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Abstract

A data-driven method for frequentist model averaging weight choice is developed for gen-
eral likelihood models. We propose to estimate the weights which minimize an estimator of
the mean squared error of a weighted estimator in a local misspecification framework. We
find that in general there is not a unique set of such weights, meaning that predictions from
multiple model averaging estimators will not be identical. This holds in both the univariate
and multivariate case. However, we show that a unique set of empirical weights is obtained
if the candidate models are appropriately restricted. In particular a suitable class of models
are the so-called singleton models where each model only includes one parameter from the
candidate set. This restriction results in a drastic reduction in the computational cost of
model averaging weight selection relative to methods which include weights for all possible
parameter subsets. We investigate the performance of our methods in both linear models
and generalized linear models, and illustrate the methods in two empirical applications.
Key words: Frequentist model averaging, mean squared error, weight choice, local misspeci-
fication, likelihood regression.

1 Introduction

We study a focused version of frequentist model averaging where the mean squared error plays
a central role. Suppose we have a collection of models S € S to estimate a population quantity
i, this is the focus, leading to a set of estimators {fig : S € S}. The focus can be vector-valued.
In this paper we study properties of the weight choice for constructing a combined, weighted,

or aggregated, estimator

f = Y wsfis. (1)
Ses

Focused model selection (FIC, Claeskens and Hjort, 2003) assigns a single weight wg+ = 1 to
the estimator for which the estimated mean squared error (MSE) is the smallest amongst all
considered models, that is m(ﬂs*) = mingeg m(ﬂs), and wg = 0 for all other S € S. Due
to the estimation of the MSE (the true model is unknown, hence unavailable for use in MSE
computations), the collection of weights wg is random. Similar random selection results from
using any other information criterion such as the Akaike information criterion (AIC, Akaike,
1973), the Bayesian information criterion (BIC, Schwarz, 1978) and Mallows’ C, (Mallows,
1973).



Small fluctuations in the data may cause the weights indicating the single best model to
change from one to zero and vice versa. For this reason model averaging with weights outside
the values {0,1} are considered as a more stable compromise. This paper concentrates on
frequentist model averaging in a likelihood setting. For an overview of model averaging in a
Bayesian framework see Hoeting et al. (1999).

Weight selection methods for regression models estimated via least squares, include the
Mallows’ criterion for determining the weights to be used in model averaging for nested models
(Hansen, 2007) and its extension to non-nested models (Wan et al., 2010). Hansen and Racine
(2012) defined a jackknife model averaging estimator for heteroskedastic errors and showed the
optimality of that model averaged estimator. Model averaging in econometrics is often used
for improving forecast accuracy (Bates and Granger, 1969; Granger and Ramanathan, 1984;
Hansen, 2008). For a further literature overview, see Cheng and Hansen (2015).

Liang et al. (2011) proposed to select the weights such that the estimated MSE of the
weighted estimator ji,, is minimal. In that paper, their ‘optimal’ set of weights for frequentist
model averaged estimators is, however, restricted to a specific ad hoc parametric form. They
used their method for least squares estimation only, but explain that it could be extended to
maximum likelihood estimation. For linear regression models with heteroscedastic errors Liu
(2015) proposed a model averaging estimator in a local asymptotic framework and derived the
asymptotic distribution of the so-called plug-in averaging estimator based on the asymptotic
mean squared error expression. Logistic regression was considered by Wan et al. (2013) by
minimizing a plug-in estimator of the asymptotic mean squared error for defining the weights.

In this paper we consider estimators obtained by maximum likelihood estimation in general.
First, we propose an estimator of the mean squared error of fi,, under local misspecification,
replacing the unknown localizing parameters by their plug-in estimators. We then propose
selecting the weights which minimize this estimator of the MSE. This method can be considered
as an extension of Liu (2015) to likelihood models. We also extend the approach of Liang
et al. (2011) as we do not restrict the empirical weights to have a certain parametric form nor
to lie in the unit simplex, although we impose that the sum of weights is equal to one as is
necessary for consistency of the model averaging estimator (Hjort and Claeskens, 2003). In
absence of imposing inequality restrictions, unlike other weight selection methods, no quadratic
programming nor nonlinear optimization is required. When the aim of the model averaging is to
improve estimation efficiency as compared to using a single models estimator, the interpretation
of the separate weights is not of direct interest. By not restricting the weights to be between
zero and one, more flexibility is allowed in the construction of the weighted estimator, and thus
there is the possibility for reduced MSE.

A second part of this paper entails a study of the set of models S for which we can assign
unique weights to the corresponding estimators. Perhaps surprisingly, it turns out that most of
the so far studied weight selection methods result in a non-unique set of weights. This may be
problematic when interpreting the weight values. Interestingly, we prove that there are multiple
weight vectors which yield equal model average predictions in linear regression using different sets

of models. It is therefore sufficient to restrict attention to a subset of such models for which we



can construct a unique MSE-minimizing weight vector. It turns out that one convenient choice
is the class of singleton models, dramatically reducing the number of models to estimate. For
example, if there are ¢ candidate parameters for inclusion, then there are 2¢ models consisting
of all possible subsets of ¢ parameters, but there are only ¢ + 1 singleton models (the baseline
or narrow model which fixes all ¢ parameters and the ¢ models which each include only a single
parameter) which suffices for model averaging.

Section 2 introduces notation, defines the local asymptotic framework and the asymptotic
mean squared error. Estimators for the MSE are constructed and discussed in Section 3. Sec-
tion 4 contains an extension of the weight selection method for vector-valued focuses. Simulations

and data examples are given in Sections 5 and 6. Section 7 concludes.

2 Notation and setting

Consider a likelihood regression model where it is uncertain which regression variables should
best be included for the estimation of a population quantity p. Different ‘configurations’ of
covariates lead to define different models. A local misspecification setting avoids making the
strong assumption that the true model is contained in the set of considered models. Take {Y;;i =
1,...,n} independent with density function for the ith one f,(y;x;) = f(y;zi, 00,7 + 6/+/n),
where the p-vector € is included in every model and is not subject to selection. Components of
the g-vector v may or may not be relevant, these are subject to variable selection. The vectors
0 and ~ are non-overlapping. The true values of the parameter vector (6,) are (6p,v0 + d/v/n)
under the local misspecification setting, and (0p,70) under a narrow model where the vector
7o is completely specified and known. For example, when  represents regression coefficients,
typically 79 = 0 in the narrow model, the smallest model one is willing to consider, indicating
absence of the extra regression coefficients. The full model includes all ¢ components of -y, other
models are indexed by a set S C {1,...,¢}. The narrow model corresponds to S = (). Since
our method of finding weights is based on minimizing a mean squared error expression, see also
Liang et al. (2011), this setting is justified since it balances the squared bias and the variance
of the estimators in order for the mean squared error to be computable. Indeed, when not
working under local misspecification, for a fixed true model not contained in the set of studied
models asymptotically the bias would dominate, pointing towards always working with the most
complicated model (Claeskens and Hjort, 2008).

In a regression setting the response values are typically not identically distributed due to the
presence of the covariate vector x;. We define the score vector, the vector of first derivatives of

the log-likelihood,

<U9(y; 36)) _ <8logf(y;x,90,70)/39>
Uy (y; ) dlog f(y;x,00,%)/07)

and let the Fisher information matrix

— Var Up(Y; )
J(x) =V <U( )

1TL
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be partitioned according to p and ¢, the lengths of 8 and ~, as

J(z) = (JOO(x) J01(CC)> g, = (Jn,oo Jn701> 7 Jn_l _ (JSO J21> |
Jio(z)  Jui(w) Jn10  Jna1 JWo g
We assume that J,, converges to an invertible matrix J when n — oco. Submatrices of J and
J~! are defined as above, though without using the subscript n.

The purpose of the model averaging procedure is to estimate a population focus pu = (6, 7).
Examples include a prediction of the response given covariate values (a forecast), a quantile of
the response distribution, as well as a single coefficient of interest. Working with a population
focus is more general than the commonly studied averaging of the regression coefficients. We
assume that the first derivatives of y with respect to 6 and v exist in a neighborhood of (6, ).

Maximum likelihood estimation is used in each submodel indexed by S. Under classical
assumptions, each such submodel estimator of (6, ) and hence of the focus p has an asymptot-
ically normal distribution with both the mean and the variance specific to the used model. Let
s = ,u(gs, 7s). Following the notation of Claeskens and Hjort (2008), it holds that

Vi(fis — pore) = Ag = Ao + 14(6 — GsD) ~ N(meang, Varg), (2)

where Ag ~ N(0,72) with the narrow model’s variance ¢ = (9u/00)* Jy,' Op/08, the vector
v = J10J0_018u/89 — Ou/dy, D ~ Ny(6,Q) with Q = J'. Further, define a |S| X ¢ projection
matrix mg that selects those rows with an index belonging to S and let Qg = (ﬂsQflwg)*l,

% = 71LQgms and Gg = %Q_l. We denote by I, an identity matrix of dimension ¢ x ¢q. By
adding the squared bias and the variance, the asymptotic distribution in (2) implies that the

mean squared error (MSE) of a single estimator jig converges to
MSE(fis, 8) = 78 + v'Q%w + v/ (I, — Gs)30'(I, - Gs)'v. (3)

While selecting a model based on the estimator’s estimated MSE value is the idea underlying
the focused information criterion (Claeskens and Hjort, 2003), we here consider the choice of
the weights via the mean squared error, similar as Liu (2015) and Liang et al. (2011) though for

general likelihood estimation and a general choice of weights summing to one.

3 Estimation of the mean squared error

3.1 Weight choice via minimum mean squared error

Rather than working with the estimator in a single model, we consider a finite set of M different
models, this number not depending on the sample size. A weight is assigned to the estimator in
each of the considered models to reach the model averaged estimator fi,, in (1).

Some common possibilities of sets of models to average over are (i) all possible subsets,
these are M = 29 models, with ¢ the length of the parameter vector ~. This is currently
the most common construction for model averaging. (ii) A sequence of ‘nested’ models. We

assume that we start with a model with a single variable, then add a second one, etc. Thus



S1={1} c Sy ={1,2} C...C S, ={1,...,q}. When including also the narrow model, only
containing 6 and none of the components of ~, this leads to M = ¢ 4+ 1 models that depend
on the order of inclusion of the variables. (iii) A collection of ‘singleton’ models. For singleton
models, we only allow one variable v; to be present in the model, in addition to 6, implying
that S; = {j}. A major advantage is that only simple models need to be fit. Such a collection
consists of M = g + 1 models when also the narrow model is included.

When considering a non-random set of weights in H = {(wl, Co W) Z]]Vi1 wj = 1}, then
(see Hjort and Claeskens, 2003) for the weighted estimator it holds that

M M
~ d
V(i — pieee) = Y wiks, = > wi{Ao +1'(6 — G, D)},
j=1 j=1

from which by (3) the limiting mean squared error is found to be MSE(fi,,) = 7¢ + R(§), where

u M
R(6) = Vt{(fq — D wiQ%,Q)as (I, — Z%Qs Q! ZU’JQS Q' ij%f)t}V' )
=1 =

It is convenient for further use to rewrite (4) as a quadratic function of the weights, namely
R(§) = w'F(6)w where the (j, k)th entry of F' = F(9) is defined by (with j, k= 1,..., M)

Fie(6) = v { (1, - Q%,Q7") 00" (1, - Q%,07") + (Q%,Q'Q%,) }» (5)
The theoretical weights that minimize the MSE are
Wmse = argmin w' Fw. (6)
weH

In practice, the MSE needs to be estimated in order to estimate the optimal weights.

3.2 Estimating the MSE and uniqueness of the weights

While almost all quantities in the MSE can be estimated by inserting consistent estimators for
unknowns formed by plugging in estimators for (6,+) and using empirical Fisher information
matrices, the situation is different for §. With 5 = V(i — Y0) —a D ~ Ny(0,Q), we cannot
achieve the same accuracy as for the other estimators. To not overload the notation, we will
focus here on the estimation of §, and leave the other quantities as they are, assumed to be
known. However, all unknown quantities are consistently estimated for practical use.
Using the above defined unbiased estimator 5 results in estimating the MSE by Mﬁ(\ﬁw) =
8 +w!Fw where the M x M matrix F' = F(), see (5). The minimum MSE weights are defined
by Wmse = argmin,,cq, w' Fw.
These estimated weights are unique if and only if the matrix Fis positive definite. By
using (5) we can rewrite F = fft + @ where the M x 1 vector f has jth element equal to
V(I — QY Q1)!5 and the M x M matrix Q has (j, k)th element QY Q7'QY v, Thus a
sufficient condition for F (and F' as well) to be positive definite is that Q is positive definite.
Lemma 1 presents a sufficient condition for this occurrence. All proofs of this paper are contained

in the appendix.



Lemma 1. If Q is positive definite, v is not equal to Op; and the matrices Q%], (j=1,...,M)

are linearly independent, then @ is positive definite.

Under the conditions of Lemma 1, the theoretical optimal weights which minimize (6) are
unique and can be written as wyse = 14, F -1/ (14, F ~!157), which is a well-known result for
minimizing quadratic forms. The vector 1), denotes a vector of all ones of length M. Our
proposed model averaging weights are the values which minimize the MSE estimator MS/E(\ﬁw)
Given the conditions of Lemma 1, also these weights are unique and can be written as

g = argminw'Fw = 14,F /{14, F '1}. (7)
weH
We call these the minimum MSE weights (mMSE).

Since () has rank ¢, at most ¢ linearly independent components Q%j can be constructed,
meaning that the rank of ) (and hence of F') is bounded by ¢g. Together with the narrow model
(the ‘null’ component), this means that the maximum number of models M needed to create a
unique set of weights is ¢ + 1. This can be achieved by considering the class of nested models,
or the class of singleton models. Each class has M = ¢ 4+ 1 models and an estimate F which
is positive definite with rank equal to ¢ 4+ 1, resulting in a unique set of weights. Note that
several more situations lead to unique weights. For example, with ¢ = 7, one model may contain
the variables (v1,72), a second model contains 73 and a third model contains (74, ...,77). Also
here Lemma 1 guarantees uniqueness of the selected mMSE weights. Section 3.3 works out
uniqueness properties of the predictions in the case of linear regression models.

Another obvious conclusion from Lemma 1 is that we cannot find unique ‘optimal’ weights
for the case of averaging over all 27 subsets without considering more assumptions (Dostal,
2009). This may open a discussion about averaging over a set of not more than ¢+ 1 submodels
only for which there are linearly independent Q% matrices and for which we can find unique
optimal weights versus the current common practice of averaging over all subsets resulting in a
set of non-unique weights.

Remark 1. The above uniqueness property is tied with the estimation of §. Alternatively,
if we would use in (6) 56t — Q as an unbiased estimator of §6¢, then after removing some terms
independent of the weight vector w,

Wime1 = argmin{wtﬁw +2w'T},
weH
with, foij,k =1,...,M, ﬁjk =i, — QOSijl)ggt(Iq — ngQ’l)tu and T; = ! %jf/' The
matrix P can be rewritten as a product aa’ where the M-vector @ has jth component §'(I, —
Q%j@‘l)tu. Obviously, Pis positive semi-definite and always has rank equal to one, hence it is
not invertible. One important consequence is that there is no unique solution for the weights,
regardless which models are averaged over. Nonetheless, we can find weights by using either
generalized inverse matrices or by means of quadratic programming. With P- denoting such a

(non-unique) generalized inverse of ﬁ, the following (also non-unique) weight is obtained,

Winse,1 = P[(—Inr + 1 Uy P 10) 1 PO)T + 10 (1L P~ 1) 7Y,



Note that adding constraints such as having all weights positive and not larger than 1 is not
a guarantee to get unique weights when P is not positive definite (Propositions 2-10 and 2-20
Dostal, 2009; Harville, 2000).

The mMSE weighted estimator with random, data-driven weights as in (7) has different
statistical properties as when using the unreachable theoretically optimal weights (6). Theorem 1
shows the limiting behavior of both the weights and of the mMSE weighted estimator.

It is straightforward to show that the estimator F' = F (g) of F'in (5) converges, for n tending
to infinity, in distribution to F™* of which the (j, k)th element (j,k = 1,..., M) is equal to

Fji':k‘ = Vt(Iq o QOS]'Q_I)DDt(Iq B Q%kQ_l)tV + Vt(QOSjQ_lQ%k)V’

with D ~ N(§, Q). Hence, it follows that wtFw % wt F*w as n — oo. While the explicit form of

the weights in (7) is useful for direct computation, it hints at a complicated limiting distribution.

Theorem 1. Assume that F and F* are invertible. Let Wise = GTgMAN,cyy wFw and w* =
argmingcqy W F*w. Then (i) Wgss L\ w*; (ii) the model averaging estimator has a limiting
distribution

M
Vil — ftrue) 2 > wihs;.
j=1

Since the weights w* are random, the limiting distribution is not Gaussian, despite every
Ag; being Gaussian. For deterministic weights the limiting distribution is normal.

The randomness of the weights is complicating inference for the model averaged estimator,
and as a special case, also for the estimator post-selection when the uncertainty involved with
the selection is taken into account. For more information about post-selection inference, see,
e.g., Potscher (1991), Kabaila (1995), Claeskens and Hjort (2003) and Danilov and Magnus

(2004).

3.3 Uniqueness of predictions in linear regression models

While uniqueness of the weights (see Lemma 1) is important, we here investigate the uniqueness
of the weighted predictions when different sets of models {51, ..., Sy} are used to construct the
weights. This discussion is restricted to linear models only.

In this subsection we consider linear normal regression models Y = X0 + Zv 4+ e. The
intercept is always present and is included in the vector 6 which may also include coefficients
of other fixed covariates, resulting in a design matrix X. In addition, there are ¢ potential
covariates 21, ...,2, which are collected in the design matrix Z with corresponding coefficients
7. Let us take the ideal situation that o = var(e) is known, to simplify the notation and
calculations but this assumption is not necessary since we can include o2 in the vector # and
add one row and column to the Fisher information matrix J,. For a linear model, the empirical

Fisher information matrix is equal to J,

L _L(xx x'Z\ _ (o Jo
n—n 'X 77 B Jl() Ju ‘



The focus is on model averaged prediction. We estimate the mean of Y at a given covariate
vector (z,z), denoted by u(z,z) = 20 + 2!y with v = (y,...,7,)". We find minimal MSE
weights for this purpose.

In Theorem 2 we show that model averaged predictions with mMSE weights for singleton
and nested models result in identical predictions. We can best explain this phenomenon via the

selection matrices.

Definition 1. The selection matriz () is an M x q matriz with {0, 1} elements, constructed as

! / ! ! t
(= LM TSys -5 LgTg, TSur )

where each row represents a model such that elements equal to 1 correspond to auziliary variables

that are present in that model.

For example, the selection matrices for a set of singleton ({s) and nested ((,) models for

q = 3 can be written as

Cs: Cn:

o O =
o = O
= o O
— = =
= = O
= o O

To facilitate the proof, we orthogonalize the design matrix X = (X, Z) such that as a
consequence the matrix Q = J!!' is diagonal. This is no loss of generality. Indeed, by the
QR decomposition, for any matrix X, there is an orthonormal matrix A and upper triangular
matrix R for which X = AR. The matrix R is the transformation matrix which can be used
to convert X to the orthonormal matrix A. If one uses the original matrix X and uses the
estimated weights Wy via the proposed mMSE method, and next calculates the prediction
value for the new observation Xy resulting in finew, or, uses the orthonormal matrix A as the
design matrix, uses the mMSE estimator of the weights w1, and calculates the prediction jiZ.
for the XyewR™', then the prediction values are equal, thus ﬁfew = [new- This means that for
prediction purposes, the orthogonalized version of X and the original X give the same results.

For any such diagonal matrix @ it follows that 75 = 757¢,. This means that the estimators
of v in the full model and in each considered model which contains «y; are identical. Thus in
particular, 7; in the nested model is identical to 7; in the singleton models (for all j =1,...,q).
In the case of a diagonal matrix @, it is readily obtained that having linearly independent rows
in a selection matrix ¢ is equivalent with having linearly independent matrices Q%j, where the
sets S; are induced by the rows of (. Hence, finding models that satisfy the assumption of
Lemma 1, is aided via the selection matrices.

The estimated weights for estimation of the value p(z,z) are obtained via mMSE in (7).
Consider the weighted prediction at a value (x, z) using a sequence of nested models with mMSE

nest

nested weights w Since the weights sum to 1,

q+1

q q+
/\nest Z /\nestuZ — 5 Z zz’Yz Z /\nest). (8)

1
Jj=i+1



Next consider the weighted prediction at the same value (x,z) in the set of singleton models

with mMSE singleton weights @58,

g+1
~sing __ .ty o, ~sing
w € =20+ E Zi—17Yi—1W; - (9)
=2

In Theorem 2 we prove the equality of the mMSE averaged prediction values for singleton models

and nested models when we use all g covariates.

Theorem 2. Let p > 1 and q > 2. When using mMSE weights (7) for averaging predictions
in linear regression models with least squares estimation, the weighted predictions are equal for

averaging over singleton models and for averaging over nested models, that is, fiy © = Rt

Our calculations have illustrated that the result holds true more generally. To be more
precise, the prediction values are equal for all sets of models that have the same number of
linearly independent rows in the selection matrix and that use the same covariates to construct
the models, hence not only for nested and singleton models. The proof of such cases proceeds
along the same lines as the proof of Theorem 2.

Another nice property of our method appeared in the simulations for linear models. It turns
out that the mMSE weighted predictions for the set of models for which the corresponding
matrices QOS form a basis of the matrix space of that dimension, are precisely the same as the
mMSE weighted predictions formed by using these models and some extra ones. Hence, no
information is lost when restricting to such a subset of models. Consequently, there is no need
to consider all possible models anymore and the weight choice by mMSE can be considered as a
screening method for which we do not lose any information regarding prediction. This suggests
a simplification in the choice of models used for model averaging. This result allows a drastic
simplification of the computational aspects. Indeed, it is not needed to consider all 2¢ submodels
for model averaging, only ¢ singleton models suffice and they yield for linear models identical
predictions when the mMSE weights are used. Also determining the order of the variables in
nested models becomes irrelevant with this choice of weights.

When the number of models is more than g+1, the matrix F' is not positive definite anymore,
yet we get the same weighted prediction values for averaging over singleton models and over
all possible models. This remarkable fact is explained by finding the weights via a quadratic
programming application that searches the minimum of the estimated MSE. Since the matrix
F' is positive semi-definite when using all possible submodels, the solution for the weights is not
unique but all solutions are global ones (Antoniou and Lu, 2007, Chapter 13), thus yielding the

same prediction values for singleton models and for all possible subset models.

4 Weight choice for multiple focuses

While in Section 3 unique weights are assigned to estimators for a single focus parameter, we
here consider a vector-valued focus. This is for example useful when considering predictions at
more than one position or when considering a vector of regression coeflicients for model averaged

estimation.
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Take ji = (pu1,.-.,pr)t a vector instead of a scalar. Then 72 = (9(ji)/00)! Joy 0ji/ 00 is a
r X r matrix and v = (vq,...,v,) is ¢ X r with v; = JloJ&]la,ui/(?G — Oui/dvy. So, for a single

submodel
= d v %
\/ﬁ(ﬂs - :utrue) - AS = AO + Vt<5 - GSD)>

where Ag ~ N,(0,7%) and D and § are as before. Here, the MSE of ;AIS is defined as a matrix
E [(ﬁs — ﬁtrue)(ﬁs — fitrue)!] with the diagonal elements equal to the MSE of the individual focus

component estimators. Similarly,
R o M
\/ﬁ(,u ,Utrue — Zwy S; = Z (5 GS )
Jj=1 Jj=1
in which i, = Z;‘il wjﬁé. The r x » MSE matrix can be written as
MSE(ii,,, §) = 7§ + R(0) (10)

where

M M
R() = v {3 w;(l,— Q% Q7" wzwj (I, - Q8,Q~" Zw]czs QM (> wiQ%)' v
j=1 J=1

As in the univariate case, all unknowns have consistent estimators except for . An additional
issue with the multiple focuses case is deciding on the criterion for which we optimize the weight

choice. Since the MSE is a matrix we consider both minimizing the trace and the determinant.

4.1 Minimizing the trace of the MSE matrix

The trace of the MSE matrix is equal to the expected squared error loss function £ [Hﬁw — [itruel|?]

which is the summation of the MSE values for the individual, univariate, focuses. Then
tr{MSE(fi,;,0)} = tr(r2)+ tr{R(6)} = tr(2) + w'Fw, (11)
where F'is a M x M matrix similar to the matrix F in (5) with (7, j)th entry equal to
Fij = el {7, - Q4@ )50 (I, - Q% Q) + QLQ QY .
So, the optimal weights in (11) can be found by

Wmse = argmin w’ Fw. (12)
weH

If the unbiased estimator of §, § = Vn(y — ) is plugged in (12) using R(S) and F, minimizing
the trace of the MSE matrix leads to

s = argminw' Fw = 14, F /(1MF 1M) (13)
weH

which results in a unique weight vector under the assumptions of Lemma 1. Also Theorem 1

can be stated for a multivariate focus.
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The motivation for not using the unbiased estimator of 56! which is 5ot — Q, is similar as
in the univariate case. Indeed, in that case the weight would equal argmin,,c {w' Pw + 2wT'},

where, P and T are similar to P and T in the univariate case with
Py, = tr{v!(I, - Q%,Q )38 (I, — Q%Q )'w} and T; = tr (thOSJ_ u) .

Rewriting P = AA! with A' = (A, ..., Ay) and ffj = St(lq—Q%jQ_l)V, yields that rank(P) <
min(r, ¢, M). In order to have unique weights, a necessary assumption is rank(P) = min(r,q, M) =
M which is true when v is a full rank matrix and M < min(r,q). The necessary assumptions
for the unicity of weights by using an unbiased estimator of §6' are more restrictive than the
necessary assumptions for the unbiased estimation of §. Moreover, the simulation results show
that the biased estimator of the MSE performs better than the unbiased estimator with respect

to out of sample mean squared prediction error.

4.2 Minimizing the determinant of the MSE matrix

The trace of the MSE matrix ignores the information which is stored in the off-diagonal elements.
To use this information, we consider the parallelepiped generated by the MSE column vectors,
which is a geometric representation of the MSE matrix. For example, Figure 4.2 draws the
parallelepiped produced by the three columns ¢; = (1,1,0), c2 = (1,1,3) and c¢3 = (1,3,1) of a
matrix A.

In Section 4.1, the weights were found by minimizing the trace of the MSE matrix which
results in a parallelepiped with minimum sum of squares of the axes. In this section we assign
weights to each model in such a way that the volume of this parallelepiped is minimized, which
is equivalent to minimizing the determinant of the MSE matrix. The D-optimality criterion of
experimental design studies seeks designs that minimize the covariance matrix of the parameter
estimators (Atkinson et al., 2007). However, by the presence of J, the estimators in our case
are not unbiased, which motivates the use of the MSE matrix instead of the covariance matrix.

Instead of constructing a design, our goal is to determine weights for models in such a way that

4
c2
3
c3
z 27
i 5
—4
1 —3
1 1 -2 Y
1
Y T T 0
0 1 2 3

Figure 1: Geometrical representation of a matrix A with columns ¢q, ¢o and cs.
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the determinant of the MSE matrix is minimal.

Our aim is to minimize the determinant of the MSE matrix in (10), hence

Dol = argmin det(MSE(/7,,, 9)). (14)
weH
It should be noted that this is a nonlinear optimization problem with a linear constraint for the
weights and the results are no longer unique. The simulation results in the next section show
that the proposed method performs well in comparison with other methods.

Remark 2. The necessary assumption for starting the optimization in (14) is that the MSE
matrix is non-singular with a non-zero determinant. In (10), R(d) plays the crucial role, since
7¢ is zero when p = 0. If ! is a matrix with full column rank equal to g, then the rank of the
MSE matrix is equal to the rank of the middle part, B, of R(§) = v'Bv. In singleton models
B is positive definite (rank=gq) if all the weights are nonzero (starting values for optimization);
moreover, the length of the focus vector cannot be more than ¢, otherwise the MSE matrix is

positive semi-definite, hence singular.

5 Simulation Studies

In this section, we consider two types of models, linear models and generalized linear models.
Since almost all previous studies insisted on linear regression, we first compare our method with
other methods in this setting. Next, we present the results for generalized linear models and

compare the proposed method with some other methods of model averaging.

5.1 Linear models

We investigate the finite sample performance of the minimum MSE estimator (mMSE) and
compare the results with other methods of averaging, in particular by the plug-in estimator
(Liu, 2015), the so-called optimal estimator (OPT, Liang et al., 2011), Mallows model averaging
(MMA, Hansen, 2007) and jackknife model averaging (JMA, Hansen and Racine, 2012). All of
these methods are defined for averaging over all possible submodels. While the mMSE method
is also applicable to using all submodels, we insist on unique weights (unique prediction) which
entails using row linearly independent selection matrix models. By Theorem 2 and its discussion,
we present the results for singleton models only for the mMSE weight choice method. Note
that some methods such as the OPT estimator do not result in unique weights not even for
the singleton models because of using nonlinear optimization for constructing the weights. In
Setting 1.2, averaging over singleton models and all possible models for different methods is
compared.

General settings for the simulations in this section are summarized here. The data are

generated from a finite order regression model of the form

p q
J ,
Vi X byt 3 ke =l 1)
k=1

Jj=1
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We set p = 3, ¢ = 8, z1; = 1 as an intercept and (z2;, 3, 214, - - - , 28i) ~ Np—14¢(0,v). The
covariance matrix v for the regressors contains a diagonal equal to 1 and off-diagonal entries equal
to p. The error term e; is generated from a standard normal distribution and is independent of
the regressors. We generate n + 1 observations from this model, the last observation acts as an
out-of-sample value.

Setting 1. This setting compares different methods of model averaging for singleton models
in different settings. Again, singleton models are used in order to get unique prediction values,
especially for the MMA and JMA methods. The plug-in method is for linear models theoretically
the same as the proposed method but with different assumptions for the weights (the weights
are positive and sum to 1) and the implementation is based on least squares theory which causes
some differences in the results. For that method the prediction values are unique, but not the
weights since those authors used semi-definite quadratic programming for minimizing the MSE
of the focus parameter, resulting in global minimizer weights that are not unique. Hence, if the
goal is finding the most influential covariate or model as is of interest in data analysis, there is
no unique answer for this question with those methods.

Three scenarios are considered,

Scenario 1.1 : (0,5/v/n) = ((5,—4,3.5), ¢(3.9,4.75,4.2,3.5,4.95, —3.75, 4.4, —4) /\/n),
Scenario 1.2 = (8,0/v/n) = ((5,—4,3.5), ¢(3.9,4.75,4.2,0,4.95,0, 4.4, —4) /v/n),
Scenario 1.3 : (0,6/v/n) = ((5,—4,3.5),¢(0,4.75,4.2,0,4.95,0,4.4,0)/y/n).

The effect of the importance of the § values relative to 6 is controlled by the constant ¢ which
varies in the set {0.5,1,2}. In scenarios 1.2 and 1.3, the effect of true zero coefficients in the true
model is studied. The sample sizes varies in {50, 100,200, 500,800, 1500} and the off-diagonal
value p of v varies in {0, 0.25,0.5,075}. All of the Monte-Carlo simulations repeat this 2000 times
and the numbers in Tables 1-3 are the mean squared prediction errors (MSPE) for the out-of-
sample value (the n + 1st value that is not used in the estimation nor weight determination)
over the simulation runs.

It is observed that the mMSE works better than the other methods for moderate and high
values of ¢ (Tables 2 and 3) in all scenarios. For small ¢ (Table 1), in scenarios 1.1 and 1.2,
when the collinearity amongst the covariates is small (p = 0 and 0.25), the mMSE has the best
performance, whereas higher collinearity cause better performance of the plug-in method but
with small differences with mMSE. In scenario 3, the plug-in method works good for low and
moderate collinearity while MMA and JMA outperform for high collinearity. For high values of
¢, the difference between the proposed method and other methods is remarkable, even with the
plug-in method which is the theoretically closest method to the mMSE, the difference arising
from the fewer restrictions for the weights in the mMSE. If we remove this additional constraint
for the weights for the plug-in method, it performs similarly to mMSE in linear regression.
Explicitly allowing for heteroscedasticity in order to improve prediction accuracy, the plug-in
method of Liu (2015) results in different estimated Fisher information matrices as compared to
mMSE, explaining the slightly different results between the two methods. Tables 1-3 reveal the

stability of the mMSE values for different choices of ¢ and n for the three scenarios, whereas
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other methods are sensitive to the particular setting.

To investigate a potential information loss by other methods when using singleton models
as compared to all subsets, we run a simulation with all possible models for scenario 1.2 with
c = 1. To ease the comparison, the mMSE method is also shown in Table 4. This simulation
with using all subsets took around 45 hours using a supercomputer. As Table 4 shows, all com-
peting methods improved significantly by using all possible models, especially the OPT method
which performs the best in all settings. The plug-in method with the additional constraint for
the weights to belong to [0, 1] using all available models performs equally well as mMSE with
singleton models. An important drawback, however, is that the computational intensity grows
exponentially by adding extra auxiliary covariates, adding one covariate doubles the number of
models. The mMSE performance for singleton model averaging is almost as good as all subsets
model averaging for other methods and Table 4 shows that except for the smallest sample size
the difference is in most cases negligible.

Table 5 gives the computation time in seconds, using the same computer, for the OPT and
mMSE method for the average time over five runs in the simulation when p = 0.5. The other
values of p give similar computation times. With practically the same accuracy as OPT, mMSE

benefits from a much shorter computation time, regardless of the sample size.

5.2 Generalized Linear Models: Poisson regression

In this Monte-Carlo simulation, we explore the performance of the mMSE method in Poisson
regression by using five out of sample observations for which we estimate their mean.

Setting 2. The response values Y; have a Poisson distribution with mean u; = exp(ztd/\/n)
with the following specifications: p = 0 (i.e. no core regressors), ¢ = 8 with (z1;,...,2s;) ~
Np+¢(0,v) in which v;; = 1 for ¢ = j and v;; = p for i # j. The value of p varies in the set
{0,0.25,0.5,0.75}. The value of ~yy is set to zero and 0 values are considered according to the

following scenarios:

Scenario 2.1: 0 = (-1,-4,3,-4,0.6,4,2,5),
Scenario 2.2: 0 = (—1,-4,3,-4,0,4,0,5),
Scenario 2.3: 0 = (0,-4,3,-4,0,4,0,0).

The considered sample sizes are {50, 100, 200, 500, 1000}. All Monte Carlo simulations are based
on 2000 replications. The multivariate focus has length five which is fixed for each setting and
generated randomly for each setting. So, the focus stays the same for all ng, = 2000 simulation
runs in each setting. Each method is evaluated based on the empirical mean squared error
matrix of dimension 5 x 5, MSE¢mp = nsﬁ Sorsm (g — ferve) (R, — Uirue)!, where for each test
data set with values z, [ig; = exp {ijvil @thgj/\/ﬁ}

In this simulation, we estimate the weight vector w by the multivariate methods in Sec-
tion 4, by minimizing separately the trace and the determinant of the MSE matrix. In order
to distinguish the multivariate mMSE methods, we use mtrMSE and mdetMSE. Although, by

minimizing the trace of the MSE matrix, we lose some precision in comparison with estimating
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Method
p n OPT MMA JMA Plug-in mMSE
50 |0.273 0.291 0.297 0.285 0.285
0 100 | 0.120 0.126 0.127  0.120 0.120
500 | 0.021 0.022 0.022 0.022 0.022
1000 | 0.011 0.011 0.011 0.011 0.011
50 | 0.259 0.294 0.295 0.272 0.273
100 | 0.115 0.123 0.124  0.120 0.119
025 500 | 0.022 0.023 0.023 0.023 0.023
1000 | 0.011 0.011 0.011 0.011 0.011
50 | 0.272 0.323 0.327 0.296 0.297
100 | 0.125 0.147 0.147  0.132 0.132
05 500 | 0.021 0.024 0.024 0.022 0.022
1000 | 0.011 0.012 0.012 0.011 0.011
50 | 0.260 0.309 0.307 0.301 0.303
075 100 | 0.112 0.136 0.136  0.127 0.129
500 | 0.020 0.025 0.024 0.022 0.023
1000 | 0.010 0.012 0.012 0.011 0.011

Table 4: Simulation study for linear models. MSPE for averaging over all possible models for OPT,
MMA, JMA, plug-in and singleton averaging for the mMSE weighted estimator for scenario 1.2 and ¢ = 1.

n
method | 50 100 500 1000

OPT | 187 263 17.04 60.21
mMSE | 0.04 0.03 0.03 0.04

Table 5: Simulation time in seconds for the average time over five repetitions of the simulation for
p = 0.5 in Table 4.

a separate weight vector for each out-of-sample value, the comparison with other methods where
they estimate one weight vector for all test data is more fair; moreover, the computations are
faster in the multivariate case than when performing separate univariate optimizations. Table 6
reports the ratios of the trace of the empirical MSE matrix for the mtrMSE method divided by
those for each other method. For the weight choice by minimizing the determinant we report
the ratio of the generalized standard deviations {det(MSE)}'/> of the empirical MSE matrix
over the simulation runs when using the weight choice by mdetMSE and that resulting by the
other methods. Hence, if the number is bigger than 1, that other method performs better than
the proposed method mMSE and vice versa.

For singleton models, the AIC and BIC values are identical (the penalty does not have an
effect in singleton models), hence, we show the results for AIC, SAIC and the mMSE methods.
The AIC selects a single model, assigns weight 1 to that model and weight zero to all other
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models. The smoothed AIC, SAIC, gives weights proportional to the value of the AIC, the
better the AIC value, the larger the weight. All weights in SAIC are rescaled to be in the
interval [0, 1].

Table 6 shows that in almost all settings and scenarios the mtrMSE method performs well,
in some cases ten times better than other methods. The averaging method, SAIC, works better
than the selection method, AIC. In two settings, the SAIC method outperforms the mtrMSE
method slightly, while in most of the other settings the mtrMSE method performs at least two
times better than the other averaging method. In all settings, the mdetMSE method results in a
relative low determinant value in comparison with AIC and SAIC methods. The AIC and SAIC
methods always perform worse than mdetMSE while SAIC performs relatively better than the
AIC selection method.

6 Data analysis

6.1 Growth model, linear regression

We employ the proposed method of model averaging to a dataset that has been used in several
studies, including Liu (2015) and Magnus et al. (2010). The economic growth measured as the
gross domestic product per capita (GDPc), that is, the total output of a country divided by the
number of people in that country, is modeled as a function of several covariates. A rise in GDP
per capita shows growth in the economy and usually results in an increase in productivity. In
the dataset there are 74 observations for average growth rate of GDP per capita between 1960
and 1996.

We compare the application of mMSE by the frequentist model averaging approach of Liu
(2015). We adopt model setup A in their study and fit a linear model as

GDPc; = X0 + Ziy + €,

with the same fixed regressors (X), a constant for the intercept, GDP60 which is the logarithm
of the GPD in 1960, ‘equipinv’ the investment part of the GDP during 1960-1985, ‘school60’
primary school enrollment rate in the year 1960, ‘life60’ the life expectancy at birth in 1960
and ‘dpop’ the population growth between 1960 and 1990. As potential regressors (Z) we take
‘law’ referred to as a rule of a law index, ‘tropics’ the fraction of tropical area of the country,
‘avelf’ which is an average index of ethnolinguistic fragmentation and ‘confuc’, the fraction of
Confucian population. For more details of the variables, we refer to Magnus et al. (2010).

Liu (2015) performed model averaging for all possible submodels and presented the estimated
coefficients and weights for each model for the plug-in method and other methods of averaging
including OPT, MMA and JMA. Those estimated coefficients and weights are not unique and
one can find another estimate for the coefficients by changing the optimization routine. Table 7
presents two such sets of estimators by changing optimization method (using fmincon instead of
quadprog in Matlab or changing the starting point). For the plug-in method we observe a large
difference for the estimate of ‘dpop’. The JMA estimates do not change that much, while MMA
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Method
models OPT MMA JMA Plug-in mMSE
singleton models | 1.157 1.086  1.087 1.060 1.000
all submodels 1.013 1.021 1.042 1.015 1.000

Table 9: GDP data. Relative average out of sample squared prediction errors of competing methods
relative to the mtrMSE method.

results in different estimates for ‘dpop’ and for the four potential z-variables. The method OPT

shows the largest changes in values for nearly all of the variables, except for ‘life60’ and ‘avelf’.

Liu (2015) used GDP60 as a focus, while instead the goal was estimation of the coefficients
for all regressors. We use the results on a multivariate focus of Section 4 defining u* = (6%,~%)!,
the full parameter vector, and we minimize the trace and next the determinant of the MSE
matrix for this focus vector. Singleton models are used to ensure a unique solution for the trace
method, for the determinant method the weights are not unique. Table 8 gives the estimated
weighted coefficients when averaging over singleton models.

As Table 8 illustrates, some of the coefficients are estimated to be equal to zero. This is not
surprising since this indicates that those variables are not correlated with growth per capita (see
Magnus et al., 2010). The sign of ‘dpop’ that is found for the plug-in and mtrMSE methods
is in line with Solow’s model, see Solow (1956) and Durlauf et al. (2008). The results for the
mdetMSE method are close to those of the OPT method.

We further use 10-fold cross-validation and calculate the mean of the average squared pre-
diction error (ASPE) for both averaging over singleton models and over all possible submodels.
The chosen focuses are now the out-of-sample mean values. Table 9 reports the relative out-of-
sample prediction errors. Entries larger than one indicate an inferior performance of that method
relative to mtrMSE method. It should be noted that the focuses are out-of-sample observations
not the coefficients. While all methods perform close to the mtrMSE method, especially using
all subsets, the mtrMSE weight choice method outperforms all others.

6.2 The automobile dataset, Gamma regression

Insurance companies wish to predict the losses that a car incurs based on its characteristics.
The automobile dataset contains the normalized losses in use as compared to other cars. This
dataset is obtained from the Machine Learning Repository at UCI (Bache and Lichman, 2013).
There are 14 variables that can be used to model the losses. A description of all the variables is
presented in Table 12 in the appendix.

The response variable is ‘nloss’ which is positive and skewed to the right, motivating to use
gamma regression with a logistic link function. Out of 205 observations, we used the subset of
160 observations with no missing records. None of the variables was forced to be in a model. As
a focus we took the vector of the regression coefficients. In this multivariate setting we minimize
the trace of the estimated MSE matrix to determine the weights.

Table 10 presents the estimated coefficients for smoothed AIC and mMSE for singleton

models, the corresponding weight for the singleton model is given between parentheses. The
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estimated coefficients are different even in the sign of each covariate. The highest weight is
related to the biggest coefficient, width. This variable has been selected by the AIC method as
the best model in singleton models.

Because of these large differences between SAIC and mMSE averaging methods in estimated
coefficients, we assess these methods by 5-fold crossvalidation. Four parts of the splitted data
set are used as training data and one part as a test data set. This procedure is repeated five
times to consider each part in turn as a training data set. The focus vector is the expected
response for the covariates included in the test data, yu = exp(z7y). We estimate the mean of
the response in gamma regression with a logistic link function and calculate the average squared
prediction error (ASPE) for the test data sets,

5 n;
1 1 -
ASPE= ¢ > - > (wij — i)*.
i=1 "t j=1

Table 11 shows the relative risk of AIC, BIC, smooth AIC and smooth BIC as compared
to that of mMSE for weight selection. Each method’s ASPE value is divided by the average
squared prediction error of the mMSE method in singleton models. In other words, we calculate
the crossvalidation results for singleton models with the mMSE method, but for other methods
both the singleton models and all possible submodels were fitted. Values larger than one indicate
that mMSE is best. It can be seen that the mMSE method performs best in singleton models.
The SAIC performs worse than the AIC resulting in some of the coefficients being weakly
estimated. Note again that for singleton models there is no difference between AIC and BIC.
The results for all possible submodels show that the singleton model averaging by mMSE method
performs comparable, and even better for SBIC to an all subsets averaging. Remind that the
mMSE method uses only 14 models instead of 24 for the other methods. This small difference

in performance does often not outweigh the increased computational cost.

7 Discussion

Minimum mean squared error weight choice is studied in this paper in a general setup, not
restricting to linear normal models only and not restricting the weights to belong to certain
parametric classes. The broadness of the model scope avoids a case by case treatment for
model averaging. All likelihood-based models can be averaged in this way. Existing studies of
the mean squared error expression under local misspecification in settings such as generalized
additive partially linear models (Zhang and Liang, 2011), Cox proportional hazard models (Hjort
and Claeskens, 2006) or for quantile regression (Behl et al., 2014) open the way to construct
similar extensions of the proposed mMSE weight choice method to those settings.

To the best of our knowledge we have not found other work dealing with the issue of non-
unique estimators. This might be of importance when interpretations of the estimators are
essential. Our work in linear models shows that even though the weights might not be unique,
there are occasions where the predictions using mMSE weights are unique. This is a welcome

relief when considering high-dimensional models. A reduction to singleton models, resulting in
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Variable AIC SAIC mMSE
wheelb 0 0.0055 (0.1118) -0.0038 (-0.0773)
length 0 0.0029 (0.1038) -0.0003 (-0.0089)
width 0.0732  0.0097 (0.1324)  0.0862  (1.1780)
height 0 0.0094 (0.1049) -0.0331 (-0.3690)

cwei 0 0.0001 (0.0549) -0.0001 (-0.0264)
engi 0 0.0020 (0.0465)  0.0029  (0.0675)
bore 0 0.1372 (0.0934) -0.0571 (-0.0389)
stroke 0 0.1167 (0.0779) -0.0524 (-0.0350)
compr 0 0.0205 (0.0395) -0.0032 (-0.0061)
hpower 0 0.0019 (0.0346) -0.0009 (-0.0154)
peak 0 0.0001 (0.0944)  0.0002  (0.2436)
cmpg 0 0.0078 (0.0395) -0.0472 (-0.2403)
hmpg 0 0.0071 (0.0447) 0.0522  (0.3278)
price 0 0.0000 (0.0217)  0.0000  (0.0003)

Table 10: Automobile data. The estimated coefficients and between parenthesis the weights assigned to

the singleton models.

models AIC SAIC BIC SBIC
Singleton models || 0.8396 0.2924 0.8396 0.2924
All submodels 1.1531 1.0457 1.0224 0.9932

Table 11: Automobile data. Crossvalidation results of relative AMSPE for singleton and all possible
models as compared to that of the mMSE using only singleton models. For values smaller than one
mMSE is best.

the same predictions as when using all subsets may be an interesting alternative to screening
methods that first try to reduce the set of potential variables and then perform averaging. This
topic is currently under investigation.

An interesting extension is the investigation of the limiting distribution for inference on the
weighted estimator and on the post-selection estimator. The explicit form of the estimator for
the mMSE method may aid the construction of confidence intervals and tests. This research is

beyond the scope of this paper and deserves further attention.
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A Appendix. Proofs

A.1 Proof of Lemma 1

Proof. For all x € RM\ 0y,

M M M M
xt@x = ZZazjkar(Q%ijngkuyt) = TI"((ZJJjQ%j)Qil(Zl‘ngk)Vl/t> > 0.
j=1 k=1

j=1k=1

The last inequality results from the fact that Q' is a positive definite matrix. By the linear
independence assumption for the Q%j, Zj\il $jQ%j # 0. Also, v/t is positive semi-definite. This

proves the lemma. O

A.2 Proof of Theorem 1

Proof. (i) To connect with the notation of Theorem 2.7 of Kim and Pollard (1990), define
Zn(w) = w'Fw, let ¢, = s, then since w'Fw —4 w'F*w and g = Op(1), we have that
Zp(tn) < infy,, Z,(w) + ay, for random variables a,, of order o,(1), hence all conditions of that

theorem hold and we may conclude that Wz —¢ w*; (ii) is proven by the joint convergence of
’L/ﬁjandﬁj (]:1,,M) O

A.3 Proof of Theorem 2

Proof. Without loss of generality, we present the proof for @ = I, p = 1 and ¢ = 1, it
can be generalized, but with more calculations. We consider sets of singleton models and of
nested models and denote the matrix F' for nested and singleton models by Fiest and Fying
respectively. Moreover, we use the exact values for v and ¢ instead of their estimation for the
ease of presentation.

First, consider nested models where we use partitioned matrices

! nest,1x1 "nest,1xq

Flost = TnCSt71X1 Unest,lxq and Ffl _ T U
nest = nest — tgx1 t.qx
Unest,qxl ”nest,qxq uresta wnestaxd

_\¢ q _\¢ q C_ _
where Thest = Zk:l Zl:l Zkzl6k(5l7 Unest,i = Zk:i—l—l Zl:l 2,210,0; for i = 1,...,q9—1, Unest,q =
0 and Wiegt is a symmetric matrix with entries

q q )
> szzlék&—i—izﬁ if j<i, i=1,...,q—1,
k=1

k=i+11=j+1
i

Zzg if j=q and i=1,...,q.
k=1

Wnest,z'j =

We follow Harville (2000, theorem 8.5.11) to calculate the inverse matrix Fr;;im which requires

the invertibility of the symmetric matrix Npest,gxqg = Whest — Upest T-L U '

est Unest Which is guaranteed
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by Lemma 1, where Nyegt,ij = Zinl(w ) zi 1,7 =1,...,q, hence Npegt is symmetric matrix for
which its inverse matrix contains the entries

22422 . . . .o

,;2,2,2:&17 if i=j and 4,5=1,...,9—1,

1 if = d i1 1

1 T, it +=75741 and j=1,...,q ,
(Nnest)ij = z{+1 ) ) )
¥7 lf 1=7=4q,
otherwise.

Using some matrix calculation, we can find that

g q q
A1+ 00+ (Zzzkzl5k51)

Thost = k=2 — k=2 [=2 ’
33 )
k=11=1
( q q
—(Z 21022 + Z%dg)/(z 20pzize), if i=1,
k=2 k=1
Unest,i = (ZH_l(S - ZZ H—l Z zkékzzzzﬂ if = 2, NN 1,
q
(5(1/(2 210k2q), if i=gq
k=1
and Wiest = Nl From (7), w2t follows after computing
q q
bt Freselnr = (14 67) Z 2210501 (16)
k=1 k:l =1

Considering the singleton models, we again partition the matrices Fgne and F, Smg

’ i ’si
Tsin Ix1 U 3 Tsmg,lxl U sing,1xq
Fsing — g, Slng,lxq and Fb]ng Sjng ax 1 Sing axq .
Using,qxl Wsing,qxq U ’ W ’

where Tyng = Thest, Usingi = (Dopey 260k — 2i0i)(O_f_q1 260k), @ = 1... ¢, and Wpg is a

symmetric matrix with (7, j)th entry equal to

q q
(sz(Sk—2’151)(22’“5]6—2151)4-212 if i=j and i=1,...,q,

Waing.ij =4 "q q
(Z 2,0k — ziéi)(z 2,0k — 2j05) if i#£7 and 4,7=1,...,q.
k=1 k=1
Here Ngng = diag(z?) fori=1,...,q.
By some cumbersome calculations it can be shown that, with S; = {ix;k =1,...,q — 1},
2 3 J+1 q q
2 2 2
) DETED SRS SN | EA DDA | &
11=112=11+1 ijZ’L'j,1+1 iq 1= iq 2+1 ikES ikESi =1
Y

Tsin =
g q
i=17%i Zk 12[ 1Zk2l5k5l



and Wsing = stnlg = diag(—1/2?). Tt follows that 1%, F L1, = 1%,

sing
U= =

. ZZ:l Zk(gk) — 2z;id;
27 34—y 20k

sing

1=1,...,q,

27

El1, see (16).

From (8) and (9), showing 22" = 45" is equivalent to show that

( .
nest nest sing
Wy —|—...+wq+1—w2

nest nest __ , sing
w3™ + Wy = wy

sing

nest __
q+1-

Wy 1

Since the denominators of the weights in nested and singleton models are equal, we need to

consider the numerators which are equal to the sum of the elements in each column of F !

F—l

nest and

sing- Lhe first weight wo which is related to the narrow model does not have an effect in (17).

By using the structure of F~! in nested and singleton models, we can show that

(10 Fpegy Lan)wj" =

nest A

and (14, F2L 15w =

sing %

(zi410i — 2i0iy1) /(Q0F g 2kOkzizio), if i=1,..

6Q/(ZZ:1 zkékzq),

6/ (3hq Zk0nzi),

satisfied and this completes the proof.

~aq_17

i =q,

i=1,...,q. It is not difficult to show that (17) is

O]

B Description of the variables of the automobile data

Variable Description Range
nloss Normalized loss 65—256
wheelb Wheel base of the car 86.6-120.9
length Length of the car 141.1-208.1
width Width of the car 60.3-72.3
height Height of the car 47.8-59.8
cwei Curb weight in thousands 1.488-4.066
engi Engine size in hundreds 0.61-3.26
bore Bore quantity 2.54-3.94
stroke Stroke of the car 2.07-4.17

compr Compression ratio 7-23

hpower Horsepower of the car 48-288
peak Peak revolutions per minute in hundreds | 41.50-66.00
cmpg City miles per gallon 13-49
hmpg Highway miles per gallon 16-54
price Price of the car in thousands 5.118-45.400

Table 12: Description of the variables in the automobile dataset.
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