
SecSess: Keeping your Session
Tucked Away in your Browser

Philippe De Ryck, Lieven Desmet, Frank Piessens, Wouter Joosen
iMinds-Distrinet, KU Leuven, 3001 Leuven, Belgium

Philippe.DeRyck@cs.kuleuven.be

ABSTRACT
Session management is a crucial component in every modern
web application. It links subsequent requests and temporary
stateful information together, enabling a rich and interac-
tive user experience. Unfortunately, the de facto standard
cookie-based session management mechanism is imperfect,
which is why session management vulnerabilities rank sec-
ond in the OWASP top 10 of web application vulnerabili-
ties [18]. While improved session management mechanisms
have been proposed, none of them achieves compatibility
with currently deployed applications or infrastructure com-
ponents such as web caches.

We propose SecSess, a lightweight session management
mechanism that addresses common session management vul-
nerabilities by ensuring a session remains under control of
the parties that established it. SecSess is fully interchange-
able with the currently deployed cookie-based session man-
agement, and can be gradually deployed to clients and servers
through an opt-in mechanism. Evaluation of our proof-of-
concept implementation shows that SecSess introduces only
a minimal performance and networking overhead. Further-
more, we empirically show that SecSess is effectively com-
patible with commonly used web caches, in contrast to al-
ternative approaches.

1. INTRODUCTION
Session management is a fundamental component of every

modern web application, and enables stateful features, such
as tracking the authentication state or processing multi-step
transactions. As HTTP, the workhorse protocol of the Web,
is stateless by nature, stateful behavior like session man-
agement has been added through the use of cookies. Un-
fortunately, the security requirements of a session manage-
ment mechanism clash with the security properties offered
by cookies, paving the way for high-impact attacks on ses-
sion management mechanisms, such as session hijacking and
session fixation. Consequently, session security problems are
ranked second in the industry-driven OWASP Top Ten of

Permission to make digital or hard copies of all or part of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
SEC@SAC ’15 , April 13 - 17 2015, Salamanca, Spain
ACM 978-1-4503-3196-8/15/04 ...$15.00.
http://dx.doi.org/10.1145/2695664.2695764.

web application security problems [18].
At the heart of a successful attack against session man-

agement lies an unauthorized session transfer, where the at-
tacker succeeds in transfering an established session between
his and the victim’s browser. Such an unauthorized session
transfer is enabled by the weak security properties of the
uniquely assigned session identifier. This session identifier
acts as a bearer token, meaning that the merely including
this identifier as a cookie in a request suffices for legitimizing
the request within the session associated with the identifier.
For example in a session hijacking attack, the attacker man-
ages to get hold of the user’s session identifier, allowing him
to transfer the session to his own browser.

In response to these attacks, the HttpOnly and Secure
cookie attributes have been introduced, allowing an appli-
cation to strengthen the security of sensitive cookies, such
as the one containing the session identifier. While these at-
tributes mitigate several of the currently exploitable attack
vectors [5, 11], they do not eliminate the inherent design
flaw in current session management mechanisms, namely the
bearer token properties of the session identifier. This prop-
erty is a lurking threat to the security of session manage-
ment, rearing its head when the session identifier is leaked
through a vulnerability in the underlying secure transport
system [2], or by a failure to correctly apply these cookie
security attributes.

In this work, we propose SecSess, a lightweight session
management mechanisms that effectively prevents the unau-
thorized transfer of an established session. SecSess eradi-
cates the bearer token properties of the session identifier by
agreeing on a shared secret between browser and server, used
to guarantee the integrity of the requests. As this shared se-
cret can not be transfered without authorization, an attacker
is prevented from carrying out session hijacking or session
fixation attacks. SecSess improves on previous proposals
of alternative session management mechanisms by ensuring
full compatibility with currently deployed cookie-based ses-
sion management mechanisms, allowing a fully interchange-
able deployment through an opt-in upgrade path. Addition-
ally, we have extensively evaluated the impact of SecSess by
means of a prototype implementation, showing that SecSess
only incurs a minimal computational and network overhead,
and does not introduce additional requests and roundtrips.
To our knowledge, SecSess is the only session management
mechanism explicitly designed to be compatible with cur-
rently deployed Web infrastructure, such as web caches.

2171

Figure 1: In cookie-based session management
mechanisms, the server issues a cookie with a session
identifier, which the browser stores in the domain-
specific cookie jar and attaches to future requests.

2. BACKGROUND
In a cookie-based session management mechanism, the

server generates a random identifier for a session, and sends
it to the browser using the Set-Cookie header. The browser
stores the cookie in the so-called cookie jar, and whenever a
request is sent to a domain for which cookies are present in
the cookie jar, the browser attaches these cookies using the
Cookie header, as illustrated in Figure 1.

Unfortunately, these session management systems are in-
herently vulnerable to attacks resulting in the unauthorized
transfer of an established session, such as session hijacking
and session fixation. In the remainder of this section, we
elaborate on these attacks, and argue why current session
management mechanisms can not achieve these properties,
even when using the additional cookie security attributes.

2.1 Threats against Session Management
One concrete attack that leads to the unauthorized trans-

fer of an established session is a session hijacking attack [11],
where an adversary is able to steal a user’s session iden-
tifier. Simply attaching this session identifier to crafted
requests is typically sufficient to hijack the user’s session,
granting the adversary the same level of access as the user.
Concrete attack vectors for a session hijacking attack are
script-based cookie exfiltration using the document.cookie
property, or eavesdropping attacks on the network, as aptly
demonstrated by the Firesheep addon, which reduces a ses-
sion hijacking attack to a point-and-click operation.

A second attack is session fixation [14], where the adver-
sary forces the user’s browser to use a compromised session.
The aim of a session fixation attack is to have the user au-
thenticate himself within a session known to the attacker,
causing the server to store the user’s authentication state in
the attacker’s session. A session fixation attack is typically
carried out by writing to the document.cookie property.

Concretely, the essence of this threat against session man-
agement mechanisms is the unauthorized transfer of a ses-
sion, where an attacker is able to transfer a session defined
between the victim’s browser and the target application to
his own browser. Transfering the session grants the attacker
the same privileges with the target application as the user
holds. We deliberately define the threat on the conceptual
level, as there are numerous concrete instantiations of a suc-
cessful session transfer attack. One common example is per-
forming a session hijacking or session fixation attack through
attacker-controlled JavaScript. Another example are pas-
sive attacks on the network level, where an eavesdropping
attacker can steal the session identifier from the network

channel, either from the plaintext HTTP message or by per-
forming traffic analysis attacks on an HTTPS channel [2]. In
addition to passive network attacks, we also consider active
network attacks on an established session to be in scope. In
an active network attack, the attacker can manipulate, inject
or drop packets on the network. Note that an active network
attacker can also manipulate the establishment of a session,
which is significantly more difficult to protect against [6].
Therefore, we consider attacks on an established session to
be in scope, but man-in-the-middle attacks on the session
establishment to be out of scope.

Next to these in-scope attack vectors of a session transfer
attack, we consider attack vectors based on a compromise
of the client-side or server-side infrastructure to be out of
scope. The most common example are machines compro-
mised by malware, both at the client and server side. Con-
cretely, we expect an uncompromised machine and browser
codebase at the client, as well as an uncompromised machine
and web application codebase at the server.

2.2 Current Mitigation Techniques
Since these attacks on session management mechanisms

are well-known and well-documented, several countermea-
sures are available. Most relevant are the HttpOnly and
Secure cookie flags, which respectively restrict script-based
access to cookies, and prevent the transmission of cookies
over insecure channels. While these countermeasures offer
adequate protection if deployed correctly, they do not funda-
mentally prevent the unauthorized transfer of an established
session, as the session identifier remains a bearer token. Ad-
ditionally, these countermeasures are often not or incorrectly
deployed, even within the Alexa top 100 sites [3], and new
attacks that compromise secure deployments have been dis-
covered [2].

Additionally, while the benefits of HTTPS deployments
are evident, wide scale adoption on the Web is impeded by
several intricacies. One often cited issue is the performance
impact, an argument that has lost most of its relevance on
modern hardware [10]. Second, HTTPS deployments are
disproportionately more complex compared to HTTP de-
ployments, putting a significant burden on system admin-
istrators. Examples of such complexities are creating keys,
monitoring and renewing certificates, dealing with browser-
approved certificate authorities, preventing mixed-content
warnings and deploying shared hosting using TLS’s Server
Name Indication extension [7], if supported by the client.
Additional to the complexity of deploying HTTPS, a wide-
scale transition to HTTPS severely obstructs the operation
of the so-called middleboxes, machines in between the end-
points that cache, inspect or modify traffic. These mid-
dleboxes are essential parts of the web infrastructure, for
example by bringing the Web to developing nations through
extensive caching and enabling efficient video transmission
on mobile phone networks.

We acknowledge that wide-scale deployment of HTTPS
remains imperative for securing the Web, but also recog-
nize the long and tedious process. This explains why the
recent revelations about pervasive monitoring on the Web
have sparked multiple proposals looking to transparently
upgrade the security properties of the HTTP channel when
supported by the endpoints. One prominent proposal is to
negotiate an encrypted HTTP channel without verifying the
entities’ authentication [12], which is even proposed as one

2172

Figure 2: The flow of requests and responses used
by SecSess, showing all the details.

of the available modes in the upcoming HTTP/2.0 specifi-
cation. This eagerness to improve the security properties
of the HTTP protocol, even by introducing them into the
new version, shows that the HTTP protocol will be around
for the near future. Therefore, it makes sense to not only
upgrade the network-level protocol properties, but also to
take the opportunity to improve the security properties of
session management on top of the HTTP protocol.

3. SECSESS
In this section, we elaborate on our session management

mechanism, SecSess, in three steps: (i) the actual session
management mechanism, (ii) establishing the shared session
secret and (iii) the resulting request flow, which is identical
to the flow in cookie-based session management mechanisms.
The essence of SecSess is establishing a shared secret used
for session management between browser and server, which
is stored in the browser, where it can not be obtained by an
attacker. SecSess effectively binds an established session to
its initiating parties, thereby preventing the unauthorized
transfer of an established session.

Session Management.
A core feature of a session management mechanism is ac-

tually keeping track of a session, which SecSess achieves
by using a plain session identifier. The session identifier
is provided by the server using a Session response header
(response 1 in Figure 2). The browser attaches the session
identifier to each request, using the newly introduced Ses-
sion request header. Note that while the use of a session
identifier strongly resembles traditional cookie-based session
management, the session identifier is no longer considered to
be a bearer token, and is useless without knowledge of the
shared secret. Therefore, using a simple incremental counter

as an identifier is sufficient.
Instead of using the session identifier as the bearer token,

SecSess uses the shared secret to add an hash-based message
authentication code (HMAC) to the request, thereby legit-
imizing the request within the session. Since this HMAC
takes the request and the shared secret as input, only the
browser and the server can compute the correct values. In-
coming requests with an invalid HMAC are simply discarded
by the server.

Note that the input for the HMAC should be chosen care-
fully. Technically, a network attacker can steal the valid
HMAC from an eavesdropped request and attach it to a
crafted request, having the crafted request reach the server
first. In order to maintain a valid HMAC on the crafted
request, the attacker can only modify the parts of the re-
quest that are not part of the input to the HMAC function.
Including the URL of the request in this input prevents an
attacker from directing the request to a different destination,
but still allows him to modify sensitive information in the
request headers and body (e.g. the destination account of a
wire transfer). Therefore, the HMAC also covers the request
headers containing sensitive data1, and, if present, the re-
quest body. Covering the URL, request headers and request
body in the HMAC does not prevent an attacker from taking
the valid HMAC value and attaching it to a crafted request.
However, it does ensure that the attacker can not change
the sensitive data, hence limiting the contents of the crafted
request to those of the original request, thereby reducing the
problem to the common double submission problem [16].

Establishing the Shared Secret.
The shared session secret, needed to compute and verify

HMACs on requests, is established using the Hughes vari-
ant [13] of the Diffie-Hellman key exchange algorithm, which
allows to exchange the key even in the presence of eavesdrop-
ping attackers. In Figure 2, the server sends his public value
(Y) after seeing the first request, in which the browser in-
dicates support for the Session header. Using the server’s
public component Y, the browser can calculate the second
public part (X), which the server needs to calculate the key.
In the next request, the browser sends the public value X, al-
lowing the server to calculate the full key and verify this and
any subsequent requests, effectively establishing the session,
as acknowledged in the second response.

Note that the advantage of the Hughes variant of Diffie-
Hellman is that the browser can compute the key before the
first request is sent. This is required to attach an HMAC to
the first request, so the server can verify that the sender of
the first and second request are in fact the same. Omission
of the first HMAC allows an eavesdropper to respond to the
first response, injecting his key material into the session,
which is problematic when the first request already caused
some server-side state to be stored in the session.

Preserving the Request Flow.
By design, SecSess is an application-agnostic session man-

agement mechanism, preserving the same flow of requests
and responses as a currently deployed cookie-based session
management mechanism. This property supports a grad-

1Concretely, we include the following standard HTTP head-
ers: Authorization, Cookie, Content-Length, Content-MD5,
Content-Type, Date, Expect, From, Host, If-Match, Max-
Forwards, Origin.

2173

ual deployment, where client and server software can be
upgraded to opt-in to SecSess next to cookie-based session
management. If the client does not support SecSess, no Ses-
sion header is sent, so the server simply defaults to cookie-
based session management. Alternatively, if the client sup-
ports SecSess, but the server does not, the Session header
will be ignored by the server, and the default cookie-based
session management mechanism will be used.

3.1 Handling Modified Request Flows
Since the Web is a complex distributed system, where

multiple simultaneous requests are fired by the browser, re-
quest flows often differ from the flows drawn on paper. One
example of a modified flow are requests that arrive at the
server in a different order than they were sent. A second
example are middleboxes changing the request flow, such as
a Web cache responding to a request, which will thus not
be sent to the server. Since these scenarios are common in
the Web, it is important that they are robustly handled by
a newly introduced session management mechanism.

The design of SecSess explicitly takes modified request
flows into account, and effectively achieves full compatibil-
ity with currently deployed web caches, both within the
browser and on the intermediate network. First, by only
adding integrity protection, the caching of content is effec-
tively enabled. Second, SecSess is robust enough to deal
with out-of-order requests and cached responses, which is
fairly trivial once a session is established, but challenging
during establishment. If the client’s public component (re-
quest 2 in Figure 2) would get lost in transit, for exam-
ple when an intermediate cache responds to a request, the
server would not be able to complete the session establish-
ment, effectively breaking the protocol. Concretely, SecSess
addresses this by continuing to send the public component
as long as the server has not confirmed the session estab-
lishment (response 2 in Figure 2), effectively preventing it
from getting lost in a modified request flow. We discuss
the concrete impact of this decision during the performance
evaluation.

4. IMPLEMENTATION AND EVALUATION
To show the feasibility of SecSess on the Web, as well

as to support evaluation, we created a proof-of-concept im-
plementation2. At the client side, we have extended the
Firefox browser with support for SecSess, heavily leverag-
ing the support of OpenSSL’s crypto library. At the server
side, we have implemented a session management middle-
ware module for the Express framework, which runs on top
of Node.js, an event-driven bare metal web server. The mid-
dleware amounts to a mere 113 meaningful lines of code, and
a binary module linking the OpenSSL library is 178 mean-
ingful lines of code.

4.1 Security
The security evaluation of SecSess with regard to the

proposed in-scope threat model considers several concrete
attack vectors. A first is the capability to run attacker-
controlled scripts within the context of the target applica-
tion. A session hijacking or session fixation attack using this

2Removed for anonymization. If desired, our prototype can
be released to the reviewers through a request from the con-
ference chair.

attack vector will no longer succeed, since none of SecSess’s
data is available to the JavaScript environment. Addition-
ally, the Session request and response headers contain only
public information, of no use to an attacker.

Session transfer attacks can also be performed on the net-
work level. Eavesdropping attacks on the session manage-
ment mechanism are effectively mitigated by SecSess, since
the shared secret used for calculation of the HMACs is never
communicated over the wire, and the Hughes variant of the
Diffie-Hellman key exchange can withstand passive attacks.
Next to passive attacks, an attacker can also try to modify
existing requests, or re-attach a valid HMAC to a crafted re-
quest. Such attempts will fail as well, because the HMAC is
based on the contents of the request, effectively preventing
any modifications to go unnoticed.

4.2 Performance and Network Overhead
Figure 3 shows the performance overhead induced by Sec-

Sess on a session establishment timeline. To get correct
measurements, we calculated 100 data points for each step,
which contain the average computation time of 100 runs
each, executed from within JavaScript code, both on the
client-side (browser add-on) as the server side (Node.js)3.

Most notable results are the very limited overhead at the
client-side, especially after the session has been established
(from request 3 onwards). At the server side, there is a
significant pre-calculation overhead (212ms) for generating
the required parameters. This overhead is induced by the
Hughes variant of the Diffie-Hellman key exchange, which
requires the inverse of the server’s private component. Note
that these parameters are session-independent, and can be
pre-calculated offline in bulk, and read from a file on a per-
need basis. After the parameters have been calculated, the
additional overhead for actually establishing and maintain-
ing a session is negligible.

In a Web context, network overhead can be caused by
increased message sizes, but also by introducing additional
requests or round trips in the flow of requests. By design,
SecSess follows the same sequence of requests and responses
used in currently existing applications, which deploy cookie-
based session management mechanisms, so no additional re-
quests or round trips are required. For brevity reasons, we
can not go into much detail, but we have confirmed that,
compared to the sizes of cookies used on the top 5,000 sites,
SecSess leads to 25.58% reduction in the size of the ses-
sion management headers in requests, a 9.19% increase in
response headers after session establishment, and a 867.44%
increase in response headers during the brief stage of session
establishment, due to the transmission of the parameters to
generate the secret.

4.3 Compatibility with Web Caches
Web caches are widely deployed throughout the Web, en-

abling faster page loads and limiting the required band-
width. Caches are often deployed in a transparent way,
where they intercept HTTP traffic, and respond when they
have the resource in cache. When a cache responds to a
request, the request is never forwarded to the target server,
resulting in a modified request flow. A crucial property of a

3Experiments have been performed in a VirtualBox VM
(Linux Mint 15), which was assigned 1 Intel i7-3770 core
and 512 Mb of memory.

2174

Figure 3: SecSess adds an average 4.3 milliseconds to the session establishment. The first step, where the
shared secret is generated at the client side and the computation parameters are generated at the server side,
takes a bit longer, but can be pre-computed offline or during idle times.

newly proposed session management mechanism is the com-
patibility with currently deployed infrastructure.

SecSess is robustly designed to be compatible with such
modified request flows. We have confirmed this compati-
bility empirically by running experiments with two popular
caches, Squid [15] and Apache Traffic Server [17], config-
ured as a forwarding proxy. In our setup (Figure 4), we add
SecSess session management on top of the requests sent be-
tween the browser and the web servers of the Alexa top
1,000 sites. Since these servers do not know about Sec-
Sess, we have added a dedicated SecSess-proxy in between,
which will handle the SecSess session management with the
browser (full arrows), while forwarding the request to the ac-
tual web server (dashed arrows). Finally, we add the cache
in between the browser and the SecSess-proxy. This setup
allows us to test the establishment and maintaining of a
session with traffic patterns from the Alexa top 1,000 sites.
Additionally, when the cache responds to a request, the Sec-
Sess-proxy will never see the request. This effectively allows
us to verify the robustness of SecSess when dealing with
modified request flows. The results are shown in Figure 5.

To maximize the potential of the cache, we visited each
site in the Alexa top 1,000 twice. For the Squid run, 52,947
requests were sent to 5,167 distinct hosts. Of these requests,
5,008 were cached, of which 830 during session establish-
ment, and 4,178 when an established session was already
present. For the Apache Traffic Server run, we observed
44,173 requests to 4,660 hosts in total, of which 4,263 were
served from the cache. 1,169 cached responses occurred dur-
ing session establishment, and 3,094 with an established ses-
sion. During these requests, SecSess robustly handled ses-
sion management, without losing an established session, or
failing to establish a session.

5. RELATED WORK
Related work offers several proposals to tackle the cur-

rent session management problems. While these approaches
offer significant benefits over traditional cookie-based mech-
anisms, they are typically not interchangeable, thereby hin-
dering deployment on legacy code or within development
frameworks. Additionally, many of the proposals depend on
the presence of a TLS-channel, and do not withstand passive
network attacks when such a channel is unavailable.

SessionLock [1] uses a JavaScript library to augment re-
quests with an HMAC based on a shared session secret. The
session secret is established over a TLS channel and stored in
a secure cookie. For HTTP pages, it is stored in the fragment
identifier, a part of the URL that is never sent over the net-
work. SessionLock also supports a non-TLS scenario, where
the client performs an out-of-band Diffie-Hellman key ex-
change with the server. While the idea behind SessionLock
is similar to the idea behind SecSess, the implementation
differs significantly. The implementation as a JavaScript li-
brary not only fails to protect against script-based attacks,

Figure 4: The setup of the cache compatibility ex-
periment, for browsing the Alexa top 1,000.

but also requires significant changes to existing applications,
as all requests have to be made through AJAX calls.

BetterAuth [9] is an authentication protocol for web appli-
cations, offering protection against several attacks, includ-
ing network attacks, phishing and cross-site request forgery.
BetterAuth considers a user’s password to be a shared se-
cret, and uses that shared secret to agree on a session secret
over an insecure channel. The session secret is used to sign
requests, offering authenticity. BetterAuth offers strong se-
curity properties, and is even capable of protecting against
man-in-the-middle attacks. However, BetterAuth requires
TLS for the initial exchange of the password, as well as the
modification of existing applications. Additionally, Better-
Auth depends on the password, it is incompatible with cur-
rent third-party authentication services.

The HTTP Integrity Header [8] is an expired draft propos-
ing to add integrity protection to HTTP, which includes
a session management mechanism. The header depends
on a key exchange, either over TLS or with a traditional
Diffie-Hellman exchange, after which the integrity of the se-
lected parts of a message is protected. The HTTP Integrity
header actually shares the same idea as SecSess, using a
shared secret for session management and integrity proper-
ties. However, the HTTP Integrity header uses the origi-
nal Diffie-Hellman protocol, which only establishes a secret
at the client after the first request and response have been
exchanged. This leaves the setup phase of the session vul-
nerable to passive network attacks. Additionally, the HTTP
Integrity header does not account for the adverse effects of
caches or out-of-order requests during session establishment.

One-Time Cookies [4] proposes to replace the static ses-
sion identifier with disposable tokens per request, similar
to the concept of Kerberos service tickets. Each token can
only be used once, but using an initially shared secret, ev-
ery token can be separately verified and tied to an existing
session. To share the initial credential, One-Time Cookies
depends on the use of TLS during the authentication phase.
One-Time Cookies would be a good replacement for tradi-
tional cookie-based session management mechanisms. How-
ever, since the initialization must be done over TLS, it loses
its security properties when deployed for applications that
only use HTTP, making a short-term deployment infeasible.

2175

Figure 5: The results of the cache compatibility ex-
periment, for browsing the Alexa top 1,000.

Origin-Bound Certificates (OBC) [6] is an extension for
TLS, that establishes a strong authentication channel be-
tween browser and server, without falling prey to active
network attacks. Within this secure channel, TLS-OBC sup-
ports the binding of cookies and third-party authentication
tokens, which prevents the stealing of such bearer tokens.
TLS-OBC offers strong security guarantees, and is able to
eliminate the bearer token-properties of sensitive cookies.
However, since TLS-OBC obviously depends on a TLS-only
deployment, it is not a feasible solution for securing current
and future HTTP deployments.

6. CONCLUSION
The currently deployed cookie-based session management

mechanisms are extremely vulnerable to an unauthorized
transfer of an established session. Advocated best practices
mitigate part of the problem, but fail to eradicate the un-
derlying cause of these attacks, the bearer token proper-
ties of the session identifier. We have proposed SecSess, a
lightweight session management mechanism that prevents
unauthorized session transfers, and is explicitly designed
to be compatible with the current Web, a feature lacking
from alternative proposals. SecSess preserves the flow of
requests observed today with cookie-based session manage-
ment mechanisms, hence SecSess is compatible both with
current infrastructure as with current web applications, as
illustrated by an empirical evaluation on the top 1,000 sites.
Finally, we have shown that SecSess can be easily imple-
mented in browsers, enabling a fast, wide-scale deployment.

Acknowledgements
This research is partially funded by IWT, the Research Fund
KU Leuven, the IWT-SBO project SPION, and by the EU
FP7 project STREWS. With the financial support from the
Prevention of and Fight against Crime Programme of the
European Union (B-CCENTRE).

7. REFERENCES
[1] B. Adida. Sessionlock: securing web sessions against

eavesdropping. In Proceedings of the 17th international
conference on World Wide Web, pages 517–524, 2008.

[2] N. J. AlFardan and K. G. Paterson. Lucky thirteen:
Breaking the tls and dtls record protocols. In IEEE
Symposium on Security and Privacy, 2013.

[3] S. Calzavara, G. Tolomei, M. Bugliesi, and S. Orlando.
Quite a mess in my cookie jar!: leveraging machine
learning to protect web authentication. In Proceedings
of the 23rd international conference on World wide

web, pages 189–200. International World Wide Web
Conferences Steering Committee, 2014.

[4] I. Dacosta, S. Chakradeo, M. Ahamad, and
P. Traynor. One-time cookies: Preventing session
hijacking attacks with stateless authentication tokens.
ACM Transactions on Internet Technology (TOIT),
12(1):1, 2012.

[5] P. De Ryck, N. Nikiforakis, L. Desmet, F. Piessens,
and W. Joosen. Serene: self-reliant client-side
protection against session fixation. In Distributed
Applications and Interoperable Systems, pages 59–72.
Springer, 2012.

[6] M. Dietz, A. Czeskis, D. Balfanz, and D. S. Wallach.
Origin-Bound Certificates : A Fresh Approach to
Strong Client Authentication for the Web. In Proc.
21st USENIX Security Symposium, 2012.

[7] D. Eastlake 3rd. Transport layer security (TLS)
extensions: Extension definitions. RFC 6066, 2011.

[8] P. Hallam-Baker. Http integrity header. Online at
http://tools.ietf.org/html/draft-hallambaker-
httpintegrity-02,
2012.

[9] M. Johns, S. Lekies, B. Braun, and B. Flesch.
BetterAuth: Web Authentication Revisited. In
Proceedings of the 28th Annual Computer Security
Applications Conference, pages 169—-178, Dec. 2012.

[10] A. Langley, N. Modadugu, and W. Chang.
Overclocking ssl. In Velocity: Web Performance and
Operations Conference, 2010.

[11] N. Nikiforakis, W. Meert, Y. Younan, M. Johns, and
W. Joosen. Sessionshield: lightweight protection
against session hijacking. Engineering Secure Software
and Systems, pages 87–100, 2011.

[12] M. Nottingham. Opportunistic encryption for HTTP
URIs. 2013.

[13] B. Schneier. Applied cryptography: protocols,
algorithms, and source code in C. John Wiley & sons,
2007.

[14] M. Schrank, B. Braun, M. Johns, and J. Posegga.
Session fixation–the forgotten vulnerability?
Proceedings of GI Sicherheit, 2010, 2010.

[15] Squid Project Maintainers. squid: Optimising Web
Delivery. Online at http: // www. squid-cache. org/ ,
2014.

[16] TechNoesis. 4 ways to prevent duplicate form
submission. Online at http: // technoesis. net/
prevent-double-form-submission/ , 2013.

[17] The Apache Software Foundation. Apache Traffic
Server. Online at
http: // trafficserver. apache. org/ , 2014.

[18] J. Williams and D. Wichers. Owasp top 10. OWASP
Foundation, 2013.

2176

	MAIN MENU
	Help
	Search
	Print
	Author Index
	Keyword Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20150225104856
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Left
 7.2000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 23.40 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 23.4000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryList_V1
 qi2base

