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Abstract 

The storage potential of apples highly depends on the maturity at harvest. Optical 

methods have been proposed to measure maturity in a fast, reliable and non-destructive 

way. However, the signal is often composed of photons with different penetration depths into 

the material. An attempt to separate these photons might result in more precise correlations 

with quality attributes, as these could relate to a specific layer/depth into the sample. 

Therefore, a Vis/NIR spatially resolved laser reflectance setup was used, combining a 

supercontinuum laser and a monochromator to illuminate samples with a monochrome 

focused beam in the 550-1000 nm wavelength range. A panchromatic camera was used to 

obtain diffuse reflectance profiles at each wavelength. In the period starting 50 days before 

until 11 days after commercial harvest, 320 Braeburn apples were measured. Partial least 

squares regression models were developed to relate apple maturity/quality to the diffuse 

reflectance spectra at different distances from the illumination point. The effect of detector 

size (spatial bandwidth) was also evaluated. A bandwidth of 0.82 mm in combination with a 

parameter specific illumination-detection distance, gave the best results. Using an internal 

test set, an R2 of prediction of 0.98 and 0.93, and a ratio of prediction to performance (RPD) 

of 5.84 and 3.42, predicting respectively the Streif index and starch conversion values was 
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obtained. The predictions of soluble solids content (SSC) (R2 of 0.81 – RPD of 2.04) and 

firmness (R2 of 0.65 – RPD of 1.66) were less accurate. Also, worse predictions were 

obtained using an external test set. 

Keywords: Hyperspectral, Spatially Resolved Spectroscopy, Laser reflectance, Apple, 

Maturity, Streif index 

1. Introduction 

The manual picking of fruits is a labor intensive operation and, hence, one of the major 

costs in fruit production (Sarig, 1993). As a result, mechanical harvesting of fruits has been 

investigated extensively (Baeten et al., 2008; De-An et al., 2011; Peterson, 2005). However, 

mechanical harvesting is only a part of the challenge as it introduces several new challenges, 

including automatic fruit maturity detection. Moreover, the variability in individual fruit maturity 

often limits the potential to perform a bulk mechanical harvest operation (Peterson, 2005). 

Nowadays, apple harvest relies on the subjective maturity decision of each individual picker, 

which can lead to highly heterogeneous end products or postharvest disorders. The fruit 

maturity at harvest has a large influence on quality attributes afterwards. For example, 

apples picked before the optimal date are small, do not develop a good taste and have a 

higher probability of developing storage disorders such as superficial scald. On the other 

hand, fruits picked too late tend to become mealy and are more susceptible to internal 

breakdown (Peirs et al., 2002). To determine the maturity stage of fruits, both physical and 

chemical quality parameters have to be monitored. Common attributes measured to follow up 

the maturation process of fruits are firmness, starch content, sugar content, acidity and 

ethylene production. Of these parameters, the first three are key parameters in consumer 

acceptance and are, therefore, often used to determine apple quality (Bobelyn et al., 2010; 

Harker et al., 2008; Pissard et al., 2012). Streif (1996) introduced the so-called “Streif index”, 

which combines these three parameters. Using this index, a cultivar specific maturity 
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threshold can be obtained which can be used to determine the optimal maturity stage of a 

fruit, depending on the target market (internal consumption, export or long term storage). 

The maturity of apples indicated by the Streif index has already been predicted directly in 

other studies using electronic nose measurements (Pathange et al., 2006; Saevels et al., 

2003) and optical measurement techniques like Vis/NIR spectroscopy (Peirs et al., 2001) or 

time resolved spectroscopy (Vanoli et al., 2011). Optical techniques show advantages in 

automated mechanical harvesting as the apple maturity can be detected under field 

conditions in a fast, reliable and non-destructive way. Hereby, the apples in different 

orchards can be harvested with optimal conditions both from a consumption and/or storage 

potential point of view. Nevertheless, standard optical techniques often obtain a mix of 

photons carrying information of different layers or depths of the fruit. In this way, photons that 

have interacted less and penetrated less deep might dominate the measured signals as 

these photons have less chance of being absorbed. As a result, the majority of the measured 

photons would have interacted with the superficial layer(s) of the sample such as the 

epidermis and hypodermis, while they might not be the most informative. Other optical 

measurement techniques, such as hyperspectral imaging (Baiano et al., 2012), spatially 

resolved spectroscopy (Cen et al., 2012; Lu & Peng, 2006; Nguyen Do Trong et al., 2014), 

time resolved spectroscopy (Torricelli et al., 2013; Vanoli et al., 2011) and fluorescence 

measurements (Kolb et al., 2006), have also been used to determine quality attributes of 

different fruits. However, most of these techniques cannot be used in field conditions and 

often lack discrimination power as they do not provide enough information about the inside of 

the fruit. 

Several researchers have reported on the potential of Vis/NIR spectroscopy for the 

prediction of quality parameters of different kinds of fruit (Lammertyn et al., 2001; McGlone et 

al., 2002; Nicolaï et al., 2007; Peirs et al., 2001). This technique can already be used online 

in a contactless, fast and robust way (Nicolaï et al., 2007). However, the obtained spectra 

often contain unneeded information on scattered photons, which can eventually affect the 
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obtained result. The spectra consist of information on both absorption and scattering, while 

mostly absorption information is desired (Lu, 2004). When determining chemical properties 

like SSC, the scattering of light caused by non-uniformities in refractive index inside the 

sample and thus giving information on physical properties, is often seen as a disturbing 

factor (Lammertyn et al., 2000). On the other hand, when determining physical properties, 

the effect of scattering is often difficult to determine. As physical properties like cell size and 

porosity will change during the maturation on the tree, the scattering effect will be of 

importance. Furthermore, photons which have interacted with different parts or layers of the 

sample are gathered in only one output signal. For example, as we are mostly interested in 

the properties of the fruit flesh, photons which have interacted with the fruit flesh are of 

particular interest, while they are dominated and masked by photons that only penetrated 

superficially in the fruit skin.  

In Vis/NIR scatter imaging, on the other hand, a laser or focused beam point source is used 

to illuminate the sample, while a panchromatic camera collects the spatially resolved diffuse 

reflectance (Romano et al., 2011). As a result, spatial information on the diffuse reflectance 

can be obtained for a single or multiple wavelength(s). This spatial information enables to 

distinguish between photons which have interacted with different parts of the fruit material 

(Zamora-Rojas et al., 2014). Moreover, the photons which propagated through and 

interacted with the layer of interest will be most dominant at a specific distance between the 

illumination and detection point. Consequently, quality attributes which are related to that 

specific sample layer or depth are expected to follow a stronger correlation with the 

measured photons at the aforementioned illumination-detection distance. Although including 

spatial information can result into better comprehension of the obtained reflectance values, 

care has to be taken when measuring the spatially resolved reflectance. For a point 

illumination, the signal of the diffuse reflectance, and with that the signal-to-noise ratio 

(SNR), decreases with increasing distance from the illumination spot. On the other hand, 

photons which have penetrated deeper into the sample will exit the sample at further 
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distances from the illumination spot. Therefore, due to the importance of both SNR and 

penetration depth, an optimal source-detector distance will likely exist. In contrast, the signal 

level and SNR can be increased by increasing the size of the detector such that it will 

capture more photons. Nevertheless, a larger detector collects photons at a larger range of 

illumination-detection distances, and thus penetration depths, together in one signal. The 

optimal detector size and illumination-detection distance is, therefore, highly dependent on 

the sample properties and the quality parameters of interest. Furthermore, optimization of the 

sensor design, taking into account the above-mentioned parameters could improve the 

quality of the obtained reflectance signal, in comparison to Vis/NIR spectroscopy. 

Therefore, the main goal of this research was to determine the optimal source-detector 

distance and detector size for diffuse Vis/NIR reflectance measurements in order to predict 

maturity-related quality parameters of Braeburn apples picked at different maturity stages. 

2. Materials and methods 

2.1 Apple samples and destructive reference analyses 

A total of 480 apples of the cultivar Braeburn were harvested in the 2013 season in 

Belgium, of which 300 at the research station of fruit growing (pcfruit vzw) in Sint-Truiden 

(50°46'21.9"N 5°09'35.8"E) and 180 at the ‘Fruitteeltcentrum’ in Rillaar (50°57'49.0"N 

4°52'51.8"E). The apples from Sint-Truiden were considered the main dataset, while the 

apples from Rillaar were used for validation purposes. Weekly, starting 50 days before and 

ending 11 days after commercial harvest, apples were harvested at both locations. The 

apples from Rillaar could only be harvested until one week before commercial harvest. The 

apples in Sint-Truiden could be tested after the commercial harvesting period as well. The 

Belgian harvest window for Braeburn apples in 2013 was between the 24th and 28th of 

October, as determined by the Flanders Centre for Postharvest Technology (VCBT) based 

on the evolution of firmness, starch index, SSC, acidity, size, background color and Streif 

index in comparison to historical records. On every picking date, 30 apples were sampled in 
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the mid-section of the tree of which 20 apples were optically measured and 10 apples were 

used for the destructive determination of the mean starch conversion value (S) for that 

specific picking date. The mean starch value per picking date is used as a value for the 20 

apples which were measured optically. To determine this mean starch value, the 10 apples 

per picking date were cut equatorially and dipped in a KI/I2 solution to stain the starch 

particles (lugol test). The starch index was determined visually by comparing the staining 

patterns of the fruit with a reference color chart (Starch Conversion Chart, scale from 1 to 10, 

Ctifl, Paris, France).  

Of the 30 apples picked on every picking date, the remaining 20 apples were optically 

measured (described in next paragraph). After this optical measurement, the firmness and 

soluble solids content of these individual apples were destructively measured in the 

laboratory of VCBT. The firmness was determined using a universal testing machine (LRX, 

LLOYD Instruments Ltd., Hampshire, UK), which uses an 11 mm diameter plunger and 

punctures the fruit for 8 mm (8 mm/s). The maximum force (F - kg/cm2) is used as a measure 

of fruit firmness. The soluble solids content (SSC - °Brix) was measured with a digital 

refractometer (PR-101α, Atago, Tokyo, Japan) using a drop of fruit juice extracted during the 

firmness puncture test. These destructive measurements were performed at two opposite 

equatorial positions of the fruit surface and were averaged, resulting in one value per fruit. 

Finally, the three obtained destructive values were combined in one maturity parameter, 

known as the Streif index (Streif, 1996):  

 
              

 

     
 (1) 

In this formula both F and SSC are apple specific parameters, while S is a mean value 

obtained per picking date. A logarithmic transform of the Streif index was used to stabilize 

the variance over the measured period (Peirs et al., 2005). By using this transform, the 

variability in the early maturity stages decreases, whereas the variability in the later stages 

increases. For the further analysis of the Streif index and the starch conversion value, only 
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the data starting from 40 days before harvest were included. The first two measurement days 

were excluded as the starch measurement on immature apples is unreliable and, therefore, 

causes irregularities in the calculated Streif index (Peirs et al., 2002). On the other hand, the 

values for firmness and SSC were determined accurately over the entire test period such that 

all data points could be used in the analysis. 

2.2 Spatially resolved laser reflectance setup 

To acquire the Vis/NIR laser reflectance at multiple source-detector distances 

simultaneously and with high spatial resolution, a measurement setup was developed as 

illustrated in Figure 1. A monochrome laser illumination was obtained by combining a 

supercontinuum laser (SC450-4, Fianium Ltd., Southampton, UK), which has a total output of 

4 W and a spectral broadening over the range from 450 to 2400 nm, with a monochromator 

(Oriel Cornerstone 260 ¼ m, Newport, Irvine, USA). The monochrome tunable light is 

obtained by using a 0.1 mm monochromator output slit width, resulting in a spectral 

resolution of 0.31 nm. This outgoing monochrome beam is then split by a polka dot beam 

splitter (Type 4-9101, Optometrics, Massachusetts, USA) which sends 10% of the power to a 

reference detector (PDA100A, Thorlabs Inc., New Jersey, USA) to monitor the stability of the 

illumination system. This part of the setup and all used components are described in detail in 

Aernouts et al. (2013).  

The remaining 90% of the monochrome light from the monochromator is focused into an 

optical fiber (multimode, NA 0.22, 200 µm core diameter) and guided towards the second 

part of the setup. The light leaving the optical fiber is focused (COL-UV/VIS, Avantes BV, 

Apeldoorn, The Netherlands) onto the sample under an angle of 20° with respect to the 

vertical axis to avoid specular reflected light to be measured by the camera (Mollazade et al., 

2012). The diffuse reflectance caused by the incoming light is captured by a 12 bit 

panchromatic CCD camera (TXG-14NIR, Baumer, Frauenfeld, Switzerland) with a resolution 

of 1392 x 1040 pixels (8.98 mm x 6.70 mm) and an exposure time of 32 ms, located above 

the sample (Van Beers et al., 2013). The CCD camera is used with a 16 mm monofocal 
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manual iris lens (C1614A, Pentax, Tokyo, Japan) in combination with an extender (10 mm) 

(2-EX, Pentax, Tokyo, Japan). The interaction of the light with the sample results in a diffuse 

reflectance glow spot (Figure 2 (a)), which represents the photons leaving the sample after 

one or more scattering events. For each wavelength, a clear decrease of the diffuse 

reflectance values with increasing distance can be observed. This can be explained by the 

fact that the radial area increases with increasing distance from the point of illumination. 

Furthermore, the photons exiting the sample at a further distance from the point of 

illumination have travelled a longer path through the sample and thus have had a higher 

chance of being scattered and/or absorbed. As a result, both the absorption and scattering 

properties of the sample at the considered wavelength influence the diffuse reflectance glow 

spot. In this study, only reflectance signals up to 5 mm from the spot edge have been 

considered as the signal to noise ratio becomes too low at larger distances. 

The automatic control of all the components used (supercontinuum laser, monochromator, 

CCD camera, filter wheel and Silica detector) and the measurement procedure have been 

programmed in LabView 8.5 (National Instruments Corporation, Texas, USA). 

2.3 Optical measurements 

As mentioned earlier, 30 apples were sampled from the tree, of which 10 apples were 

used to obtain a mean starch value while 20 were used for the optical measurements. The 

diffuse reflectance spot in the 550 nm to 1000 nm range with a step size of 5 nm was 

measured on the sun exposed side (blush side) of each of the bicolored apples, resulting in 

91 images per apple. This red side will mostly be encountered when measuring apples in the 

field. The apples were placed on a sample holder, which assured a constant distance from 

the apple to the CCD camera (12.4 cm) using a vertical translational stage. The obtained raw 

profiles were dark corrected using a dark image. To convert the raw images into relative 

reflectance profiles, a white reference measurement was made by directing the beam into an 

integrating sphere with a diameter of 50 mm (AvaSphere-50-REFL, Avantes BV, Apeldoorn, 
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The Netherlands) and measuring the diffuse reflectance coming out of the sphere port (1 cm 

Ø). 

2.4 Data processing 

At each wavelength, the image taken was first corrected using the dark and white 

image (Figure 2 (a)). Hereafter, the images were radially averaged by taking the mean of the 

intensities at equal distances from the center of illumination. Per wavelength, an SRS profile 

with relative reflectance as a function of the distance from the illumination center was 

obtained, as shown in Figure 2 (b). By combining all wavelengths, a reflectance spectrum at 

several distances from the illumination spot edge could be obtained. The illumination-

detection distance is defined as the distance from the illumination spot edge to the point at 

which a reflectance spectrum is taken. Using Partial Least Squares (PLS) regression, the 

obtained reflectance spectra were used to predict the measured destructive parameters. 

Additionally to the effect of source-detector distance, also the effect of the detector size was 

investigated. This detector size is defined as the size of the CCD detector used to derive the 

diffuse reflectance. Therefore, the detector size is directly related to the pixel size of the 

camera as one pixel on the camera corresponds to the smallest detector unit possible. The 

camera has a resolution of 1392 x 1040 pixels resulting in a smallest detector size of 0.023 

mm for this setup configuration. By increasing the number of pixels included, different 

detector sizes can be investigated. Different bandwidths, averaging information of adjacent 

distances from the illumination spot edge, were used to estimate the importance of the 

detector size. For this, PLS models were built using different bandwidths - ranging from the 

reflectance of all distances together (4.9 mm bandwidth) to only the reflectance at a single 

distance (0.023 mm bandwidth or one pixel) - and different distances of these intervals from 

the illumination spot edge. As an example, a detector size of 0.82 mm at a distance of 3.69 

mm from the illumination spot edge is shown as the gray band in Figure 2 (b).  
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To study the effect of illumination-detection distance and detector size/bandwidth on the 

prediction performance of the PLS models, the dataset from Sint-Truiden was used in 

combination with mean centering as a spectral preprocessing step and a maximum of 8 

latent variables (LV’s) for the PLS models. The dataset used was split into a test set (3 

measurement days of 20 measurements) and a calibration set (the remaining samples). The 

apples for the calibration and test set were chosen such that the apples were grouped over 

the days to make the validation as independent as possible. In this way, the risk of 

overoptimistic models due to the modelling of time-dependent measurement effects, rather 

than the parameter of interest, are avoided (Kemps et al., 2010). The start and end day were 

not included in the test set to avoid extrapolation problems. 

  

In a second step, the best combination of distance and bandwidth was chosen based 

on the R2 of prediction in the obtained PLS models. This was done for the Streif index, as 

well as for the parameters that define this index (equation (1)). These optimized parameter 

specific distances and detector size were used to build new PLS models to predict the 

separate destructive parameters. To simplify the models built, a forward interval PLS (iPLS) 

algorithm was used to reduce the number of variables (wavelengths) used. Using iPLS, six 

intervals consisting of five variables were selected using a maximum of 10 latent variables. 

Like this, the variables selected give an idea of which wavelengths are most important for 

building the PLS models. 

After reducing the number of wavelengths used, the data were extensively 

preprocessed. These preprocessing steps were determined based on the prediction 

performance of the calibration samples in cross-validation by comparing several 

combinations of preprocessing methods (Aernouts et al., 2011). The optimal number of LV’s 

was chosen for each parameter separately, based on the first local minimum of the residual 

variance curves of the used calibration set. First, the dataset from Sint-Truiden was split into 
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separate calibration and test sets like in the previous analysis. The PLS analysis was 

performed using a contiguous blocks cross-validation with the groups corresponding to the 

measurement days, again to prevent the risk of overoptimistic models due to the modelling of 

time-dependent measurement effects (Kemps et al., 2010). The ratio of performance to 

deviation (RPD) was calculated as the standard deviation on the predicted data (SDP) divided 

by the root mean square error of prediction (RMSEP) (Chang et al., 2001). This value gives 

the potential of the model to predict a parameter of interest. An RPD value between 5 and 8 

is adequate for quality control, while values higher than 2.5 are satisfactory for screening 

purposes. These values, however, also depend on the application used. An RPD value of 1 

means the model is not capable of predicting the parameter in an accurate way (Williams & 

Sobering, 1993). Thereafter, the models built on the data from Sint-Truiden were evaluated 

on the independent validation set from Rillaar. 

Finally, an extra model was built to predict the Streif index around harvest, to 

investigate the potential to classify apples into different maturity classes. For this analysis, 

the apple dataset from Sint-Truiden was used, only taking into account the last 5 

measurement days, representing 100 apples close to harvest. The 100 apples were divided 

into two sets: three measurement days for the calibration of the PLS model and two days for 

the validation. Because of the smaller dataset used, splitting into groups containing a 

complete measurement day for cross-validation becomes difficult. Therefore, a contiguous 

blocks cross-validation with 12 splits was used, resulting in 12 groups of 5 measurements 

consecutively taken out to cross-validate the model. As the apple dataset from Rillaar only 

contained immature apples (Figure 3), the model could not be evaluated on this independent 

dataset. 

All data processing algorithms were implemented in Matlab (version 7.10, The Mathworks 

Inc., Massachusetts, USA) and the PLS toolbox (Eigenvector Research Inc., Wenatchee, 

WA, USA) was used to construct the PLS models. 
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3. Results and discussion 

3.1 Physiological parameters and their relation with SRS spectra 

In Figure 3 the destructively measured Streif index values are shown for the different 

measurement days, with a mean value and standard deviation. The measurements started 

50 days before and ended 11 days after the start of commercial harvest (CH). The start and 

end of this harvest window are indicated in Figure 3 as vertical dashed lines. The horizontal 

dashed lines show the optimal maturity boundaries for harvesting Braeburn apples, 

expressed in terms of the Streif index. The upper and lower boundaries are 0.20 and 0.14 kg 

cm-2 °Brix-1, respectively (Kompetenzzentrum Obstbau-Bodensee, 2011). 

 
A sigmoidal trend can be noticed in the Streif data, which is caused by the varying starch 

conversion values, ranging from a score 1 pre-harvest to a score around 8-9 at harvest 

(Peirs et al., 2002). It should be noted that the Streif index data in Figure 3 are shown on a 

logarithmic scale such that the trend seems to be more linear. As can be seen, the estimated 

harvest window did not correspond exactly with the optimal maturity range for Braeburn 

apples. This harvest window was set based on a prediction model comparing the time course 

of SSC, acidity, starch conversion value, background color, size, firmness and Streif index 

with historical data from different harvest locations (Peirs et al., 2005). This advised harvest 

window is the same for different harvest locations in Belgium and is set several days before 

the actual harvest. At the determined harvest window, the apples from Rillaar were still 

immature, while those from Sint-Truiden were already beyond optimal maturity. 

In Figure 4 a typical SRS surface plot is shown for a measurement with the laser reflectance 

setup on the red side of an apple. The obtained SRS profiles at single wavelengths (Figure 2 

(b)) are combined for multiple wavelengths to obtain the SRS surface plot (Figure 4), 

showing the behavior at all measured wavelengths. 
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In this figure some general absorption features of apples can be clearly observed as 

decreases in the reflectance value (black arrows). Light with a wavelength around 550 nm 

will be absorbed by anthocyanin pigments, causing the red color of apples (Lancaster et al., 

1994; Merzlyak et al., 2003). During maturation on the tree, this pigment increases due to 

sun light exposure, causing the absorption to increase. The second absorption peak around 

678 nm is caused by chlorophyll (mainly chlorophyll a), the green pigment present in apples. 

The absorption by chlorophyll decreased slightly during maturation. These observations are 

in good agreement with previous studies (Knee, 1972; McGlone et al., 2002). The last 

absorption feature visible is the water absorption peak around 970 nm, which corresponds to 

the 2nd overtone of O-H. 

The SRS profiles at the different wavelengths show an exponential decay in function of 

the distance from the illumination center. The further away from the illumination center, the 

lower the number of photons that exits the sample. This is caused by an increase in radial 

area with the increasing source-detector distance and by the effects of both scattering and 

absorption. A longer travelling path of the photons through the sample, and with that a 

deeper penetration, results in an increased chance for absorption, while the actual path of 

the photon is determined by the scattering properties of the tissue. Absorption inside the 

apple is related to chemical properties, for example the absorption by molecules like 

anthocyanin, chlorophyll, sugars and water. On the other hand, scattering in biological 

tissues is related to its physical properties, for example the number of air pores, cell size, 

flesh density, cell organelles,… (Lu, 2004; Nicolaï et al., 2007), that drastically change during 

the maturation process. 

3.2 Optimizing the illumination-detector distance 

In Figure 5 the result of the PLS models built on the apple data from Sint-Truiden are 

shown. These results serve to study the effect of the illumination-detection distance and the 

bandwidth (detector size). The R2 values shown in Figure 5 have been obtained by applying 

the PLS models for predicting the test set from Sint-Truiden. 
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Figure 5 shows a good correlation of the optical signals with Streif index, starch and SSC 

values, while the prediction of firmness results in lower R2 values. It is clear that the distance 

from the illumination spot edge and the spatial bandwidth used has a significant effect on the 

eventual prediction performance of the quality attributes. The color bars in Figure 5 

correspond to the performance expressed relative to the prediction value of the model using 

only one interval (bandwidth of 4.91 mm). This value has been set as the color bar minimum; 

as this is the model which best represents the prediction obtained by normal Vis/NIR 

spectroscopy. In this way, settings which result in better prediction models become visible.  

It should be noted that the prediction performance is generally poor close to the 

illumination spot. Close to the point of illumination, the reflectance is dominated by photons 

which only interacted superficially with the sample. The limited penetration depth of these 

photons might be the reason for the poor prediction performance. On the other hand, if the 

illumination-detection distance is long (> 3.5 – 4 mm), the signals are weak, resulting in a low 

SNR. This is probably the main cause for the reduced prediction accuracy at longer 

distances. Finally, the models which use all spatial information (bandwidth of 4.91 mm in 

Figure 5) tend to have prediction performances which are amongst the poorest. Therefore, 

selection of the optimal illumination-detection distance and detector size is rewarding. 

As the bandwidth decreases, the prediction patterns start to change. To predict the SSC 

value, mostly information is used close to the edge of the illumination spot (Figure 5 b). This 

indicates more information is used of photons which interacted less with the tissue. This 

means mostly information is used from the apple skin or just below the skin. So, the chemical 

composition of the skin appears to be correlated with the changes in SSC values (Peng & Lu, 

2008). The starch prediction shows that information further from the illumination spot can be 

used to build good prediction models. For example, when only using two intervals, the model 

which uses the information from 2.5 mm until 5 mm can be used. As the light has to interact 

with the starch in the amyloplasts present in the fruit cortex tissue, further distances from the 

illumination could have been expected to be more informative. Light at further distances will 
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have penetrated deeper into the cortex tissue and will contain more information of it in 

comparison to shorter distances. Note that starch conversion starts at the center of the fruit 

and then gradually proceeds outward. The firmness is a physical attribute related to the 

microstructure of the fruit cortex tissue. Therefore, better predictions were expected for 

further distances as well. Figure 5 c) shows better predictions further away from the spot in 

comparison to the SSC predictions. Also, better correlations with firmness are made if a 

larger detector size is used at a larger distance from the illumination (for example using a 

bandwidth of 0.82 mm in Figure 5 c). The Streif index is a combination of the three 

parameters described above, so a combination of the prediction patterns of the individual 

parameters is expected. As a result, the prediction of the Streif index is best in the middle 

part of the spatial profile. 

From Figure 5 it can also be seen that both for medium and small bandwidths good 

correlations can be found, depending on the distance from the illumination spot edge. 

Increasing the bandwidth seems to result in more robust predictions, while the performances 

of neighboring distances are highly correlated. This positive effect of increasing the 

bandwidth could be related to an increased SNR of the detector signal thanks to the effect of 

spectral averaging. The smallest bandwidths correspond to only one pixel in the 

corresponding image, by which CCD noise can have a large influence. With larger 

bandwidths, the effect of this noise is reduced due to the averaging over neighboring pixel 

values. However, if the bandwidth is above a certain value, this effect reduces. This is 

probably because information from a large range of illumination-detection distances is 

combined into a single reflectance spectrum. Moreover, the photons exiting the sample at 

very short illumination-detection distances will dominate this signal, while these are in many 

cases the least informative. As a result, the optimal bandwidth was found to be somewhere 

in the middle of the two extremes. The same detector size (0.82 mm), showing good 

predictions performances, was chosen as the optimal for all four quality parameters (white 

arrows in Figure 5). The optimal illumination-detection distance (center of the bandwidth) was 
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different for the Streif index and its consisting parameters. Moreover, this optimal distance 

was located at 2.87 mm, 1.23 mm, 3.69 mm and 2.05 mm from the illumination spot edge 

(white arrows in Figure 5) for respectively the Streif index, SSC value, starch content and 

firmness value. In future applications where the apple maturity is to be estimated, the 

prediction of the Streif index itself might be sufficient. In this case only one illumination-

detection distance is needed. However, if also the separate parameters are to be known, a 

more elaborate system will have to be considered to implement multiple illumination-

detection distances.  

3.3 Calibration models for predicting apple quality parameters 

3.3.1 Calibration and validation using apple data from Sint-Truiden (internal validation) 

The optimal configuration from section 3.2 was used to build improved PLS models 

(with a variable selection and extensive preprocessing) to predict the different quality 

parameters. The prediction results of these models are summarized in Table 1. The selected 

preprocessing steps for the prediction of the starch content were (1) a baseline correction 

(weighted least squares) followed by (2) an External Parameter Orthogonalization (EPO – 

one principal component). For the prediction of Firmness only an EPO was applied, while for 

predicting the SSC values a standard normal variate (SNV) scaling was used. Finally, for the 

prediction of the Streif index a Savitzky-Golay 1st order derivative with a 3 point window (10 

nm) was applied. After these preprocessing steps, the data was always mean centered 

before building the PLS models. The prediction performance of each of these models was 

evaluated in a cross-validation and on a separate test set. The results of this evaluation have 

been summarized in Table 1. 

From Table 1 it is clear that both the Streif index and the starch values are well predicted, 

with high R2
P values and RPD values of 5.84 and 3.42, respectively. This indicates that these 

models are adequate for quality control (Williams & Sobering, 1993). The prediction of the 

Streif index as a function of the reference values is illustrated in Figure 6.  
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In the data of the Streif index and starch value, there are distinct groups which belong to 

specific measurement days. As a result of the measurements over time, a cross-validation 

was performed which sequentially leaves out one measurement day for validation (Kemps et 

al., 2010). Because there is only little or no overlap between the data of consecutive 

measurement days, leaving out the first/last measurement day forces the model to 

extrapolate. This causes the R2 of the cross-validation and the RMSECV values in Table 1 to 

be sometimes worse in comparison to the internal validation on the test set. Other cross-

validation techniques could provide better results. However, they might be overoptimistic as 

they would include samples harvested on the same day both in the calibration and the 

validation set. Nevertheless, the evaluation on the test set shows that the developed models 

are robust. 

The prediction of firmness and SSC values is more difficult. The prediction of SSC values 

shows an R2
P of 0.81 and an RPD value of 2.07, which is still acceptable for rough screening 

purposes (Williams & Sobering, 1993). In the case of firmness the prediction performance is 

even worse with an R2
P of 0.65 and an RPD value of 1.66.  

To better understand the correlations in the obtained models, the wavelength 

intervals selected by the forward iPLS algorithm are summarized in Table 2. Ultimately, 30 

wavelengths of the total of 91 wavelengths were retained. 

It should be noted that PLS models built for the different quality parameters use different 

parts of the spectrum. However, all parameters use information from the broad absorption 

peaks of the pigments present in the apple skin (Figure 4). Information on the redness of the 

apple, due to absorption around 550 nm by anthocyanin pigments, by all models except for 

the Streif index prediction. On the other hand, also the absorption by chlorophyll seems to be 

important for predicting quality. This can be explained by the fact that the evolution of the 

predicted quality parameters is correlated with changes in the apple color, as these 

processes occur simultaneously. However, also information in the near infrared part of the 
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spectrum is used. The water peak round 970 nm (2nd overtone of O-H) is used for the 

prediction of the Streif index. For the prediction of physiological maturity (number of days 

before the optimal harvest date), Peirs et al. (2005) found a correlation with the overtone 

absorption bands of O-H bonds. The authors suggested this could be due to the deterioration 

of the cell walls during ripening, causing water molecules to enter the intercellular spaces. 

The water hereby changes the refractive index at the cell walls and therefore also the 

scattering properties inside the apple tissue (Peirs et al., 2005). However, this hypothesis no 

longer stands as it was shown that no liquid water is present in the intercellular spaces of 

apples (Verboven et al., 2008). 

3.3.2 External validation of the models using apple data from another orchard 

In the following analysis, the models built on the data from Sint-Truiden were used to 

predict the different parameters for the apples from the other orchard location (Rillaar). The 

results of this external validation have been summarized in Table 3. 

The results in Table 3 show predictions with higher RMSEP values. Moreover, because of 

the smaller variation in the predicted data (SDP), the RPD values will be much lower 

compared to the validation on data from Sint-Truiden (Table 1).The SDP and RMSEP values 

are close to each other, resulting in RPD values close to 1. This implies that the models are 

not capable of predicting the parameter of interest in an accurate way (Williams & Sobering, 

1993). A possible explanation could be that the data from Rillaar consists of only four 

measurement days and shows a different development in time (Figure 3). The ripening in 

Rillaar was slower compared to Sint-Truiden causing the model to have problems predicting 

this course. Looking at the predictions of the Streif index and the starch conversion values, 

mostly one measurement day is badly predicted, causing the high RMSEP values (data not 

shown). The prediction of SSC and firmness values is shown in Figure 7. 

From Figure 7 it is clear that the apple quality parameters are difficult to predict if the model 

has been built on data from another orchard. Firmness values seem to be overestimated, 
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while the SSC values are mostly underestimated. Additionally, this orchard-specific effect is 

probably season dependent, as was also shown in previous studies (Peirs et al., 2003). The 

prediction models might potentially be improved by using calibration transfer techniques, in 

which a model is transferred between different conditions (Feudale et al., 2002). Typical 

examples of such conditions can be changes in the physical and/or chemical constitution of 

the samples, changes in the instrumental response function or changes in the instrument’s 

environment, etc.. Several techniques have been proposed by different authors, but 

nevertheless, a future measuring system should be robust and should be able to cope with 

this variability. In this research, the main variation expected in the data is attributed to a 

difference in the maturity stage at the different orchards. The sensor and calibration of the 

sensor is identical in both the data from Sint-Truiden and Rillaar, as the samples are 

measured within a time span of 2 days on the same laboratory setup. Therefore, more 

measurements at different locations are needed to build robust calibration models, useful to 

predict quality parameters in consecutive years (Bobelyn et al., 2010).  

3.4 Grouping apples into maturity classes 

As maturity determination in future field applications is one of the eventual goals, the 

possibility of predicting the maturity stage of an apple close to harvest was studied more in 

detail. The preprocessing applied for predicting the Streif index was the same as used in the 

previous analysis: a Savitzky-Golay 1st order derivative and mean centering. In Figure 8 the 

predicted Streif index values for the measurements close to harvest have been plotted 

against their measured values. 

The R2 of prediction of 0.86 and an RMSEP of 0.0534 shows that a good prediction of the 

Streif index close to harvest is possible. However, the RPD of prediction for this model using 

7 latent variables is only 1.47. In Figure 8 the maturity boundaries for Braeburn apples are 

indicated with dashed lines. A Streif index higher than 0.2 indicates that the apples are not 

mature yet, while a Streif index lower than 0.14 means the apples are beyond the optimal 

harvest maturity. All the apples from the last three measurement days are predicted correctly 
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as being too mature. At the maturity boundaries some errors occurred, but in total only 

12.5% of the test set measurements were misclassified. 

3.5 General discussion 

Pathange et al. (2006) used electronic nose measurements to classify Gala apples 

into three maturity classes based on the Streif index, with a classification error of 17%. 

Similar measurements by Saevels et al. (2003) showed good correlations when predicting 

the Streif index of Braeburn apples (R=0.96). However, the authors found difficulties with the 

external validation over the years, showing again the importance of robust calibration models 

(Saevels et al., 2003). Yet, these measurements require an extensive sample preparation 

and are difficult to perform on apples in the orchard, on the tree. Optical measurements using 

Vis/NIR spectroscopy gave good validation correlations (0.85-0.90) when predicting the Streif 

index pre-harvest (Peirs et al., 2001). However, in Vis/NIR spectroscopy measurements, the 

prediction is often based on an average reflectance value from multiple spatial locations. The 

presented results suggest that the choice of the distance from illumination and the used 

detector size is important to improve Vis/NIR reflectance results. By using different 

bandwidths and distances from illumination and thus optimizing the measurement 

configuration, more information can be retrieved. Both the comprehensibility of the results 

and the relation with destructive parameters are improved.  

The correlations with the Streif index as a maturity indicator show good results, but there are 

some limitations as well. The Streif index is only as accurate as the parameters from which it 

is calculated. Especially the starch conversion value is a rather subjective and important 

parameter. A value between 1 and 10 is given based on the visual comparison of the 

generated apple color pattern and a color chart. This scoring is subjective and can differ 

between different operators and even for an operator measuring the same apple (Peirs et al., 

2002). The determination of firmness and SSC are both susceptive to apple variations as 

well, but the measurement techniques are more reliable. Therefore two measurements on 

opposite equatorial positions of the apple were averaged to eventually have one overall 
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maturity parameter per fruit. Another source of variation is the optical measurement itself. As 

it is a point measurement, only one part of the apple is monitored. However, a measurement 

is always taken at the red side, giving information on the apple like it would be encountered 

in the field. At last, the Streif index maturity window chosen for the maturity determination of 

Braeburn apples differs depending on the consulted source as this parameter is region 

dependent (Streif, 1996). Nevertheless, the obtained result in paragraph 3.4 shows the 

potential of predicting the maturity class, regardless of the chosen harvest window. 

A further improvement of the obtained images could possibly be made by incorporating a 

distortion correction to compensate for the curvature of the apple. Peng & Lu (2006) and Qin 

& Lu (2008) showed that a correction based on the (modified) Lambertian cosine law 

improved their prediction results. However, as a larger effect is expected at larger distances 

form the illumination spot, here the improvement might be less as in this research only a 

glow spot diameter of about 10 mm is obtained. Moreover, these distortion correction 

techniques assume that the apple is spherical. As this is not always the case, an 

improvement of the results might not be achieved. 

Although information at different distances from the illumination has been considered, the 

potential of the obtained diffuse reflectance images has not yet been fully exploited. In this 

study, a distinction has been made between photons which have interacted with different 

parts of the sample. However, the diffuse reflectance profiles also combine information on 

the absorption and scattering phenomena inside the different parts of the apple. Models that 

theoretically describe light propagation through multilayered tissues could be used to extract 

the absorption and scattering properties of each of the separate tissue layers (Aernouts et 

al., 2013; Fraser et al., 2003; Watté et al., 2013). This information could be beneficial in 

predicting specific quality attributes. Chemical properties (e.g. SSC) are expected to show a 

higher correlation with the pure absorption, while physical properties (e.g. firmness) could be 

related to the scattering properties of the material. 
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It should be noted that the main interest of this article was to investigate the 

possibilities of the measurement technique in a laboratory environment. Before an evolution 

towards a mechanical harvesting system for apples is possible, measurements have to be 

performed in the orchard. To use the laser reflectance technique in field conditions a 

transition from a lab setup towards a field setup should be made. The setup currently uses 

the combination of a supercontinuum laser with a monochromator. This setup configuration is 

expensive, slow and above all not designed to be used in field conditions (vibrations, stray 

light, temperature variations,…). These problems could be solved by going from a 

hyperspectral setup towards a multispectral setup (using only a few wavelengths). For this, a 

more extensive variable selection (wavelength selection) should be performed resulting in a 

low number of wavelengths to be retained for a good prediction of the maturity. Furthermore, 

this technology has the potential for quality monitoring of other fruits and vegetables. Other 

researchers have used a similar technique based on backscattered photons to measure 

tomatoes (Tu et al., 2000), peaches (Lu & Peng, 2006), drying banana slices (Romano et al., 

2008) and bell pepper (Romano et al., 2012), showing the wider applicability of the studied 

technique. 

However, before taking the step towards field applications, more measurements have to be 

performed including apples from different orchards, cultivars and measurement years. In this 

way, better calibration models can be obtained, capable of predicting the maturity stage of an 

apple during the next harvesting season. 

4. Conclusions 

A spatially resolved laser reflectance measurement setup, operating in the Vis/NIR 

range (550 – 1000 nm) and measuring the diffuse reflectance at different distances from the 

illumination, was elaborated in this study. First, the distance from illumination and the 

bandwidth of this distance information was varied to build PLS models. SSC values were 

best predicted using information closer to the illumination spot, mainly related to the photons 



23 
 

which only interacted with the fruit skin. Other parameters, like the starch value required 

information further away from the illumination spot, where photons have interacted more with 

the fruit flesh. Also for firmness, which is mostly related to the fruit flesh, larger distances 

from the illumination compared to the SSC prediction distances showed better correlations. 

For the prediction of the Streif index itself, an intermediate distance was found to be optimal. 

This could have been expected as this parameter is a combination of the others. Eventually, 

a detector size of 0.82 mm at parameter specific distances was chosen to predict apple 

quality for this measurement configuration.  

A reduction from 91 wavelengths to 30 wavelengths was made using a forward iPLS 

variable selection algorithm. The selected wavelength intervals indicate that the fruit 

pigments (anthocyanin, chlorophyll) and water are important parameters in predicting apple 

quality. When using data of only one orchard (internal test set), the Streif index and starch 

values were predicted well, with an R2 of prediction of 0.98 and 0.93 respectively. SSC and 

firmness values were predicted less accurately with an R2
P value of 0.81 and 0.65 

respectively. Using an external test set, with apples from a different orchard, the predictions 

were less accurate with RPD values around 1. The main cause was the low initial variation in 

the test data set combined with a different ripening course. More measurements from 

different orchard locations and different seasons could help in improving these calibration 

models. 

When focusing on the prediction of maturity (Streif index) around harvest, results 

showed that a maturity decision: unripe, ripe or overripe can be made with a misclassification 

rate of 12.5%. While these results are promising, several steps are still required before this 

system can be used in the field. 
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Fig. 1 Schematic overview of the setup used for Vis/NIR hyperspectral spatially resolved 
laser reflectance measurements in the 550-1000 nm range; BS = Polka-dot beam splitter; 
CCD = charge-coupled device; D = Silica detector; DAQ = data acquisition card; F = Filter; 
FW = Filter Wheel; L = Lens; M = Mirror 

 
Fig. 2 a) Image of an apple glow spot at 750 nm expressed after dark and white correction; 
the black circle indicates a distance of 0.63 mm from the illumination spot edge; b) SRS 
profile after radial averaging of the dark and white corrected image at 750 nm; the vertical 
dashed line indicates a distance of 0.63 mm from the illumination spot edge (0,0); the grey 
marked area is located at 3.69 mm from the illumination spot edge and corresponds to a 
detector size of 0.82 mm 
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Fig. 3 Streif index starting at 40 days before commercial harvest, in both Sint-Truiden and 
Rillaar, on a logarithmic scale; the dotted horizontal lines indicate the optimal maturity range 
for picking Braeburn apples; the dotted vertical lines indicate the harvesting window for the 
2013 season of Braeburn apples. 

 
Fig. 4 SRS profiles for the different wavelengths measured with the laser reflectance setup 
on the red side of an apple; the black arrows indicate the main absorption features which 
correspond from left to right to anthocyanins, chlorophyll and water. 
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Fig. 5 R2 of prediction for the different destructive parameters as a function of the distance 
from the illumination spot edge (Y-axis). The X-axis shows the bandwidth or detector size 
used in the analysis. Both (a) the Streif Index and (b-d) its individual parameters are shown. 
The white arrows indicate the best combination of illumination-detection distance and 
bandwidth (used in further analysis). 
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Fig. 6 Relation between predicted and measured Streif index for Sint-Truiden; five 
measurement days are used for calibration (open circles), while three measurement days are 
used for validation (crosses) 

 
Fig. 7 Relation between predicted and measured (a) Firmness values and (b) SSC values; 
the dataset from Sint-Truiden is used as a calibration set (open circles) while the dataset 
from Rillaar is used as test set (crosses) 
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Fig. 8 Relation between predicted and measured Streif index on a logarithmic scale for Sint-
Truiden; the dashed lines represent the maturity thresholds for Braeburn (Streif index of 0.2 
and 0.14) 

  



34 
 

Table 1 Sint-Truiden calibration models for the prediction of the Streif index, SSC, firmness and starch values 

 LV R2
CV R2

P RMSECV RMSEP SDP RPDP 

Streif Index 6 0.9618 0.9797 0.1001 0.0616 0.36 5.84 

Firmness 7 0.7525 0.6506 0.7094 0.7509 1.25 1.66 

SSC 7 0.8996 0.8104 0.4401 0.5716 1.19 2.07 

Starch value 5 0.9630 0.9301 0.7141 0.7849 2.68 3.42 

LV, number of latent variables; R
2

CV, coefficient of determination of cross-validation; R
2

P, coefficient of 
determination of the test set prediction; RMSECV, RMSEP, root mean error of cross-validation and prediction 
respectively; SDP, standard deviation of test set; RPDP, ratio of performance to deviation (of prediction). 

RMSECV, RMSEP and SDP are expressed in [log(kg cm
-2

 °Brix
-1

)] for the Streif index, [kg cm
-2

] for firmness and 
[°Brix] for the SSC values. The starch conversion scores are unitless (values range from score 1 to score 10). 

 
 
 
 
 
Table 2 Wavelength intervals selected by iPLS and used in the PLS models of the different quality parameters. 

Bold typed intervals include the absorption region of chlorophyll, while the italic intervals include the absorption 
region of anthocyanin. The underlined interval includes the absorption peak of water. 

 Wavelengths intervals used (nm) 

Streif Index 675-695; 725-770; 850-895; 975-995 

Firmness 550-620; 725-745; 775-820 

SSC 550-595; 650-695; 725-745; 800-820 

Starch value 575-595; 675-745; 775-795; 850-870 

 
 
 
 
 
 
Table 3 Performance statistics of the calibration models from Sint-Truiden for prediction of the Streif index, SSC 

value, firmness index and starch value validated for the apples from Rillaar 

 R2
P RMSEP SDP 

Streif Index 0.8632 0.1748 0.1598 

Firmness 0.4717 1.1077 1.0381 

SSC 0.3951 0.9477 0.8407 

Starch value 0.9478 1.8507 0.6637 

Abbreviations and units as explained in footnote of Table 1. 


