the
risk in independent components asking for coverage to several insurers. It is also justi-
fied by premium computation from top to down; see, e.g., Borch (1962) or Bühlmann
(1985). The most general representation of risk measures that are additive for in-
dependent random variables is due to Gerber & Goovaerts (1981) and is known as
the mixed Esscher principle. Despite the numerous appealing features of the Esscher
principle, it does not satisfy the strong monotonicity requirement. Counterexamples
have been provided by Van Heerwaarden, Kaas & Goovaerts (1989). This is why
Goovaerts, Kaas, Laeven & Tang (2004) provided a new axiomatic characterization
of risk measures that are additive for independent random variables, involving an axiom
that guarantees monotonicity. The obtained risk measure is a restricted version of the
mixed Esscher principle that can be regarded as an ordinary mixture of exponential
premiums.
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6 Denuit -- Dhaene -- Goovaerts -- Kaas -- Laeven

1.4 Risk measures and economic decision under uncertainty
Goovaerts, Kaas, Dhaene & Tang (2004) gave several examples where evidently the
properties that risk measures should have are determined by the realities of the actuarial
applications (namely, insurance-reinsurance, premium calculation, premium calculation
from top to down, capital allocation, solvency margin and setting provisions). See also
Dhaene, Vanduffel, Tang, Goovaerts, Kaas & Vyncke (2004).

Instead of stating a set of axioms that risk measures should satisfy and then determining
mathematically the corresponding functional representation, one could determine the
functional form of the risk measure via economic indifference arguments. For instance,
the equivalent utility premium principle defined by Bühlmann (1970) is obtained by
considering an insurer whose preferences are characterized by expected utility (EU, in
short). The distortion premium principle proposed by Denneberg (1990) and Wang (1996)
can be obtained via indifference arguments based on distortion utility (DU, in short).
The distortion-exponential premium principle has been similarly derived by Tsanakas
& Desli (2003) and Heilpern (2003) using rank-dependent expected utility (RDEU, in
short) theory. See also Luan (2001). The present paper follows Denuit, Dhaene & Van
Wouwe (1999) where only EU and DU were considered (with a brief excursion to
RDEU).

Utility theories are typically presented in an axiomatic form. The axioms are intended
as reasonable consistency requirements:the concept of rationality is embodied in the
axioms, with the possible addition of the postulate of risk aversion. The difference is
that here, axioms impose rational behavior in decision under uncertainty. As it was the
case for the sets of axioms defining risk measures, the preference foundations typically
use intuitive axioms such as transitivity, which refer to directly meaningful empirical
properties of preferences, and technical axioms such as continuity, which describe the
structural richness of the model and serve to simplify the mathematical analysis.

Fishburn (1982) and Yaari (1987) considered the following four axioms on the pref-
erence relation�:

Objectivity If X andY have the same distribution function then the decision-maker is
indifferent betweenX andY , that is,X � Y andY � X both hold.

Weak order � is complete, transitive and reflexive.

Strong monotonicity If X �st Y thenX � Y .

Continuity The set{Y |Y � X} is closed for everyX, the closure being often meant with
respect to the topology of weak convergence, associated with theL1 norm.

Then, a fifth axiom is added that specifies the particular form of the indicator of prefer-
ences. Whereas there is a rather large consensus about the four axioms listed above, the
last one continues to be subject to debate. The EU axiomatization hinges on the inde-
pendence axiom, which requires preferencesto be separable across mutually exclusive
events. Alternative theories proposed by Quiggin (1982), Yaari (1987) and Schmeidler
(1989) replaced this condition by a type ofco-monotonic independence axiom, an in-
tuitive and appealing condition requiring that the usual independence axiom only holds
when hedging effects are absent.
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Risk measurement 7

In this paper, we will consider in addition to the classical EU and DU theories several
alternative paradigms for decision under uncertainty: the Choquet expected utility (CEU,
in short) theory proposed by Schmeidler (1989), the maximin expected utility (MEU, in
short) theory proposed by Gilboa & Schmeidler (1989) and the rank-dependent expected
utility (RDEU, in short) theory proposed byQuiggin (1982). The application of the
actuarial equivalent utility pricing principle in these paradigms will generate most classes
of risk measures considered so far in the financial mathematics literature.

1.5 Risk and uncertainty
Decision-making under risk and decision-making under uncertainty are differentiated
according to the condition that in the formercase the probabilities of events are given
while in the latter case they are not. With regard to decision-making under uncertainty,
models have been introduced which associate some kind of probabilities to events.

In the financial mathematics literature, and the actuarial papers in the realm of financial
mathematics, the probability distribution of a risk does not need to be fixed (a risk is just
a random variable defined on a measurable space, and the probability measure can be left
unspecified). The majority of actuarial papers uses the framework of probability theory
and statistics, in which a random variable is defined on a particular and fixed underlying
probability space, not on just a measurable spacewith many possible probability measures.
The probability measure may be unknown, but it is fixed and unique. This does not prevent
that many weight functions operating on events can be used to calculate the premiums. For
instance, the actuarial practice in life insurance consists in replacing the distribution of the
remaining lifetime by a “more dangerous one” in order to generate a safety loading. We
will also see below that in economics terminology, for example, a coherent risk measure
is not a measure of risk but a measure of uncertainty.

Uncertainty is often represented with the help of capacities. Specifically, we assume
that the uncertainty a decision maker faces can be described by a non-empty set of states,
denoted as�. This set may be finite or infinite. Associated with� is the set of events,
taken to be a sigma-algebra of subsets of�, denoted byB. Capacities are real-valued
functions defined onB that generalize the notion of probability distributions. Formally,
a capacity is a normalized monotonic set function. More precisely,C : B → [0, 1] is
a capacity ifC[∅] = 0, C[�] = 1 and for anyA, B ∈ B, A ⊆ B ⇒ C[A] ≤ C[B].
Otherwise, the capacity has little structure. In particular, the sum of the capacities of two
disjoint subsets mayexceed 1. Or the sum of the capacities of two subsets may be strictly
less than the capacity of the union of these sets. The capacityC is called coherent if there
exists a non-empty setM of probability measuresP : B→ [0, 1] such that

C[A] = sup
P∈M

P[A] for all A ∈ B.

As we will see, coherent capacities are closely related to coherent risk measures.
To each capacityC we can associate a dual capacity. The dual capacity ofC, denoted

asC, is defined by

C[A] = 1 − C[� \ A] for all A ∈ B.
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8 Denuit -- Dhaene -- Goovaerts -- Kaas -- Laeven

The dual capacity is useful when losses are considered instead of gains. Given a coherent
capacityC, a natural and widely used measure of the degree of uncertainty (or imprecision,
vagueness, ambiguity) associated with an eventA ∈ B is given by the interval

[
C[A], C[A]] =

[
inf

P∈M P[A], sup
P∈M

P[A]
]

. (1.1)

The interval (1.1) captures uncertainty in the sense of Knight (1921). IfC[A] = C[A],
the eventA does not involve any vagueness and all priorsP ∈M agree onA.

Decisions under risk are usually performed in the EU or RDEU paradigms. In sit-
uations of uncertainty (i.e., in situations where there does not exist a given objective
probability distribution available to the decision-maker), these paradigms are replaced
by the subjective utility theoryand the Choquet expected utility (CEU, in short), respec-
tively.

1.6 Aversion to risk and uncertainty

There are many notions of risk aversion. Chateauneuf & Cohen (2000) distinguish five
kinds of risk aversion: weak, monotonic, left monotonic, right monotonic and strong. In
this paper, we restrict ourselves to the following two standard concepts of risk aversion.
The first one defines an individual to be risk averse if the sure gainE[X] is always preferred
to the random prospectX itself. An alternative definition of risk aversion requires a risk
averse individual to behave according to the concave order, denoted as�cv, and defined
by X �cv Y ⇔ E[φ(X)] ≤ E[φ(Y )] for all concave functionsφ : R→ R, provided the
expectations exist. This order extends the concept of mean preserving increase in risk.

We thus have a concept of weak risk aversion (E[X] is preferred overX) and a concept
of strong risk aversion (X �cv Y ⇒ X is preferred overY ). It is interesting to note that
strong risk aversion is defined with the help of a stochastic order relation. Relations like
the dispersive order have been used to define alternative attitudes towards risk; see, e.g.,
Chateauneuf & Cohen (2000) and Chateauneuf, Cohen & Meilijson (2004).

1.7 Outline of the paper

This paper aims to demonstrate that, as pointed out by Geman (1999), in the funda-
mental subject of financial risk analysis, some valuable lessons may be drawn from
insurance. Actuaries have used indifference arguments based on economic theories for
decision under uncertainty for decades, after Bühlmann (1970) introduced the equivalent
utility principle in the context of setting insurance premiums. Considering this simple
and appealing approach to risk measurement, most risk measures can be obtained in
a way that enlightens their intrinsic properties. Unfortunately, apart from some authors
including F̈ollmer & Schied (2004), the close connections between risk measurement
and economic decision theory have been disregarded by financial mathematicians, who
independently developed their own axiomatic theories. This paper tries to reconcile the
two approaches.
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Risk measurement 9

2 Equivalent utility risk measures in EU theory
2.1 EU theory
The classical expected utility (EU, in short) theory is identified by the independence
axiom. Every EU decision-maker possesses some utility functionu(·) and acts in order
to maximize the expected utility. The prospectX is then evaluated by

UEU [X|u] =
∫

u(X)dP = E[u(X)]

and X is preferred overY if UEU [X|u] ≥ UEU [Y |u]. A classical reference for EU is
Von Neumann & Morgenstern (1947). The subjective utility theory of Savage (1954) for
decision under uncertainty differs from EU only by its interpretation of the underlying
probability distributionP.

If the decision-maker, with initial wealthw and utility functionu(·), has to choose
between random lossesX andY, then he comparesUEU [w − X|u] with UEU [w − Y |u]
and chooses the loss which gives rise to the highest expected utility.

2.2 Risk aversion
The two definitions of risk aversion are equivalent under EU theory, where they both
coincide with the concavity of the utility function: for an EU decision-maker, weak risk
aversion implies automatically strong risk aversion.

Note that in the EU framework, the agent’s attitude towards risk and the agent’s at-
titude towards wealth are forever bonded together (since they are both derived from the
characteristics ofu): risk aversion and diminishing marginal utility of wealth are syn-
onymous. Nevertheless, risk aversion expresses an attitude towards risk while decreasing
marginal utility expresses an attitude towards wealth. Thus, in EU theory, the concept of
risk aversion being encapsulated in the utility function is a property of attitudes towards
wealth rather than of attitudes towards risk.

2.3 Equivalent EU risk measures
Consider a decision-maker with initial wealthw and with a utility functionu(·). Facing
a random lossX, he sets its price for coverage�[X] as the solution of the equation

UEU
[
w + �[X] − X

∣∣u] = UEU [w|u] = u(w). (2.1)

Condition (2.1) expresses that�[X] is fair in terms of utility: the right-hand side of (2.1)
represents the utility of not not coveringX; the left-hand side of (2.1) represents the
expected utility of the decision-maker assuming the random financial lossX. Therefore
(2.1) means that, provided an amount of�[X] is obtained whenX is covered, the expected
utility of wealth with X is equal to the utility withoutX. Puttingw = 0 and normalizing
the utility functionu, we get the so-called “equivalent utility principle”:�[X] calculated
according to this principle is the root of the equation

UEU
[
�[X] − X

∣∣u] = 0 (2.2)
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10 Denuit -- Dhaene -- Goovaerts -- Kaas -- Laeven

which can be interpreted as an equality between the expected utility of the income
�[X] − X and the utility of not accepting the risk.

If we assume that the moment generating function ofX exists and that the utility
function of the insurance company is of the form

u(x) = 1 − exp(−cx)

c
, x ≥ 0, (2.3)

for some positive constantc, then (2.2) admits an explicit solution and�[X] can be
expressed as

�[X] = 1

c
lnE[exp(cX)]. (2.4)

Note that the exponential principle (2.4) also possesses an appealing interpretation in
terms of ruin theory; see, e.g., Kaas, Goovaerts, Dhaene & Denuit (2001, Section 5.2) or
Tsanakas & Desli (2003).

3 Equivalent utility risk measures in DU theory

3.1 DU theory

Under the same set of axioms but with a modified independence axiom, Yaari (1987) has
shown that there must exist a “distortion function”f such that a prospectX is valued at
its “distorted expectation”UDU[X| f ] defined as

UDU [X| f ] = −
∫ 0

x=−∞

(
1 − f

(
FX(x)

) )
dx +

∫ +∞

x=0
f
(

FX(x)
)

dx. (3.1)

Here the distortion functionf : [0, 1] → [0, 1] is non-decreasing withf(0) = 0 and
f(1) = 1. Instead of using the tail probabilitiesFX(x), the decision-maker uses the
distorted tail probabilitiesf(FX(x)). Yaari’s model has been further developed by Roëll
(1987), and an alternative axiomatization is proposed in Guriev (2001). We also refer to
Carlier & Dana (2003) for interesting representations ofUDU [X| f ].

3.2 Risk aversion

Contrary to the EU case, the two concepts of risk aversion are no more equivalent in DU.
For the weak risk aversion, it suffices thatf(p) ≤ p, p ∈ [0, 1], as we immediately find
that

UDU [X| f ] ≤ E[X] = UDU
[
E[X]∣∣ f

]
. (3.2)

For the strong risk aversion, the distortion functionf has to be convex.
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Risk measurement 11

3.3 Equivalent DU risk measures
Let us introduce the dual distortion functionf for each distortion functionf :

f (x) = 1 − f(1 − x), x ∈ [0, 1] . (3.3)

The dual distortion function is again a distortion function. It is clear thatf ≡ f and that
f convex⇔ f concave. Furthermore, we have thatUDU [−X| f ] = −UDU [X| f ].

The equivalent DU risks measures are obtained as the solution of the indifference
equation

UDU [0| f ] = UDU
[
� [X] − X

∣∣ f
]
. (3.4)

Solving (3.4) gives

�[X] = UDU [X| f ]
= −

∫ 0

−∞

(
1 − f

(
FX(x)

))
dx +

∫ ∞

0
f
(

FX(x)
)
dx. (3.5)

One immediately finds thatf (FX(x)) is a non-increasing function ofx with values in the
interval [0, 1]. The risk measure (3.5) can be interpreted as a “distorted expectation” ofX,

evaluated with a “distorted probability measure” in the sense of a Choquet-integral, see
Denneberg (1994). Risk measures (3.5) are often called distortion risk measures. In the
actuarial literature, distortion risk measures have been introduced by Denneberg (1990)
and Wang (1996). Axiomatic characterizations of insurance prices leading to distorted
premiums have been proposed in Goovaerts & Dhaene (1998) and Wang, Young & Panjer
(1997).

Many risk measures can be cast into the form (3.5). Let us give some prominent
examples.

Example 3.1 (Value-at-Risk) For any p in (0, 1), the p-quantile risk measure (or Value-
at-Risk) for a random variable X with given distribution function FX is defined by
F−1

X (p) = inf {x ∈ R | FX(x) ≥ p}, p ∈ (0, 1). It can be shown that F−1
X (p) corresponds

to (3.5)with distortion function

f (q) =
{

1 if q > 1 − p,

0 otherwise,
for 0 ≤ q ≤ 1.

Example 3.2 (Tail-VaR) The Tail-VaR at level p, denoted by TVaRp [X], is defined by

TVaRp [X] = 1

1 − p

∫ 1

p
F−1

X (q) dq, p ∈ (0, 1) . (3.6)

It is the arithmetic average of the quantiles of X, from p on, and corresponds to (3.5)
with distortion function

f (x) = min

(
x

1 − p
, 1

)
, 0 ≤ x ≤ 1. (3.7)
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12 Denuit -- Dhaene -- Goovaerts -- Kaas -- Laeven

VaR’s are the building blocks of the distortion measures (3.5). To see this, it is enough

to replacef (FX(x)) by
∫ FX (x)

0 d f (q) in (3.5) and to revert the order of the integrations.
One then finds that any distortion risk measure can be written as

�[X] =
∫ 1

0
F−1

X (1 − q)d f (q). (3.8)

Note that when the distortion functionf is differentiable, (3.8) can be rewritten as

�[X] = E
[

F−1
X (1 − U) f

′
(U)

]
. (3.9)

Formulas (3.8)–(3.9) show that the spectral risk measures of Acerbi (2002) are particular
cases of distortion risk measures. It can be further shown that coherent distortion risk
measures can be represented as mixtures of Tail-VaR’s, as pointed out by Inui & Kijima
(2005); see also Bassett, Koenker & Kordas (2004) for portfolio allocation with mixtures
of Tail-VaR’s, and Pflug (2002).

Distortion risk measures (3.5) withf concave are subadditive. The VaR therefore
fails to be subadditive. Danielsson, Jorgensen, Samorodnitsky, Sarma & de Vries (2005)
proved that for most practical applications VaR is subadditive. More precisely, they
demonstrated that VaR is subadditive for the relevant tails of all fat tailed distributions,
provided the tails are not super fat (i.e., distributions with so fat tails that the first moment
is not defined, such as the Cauchy law, with tail index strictly less than 1). Inui, Kijima &
Kitano (2005) demonstrated the considerablebias of the VaR when used for a portfolio
with fat-tailed distributions.

Note that the class of distortion risk measures (3.5) with concavef is a strict subclass
of the class of coherent risk measures, as is shown by the following example, taken from
Dhaene, Vanduffel, Tang, Goovaerts, Kaas & Vyncke (2004).

Example 3.3 (Dutch risk measure) For any random variable X, consider the risk mea-
sure

�[X] = E[X] + E[(X − E[X])+
]
. (3.10)

This is a particular case of the “Dutch premium principle”, defined for non-negative
random variables by Kaas, Van Heerwaarden & Goovaerts (1994).

The Dutch risk measure (3.10) is in general not additive for co-monotonic risks.
Hence, the Dutch risk measure (3.10)is an example of a risk measure that is coherent,
although it is not a distortion risk measure. The example also illustrates the fact that
coherent risk measures are not necessarily additive for co-monotonic risks.

4 Equivalent utility risk measures in CEU theory
4.1 CEU theory
A possible device to construct a capacity is to take a probability measureP onB together
with a distortion functionf , and then defineC = f ◦ P. Such a capacityC is then called
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Risk measurement 13

a distorted probability measure. Conversely, for a given capacityC, one may wonder
whether there exists a probability measureP such thatC = f ◦ P for some distortion
function f . The answer is in general negative: even if� is finite, there exist capacities
that cannot be obtained as non-decreasing transformations of probability measures. See,
e.g., Laeven (2005) for a simple counterexample.

Schmeidler (1989) modified the independence axiom into co-monotonic indepen-
dence. This gave rise to the Choquet expected utility (CEU, in short) theory. In CEU
theory, the prospectX is evaluated by

UCEU [X|u, C] =
∫

u(X)dC

=
∫ 0

−∞
(
C[u(X) > t] − 1

)
dt +

∫ +∞

0
C[u(X) > t]dt

whereu is a utility of wealth function,C is a capacity and integration is in the sense of
Choquet; see Choquet (1953). The functionalUCEU representing the preference relation
in the CEU model is thus the Choquet integral ofu(X) with respect to the capacityC.
Note that the integrals on the right-hand side are Riemann integrals and they are well
defined sinceC[u(X) > t] is a monotonic function int. Moreover, withC defined directly
on events, there is no necessity for any intermediate evaluation of probabilities.

4.2 Uncertainty aversion
Risk refers to situations where the perceived likelihoods of events of interest can be rep-
resented by probability distributions, whereas uncertainty refers to situations where the
information available to the decision-maker is too imprecise to be summarized by a prob-
ability measure. Schmeidler’s (1989) CEU model is set in the framework of uncertainty
as defined by Anscombe & Aumann (1963).

Due to the absence of an objective probability distribution, the definition of uncertainty
aversion has to be based on the random variables themselves. Schmeidler (1989) suggests
the idea that a convex combination of non-co-monotonic random variables smooths
the outcomes and makes an uncertainty-averse decision-maker better off. Specifically,
a decision-maker is uncertainty-averse if, for every pair of random variablesX andY ,
if X is preferred overY thenαX + (1 − α)Y is preferred overY for any α ∈ [0, 1].
The corresponding preferences are thus convex. Chateauneuf, Dana & Tallon (2000)
established that the decision-maker is uncertainty-averse if, and only if, the capacityC is
convex, that is,

C[A ∪ B] + C[A ∩ B] ≥ C[A] + C[B] for all A, B ∈ B, (4.1)

and the utility functionu is concave. See also Leitner (2005) for related results.
If the reverse inequality holds in (4.1) then the capacity is called concave. Note that

if the dual capacityC is convex thenC is concave. Furthermore, ifC is convex thenC
is concave and satisfiesC[A] ≤ C[A] for any A ∈ B. The decision weights used in the
computation of the Choquet integral will overweight large outcomes ifC is concave and
will overweight low outcomes ifC is convex. Additivity is a special case that characterizes
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14 Denuit -- Dhaene -- Goovaerts -- Kaas -- Laeven

uncertainty neutrality. Probability distributions are special cases of capacities which are
both concave and convex. In the case of a distorted probabilityC[A] = f(P[A]), A ∈ B,
if f is convex thenC is convex, and iff is concave thenC is concave.

The core of the capacityC is defined as

core(C) = {
probability measuresP

∣∣P[A] ≥ C[A] for all A ∈ B}.
Since Schmeidler (1986), it is well-known that when the capacity is convex, its core is
non-empty and the Choquet integral is given by∫

u(X)dC = inf
P∈core(C)

∫
u(X)dP.

This relates the CEU model to the MEU one, presented in the next section.
There are thus two properties of special interest concerning the uncertainty aversion

in CEU theory, namely the non-emptiness of the core and the convexity of the capac-
ity. Chateauneuf & Tallon (2002) considered the preference for diversification in CEU.
The agent is said to exhibit preference for diversification if, for any random variables
X1, . . . , Xn that are all considered as equivalent by the agent (i.e.,UCEU [X1|u, C] =
· · · = UCEU [Xn|u, C] in CEU),

∑n
i=1 αi Xi is preferred overX1 for anyα1 ≥ 0, . . . ,αn

≥ 0 with
∑n

i=1 αi = 1. This concept is obviously related to the convexity for risk mea-
sures. They established that preference for portfolio diversification is equivalent to the
agent having a convex capacity and a concave utility function.

4.3 Equivalent CEU risk measures
Most often in the financial mathematics literature,u is taken to be the identity function
and C is assumed to be convex. We then get for the preference indicator simply the
Choquet integral ofX with respect toC, that is,

UCEU [X|identity, C] =
∫

XdC =
∫ 0

−∞
(
C[X > t] − 1

)
dt +

∫ +∞

0
C[X > t]dt.

This integral is positively homogeneous, monotonic and translation equivariant.
The risk measure� is then deduced from the indifference equation

0 = UCEU
[
�[X] − X

∣∣identity, C
] ⇒ �[X] = −

∫
−XdC.

Note that, in general,
∫

XdC ≤ − ∫ −XdC. Equality holds for all random variables
if, and only if, C is additive. This inequality can be used to explain the bid-ask spread
observed in some financial markets, according to Chateauneuf, Kast & Lapied (1996).
The integrals

∫
XdC and− ∫ −XdC are sometimes called lower and upper Choquet

integrals, respectively. More precisely,∫
XdC = inf

P∈core(C)

∫
XdP and −

∫
−XdC = sup

P∈core(C)

∫
XdP
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Risk measurement 15

so that the length of the interval(
∫

XdC,− ∫ −XdC) is intimately connected with the
size of core(C).

After Denneberg (1990), the risk measure
∫

XdC has been considered in insurance,
e.g., by Wang (1996), Wang, Young & Panjer (1997) and De Waegenaere, Kast & Lapied
(2003) under the name of Choquet pricing. An overview paper on the applicability of this
type of risk measures for solvency purposes is Dhaene, Vanduffel, Tang, Goovaerts, Kaas
& Vyncke (2004). Chateauneuf, Kast & Lapied (1996), Wang (2000, 2002) and Hamada
& Sherris (2003) used the same mechanism for pricing in financial markets; see also
Pelsser (2004). This risk measure is continuous, monotonic and co-monotonic additive.
It is subadditive if, and only if,C is concave; it is superadditive for convexC.

Castagnoli, Maccheroni & Marinacci (2004) noticed that the presence on the market
of assets without bid-ask spreads turns Choquet prices into standard expectations. More
precisely, if an insurance company sets the safety loading according to a probability
distortion in agreement with the increasing concave order�icv (defined byX �icv Y ⇔
E[φ(X)] ≤ E[φ(Y )] for all non-decreasing concave functionsφ : R→ R, provided the
expectations exist) then it assigns either strictly positive safety loading to all contracts
or zero safety loading to all contracts. Despite its theoretical interest, this result should
not prevent the use of Choquet risk measures (since actuarial risk theory imposes strictly
positive safety loading, to avoid almost certain ruin).

Kadane & Wasserman (1996) considered� = [0, 1], B the Borel subsets of� and
symmetric capacities (that is, capacitiesC such thatµ[A] = µ[B] ⇒ C[A] = C[B],
with µ the Lebesgue measure). They characterized coherent symmetric capacities (as
those with doubly star-shaped distortion functions; see Kadane & Wasserman (1996) for
a definition). If the capacity is further assumed to be concave then Section 4 in Kadane &
Wasserman (1996) proves that the distortion functionsf(p) = min{p/α, 1} correspond to
the extreme points of the set of all distortion functions. This directly implies that spectral
risk measures can be represented as mixtures of Tail-VaR.

Note however that Marinacci (1999) proved that symmetric and coherent Choquet
capacities turn out to be additive under a fairly mild condition. More specifically, the
existence of a single non-trivial unambiguous event (in the sense that the interval (1.1)
reduces to a single point) is enough to make them additive. This is a very strong property
since excluding the existence of even a single non-trivial unambiguous event seems in
general a very stringent assumption (recall that in the additive case, all events are unam-
biguous). This is obviously related to the result of Castagnoli, Maccheroni & Marinacci
(2004) mentioned above.

5 Equivalent utility risk measures in MEU theory

5.1 MEU theory
Gilboa & Schmeidler (1989) suggested the Maximin expected utility (MEU, in short)
model, also called multiple prior model. In this context, preference relations have a rep-
resentation by the functional

UMEU [X|u,M] = inf
{ ∫

u(X)dP
∣∣P ∈M

}
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whereu is a utility function andM is a closed and convex set of additive probability
measures. Thus, CEU coincides with MEU when the setM is the core ofC, that
is, UCEU [X|u, C] = UMEU [X|u, core(C)]. Moreover, when an arbitrary (closed and
convex) setM is given and one definesC[A] = inf{P[A]|P ∈M}, C is not necessarily
convex. Furthermore, even ifC happens to be convex,M does not have to be its core.

In addition to the usual assumptions on the preference relation such as transitivity,
completeness, continuity and weak monotonicity, Gilboa & Schmeidler (1989) postulated
uncertainty aversion and certainty-independence to derive MEU theory. The certainty-
independence axiom is weaker than standard independence (since only mixings with
degenerate distribution functions corresponding to certainty are considered).

5.2 Equivalent MEU risk measures
Takingu(x) = x gives the class of coherent risk measures in the sense of Artzner, Delbaen,
Eber & Heath (1999). More precisely, the equivalent utility principle then yields

0 = UMEU
[
�[X] − X

∣∣u,M
] = inf

P∈M

∫ (
�[X] − X

)
dP

whence it follows that

�[X] = sup
P∈M

∫
XdP. (5.1)

Risk measures of this type have been used by Castagnoli, Maccheroni & Marinacci
(2002) to compute insurance premiums. Huber (1981) already considered functionals
(5.1) in robust statistics. The elements ofM are called generalizedscenarios in Artzner,
Delbaen, Eber & Heath (1999). Huber (1981) proved for the case of a finite set�, that
a risk measure is coherent if, and only if, it has an upper expectation representation. This
result remains valid for more general spaces (see Delbaen (2002)), though in that case
“the important conceptual aspects are buried under a mass of technical complications of
a measure theoretic and topological nature,” as is stated by Huber (1981).

Risk measures of the form (5.1) have been considered for a long time in actuarial
science, especially whenM is a moment space (or more generally, whenM is defined by
a set of integral constraints); see, e.g., Section 5.3 of Goovaerts, De Vijlder & Haezendonck
(1984) for a detailed account.

6 Equivalent utility risk measures in RDEU theory
6.1 RDEU theory
In this section, we present a theory which combines the EU and the DU assumptions, to
a certain extent. The rank-dependent expected utility (RDEU, in short) theory was first
proposed by Quiggin (1982). It is a generalization of EU and DU theories that preserves
the properties of continuity, transitivity and weak monotonicity. The name comes from
the fact that cumulative probabilities are transformed, so that the new weight assigned
to a particular outcome depends on its rank among possible outcomes. We do not give
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the set of axioms connected with RDEU since the modified version of the independence
axiom appearing in Quiggin (1982) does not admit a clear behavioral interpretation. For
other sets of axioms, see e.g. Chateauneuf & Wakker (1999) and Abdellaoui (2002). The
RDEU approach combines the utility functionu(·) from EU with a distortion function
f(·) from DU. For interesting applications to insurance, see, e.g., Chateauneuf, Cohen &
Meilijson (1997).

Under the rank-dependent expected utility model, a decision-maker is characterized
by a utility functionu (that plays the role of utility on certainty) in conjunction with
a distortion functionf (that plays the role of a probability perception function). Such
a decision-maker prefers the fortuneY to the fortuneX if, and only if,URDEU [X|u, f ] ≤
URDEU [Y |u, f ] where

URDEU [X|u, f ] =
∫ 0

t=−∞
(

f (P[u(X) > t]) − 1
)
dt +

∫ +∞

t=0
f (P[u(X) > t]) dt

with a similar expression forY . It is easy to see that iff(p) = p, we get the EU model, that
is, URDEU [X|u, identity] = UEU [X|u], whereas ifu(x) = x we get the DU paradigm,
that is,URDEU [X|identity, f ] = UDU [X| f ].

Just as in EU, the utility functionu is normally taken to be concave or linear. There is
less consensus concerning the appropriate shape for the distortion functionf . For descrip-
tive purposes, Quiggin (1982) originally proposed an S-shaped function, overweighting
extreme low probability outcomes. Other authors suggested to consider convex distortion
functions f (this property is akin to risk aversion, as shown above).

Simple distortion functions are those given by the one-parameter familyfα(p) =
min{p/α, 1} for someα ∈ [0, 1]. In this case, we have

URDEU [X|u, fα] = 1

α

∫ α

0
u
(
F−1

X (p)
)
dp.

This family has been considered, e.g., in Bassett, Koenker & Kordas (2004).

Remark 6.1 Following the usage of Knight (1921) in distinguishing uncertainty (i.e., am-
biguity) and risk, Gilboa (1987) and Schmeidler (1989) do not take objective probabilities
as given but consider subjective probabilities. Capacities are then used and prospects are
compared on the basis of Choquet integrals. Wakker (1990) established that, provided
weak monotonicity is fulfilled, this approach is equivalent to RDEU. The subtle difference
between the two approaches can be summarized as follows: in RDEU, decision-makers
know the objective probabilities but distort them when choosing among risky prospects.
In CEU, decision-makers use their own (possibly non-additive) subjective probabilities,
derived from some capacity.

6.2 Risk aversion
As RDEU distinguishes attitudes towards outcomes and attitudes towards probabilities,
risk aversion in RDEU must combine two different concepts. First, there is outcome risk
aversion, associated with the idea that the marginal utility of wealth is declining. This is
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the standard notion of risk aversion from the EU theory defined by concavity of the utility
function. Second, there are attitudes specificto probability preferences. Risk aversion
in probability weighting corresponds to pessimism: the decision-maker adopts a set of
decision weights that yields an expected value for a transformed risky prospect lower
than the mathematical expectation. An alternative, more restrictive, characterization of
pessimism leads to a definition of risk aversion in terms of�icv. Note that the restriction
to concave utility functions does not prohibit risk seeking behaviors in RDEU. It is indeed
possible to model risk seeking with diminishing marginal utility of wealth.

The transformationf may be regarded as pessimistic iff(p) ≤ p for all p. This
comes from the fact thatf(p) ≤ p for all p if, and only if, for any random variableX and
concave utilityu

URDEU [X|u, f ] ≤ URDEU
[
E[X]∣∣u, f

] = u
(
E[X]),

that is,E[X] is preferred overX. Therefore, concavity ofu and pessimism are reasonable
conditions for risk aversion.

Let us now turn to the definition of risk aversion as preservation of�icv. It can be
shown that a decision-maker will be consistent with�icv if, and only if,u is concave and
f is convex (see, e.g., Quiggin (1993)). Convexity of the distortion functionf implies
a strong form of pessimism that can be roughly summarized as follows: the worst outcome
is overweighted most, and the best outcome underweighted most. Unlike the situation in
EU theory, preservation of�icv is not equivalent to preference for certainty over risk.

6.3 Equivalent RDEU risk measures
Heilpern (2003) and Tsanakas & Desli (2003) introduce a class of risk measures which
can be considered as the solutions of the indifference equations for RDEU. Lemma 1
in Heilpern (2003) establishes that providedu is non-decreasing and concave,
URDEU [X|u, f ] ≤ u(UDU [X| f ]) whatever the distortion functionf . The equivalent
RDEU risk measure solves

u(0) = URDEU
[
�[X] − X

∣∣u, f
]
. (6.1)

In general, there is no explicit solution to this equation. A notable exception is with utility
function of the form (2.3) for which

�[X] = 1

c
ln

(∫ +∞

0
f
(
P[exp(cX) > t])dt

)
. (6.2)

The equivalent utility risk measures solving (6.1) are great variety. Providedu is non-
decreasing and concave andf is a convex distortion function, Heilpern (2003, Theorem 1)
proved that the resulting risk measure is translation equivariant, preserves�icx and does
not entail unjustified safety loading, that is�[c] = c for all real constantsc. If u(x) = x,
it is moreover positively homogeneous, co-monotonic additive and subadditive. Note that
in this case, we are back to the DU paradigm. It is additive for independent random
variables only in very special cases (broadly speaking, ifu is linear or exponential andf
is the identity).
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In particular, the risk measure (6.2) is additive for independent random variables
only if f (p) = p (that is, in the EU case). Moreover, the risk measure (6.2) is strongly
monotonic, translation equivariant and convex. Tsanakas & Desli (2003) studied in detail
the properties of this risk measure regarding sensitivity to portfolio size and to risk
aggregation. They conclude that this risk measure behaves approximately as a coherent
risk measure for smaller portfolios of risks, while for larger portfolios the risk aversion
induced by the utility function becomes prevalent, and the sensitivity to liquidity and risk
aggregation issues gradually increases.

7 Discussion
In this paper, we have derived the great majority of the classical risk measures using
the actuarial equivalent utility principle in different theories for decision under risk and
uncertainty. As such it makes clear the economic rationale behind these risk measures.

It is now also clear that risk measures encountered in the financial mathematics
literature correspond to linear utility of wealthfunctions. Disregarding utility of wealth
does not always seem reasonable from an economic viewpoint. The linearity of the
utility function makes risk measures insensitive to liquidityrisk: for example, according
to positive homogeneity, changes in the size of a portfolio, given that its composition
is unchanged, should only affect a proportional change in capital requirements. This
disregards that very large portfoliosmight produce very large losses that, in turn, can make
it difficult for the holder of the portfolio to raise sufficient cash to meet his obligations.
This has been pointed out, e.g., by Dhaene, Goovaerts & Kaas (2003).

The RDEU framework simultaneously accounts for utility functions and distorted
probabilities: the agent is equippedwith both a utility function and a probabilitydistortion.
Risk measures emerging from RDEU inherit properties from both EU and DU: in the
case of a linear utility function equivalent DU risk measures are obtained as special cases
while, in the case of a linear probability distortion function, equivalent EU risk measures
are found. In general, the properties of equivalent RDEU risk measures lie somewhere
in between of these two extreme cases. Their general behavior is nevertheless difficult to
determine since it is difficult to know at which point the utility or the distortion function
will have the most influence. As pointed out by Tsanakas & Desli (2003), equivalent
RDEU risk measures are convex under mild conditions. Note that CEU is even more
general.

In particular, the distortion exponential risk measure (6.2) proposed by Tsanakas &
Desli (2003) combines the properties of the DU equivalent and (2.4) risk measures. It
is obtained as a special case of equivalent RDEU risk measures when an exponential
utility function (2.3) is used. It inherits properties from both (2.4) and DU equivalent
risk measures. Whether the properties of the distortion exponential risk measures are
closer to those of (2.4) or those of equivalent DU risk measures depends to some extent
on the underlying risks that are examined. For relatively small portfolios, the distortion
exponential risk measure is approximately equivalent to the equivalent DU risk measures
and inherits their properties. For larger portfolios, for which liquidity and risk aggregation
become an issue, the effect of the utility function (2.3)becomes prevalent and the distortion
exponential risk measure inherits its properties from (2.4). The definition of what a large
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portfolio is depends on the specific situation and preferences of its holder. It can be
controlled by modifying the risk aversion parameter of the exponential function. The
numerical illustrations in Tsanakas & Desli (2003) support this evidence.

Alternatives to (6.2) can be obtained by substituting other classes of utility functions to
the exponential one (2.3). One could think of CARA (for constant absolute risk aversion)
utility functions given byu(x) = xγ

γ
for γ �= 0 and lnx whenγ = 0 that are often used

in economic applications.
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financïele portefeuilles). Roger Laeven acknowledges the support of the Dutch Organi-
zation for Scientific Research (No. NWO 42511013).

References
[1] Abdellaoui, M. (2002). A genuine rank-dependentgeneralization of the von

Neumann–Morgenstern expected utility theorem.Econometrica 70, 717–736.

[2] Acerbi, C. (2002). Spectral measures of risk: A coherent representation of subjective
risk aversion.Journal of Banking and Finance 26, 1505–1518.

[3] Anscombe, F. J., & Aumann, R. J. (1963). A definition of subjective probability.
Annals of Mathematical Statistics 34, 199–205.

[4] Artzner, Ph., Delbaen, F., Eber, J.-M., & Heath, D. (1999). Coherent risk
measures.Mathematical Finance 9, 203–228.

[5] Bassett, G. W., Koenker, R., & Kordas, G. (2004). Pessimistic portfolio alloca-
tion and Choquet expected utility.Journal of Financial Econometrics 2, 477–492.
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[8] Bühlmann, H. (1970).Mathematical Methods in Risk Theory. Springer Verlag,
New York.
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[34] Föllmer, H., & Schied, A. (2002). Convex measures of risk and trading constraints.
Finance and Stochastics 6, 429–447.
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