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Abstract

Multivariate survival data are characterized by the presence of correlation between

event times within the same cluster. First, we build multi-dimensional copulas with flexi-

ble and possibly symmetric dependence structures for such data. In particular, clustered

right-censored survival data are modeled using mixtures of max-infinitely divisible bivari-

ate copulas. Second, these copulas are fit by a likelihood approach where the vast amount

of copula derivatives present in the likelihood is approximated by finite differences. Third,

we formulate conditions for clustered right-censored survival data under which an infor-

mation criterion for model selection is either weakly consistent or consistent. Several of

the familiar selection criteria are included. A set of four-dimensional data on time-to-

mastitis is used to demonstrate the developed methodology.

Keywords: clustered data, copulas, model selection, multivariate data, right-censoring,

survival data.

1 Introduction

Many data collections consist of observed event times that are grouped in small clusters

of equal size. One example is the mastitis study of Laevens et al. (1997) from veterinary

medicine, where the impact of the mastitis disease on the milk production and the milk

quality of dairy cows is investigated. To this end, information on the time from parturition to

infection is collected for the four udder quarters of each cow. The cow is the cluster and the

event times of the four udder quarters (quadruple data) are the grouped data; see Section 2 for

details. A second example is the trivariate data set on tumorigenesis in Mantel et al. (1977)

and Hougaard (2000), where in a litter-matched experiment time to tumor appearance (cancer

research) is registered. Modeling bivariate event times is the subject of many papers, often

saying that the extension to higher dimensions is straightforward. However, it will become

clear that this is an understatement if one is interested in modeling pairwise associations.

Copulas as well as frailty models are used for the statistical analysis of clustered event times.

Frailty models extend Cox models and therefore provide a convenient way to model associa-

tions between subjects in the same cluster. A nice feature of frailty models is that the cluster
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size can vary, e.g., if the cluster is a herd, the number of animals within each herd can be

different. Copula models are typically used for clusters having small and equal sizes. The

data information in a cluster can then be interpreted as an observation from a multivariate

random vector with survival function Strue.

An additional benefit of copula models is that the association between the components of

the multivariate random vector is completely captured by the copula. This is not the case

for frailty models, although there are similarities between frailty models and Archimedean

copulas (Goethals et al., 2008). Another difference between both model types lies in the way

the association between observations in the same cluster is introduced. In frailty models, it

is the density of the frailty term that generates (via its Laplace transform) the association

between the observations in a cluster, i.e., the association on the event times is modeled

in an indirect way through the use of frailties, while in copula models the associations are

modeled through the event times themselves. This implies that working with copulas becomes

attractive when interest lies in a flexible modeling of the association between the components

of clustered data.

Next, the main question is how to select a copula that describes the data well. For this

reason we state, for multivariate right-censored data, conditions under which a model selection

criterion that takes the form of a general penalized fitting criterion guarantees the selection

of the model that is the best in terms of Kullback-Leibler discrepancy (Proposition 1 – weak

consistency) or to select the most parsimonious model among several models achieving a

similar small Kullback-Leibler discrepancy (Proposition 2 – parsimony). The familiar Akaike

and Bayesian information criteria are of this form.

In Section 3 we show that the class containing the exchangeable, fully nested and partially

nested Archimedean copulas (EAC, FNAC and PNAC) (Berg and Aas, 2009; Savu and Trede,

2006; Okhrin et al., 2013a,b), even though it contains many different copulas, is too restrictive

to describe general association patterns and we explain why Joe-Hu copulas (Joe and Hu,

1996) allow a more flexible modeling. Following the semiparametric approach of Shih and

Louis (1995), appropriate likelihood expressions for right-censored quadruple data are given

in Section 4. These expressions are key ingredients of the information criteria used for model

selection, properties of which are studied in Section 5. The four-variate mastitis data set

is analyzed in Section 6. We give a generic R-program to fit multivariate copula models to

right-censored event time data, the code is contained in the Web Appendix. The numerical

performance of the developed R code is investigated by means of a small simulation study,

see Section 7.

2 Motivating example: the mastitis data

The mastitis data that we consider contains information about the time to infection by certain

bacteria in each of the four udder quarters of a primiparous cow, i.e., a cow with only one

calving. The aim is to examine the association pattern of the infection times in order to

improve the knowledge about the disease as well as to help veterinarians in taking preventive
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Table 1: Censoring patterns of the mastitis data.

number of censored event times in a quadruple 0 1 2 3 4

number of cows 73 49 36 40 209

and/or curing measures. For the 407 included cows, the available data consist of the cow

identification number, the minimum of the times to infection and the censoring times (both

in days) for each udder quarter as well as the corresponding event indicators, e.g., for the

first and last cow the data information is given by {1, (67, 67, 119, 67), (1, 1, 1, 1)} respectively

{407, (279, 279, 279, 263), (0, 0, 0, 1)}. Censoring occurs at the level of the udder quarters and

it is univariate in the sense that the same censoring time applies to all udder quarters of an

individual cow. Information on the censoring patterns is summarized in Table 1; censoring is

present in 66.15% of the observations.

Shared frailty models (Duchateau and Janssen, 2008) and (exchangeable) Archimedean cop-

ulas (Massonnet et al., 2009) have been used to analyze the mastitis data. Both modeling

strategies assume that the correlations between pairs of udder quarters are all the same (Fig-

ure 1(d)). A more general pairwise association pattern (Figure 1(f)) can be obtained via

correlated frailty models (Wienke, 2011). The three different line types in Figure 1(f) repre-

sent three different dependencies; in Figure 1(d) all dependencies are the same. In Section 6

we show that an even more flexible copula modeling is needed to capture the association

structure present in the mastitis data.

3 Flexible copula models

With the data example in mind, we further use quadruple data. Consider a random vector

(T1, . . . , T4) with true joint survival function Strue and true marginal survival functions S1,true,

. . . , S4,true. According to Sklar (1959) there exists a four-variate distribution function Ctrue

on [0, 1]4 with uniform marginals, called the copula corresponding to Strue, such that

Strue(t1, . . . , t4) = Ctrue(S1,true(t1), . . . , S4,true(t4)).

Throughout this paper it is assumed that the marginal distributions are continuous, which

implies that Ctrue is unique and that

Ctrue(u1, . . . , u4) = Strue(S
−1
1,true(u1), . . . , S

−1
4,true(u4)),

with S−1
1,true, . . . , S

−1
4,true the quantile functions. See Nelsen (2006) for a detailed discussion on

copulas. Copulas can also be used to model binary and count data, see Nikoloulopoulos and

Karlis (2008, 2010).

In this paper, we treat the joint survival function as a semiparametric copula-based multivari-

ate model, i.e., a model with two sets of parameters: the unknown marginal survival functions
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S1,true, . . . , S4,true (the nonparametric part) and the copula Ctrue with true unknown param-

eter ζtrue (the parametric part). In practice we estimate the margins by their Kaplan-Meier

counterpart and select a copula from a set of parametric copula families.

Commonly used copulas are the exchangeable and the nested Archimedean ones (Savu and

Trede, 2006; Berg and Aas, 2009; Okhrin et al., 2013a,b), see Section 3.1. We show that these

copulas are too restrictive to model general association patterns and that the Joe-Hu copula

family (Joe and Hu, 1996), see Section 3.2, provides the needed flexibility.

3.1 Exchangeable and nested Archimedean copulas

With ψ a Laplace transform, a four-variate exchangeable Archimedean copula (EAC) is de-

fined as

C(u1, . . . , u4) = ψ
(
ψ−1(u1) + ψ−1(u2) + ψ−1(u3) + ψ−1(u4)

)
,

and is therefore completely determined by the choice of ψ. The latter implies a restrictive

dependence structure; indeed since only ψ can be specified, all bivariate marginal copulas are

exactly the same.

Fully and partially nested Archimedean copulas (FNAC, resp. PNAC) are extensions of EAC’s

allowing more flexible association patterns. For four-dimensional data, the association pat-

terns are given in Figure 1. The corresponding copula expressions are

C(u1, . . . , u4) = ψ3

(
ψ−1
3 (u4) + ψ−1

3

[
ψ2

(
ψ−1
2 (u3) + ψ−1

2

[
ψ1

(
ψ−1
1 (u2) + ψ−1

1 (u1)
)])])

, (1)

respectively,

C(u1, . . . , u4) = ψ3

(
ψ−1
3

[
ψ1

(
ψ−1
1 (u1) + ψ−1

1 (u2)
)]

+ ψ−1
3

[
ψ2

(
ψ−1
2 (u3) + ψ−1

2 (u4)
)])

(2)

where ψi (i = 1, 2, 3) are Laplace transforms. From the formulas it follows that FNAC and

PNAC allow the free specification of only three out of the six bivariate margins. The spec-

ification of the three remaining bivariate margins is implied by the chosen copula structure.

Note that FNAC is not based on the geometry (front versus rear, or left versus right) of the

data. Further, to be a valid copula, each combination of Laplace transforms within a NAC,

as given by ψ−1
i ◦ ψj , i 6= j ∈ {1, 2, 3}, needs to satisfy the complete monotonicity condition

(Nelsen, 2006). For two Laplace transforms stemming from the same family (e.g. Clayton)

the latter is equivalent to claiming that the degree of dependence, as expressed by the bivari-

ate copula parameters, decreases with the level of nesting. However, the mixing of diverse

Laplace transforms needs to be handled with more care (e.g. the combination of a Clayton

with a Gumbel Laplace transform always leads to an improper copula) (Joe, 1997; Hofert,

2008).

3.2 Joe-Hu copulas

A copula family that is much more flexible than the one of exchangeable and nested Archimedean

copulas is the Joe-Hu family (Joe and Hu, 1996), which is constructed as follows. Let Kij ,
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ψ3

ψ2
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3 4
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Figure 1: With θ the Laplace parameter of ψ and θj the Laplace parameter of ψj , j = 1, 2, 3,

EAC, FNAC and PNAC generate the following association patterns with corresponding tree

structures (a larger node for ψj corresponds to a larger value of the parameter θj): (a) and

(d) EAC: all pairs have the same dependence parameter θ; (b) and (e) FNAC: pair (1,2)

has association parameter θ1, pairs (1,3) and (2,3) have association parameter θ2 and all

other pairs have association parameter θ3 (with θ1 ≥ θ2 ≥ θ3); (c) and (f) PNAC: pair (1,2),

resp. pair (3,4), has association parameter θ1, resp. θ2, and all other pairs have association

parameter θ3 (with θ1 ≥ θ3, θ2 ≥ θ3).

1 ≤ i < j ≤ 4, be bivariate copulas that are max-id, i.e., Kγ
ij is a distribution function for all

γ > 0. Further, let H1,. . . ,H4 be univariate cdf’s on [0, 1] and let M be the distribution of

a positive random variable α whose Laplace transform is defined by ψ. Joe and Hu (1996)
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define a four-variate copula by considering the following mixture:

∫ ∞

0

∏

1≤i<j≤4

Kα
ij(Hi(ui),Hj(uj))

4∏

i=1

Hνiα
i (ui) dM(α)

= ψ
(
− log

{ ∏

1≤i<j≤4

Kij(Hi(ui),Hj(uj))

4∏

i=1

Hνi
i (ui)

})

= ψ
(
−

∑

1≤i<j≤4

logKij(Hi(ui),Hj(uj))−
4∑

i=1

νi logHi(ui)
)
,

where the νi’s are chosen fixed constants satisfying νi > −3. The νi’s are usually nonnegative,

but they can be negative if some of the Kij correspond to an independence copula.

To be a copula, the margins need to be uniform on [0, 1]. This is achieved by choosing Hi(ui)

to be exp{−piψ−1(ui)} with pi = (νi + 3)−1, i = 1, . . . , 4. One then obtains the copula

C(u1, . . . , u4)

= ψ
(
−

∑

1≤i<j≤4

logKij(exp{−piψ−1(ui)}, exp{−pjψ−1(uj)}) +
4∑

i=1

νipiψ
−1(ui)

)
. (3)

The presence of the νi’s ensures that the above family of multivariate copulas is closed under

margins and that the (i,j)-bivariate marginal copula is given by

C(ui, uj) = ψ
(
− logKij(exp{−piψ−1(ui)}, exp{−pjψ−1(uj)})

+(νi + 2)piψ
−1(ui) + (νj + 2)pjψ

−1(uj)
)
. (4)

See Joe and Hu (1996) for technical details where it is further shown that C(ui, uj) is more

concordant (or more positive quadrant dependent) than its Archimedean counterpart, see the

section on concordance in Joe (1993).

The dependence structure in (3) is completely determined by the choice of the Kij, 1 ≤ i <

j ≤ 4, as well as by the Laplace transform ψ. The Laplace transform determines a minimal

level of overall dependence, while the copulas Kij allow a fine-tuning of the dependence for

each of the six bivariate margins. Examples of popular Archimedean copulas that are max-id

and therefore can be used as building blocks Kij are listed in Table 2. These copulas have

different dependence properties, e.g., a Clayton copula is lower tail dependent, a Gumbel and

a Joe copula have upper tail dependence while a Frank copula exhibits no tail dependence.

Using (a combination of) them in (3) thus allows the construction of copulas with flexible

dependence patterns. Here, a copula is used to model the joint survival function of event

times. Therefore, a copula with lower tail dependence models the association between late

event times, whereas a copula with upper tail dependence captures the association between

events that occur early in time. We refer to the Web Appendix for both a description and

a visualization of the dependence properties of some bivariate Joe-Hu copulas as well as an

illustration of the impact of the choice of νi on the modeled association. Conditions to check

the max-id assumption can be found in Section 4 of Joe and Hu (1996).
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Table 2: Choices of bivariate Archimedean max-id copulas and their Laplace transforms.

Family K(u, v) ψ(s) η ∈
Clayton (u−η + v−η − 1)

−1/η
(1 + ηs)−1/η ]0,∞[

Gumbel e−{(− lnu)η+(− ln v)η}1/η e−s1/η [1,∞[

Frank − 1
η ln

{
1 + (e−ηu−1)(e−ηv−1)

e−η−1

}
− 1

η ln {1− (1− e−η)e−s} ]0,∞[

Joe 1− {(1− u)η + (1− v)η − (1− u)η(1− v)η}1/η 1− (1− e−s)1/η [1,∞[

By taking Kij(ui, uj) = uiuj , i.e., the independence copula, for all pairs (i, j), i 6= j ∈
{1, . . . , 4}, the copula in (3) is Archimedean with Laplace transform ψ. Furthermore, by

appropriate choices of the Kij , 1 ≤ i < j ≤ 4 with Kij(ui, uj) 6= uiuj for some pairs (i, j)

it is possible to create a dependence structure that is the same as the one generated by a

nested Archimedean copula and this without the required modeling restrictions of the latter

e.g. the association structure in Figure 1(e) can be obtained by taking K12 6= K13 = K23 6=
K14 = K24 = K34, while the correlation pattern in Figure 1(f) can be constructed by setting

K12 6= K34 6= K13 = K23 = K14 = K24. Exchangeable and nested Archimedean copulas are

thus, in that sense, a subclass of the Joe-Hu family.

4 Maximum quasi-likelihood estimation

Let Ysr denote the observed time for observation r (r = 1, . . . , 4) in cluster s (s = 1, . . . , S).

That is, Ysr = min(Tsr, Csr) with Tsr the event time and Csr the censoring time. We as-

sume that Ts = (Ts1, . . . , Ts4) and Cs = (Cs1, . . . , Cs4) are independent random vectors

(s = 1, . . . , S). The actual data are denoted as ysr = min(tsr, csr) and δsr = I(tsr ≤ csr)

is the value of the corresponding event indicator. Let usr denote the value of the true r-th

marginal survival function evaluated at ysr, i.e., usr = Sr,true(ysr).

Consider a collection M of D copula families Md (d = 1, . . . ,D) consisting of EAC, FNAC

and PNAC as well as Joe-Hu families:

M =
⋃D

d=1Md

with Md = {Cd(u1, . . . , u4; ζd) : ζd ∈ Ad ⊂ R
pd}. Here, Ad is the parameter space, a subset

of the pd-dimensional Euclidean space. The parameter ζd contains, for each single family,

all specific parametric characteristics: the Laplace transform ψd (EAC, Joe-Hu), the Laplace

transforms ψd,i (FNAC, PNAC) (i = 1, 2, 3) and the bivariate max-id copulas Kd,ij (Joe-Hu)

(1 ≤ i < j ≤ 4). To keep the notation simple, we write Cd to represent a general member of

the copula family Md.
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Further, with:

∆s =

4∏

r=1

(1− δsr); ∆s(p) = δsp

4∏

r=1;r 6=p

(1− δsr); ∆s(1, 2, 3, 4) =

4∏

r=1

δsr

∆s(p, q) = δspδsq

4∏

r=1;r 6=p,q

(1− δsr) for p 6= q

∆s(p, q, v) = δspδsqδsv(1− δsw) for w 6= p, q, v and p 6= q 6= v,

and

ls,d(us1, . . . , us4, δs1, . . . , δs4; ζd) (5)

= ∆s log {Cd(us1, us2, us3, us4; ζd)}

+

4∑

p=1

[
∆s(p) log

{
∂Cd(us1, us2, us3, us4; ζd)

∂usp

}]

+
∑

p 6=q

[
∆s(p, q) log

{
∂2Cd(us1, us2, us3, us4; ζd)

∂usp∂usq

}]

+
∑

p 6=q 6=v

[
∆s(p, q, v) log

{
∂3Cd(us1, us2, us3, us4; ζd)

∂usp∂usq∂usv

}]

+∆s(1, 2, 3, 4) log

{
∂4Cd(us1, us2, us3, us4; ζd)

∂us1∂us2∂us3∂us4

}
,

the loglikelihood of copula Cd for right-censored data is given by (Shih and Louis, 1995;

Massonnet et al., 2009)

logLS,d(ζd) =

S∑

s=1

ls,d(us1, . . . , us4, δs1, . . . , δs4; ζd).

Note that the presence of censoring leads to a non-classical form of the likelihood. From this

loglikelihood ζd can be estimated if Sr,true, r = 1, . . . , 4 are known. However, in practice the

latter are typically unknown and the two-step estimator proposed by Shih and Louis (1995)

is applied. First, we construct the Kaplan-Meier estimators S̃r,true of the unknown marginal

survival functions Sr,true and obtain ũsr = S̃r,true(ysr) (r = 1, . . . , 4, s = 1, . . . , S). Then we

maximize the quasi-loglikelihood

log L̃S,d(ζd) =
S∑

s=1

ls,d(ũs1, . . . , ũs4, δs1, . . . , δs4; ζd),

to obtain the maximum quasi-likelihood estimator

ζ̂S,d = arg max
ζd∈Ad

log L̃S,d(ζd).

We implemented the optimization of the quasi-loglikelihood in a generic R-program which is

discussed in Section 7.
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5 Model selection

The collection of copulas from which we select one is M =
⋃D

d=1Md. To derive a model

selection criterion, we work under a general misspecification setting, i.e., the true copula

Ctrue does not need to be in M. Consequently, we need a selection criterion that gives us the

‘best possible’ copula in M or the copula in M that is the ‘closest’ we can get to the true

copula Ctrue (Sin and White, 1996; Claeskens and Hjort, 2008).

The information criterion we use for model selection is the penalized quasi-loglikelihood

ICS(Md) = −2 log L̃S,d(ζ̂S,d) + pen(S, d). (6)

Common examples of the penalty term are pen(S, d) = 2pd, in which case ICS(Md) is the

Akaike information criterion, AIC (Akaike, 1973) and pen(S, d) = pd log(S), resulting in a

version of the Bayesian information criterion, BIC (Schwarz, 1978). The smaller the value of

ICS(Md), the better the model Md is in terms of Kullback-Leibler discrepancy

1

S
Etrue [logLtrue(ζtrue)− logLS,d(ζd)] ,

with Etrue the expectation with respect to the true unknown copula Ctrue and logLtrue the

version of logLS,d using Ctrue instead of Cd.

Propositions 1 and 2 show that, based on the above selection criterion, the best model is chosen

in a consistent way. Since we work under a general misspecification setting, the pseudo-true

parameter values ζ∗S,d (d = 1, . . . ,D) are needed where

ζ∗S,d = arg max
ζd∈Ad

S−1
S∑

s=1

Etrue [ls,d(U1, . . . , U4, δ1, . . . , δ4; ζd)] .

The pseudo-true value is the value that minimizes the average Kullback-Leibler information

criterion (KLIC), i.e., it is the value for which the loglikelihood using the dth model is as close

as possible to the true (unknown) loglikelihood. For the considered data generating process

(right censored data with Ts and Cs independent random vectors) we have that

ζ∗S,d = ζ∗d = arg max
ζd∈Ad

Etrue [ld(U1, . . . , U4, δ1, . . . , δ4; ζd)] .

For the remainder of this section we prefer to present the model selection procedure in its

general form.

First, suppose that there is exactly one model Md0 in the set of considered models M, which

reaches the smallest Kullback-Leibler discrepancy. Further, assume that the conditions C1–C5

of Chen et al. (2010) needed to ensure the convergence of the estimator ζ̂S,d to the pseudo-

true value ζ∗S,d hold. The next proposition states the necessary condition on the penalty such

that information criterion (6) is weakly consistent, i.e. such that it selects model Md0 with

probability tending to one. We follow the terminology as introduced by Sin and White (1996)

where weak consistency makes use of a weak law of large numbers, while strong consistency

uses a strong law of large numbers.
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Proposition 1 (Weak consistency). Suppose that there is a unique model Md0 in the set of

considered models M which reaches the smallest Kullback-Leibler discrepancy, thus,

lim inf
S→∞

min
d6=d0

1

S
Etrue[logLS,d0(ζ

∗
S,d0)− logLS,d(ζ

∗
S,d)] > 0.

Define ∆ICS(d0, d) = ICS(Md0)− ICS(Md). If for all d = 1, . . . ,D, pen(S, d0)− pen(S, d) =

op(S), and conditions C1–C5 of Chen et al. (2010) are satisfied, then weak consistency holds,

lim
S→∞

P (max
d6=d0

∆ICS(d0, d) < 0) = 1.

Proof. Under conditions C1–C5 of Chen et al. (2010), we get from their proposition 3.1(b),

for d = 1, . . . ,D
1

S
log L̃S,d(ζ̂S,d) =

1

S
Etrue[logLS,d(ζ

∗
S,d)] + oP (1).

Therefore,

∆ICS(d0, d) = −2(Etrue[logLS,d0(ζ
∗
S,d0)]−Etrue[logLS,d(ζ

∗
S,d)])+oP (S)+pen(S, d0)−pen(S, d).

The statement follows from the assumption on the penalty term as in the proof of Proposition

4.2(a) of Sin and White (1996), though now for the censored multivariate survival models.

Clearly the condition on the penalty for weak consistency is satisfied by both AIC and BIC-

type penalties.

Next, suppose that there are two or more models that achieve nearly the same small Kullback-

Leibler discrepancy value. To this end, define J and J̃ to be sets of such ‘good’ models and

state that Md, Md′ ∈ J if and only if

lim sup
S→∞

1√
S

(
Etrue[logLS,d′(ζ

∗
S,d′)]− Etrue[logLS,d(ζ

∗
S,d)]

)
<∞, (7)

and Md, Md′ ∈ J̃ if and only if

log L̃S,d′(ζ
∗
S,d′)− log L̃S,d(ζ

∗
S,d) = OP (1). (8)

We investigate under which assumptions the information criterion is able to select from the set

of ’good’ models J or J̃ (assumed to be non-empty) a model which is the most parsimonious,

in the sense of having the smallest number of parameters. Note that there might be more

than one parsimonious model. Define J0 ⊂ J the subset of J with the most parsimonious

models, i.e., J0 = {Md0 ∈ J : pd0 = min{pd : Md ∈ J }} and J̃0 ⊂ J̃ the subset of J̃ with

the most parsimonious models, i.e., J̃0 = {Md0 ∈ J̃ : pd0 = min{pd :Md ∈ J̃ }}.

Since the copula models are not necessarily nested, we use the full set of assumptions as in

Proposition 4.2 of Chen et al. (2010), that is, their assumptions C1–C5, A1–A4 hold and

in addition a Lindeberg condition holds on the likelihood components minus their expected

values at the pseudo-true values. Conditions A1–A4 are needed to ensure the asymptotic

normality of the estimator ζ̂S,d.
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Proposition 2 (Parsimony). Assume the condition as in Proposition 4.2 of Chen et al.

(2010).

(a) With J defined in (7), assume that for all Md0 ∈ J0, for all Md ∈ J \J0, the penalty

is such that P ({pen(S, d) − pen(S, d0)}/
√
S → ∞) = 1. Then, with probability tending

to one a most parsimonious model will be selected, that is,

lim
S→∞

P ( max
Md 6∈J0

∆ICS(d0, d) < 0) = 1.

(b) With J̃ defined in (8), assume that for all Md0 ∈ J̃0, for all Md ∈ J̃ \J̃0: P (pen(S, d)−
pen(S, d0) → ∞) = 1. Then, with probability tending to one a most parsimonious model

will be selected, that is,

lim
S→∞

P ( max
Md 6∈J̃0

∆ICS(d0, d) < 0) = 1.

Proof. Using the set of assumptions (a) we start from Proposition 4.2 of Chen et al. (2010)

to obtain that

∆ICS(d0, d) = −2(Etrue[logLS,d0(ζ
∗
S,d0)]−Etrue[logLS,d(ζ

∗
S,d)])+OP (

√
S)+pen(S, d0)−pen(S, d).

Using the set of assumptions (b) and the proof of Proposition 4.2 of Chen et al. (2010) we

arrive at

∆ICS(d0, d) = −2(log L̃S,d0(ζ
∗
S,d0)− log L̃S,d(ζ

∗
S,d)) +OP (1) + pen(S, d0)− pen(S, d).

The proof now proceeds as in Sin and White (1996), Proposition 4.2 (b) and (c).

Proposition 2 yields the well-known difference in asymptotic behavior for criteria of the type

AIC and BIC. For a BIC-type penalty, this form of parsimony in selection holds true, provided

the other conditions of the proposition hold. One drawback might be that for sample size

dependent penalties it holds that the larger the sample size, the larger the penalty, and as

a consequence that simpler models tends to be selected for larger samples, which is often

counter-intuitive. Since AIC’s penalty does not depend on the sample size, it does not satisfy

either penalty condition for consistency. One implication of this is that if there indeed are

several models with similar small Kullback-Leibler discrepancy, AIC does not necessarily

select amongst these models the one with the smallest number of parameters. This overfitting

property of AIC makes statements regarding efficiency of the selection possible. Consistency

and efficiency cannot be true together (Yang, 2005), implying that consistent criteria cannot

be efficient and vice versa.

Sin and White (1996) also obtain conditions under which they prove strong consistency of this

type of information criterion, where the selection takes place almost surely. Those statements

hold by using the law of the iterated logarithm. In order for similar statements to be phrased

for the multivariate semiparametric copula models, one would need to study the application

11



Table 3: Joe-Hu dependence structures fitted to the mastitis data

pattern pairs (i, j) for which Kij(u, v) 6= uv number of

parameters

a (1,2) 2

b (1,2), (3,4) with K12 6= K34 3

c (1,2), (3,4), (1,3), (2,4) with K12 6= K34 6= K13 = K24 4

d (1,2), (3,4), (1,3), (2,4), (2,3) with K12 6= K34 6= K13 = K24 6= K23 5

of the law of the iterated logarithm under model misspecification as in the framework of Chen

et al. (2010). We do not pursue that in this paper.

This study of the asymptotic behavior of an information criterion IC in the style of the AIC is

different in spirit from that by Grønneberg and Hjort (2014). Those authors aim to construct

a first order unbiased estimator of the Kullback-Leibler discrepancy between a model and the

true copula, and name it the copula information criterion, CIC. The penalty used in their

CIC versions adds to the AIC-type penalty of 2pd one or two additional terms. Note that no

censoring is allowed in that paper. Since the criterion CIC is of the same type as the general

criterion IC in (6), its (weak) consistency could be investigated as in Propositions 1 and 2.

6 Mastitis data revisited

In this section we investigate the association pattern of the infection times in the udder

quarters of a cow by fitting a variety of copulas to the data at hand. Based on the bivariate

copulas and their corresponding Laplace transforms in Table 2, we construct 4 exchangeable,

4 fully and 4 partially nested Archimedean copulas with an implied dependence structure as

visualized in Figure 1 as well as 64 Joe-Hu copulas obtained by combining diverse elements

from Table 2. Here we set νi = 0, i = 1, . . . , 4. Further, within a specific dependency pattern

all Kij(u, v) not equal to an independence copula are chosen to stem from the same copula

family. By doing so, the diverse four-dimensional Joe-Hu models are nested within each

other in the sense that the four Joe-Hu dependence structures depicted in Figure 2 exhibit

an increasing flexibility in the way the association between pairs is modeled. It is possible

to combine Kij(u, v)’s from different copula families, but since this would lead to a large

number of copulas to be considered we do not apply this option here. To obtain the patterns

in Figure 2, we need to specify for which pairs of udder quarters an extra dependence is

added on top of the dependence captured by the Laplace transform ψ, i.e., we need to specify

for which pairs (i, j) we have Kij(u, v) 6= I(u, v) = uv (I is the independence copula). The

concrete situation is summarized in Table 3. K14(u, v) = I(u, v) in every pattern, this choice

is justified by the fit of more general four-variate Joe-Hu models leading to parameter values

for K14(u, v) near independence. Note that the dependence pattern in Figure 2(b) is the same

as the one of PNAC in Figure 1(c). However, the copula underlying the pattern in Figure 2(b)
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(a) (b)

(c) (d)

Figure 2: Considered Joe-Hu structures for the mastitis data - different line types represent

different dependencies.

allows a more flexible mixing of different types of copulas (see also Section 3.1).

The obtained AIC and BIC values are listed in Tables 4–5, with the three best models marked

in bold. From these tables it can be observed that for the mastitis data the simpler models,

i.e., EAC, FNAC and PNAC clearly are insufficient. It is the most elaborate dependence

structure, pattern d, that outperforms all other models. The estimates of the Laplace and

copula parameters in the best model are listed in the left part of Table 6. The corresponding

values of the lower and upper tail dependencies are displayed in the right part of Table 6. Note

that the tail dependencies for each udder pair (i, j) are calculated using both the estimated

parameter of the Laplace transform (θC) as well as the estimated value of the parameter θJij of

Kij (i < j ∈ {1, 2, 3, 4}) (see the Web Appendix for a detailed discussion). To obtain standard

errors 1000 bootstrap samples are used; the resampling algorithms (parametric bootstrap) are

given in the Web Appendix. From Table 6 it follows that the infection times are substantially

correlated, i.e., the lower tail dependence equals 0.74 for all udder quarter pairs and the upper

tail dependence of the udder quarter pairs ranges from 0 to 0.31. Late event times thus follow

a similar association pattern, while for early event times the association changes from pair to

pair. No specific symmetries are present.
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Table 4: AIC/BIC-values for EAC, FNAC and PNAC.

ψ EAC FNAC PNAC

Clayton 307.38 / 311.38 308.72 / 320.75 305.85 / 317.88

Gumbel 386.75 / 390.76 372.05 / 384.07 358.40 / 370.43

Frank 315.23 / 319.23 312.66 / 324.69 307.72 / 319.74

Joe 440.61 / 444.62 421.09 / 433.11 405.67 / 417.70

We compare the results of the four-variate analysis, listed in Table 6, with those of the

bivariate analysis of each udder pair separately. To this end, we apply model (4) to the six

possible pairs of udder quarters. We take ψ a Clayton Laplace transform, Kij a bivariate Joe

copula and νi = 0 (i < j ∈ {1, 2, 3, 4}); this setting corresponds to a of the preferred four-

variate Joe-Hu copula (except for the (1,4)-margin which is a Clayton copula). The findings

are summarized in Table 7. For most udder quarter pairs the results of the bivariate and

the four-variate analysis are similar (e.g., the estimated tail dependencies), however, for the

crossed udder quarter pairs (1,4) and (2,3) different estimates are obtained. By reducing the

four-variate data to bivariate data the overall association between the four udder quarters is

not properly taken into account and hence somewhat misleading results are obtained. These

findings are in line with the discussion in Hougaard (2000), where it is indicated that bivariate

analyzes do not capture all the information available in multivariate data. A further reference

illustrating the advantage of using all available data to estimate a quantity of interest is

Akritas and Van Keilegom (2003). The bivariate analysis might serve as an initial search for

plausible combinations of ψ and Kij , and the estimated copula parameter values can be used

as starting values for the optimization of the four-variate copula loglikelihood, but should

not be considered as giving the final result. Further, even though a Joe-Hu model can be

applied to bivariate data, it should be done with some care. If ψ and Kij are from the same

family (e.g., if ψ and Kij are both taken to be Gumbel), then a Joe-Hu copula may not really

make sense: why add an extra association via Kij if ψ already models the desired type of

dependence? Further, identifiability issues may arise in dimension two, i.e., it may not be

possible to retrieve the parameters of ψ and Kij in a unique way (e.g., if ψ and Kij are both

set to be Joe and if in (4) νi = νj = −2, then the resulting bivariate copula is a Joe copula

with parameter equal to the product of the parameters of ψ and Kij). These problems do

not arise in dimension at least three.

7 Generic program and simulation study

7.1 R-program

To allow flexible choices for ψ and the Kij ’s in the Joe-Hu family, we developed a generic

R-program (see the Web Appendix) based on the general copula formula (3). Due to the

generality, some numerical care is needed, e.g., evaluation of the exponent of the negative

inverse Laplace transform might be tedious due to limited precision. We addressed this issue
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Table 5: AIC/BIC-values for Joe-Hu copulas.

ψ Kij Pattern a Pattern b Pattern c Pattern d

Clayton Clayton 283.46 / 291.48 252.54 / 264.56 232.89 / 248.92 228.80 / 248.84

Gumbel 279.44 / 287.46 254.75 / 266.78 214.56 / 230.59 199.13 / 219.17

Frank 267.85 / 275.87 217.24 / 229.26 202.44 / 218.48 198.16 / 218.21

Joe 280.43 / 288.44 256.34 / 268.36 214.02 / 230.06 197.99 / 218.04

Gumbel Clayton 352.45 / 360.47 311.70 / 323.72 272.61 / 288.64 262.12 / 282.16

Gumbel 355.27 / 363.29 326.87 / 338.89 271.07 / 287.10 247.56 / 267.60

Frank 354.63 / 362.65 327.53 / 339.56 289.13 / 305.17 267.22 / 287.26

Joe 355.85 / 363.86 327.96 / 339.99 271.86 / 287.89 248.54 / 268.58

Frank Clayton 291.69 / 299.71 261.45 / 273.48 238.21 / 254.25 232.33 / 252.37

Gumbel 287.43 / 295.45 262.29 / 274.32 221.71 / 237.74 205.12 / 225.17

Frank 289.48 / 297.50 281.57 / 293.60 272.15 / 288.18 273.58 / 293.62

Joe 287.48 / 295.50 262.36 / 274.38 221.68 / 237.72 205.03 / 225.07

Joe Clayton 397.31 / 405.33 349.35 / 361.38 298.41 / 314.45 284.41 / 304.46

Gumbel 402.36 / 410.37 369.28 / 381.31 301.67 / 317.71 275.06 / 295.10

Frank 398.69 / 406.71 378.79 / 390.81 329.38 / 345.42 293.10 / 313.14

Joe 402.89 / 410.91 370.26 / 382.28 302.59 / 318.62 276.21 / 296.26

Table 6: Estimates of the Clayton Laplace parameter (θC) and of the bivariate Joe copula

parameters (θJij) in the four-variate Joe-Hu copula as well as the corresponding estimated

lower and upper tail dependencies for each udder pair; the estimated standard errors se1 and

se2 are obtained using the bootstrap Algorithms 1 and 2 (Web Appendix).

parameter estimated pair of udder estimated lower tail estimated upper tail

parameter (se1, se2) quarters dependence (se1, se2) dependence (se1, se2)

θC 2.31 (0.30, 0.29) 1-4 0.74 (0.03, 0.03) 0

θJ12 2.62 (0.73, 0.69) 1-2 0.74 (0.03, 0.03) 0.23 (0.03, 0.03)

θJ23 1.38 (0.23, 0.23) 2-3 0.74 (0.03, 0.03) 0.12 (0.04, 0.04)

θJ34 4.44 (1.03, 1.05) 3-4 0.74 (0.03, 0.03) 0.28 (0.02, 0.02)

θJ13 = θJ24 9.65 (1.35, 1.37) 1-3 and 2-4 0.74 (0.03, 0.03) 0.31 (0.01, 0.01)

by high precision calculations, i.e., instead of using the double precision numbers in R, we

use multiple precision floating point numbers (Maechler, 2014). Further, note that the terms

in the likelihood expressions in (5) often contain (higher order) partial derivatives. The exact

expressions are typically quite cumbersome to obtain, in the program we therefore used finite

forward differences as approximations. The simulation study below shows that the generic

program works well.
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Table 7: Estimates of the Clayton Laplace parameter (θC) and of the bivariate Joe copula

parameter (θJij) in the bivariate Joe-Hu copula as well as the corresponding estimated lower

and upper tail dependencies for each udder pair; the estimated standard errors se1 and se2
are obtained using the bootstrap Algorithms 1 and 2 (Web Appendix).

pair of udder θ̂C θ̂Jij estimated lower tail estimated upper tail

quarters (se1, se2) (se1, se2) dependence (se1, se2) dependence (se1, se2)

1-2 2.42 (0.45, 0.44) 4.17 (1.14, 1.13) 0.75 (0.05, 0.05) 0.27 (0.03, 0.03)

1-3 2.25 (0.45, 0.45) 9.85 (2.16, 2.31) 0.74 (0.05, 0.05) 0.31 (0.02, 0.02)

1-4 1.50 (0.39, 0.38) 3.36 (0.93, 0.98) 0.63 (0.07, 0.07) 0.26 (0.04, 0.04)

2-3 2.03 (0.45, 0.46) 4.78 (1.31, 1.25) 0.71 (0.06, 0.06) 0.28 (0.03, 0.03)

2-4 2.26 (0.44, 0.45) 8.56 (1.90, 2.07) 0.74 (0.05, 0.05) 0.31 (0.02, 0.02)

3-4 2.15 (0.46, 0.47) 4.19 (1.17, 1.15) 0.72 (0.06, 0.06) 0.27 (0.03, 0.03)

7.2 Simulation study

To evaluate the numerical performance of the generic R-program, we set up a small simulation

study. Based on the conditional inversion algorithm described in Embrechts et al. (2003) (see

the Web Appendix) we generate 600 datasets, each containing 500 clusters of size 4 from

either the Clayton copula with θ = 3.19, the Frank copula with θ = 5.76 or the Joe-Hu

copula

C(u1, . . . , u4) =

(
1 +

{(
u−θ
1 − 1

)α
+

(
u−θ
2 − 1

)α} 1

α
+

{(
u−θ
3 − 1

)α
+

(
u−θ
4 − 1

)α} 1

α

)− 1

θ

,

with θ = 2.91 and α = 1.17. This Joe-Hu copula can be constructed by taking ν1 = . . . =

ν4 = −2, ψ a Clayton Laplace transform with parameter θ, K12 = K34 a bivariate Gumbel

copula with parameter α and all other Kij independence copulas (1 ≤ i < j ≤ 4).

To obtain event times tsr (s = 1, . . . , 500, r = 1, . . . , 4) we take four Weibull margins with scale

λ = 0.5 and shape ρ = 1.5. The censoring mechanism is assumed to be univariate, i.e. csr = cs
(s = 1, . . . , 500, r = 1, . . . , 4), Weibull with scale and shape given by λ = 0.15, ρ = 1.5, resp.

λ = 0.85, ρ = 1.5, leading to approximately 23%, resp. 63% censoring. The latter corresponds

to the censoring present in the mastitis data. The observed data can then be calculated as

ysr = min(tsr, csr) and δsr = I(tsr ≤ csr) (s = 1, . . . , 500, r = 1, . . . , 4).

The results, obtained by applying the generic R-program with a stepsize of either 0.001 or

0.0005 for the finite forward differences, are summarized in Table 8. From this it can be seen

that, on average and taking the empirical standard deviation into account, the estimation

is on target. The performance is somewhat more accurate for the Frank copula and slightly

better for light censored data.
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Table 8: Simulation results - mean and empirical standard deviation

copula censoring stepsize θ̂ (se) α̂ (se)

Clayton θ = 3.19 23% 0.001 3.094 (0.226)

0.0005 3.089 (0.230)

63% 0.001 3.041 (0.328)

0.0005 3.041 (0.330)

Frank θ = 5.76 23% 0.001 5.737 (0.266)

0.0005 5.727 (0.263)

63% 0.001 5.722 (0.376)

0.0005 5.723 (0.374)

Joe-Hu θ = 2.91, α = 1.17 23% 0.001 2.813 (0.226) 1.178 (0.033)

0.0005 2.809 (0.225) 1.180 (0.032)

63% 0.001 2.770 (0.326) 1.180 (0.043)

0.0005 2.776 (0.324) 1.182 (0.042)

8 Discussion

In this paper we show that, compared to exchangeable and nested Archimedean copulas (EAC,

FNAC, PNAC), the Joe-Hu family allows a flexible way of modeling the association patterns.

Given the variety of possible copula constructions we used a model selection criterion for

which methodological support is given in Propositions 1 and 2. For right-censored quadruple

data, a generic R-program is given to fit the model as well as to perform the model selection.

Vines (Berg and Aas, 2009; Aas et al., 2009) also provide flexible modeling of association

patterns. The basic idea is a decomposition of the copula density into a cascade of bivariate

conditional densities which then allows a copula specification for each pair of variables. So

far, vine theory is only developed for complete data. The extension of the existing vine

methodology to right-censored data is a challenging research problem that we are currently

investigating.
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