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Abstract

In Bayesian model updating, probability density functi@ismodel parameters are updated
accounting both for the information contained in the datd #or uncertainties present in the
measurements and model predictions, requiring a proktbilhodel for the error between pre-
dictions and observations. Most often, a zero-mean unleteck Gaussian prediction error is
assumed, although in many engineering applications piedierrors will show non-negligible
spatial angbr temporal correlation (e.g. when densely populated segréds are used). In this
paper, the fect of prediction error correlation on the results of the &ign model updating
scheme is studied, and it is investigated how the challgnigisk of selecting a suitable predic-
tion error correlation structure can be addressed ap@i@tyi In two illustrative applications,
it is demonstrated that Bayesian model class selection eadfféctively applied to this end,
ensuring more realistic modeling and corresponding Bayesiodel updating results.

Keywords: Bayesian inference, uncertainty quantification, paranest&émation, model
updating, prediction error correlation, model class d&dacmodeling error

1. Introduction

Model updating (often also referred to parameter estimatioris a problem commonly en-
countered in many science and engineering fields. Genesadlgking, model updating aims to
reconstruct or calibrate unknown functions or propertibgctv appear as parameters in numer-
ical models, based on observed behavior of the system akstte For instance, in structural
engineering, finite element (FE) model updating [1, 2] i€ofapplied for structural damage as-
sessment, where damage in civil structures is identifiecabrating stifness parameters based
on observed modal characteristics such as eigenfrequsanuiemode shapes [3].

The deterministic model updating process consists of sglan inverse problem, i.e. finding
the optimal parameters of a model such that the best podgildebtained between the model
output and the observed data. This is usually accomplisgefdrimulating the problem as a
constrained optimization problem, where the objectiv@isminimize the discrepancy between
computed and measured data. In many cases, however, thiszgiton problem is ill-posed,
meaning that uniqueness, stability and even existenceeosdkution of the inverse problem
cannot be guaranteed. This is a non-negligible issue in hupdfating, as the model predictions
and measured data are always subject to errors and linmgatin the context of model updating,
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these errors are often categorized intodeling errorson the one hand, i.e. errors related to the
model predictions, ancheasurement erroien the other hand. Accounting for these uncertainties
and studying theirfect on the results of the FE model updating scheme is therafoimportant
and indispensable undertaking.

One possible approach to incorporate uncertainty on thereéisons and model predictions
into the FE model updating process is to adopt a probabikstheme based on Bayesian infer-
ence [4-9]. Using the well-known Bayes theorem, a prior P&ffecting the prior knowledge
about the parameters is transformed into a posterior P2Buating both for uncertainty in the
prior information as well as for uncertainty in the experited data and FE model predictions.
This transformation is done through the so-called likaedithdunction, which reflects how well
the FE model can explain the observed data. The likelihoodtfon is computed using the
probabilistic model of the prediction error (i.e. the deggancy between model predictions and
observations).

Effective application of the Bayesian FE model updating teqpimiin practice requires (1)
the selection of a suitable joint prior PDF and (2) the séactf a suitable likelihood function
or prediction error model. The first of these topics has bemuchented extensively in literature
[10-12]; however, much less attention has been given tatter | as it is usually assumed that the
probabilistic model of the prediction error is known. In rhoases, amincorrelatedzero-mean
Gaussian error is adopted, e.g. in [13-21], in corresparaleiith the Principle of Maximum
Entropy [22, 23]. However, in many structural engineeripglacations, data and corresponding
prediction errors are most likely correlated in space (whemnse sensor grids are used, e.g. for
optical measurement techniques), in time (when high samgtequencies are used), or both
in space and in time [24]. This means the assumption of anrtelated prediction error is not
always realistic. In this paper, it is investigated how etation can be properly accounted for in
Bayesian model updating.

Section 2 provides a brief overview of the Bayesian infeeestheme for parameter estima-
tion, and recalls some asymptotic expressions for the pos®DF. In section 3, itis investigated
how prediction error correlation can be accounted for inBagesian scheme, and how correla-
tion afects the results of the Bayesian inference methodologyh&umore, attention is given to
the non-trivial task of selecting a suitable correlatiord®ipoas in most cases very little informa-
tion is available on the specific correlation structure efittodeling error. It is demonstrated how
Bayesian model class selection and the estimation of emn@mpeters as well as model param-
eters can be employed to this end. In section 4, Bayesian Irotads selection is successfully
applied to a simple linear regression analysis; in Sectjarbore realistic structural mechanics
application is considered, where the method is shown to balkgtfective.

2. Bayesian parameter estimation

This section presents the Bayesian updating methodologfing with some preliminary
specifications of the basic framework concerning modekelssind uncertainties.

2.1. Uncertainty in parameter estimation

In general terms, a modéy (6y) belonging to the model clas$ly, provides a mapping
from the paramete, to an output vectoGy (6y) € RN through the transfer operatGiy:

Mu(@m) : O - Gu(Owm) (1)
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In the ideal case, the model outp@f,(0\y) corresponds perfectly to the true system outhut
i.e.Gm(6m) = d. This is the main starting point for deterministic paramétentification, where
the objective is to determine the model parameaigrfor a given set of observed system outputs
d. However, the equalitysy(6v) = d is only valid when it is assumed that the underlying
fundamental physics of the system are fully known. This ic@drse never the case, as no
model is capable of perfectly representing the behavidhetitue physical system. A modeling
errorng is therefore always present, and can be described as threghscy between the model
predictionsGy (6yv) and the true system outpdti.e.ng = d — Gy (6w).

As the true system output has to be measured and processeriheaptally, the data are
always subject to measurement error, resulting in a disergpbetween the true system outgut
and the actually observed dataThis diference is defined as the measurement egsor d —d.
Eliminating the unknown true system outplfrom the error equations and collecting both errors
on the right hand side of the equation yields:

d—Gum(Om) =nc+m0 =1 (2)

The sum of both errors is equal to the total observed predietirorsy, defined as the efierence
between the model predictions and the observed quantifies.above expressions serve as a
starting point for the Bayesian uncertainty quantificatioethod.

2.2. Bayesian inference methodology

The general principle of Bayesian parameter estimatiohdsthe model parametefg <
RN that parameterize model clagdy are modeled as random variables, i.e. probability density
functions (PDFs) are appointed to these parameters, whichpalated in the inference scheme
based on the available information. Measurement and muylalicertainty are taken into ac-
count by modeling the respective errors as random variadesell: PDFs are appointed to
ne andnp, which are parametrized by parametégse RNe anddp € RNe. These parame-
ters are added to the structural model parameigrso form the general model parameter set
0 = {6u.0c.0p)" € RN, This in fact corresponds to adding two probabilistic marlasses to
the structural model classly, to form ajoint model class\M = My x Mg x Mp, parametrized
by 6. It has to be noted here that introducing a probabilistic ehdar the errors is only one
of several possible approaches for probabilistic modediirtipe uncertainties; alternatively, one
could revert to non-parametric approaches [25, 26] actiregtly on the operators of the model
(e.g. making use of random matrix theory [27, 28])generalizecprobabilistic approaches [29]
that combine parametric and non-parametric approaches.

To express the updated probabilities of the unknown pamnsgtgiven some observations
d and a certain joint model clas®l, Bayes’ theorem is used:

p(6 | d. M) = c p(d | 6, M) p(8 | M) ©)

wherep(6d, M) is the updated or posterior PDF of the model parametersidive measured
datad and the assumed model clas$ c is a normalizing constant that ensures the posterior
PDF integrates to ongy(d|f, M) is the PDF of the observed data given the paraméteand
p(6IM) is the initial or prior PDF of the parameters. In the follogj the explicit dependence on
the model clasg\t is omitted in order to simplify the notations.

The prior PDFp(0) reflects the probability of model paramet@rin the absence of mea-
surement results. In many cases, the prior PDF is chosed lbasengineering judgment or on
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computational tractability (e.g. conjugate priors [3@)Xcept in cases where a large amount of
data is at hand, the prior PDF most often has a significantenfla on the Bayesian updating
results. A wide range of methods has been developed to dlofajiective” prior PDFs based on
the given prior information. One of the most commonly usegrapches in this respect is the
method based on the Maximum Entropy Principle [22, 23], Wiiietermines the prior PDF that,
given the current state of prior information, results in imaxm entropy.

The PDF of the experimental dg&d|¢) can be interpreted as a measure of how good a model
succeeds in explaining the observatiohsAs this PDF reflects the likelihood of observing the
datad when the model is parameterized 8yit is also referred to as thikelihood function
L(g/d). Since the data set is fixed, this function in fact no longer represents a condi
PDF, and can be denoted ; d); in the following, however, the common notation lo|d)
is pertained. The likelihood function reflects the conttibo of the measured datin the
determination of the updated PDF of the model parametedsjray be determined according
to the Total Probability Theorem in terms of the probabhdishodels of the measurement and
modeling errors:

P@E10)= L0 18)= [ ps(@16.0) pu(d 1 0)ce @
— [ Pro@-dl160) pud 1) ©
= [ Pro(@ = 160) pro(d - Gu(B) | 6c) ©)

wherep,, (d — d|ép) corresponds to the probability of obtaining a measurerasotp, given
the PDF ofpp parameterized bgp, and wherego,,(d — Gm(6m)|6c) represents the probability of
obtaining a modeling errajs when the PDF ofjg is known and parameterized Byg. Here, it
is implicitly assumed that the modeling error and measurgmeor are independent variables.

The above equations show that the likelihood function candmputed as the convolution
of the PDFs of the measurement and modeling error. When oonivation is available on the
individual errors, as is most often the case, the likelihfotttion can be simply constructed
using the probabilistic model of the total prediction empparameterized b,:

p(d|6)=L@1|d)=pnl 6, @)

When the prior PDF and likelihood function are determinegl, B) allows for the updating
of the PDFs of the model parameters based on experimeneha@ii®ns of the system. For most
practical applications where multiple parameters arelirady computing the joint and marginal
PDFs requires solving high-dimensional integrals, theeefise is often made of approximative
measures (Section 2.3) or sampling methods such as the ¥&han Monte Carlo (MCMC)
method [31] and its derivatives, e.g. Delayed-Rejectiomptive Metropolis-Hastings MCMC
[32], the adaptive MCMC method [33] and Transitional MCM@]3For some particular cases,
the posterior PDF can be determined analytically; in AppeAdthe posterior PDF is elaborated
for a linear prediction model and a Gaussian predictionremad Gaussian prior PDF.

2.3. Asymptotic approximation of the posterior PDF
Provided stficient data are at hand, asymptotic expressions for thenm¥®®F form a cost-
effective alternative to computationally demanding methedg. MCMC sampling). Moreover,
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the approximations can be employed for validation of resnitttained by other approaches or as
a way to perform an initial reconnaissance of the posteipoliating results.

When a large amount of data is available, the posterior PDbeapproximated asymptoti-
cally by a Gaussian PDF centered at the Maximum A PostedoM@AP) point and characterized
by covariance matri)‘?le,po [4, 35]:

p( | d) ~ N(“P, £,p0) (8)

The MAP estimate is defined as the parameter set that mavsrttizeposterior PDF, or, equiva-
lently, minimizes the negative log posterior PDF:

AMAP — arg rrgin{— logL(9 | d) - log p(6)} = arg minJuap (9)

Analogously, the Maximum Likelihood (or ML) estimate and Xtaum A Priori (or MAPT)
estimate are defined as the parameter sets that minimize lthenill prior objective functions,
JuL = —logL(# | d) andJuapr = — log p(6), respectively.

The approximate covariance matlfbé,po is computed as the inverse Hessian of the MAP
objective functiondyap, evaluated in the MAP point:

ﬁfl

opo = V5 dmap (8V47) (10)

In many optimization algorithms, the Hessian in Eq. (10)asnputed as a by-product in the
optimization of expression (9).

2.4. Relation to information entropy

The posterior information entropy is often used as a measuiee resulting uncertainty in
the Bayesian estimates of the model parameters. It is dedisied

hpo = E[-log p(8 | d)]po (11)

whereE[-],0 denotes the expected value with respect to the posterior When the asymptotic
expression in Eq. (8) is valid, the posterior entropy may@aximated as:

1 ~
oo ~ > log|(27€)" detZy po (12)

3. The prediction error correlation model

In most practical applications, very little informationasailable concerning the probabilis-
tic model representing the prediction error, therefore mcowrelated Gaussian prediction error
is usually adopted in correspondence with the principle ekivhum Entropy [22]. It can some-
times be suspected, however, that correlation is preseheiprediction error, e.g. spatial cor-
relation in the case of densely spaced sensor grids or texhpanrelation when high sampling
frequencies are used to obtain experimental data. In thesescit is important to account for
this correlation, as it can be expected that correlated diataot provide the same information
content compared to uncorrelated data [36].

In this section, it is first investigated how correlation fretprediction error féects the re-
sults of the Bayesian inference methodology, in generalraack specifically for a Gaussian
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prediction error. Subsequently, attention is given to thallenging task of selecting a suitable
correlation structure.

3.1. Influence of correlation on the Maximum Likelihoodrestie
When a Gaussian prediction error is assumed, the likelifwoction in Eq. (7) simplifies to:

- 1
L@ |d)=K? exp[—EUTZ,;lq (13)

whereK = (V2r)N(detx,)¥?. Improved insight into this expression for the likelihocahcbe
obtained by reformulating the covariance matrix using gemvalue decomposition as follows:

¥, =VDV' (14)

whereD is a diagonal matrix containing tii¢ eigenvalued; of X, as its diagonal elements, and
whereV is an orthogonal matrix containing the corresponding eigetors. The eigenvalues are
equal to the squares of the singular values of the covarimatex, i.e.j = s]2 The likelihood
function in Eq. (13) can now be reformulated as:

2 ¢

J

N .
L@1d =] [k* exp[—}M} (15)
j=1

with k; = V2zs; and corresponding ML objective function:

N

JuL = —logL(@ ] d) Z[mgk

=1

1(n"V; )2} (16)

where logk; = % log(2r) + log sj, and where/; denotes thg-th column ofV or the j-th eigen-
vector ofX,. It is clear that the likelihood function can be interpretsithe product oN
independent 1-dimensional zero-mean Gaussian densitifd/g with variancess? = 4;. In the
ML objective function — which is a generalized least squatgective function — the eigenval-
ues of the covariance matrix are the weighting factors agpdito the projectiong™V | of the
prediction errom onto the eigenvectois;.

For an uncorrelated prediction error, the eigenvectorsiaitesectors, which means the error
components in the ML objective function are simply squageed] weighted by their appointed
variances. For a correlated error, however, the error comps are first recombined through
the eigenvectors, and then weighted by the eigenvaluesafdbariance matrix, indicating that
introducing correlation leads to a recombination of thelabée data.

3.2. Influence of correlation on the Maximum A Posteriorireate

As shown above, including correlation changes the weightiiithe residuals and how the
residuals are constructed. This also implies that, for tietgrior PDF, the weighting of the data
(represented by the likelihood function) is altered coredéo the prior information. This can
be illustrated by considering the objective function thaidd be minimized to obtain the MAP
estimate in Eq. (9).



Assuming a zero-mean Gaussian prediction error Witk 2 data points and a prediction
error covariance matrix as follows:

1 ¢ 1[1 -1 c21+0) 0 11 )
neal e d =l 767 wde Bl 1] e

leads to the following MAP objective function:

(71 + 12)? (=11 + m2)?
J =] J =logk; + ———=— +logky + —F——— +J 18
MAP ML + Jmvapr = I0g Ky + 1 5(1+ )+og 2 + 1 5(1_0) + Jvapr (18)
02(171 + T]z) 20171772

= JuL uncorr + l0g(1 - CZ) +

+ Jmapr 19
2721~ ) (19)
where JuL uncorr denotes the ML objective function for a covariance matrixragq. (17) with

¢ = 0. This expression clearly shows théfdience in weighting of the data residuals caused by
the introduction of the correlation. Note that introducaagrelation does not necessarily lead to
a lower weight on the likelihood function, as the sign of thied term in the above expression
depends on the signs and magnitude of the errors and théatamnecodficient.

3.3. Influence of correlation on the posterior covariancetma

Suppose again a Gaussian prediction error and prior PDFadirbar prediction model
such thaiGw(0) = Jef. Elaborating the posterior PDF for this case and using tersialue
decomposition in Eq. (14) leads to the following express$mrthe inverse posterior covariance
matrix of the parameters (Appendix A):

MZ
—_
o
<
Nl

9 po = JEZ lJG + 29 or = (VTJG) D_l (VTJG) + 29 ],Sr + Z_

. (0
S? "

j=1

It is interesting to note that, for this particular case, tixserved data does not enter into this
expression, i.e. the posterior covariance matrix is cotepleletermined by the prior covariance,
the prediction error covariance and the sensitivitieddn

For a single-parameter example, with a correlation masidefined in Eq. (17), and a lin-
ear prediction model characterized by = [g1,02]", the posterior parameter variance can be
determined according to Eq. (20) as:
> _[(@+@)? (-qi+g) 1 '
f.po 203(1+¢c)  203(1-0)

(21)

0_9 pr

In order to investigate the influence of the correlationfioientc, the prediction model is taken
equal toJg = [1,-0.5], and the variances; ando; , are set to B and 14 respectively ;
in Figure 1 the corresponding posterior variamg% is plotted as a function af. This figure
indicates that the posterior variance shows a distinct mari, which is located at = g2/g; =
—0.5 in this case wherg; > g,. Wheng; < gz, the maximum would be located at= g1/gp;
wheng; = g, no distinct maximum is present a§ becomes a linear function af As the
posterior parameter entropy is here directly proportlcbtmaihe posterior variance (see Eq. (12)),
this maximum denotes the maximum entropy point. Note trettbhximum is only located at=
7
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Figure 1: Posterior variance éfas a function of the correlation cdeient c. The dashed line denotes the posterior
variance forc = 0.

0 (corresponding to an uncorrelated prediction error) wdrenof the sensitivities becomes zero.
These observations imply that adopting an uncorrelatedititod function (which corresponds
to maximum entropy with respect to thpeediction errof) does not automatically lead to the
highest variance regarding the posterior model parametees. When correlation is present
in the prediction errors, it is therefore not always conative (with respect to the posterior
estimates) to assume an uncorrelated error.

The posterior variance is found to be larger compared to tlcemwelated case for values of
cin the following range:

2
0< o< 2ne (22)

wherec should have the same sign as the produgk. This condition suggests that quantities
with sensitivities with opposite signs should be negayiwrrelated (and vice versa) in order
to obtain higher posterior entropy. In this respect, it iRiasting to note that, although one
would intuitively expect that a correlated prediction erfeads to lower information content
and higher uncertainties, this appears to be not at all tke.cKknowledge on the correlation
between data points or errors may prove more informativesabdequently may result in a lower
posterior uncertainty. This can also be observed in the ase of full correlation (i.ec — 1
or —1), where zero posterior parameter variance is found due¢oasingular value in Eq. (17).
This corresponds to a known zero variance for one of thedipeadiction error combinations,
meaning that the parameter can be determined unambiguously

All these findings indicate that prediction error corredatnot only d@ects the location of the
ML and MAP estimates, but moreover has an importéligiat on the posterior uncertainty of the
parameters of interest. This implies that the selection siiitable prediction error correlation
model is a non-trivial and challenging task, especiallyia tommon case where little or no
information is available on the specific nature of the erothe next subsection, it is elaborated
how Bayesian model class selection can be used affeatiee tool in selecting an appropriate
correlation model class for the prediction error, basecherawvailable information.

3.4. Accounting for correlation in the prediction error

When it is suspected that the prediction errors are coeglahd one wishes to account for
it in the Bayesian scheme, the challenge remains in setgetisuitable correlation structure,
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especially as usually very little is known regarding theretation. Then, it may be opted to
simply assume a certain correlation model; in practiceredation functions of the exponential
family are often used [8, 37, 38]. Provided thaffgtient observational data are available, as well
as some basic knowledge regarding the correlation streiatror parameters characterizing the
correlation model can be included in the Bayesian schemedierdo estimate them simultane-
ously with the other model parameters. In this paper, it ggested to apply Bayesian model
class selection [39] in order to comparéfdient possible correlation model classes and select
the model that best suits the data at hand, thus avoidingetbe for information regarding the
correlation structure. In this section, a brief overviewtltd model class selection approach is
given.

3.4.1. Bayesian model class selection

The Bayesian inference scheme can be applied at model elealsih order to assess the
plausibility of several alternative prediction error mbdiassesM,,j, or more generally model
classesM;, using observed data [39, 40]. For a @t of Nc candidate model classeéd;, the
posterior probability of each model clad4; is given by Bayes’ theorem as:

p(d | M) P(M; | M)
p(d | M)

P(M; | d, M) = (23)

whereP(M;| M) is the prior probability of each model cladd;. The factorp(d | M;) denotes
the model class likelihood or thevidenceor the model clasg\; provided by the datd, and
can be determined based on the Total Probability Theorem as:

p(@ | M) = fD D@ | 6. M) P | M) d6 (24)

where#6; is the parameter vector in a parameter sgage that defines each model ;. Note
that the evidence(d | M;) is equal to the reciprocal of the normalizing constaint the general
Bayes’ theorem in Eq (3).

As usually equal prior model class probabilities are adbptesufices to compute the evi-
dence values for all model classes and ranking them acaiydifhen, the most probable model
class — according to the available data — corresponds todlelmlass with the highest evidence
value. The actual computation of the evidence values pdemgever, a challenging problem
in most practical applications, as it entails computing enplex and usually high-dimensional
integral. To overcome this problem, asymptotic approxiamest can be applied [35, 41], or, al-
ternatively, methods based on stochastic simulation maysbd, e.g. approaches using MCMC
samples of the posterior PDF [42, 43], or multi-level MCMCthaas such as TMCMC [19, 34]
or nested sampling [44].

3.4.2. Model parsimony

It can be shown [45, 46] that applying a Bayesian inferenbes@ at the model class level
automatically enforces model parsimony. Using Bayes’ thieoand the fact that the posterior
PDF integrates to one, the logarithm of the evidence in E4) ¢2an be reformulated and ex-



panded as:

(25)

logp(d | M) =LE=FE [Iog p(d | 0i,Mi)]p0 -E [Iog M]
po

P | Mi)
= LEgata— DkL = LEgata+ LEoccam (26)

The first term in the above log evidence (LE) expression ipthgterior mean value of the log
likelihood function, termed Lk, Which gives a measure for the average data fit for the model
classM;. The second term is the Kullback-Leibler divergence ortigdaentropyDk, between
the prior and the posterior PDF. This term gives a measurthéodiference between the prior
and posterior PDF, i.e. it is a measure for the informatian ih gained from the observatiods
It can be shown [39, 45] that this term is always non-negativet increases when the number
of model parameters in the model class increases. Therdifiigg¢erm penalizes more complex
models that extract more information from the data, thusielating the need for ad-hoc penalty
terms. In the following, the negative of this term is denoésdhe Occam term Lfcam as it
enforces the well-known Occam simplicity principle.

For a linear prediction model and a Gaussian predictiorr and prior PDF, it can be verified
(Appendix B) that the following expressions for the data ditnt LE;,, and the Occam term
LEoccamare valid:

LEjata=E [IOg p(a | 6, Mi)]po = IOg [p(a | 0po,i» MI)] - % Tr {I - Eg,,l)rzﬁ,po} (27)

p(6; | d, M)

1o
o0 T AY | = 109 PBroi | M) = 5 TH X5 opo] + 1o (28)

LEoccam= —E [lOQ

po

wherefy,; is the posterior expected val@é ], of the parameter sé, which can in this case
be computed according to Eq. (A.1)s;, denotes the information entropy of the posterior PDF,
which in this case can be computed using Eq. (12). In manyicgijuns, the trace terms in the
above expressions are of negligible magnitude compardgttother terms.

In cases where it can be assumed that the posterior PDF & tdd@3aussian (Section 2.3),
the approximative expressions in Egs. (9) and (10) may beé ts@pproximate the posterior
mean value and covariance matrix. These quantities cantoglirced into the expressions (27)
and (28) above in order to approximate the termgatand LEccam

3.4.3. Applying model class selection for the predictianemodel

In general, it can be stated that when a limited amount ofrimétion is available regarding
the prediction error correlation, it is desirable to makéasassumptions as possible in order to
avoid biased results. Therefore, it is suggested to seladbstantial set of alternative prediction
error correlation model classéd, ; based on the information at hand. When some information
is available on the prediction error, these model classgsfaranstance be very similar but of
increasing complexity; however, when very little is knovegarding the prediction error, a range
of possible model classes with a wide variety of propertiay bre selected.

In order to select the most probable model class from thefsdtesnative model classes, the
log evidence values LE are computed for all model class@shgcomparing the associated data
fit LEgata @nd Occam values Lfam AS mentioned above, the data fit term yields insight into
how well the joint model class is able to fit the data, whereagdccam term provides a measure

10



for how much information was gained from the data, which tdygorresponds to how much
the uncertainty has decreased through the data.

The dficacy of the Bayesian model class selection approach ftarditiating between pre-
diction error model classes will be demonstrated below o &pplications: a very simple ana-
lytical example allows for improved insight into the worgmof the approach and its associated
difficulties, whereas a second example concerns a more realigficeering application.

4. Analytical example: linear regression problem

In this section, the proposed approach is applied to a sitim@ar regression problem that
consists of estimating two parametersandg, using some measured ddtabtained aiN ob-
servation pointg and where the prediction model is given as:

G(fw) =Job = | x 1 ][ g (29)

4.1. Simulated data

The datay are simulated by superimposing a correlated ajtan the exact data = J6;,,
where the true parameter valugsandg* are equal to 0.5 and 1.5, respectively. The prediction
errori* is assumed to have a zero-mean Gaussian distribution,atber&d by a covariance
matrix X defined a5c(-*)2C;‘] whereo* = 0.15. An exponential correlation function is assumed
for the correlation matrixC;, such that:

el = exp(- 7 (30

In this equationA;; represents the distance between two observation gaanisj, here equal to
Ixi — xjl, and wher€ is the correlation length, with true valé = 0.8.

With these expressionkly = 50 sets ofN = 20 data points withx-values equally spaced in
the interval (15) are simulated. In order to assess the influence of datkhildy, the compu-
tations are performed for an increasing number of data $etsillustration purposes, the data
setsy are shown in Figure 2, as well as the true mddgl(6,,).

4.5
4
35

> 3
25

2

15

Figure 2: All data sets used in the analysis, where large die®te the first data set. The solid line reflects the true
modelGw (6;,)-
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4.2. Prediction error model classes

Four alternative zero-mean Gaussian model classes amteskfer the prediction error cor-
relation structure: an uncorrelated model class (A), a rhddss with an exponential correlation
function (B), a model class with a spherical correlationction (C) and a model class with
an exponentially damped cosine correlation function (e Tovariance matrices of these four
model classes are of increasing complexity, and are desteab follows:

[Z0ij = (@) (31)
Ajj

[Z5]; = (65)? exp[—g?') (32)
n,2

3 [ Ajj 1( Ajj °

Ajj

[ = (65,)° exp[—gT')cos@f,ngu) (34)
n,2

In these equations, parametéys are the prediction error standard deviatiofys, denote cor-
relation lengths and, 3 corresponds to the correlation wavenumber that deternwhese the
zeros of the cosine in Eq. (34) are located. The true modssaarresponds to model class B
with an imposed standard dewahon&?f = 0.15 and a correlation Ieng'flﬁ]5 =0.8.

In the foIIowmg the Bayesian mference scheme is applieestimate the model parameters

= {a,B)" and the prediction error parametés moreover, the most suitable correlation
model will be searched by applying Bayesian model clase8ete In order to demonstrate the
importance of choosing a suitable correlation model, thegligtion error parameters are taken
fixed in a first stage.

4.3. Case I: Bayesian inference for model parameters only

In Egs. (31) to (34), all prediction error parameters arei@esl to be fixed and equal to the
following values:6, 1 = 0.15 for all model cIasseQ,‘73 = HD =0.8, 9,‘]3 =4 andé®, = 27. The
resulting correlation functions (Figure 3) are qun&ehent in nature: correlation models B and
C model only positive correlations, whereas model D inctudegative correlations as well.

It is assumed that the joint prior PDF of the model paramégrs Gaussian, characterized

as follows:
152 0
0 2 D (35)

As the prediction model is linear and the prior PDF as wellheslikelihood function are
Gaussian PDFs, the expressions elaborated in Appendix @aticeand can be directly imple-
mented. The mean posterior values of the parameters amatimegsponding posterior standard
deviations and correlations are listed in Table 1 for the fiega set (Figure 2) and all 50 data
sets, the corresponding marginal PDFs for the single datareeshown in Figure 4. Multiple
data sets are included through the likelihood functiorait be shown that for this particular case

2
D(HM) = NGM (OM,pr» EM,pr) = NGM ([ 3 }»
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Single data set 50 data sets
Model &po IBpO 6'<y,po &ﬁ,po é(rﬁ,po &DO IBpO OA'a,po a'ﬁ,po ea/,B,pO
(x107?) (x107°)
A 0.528 1.461| 0.029 0.090 -0.241 || 0.503 1.505| 0.004 0.013 -4.840
B 0.515 1.491| 0.052 0.173 -0.799 || 0.506 1.502| 0.007 0.025 -1612
C 0.502 1.515| 0.055 0.189 -0.875 || 0.509 1.501| 0.008 0.027 -17.67
D 0.534 1.444| 0.025 0.077 -0.179 || 0.503 1.502| 0.004 0.011 -3.594

Table 1: Results of the Bayesian parameter estimation: mesterior valuesyo andﬁpo, their corresponding standard
deviationso”"and correlation values,s po.

the Gaussian likelihood function fdp data sets is given as:

ND ND
- ~ 1
L@1d) =] [L@1dy = Klexp[§ —SMeE; e (36)
k=1 k=1

Itis easily verified that consideringy =50 data sets therefore in fact corresponds to performing
50 consecutive Bayesian updating routines, where eachttimeurrent posterior is taken as
prior and updated using an additional data set. Note thatighiot equivalent to performing a
single Bayesian updating routine with %®0 = 1000 data points; this would moreover require
adapting the prediction error correlation models in Eq$){8&34).

Examining the posterior mean values, it is clear that allesllie reasonably close to the
true values, and that the accuracy of the estimates impifoves higher number of data sets,
as expected. When comparing the posterior standard dmvsator the correlated models B,
C and D with the uncorrelated model A, it is clear that modelar8 C result in wider, very
similar, PDFs, whereas model D yields smaller uncertasra@npared to the uncorrelated case.
This illustrates immediately the importance of the cotietastructure. In the case where no
information is available on the specific nature of the catieh, simply assuming model D would
in this case lead to non-conservative posterior estimates.

Bayesian model class selection is applied in order to djgigh between the alternative mod-
els: for each model class, the log evidence value LE is coetpas the sum of the terms

,:\\ — A
. \\\ ...... B
osf| S~ - - -c|
s ’ Tl &
- A
[ZE R U A N e T
S 0,7 —_ — —_ D — e )
O
-0.5
0 1 2 3 4

XX

Figure 3: Case I: Correlation functions for fixed model of&sa, B, C and D.
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Figure 4: Normalized marginal posterior PDFs for gg@nd (b)g, for all four models and for a single data set.

Single data set 50 data sets

Model LE LEgata LEoccam LE LEdata LEoccam
A 9.478 17.30 -7.821| 498.4 510.1 -11.73
B 1556 21.90 -6.335| 904.6 914.9 -10.24
C 11.33 17.40 -6.070|| 452.6 462.6 -9.973
D 13.55 21.76 -8.212 | 550.3 5624 -12.12

Table 2: Log evidence values (LE), and corresponding dadaoacam terms for all models.

and LEcam(according to Egs. (27) and (28)), all listed in Table 2. Btigating the values for
a single data set, it is immediately clear that the highestelidence value is associated with
the correct model B. When the data fit and Occam terms are aeahffar models B and C, it
is found that even though the spherical model C yields a hiGlveam factor, the better data fit
provided by the exponential model B proves dominant.

Comparison of the other values also shows that even thouglelnibhas a similar data fit
as model B, it is penalized because of the higher informatmmtent obtained from the data
(resulting in lower posterior uncertainty). This illudta that the Bayesian model class selection
scheme selects the model that results in a high data fit cadbiith relatively high posterior
uncertainty (i.e. relatively low resolution). It should beted that out of the 50 randomly simu-
lated data sets, the correct correlation model is seleGeditlof 50 times based on the LE value,
and 35 out of 50 times based on thed&value.

Of course, as more data sets are added, the log Occam terbewiltreasingly overwhelmed
by the amount of information contained in the data fit termTdble 2, it is immediately clear that
the correct model is selected solely based on the informa&mtained in the data. In realistic
applications, however, there is rarely more than a singta dat available, which means the
investigation of the log Occam terms becomes increasimgportant.

4.4. Case lI: Bayesian inference for model parameters arat @arameters

In this subsection, it is assumed that the prediction eraoameters in Egs. (31) to (34) are
unknown; they are included in the Bayesian inference schemdeare estimated together with
the two model parametessandg. After the Bayesian estimation, a model class selectiotimeu
is performed in order to infer the most probable model clbkde that the prediction error model
classes are of increasing complexity: model class A is patarzed by a single parameter (the
error variance), model classes B and C are characterizesldprediction error parameters and
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model class D has three parameters. This has to be takerncitiaret when comparing e.g. log
Occam terms.

In the Bayesian scheme, Gamma-distributed prior PDFs greiaied to all prediction error
parameters, in correspondence with the Principle of Marir&mtropy for second-order positive
variables [22, 47]; the appointed shape and scale factergiaen in Table 3. The model param-
etersa andg are appointed the same priors as for case | (Eq. (35)). Tteeatatsimulated as
before with model class B, with an imposed variance of %) and a correlation length of 0.8.
The asymptotic expressions are used to compute the MAP &stnand posterior covariance
matrices (Table 4); these values are then employed to dietetire log evidence values LE, log
data fit values LEyiaand log Occam terms Ldscam also listed in Table 4.

e,ﬁl 931 95{2 agl 932 9,21 9}52 9,23
t 1.24| 124 6.25| 1.56 44.4] 1.56 4.00 4.00
k 2.13| 2.13 0.19]| 0.88 0.14| 0.89 0.17 0.50

MAPr | 0.50| 0.50 1.00| 0.50 6.00| 0.5 0.50 1.50
COV | 0.90| 0.90 0.40f 0.80 0.15| 0.80 0.50 0.50

Table 3: Appointed shape factoksand scale factors characterizing the prior distributions of the predictiamoe pa-
rameters for Case Il, and corresponding Maximum A Priomfs{MAPr= t(k — 1)) and coéicients of variation (COV

= VI/K).

Single data set

Model class| « B Op1 .2 0.3 LE LEgata LEoccam
A 0.529 1.460 0.072 - - |1 9.103 2292 -13.81
B 0.524 1.471 0.079 0.263 -1 10.02 2156 -11.55
C 0.502 1.517 0.263 5.900 -] 11.56 18.87 -7.315
D 0.525 1.468 0.080 0.337 2.20810.82 24.61 -13.79
50 data sets
Model class| « B Op1 .2 0.3 LE LEgata LEoccam
A 0.503 1.505 0.145 - - | 492.2 509.7 -17.48
B 0.506 1.502 0.147 0.745 -| 8954 913.3 -17.87
C 0.509 1.501 0.254 4.000 -| 8524 869.7 -17.37
D 0.506 1501 0.146 0.756 0.793894.7 913.2 -18.50

Table 4: MAP values for all parameters and log evidence galoeall model classes, for a single and 50 data sets.

Examining the values for a single data set, an unexpectedt eraerges at first sight: the
spherical model class C is distinctly preferred over theeothodel classes, mainly due to the
high associated log Occam value which signifies that redbtilittle information was obtained
from the data using this model class. Most likely, this isseliby the fact that the spherical
correlation function can never approximate the true maatelt is constrained in the parameter
GC which should always be larger than or equal to the maxindym This is confirmed when
the MAP correlation models are compared with the true samgigelation (Figure 5a), and is
also reflected in the relatively low data fit value for this rabclass.

Moreover, based on the data fit values for a single data sgipiéars that the cosine model
D is selected, whereas previously it was found that this heds not preferred. This is due
to the fact that the parameters of the correlation model anemodified such that the available
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information is best fitted. It appears that correlation mi@leow is able to fit the true correlation

structure almost equally well as the true correlation m&jedn observation that is even more
prominent when 50 data sets are used and which is confirmeidime=5b. It is also clear that

when more data sets are used, the correct correlation mizdsl B is eventually preferred, as
model class D is penalized slightly more through the Occartofadue to the higher number
of parameters representing this model class. Note alsadtésdite the unsuitable correlation
structure, model class C succeeds relatively well in adhgea high data fit for 50 data sets,
especially compared to the uncorrelated model A. This caexpéained by the presence of the
variance paramet@ﬁl, which is increased to compensate for the improper coroelatructure.
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Figure 5: MAP correlation functions for all model classesmpared with the true average sample correlation (thick
solid line), for (a) a single and (b) 50 data sets.

5. Engineering example: Bayesian FE model updating of a reforced concrete beam

In this section, the approach proposed above in Sectiors 3i€eid in an engineering example
where the objective is to use simulated modal data to estistéfhess parameters of a finite ele-
ment model representing a damaged reinforced concretel{@), and to estimate parameters
characterizing the prediction error. In order to mimic a enggalistic prediction error, the simu-
lated data are obtained from a 3D volume element model whehegprediction model used in
the Bayesian scheme consists of a simple 2D beam element.mode

The RC beam in question has a length of 6 m, a cross-sectiodf 250 mnt, a mass of
750 kg, and is reinforced by#8l6 mm rebars and vertical stirrugs8 mm every 200 mm. As in
this case spatial correlation in the prediction error isstdered, the computations are performed
for seven diferent sensor configurations with increasing sensor dealsityg the beam.

5.1. Simulated data

The simulated data are obtained from a 3D finite element mmatedtructed using 5250 vol-
ume elements (Figure 6); the reinforcement has only beemtaito account through an adapted
material density. The data consists of the first four bendiogles of the beam and associated
natural frequencies, computed with free-free boundargitimms. In order to simulate structural
damage in the beam, the Young’s modulus of a small area armumthird of the length of the
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beam is reduced to 18.75 GPa, whereas the rest of the bearmpastgul a sttness modulus
of 37.5 GPa. An uncorrelated zero-mean Gaussian error wstaradard deviation of 0.1% is
superimposed on these modal data in order to simulate a nesasat error; the final data set is
shown in Figure 7a.

Figure 6: 3D solid FE model of the RC beam. The area with lodstiffiness is shown in gray.
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Figure 7: (a) Modal data simulated with the damaged voluméehand (b) normalized sample correlation in the
difference between the simulated data and the predictions nyatie beam model.

In Figure 8, the seven flerent sensor configurations are shown, where the numbensdise
ranges from a mere 6 sensors up to all 151 sensors. In orderstoesa valid comparison
between configurations, each sensor configuration is selectch that it contains the previous
configuration. In the following, the number of sensors —esgponding to the number of observed
DOFs — will be denoted aSs.

5.2. The prediction model and prediction error
To model the reinforced concrete beam, a 2D finite elementeiisdconstructed which
consists of 150 beam elements and 151 nodes, with two DORsogler (UY, ROTZ), resulting
in a total ofNg = 302 DOFs in the FE model. The moment of inertia of the equivateoss-
section equals.23x 10~*m* and the initial Young’s modulus is assumed to beés33Pa. Shear
deformation is included in the FE model with a fackpe= As/A = 1.2.
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Sensor configuration

0 1 2 3 4 5 6
Distance along the beam [m]

Figure 8: The seven flerent sensor configurations used in this example: gray delootes the presence of a sensor.

The model of the RC beam is parameterized by a single paramgteepresenting the
Young’s modulus of the same region of elements at aroundtaredf the length of the beam.
This parameterized 2D FE model is used as prediction modikiBayesian scheme: it allows
for the computation of a set of modal data as a function of tbeehparametefy. In the fol-
lowing, it is assumed that the computed modal data consiskomode shapes, € RN and
associated eigenvalugs= (2 f,)? with eigenfrequencie, which are the solutions of the (un-
damped) eigenvalue equati&i{@u)® = M®A, whereK (6v) is the FE model sfiness matrix
andM the mass matrix® collects the eigenvectods that correspond to the eigenvalugon
the diagonal ofA.

To obtain an initial idea of the occurring correlation, Rig’b shows the estimated normal-
ized sample correlation (assuming stationarity) presetiié error between the simulated data
and the predictions made by the 2D beam modeldfpe 20 GPa). This figure clearly indicates
that the prediction errors are correlated — albeit to a échilegree — and that the correlation is
dependent on the shape of the considered mode. More sphyifica correlation length seems
to decrease as the mode order increases.

5.3. Bayesian inference and model class selection

In order to account for correlation in the prediction ernorai comprehensive and correct
manner, the Bayesian scheme is applied to estimate the muisdhde prediction error model
class based on the available data. A zero-mean Gaussiaictfmeerror is adopted, where it
is assumed that the eigenfrequency discrepancies areeindept from the mode shape discrep-
ancies, meaning that the covariance malijxcan be constructed as tlg = blkdiagE,, X,).
The eigenfrequency covariance matrix is assumed to be Wégand parameterized &5 =
¢ diag(i2,. . ., ;lﬁ,m). For the mode shapes, it is suspected that the correlatidependent on the
specific shape of the considered mode, therefore it is agbtiméethe covariance matrix for the
mode shape components can be constructed as the block diagatrix of N, individual co-
variance matricesty = bIkdiag(quﬁ, .. .,):2'"‘). A set of three alternative prediction error model
classes is determined f&: an uncorrelated model class A, a model class B with an expi@ie
correlation function and a model class C with a exponegt@dimped cosine correlation func-
tion. Each of these model classes is parameterized by a mahpediction error parameters as
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om [GPa] | 6, 051 9;‘;; 9;{'; af;;g

K 150 |2.04 156 124 124 124
t 450 | 0.02 0.004 426 853 6.40
MAPr | 2250 | 0.02 0.002 1.00 2.00 1.50

Cov 0.82 0.70 0.80 0.90 0.90 0.90

Table 5: Appointed shape factoksand scale factorscharacterizing the prior gamma-distributions, and c@oesling
Maximum A Priori points (MAPr= t(k — 1)) and coéicients of variation (CO\= +/1/Kk).

follows:
EA = (02 1, (37)
(25T = (659)° exp{ el ] 49
9¢2
[Z5Tij = (65 exp[ ]005(9 300) (39)
9¢2

whereA;jj represents the distance between senisarsl j. In an dfort to reduce the number of
error parameters, it is assumed for each model class thatttbievariance parametéy ; is the
same over all modes, e. 1 = GA Nm. In this application, the number of incorporated
modesNy, is taken equal to 4 WhICh means that, in total, the uncaerdlanodel class is pa-
rameterized by 3 paramete( 6, andeg\ ), model class B is parameterized by 7 parameters,
and model class C is parameterized by 11 parameters. Eatle glarameters is assumed to
be Gamma-distributed a priori; the appointed shape ane $aators are listed in Table 5. The
computations are performed for all sensor configurationsfaneach correlation model, using
Markov chain Monte Carlo (MCMC) sampling where a Metropdfiastings sampling algorithm
is used to obtain 50 000 samples of the posterior PDF.

The MAP estimates resulting from these computations atedli®r all parameters in Table
6, for sensor configurations S031 and S151. Figure 9a shaWi&P estimates of the model
parametedy for all sensor configurations and all alternative modelsgasand Figure 9b shows
the corresponding posterior standard deviations. It iardleat the MAP values of the model
parameter arefiected by the choice of a particular correlation model clakkpugh the values
are all similar and converge to the correct value for indrepsensor numbers.

Examining the MAP values for model class B, it appears thatMiAP value of the correla-

1 1 1 2 3 1 2 3
Om o 051 05 0, 0, 9;},2 O s 6hs o

A S031| 18.64| 0.044 0.0021 - - - - - - - N
S151| 18.77| 0.046 0.0021 - - - - - - - -

B S031| 18.39| 0.042 0.0024| 8.19 4.15 244 154 - - - -
S151| 19.29| 0.028 0.0020, 9.32 841 6.28 4.71 - - - -

C S031| 19.45| 0.065 0.0016| 16.82 20.21 1540 10.660.98 1.43 198 249
S151| 19.08| 0.026 0.0019 11.14 14.67 15.25 13.950.96 140 193 246

Table 6: MAP values of all parameters, for sensor configomatiS031 and S151.
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MAP estimate of GM [GPa]

Standard deviation of GM [GPa]
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(@) (b)

Figure 9: (a) MAP estimates @, and (b) posterior standard deviations ofégf for all sensor configurations and all
alternative model classes.
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Figure 10: MAP estimates of (8f’£ and (b)eo‘f’g as a function of the number of sensors.

tion length parameta&?Br is dependent on the considered mode shape: the estimatethtion
length decreases for hlgher order modes (Figure 10a). $hisaccordance with the expecta-
tions, as the correlation length is expected to be relatédeavavelength of the mode shape in
guestion: larger wavelengths (i.e. lower order modes)yrhgher correlation lengths. However,
the estimated correlation length also seems to be highlgriignt on the sensor configuration: it
increases as the number of included sensors grows, i.ecbigilations are estimated for sensors
located closely together and vice versa. This may indideternodel class B is not particularly
suited to model the true correlation structure of the pitaaticerror. Examining the MAP values
of the prediction error parameters for model class C, itéacthat the values of e.g. the wave-
length parameta?iCr are not sensitive to the number of sensors (Figure 10b)atidg that this
model class seems to be better suited to model the true poedéror correlation. Below, it is
shown how Bayesian model class selection can be appliedéssthe validity of these findings,
but first the posterior resolution or uncertainty reductimough the data is examined.

It is apparent from Figure 9b that the posterior uncerta@sisociated with the model param-
etergy decreases steadily as the number of sensors increasept #xcamodel class C which
shows a stagnation compared to the other model classes.isTélso observed for most — but
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Figure 11: (a) Log evidence values and (b) log Occam valueslifsensor configurations and for all correlation models.

not all — of the other parameters; in order to obtain insight the reduction of uncertainty in
all parameters, the log Occam values,L&Emcan be examined, as it corresponds to the negative
relative entropy between prior and posterior PDF, as eltbdrabove. The Occam values are
computed using the expressions in Egs. (27) and (28), whengdsterior mean value and covari-
ance matrix are determined based on the MCMC simulatioespltttained values are validated
using the approach suggested in [43]. In Figure 11b, it iardleat both model classes A and B
show decreasing log Occam values as the number of sensoesases, implying an increasing
reduction of parameter uncertainty through the data. Fatehdass C, however, a stagnation
of the uncertainty reduction is observed for increasingssenumbers. This indicates that the
amount of information that can be obtained from the coredlatata is bounded and that the
uncertainty reduction cannot be increased unlimitedlyrityoducing more sensors. Intuitively,
one would expect this also to occur in real applications.

When it comes to selecting the most probable model clasdothevidence values (Figure
11a) can be compared for all model classes. It appears thabtinelated model classes B and
C are distinctly preferred over the uncorrelated models;lasere model class C is preferred
overall. This can also be observed when the MAP correlatioctions for S151 are plotted for
model classes B and C (Figure 12); it is immediately cleat tihe most probable correlation
functions for case C correspond much better to the initiedifmated sample correlation shown
in Figure 7b. The linear increase in the log evidence valefieats the linearly increasing log
data fit values, which prove in this particular case to berdaténg in the model class selection
procedure.

6. Conclusions

In this paper, theféect of correlation in the prediction error on Bayesian magelating re-
sults is studied. Itis found that a correlated predictigneresults in a recombination of the data
and an altered weighting of prior information and obseoradl data compared to the case of an
uncorrelated prediction error. This means that correfdtidghe prediction error has a large influ-
ence on the posterior parameter estimates and their asbpiasterior uncertainties. Firstly, it
is observed that correlation in the prediction error dogsiroessarily lead to an increase in pos-
terior uncertainty on the parameter estimates comparduetancorrelated case. Likewise, the
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Figure 12: MAP correlation functions for S151, for (a) theperential correlation function (model class B) and (b) the
exponentially damped cosine correlation function (motks<C).

assumption of an uncorrelated prediction error, in comaggnce with maximum data entropy,
is found not to guarantee the highest posterior uncertaintyie Bayesian parameter estimates.
This leads to the conclusion that correlation in the préaiicgrror plays an important role in
the Bayesian inference process, and should be properlyatehfor when it is suspected that
correlation is present in the data or corresponding priedierror. This poses major challenges,
however, as in many practical applications very little imfi@tion is available regarding predic-
tion error characteristics such as the degree or type oélation. In this paper, it is demonstrated
in two illustrative applications that Bayesian model clsslection can be used as dfeetive tool
in appropriately accounting for prediction error corriglat as it allows to dierentiate between
several alternative model classes and select the mostlgeopeediction error model class ac-
cording to the available experimental observations. Tlselte show that, provided ficient
data are available, the true correlation structure is atelyrestimated, ensuring a more realistic
joint structural-probabilistic model and correspondirayBsian model updating results.

Appendix A. Posterior PDF for linear Gy and a Gaussian prediction error and prior PDF

Suppose the prediction mode}, is a linear model, such that it can be writtenJa®y. It is
assumed that the probabilistic model of the predictionrayre Jg6y — d is known to be a zero-
mean Gaussian model, characterizedhywhich reduces the total parameter sefte 6y. A
priori, the parameter sétis assumed to be a Gaussian random variable characterizethbgn
valueé,, and a prior covariance matr ;. As both the prior PDF and the likelihood function
are Gaussian, the posterior PDF will also have a Gaussitibditson, characterized by a mean
valuef,, and a covariance matr, ,o, which can be easily be verified to be equal to:

_]_ ~
Bpo = (ng,;lae + z:gj)r) (ng,;ld + z;j,rapr) (A.1)

-1
Zopo = (JEZ,"Jc + Z55) (A.2)
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or, alternatively:

-1/~
Bpo = Opr + Zoprd s (Jeze,pchT; + Zn) (d - JGgpr) (A.3)

-1
Topo = [| — Zoprdg (JoZopdl + Z) JG] Topr (A.4)

Note that these expressions correspond exactly to the Kafiiter equations with optimal
Kalman gain [48]. It can be verified that the asymptotic egpi@ns elaborated above in equa-
tions (9) and (10) are exact in this particular case.

Appendix B. Elaboration of the posterior expectation of thelog likelihood function and of
the log prior PDF

For a Gaussian prediction error and a linear prediction mduelikelihood function is given
as:

~ ~ -1/2 1 ~ Tl ~
L(g | d) = p(d | 0) = [(271')’\‘ det}:,]] eXp[—E(JGO — d)TEnl(JGO - d) (Bl)
The posterior expectation of the log likelihood functiom¢hen be reformulated as:
~ 1 1 .t ~
E [log p(d | 0)]p0 =~ log |20 detz, | - SE [(Je0 - O)'E;,(Jeb - d)]po (B.2)
1 1 ~ ~
= -5 log |[2)" detz, | - 5 (E[3cblp0 - 4% (ENeblpo-d)  (B.3)
1 -
- 5 E[ (366 ~ ELeb]p0) 'E, " (Icb ~ ElIcblpo) |, (B.4)

Using the notation8,, andX, for the posterior mean valug{6],, and covariance matrix
E[(0 — Opo)(0 — 8p0) 150, respectively, the above expression can be reformulated as

E[log p(@ 1 0)], =100 p(@ | ) ~ 5 B[ (9(0 - 00) %" (30 - %) B
=109 P(@ | ) ~ 5 T (35, 36) Zape (®.6)
=10 (@ | fpe) — 3 Tr {1 X2 o) (B.7)

where use is made of the fact that the trace of a scalar is &gjttedt scalar, and of Eq. (A.2).
Similarly, the posterior expected value of the log prior P@Rere the prior is a Gaussian
PDF characterized by covariance maﬁigér, can be described as:

£ [10g p(6)] = 100 P(fo) — 5 T (E;5Tapo (8.8)
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