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Abstract

A data-driven method for frequentist model averaging weight choice is developed for gen-

eral likelihood models. We propose to estimate the weights which minimize an estimator of

the mean squared error of a weighted estimator in a local misspecification framework. We

find that in general there is not a unique set of such weights, meaning that predictions from

multiple model averaging estimators will not be identical. This holds in both the univariate

and multivariate case. However, we show that a unique set of empirical weights is obtained

if the candidate models are appropriately restricted. In particular a suitable class of models

are the so-called singleton models where each model only includes one parameter from the

candidate set. This restriction results in a drastic reduction in the computational cost of

model averaging weight selection relative to methods which include weights for all possible

parameter subsets. We investigate the performance of our methods in both linear models

and generalized linear models, and illustrate the methods in two empirical applications.

Key words: Frequentist model averaging, mean squared error, weight choice, local misspeci-

fication, likelihood regression.

1 Introduction

We study a focused version of frequentist model averaging where the mean squared error plays

a central role. Suppose we have a collection of models S ∈ S to estimate a population quantity

µ, this is the focus, leading to a set of estimators {µ̂S : S ∈ S}. The focus can be vector-valued.

In this paper we study properties of the weight choice for constructing a combined, weighted,

or aggregated, estimator

µ̂w =
∑
S∈S

wSµ̂S . (1)

Focused model selection (FIC, Claeskens and Hjort, 2003) assigns a single weight ŵS∗ = 1 to

the estimator for which the estimated mean squared error (MSE) is the smallest amongst all

considered models, that is M̂SE(µ̂S∗) = minS∈S M̂SE(µ̂S), and ŵS = 0 for all other S ∈ S. Due

to the estimation of the MSE (the true model is unknown, hence unavailable for use in MSE

computations), the collection of weights ŵS is random. Similar random selection results from

using any other information criterion such as the Akaike information criterion (AIC, Akaike,

1973), the Bayesian information criterion (BIC, Schwarz, 1978) and Mallows’ Cp (Mallows,

1973).
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Small fluctuations in the data may cause the weights indicating the single best model to

change from one to zero and vice versa. For this reason model averaging with weights outside

the values {0, 1} are considered as a more stable compromise. This paper concentrates on

frequentist model averaging in a likelihood setting. For an overview of model averaging in a

Bayesian framework see Hoeting et al. (1999).

Weight selection methods for regression models estimated via least squares, include the

Mallows’ criterion for determining the weights to be used in model averaging for nested models

(Hansen, 2007) and its extension to non-nested models (Wan et al., 2010). Hansen and Racine

(2012) defined a jackknife model averaging estimator for heteroskedastic errors and showed the

optimality of that model averaged estimator. Model averaging in econometrics is often used

for improving forecast accuracy (Bates and Granger, 1969; Granger and Ramanathan, 1984;

Hansen, 2008). For a further literature overview, see Cheng and Hansen (2015).

Liang et al. (2011) proposed to select the weights such that the estimated MSE of the

weighted estimator µ̂w is minimal. In that paper, their ‘optimal’ set of weights for frequentist

model averaged estimators is, however, restricted to a specific ad hoc parametric form. They

used their method for least squares estimation only, but explain that it could be extended to

maximum likelihood estimation. For linear regression models with heteroscedastic errors Liu

(2015) proposed a model averaging estimator in a local asymptotic framework and derived the

asymptotic distribution of the so-called plug-in averaging estimator based on the asymptotic

mean squared error expression. Logistic regression was considered by Wan et al. (2013) by

minimizing a plug-in estimator of the asymptotic mean squared error for defining the weights.

In this paper we consider estimators obtained by maximum likelihood estimation in general.

First, we propose an estimator of the mean squared error of µ̂w under local misspecification,

replacing the unknown localizing parameters by their plug-in estimators. We then propose

selecting the weights which minimize this estimator of the MSE. This method can be considered

as an extension of Liu (2015) to likelihood models. We also extend the approach of Liang

et al. (2011) as we do not restrict the empirical weights to have a certain parametric form nor

to lie in the unit simplex, although we impose that the sum of weights is equal to one as is

necessary for consistency of the model averaging estimator (Hjort and Claeskens, 2003). In

absence of imposing inequality restrictions, unlike other weight selection methods, no quadratic

programming nor nonlinear optimization is required. When the aim of the model averaging is to

improve estimation efficiency as compared to using a single models estimator, the interpretation

of the separate weights is not of direct interest. By not restricting the weights to be between

zero and one, more flexibility is allowed in the construction of the weighted estimator, and thus

there is the possibility for reduced MSE.

A second part of this paper entails a study of the set of models S for which we can assign

unique weights to the corresponding estimators. Perhaps surprisingly, it turns out that most of

the so far studied weight selection methods result in a non-unique set of weights. This may be

problematic when interpreting the weight values. Interestingly, we prove that there are multiple

weight vectors which yield equal model average predictions in linear regression using different sets

of models. It is therefore sufficient to restrict attention to a subset of such models for which we
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can construct a unique MSE-minimizing weight vector. It turns out that one convenient choice

is the class of singleton models, dramatically reducing the number of models to estimate. For

example, if there are q candidate parameters for inclusion, then there are 2q models consisting

of all possible subsets of q parameters, but there are only q + 1 singleton models (the baseline

or narrow model which fixes all q parameters and the q models which each include only a single

parameter) which suffices for model averaging.

Section 2 introduces notation, defines the local asymptotic framework and the asymptotic

mean squared error. Estimators for the MSE are constructed and discussed in Section 3. Sec-

tion 4 contains an extension of the weight selection method for vector-valued focuses. Simulations

and data examples are given in Sections 5 and 6. Section 7 concludes.

2 Notation and setting

Consider a likelihood regression model where it is uncertain which regression variables should

best be included for the estimation of a population quantity µ. Different ‘configurations’ of

covariates lead to define different models. A local misspecification setting avoids making the

strong assumption that the true model is contained in the set of considered models. Take {Yi; i =

1, . . . , n} independent with density function for the ith one fn(y;xi) = f(y;xi, θ0, γ0 + δ/
√
n),

where the p-vector θ is included in every model and is not subject to selection. Components of

the q-vector γ may or may not be relevant, these are subject to variable selection. The vectors

θ and γ are non-overlapping. The true values of the parameter vector (θ, γ) are (θ0, γ0 + δ/
√
n)

under the local misspecification setting, and (θ0, γ0) under a narrow model where the vector

γ0 is completely specified and known. For example, when γ represents regression coefficients,

typically γ0 = 0 in the narrow model, the smallest model one is willing to consider, indicating

absence of the extra regression coefficients. The full model includes all q components of γ, other

models are indexed by a set S ⊂ {1, . . . , q}. The narrow model corresponds to S = ∅. Since

our method of finding weights is based on minimizing a mean squared error expression, see also

Liang et al. (2011), this setting is justified since it balances the squared bias and the variance

of the estimators in order for the mean squared error to be computable. Indeed, when not

working under local misspecification, for a fixed true model not contained in the set of studied

models asymptotically the bias would dominate, pointing towards always working with the most

complicated model (Claeskens and Hjort, 2008).

In a regression setting the response values are typically not identically distributed due to the

presence of the covariate vector xi. We define the score vector, the vector of first derivatives of

the log-likelihood, (
Uθ(y;x)

Uγ(y;x)

)
=

(
∂ log f(y;x, θ0, γ0)/∂θ

∂ log f(y;x, θ0, γ0)/∂γ

)
,

and let the Fisher information matrix

J(x) = Var

(
Uθ(Y ;x)

Uγ(Y ;x)

)
and Jn =

1

n

n∑
i=1

J(xi),
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be partitioned according to p and q, the lengths of θ and γ, as

J(x) =

(
J00(x) J01(x)

J10(x) J11(x)

)
, Jn =

(
Jn,00 Jn,01

Jn,10 Jn,11

)
, J−1n =

(
J00
n J01

n

J10
n J11

n

)
.

We assume that Jn converges to an invertible matrix J when n → ∞. Submatrices of J and

J−1 are defined as above, though without using the subscript n.

The purpose of the model averaging procedure is to estimate a population focus µ = µ(θ, γ).

Examples include a prediction of the response given covariate values (a forecast), a quantile of

the response distribution, as well as a single coefficient of interest. Working with a population

focus is more general than the commonly studied averaging of the regression coefficients. We

assume that the first derivatives of µ with respect to θ and γ exist in a neighborhood of (θ0, γ0).

Maximum likelihood estimation is used in each submodel indexed by S. Under classical

assumptions, each such submodel estimator of (θ, γ) and hence of the focus µ has an asymptot-

ically normal distribution with both the mean and the variance specific to the used model. Let

µ̂S = µ(θ̂S , γ̂S). Following the notation of Claeskens and Hjort (2008), it holds that

√
n(µ̂S − µtrue)

d→ ΛS = Λ0 + νt(δ −GSD) ∼ N(meanS ,VarS), (2)

where Λ0 ∼ N(0, τ20 ) with the narrow model’s variance τ20 = (∂µ/∂θ)tJ−100 ∂µ/∂θ, the vector

ν = J10J
−1
00 ∂µ/∂θ − ∂µ/∂γ, D ∼ Nq(δ,Q) with Q = J11. Further, define a |S| × q projection

matrix πS that selects those rows with an index belonging to S and let QS = (πSQ
−1πtS)−1,

Q0
S = πtSQSπS and GS = Q0

SQ
−1. We denote by Iq an identity matrix of dimension q × q. By

adding the squared bias and the variance, the asymptotic distribution in (2) implies that the

mean squared error (MSE) of a single estimator µ̂S converges to

MSE(µ̂S , δ) = τ20 + νtQ0
Sν + νt(Iq −GS)δδt(Iq −GS)tν. (3)

While selecting a model based on the estimator’s estimated MSE value is the idea underlying

the focused information criterion (Claeskens and Hjort, 2003), we here consider the choice of

the weights via the mean squared error, similar as Liu (2015) and Liang et al. (2011) though for

general likelihood estimation and a general choice of weights summing to one.

3 Estimation of the mean squared error

3.1 Weight choice via minimum mean squared error

Rather than working with the estimator in a single model, we consider a finite set of M different

models, this number not depending on the sample size. A weight is assigned to the estimator in

each of the considered models to reach the model averaged estimator µ̂w in (1).

Some common possibilities of sets of models to average over are (i) all possible subsets,

these are M = 2q models, with q the length of the parameter vector γ. This is currently

the most common construction for model averaging. (ii) A sequence of ‘nested’ models. We

assume that we start with a model with a single variable, then add a second one, etc. Thus
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S1 = {1} ⊂ S2 = {1, 2} ⊂ . . . ⊂ Sq = {1, . . . , q}. When including also the narrow model, only

containing θ and none of the components of γ, this leads to M = q + 1 models that depend

on the order of inclusion of the variables. (iii) A collection of ‘singleton’ models. For singleton

models, we only allow one variable γj to be present in the model, in addition to θ, implying

that Sj = {j}. A major advantage is that only simple models need to be fit. Such a collection

consists of M = q + 1 models when also the narrow model is included.

When considering a non-random set of weights in H =
{

(w1, . . . , wM ) :
∑M

j=1wj = 1
}

, then

(see Hjort and Claeskens, 2003) for the weighted estimator it holds that

√
n(µ̂w − µtrue)

d→
M∑
j=1

wjΛSj =
M∑
j=1

wj{Λ0 + νt(δ −GSjD)},

from which by (3) the limiting mean squared error is found to be MSE(µ̂w) = τ20 +R(δ), where

R(δ) = νt
{

(Iq −
M∑
j=1

wjQ
0
Sj
Q−1)δδt(Iq −

M∑
j=1

wjQ
0
Sj
Q−1)t + (

M∑
j=1

wjQ
0
Sj

)Q−1(
M∑
j=1

wjQ
0
Sj

)t
}
ν. (4)

It is convenient for further use to rewrite (4) as a quadratic function of the weights, namely

R(δ) = wtF (δ)w where the (j, k)th entry of F = F (δ) is defined by (with j, k = 1, . . . ,M)

Fjk(δ) = νt
{(
Iq −Q0

Sj
Q−1

)t
δδt
(
Iq −Q0

Sk
Q−1

)
+
(
Q0
Sj
Q−1Q0

Sk

)}
ν. (5)

The theoretical weights that minimize the MSE are

wmse = argmin
w∈H

wtFw. (6)

In practice, the MSE needs to be estimated in order to estimate the optimal weights.

3.2 Estimating the MSE and uniqueness of the weights

While almost all quantities in the MSE can be estimated by inserting consistent estimators for

unknowns formed by plugging in estimators for (θ, γ) and using empirical Fisher information

matrices, the situation is different for δ. With δ̂ =
√
n(γ̂full − γ0) →d D ∼ Nq(δ,Q), we cannot

achieve the same accuracy as for the other estimators. To not overload the notation, we will

focus here on the estimation of δ, and leave the other quantities as they are, assumed to be

known. However, all unknown quantities are consistently estimated for practical use.

Using the above defined unbiased estimator δ̂ results in estimating the MSE by ̂MSE(µ̂w) =

τ20 +wtF̂w where the M ×M matrix F̂ = F (δ̂), see (5). The minimum MSE weights are defined

by ŵmse = argminw∈Hw
tF̂w.

These estimated weights are unique if and only if the matrix F̂ is positive definite. By

using (5) we can rewrite F̂ = f̂ f̂ t + Q̃ where the M × 1 vector f̂ has jth element equal to

νt(Iq − Q0
Sj
Q−1)tδ̂ and the M × M matrix Q̃ has (j, k)th element νtQ0

Sj
Q−1Q0

Sk
ν. Thus a

sufficient condition for F̂ (and F as well) to be positive definite is that Q̃ is positive definite.

Lemma 1 presents a sufficient condition for this occurrence. All proofs of this paper are contained

in the appendix.
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Lemma 1. If Q is positive definite, ν is not equal to 0M and the matrices Q0
Sj

(j = 1, . . . ,M)

are linearly independent, then Q̃ is positive definite.

Under the conditions of Lemma 1, the theoretical optimal weights which minimize (6) are

unique and can be written as wmse = 1tMF
−1/(1tMF

−11M ), which is a well-known result for

minimizing quadratic forms. The vector 1M denotes a vector of all ones of length M . Our

proposed model averaging weights are the values which minimize the MSE estimator ̂MSE(µ̂w).

Given the conditions of Lemma 1, also these weights are unique and can be written as

ŵm̂se = argmin
w∈H

wtF̂w = 1tM F̂
−1/{1tM F̂−11M}. (7)

We call these the minimum MSE weights (mMSE).

Since Q has rank q, at most q linearly independent components Q0
Sj

can be constructed,

meaning that the rank of Q̃ (and hence of F̂ ) is bounded by q. Together with the narrow model

(the ‘null’ component), this means that the maximum number of models M needed to create a

unique set of weights is q + 1. This can be achieved by considering the class of nested models,

or the class of singleton models. Each class has M = q + 1 models and an estimate F̂ which

is positive definite with rank equal to q + 1, resulting in a unique set of weights. Note that

several more situations lead to unique weights. For example, with q = 7, one model may contain

the variables (γ1, γ2), a second model contains γ3 and a third model contains (γ4, . . . , γ7). Also

here Lemma 1 guarantees uniqueness of the selected mMSE weights. Section 3.3 works out

uniqueness properties of the predictions in the case of linear regression models.

Another obvious conclusion from Lemma 1 is that we cannot find unique ‘optimal’ weights

for the case of averaging over all 2q subsets without considering more assumptions (Dostal,

2009). This may open a discussion about averaging over a set of not more than q+ 1 submodels

only for which there are linearly independent Q0
S matrices and for which we can find unique

optimal weights versus the current common practice of averaging over all subsets resulting in a

set of non-unique weights.

Remark 1. The above uniqueness property is tied with the estimation of δ. Alternatively,

if we would use in (6) δ̂δ̂t −Q as an unbiased estimator of δδt, then after removing some terms

independent of the weight vector w,

ŵm̂se,1 = argmin
w∈H

{wtP̂w + 2wtT},

with, for j, k = 1, . . . ,M , P̂jk = νt(Iq − Q0
Sj
Q−1)δ̂δ̂t(Iq − Q0

Sk
Q−1)tν and Tj = νtQ0

Sj
ν. The

matrix P̂ can be rewritten as a product âât where the M -vector â has jth component δ̂t(Iq −
Q0
Sj
Q−1)tν. Obviously, P̂ is positive semi-definite and always has rank equal to one, hence it is

not invertible. One important consequence is that there is no unique solution for the weights,

regardless which models are averaged over. Nonetheless, we can find weights by using either

generalized inverse matrices or by means of quadratic programming. With P̂− denoting such a

(non-unique) generalized inverse of P̂ , the following (also non-unique) weight is obtained,

ŵm̂se,1 = P̂−[(−IM + 1M (1
′
M P̂

−1M )−11
′
M P̂

−)T + 1M (1
′
M P̂

−1M )−1],
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Note that adding constraints such as having all weights positive and not larger than 1 is not

a guarantee to get unique weights when P̂ is not positive definite (Propositions 2-10 and 2-20

Dostal, 2009; Harville, 2000).

The mMSE weighted estimator with random, data-driven weights as in (7) has different

statistical properties as when using the unreachable theoretically optimal weights (6). Theorem 1

shows the limiting behavior of both the weights and of the mMSE weighted estimator.

It is straightforward to show that the estimator F̂ = F (δ̂) of F in (5) converges, for n tending

to infinity, in distribution to F ∗ of which the (j, k)th element (j, k = 1, . . . ,M) is equal to

F ∗j,k = νt
(
Iq −Q0

Sj
Q−1

)
DDt

(
Iq −Q0

Sk
Q−1

)t
ν + νt

(
Q0
Sj
Q−1Q0

Sk

)
ν,

with D ∼ N(δ,Q). Hence, it follows that wtF̂w
d→ wtF ∗w as n→∞. While the explicit form of

the weights in (7) is useful for direct computation, it hints at a complicated limiting distribution.

Theorem 1. Assume that F̂ and F ∗ are invertible. Let ŵm̂se = argminw∈Hw
tF̂w and w∗ =

argminw∈Hw
tF ∗w. Then (i) ŵm̂se

d→ w∗; (ii) the model averaging estimator has a limiting

distribution
√
n(µ̂ŵm̂se

− µtrue)
d→

M∑
j=1

w∗jΛSj .

Since the weights w∗ are random, the limiting distribution is not Gaussian, despite every

ΛSj being Gaussian. For deterministic weights the limiting distribution is normal.

The randomness of the weights is complicating inference for the model averaged estimator,

and as a special case, also for the estimator post-selection when the uncertainty involved with

the selection is taken into account. For more information about post-selection inference, see,

e.g., Pötscher (1991), Kabaila (1995), Claeskens and Hjort (2003) and Danilov and Magnus

(2004).

3.3 Uniqueness of predictions in linear regression models

While uniqueness of the weights (see Lemma 1) is important, we here investigate the uniqueness

of the weighted predictions when different sets of models {S1, . . . , SM} are used to construct the

weights. This discussion is restricted to linear models only.

In this subsection we consider linear normal regression models Y = Xθ + Zγ + ε. The

intercept is always present and is included in the vector θ which may also include coefficients

of other fixed covariates, resulting in a design matrix X. In addition, there are q potential

covariates z1, . . . , zq which are collected in the design matrix Z with corresponding coefficients

γ. Let us take the ideal situation that σ2 = var(ε) is known, to simplify the notation and

calculations but this assumption is not necessary since we can include σ2 in the vector θ and

add one row and column to the Fisher information matrix Jn. For a linear model, the empirical

Fisher information matrix is equal to Jn

Jn =
1

n

(
XtX XtZ

ZtX ZtZ

)
=

(
J00 J01

J10 J11

)
.
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The focus is on model averaged prediction. We estimate the mean of Y at a given covariate

vector (x, z), denoted by µ(x, z) = xtθ + ztγ with γ = (γ1, . . . , γq)
t. We find minimal MSE

weights for this purpose.

In Theorem 2 we show that model averaged predictions with mMSE weights for singleton

and nested models result in identical predictions. We can best explain this phenomenon via the

selection matrices.

Definition 1. The selection matrix (ζ) is an M × q matrix with {0, 1} elements, constructed as

ζ =
(

1
′
qπ
′
S1
πS1 , . . . , 1

′
qπ
′
SM
πSM

)t
,

where each row represents a model such that elements equal to 1 correspond to auxiliary variables

that are present in that model.

For example, the selection matrices for a set of singleton (ζs) and nested (ζn) models for

q = 3 can be written as

ζs =

1 0 0

0 1 0

0 0 1

 , ζn =

1 0 0

1 1 0

1 1 1

 .

To facilitate the proof, we orthogonalize the design matrix X = (X,Z) such that as a

consequence the matrix Q = J11 is diagonal. This is no loss of generality. Indeed, by the

QR decomposition, for any matrix X , there is an orthonormal matrix A and upper triangular

matrix R for which X = AR. The matrix R is the transformation matrix which can be used

to convert X to the orthonormal matrix A. If one uses the original matrix X and uses the

estimated weights ŵmse via the proposed mMSE method, and next calculates the prediction

value for the new observation Xnew resulting in µ̂new, or, uses the orthonormal matrix A as the

design matrix, uses the mMSE estimator of the weights ŵAmse and calculates the prediction µ̂Anew
for the XnewR

−1, then the prediction values are equal, thus µ̂Anew = µ̂new. This means that for

prediction purposes, the orthogonalized version of X and the original X give the same results.

For any such diagonal matrix Q it follows that γ̂S = πtS γ̂full. This means that the estimators

of γj in the full model and in each considered model which contains γj are identical. Thus in

particular, γ̂j in the nested model is identical to γ̂j in the singleton models (for all j = 1, . . . , q).

In the case of a diagonal matrix Q, it is readily obtained that having linearly independent rows

in a selection matrix ζ is equivalent with having linearly independent matrices Q0
Sj

, where the

sets Sj are induced by the rows of ζ. Hence, finding models that satisfy the assumption of

Lemma 1, is aided via the selection matrices.

The estimated weights for estimation of the value µ(x, z) are obtained via mMSE in (7).

Consider the weighted prediction at a value (x, z) using a sequence of nested models with mMSE

nested weights ŵnest. Since the weights sum to 1,

µ̂nestw =

q+1∑
i=1

ŵnest
i µ̂i = xtθ̂ +

q∑
i=1

(
ziγ̂i

q+1∑
j=i+1

ŵnest
j

)
. (8)
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Next consider the weighted prediction at the same value (x, z) in the set of singleton models

with mMSE singleton weights ŵsing,

µ̂singw = xtθ̂ +

q+1∑
i=2

zi−1γ̂i−1ŵ
sing
i . (9)

In Theorem 2 we prove the equality of the mMSE averaged prediction values for singleton models

and nested models when we use all q covariates.

Theorem 2. Let p ≥ 1 and q ≥ 2. When using mMSE weights (7) for averaging predictions

in linear regression models with least squares estimation, the weighted predictions are equal for

averaging over singleton models and for averaging over nested models, that is, µ̂singw = µ̂nestw .

Our calculations have illustrated that the result holds true more generally. To be more

precise, the prediction values are equal for all sets of models that have the same number of

linearly independent rows in the selection matrix and that use the same covariates to construct

the models, hence not only for nested and singleton models. The proof of such cases proceeds

along the same lines as the proof of Theorem 2.

Another nice property of our method appeared in the simulations for linear models. It turns

out that the mMSE weighted predictions for the set of models for which the corresponding

matrices Q0
S form a basis of the matrix space of that dimension, are precisely the same as the

mMSE weighted predictions formed by using these models and some extra ones. Hence, no

information is lost when restricting to such a subset of models. Consequently, there is no need

to consider all possible models anymore and the weight choice by mMSE can be considered as a

screening method for which we do not lose any information regarding prediction. This suggests

a simplification in the choice of models used for model averaging. This result allows a drastic

simplification of the computational aspects. Indeed, it is not needed to consider all 2q submodels

for model averaging, only q singleton models suffice and they yield for linear models identical

predictions when the mMSE weights are used. Also determining the order of the variables in

nested models becomes irrelevant with this choice of weights.

When the number of models is more than q+1, the matrix F is not positive definite anymore,

yet we get the same weighted prediction values for averaging over singleton models and over

all possible models. This remarkable fact is explained by finding the weights via a quadratic

programming application that searches the minimum of the estimated MSE. Since the matrix

F is positive semi-definite when using all possible submodels, the solution for the weights is not

unique but all solutions are global ones (Antoniou and Lu, 2007, Chapter 13), thus yielding the

same prediction values for singleton models and for all possible subset models.

4 Weight choice for multiple focuses

While in Section 3 unique weights are assigned to estimators for a single focus parameter, we

here consider a vector-valued focus. This is for example useful when considering predictions at

more than one position or when considering a vector of regression coefficients for model averaged

estimation.
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Take ~µ = (µ1, . . . , µr)
t a vector instead of a scalar. Then τ 2

0 = (∂(~µ)/∂θ)tJ−100 ∂~µ/∂θ is a

r × r matrix and ν = (ν1, . . . , νr) is q × r with νi = J10J
−1
00 ∂µi/∂θ − ∂µi/∂γ. So, for a single

submodel

√
n(~̂µS − µtrue)

d→ ~ΛS = ~Λ0 + νt(δ −GSD),

where ~Λ0 ∼ Nr(0, τ
2
0) and D and δ are as before. Here, the MSE of ~̂µS is defined as a matrix

E[(~̂µS−~µtrue)(~̂µS−~µtrue)t] with the diagonal elements equal to the MSE of the individual focus

component estimators. Similarly,

√
n(~̂µw − µtrue)

d→
M∑
j=1

wj~ΛSj = ~Λ0 +
M∑
j=1

wjν
t(δ −GSjD),

in which µ̂iw =
∑M

j=1wjµ̂
i
j . The r × r MSE matrix can be written as

MSE(~̂µw, δ) = τ 2
0 +R(δ) (10)

where

R(δ) = νt
{ M∑
j=1

wj(Iq −Q0
Sj
Q−1)δδt

M∑
j=1

wj(Iq −Q0
Sj
Q−1)t + (

M∑
j=1

wjQ
0
Sj

)Q−1(
M∑
j=1

wjQ
0
Sj

)t
}
ν.

As in the univariate case, all unknowns have consistent estimators except for δ. An additional

issue with the multiple focuses case is deciding on the criterion for which we optimize the weight

choice. Since the MSE is a matrix we consider both minimizing the trace and the determinant.

4.1 Minimizing the trace of the MSE matrix

The trace of the MSE matrix is equal to the expected squared error loss function E[‖~̂µw−~µtrue‖2]
which is the summation of the MSE values for the individual, univariate, focuses. Then

tr{MSE(~̂µw, δ)} = tr(τ 2
0) + tr{R(δ)} = tr(τ 2

0) + wtFw, (11)

where F is a M ×M matrix similar to the matrix F in (5) with (i, j)th entry equal to

F ij = tr[νt{(Iq −Q0
Si
Q−1)δδt(Iq −Q0

Sj
Q−1)t +Q0

Si
Q−1Q0

Sj
}ν].

So, the optimal weights in (11) can be found by

wmse = argmin
w∈H

wtFw. (12)

If the unbiased estimator of δ, δ̂ =
√
n(γ̂− γ0) is plugged in (12) using R(δ̂) and F̂ , minimizing

the trace of the MSE matrix leads to

ŵm̂se = argmin
w∈H

wtF̂w = 1tM F̂
−1
/(1tM F̂

−1
1M ), (13)

which results in a unique weight vector under the assumptions of Lemma 1. Also Theorem 1

can be stated for a multivariate focus.
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The motivation for not using the unbiased estimator of δδt which is δ̂δ̂t − Q, is similar as

in the univariate case. Indeed, in that case the weight would equal argminw∈H{wtPw + 2wT },
where, P and T are similar to P and T in the univariate case with

P jk = tr{νt(Iq −Q0
Sj
Q−1)δ̂δ̂t(Iq −Q0

Sk
Q−1)tν} and T j = tr

(
νtQ0

Sj
ν
)
.

Rewriting P = ~A ~At with ~At = (A1, . . . , AM ) and ~Aj = δ̂t(Iq−Q0
Sj
Q−1)ν, yields that rank(P ) ≤

min(r, q,M). In order to have unique weights, a necessary assumption is rank(P ) = min(r, q,M) =

M which is true when ν is a full rank matrix and M ≤ min(r, q). The necessary assumptions

for the unicity of weights by using an unbiased estimator of δδt are more restrictive than the

necessary assumptions for the unbiased estimation of δ. Moreover, the simulation results show

that the biased estimator of the MSE performs better than the unbiased estimator with respect

to out of sample mean squared prediction error.

4.2 Minimizing the determinant of the MSE matrix

The trace of the MSE matrix ignores the information which is stored in the off-diagonal elements.

To use this information, we consider the parallelepiped generated by the MSE column vectors,

which is a geometric representation of the MSE matrix. For example, Figure 4.2 draws the

parallelepiped produced by the three columns c1 = (1, 1, 0), c2 = (1, 1, 3) and c3 = (1, 3, 1) of a

matrix A.

In Section 4.1, the weights were found by minimizing the trace of the MSE matrix which

results in a parallelepiped with minimum sum of squares of the axes. In this section we assign

weights to each model in such a way that the volume of this parallelepiped is minimized, which

is equivalent to minimizing the determinant of the MSE matrix. The D-optimality criterion of

experimental design studies seeks designs that minimize the covariance matrix of the parameter

estimators (Atkinson et al., 2007). However, by the presence of δ, the estimators in our case

are not unbiased, which motivates the use of the MSE matrix instead of the covariance matrix.

Instead of constructing a design, our goal is to determine weights for models in such a way that

c1
3

c3

y2

4
5

c2

0
1
0

x

1

0 1 2

z 2

3

3

4

Figure 1: Geometrical representation of a matrix A with columns c1, c2 and c3.
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the determinant of the MSE matrix is minimal.

Our aim is to minimize the determinant of the MSE matrix in (10), hence

ŵ|m̂se| = argmin
w∈H

det(MSE(~̂µw, δ̂)). (14)

It should be noted that this is a nonlinear optimization problem with a linear constraint for the

weights and the results are no longer unique. The simulation results in the next section show

that the proposed method performs well in comparison with other methods.

Remark 2. The necessary assumption for starting the optimization in (14) is that the MSE

matrix is non-singular with a non-zero determinant. In (10), R(δ) plays the crucial role, since

τ20 is zero when p = 0. If νt is a matrix with full column rank equal to q, then the rank of the

MSE matrix is equal to the rank of the middle part, B, of R(δ) = νtBν. In singleton models

B is positive definite (rank=q) if all the weights are nonzero (starting values for optimization);

moreover, the length of the focus vector cannot be more than q, otherwise the MSE matrix is

positive semi-definite, hence singular.

5 Simulation Studies

In this section, we consider two types of models, linear models and generalized linear models.

Since almost all previous studies insisted on linear regression, we first compare our method with

other methods in this setting. Next, we present the results for generalized linear models and

compare the proposed method with some other methods of model averaging.

5.1 Linear models

We investigate the finite sample performance of the minimum MSE estimator (mMSE) and

compare the results with other methods of averaging, in particular by the plug-in estimator

(Liu, 2015), the so-called optimal estimator (OPT, Liang et al., 2011), Mallows model averaging

(MMA, Hansen, 2007) and jackknife model averaging (JMA, Hansen and Racine, 2012). All of

these methods are defined for averaging over all possible submodels. While the mMSE method

is also applicable to using all submodels, we insist on unique weights (unique prediction) which

entails using row linearly independent selection matrix models. By Theorem 2 and its discussion,

we present the results for singleton models only for the mMSE weight choice method. Note

that some methods such as the OPT estimator do not result in unique weights not even for

the singleton models because of using nonlinear optimization for constructing the weights. In

Setting 1.2, averaging over singleton models and all possible models for different methods is

compared.

General settings for the simulations in this section are summarized here. The data are

generated from a finite order regression model of the form

Yi =

p∑
j=1

θjxji +

q∑
k=1

δk√
n
zki + ei, i = 1, . . . , n. (15)
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We set p = 3, q = 8, x1i = 1 as an intercept and (x2i, x3i, z1i, · · · , z8i) ∼ Np−1+q(0, ν). The

covariance matrix ν for the regressors contains a diagonal equal to 1 and off-diagonal entries equal

to ρ. The error term ei is generated from a standard normal distribution and is independent of

the regressors. We generate n+ 1 observations from this model, the last observation acts as an

out-of-sample value.

Setting 1. This setting compares different methods of model averaging for singleton models

in different settings. Again, singleton models are used in order to get unique prediction values,

especially for the MMA and JMA methods. The plug-in method is for linear models theoretically

the same as the proposed method but with different assumptions for the weights (the weights

are positive and sum to 1) and the implementation is based on least squares theory which causes

some differences in the results. For that method the prediction values are unique, but not the

weights since those authors used semi-definite quadratic programming for minimizing the MSE

of the focus parameter, resulting in global minimizer weights that are not unique. Hence, if the

goal is finding the most influential covariate or model as is of interest in data analysis, there is

no unique answer for this question with those methods.

Three scenarios are considered,

Scenario 1.1 : (θ, δ/
√
n) = ((5,−4, 3.5), c(3.9, 4.75, 4.2, 3.5, 4.95,−3.75, 4.4,−4)/

√
n),

Scenario 1.2 : (θ, δ/
√
n) = ((5,−4, 3.5), c(3.9, 4.75, 4.2, 0, 4.95, 0, 4.4,−4)/

√
n),

Scenario 1.3 : (θ, δ/
√
n) = ((5,−4, 3.5), c(0, 4.75, 4.2, 0, 4.95, 0, 4.4, 0)/

√
n).

The effect of the importance of the δ values relative to θ is controlled by the constant c which

varies in the set {0.5, 1, 2}. In scenarios 1.2 and 1.3, the effect of true zero coefficients in the true

model is studied. The sample sizes varies in {50, 100, 200, 500, 800, 1500} and the off-diagonal

value ρ of ν varies in {0, 0.25, 0.5, 075}. All of the Monte-Carlo simulations repeat this 2000 times

and the numbers in Tables 1–3 are the mean squared prediction errors (MSPE) for the out-of-

sample value (the n + 1st value that is not used in the estimation nor weight determination)

over the simulation runs.

It is observed that the mMSE works better than the other methods for moderate and high

values of c (Tables 2 and 3) in all scenarios. For small c (Table 1), in scenarios 1.1 and 1.2,

when the collinearity amongst the covariates is small (ρ = 0 and 0.25), the mMSE has the best

performance, whereas higher collinearity cause better performance of the plug-in method but

with small differences with mMSE. In scenario 3, the plug-in method works good for low and

moderate collinearity while MMA and JMA outperform for high collinearity. For high values of

c, the difference between the proposed method and other methods is remarkable, even with the

plug-in method which is the theoretically closest method to the mMSE, the difference arising

from the fewer restrictions for the weights in the mMSE. If we remove this additional constraint

for the weights for the plug-in method, it performs similarly to mMSE in linear regression.

Explicitly allowing for heteroscedasticity in order to improve prediction accuracy, the plug-in

method of Liu (2015) results in different estimated Fisher information matrices as compared to

mMSE, explaining the slightly different results between the two methods. Tables 1–3 reveal the

stability of the mMSE values for different choices of c and n for the three scenarios, whereas
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other methods are sensitive to the particular setting.

To investigate a potential information loss by other methods when using singleton models

as compared to all subsets, we run a simulation with all possible models for scenario 1.2 with

c = 1. To ease the comparison, the mMSE method is also shown in Table 4. This simulation

with using all subsets took around 45 hours using a supercomputer. As Table 4 shows, all com-

peting methods improved significantly by using all possible models, especially the OPT method

which performs the best in all settings. The plug-in method with the additional constraint for

the weights to belong to [0, 1] using all available models performs equally well as mMSE with

singleton models. An important drawback, however, is that the computational intensity grows

exponentially by adding extra auxiliary covariates, adding one covariate doubles the number of

models. The mMSE performance for singleton model averaging is almost as good as all subsets

model averaging for other methods and Table 4 shows that except for the smallest sample size

the difference is in most cases negligible.

Table 5 gives the computation time in seconds, using the same computer, for the OPT and

mMSE method for the average time over five runs in the simulation when ρ = 0.5. The other

values of ρ give similar computation times. With practically the same accuracy as OPT, mMSE

benefits from a much shorter computation time, regardless of the sample size.

5.2 Generalized Linear Models: Poisson regression

In this Monte-Carlo simulation, we explore the performance of the mMSE method in Poisson

regression by using five out of sample observations for which we estimate their mean.

Setting 2. The response values Yi have a Poisson distribution with mean µi = exp(xtiδ/
√
n)

with the following specifications: p = 0 (i.e. no core regressors), q = 8 with (x1i, . . . , x8i) ∼
Np+q(0, ν) in which νij = 1 for i = j and νij = ρ for i 6= j. The value of ρ varies in the set

{0, 0.25, 0.5, 0.75}. The value of γ0 is set to zero and δ values are considered according to the

following scenarios:

Scenario 2.1: δ = (−1,−4, 3,−4, 0.6, 4, 2, 5),

Scenario 2.2: δ = (−1,−4, 3,−4, 0, 4, 0, 5),

Scenario 2.3: δ = (0,−4, 3,−4, 0, 4, 0, 0).

The considered sample sizes are {50, 100, 200, 500, 1000}. All Monte Carlo simulations are based

on 2000 replications. The multivariate focus has length five which is fixed for each setting and

generated randomly for each setting. So, the focus stays the same for all nsim = 2000 simulation

runs in each setting. Each method is evaluated based on the empirical mean squared error

matrix of dimension 5× 5, MSEemp = 1
nsim

∑nsim
i=1 (µ̂ŵ,i−µtrue)(µ̂ŵ,i−µtrue)t, where for each test

data set with values x, µ̂ŵ,i = exp {
∑M

j=1 ŵjx
tδ̂j/
√
n}.

In this simulation, we estimate the weight vector w by the multivariate methods in Sec-

tion 4, by minimizing separately the trace and the determinant of the MSE matrix. In order

to distinguish the multivariate mMSE methods, we use mtrMSE and mdetMSE. Although, by

minimizing the trace of the MSE matrix, we lose some precision in comparison with estimating
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Method

ρ n OPT MMA JMA Plug-in mMSE

0

50 0.273 0.291 0.297 0.285 0.285

100 0.120 0.126 0.127 0.120 0.120

500 0.021 0.022 0.022 0.022 0.022

1000 0.011 0.011 0.011 0.011 0.011

0.25

50 0.259 0.294 0.295 0.272 0.273

100 0.115 0.123 0.124 0.120 0.119

500 0.022 0.023 0.023 0.023 0.023

1000 0.011 0.011 0.011 0.011 0.011

0.5

50 0.272 0.323 0.327 0.296 0.297

100 0.125 0.147 0.147 0.132 0.132

500 0.021 0.024 0.024 0.022 0.022

1000 0.011 0.012 0.012 0.011 0.011

0.75

50 0.260 0.309 0.307 0.301 0.303

100 0.112 0.136 0.136 0.127 0.129

500 0.020 0.025 0.024 0.022 0.023

1000 0.010 0.012 0.012 0.011 0.011

Table 4: Simulation study for linear models. MSPE for averaging over all possible models for OPT,

MMA, JMA, plug-in and singleton averaging for the mMSE weighted estimator for scenario 1.2 and c = 1.

n

method 50 100 500 1000

OPT 1.87 2.63 17.04 60.21

mMSE 0.04 0.03 0.03 0.04

Table 5: Simulation time in seconds for the average time over five repetitions of the simulation for

ρ = 0.5 in Table 4.

a separate weight vector for each out-of-sample value, the comparison with other methods where

they estimate one weight vector for all test data is more fair; moreover, the computations are

faster in the multivariate case than when performing separate univariate optimizations. Table 6

reports the ratios of the trace of the empirical MSE matrix for the mtrMSE method divided by

those for each other method. For the weight choice by minimizing the determinant we report

the ratio of the generalized standard deviations {det(MSE)}1/5 of the empirical MSE matrix

over the simulation runs when using the weight choice by mdetMSE and that resulting by the

other methods. Hence, if the number is bigger than 1, that other method performs better than

the proposed method mMSE and vice versa.

For singleton models, the AIC and BIC values are identical (the penalty does not have an

effect in singleton models), hence, we show the results for AIC, SAIC and the mMSE methods.

The AIC selects a single model, assigns weight 1 to that model and weight zero to all other
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models. The smoothed AIC, SAIC, gives weights proportional to the value of the AIC, the

better the AIC value, the larger the weight. All weights in SAIC are rescaled to be in the

interval [0, 1].

Table 6 shows that in almost all settings and scenarios the mtrMSE method performs well,

in some cases ten times better than other methods. The averaging method, SAIC, works better

than the selection method, AIC. In two settings, the SAIC method outperforms the mtrMSE

method slightly, while in most of the other settings the mtrMSE method performs at least two

times better than the other averaging method. In all settings, the mdetMSE method results in a

relative low determinant value in comparison with AIC and SAIC methods. The AIC and SAIC

methods always perform worse than mdetMSE while SAIC performs relatively better than the

AIC selection method.

6 Data analysis

6.1 Growth model, linear regression

We employ the proposed method of model averaging to a dataset that has been used in several

studies, including Liu (2015) and Magnus et al. (2010). The economic growth measured as the

gross domestic product per capita (GDPc), that is, the total output of a country divided by the

number of people in that country, is modeled as a function of several covariates. A rise in GDP

per capita shows growth in the economy and usually results in an increase in productivity. In

the dataset there are 74 observations for average growth rate of GDP per capita between 1960

and 1996.

We compare the application of mMSE by the frequentist model averaging approach of Liu

(2015). We adopt model setup A in their study and fit a linear model as

GDPci = Xiθ + Ziγ + εi,

with the same fixed regressors (X), a constant for the intercept, GDP60 which is the logarithm

of the GPD in 1960, ‘equipinv’ the investment part of the GDP during 1960–1985, ‘school60’

primary school enrollment rate in the year 1960, ‘life60’ the life expectancy at birth in 1960

and ‘dpop’ the population growth between 1960 and 1990. As potential regressors (Z) we take

‘law’ referred to as a rule of a law index, ‘tropics’ the fraction of tropical area of the country,

‘avelf’ which is an average index of ethnolinguistic fragmentation and ‘confuc’, the fraction of

Confucian population. For more details of the variables, we refer to Magnus et al. (2010).

Liu (2015) performed model averaging for all possible submodels and presented the estimated

coefficients and weights for each model for the plug-in method and other methods of averaging

including OPT, MMA and JMA. Those estimated coefficients and weights are not unique and

one can find another estimate for the coefficients by changing the optimization routine. Table 7

presents two such sets of estimators by changing optimization method (using fmincon instead of

quadprog in Matlab or changing the starting point). For the plug-in method we observe a large

difference for the estimate of ‘dpop’. The JMA estimates do not change that much, while MMA
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Method

models OPT MMA JMA Plug-in mMSE

singleton models 1.157 1.086 1.087 1.060 1.000

all submodels 1.013 1.021 1.042 1.015 1.000

Table 9: GDP data. Relative average out of sample squared prediction errors of competing methods

relative to the mtrMSE method.

results in different estimates for ‘dpop’ and for the four potential z-variables. The method OPT

shows the largest changes in values for nearly all of the variables, except for ‘life60’ and ‘avelf’.

Liu (2015) used GDP60 as a focus, while instead the goal was estimation of the coefficients

for all regressors. We use the results on a multivariate focus of Section 4 defining µt = (θt, γt)t,

the full parameter vector, and we minimize the trace and next the determinant of the MSE

matrix for this focus vector. Singleton models are used to ensure a unique solution for the trace

method, for the determinant method the weights are not unique. Table 8 gives the estimated

weighted coefficients when averaging over singleton models.

As Table 8 illustrates, some of the coefficients are estimated to be equal to zero. This is not

surprising since this indicates that those variables are not correlated with growth per capita (see

Magnus et al., 2010). The sign of ‘dpop’ that is found for the plug-in and mtrMSE methods

is in line with Solow’s model, see Solow (1956) and Durlauf et al. (2008). The results for the

mdetMSE method are close to those of the OPT method.

We further use 10-fold cross-validation and calculate the mean of the average squared pre-

diction error (ASPE) for both averaging over singleton models and over all possible submodels.

The chosen focuses are now the out-of-sample mean values. Table 9 reports the relative out-of-

sample prediction errors. Entries larger than one indicate an inferior performance of that method

relative to mtrMSE method. It should be noted that the focuses are out-of-sample observations

not the coefficients. While all methods perform close to the mtrMSE method, especially using

all subsets, the mtrMSE weight choice method outperforms all others.

6.2 The automobile dataset, Gamma regression

Insurance companies wish to predict the losses that a car incurs based on its characteristics.

The automobile dataset contains the normalized losses in use as compared to other cars. This

dataset is obtained from the Machine Learning Repository at UCI (Bache and Lichman, 2013).

There are 14 variables that can be used to model the losses. A description of all the variables is

presented in Table 12 in the appendix.

The response variable is ‘nloss’ which is positive and skewed to the right, motivating to use

gamma regression with a logistic link function. Out of 205 observations, we used the subset of

160 observations with no missing records. None of the variables was forced to be in a model. As

a focus we took the vector of the regression coefficients. In this multivariate setting we minimize

the trace of the estimated MSE matrix to determine the weights.

Table 10 presents the estimated coefficients for smoothed AIC and mMSE for singleton

models, the corresponding weight for the singleton model is given between parentheses. The
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estimated coefficients are different even in the sign of each covariate. The highest weight is

related to the biggest coefficient, width. This variable has been selected by the AIC method as

the best model in singleton models.

Because of these large differences between SAIC and mMSE averaging methods in estimated

coefficients, we assess these methods by 5-fold crossvalidation. Four parts of the splitted data

set are used as training data and one part as a test data set. This procedure is repeated five

times to consider each part in turn as a training data set. The focus vector is the expected

response for the covariates included in the test data, µ = exp(zγ). We estimate the mean of

the response in gamma regression with a logistic link function and calculate the average squared

prediction error (ASPE) for the test data sets,

ASPE =
1

5

5∑
i=1

1

ni

ni∑
j=1

(yij − µ̂ij)2.

Table 11 shows the relative risk of AIC, BIC, smooth AIC and smooth BIC as compared

to that of mMSE for weight selection. Each method’s ASPE value is divided by the average

squared prediction error of the mMSE method in singleton models. In other words, we calculate

the crossvalidation results for singleton models with the mMSE method, but for other methods

both the singleton models and all possible submodels were fitted. Values larger than one indicate

that mMSE is best. It can be seen that the mMSE method performs best in singleton models.

The SAIC performs worse than the AIC resulting in some of the coefficients being weakly

estimated. Note again that for singleton models there is no difference between AIC and BIC.

The results for all possible submodels show that the singleton model averaging by mMSE method

performs comparable, and even better for SBIC to an all subsets averaging. Remind that the

mMSE method uses only 14 models instead of 214 for the other methods. This small difference

in performance does often not outweigh the increased computational cost.

7 Discussion

Minimum mean squared error weight choice is studied in this paper in a general setup, not

restricting to linear normal models only and not restricting the weights to belong to certain

parametric classes. The broadness of the model scope avoids a case by case treatment for

model averaging. All likelihood-based models can be averaged in this way. Existing studies of

the mean squared error expression under local misspecification in settings such as generalized

additive partially linear models (Zhang and Liang, 2011), Cox proportional hazard models (Hjort

and Claeskens, 2006) or for quantile regression (Behl et al., 2014) open the way to construct

similar extensions of the proposed mMSE weight choice method to those settings.

To the best of our knowledge we have not found other work dealing with the issue of non-

unique estimators. This might be of importance when interpretations of the estimators are

essential. Our work in linear models shows that even though the weights might not be unique,

there are occasions where the predictions using mMSE weights are unique. This is a welcome

relief when considering high-dimensional models. A reduction to singleton models, resulting in
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Variable AIC SAIC mMSE

wheelb 0 0.0055 (0.1118) -0.0038 (-0.0773)

length 0 0.0029 (0.1038) -0.0003 (-0.0089)

width 0.0732 0.0097 (0.1324) 0.0862 (1.1780)

height 0 0.0094 (0.1049) -0.0331 (-0.3690)

cwei 0 0.0001 (0.0549) -0.0001 (-0.0264)

engi 0 0.0020 (0.0465) 0.0029 (0.0675)

bore 0 0.1372 (0.0934) -0.0571 (-0.0389)

stroke 0 0.1167 (0.0779) -0.0524 (-0.0350)

compr 0 0.0205 (0.0395) -0.0032 (-0.0061)

hpower 0 0.0019 (0.0346) -0.0009 (-0.0154)

peak 0 0.0001 (0.0944) 0.0002 (0.2436)

cmpg 0 0.0078 (0.0395) -0.0472 (-0.2403)

hmpg 0 0.0071 (0.0447) 0.0522 (0.3278)

price 0 0.0000 (0.0217) 0.0000 (0.0003)

Table 10: Automobile data. The estimated coefficients and between parenthesis the weights assigned to

the singleton models.

models AIC SAIC BIC SBIC

Singleton models 0.8396 0.2924 0.8396 0.2924

All submodels 1.1531 1.0457 1.0224 0.9932

Table 11: Automobile data. Crossvalidation results of relative AMSPE for singleton and all possible

models as compared to that of the mMSE using only singleton models. For values smaller than one

mMSE is best.

the same predictions as when using all subsets may be an interesting alternative to screening

methods that first try to reduce the set of potential variables and then perform averaging. This

topic is currently under investigation.

An interesting extension is the investigation of the limiting distribution for inference on the

weighted estimator and on the post-selection estimator. The explicit form of the estimator for

the mMSE method may aid the construction of confidence intervals and tests. This research is

beyond the scope of this paper and deserves further attention.

Acknowledgements

We thank the reviewers for their helpful comments. We acknowledge the support of the Fund for

Scientific Research Flanders, KU Leuven grant GOA/12/14 and of the IAP Research Network

P7/06 of the Belgian Science Policy. Hansen thanks the National Science Foundation for research

support. The computational resources and services used in this work were provided by the

VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish

Government - department EWI. The authors wish to thank Chu-An Liu and Xinyu Zhang for



25

providing their code for the plug-in and OPT methods.

A Appendix. Proofs

A.1 Proof of Lemma 1

Proof. For all x ∈ RM \ 0M ,

xtQ̃x =
M∑
j=1

M∑
k=1

xjxkTr
(
Q0
Sj
Q−1Q0

Sk
ννt
)

= Tr
(( M∑

j=1

xjQ
0
Sj

)
Q−1

( M∑
k=1

xkQ
0
Sk

)
ννt
)
> 0.

The last inequality results from the fact that Q−1 is a positive definite matrix. By the linear

independence assumption for the Q0
Sj

,
∑M

j=1 xjQ
0
Sj
6= 0. Also, ννt is positive semi-definite. This

proves the lemma.

A.2 Proof of Theorem 1

Proof. (i) To connect with the notation of Theorem 2.7 of Kim and Pollard (1990), define

Zn(w) = wtF̂w, let tn = ŵm̂se, then since wtF̂w →d w
tF ∗w and ŵm̂se = Op(1), we have that

Zn(tn) ≤ infw Zn(w) + an for random variables an of order op(1), hence all conditions of that

theorem hold and we may conclude that ŵm̂se →d w
∗; (ii) is proven by the joint convergence of

ŵj and µ̂j (j = 1, . . . ,M).

A.3 Proof of Theorem 2

Proof. Without loss of generality, we present the proof for Q = Iq, p = 1 and σ = 1, it

can be generalized, but with more calculations. We consider sets of singleton models and of

nested models and denote the matrix F for nested and singleton models by Fnest and Fsing

respectively. Moreover, we use the exact values for ν and δ instead of their estimation for the

ease of presentation.

First, consider nested models where we use partitioned matrices

Fnest =

(
Tnest,1×1 U

′
nest,1×q

Unest,q×1 Wnest,q×q

)
and F−1nest =

(
T nest,1×1 U

′nest,1×q

Unest,q×1 W nest,q×q

)

where Tnest =
∑q

k=1

∑q
l=1 zkzlδkδl, Unest,i =

∑q
k=i+1

∑q
l=1 zkzlδkδl for i = 1, . . . , q−1, Unest,q =

0 and Wnest is a symmetric matrix with entries

Wnest,ij =



q∑
k=i+1

q∑
l=j+1

zkzlδkδl +
i∑

k=1

z2k if j ≤ i, i = 1, . . . , q − 1,

i∑
k=1

z2k if j = q and i = 1, . . . , q.

We follow Harville (2000, theorem 8.5.11) to calculate the inverse matrix F−1nest, which requires

the invertibility of the symmetric matrix Nnest,q×q = Wnest−UnestT
−1
nestU

′
nest which is guaranteed
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by Lemma 1, where Nnest,ij =
∑min(i,j)

k=1 z2k i, j = 1, . . . , q, hence Nnest is symmetric matrix for

which its inverse matrix contains the entries

(N−1nest)ij =



z2i +z
2
i+1

z2i z
2
i+1

, if i = j and i, j = 1, . . . , q − 1,

−1
z2i+1

, if i = j + 1 and j = 1, . . . , q − 1,

1
z2q
, if i = j = q,

0, otherwise.

Using some matrix calculation, we can find that

Tnest =

z21(1 +

q∑
k=2

δ2k) + (

q∑
k=2

q∑
l=2

zkzlδkδl)

z21(

q∑
k=1

q∑
l=1

zkzlδkδl)

,

Unest,i =



−(

q∑
k=2

zkδkz2 + z21d2)/(

q∑
k=1

zkδkz
2
1z2), if i = 1,

(zi+1δi − ziδi+1)/(

q∑
k=1

zkδkzizi+1), if i = 2, . . . , q − 1,

δq/(

q∑
k=1

zkδkzq), if i = q

and Wnest = N−1nest. From (7), wnest
mse follows after computing

1tMF
−1
nest1M = (1 +

q∑
k=1

δ2k)

/
(

q∑
k=1

q∑
l=1

zkzlδkδl). (16)

Considering the singleton models, we again partition the matrices Fsing and F−1sing

Fsing =

(
Tsing,1×1 U

′
sing,1×q

Using,q×1 Wsing,q×q

)
and F−1sing =

(
T sing,1×1 U

′sing,1×q

U sing,q×1 W sing,q×q

)
.

where Tsing = Tnest, Using,i = (
∑q

k=1 zkδk − ziδi)(
∑q

k=1 zkδk), i = 1 . . . q, and Wsing is a

symmetric matrix with (i, j)th entry equal to

Wsing,ij =


(

q∑
k=1

zkδk − ziδi)(
q∑

k=1

zkδk − ziδi) + z2i if i = j and i = 1, . . . , q,

(

q∑
k=1

zkδk − ziδi)(
q∑

k=1

zkδk − zjδj) if i 6= j and i, j = 1, . . . , q.

Here Nsing = diag(z2i ) for i = 1, . . . , q.

By some cumbersome calculations it can be shown that, with Si = {ik; k = 1, . . . , q − 1},

Tsing =

2∑
i1=1

3∑
i2=i1+1

. . .

j+1∑
ij=ij−1+1

. . .

q∑
iq−1=iq−2+1

(
∏
ik∈Si

z2ik)(
∑
ik∈Si

zikδik)2 +

q∏
i=1

z2i∏q
i=1 z

2
i

∑q
k=1

∑q
l=1 zkzlδkδl

,
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U sing
i = −

∑q
k=1 zkδk)− zidi
z2i
∑q

k=1 zkδk
, i = 1, . . . , q,

and Wsing = N−1sing = diag(−1/z2i ). It follows that 1tMF
−1
sing1M = 1tMF

−1
nest1M , see (16).

From (8) and (9), showing µ̂nestw = µ̂singw is equivalent to show that

wnest
2 + . . .+ wnest

q+1 = wsing
2

wnest
3 + . . .+ wnest

q+1 = wsing
3

...

wnest
q+1 = wsing

q+1.

(17)

Since the denominators of the weights in nested and singleton models are equal, we need to

consider the numerators which are equal to the sum of the elements in each column of F−1nest and

F−1sing. The first weight w0 which is related to the narrow model does not have an effect in (17).

By using the structure of F−1 in nested and singleton models, we can show that

(1tMF
−1
nest1M )wnest

i =


(zi+1δi − ziδi+1) /(

∑q
k=1 zkδkzizi−1), if i = 1, . . . , q − 1,

δq/(
∑q

k=1 zkδkzq), if i = q,

and (1tMF
−1
sing1M )wsing

i = δi/(
∑q

k=1 zkδkzi), i = 1, . . . , q. It is not difficult to show that (17) is

satisfied and this completes the proof.

B Description of the variables of the automobile data

Variable Description Range

nloss Normalized loss 65–256

wheelb Wheel base of the car 86.6–120.9

length Length of the car 141.1–208.1

width Width of the car 60.3–72.3

height Height of the car 47.8–59.8

cwei Curb weight in thousands 1.488–4.066

engi Engine size in hundreds 0.61–3.26

bore Bore quantity 2.54–3.94

stroke Stroke of the car 2.07–4.17

compr Compression ratio 7–23

hpower Horsepower of the car 48–288

peak Peak revolutions per minute in hundreds 41.50–66.00

cmpg City miles per gallon 13–49

hmpg Highway miles per gallon 16–54

price Price of the car in thousands 5.118–45.400

Table 12: Description of the variables in the automobile dataset.
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