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Abstract

In Bayesian model updating, probability density functionsof model parameters are updated
accounting both for the information contained in the data and for uncertainties present in the
measurements and model predictions, requiring a probabilistic model for the error between pre-
dictions and observations. Most often, a zero-mean uncorrelated Gaussian prediction error is
assumed, although in many engineering applications prediction errors will show non-negligible
spatial and/or temporal correlation (e.g. when densely populated sensor grids are used). In this
paper, the effect of prediction error correlation on the results of the Bayesian model updating
scheme is studied, and it is investigated how the challenging task of selecting a suitable predic-
tion error correlation structure can be addressed appropriately. In two illustrative applications,
it is demonstrated that Bayesian model class selection can be effectively applied to this end,
ensuring more realistic modeling and corresponding Bayesian model updating results.

Keywords: Bayesian inference, uncertainty quantification, parameter estimation, model
updating, prediction error correlation, model class selection, modeling error

1. Introduction

Model updating (often also referred to asparameter estimation) is a problem commonly en-
countered in many science and engineering fields. Generallyspeaking, model updating aims to
reconstruct or calibrate unknown functions or properties which appear as parameters in numer-
ical models, based on observed behavior of the system of interest. For instance, in structural
engineering, finite element (FE) model updating [1, 2] is often applied for structural damage as-
sessment, where damage in civil structures is identified by calibrating stiffness parameters based
on observed modal characteristics such as eigenfrequencies and mode shapes [3].

The deterministic model updating process consists of solving an inverse problem, i.e. finding
the optimal parameters of a model such that the best possiblefit is obtained between the model
output and the observed data. This is usually accomplished by formulating the problem as a
constrained optimization problem, where the objective is to minimize the discrepancy between
computed and measured data. In many cases, however, this optimization problem is ill-posed,
meaning that uniqueness, stability and even existence of the solution of the inverse problem
cannot be guaranteed. This is a non-negligible issue in model updating, as the model predictions
and measured data are always subject to errors and limitations. In the context of model updating,
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these errors are often categorized intomodeling errorson the one hand, i.e. errors related to the
model predictions, andmeasurement errorson the other hand. Accounting for these uncertainties
and studying their effect on the results of the FE model updating scheme is therefore an important
and indispensable undertaking.

One possible approach to incorporate uncertainty on the observations and model predictions
into the FE model updating process is to adopt a probabilistic scheme based on Bayesian infer-
ence [4–9]. Using the well-known Bayes theorem, a prior PDF reflecting the prior knowledge
about the parameters is transformed into a posterior PDF, accounting both for uncertainty in the
prior information as well as for uncertainty in the experimental data and FE model predictions.
This transformation is done through the so-called likelihood function, which reflects how well
the FE model can explain the observed data. The likelihood function is computed using the
probabilistic model of the prediction error (i.e. the discrepancy between model predictions and
observations).

Effective application of the Bayesian FE model updating technique in practice requires (1)
the selection of a suitable joint prior PDF and (2) the selection of a suitable likelihood function
or prediction error model. The first of these topics has been documented extensively in literature
[10–12]; however, much less attention has been given to the latter, as it is usually assumed that the
probabilistic model of the prediction error is known. In most cases, anuncorrelatedzero-mean
Gaussian error is adopted, e.g. in [13–21], in correspondence with the Principle of Maximum
Entropy [22, 23]. However, in many structural engineering applications, data and corresponding
prediction errors are most likely correlated in space (whendense sensor grids are used, e.g. for
optical measurement techniques), in time (when high sampling frequencies are used), or both
in space and in time [24]. This means the assumption of an uncorrelated prediction error is not
always realistic. In this paper, it is investigated how correlation can be properly accounted for in
Bayesian model updating.

Section 2 provides a brief overview of the Bayesian inference scheme for parameter estima-
tion, and recalls some asymptotic expressions for the posterior PDF. In section 3, it is investigated
how prediction error correlation can be accounted for in theBayesian scheme, and how correla-
tion affects the results of the Bayesian inference methodology. Furthermore, attention is given to
the non-trivial task of selecting a suitable correlation model, as in most cases very little informa-
tion is available on the specific correlation structure of the modeling error. It is demonstrated how
Bayesian model class selection and the estimation of error parameters as well as model param-
eters can be employed to this end. In section 4, Bayesian model class selection is successfully
applied to a simple linear regression analysis; in Section 5, a more realistic structural mechanics
application is considered, where the method is shown to be equally effective.

2. Bayesian parameter estimation

This section presents the Bayesian updating methodology, starting with some preliminary
specifications of the basic framework concerning model classes and uncertainties.

2.1. Uncertainty in parameter estimation

In general terms, a modelMM(θM) belonging to the model classMM provides a mapping
from the parametersθM to an output vectorGM(θM) ∈ RN through the transfer operatorGM:

MM(θM) : θM 7→ GM(θM) (1)
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In the ideal case, the model outputGM(θM) corresponds perfectly to the true system outputd,
i.e.GM(θM) = d. This is the main starting point for deterministic parameter identification, where
the objective is to determine the model parametersθM for a given set of observed system outputs
d. However, the equalityGM(θM) = d is only valid when it is assumed that the underlying
fundamental physics of the system are fully known. This is ofcourse never the case, as no
model is capable of perfectly representing the behavior of the true physical system. A modeling
errorηG is therefore always present, and can be described as the discrepancy between the model
predictionsGM(θM) and the true system outputd, i.e.ηG = d −GM(θM).

As the true system output has to be measured and processed experimentally, the datad are
always subject to measurement error, resulting in a discrepancy between the true system outputd
and the actually observed datad̃. This difference is defined as the measurement errorηD = d̃−d.
Eliminating the unknown true system outputd from the error equations and collecting both errors
on the right hand side of the equation yields:

d̃ −GM(θM) = ηG + ηD = η (2)

The sum of both errors is equal to the total observed prediction errorη, defined as the difference
between the model predictions and the observed quantities.The above expressions serve as a
starting point for the Bayesian uncertainty quantificationmethod.

2.2. Bayesian inference methodology

The general principle of Bayesian parameter estimation is that the model parametersθM ∈
R

NM that parameterize model classMM are modeled as random variables, i.e. probability density
functions (PDFs) are appointed to these parameters, which are updated in the inference scheme
based on the available information. Measurement and modeling uncertainty are taken into ac-
count by modeling the respective errors as random variablesas well: PDFs are appointed to
ηG andηD, which are parametrized by parametersθG ∈ R

NG andθD ∈ R
ND . These parame-

ters are added to the structural model parametersθM to form the general model parameter set
θ = {θM , θG, θD}T ∈ R

Nθ . This in fact corresponds to adding two probabilistic modelclasses to
the structural model classMM to form ajoint model classM =MM ×MG ×MD, parametrized
by θ. It has to be noted here that introducing a probabilistic model for the errors is only one
of several possible approaches for probabilistic modelingof the uncertainties; alternatively, one
could revert to non-parametric approaches [25, 26] acting directly on the operators of the model
(e.g. making use of random matrix theory [27, 28]), orgeneralizedprobabilistic approaches [29]
that combine parametric and non-parametric approaches.

To express the updated probabilities of the unknown parametersθ, given some observations
d̃ and a certain joint model classM, Bayes’ theorem is used:

p(θ | d̃,M) = c p(d̃ | θ,M) p(θ | M) (3)

wherep(θ|d̃,M) is the updated or posterior PDF of the model parameters given the measured
datad̃ and the assumed model classM; c is a normalizing constant that ensures the posterior
PDF integrates to one;p(d̃|θ,M) is the PDF of the observed data given the parametersθ; and
p(θ|M) is the initial or prior PDF of the parameters. In the following, the explicit dependence on
the model classM is omitted in order to simplify the notations.

The prior PDFp(θ) reflects the probability of model parametersθ in the absence of mea-
surement results. In many cases, the prior PDF is chosen based on engineering judgment or on
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computational tractability (e.g. conjugate priors [30]).Except in cases where a large amount of
data is at hand, the prior PDF most often has a significant influence on the Bayesian updating
results. A wide range of methods has been developed to obtain“objective” prior PDFs based on
the given prior information. One of the most commonly used approaches in this respect is the
method based on the Maximum Entropy Principle [22, 23], which determines the prior PDF that,
given the current state of prior information, results in maximum entropy.

The PDF of the experimental datap(d̃|θ) can be interpreted as a measure of how good a model
succeeds in explaining the observationsd̃. As this PDF reflects the likelihood of observing the
datad̃ when the model is parameterized byθ, it is also referred to as thelikelihood function
L(θ|d̃). Since the data set̃d is fixed, this function in fact no longer represents a conditional
PDF, and can be denoted asL(θ; d̃); in the following, however, the common notation ofL(θ|d̃)
is pertained. The likelihood function reflects the contribution of the measured datãd in the
determination of the updated PDF of the model parameters, and may be determined according
to the Total Probability Theorem in terms of the probabilistic models of the measurement and
modeling errors:

p(d̃ | θ) ≡ L(θ | d̃) =
∫

RN
pd̃(d̃ | θ, d) pd(d | θ) dd (4)

=

∫

RN
pηD(d̃ − d | θD) pd(d | θ) dd (5)

=

∫

RN
pηD(d̃ − d | θD) pηG(d −GM(θM) | θG) dd (6)

wherepηD (d̃ − d|θD) corresponds to the probability of obtaining a measurementerrorηD, given
the PDF ofηD parameterized byθD, and wherepηG(d−GM(θM)|θG) represents the probability of
obtaining a modeling errorηG when the PDF ofηG is known and parameterized byθG. Here, it
is implicitly assumed that the modeling error and measurement error are independent variables.

The above equations show that the likelihood function can becomputed as the convolution
of the PDFs of the measurement and modeling error. When no information is available on the
individual errors, as is most often the case, the likelihoodfunction can be simply constructed
using the probabilistic model of the total prediction errorη, parameterized byθη:

p(d̃ | θ) ≡ L(θ | d̃) = p(η | θη) (7)

When the prior PDF and likelihood function are determined, Eq. (3) allows for the updating
of the PDFs of the model parameters based on experimental observations of the system. For most
practical applications where multiple parameters are involved, computing the joint and marginal
PDFs requires solving high-dimensional integrals, therefore use is often made of approximative
measures (Section 2.3) or sampling methods such as the Markov Chain Monte Carlo (MCMC)
method [31] and its derivatives, e.g. Delayed-Rejection Adaptive Metropolis-Hastings MCMC
[32], the adaptive MCMC method [33] and Transitional MCMC [34]. For some particular cases,
the posterior PDF can be determined analytically; in Appendix A, the posterior PDF is elaborated
for a linear prediction model and a Gaussian prediction error and Gaussian prior PDF.

2.3. Asymptotic approximation of the posterior PDF

Provided sufficient data are at hand, asymptotic expressions for the posterior PDF form a cost-
effective alternative to computationally demanding methods (e.g. MCMC sampling). Moreover,
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the approximations can be employed for validation of results obtained by other approaches or as
a way to perform an initial reconnaissance of the posterior updating results.

When a large amount of data is available, the posterior PDF can be approximated asymptoti-
cally by a Gaussian PDF centered at the Maximum A Posteriori (or MAP) point and characterized
by covariance matrix̂Σθ,po [4, 35]:

p(θ | d̃) ≈ N(θ̂MAP, Σ̂θ,po) (8)

The MAP estimate is defined as the parameter set that maximizes the posterior PDF, or, equiva-
lently, minimizes the negative log posterior PDF:

θ̂MAP = arg min
θ

{

− logL(θ | d̃) − log p(θ)
}

= arg min
θ

JMAP (9)

Analogously, the Maximum Likelihood (or ML) estimate and Maximum A Priori (or MAPr)
estimate are defined as the parameter sets that minimize the ML and prior objective functions,
JML = − logL(θ | d̃) andJMAPr = − log p(θ), respectively.

The approximate covariance matrixΣ̂θ,po is computed as the inverse Hessian of the MAP
objective functionJMAP, evaluated in the MAP point:

Σ̂
−1
θ,po = ∇2

θJMAP(θ̂MAP) (10)

In many optimization algorithms, the Hessian in Eq. (10) is computed as a by-product in the
optimization of expression (9).

2.4. Relation to information entropy

The posterior information entropy is often used as a measureof the resulting uncertainty in
the Bayesian estimates of the model parameters. It is definedas:

hpo = E[− log p(θ | d̃)]po (11)

whereE[·]po denotes the expected value with respect to the posterior PDF. When the asymptotic
expression in Eq. (8) is valid, the posterior entropy may be approximated as:

hpo ≈
1
2

log
[

(2πe)Nθ detΣ̂θ,po

]

(12)

3. The prediction error correlation model

In most practical applications, very little information isavailable concerning the probabilis-
tic model representing the prediction error, therefore an uncorrelated Gaussian prediction error
is usually adopted in correspondence with the principle of Maximum Entropy [22]. It can some-
times be suspected, however, that correlation is present inthe prediction error, e.g. spatial cor-
relation in the case of densely spaced sensor grids or temporal correlation when high sampling
frequencies are used to obtain experimental data. In those cases, it is important to account for
this correlation, as it can be expected that correlated datado not provide the same information
content compared to uncorrelated data [36].

In this section, it is first investigated how correlation in the prediction error affects the re-
sults of the Bayesian inference methodology, in general andmore specifically for a Gaussian
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prediction error. Subsequently, attention is given to the challenging task of selecting a suitable
correlation structure.

3.1. Influence of correlation on the Maximum Likelihood estimate

When a Gaussian prediction error is assumed, the likelihoodfunction in Eq. (7) simplifies to:

L(θ | d̃) = K−1 exp

[

−1
2
ηT
Σ
−1
η η

]

(13)

whereK = (
√

2π)N(detΣη)1/2. Improved insight into this expression for the likelihood can be
obtained by reformulating the covariance matrix using an eigenvalue decomposition as follows:

Ση = VDVT (14)

whereD is a diagonal matrix containing theN eigenvaluesλ j of Ση as its diagonal elements, and
whereV is an orthogonal matrix containing the corresponding eigenvectors. The eigenvalues are
equal to the squares of the singular values of the covariancematrix, i.e.λ j = s2

j . The likelihood
function in Eq. (13) can now be reformulated as:

L(θ | d̃) =
N

∏

j=1

k−1
j exp















−1
2

(ηTV j)2

s2
j















(15)

with k j =
√

2πsj and corresponding ML objective function:

JML = − logL(θ | d̃) =
N

∑

j=1















logk j +
1
2

(ηTV j)2

s2
j















(16)

where logk j =
1
2 log(2π) + log sj , and whereV j denotes thej-th column ofV or the j-th eigen-

vector ofΣη. It is clear that the likelihood function can be interpretedas the product ofN
independent 1-dimensional zero-mean Gaussian densities of ηTV j with variancess2

j = λ j . In the
ML objective function – which is a generalized least squaresobjective function – the eigenval-
ues of the covariance matrix are the weighting factors appointed to the projectionsηTV j of the
prediction errorη onto the eigenvectorsV j .

For an uncorrelated prediction error, the eigenvectors areunit vectors, which means the error
components in the ML objective function are simply squared,and weighted by their appointed
variances. For a correlated error, however, the error components are first recombined through
the eigenvectors, and then weighted by the eigenvalues of the covariance matrix, indicating that
introducing correlation leads to a recombination of the available data.

3.2. Influence of correlation on the Maximum A Posteriori estimate

As shown above, including correlation changes the weighting of the residuals and how the
residuals are constructed. This also implies that, for the posterior PDF, the weighting of the data
(represented by the likelihood function) is altered compared to the prior information. This can
be illustrated by considering the objective function that should be minimized to obtain the MAP
estimate in Eq. (9).
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Assuming a zero-mean Gaussian prediction error withN = 2 data points and a prediction
error covariance matrix as follows:

Ση = σ
2
η

[

1 c
c 1

]

=
1
√

2

[

1 −1
1 1

] [

σ2
η(1+ c) 0

0 σ2
η(1− c)

]

1
√

2

[

1 −1
1 1

]T

(17)

leads to the following MAP objective function:

JMAP = JML + JMAPr = logk1 +
(η1 + η2)2

4σ2
η(1+ c)

+ logk2 +
(−η1 + η2)2

4σ2
η(1− c)

+ JMAPr (18)

= JML ,uncorr+ log(1− c2) +
c2(η2

1 + η
2
2) − 2cη1η2

2σ2
η(1− c2)

+ JMAPr (19)

whereJML ,uncorr denotes the ML objective function for a covariance matrix asin Eq. (17) with
c = 0. This expression clearly shows the difference in weighting of the data residuals caused by
the introduction of the correlation. Note that introducingcorrelation does not necessarily lead to
a lower weight on the likelihood function, as the sign of the third term in the above expression
depends on the signs and magnitude of the errors and the correlation coefficient.

3.3. Influence of correlation on the posterior covariance matrix

Suppose again a Gaussian prediction error and prior PDF, anda linear prediction model
such thatGM(θ) = JGθ. Elaborating the posterior PDF for this case and using the eigenvalue
decomposition in Eq. (14) leads to the following expressionfor the inverse posterior covariance
matrix of the parameters (Appendix A):

Σ
−1
θ,po = JT

GΣ
−1
η JG + Σ

−1
θ,pr =

(

VTJG

)T
D−1

(

VTJG

)

+ Σ−1
θ,pr =

N
∑

j=1

(

JT
GV j

)2

s2
j

+ Σ−1
θ,pr (20)

It is interesting to note that, for this particular case, theobserved data does not enter into this
expression, i.e. the posterior covariance matrix is completely determined by the prior covariance,
the prediction error covariance and the sensitivities inJG.

For a single-parameter example, with a correlation matrix as defined in Eq. (17), and a lin-
ear prediction model characterized byJG = [g1, g2]T, the posterior parameter variance can be
determined according to Eq. (20) as:

σ2
θ,po =















(g1 + g2)2

2σ2
η(1+ c)

+
(−g1 + g2)2

2σ2
η(1− c)

+
1

σ2
θ,pr















−1

(21)

In order to investigate the influence of the correlation coefficientc, the prediction model is taken
equal toJG = [1,−0.5]T, and the variancesσ2

η andσ2
θ,pr are set to 0.42 and 1.42, respectively ;

in Figure 1 the corresponding posterior varianceσ2
θ,po is plotted as a function ofc. This figure

indicates that the posterior variance shows a distinct maximum, which is located atc = g2/g1 =

−0.5 in this case whereg1 > g2. Wheng1 < g2, the maximum would be located atc = g1/g2;
wheng1 = g2, no distinct maximum is present asσ2

θ,po becomes a linear function ofc. As the
posterior parameter entropy is here directly proportionalto the posterior variance (see Eq. (12)),
this maximum denotes the maximum entropy point. Note that the maximum is only located atc =
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Figure 1: Posterior variance ofθ as a function of the correlation coefficient c. The dashed line denotes the posterior
variance forc = 0.

0 (corresponding to an uncorrelated prediction error) whenone of the sensitivities becomes zero.
These observations imply that adopting an uncorrelated likelihood function (which corresponds
to maximum entropy with respect to theprediction error) does not automatically lead to the
highest variance regarding the posterior model parameter values. When correlation is present
in the prediction errors, it is therefore not always conservative (with respect to the posterior
estimates) to assume an uncorrelated error.

The posterior variance is found to be larger compared to the uncorrelated case for values of
c in the following range:

0 ≤ |c| ≤ 2|g1g2|
g2

1 + g2
2

(22)

wherec should have the same sign as the productg1g2. This condition suggests that quantities
with sensitivities with opposite signs should be negatively correlated (and vice versa) in order
to obtain higher posterior entropy. In this respect, it is interesting to note that, although one
would intuitively expect that a correlated prediction error leads to lower information content
and higher uncertainties, this appears to be not at all the case. Knowledge on the correlation
between data points or errors may prove more informative andsubsequently may result in a lower
posterior uncertainty. This can also be observed in the limit case of full correlation (i.e.c → 1
or−1), where zero posterior parameter variance is found due to azero singular value in Eq. (17).
This corresponds to a known zero variance for one of the linear prediction error combinations,
meaning that the parameter can be determined unambiguously.

All these findings indicate that prediction error correlation not only affects the location of the
ML and MAP estimates, but moreover has an important effect on the posterior uncertainty of the
parameters of interest. This implies that the selection of asuitable prediction error correlation
model is a non-trivial and challenging task, especially in the common case where little or no
information is available on the specific nature of the error.In the next subsection, it is elaborated
how Bayesian model class selection can be used as an effective tool in selecting an appropriate
correlation model class for the prediction error, based on the available information.

3.4. Accounting for correlation in the prediction error

When it is suspected that the prediction errors are correlated and one wishes to account for
it in the Bayesian scheme, the challenge remains in selecting a suitable correlation structure,
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especially as usually very little is known regarding the correlation. Then, it may be opted to
simply assume a certain correlation model; in practice, correlation functions of the exponential
family are often used [8, 37, 38]. Provided that sufficient observational data are available, as well
as some basic knowledge regarding the correlation structure, error parameters characterizing the
correlation model can be included in the Bayesian scheme in order to estimate them simultane-
ously with the other model parameters. In this paper, it is suggested to apply Bayesian model
class selection [39] in order to compare different possible correlation model classes and select
the model that best suits the data at hand, thus avoiding the need for information regarding the
correlation structure. In this section, a brief overview ofthe model class selection approach is
given.

3.4.1. Bayesian model class selection
The Bayesian inference scheme can be applied at model class level in order to assess the

plausibility of several alternative prediction error model classesMη,i , or more generally model
classesMi , using observed data [39, 40]. For a setM of NC candidate model classesMi , the
posterior probability of each model classMi is given by Bayes’ theorem as:

P(Mi | d̃,M) =
p(d̃ | Mi) P(Mi |M)

p(d̃ |M)
(23)

whereP(Mi |M) is the prior probability of each model classMi. The factorp(d̃ | Mi) denotes
the model class likelihood or theevidencefor the model classMi provided by the datãd, and
can be determined based on the Total Probability Theorem as:

p(d̃ | Mi) =
∫

DMi

p(d̃ | θi ,Mi) p(θi | Mi) dθi (24)

whereθi is the parameter vector in a parameter spaceDMi that defines each model inMi . Note
that the evidencep(d̃ | Mi) is equal to the reciprocal of the normalizing constantc in the general
Bayes’ theorem in Eq (3).

As usually equal prior model class probabilities are adopted, it suffices to compute the evi-
dence values for all model classes and ranking them accordingly. Then, the most probable model
class – according to the available data – corresponds to the model class with the highest evidence
value. The actual computation of the evidence values poses,however, a challenging problem
in most practical applications, as it entails computing a complex and usually high-dimensional
integral. To overcome this problem, asymptotic approximations can be applied [35, 41], or, al-
ternatively, methods based on stochastic simulation may beused, e.g. approaches using MCMC
samples of the posterior PDF [42, 43], or multi-level MCMC methods such as TMCMC [19, 34]
or nested sampling [44].

3.4.2. Model parsimony
It can be shown [45, 46] that applying a Bayesian inference scheme at the model class level

automatically enforces model parsimony. Using Bayes’ theorem and the fact that the posterior
PDF integrates to one, the logarithm of the evidence in Eq. (24) can be reformulated and ex-
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panded as:

log p(d̃ | Mi) = LE = E

[

log p(d̃ | θi ,Mi)
]

po
− E

[

log
p(θi | d̃,Mi)
p(θi | Mi)

]

po

(25)

= LEdata− DKL = LEdata+ LEoccam (26)

The first term in the above log evidence (LE) expression is theposterior mean value of the log
likelihood function, termed LEdata, which gives a measure for the average data fit for the model
classMi . The second term is the Kullback-Leibler divergence or relative entropyDKL between
the prior and the posterior PDF. This term gives a measure forthe difference between the prior
and posterior PDF, i.e. it is a measure for the information that is gained from the observationsd̃.
It can be shown [39, 45] that this term is always non-negativeand increases when the number
of model parameters in the model class increases. Therefore, this term penalizes more complex
models that extract more information from the data, thus eliminating the need for ad-hoc penalty
terms. In the following, the negative of this term is denotedas the Occam term LEoccam, as it
enforces the well-known Occam simplicity principle.

For a linear prediction model and a Gaussian prediction error and prior PDF, it can be verified
(Appendix B) that the following expressions for the data fit term LEdata and the Occam term
LEoccamare valid:

LEdata= E

[

log p(d̃ | θi ,Mi)
]

po
= log

[

p(d̃ | θpo,i ,Mi)
]

− 1
2

Tr
{

I − Σ−1
θ,prΣθ,po

}

(27)

LEoccam= −E
[

log
p(θi | d̃,Mi)
p(θi | Mi)

]

po

= log p(θpo,i | Mi) −
1
2

Tr
{

Σ
−1
θ,prΣθ,po

}

+ hpo (28)

whereθpo,i is the posterior expected valueE[θi ]po of the parameter setθi , which can in this case
be computed according to Eq. (A.1);hpo denotes the information entropy of the posterior PDF,
which in this case can be computed using Eq. (12). In many applications, the trace terms in the
above expressions are of negligible magnitude compared to the other terms.

In cases where it can be assumed that the posterior PDF is close to Gaussian (Section 2.3),
the approximative expressions in Eqs. (9) and (10) may be used to approximate the posterior
mean value and covariance matrix. These quantities can be introduced into the expressions (27)
and (28) above in order to approximate the terms LEdataand LEoccam.

3.4.3. Applying model class selection for the prediction error model
In general, it can be stated that when a limited amount of information is available regarding

the prediction error correlation, it is desirable to make asfew assumptions as possible in order to
avoid biased results. Therefore, it is suggested to select asubstantial set of alternative prediction
error correlation model classesMη,i based on the information at hand. When some information
is available on the prediction error, these model classes may for instance be very similar but of
increasing complexity; however, when very little is known regarding the prediction error, a range
of possible model classes with a wide variety of properties may be selected.

In order to select the most probable model class from the set of alternative model classes, the
log evidence values LE are computed for all model classes, and by comparing the associated data
fit LEdata and Occam values LEoccam. As mentioned above, the data fit term yields insight into
how well the joint model class is able to fit the data, whereas the Occam term provides a measure
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for how much information was gained from the data, which roughly corresponds to how much
the uncertainty has decreased through the data.

The efficacy of the Bayesian model class selection approach for differentiating between pre-
diction error model classes will be demonstrated below in two applications: a very simple ana-
lytical example allows for improved insight into the workings of the approach and its associated
difficulties, whereas a second example concerns a more realisticengineering application.

4. Analytical example: linear regression problem

In this section, the proposed approach is applied to a simplelinear regression problem that
consists of estimating two parameters,α andβ, using some measured dataỹ obtained atN ob-
servation pointsx and where the prediction model is given as:

G(θM) = JGθM =
[

x 1
]

[

α

β

]

(29)

4.1. Simulated data

The datãy are simulated by superimposing a correlated errorη∗ on the exact datay = JGθ
∗
M ,

where the true parameter valuesα∗ andβ∗ are equal to 0.5 and 1.5, respectively. The prediction
error η∗ is assumed to have a zero-mean Gaussian distribution, characterized by a covariance
matrixΣ∗η defined as (σ∗)2C∗η whereσ∗ = 0.15. An exponential correlation function is assumed
for the correlation matrixC∗η, such that:

[C∗η] i j = exp

(

−
∆i j

ℓ∗

)

(30)

In this equation,∆i j represents the distance between two observation pointsi and j, here equal to
|xi − x j |, and whereℓ is the correlation length, with true valueℓ∗ = 0.8.

With these expressions,ND = 50 sets ofN = 20 data points withx-values equally spaced in
the interval (1, 5) are simulated. In order to assess the influence of data availability, the compu-
tations are performed for an increasing number of data sets.For illustration purposes, the data
setsỹ are shown in Figure 2, as well as the true modelGM(θ∗M).

1 2 3 4 5
1.5

2

2.5

3

3.5

4

4.5

x

y

Figure 2: All data sets used in the analysis, where large dotsdenote the first data set. The solid line reflects the true
modelGM(θ∗M).

11



4.2. Prediction error model classes

Four alternative zero-mean Gaussian model classes are selected for the prediction error cor-
relation structure: an uncorrelated model class (A), a model class with an exponential correlation
function (B), a model class with a spherical correlation function (C) and a model class with
an exponentially damped cosine correlation function (D). The covariance matrices of these four
model classes are of increasing complexity, and are described as follows:

[ΣA
η ] i j = (θAη,1)

2I (31)

[ΣB
η ] i j = (θBη,1)

2 exp















−
∆i j

θB
η,2















(32)

[ΣC
η ] i j = (θCη,1)

2

















1− 3
2















∆i j

θC
η,2















+
1
2















∆i j

θC
η,2















3














(33)

[ΣD
η ] i j = (θDη,1)

2 exp















−
∆i j

θD
η,2















cos(θDη,3∆i j ) (34)

In these equations, parametersθη,1 are the prediction error standard deviations,θη,2 denote cor-
relation lengths andθη,3 corresponds to the correlation wavenumber that determineswhere the
zeros of the cosine in Eq. (34) are located. The true model class corresponds to model class B
with an imposed standard deviation ofθB

η,1 = 0.15 and a correlation lengthθB
η,2 = 0.8.

In the following, the Bayesian inference scheme is applied to estimate the model parameters
θM = {α, β}T and the prediction error parametersθη; moreover, the most suitable correlation
model will be searched by applying Bayesian model class selection. In order to demonstrate the
importance of choosing a suitable correlation model, the prediction error parameters are taken
fixed in a first stage.

4.3. Case I: Bayesian inference for model parameters only

In Eqs. (31) to (34), all prediction error parameters are assumed to be fixed and equal to the
following values:θη,1 = 0.15 for all model classes,θB

η,2 = θ
D
η,2 = 0.8, θC

η,2 = 4 andθD
η,3 = 2π. The

resulting correlation functions (Figure 3) are quite different in nature: correlation models B and
C model only positive correlations, whereas model D includes negative correlations as well.

It is assumed that the joint prior PDF of the model parametersθM is Gaussian, characterized
as follows:

p(θM) = NθM (θM,pr,ΣM,pr) = NθM
([

2
3

]

,

[

1.52 0
0 22

])

(35)

As the prediction model is linear and the prior PDF as well as the likelihood function are
Gaussian PDFs, the expressions elaborated in Appendix A arevalid and can be directly imple-
mented. The mean posterior values of the parameters and their corresponding posterior standard
deviations and correlations are listed in Table 1 for the first data set (Figure 2) and all 50 data
sets, the corresponding marginal PDFs for the single data set are shown in Figure 4. Multiple
data sets are included through the likelihood function; it can be shown that for this particular case
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Single data set 50 data sets
Model α̂po β̂po σ̂α,po σ̂β,po ĉαβ,po α̂po β̂po σ̂α,po σ̂β,po ĉαβ,po

(×10−2) (×10−5)
A 0.528 1.461 0.029 0.090 −0.241 0.503 1.505 0.004 0.013 −4.840
B 0.515 1.491 0.052 0.173 −0.799 0.506 1.502 0.007 0.025 −16.12
C 0.502 1.515 0.055 0.189 −0.875 0.509 1.501 0.008 0.027 −17.67
D 0.534 1.444 0.025 0.077 −0.179 0.503 1.502 0.004 0.011 −3.594

Table 1: Results of the Bayesian parameter estimation: meanposterior values ˆαpo andβ̂po, their corresponding standard
deviationsσ̂ and correlation values ˆcαβ,po.

the Gaussian likelihood function forND data sets is given as:

L(θ | d̃) =
ND
∏

k=1

L(θ | d̃k) = K−1 exp

















ND
∑

k=1

−1
2
ηT

kΣ
−1
η ηk

















(36)

It is easily verified that consideringND =50 data sets therefore in fact corresponds to performing
50 consecutive Bayesian updating routines, where each timethe current posterior is taken as
prior and updated using an additional data set. Note that this is not equivalent to performing a
single Bayesian updating routine with 50× 20= 1000 data points; this would moreover require
adapting the prediction error correlation models in Eqs. (31)–(34).

Examining the posterior mean values, it is clear that all values lie reasonably close to the
true values, and that the accuracy of the estimates improvesfor a higher number of data sets,
as expected. When comparing the posterior standard deviations for the correlated models B,
C and D with the uncorrelated model A, it is clear that models Band C result in wider, very
similar, PDFs, whereas model D yields smaller uncertainties compared to the uncorrelated case.
This illustrates immediately the importance of the correlation structure. In the case where no
information is available on the specific nature of the correlation, simply assuming model D would
in this case lead to non-conservative posterior estimates.

Bayesian model class selection is applied in order to distinguish between the alternative mod-
els: for each model class, the log evidence value LE is computed as the sum of the terms LEdata
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Figure 3: Case I: Correlation functions for fixed model classes A, B, C and D.
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Figure 4: Normalized marginal posterior PDFs for (a)α and (b)β, for all four models and for a single data set.

Single data set 50 data sets
Model LE LEdata LEoccam LE LEdata LEoccam

A 9.478 17.30 −7.821 498.4 510.1 −11.73
B 15.56 21.90 −6.335 904.6 914.9 −10.24
C 11.33 17.40 −6.070 452.6 462.6 −9.973
D 13.55 21.76 −8.212 550.3 562.4 −12.12

Table 2: Log evidence values (LE), and corresponding data and occam terms for all models.

and LEoccam(according to Eqs. (27) and (28)), all listed in Table 2. Investigating the values for
a single data set, it is immediately clear that the highest log evidence value is associated with
the correct model B. When the data fit and Occam terms are compared for models B and C, it
is found that even though the spherical model C yields a higher Occam factor, the better data fit
provided by the exponential model B proves dominant.

Comparison of the other values also shows that even though model D has a similar data fit
as model B, it is penalized because of the higher informationcontent obtained from the data
(resulting in lower posterior uncertainty). This illustrates that the Bayesian model class selection
scheme selects the model that results in a high data fit combined with relatively high posterior
uncertainty (i.e. relatively low resolution). It should benoted that out of the 50 randomly simu-
lated data sets, the correct correlation model is selected 45 out of 50 times based on the LE value,
and 35 out of 50 times based on the LEdata-value.

Of course, as more data sets are added, the log Occam term willbe increasingly overwhelmed
by the amount of information contained in the data fit term. InTable 2, it is immediately clear that
the correct model is selected solely based on the information contained in the data. In realistic
applications, however, there is rarely more than a single data set available, which means the
investigation of the log Occam terms becomes increasingly important.

4.4. Case II: Bayesian inference for model parameters and error parameters

In this subsection, it is assumed that the prediction error parameters in Eqs. (31) to (34) are
unknown; they are included in the Bayesian inference schemeand are estimated together with
the two model parametersα andβ. After the Bayesian estimation, a model class selection routine
is performed in order to infer the most probable model class.Note that the prediction error model
classes are of increasing complexity: model class A is parameterized by a single parameter (the
error variance), model classes B and C are characterized by two prediction error parameters and
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model class D has three parameters. This has to be taken into account when comparing e.g. log
Occam terms.

In the Bayesian scheme, Gamma-distributed prior PDFs are appointed to all prediction error
parameters, in correspondence with the Principle of Maximum Entropy for second-order positive
variables [22, 47]; the appointed shape and scale factors are given in Table 3. The model param-
etersα andβ are appointed the same priors as for case I (Eq. (35)). The data are simulated as
before with model class B, with an imposed variance of (0.15)2 and a correlation length of 0.8.
The asymptotic expressions are used to compute the MAP estimates and posterior covariance
matrices (Table 4); these values are then employed to determine the log evidence values LE, log
data fit values LEdataand log Occam terms LEoccam, also listed in Table 4.

θA
η,1 θB

η,1 θB
η,2 θC

η,1 θC
η,2 θD

η,1 θD
η,2 θD

η,3

t 1.24 1.24 6.25 1.56 44.4 1.56 4.00 4.00
k 2.13 2.13 0.19 0.88 0.14 0.89 0.17 0.50
MAPr 0.50 0.50 1.00 0.50 6.00 0.5 0.50 1.50
COV 0.90 0.90 0.40 0.80 0.15 0.80 0.50 0.50

Table 3: Appointed shape factorsk and scale factorst characterizing the prior distributions of the prediction error pa-
rameters for Case II, and corresponding Maximum A Priori points (MAPr= t(k− 1)) and coefficients of variation (COV
=
√

1/k).

Single data set
Model class α β θη,1 θη,2 θη,3 LE LEdata LEoccam

A 0.529 1.460 0.072 - - 9.103 22.92 −13.81
B 0.524 1.471 0.079 0.263 - 10.02 21.56 −11.55
C 0.502 1.517 0.263 5.900 - 11.56 18.87 −7.315
D 0.525 1.468 0.080 0.337 2.20810.82 24.61 −13.79

50 data sets
Model class α β θη,1 θη,2 θη,3 LE LEdata LEoccam

A 0.503 1.505 0.145 - - 492.2 509.7 −17.48
B 0.506 1.502 0.147 0.745 - 895.4 913.3 −17.87
C 0.509 1.501 0.254 4.000 - 852.4 869.7 −17.37
D 0.506 1.501 0.146 0.756 0.793894.7 913.2 −18.50

Table 4: MAP values for all parameters and log evidence values for all model classes, for a single and 50 data sets.

Examining the values for a single data set, an unexpected result emerges at first sight: the
spherical model class C is distinctly preferred over the other model classes, mainly due to the
high associated log Occam value which signifies that relatively little information was obtained
from the data using this model class. Most likely, this is caused by the fact that the spherical
correlation function can never approximate the true model,as it is constrained in the parameter
θC
η,2 which should always be larger than or equal to the maximum∆i j . This is confirmed when

the MAP correlation models are compared with the true samplecorrelation (Figure 5a), and is
also reflected in the relatively low data fit value for this model class.

Moreover, based on the data fit values for a single data set, itappears that the cosine model
D is selected, whereas previously it was found that this model was not preferred. This is due
to the fact that the parameters of the correlation model are now modified such that the available
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information is best fitted. It appears that correlation model D now is able to fit the true correlation
structure almost equally well as the true correlation modelB, an observation that is even more
prominent when 50 data sets are used and which is confirmed in Figure 5b. It is also clear that
when more data sets are used, the correct correlation model class B is eventually preferred, as
model class D is penalized slightly more through the Occam factor due to the higher number
of parameters representing this model class. Note also thatdespite the unsuitable correlation
structure, model class C succeeds relatively well in achieving a high data fit for 50 data sets,
especially compared to the uncorrelated model A. This can beexplained by the presence of the
variance parameterθC

η,1, which is increased to compensate for the improper correlation structure.
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Figure 5: MAP correlation functions for all model classes, compared with the true average sample correlation (thick
solid line), for (a) a single and (b) 50 data sets.

5. Engineering example: Bayesian FE model updating of a reinforced concrete beam

In this section, the approach proposed above in Section 3.4 is used in an engineering example
where the objective is to use simulated modal data to estimate stiffness parameters of a finite ele-
ment model representing a damaged reinforced concrete (RC)beam, and to estimate parameters
characterizing the prediction error. In order to mimic a more realistic prediction error, the simu-
lated data are obtained from a 3D volume element model whereas the prediction model used in
the Bayesian scheme consists of a simple 2D beam element model.

The RC beam in question has a length of 6 m, a cross-section of 200× 250 mm2, a mass of
750 kg, and is reinforced by 6∅16 mm rebars and vertical stirrups∅8 mm every 200 mm. As in
this case spatial correlation in the prediction error is considered, the computations are performed
for seven different sensor configurations with increasing sensor densityalong the beam.

5.1. Simulated data

The simulated data are obtained from a 3D finite element modelconstructed using 5250 vol-
ume elements (Figure 6); the reinforcement has only been taken into account through an adapted
material density. The data consists of the first four bendingmodes of the beam and associated
natural frequencies, computed with free-free boundary conditions. In order to simulate structural
damage in the beam, the Young’s modulus of a small area aroundone third of the length of the
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beam is reduced to 18.75 GPa, whereas the rest of the beam is appointed a stiffness modulus
of 37.5 GPa. An uncorrelated zero-mean Gaussian error with astandard deviation of 0.1% is
superimposed on these modal data in order to simulate a measurement error; the final data set is
shown in Figure 7a.

Figure 6: 3D solid FE model of the RC beam. The area with lowered stiffness is shown in gray.
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Figure 7: (a) Modal data simulated with the damaged volume model and (b) normalized sample correlation in the
difference between the simulated data and the predictions made by the beam model.

In Figure 8, the seven different sensor configurations are shown, where the number of sensors
ranges from a mere 6 sensors up to all 151 sensors. In order to ensure a valid comparison
between configurations, each sensor configuration is selected such that it contains the previous
configuration. In the following, the number of sensors – corresponding to the number of observed
DOFs – will be denoted asNs.

5.2. The prediction model and prediction error
To model the reinforced concrete beam, a 2D finite element model is constructed which

consists of 150 beam elements and 151 nodes, with two DOFs pernode (UY, ROTZ), resulting
in a total ofNd = 302 DOFs in the FE model. The moment of inertia of the equivalent cross-
section equals 1.93× 10−4m4 and the initial Young’s modulus is assumed to be 37.5 GPa. Shear
deformation is included in the FE model with a factorky = As/A = 1.2.
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Figure 8: The seven different sensor configurations used in this example: gray colordenotes the presence of a sensor.

The model of the RC beam is parameterized by a single parameter θM representing the
Young’s modulus of the same region of elements at around one third of the length of the beam.
This parameterized 2D FE model is used as prediction model inthe Bayesian scheme: it allows
for the computation of a set of modal data as a function of the model parameterθM . In the fol-
lowing, it is assumed that the computed modal data consist ofNM mode shapesφr ∈ R

Nd and
associated eigenvaluesλr = (2π fr)2 with eigenfrequenciesfr , which are the solutions of the (un-
damped) eigenvalue equationK (θM)Φ = MΦΛ, whereK (θM) is the FE model stiffness matrix
andM the mass matrix.Φ collects the eigenvectorsφr that correspond to the eigenvaluesλr on
the diagonal ofΛ.

To obtain an initial idea of the occurring correlation, Figure 7b shows the estimated normal-
ized sample correlation (assuming stationarity) present in the error between the simulated data
and the predictions made by the 2D beam model (forθM = 20 GPa). This figure clearly indicates
that the prediction errors are correlated – albeit to a limited degree – and that the correlation is
dependent on the shape of the considered mode. More specifically, the correlation length seems
to decrease as the mode order increases.

5.3. Bayesian inference and model class selection

In order to account for correlation in the prediction error in a comprehensive and correct
manner, the Bayesian scheme is applied to estimate the most probable prediction error model
class based on the available data. A zero-mean Gaussian prediction error is adopted, where it
is assumed that the eigenfrequency discrepancies are independent from the mode shape discrep-
ancies, meaning that the covariance matrixΣη can be constructed as theΣη = blkdiag(Σλ,Σφ).
The eigenfrequency covariance matrix is assumed to be diagonal, and parameterized asΣλ =
θ2
λ

diag(̃λ2
1, . . . , λ̃

2
Nm

). For the mode shapes, it is suspected that the correlation is dependent on the
specific shape of the considered mode, therefore it is assumed that the covariance matrix for the
mode shape components can be constructed as the block diagonal matrix of Nm individual co-
variance matrices:Σφ = blkdiag(Σ1

φ, . . . ,Σ
Nm
φ ). A set of three alternative prediction error model

classes is determined forΣφ: an uncorrelated model class A, a model class B with an exponential
correlation function and a model class C with a exponentially damped cosine correlation func-
tion. Each of these model classes is parameterized by a number of prediction error parameters as
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θM [GPa] θλ θφ,1 θ
B,r
φ,2 θ

C,r
φ,2 θ

C,r
φ,3

k 1.50 2.04 1.56 1.24 1.24 1.24
t 45.0 0.02 0.004 4.26 8.53 6.40
MAPr 22.50 0.02 0.002 1.00 2.00 1.50
COV 0.82 0.70 0.80 0.90 0.90 0.90

Table 5: Appointed shape factorsk and scale factorst characterizing the prior gamma-distributions, and corresponding
Maximum A Priori points (MAPr= t(k − 1)) and coefficients of variation (COV=

√
1/k).

follows:

Σ
A,r
φ
= (θA,r

φ,1)2 I Ns (37)

[ΣB,r
φ ] i j = (θB,r

φ,1)2 exp
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(38)

[ΣC,r
φ ] i j = (θC,r

φ,1)2 exp
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∆i j

θ
C,r
φ,2

















cos(θC,r
φ,3∆i j ) (39)

where∆i j represents the distance between sensorsi and j. In an effort to reduce the number of
error parameters, it is assumed for each model class that theerror variance parameterθφ,1 is the
same over all modes, e.g.θA,1

φ,1 = . . . = θ
A,Nm
φ,1 . In this application, the number of incorporated

modesNm is taken equal to 4, which means that, in total, the uncorrelated model class is pa-
rameterized by 3 parameters (θM , θλ andθA

φ,1), model class B is parameterized by 7 parameters,
and model class C is parameterized by 11 parameters. Each of the parameters is assumed to
be Gamma-distributed a priori; the appointed shape and scale factors are listed in Table 5. The
computations are performed for all sensor configurations and for each correlation model, using
Markov chain Monte Carlo (MCMC) sampling where a Metropolis-Hastings sampling algorithm
is used to obtain 50 000 samples of the posterior PDF.

The MAP estimates resulting from these computations are listed for all parameters in Table
6, for sensor configurations S031 and S151. Figure 9a shows the MAP estimates of the model
parameterθM for all sensor configurations and all alternative model classes, and Figure 9b shows
the corresponding posterior standard deviations. It is clear that the MAP values of the model
parameter are affected by the choice of a particular correlation model class,although the values
are all similar and converge to the correct value for increasing sensor numbers.

Examining the MAP values for model class B, it appears that the MAP value of the correla-

θM θ1
λ

θ1
φ,1 θ1

φ,2 θ2
φ,2 θ3

φ,2 θ4
φ,2 θ1

φ,3 θ2
φ,3 θ3

φ,3 θ4
φ,3

A S031 18.64 0.044 0.0021 - - - - - - - -
S151 18.77 0.046 0.0021 - - - - - - - -

B S031 18.39 0.042 0.0024 8.19 4.15 2.44 1.54 - - - -
S151 19.29 0.028 0.0020 9.32 8.41 6.28 4.71 - - - -

C S031 19.45 0.065 0.0016 16.82 20.21 15.40 10.66 0.98 1.43 1.98 2.49
S151 19.08 0.026 0.0019 11.14 14.67 15.25 13.95 0.96 1.40 1.93 2.46

Table 6: MAP values of all parameters, for sensor configurations S031 and S151.
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Figure 9: (a) MAP estimates ofθM and (b) posterior standard deviations of ofθM for all sensor configurations and all
alternative model classes.
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Figure 10: MAP estimates of (a)θB,r
φ,2 and (b)θC,r

φ,3 as a function of the number of sensors.

tion length parameterθB,r
φ,2 is dependent on the considered mode shape: the estimated correlation

length decreases for higher order modes (Figure 10a). This is in accordance with the expecta-
tions, as the correlation length is expected to be related tothe wavelength of the mode shape in
question: larger wavelengths (i.e. lower order modes) imply higher correlation lengths. However,
the estimated correlation length also seems to be highly dependent on the sensor configuration: it
increases as the number of included sensors grows, i.e. highcorrelations are estimated for sensors
located closely together and vice versa. This may indicate that model class B is not particularly
suited to model the true correlation structure of the prediction error. Examining the MAP values
of the prediction error parameters for model class C, it is clear that the values of e.g. the wave-
length parameterθC,r

φ,3 are not sensitive to the number of sensors (Figure 10b), indicating that this
model class seems to be better suited to model the true prediction error correlation. Below, it is
shown how Bayesian model class selection can be applied to assess the validity of these findings,
but first the posterior resolution or uncertainty reductionthrough the data is examined.

It is apparent from Figure 9b that the posterior uncertaintyassociated with the model param-
eterθM decreases steadily as the number of sensors increases, except for model class C which
shows a stagnation compared to the other model classes. Thisis also observed for most – but
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Figure 11: (a) Log evidence values and (b) log Occam values for all sensor configurations and for all correlation models.

not all – of the other parameters; in order to obtain insight into the reduction of uncertainty in
all parameters, the log Occam values LEoccamcan be examined, as it corresponds to the negative
relative entropy between prior and posterior PDF, as elaborated above. The Occam values are
computed using the expressions in Eqs. (27) and (28), where the posterior mean value and covari-
ance matrix are determined based on the MCMC simulations; the obtained values are validated
using the approach suggested in [43]. In Figure 11b, it is clear that both model classes A and B
show decreasing log Occam values as the number of sensors increases, implying an increasing
reduction of parameter uncertainty through the data. For model class C, however, a stagnation
of the uncertainty reduction is observed for increasing sensor numbers. This indicates that the
amount of information that can be obtained from the correlated data is bounded and that the
uncertainty reduction cannot be increased unlimitedly by introducing more sensors. Intuitively,
one would expect this also to occur in real applications.

When it comes to selecting the most probable model class, thelog evidence values (Figure
11a) can be compared for all model classes. It appears that the correlated model classes B and
C are distinctly preferred over the uncorrelated model class, where model class C is preferred
overall. This can also be observed when the MAP correlation functions for S151 are plotted for
model classes B and C (Figure 12); it is immediately clear that the most probable correlation
functions for case C correspond much better to the initiallyestimated sample correlation shown
in Figure 7b. The linear increase in the log evidence values reflects the linearly increasing log
data fit values, which prove in this particular case to be determining in the model class selection
procedure.

6. Conclusions

In this paper, the effect of correlation in the prediction error on Bayesian modelupdating re-
sults is studied. It is found that a correlated prediction error results in a recombination of the data
and an altered weighting of prior information and observational data compared to the case of an
uncorrelated prediction error. This means that correlation in the prediction error has a large influ-
ence on the posterior parameter estimates and their associated posterior uncertainties. Firstly, it
is observed that correlation in the prediction error does not necessarily lead to an increase in pos-
terior uncertainty on the parameter estimates compared to the uncorrelated case. Likewise, the
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Figure 12: MAP correlation functions for S151, for (a) the exponential correlation function (model class B) and (b) the
exponentially damped cosine correlation function (model class C).

assumption of an uncorrelated prediction error, in correspondence with maximum data entropy,
is found not to guarantee the highest posterior uncertaintyon the Bayesian parameter estimates.

This leads to the conclusion that correlation in the prediction error plays an important role in
the Bayesian inference process, and should be properly accounted for when it is suspected that
correlation is present in the data or corresponding prediction error. This poses major challenges,
however, as in many practical applications very little information is available regarding predic-
tion error characteristics such as the degree or type of correlation. In this paper, it is demonstrated
in two illustrative applications that Bayesian model classselection can be used as an effective tool
in appropriately accounting for prediction error correlation, as it allows to differentiate between
several alternative model classes and select the most probable prediction error model class ac-
cording to the available experimental observations. The results show that, provided sufficient
data are available, the true correlation structure is accurately estimated, ensuring a more realistic
joint structural-probabilistic model and corresponding Bayesian model updating results.

Appendix A. Posterior PDF for linear GM and a Gaussian prediction error and prior PDF

Suppose the prediction modelGM is a linear model, such that it can be written asJGθM. It is
assumed that the probabilistic model of the prediction error η = JGθM − d̃ is known to be a zero-
mean Gaussian model, characterized byΣη, which reduces the total parameter set toθ = θM . A
priori, the parameter setθ is assumed to be a Gaussian random variable characterized bya mean
valueθpr and a prior covariance matrixΣθ,pr. As both the prior PDF and the likelihood function
are Gaussian, the posterior PDF will also have a Gaussian distribution, characterized by a mean
valueθpo and a covariance matrixΣθ,po, which can be easily be verified to be equal to:

θpo =
(

JT
GΣ
−1
η JG + Σ

−1
θ,pr

)−1 (

JT
GΣ
−1
η d̃ + Σ−1

θ,prθpr

)

(A.1)

Σθ,po =
(

JT
GΣ
−1
η JG + Σ

−1
θ,pr

)−1
(A.2)
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or, alternatively:

θpo = θpr + Σθ,prJT
G

(

JGΣθ,prJT
G + Ση

)−1 (

d̃ − JGθpr

)

(A.3)

Σθ,po =

[

I − Σθ,prJT
G

(

JGΣθ,prJT
G + Ση

)−1
JG

]

Σθ,pr (A.4)

Note that these expressions correspond exactly to the Kalman filter equations with optimal
Kalman gain [48]. It can be verified that the asymptotic expressions elaborated above in equa-
tions (9) and (10) are exact in this particular case.

Appendix B. Elaboration of the posterior expectation of thelog likelihood function and of
the log prior PDF

For a Gaussian prediction error and a linear prediction model, the likelihood function is given
as:

L(θ | d̃) = p(d̃ | θ) =
[

(2π)N detΣη
]−1/2

exp

[

−1
2

(JGθ − d̃)T
Σ
−1
η (JGθ − d̃)

]

(B.1)

The posterior expectation of the log likelihood function can then be reformulated as:

E

[

log p(d̃ | θ)
]

po
= −1

2
log

[

(2π)N detΣη
]

− 1
2
E

[

(JGθ − d̃)T
Σ
−1
η (JGθ − d̃)

]

po
(B.2)

= −1
2

log
[

(2π)N detΣη
]

− 1
2

(E[JGθ]po− d̃)T
Σ
−1
η (E[JGθ]po− d̃) (B.3)

− 1
2
E

[

(JGθ − E[JGθ]po)
T
Σ
−1
η (JGθ − E[JGθ]po)

]

po
(B.4)

Using the notationsθpo andΣθ,po for the posterior mean valueE[θ]po and covariance matrix
E[(θ − θpo)(θ − θpo)T]po, respectively, the above expression can be reformulated as:

E

[

log p(d̃ | θ)
]

po
= log p(d̃ | θpo) −

1
2
E

[

(

JG(θ − θpo)
)T
Σ
−1
η

(

JG(θ − θpo)
)

]

po
(B.5)

= log p(d̃ | θpo) −
1
2

Tr
{(

JT
GΣ
−1
η JG

)

Σθ,po

}

(B.6)

= log p(d̃ | θpo) −
1
2

Tr
{

I − Σ−1
θ,prΣθ,po

}

(B.7)

where use is made of the fact that the trace of a scalar is equalto that scalar, and of Eq. (A.2).
Similarly, the posterior expected value of the log prior PDF, where the prior is a Gaussian

PDF characterized by covariance matrixΣ−1
θ,pr, can be described as:

E
[

log p(θ)
]

= log p(θpo) −
1
2

Tr
{

Σ
−1
θ,prΣθ,po

}

(B.8)
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