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Abstract: The definition of spasticity as a velocity-dependent activation of the tonic stretch reflex
during a stretch to a passive muscle is the most widely accepted. However, other
mechanisms are also thought to contribute to pathological muscle activity and, in
patients post-stroke and spinal cord injury, can result in different activation patterns. In
the lower-limbs of children with spastic cerebral palsy (CP) these distinct activation
patterns have not yet been thoroughly explored. The aim of the study was to apply an
instrumented assessment to quantify different muscle activation patterns in four lower-
limb muscles of children with CP. Fifty-four children with CP were included
(males/females n=35/19; 10.8 ± 3.8yrs; bilateral/unilateral involvement n= 32/22; Gross
Motor Functional Classification Score I-IV) of whom ten were retested to evaluate intra-
rater reliability. With the subject relaxed, single-joint, sagittal-plane movements of the
hip, knee, and ankle were performed to stretch the lower-limb muscles at three
increasing velocities. Muscle activity and joint motion were synchronously recorded
using inertial sensors and electromyography (EMG) from the adductors, medial
hamstrings, rectus femoris, and gastrocnemius. Muscles were visually categorised into
activation patterns using average, normalized root mean square EMG (RMS-EMG)
compared across increasing position zones and velocities. Based on the visual
categorisation, quantitative parameters were defined using stretch-reflex thresholds
and normalized RMS-EMG. These parameters were compared between muscles with
different activation patterns. All patterns were dominated by high velocity-dependent
muscle activation, but in more than half, low velocity-dependent activation was also
observed. Muscle activation patterns were found to be both muscle- and subject-
specific (p<0.01). The intra-rater reliability of all quantitative parameters was moderate
to good. Comparing RMS-EMG between incremental position zones during low velocity
stretches was found to be the most sensitive in categorizing muscles into activation
patterns (p<0.01). Future studies should investigate whether muscles with different
patterns react differently to treatment.
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Opposed Reviewers:

Response to Reviewers: PONE-D-13-47020R1
Muscle activation patterns when passively stretching spastic lower limb muscles of
children with cerebral palsy
PLOS ONE

Dear Prof. William Phillips,

We received the comments and suggestions on the paper "Muscle activation patterns
when passively stretching spastic lower limb muscles of children with cerebral palsy".
We highly appreciate the continued effort of the reviewer to help us in bringing the
quality of the manuscript to a higher level. The manuscript has also been proof read
resulting in minor grammatical changes. These changes have been highlighted in the
marked version of the manuscript, but have not been repeated here. Below you can
find our answers to the comments. In addition, I have uploaded a reply to the reviewers
letter as an attachment. In this document, the reviewer's comments are repeated in
bold text, the belonging answer is stated beneath in regular text and changes in the
manuscript are highlighted. In the revised manuscript, all changes have been
highlighted.

Reviewers' comments:

Reviewer's Responses to Questions

Comments to the Author

1. If the authors have adequately addressed your comments raised in a previous round
of review and you feel that this manuscript is now acceptable for publication, you may
indicate that here to bypass this form and submit your "Accept" recommendation.

Reviewer #1: (No Response)

________________________________________

Please explain (optional).

Reviewer #1: The authors have done a very thoughtful job in revising the manuscript. I
only have some minor additional comments.

1. The term low-threshold instead of position-dependent is more descriptive of the
actual behavior but it is a bit misleading since it may be confused with the 'threshold' of
the EMG responses that are also defined in this paper. I suggest replacing this term
with 'low-velocity threshold' in order to make a more clear distinction. Note that this is
also a velocity-dependent response.

Reply: The authors agree that the name ‘low-threshold’ can be confused with the
definition of threshold which is also provided in the article. Therefore, we agree that the
names require changing. Indeed, all pathological activation occurs as a reaction to a
change in velocity.  Therefore, as the reviewer suggested, the word ‘velocity’ should be
added to the names. In order to further avoid any confusion with ‘threshold’, we would
like to suggest the following names for the non-mixed patterns: ‘low velocity-
dependent’ and ‘high velocity-dependent’. We feel that this naming takes both the
threshold and the gain into account when describing the level of velocity-dependency.
Important in defining the patterns is the combination of both hyperexcitability (low
threshold for activation) and hypersensitivity (amount of activation) of the stretch reflex.

Changes in manuscript:

p. 2. l. 35-37. All patterns were dominated by high velocity-dependent muscle
activation, but in more than half, low velocity-dependent activation was also observed.

p. 5. l. 88-90. In comparison to healthy muscles, highly velocity-dependent DSRTs and
a reduced TSRT were found in the elbow flexors of persons post-stroke [19] and in a
later study, in children with CP [20].
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p. 12. l. 255-258. A muscle was categorized as having a high velocity-dependent
(HVD) activation pattern when EMG onset was not automatically, or visually, detected
in the stretches performed during the low velocity trial, but were detected during the
stretches performed at the high velocity trial.

p. 12. l. 260-262. A muscle was categorized as having a mixed high velocity-
dependent (MHVD) activation pattern when EMG onset was automatically, or visually,
detected in all stretches performed during low, medium, and high velocity trials.

p. 12. l. 271-273. A muscle was categorized as having a low velocity-dependent (LVD)
activation pattern when EMG onset was automatically, or visually, detected around the
same joint angle in all stretches performed during low, medium, and high velocity trials

p. 13. l. 276-278. A muscle was categorized as having a mixed low velocity-dependent
(MLVD) activation pattern when EMG onset was automatically, or visually, detected in
all stretches performed during low, medium, and high velocity trials.

p. 14. 316-322. ADDs, GAS and REF were categorized as MHVD or HVD. One MEHs
muscle was classified as MIX and one as LVD. The rest of the MEHs were classified
as HVD, MHVD or, MLVD. There were significantly more GAS and REF muscles
categorized as HVD than MEHs (p<0.001). Among MHVD patterns, there were
significantly more ADDs and MEHs muscles than GAS and REF (p<0.001). To allow
for group comparisons, the muscle with an LVD pattern was added to the MLVD group
and the muscle with a MIX pattern was added to the MHVD group.

p. 15. 332-339. The slope of the DSRTs and TSRT were not calculated for HVD
patterns as they required an EMG onset at low velocity. In the MEHs, the median slope
of the DSRTs in MHVD patterns was significantly steeper (p=0.002) and the TSRT
occurred significantly later in the ROM (p=0.001) than in MLVD patterns. Children with
GAS muscles categorized as MHVD were younger than those with a HVD pattern
(p=0.002). Children with MEHs muscles classified as MHVD or MLVD were more likely
to be bilaterally involved, while the children with MEHs muscles classified as HVD often
had a unilateral involvement (p=0.009) (Table 4).

p. 16-17. l. 368-370. Quantitative interpretation of data by integration of muscle stretch
characteristics with EMG provided a visual as well as quantified way to highlight low or
high velocity-dependent muscle activation.

p. 17. l. 381-383. The slope of the DSRTs was found to be steeper and the TSRT later
in the ROM in MHVD than in MLVD patterns.

p. 17. l. 387-388. Similarly, in the current study, the TSRT could not be calculated in
pure HVD patterns which may also be considered to reflect low levels of spasticity.

p. 17. l. 391-392. However, in muscles categorised as MHVD and MLVD, EMG gain
also increased with increasing muscle length even when stretch velocity was low.

p. 18. l. 400-402. Malhotra et al. (2008) identified pure LVD activation patterns in some
spastic wrist flexors post-stroke whereby there was no influence of increasing velocity
on EMG gain [16].

p. 18. l. 407-412. Pure HVD activation patterns may be related to the velocity sensitivity
of Ia afferents and decreased central control (e.g. decreased presynaptic inhibition on
Ia afferent pathways) [12]. LVD activation may be related to changes in the membrane
properties, PIC, and the creation of plateau potentials in spinal neurons [13]. Some
authors have also suggested that LVD activation reflects hypersensitivity of type II
muscle spindle afferents [12,16].

p. 19. l. 419-420. This may help explain why in LVD and MLVD activation patterns, the
gain in RMS-EMG was sensitive to increasing muscle length.

p. 19. l. 427-428. In the current study, children who had an MHVD pattern in their GAS
tended to be younger than those categorized as HVD.
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p. 19. l. 432-434. The ADDs and the MEHs had a greater tendency towards MHVD; the
GAS and REF, were more HVD. MLVD patterns were only present in the MEHs.

p. 20. l. 446-449. Since a similar starting position is applied during a clinical evaluation
of the hamstrings (knee ROM, MAS, and Modified Tardieu angle), clinicians should be
careful not to mistake MLVD activation with the evaluation of contracture.

p. 20. l. 454-455. For example, a longer casting period may be recommended for
MLVD muscles.

2. l. 61-62. Also, in order to avoid confusion, the line should read: "....physiological
mechanisms other than the phasic stretch reflex'.

Reply: this alteration has been made

3. l. 64. Please remove the word 'passive' here. Indeed, the stretch is of the passive
muscle. The stretch itself is not passive. This should be corrected throughout the
manuscript.

Reply: Yes, the authors agree that the word passive is incorrectly placed and
appreciate that this was pointed out by the reviewer. Corrections have been made
throughout the manuscript.

Changes in the manuscript:
p 2. l. 17. The definition of spasticity as a velocity-dependent activation of the tonic
stretch reflex during a stretch to a passive muscle is the most widely accepted.

p. 2. l. 26-28. With the subject relaxed, single-joint, sagittal-plane movements of the
hip, knee, and ankle were performed to <the word ‘passively’ has been removed>
stretch the lower-limb muscles at three increasing velocities.

p. 3. l. 59-61. Multiple studies have also shown increased activation when relaxed
muscles were <the word ‘passively’ has been removed> stretched at very low
velocities [7–11] sometimes continuing once the movement had stopped [12].

p. 4. l. 83-84. DSRTs were defined as the joint angles at which electromyography
(EMG), evoked by <the word ‘passive’ has been removed> stretch at defined
velocities, increased.

p. 5. l. 101-105. In daily clinical practice, commonly used spasticity assessment scales,
such as the Modified Ashworth Scale (MAS) [23], do not provide information on the
underlying pathological muscle activation pattern during <the word ‘passive’ has been
removed> stretch [24]. Instead, in the aforementioned studies, muscle activation
patterns have mostly been described using instrumented techniques that record
biomechanical and electrophysiological signals during the <the word ‘passive’ has
been removed> stretch.

p. 7. l. 137-142. Exclusion criteria were the presence of ataxia or dystonia, severe
muscle weakness (<2+ on the Manual Muscle Test [25]), poor selectivity [26], bone
deformities or contractures compromising the performance of pure single-plane muscle
stretch, cognitive problems that could impede the measurements, previous lower limb
orthopaedic surgery, intrathecal baclofen pump, or selective dorsal rhizotomy, or BTX
injections in the past 6 months.

p. 7. l. 148-150. Stretches to the passive ADDs, MEHs, REF, and GAS, were
performed by an examiner who moved one joint at a time (hip, knee, or ankle,
respectively) while keeping non-moving joints fixated.

p. 7. l. 157-158. For each muscle, four stretch repetitions <the words ‘of passive
stretch’ have been removed>, at three velocities, over the full joint range of motion
(ROM) were carried out.
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p. 8. l. 165-167. To compute the anatomical joint angles from IMU measurements,
calibration trials with predefined motions were performed prior to the <the word
‘passive’ has been removed> stretch trials.

p. 8. l. 176-181. Antagonist activation was used to detect other tone problems (e.g.
dystonia) or active assistance of the child during <the word ‘passive’ has been
removed> stretches. Prior to <the word ‘passive’ has been removed> stretching, three
repetitions of isometric Maximum Voluntary Contractions (MVCs) were carried out per
muscle with the child in supine. EMG data from these contractions were used as an
individual reference to evaluate surface EMG signals measured during the passive
stretch trials [11].

p. 9-10. l. 204-208. By visualizing the data, stretch repetitions were excluded when
<the words ‘passive stretches were’ have been removed> performed out of plane (see
Supplement 1 in [11]), at inconsistent velocities between different repetitions within a
velocity trial (difference >20°/s), in case of poor quality surface EMG (low signal-to-
noise ratio or obvious artefacts), and in case of antagonist activation.

p. 16. l. 350-351. It was also higher than that reported by Jobin and Levin (2000) who
applied a torque motor to stretch the muscles of children with CP [20].

p. 19. l. 425-427. Similarly, Lebiedowska at al. (2009) also reported a larger
heterogeneity of muscle activation patterns in response to during <the word ‘passive’
has been removed> stretch among subjects with CP compared to patients post-stroke
[8].

p. 20. l. 455-457. Thus far, the muscle activation patterns described in literature do not
seem to be related to the amount or shape of joint torque produced as the passive
muscle is <the word ‘passively’ has been removed> lengthened [16].

p. 20. l. 458-461. Nevertheless, a comprehensive assessment of spasticity should also
include an evaluation of resistance to muscle <the word ‘passive’ has been removed>
stretch. Differentiation between the neural and non-neural contributions to increased
joint torque during <the word ‘passive’ has been removed> muscle stretch is essential
to effectively distinguish spasticity from contracture.

________________________________________

2. Is the manuscript technically sound, and do the data support the conclusions?

The manuscript must describe a technically sound piece of scientific research with data
that supports the conclusions. Experiments must have been conducted rigorously, with
appropriate controls, replication, and sample sizes. The conclusions must be drawn
appropriately based on the data presented.

Reviewer #1: Yes

________________________________________

Please explain (optional).

Reviewer #1: (No Response)

________________________________________

3. Has the statistical analysis been performed appropriately and rigorously?

Reviewer #1: Yes

________________________________________

Please explain (optional).

Reviewer #1: (No Response)
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________________________________________

4. Does the manuscript adhere to standards in this field for data availability?

Authors must follow field-specific standards for data deposition in publicly available
resources and should include accession numbers in the manuscript when relevant.
The manuscript should explain what steps have been taken to make data available,
particularly in cases where the data cannot be publicly deposited.

Reviewer #1: Yes

________________________________________

Please explain (optional).

Reviewer #1: (No Response)

________________________________________

5. Is the manuscript presented in an intelligible fashion and written in standard
English?

PLOS ONE does not copyedit accepted manuscripts, so the language in submitted
articles must be clear, correct, and unambiguous. Any typographical or grammatical
errors should be corrected at revision, so please note any specific errors below.

Reviewer #1: Yes

________________________________________

6. Additional Comments to the Author (optional)

Please offer any additional comments here, including concerns about dual publication
or research or publication ethics.

Reviewer #1: (No Response)

________________________________________

7. If you would like your identity to be revealed to the authors, please include your
name here (optional).

Your name and review will not be published with the manuscript.

Reviewer #1: (No Response)

Additional Information:

Question Response

Competing Interest

For yourself and on behalf of all the
authors of this manuscript, please declare
below any competing interests as
described in the "PLoS Policy on
Declaration and Evaluation of Competing
Interests."

You are responsible for recognizing and
disclosing on behalf of all authors any
competing interest that could be

The authors have declared that no competing interests exist.
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perceived to bias their work,
acknowledging all financial support and
any other relevant financial or competing
interests.

If no competing interests exist, enter: "The
authors have declared that no competing
interests exist."

If you have competing interests to
declare, please fill out the text box
completing the following statement: "I
have read the journal's policy and have
the following conflicts"

* typeset

Financial Disclosure

Describe the sources of funding that have
supported the work. Please include
relevant grant numbers and the URL of
any funder's website. Please also include
this sentence: "The funders had no role in
study design, data collection and analysis,
decision to publish, or preparation of the
manuscript." If this statement is not
correct, you must describe the role of any
sponsors or funders and amend the
aforementioned sentence as needed.

* typeset

Lynn Bar-On is supported by a grant from the Doctoral Scholarships Committee for
International Collaboration with non EER-countries (DBOF) of the University of Leuven,
Belgium. This work was further supported by a grant for Applied Biomedical Research
from the Flemish agency for Innovation by Science and Technology (IWT-TBM: grant
number 060799). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Ethics Statement

All research involving human participants
must have been approved by the authors'
institutional review board or equivalent
committee(s) and that board must be
named by the authors in the manuscript.
For research involving human
participants, informed consent must have
been obtained (or the reason for lack of
consent explained, e.g. the data were
analyzed anonymously) and all clinical
investigation must have been conducted
according to the principles expressed in
the Declaration of Helsinki. Authors
should submit a statement from their
ethics committee or institutional review
board indicating the approval of the
research. We also encourage authors to
submit a sample of a patient consent form
and may require submission of completed
forms on particular occasions.

Ethical approval was granted by the University Hospitals’ Ethics Committee
(B32220072814). Parents and subjects were informed of the procedure and provided
written informed consent in accordance with the Declaration of Helsinki.
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All animal work must have been
conducted according to relevant national
and international guidelines. In
accordance with the recommendations of
the Weatherall report, "The use of non-
human primates in research" we
specifically require authors to include
details of animal welfare and steps taken
to ameliorate suffering in all work
involving non-human primates. The
relevant guidelines followed and the
committee that approved the study should
be identified in the ethics statement.

Please enter your ethics statement below
and place the same text at the beginning
of the Methods section of your manuscript
(with the subheading Ethics Statement).
Enter "N/A" if you do not require an ethics
statement.
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Clinical Motion Analysis Laboratory 
University Hospital Pellenberg 
Weligerveld 1 
3212 Pellenberg 
Belgium 
Tel. +32 16341295 or +32 16338024  
lynn.1.bar-on@uzleuven.be 
 

February, 2014  

 

Re-submission of research article: Muscle activation patterns when passively 

stretching spastic lower limb muscles of children with cerebral palsy 

 

Dear editor, 

Following the requests of the journal, the manuscript has been revised following the 

comments of the reviewers. As the corresponding author of the article entitled: 

“Muscle activation patterns when stretching spastic lower limb muscles of children 

with cerebral palsy”, I confirm that permission has been obtained from all co-authors 

and persons named in the acknowledgements. Ethical approval was granted by the 

University Hospitals’ Ethics Committee (B32220072814). Parents and subjects were 

informed of the procedure and provided written informed consent in accordance with 

the Declaration of Helsinki. The material within has not been and will not be 

submitted for publication elsewhere except as an abstract. If accepted to PloS One, 

the article will not be published elsewhere including electronically in the same form, in 

English or in any other language, without the written consent of the copyright-holder. 

In addition, I confirm that there were no conflicts of interest. 

 

Summary of submitted manuscript 

This is the first study to report the existence of different involuntary muscle activation 

patterns during passive muscle stretch in children with spastic cerebral palsy (CP). 

Cover Letter
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By expanding the protocol of a recently validated instrumented spasticity 

assessment, we innovatively categorize and quantify different activation patterns 

(spasticity patterns) in four lower limb muscles in a large, heterogeneous group of 

children with CP. The classification and quantification of muscle activation patterns is 

of particular interest to all clinicians and researchers diagnosing and treating 

spasticity. In particular, our finding that activation patterns are both muscle and 

patient-specific may help to explain previously reported large response variability to 

tone reducing medications, such as Botulinum Toxin-A. This, in turn, could lead to 

improvements in more individually-tailored spasticity treatment. 

 

Article type: research article, second revisions to PLoS ONE 

Suggested academic editors to handle this manuscript:  

Prof. William Phillips 

 

 

Yours sincerely, 

Lynn Bar-On 
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Abstract 15 

The definition of spasticity as a velocity-dependent activation of the tonic stretch reflex 16 

during a stretch to a passive muscle is the most widely accepted. However, other 17 

mechanisms are also thought to contribute to pathological muscle activity and, in 18 

patients post-stroke and spinal cord injury, can result in different activation patterns. In 19 

the lower-limbs of children with spastic cerebral palsy (CP) these distinct activation 20 

patterns have not yet been thoroughly explored. The aim of the study was to apply an 21 

instrumented assessment to quantify different muscle activation patterns in four lower-22 

limb muscles of children with CP. Fifty-four children with CP were included 23 

(males/females n=35/19; 10.8 ± 3.8yrs; bilateral/unilateral involvement n= 32/22; Gross 24 

Motor Functional Classification Score I-IV) of whom ten were retested to evaluate intra-25 

rater reliability. With the subject relaxed, single-joint, sagittal-plane movements of the 26 

hip, knee, and ankle were performed to stretch the lower-limb muscles at three 27 

increasing velocities. Muscle activity and joint motion were synchronously recorded 28 

using inertial sensors and electromyography (EMG) from the adductors, medial 29 

hamstrings, rectus femoris, and gastrocnemius. Muscles were visually categorised into 30 

activation patterns using average, normalized root mean square EMG (RMS-EMG) 31 

compared across increasing position zones and velocities. Based on the visual 32 

categorisation, quantitative parameters were defined using stretch-reflex thresholds and 33 

normalized RMS-EMG. These parameters were compared between muscles with 34 

different activation patterns. All patterns were dominated by high velocity-dependent 35 

muscle activation, but in more than half, low velocity-dependent activation was also 36 

observed. Muscle activation patterns were found to be both muscle- and subject-specific 37 

(p<0.01). The intra-rater reliability of all quantitative parameters was moderate to good. 38 
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Comparing RMS-EMG between incremental position zones during low velocity stretches 39 

was found to be the most sensitive in categorizing muscles into activation patterns 40 

(p<0.01). Future studies should investigate whether muscles with different patterns react 41 

differently to treatment. 42 

 43 

Introduction 44 

Cerebral Palsy (CP) is the most common neurological disorder in children [1] and is 45 

associated with an upper motor neuron lesion occurring in the immature brain. Of the 46 

patients with CP, 80-90% are classified as having spasticity. Secondary problems to 47 

spasticity include pain, muscle and soft tissue contracture, bony deformities, and as a 48 

result of these, increasing limitations in activity and function [2]. Therefore, spasticity 49 

management begins at an early age and aims to prevent these secondary impairments 50 

[3]. However, there is a large response variability to current spasticity treatment, such as 51 

Botulinum Toxin A (BTX) [4,5]. It is therefore important to correctly assess spasticity, 52 

differentiate it from other positive signs of the upper motor neuron syndrome, and try to 53 

understand why some children react better than others to tone-reduction treatment. This 54 

in turn, will ensure that a child with CP receives therapy tailored to the mechanisms 55 

contributing to his or her specific symptoms. 56 

Spasticity is most commonly defined as “a velocity-dependent increase in tonic stretch 57 

reflex with exaggerated tendon jerks, resulting from hyper excitability of the stretch 58 

reflex, as one component of the upper motor neurone syndrome” [6]. Multiple studies 59 

have also shown increased activation when relaxed muscles were stretched at very low 60 

velocities [7–11] sometimes continuing once the movement had stopped [12]. This 61 

suggests the involvement of physiological mechanisms other than activation of the 62 
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phasic stretch-reflex. One explanation is that changes in the membrane properties of 63 

alpha motor neurones increase their sensitivity to weak afferent input, such as that 64 

during very low velocity stretch [13]. This in turn triggers persistent inward currents (PIC) 65 

that lead to prolonged depolarization states called plateau potentials. Following loss of 66 

normal central regulation, PIC and plateaus can result in continuous low-level motor 67 

output [13]. These have been found to be related to spasticity in chronic spinal cord 68 

injury, [14] and in persons post-stroke [15].Other mechanisms that may potentiate 69 

sustained activation could involve group-II muscle spindle afferents that are more 70 

sensitive to muscle length than to velocity [12,16], cutaneous [17] or nociceptive [18] 71 

stimulation. 72 

Pandyan et al. observed a variety of muscle activation patterns in the elbow flexors that 73 

can be associated with clinical spasticity in subjects post-stroke: (a) an increase in 74 

muscle activity during quiet sitting, (b) movement-dependent muscle activity also 75 

occurring at stretch velocities <10°/s, and (d) muscle activation patterns consistent with 76 

a clasp-knife phenomenon [9]. Similar patterns were reported by Lebeidowska et al. 77 

(2009) for the hamstrings and rectus femoris (REF) in persons post-stroke and with CP 78 

[8]. Unfortunately, in these studies the distinction between the patterns was only 79 

described qualitatively. On the other hand, based on the idea that spasticity is related to 80 

a deregulation of stretch reflex thresholds (SRTs), Levin and Feldman (1994) measured 81 

dynamic SRTs (DSRTs) and used them to identify the tonic SRT (TSRT) in persons with 82 

elbow flexor spasticity [19]. DSRTs were defined as the joint angles at which 83 

electromyography (EMG), evoked by stretch at defined velocities, increased. By plotting 84 

the DSRTs on velocity-angle phase diagrams, a regression line was fitted to the data. 85 

Extrapolating this regression line to zero velocity allowed them to determine the TSRT, 86 
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which represented the joint position beyond which motor unit recruitment would begin 87 

[19]. In comparison to healthy muscles, highly velocity-dependent DSRTs and a reduced 88 

TSRT were found in the elbow flexors of persons post-stroke [19], and in a later study, in 89 

children with CP [20]. When the TSRT occurred within the biomechanical joint range, 90 

voluntary relaxation and activation was limited and interfered with movement [21]. Apart 91 

from proving to be a reliable and valid way to assess spasticity, SRTs also present a 92 

way to understand the influence of velocity and length on individual muscles. In the 93 

triceps surae of subjects with spinal cord injury, Van der Salm et al. found that it was the 94 

position, rather than the velocity that determined the onset of pathological muscle 95 

activation [22]. Levin and Feldman (1994) reported that the amount of muscle activation 96 

would be proportional to the amount and rate of muscle lengthening [19]. This was 97 

confirmed by a study of Malhotra et al. (2008) who showed that muscles that were 98 

visually classified into activation patterns, also had significantly different EMG gain 99 

values with an increasing joint angle [16]. 100 

In daily clinical practice, commonly used spasticity assessment scales such as the 101 

Modified Ashworth Scale (MAS) [23], do not provide information on the underlying 102 

pathological muscle activation pattern during stretch [24]. Instead, in the aforementioned 103 

studies, muscle activation patterns have mostly been described using instrumented 104 

techniques that record biomechanical and electrophysiological signals during the stretch. 105 

By measuring kinematics while simultaneously registering muscle response using EMG, 106 

the instrumented methods are able to identify velocity and position thresholds and gain. 107 

Quantitative methods to assess activation patterns have received less attention in the 108 

lower-limb muscles of children with spastic CP. Recently, a manually-controlled 109 

instrumented spasticity assessment has been verified as psychometrically sound to 110 
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quantitatively assess spasticity in the medial hamstrings (MEHs) and gastrocnemius 111 

(GAS) of children with CP by quantifying the increase in pathological muscle activation 112 

and joint torque with increasing stretch velocities [11]. By integrating biomechanical and 113 

electrophysiological data, this instrumented assessment also has the potential to record 114 

muscle activation patterns. Identifying muscle and subject-specific activation patterns in 115 

children with CP will lend insight into the pathophysiology of spasticity, and may 116 

eventually help to explain the observed treatment response variability. 117 

Therefore, the aims of this study were to (1) describe the occurrence of muscle 118 

activation patterns in children with CP; (2) develop a visual classification method to 119 

identify activation patterns; (3) apply quantitative parameters that validate the use of this 120 

visual classification; and (4) check the reliability of the developed parameters. These 121 

aims are realised using a previously validated instrumented spasticity assessment [11] 122 

with quantitative parameters [20]. In addition, we aimed to expand the protocol of the 123 

instrumented spasticity assessment to four lower limb muscles (MEHs, GAS, REF and 124 

adductors -ADDs) as we hypothesised that spasticity patterns would be both muscle- 125 

and subject-specific. 126 

 127 

Materials and Methods 128 

 129 

Ethics Statement 130 

Ethical approval was granted by the University Hospitals’ Ethics Committee 131 

(B32220072814). Parents and subjects were informed of the procedure and provided 132 

written informed consent in accordance with the Declaration of Helsinki. 133 

 134 
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Participants 135 

Fifty-four children with spastic CP between the ages of 5 and 18 years, participated in 136 

this study. Exclusion criteria were the presence of ataxia or dystonia, severe muscle 137 

weakness (<2+ on the Manual Muscle Test [25]), poor selectivity [26], bone deformities 138 

or contractures compromising the performance of pure single-plane muscle stretch, 139 

cognitive problems that could impede the measurements, previous lower limb 140 

orthopaedic surgery, intrathecal baclofen pump, selective dorsal rhizotomy, or BTX 141 

injections in the past 6 months. 142 

 143 

Measurement protocol 144 

All evaluations with the instrumented spasticity assessment were carried out by the 145 

same trained assessor. An overview of the measurement protocol per muscle can be 146 

found in Figure 1. Measurements of the MEHs and GAS have been previously described 147 

[11]. Stretches of the passive ADDs, MEHs, REF, and GAS, were performed by an 148 

examiner who moved one joint at a time (hip, knee, or ankle, respectively) while keeping 149 

non-moving joints fixated. For stretching the ADDs, hip abduction was performed with 150 

the subject in side-lying with the assessed leg on top, the knee extended, and the pelvis 151 

vertically aligned with the table ensuring no pelvic rotation. All other motions were 152 

performed in the sagittal plane with the patient in supine position. To stretch the MEHs 153 

and REF, knee flexion and extension were performed by manipulating a custom-made 154 

shank orthosis, strapped either to the posterior or anterior aspect of the lower leg, 155 

respectively. To stretch the GAS, ankle dorsiflexion was performed by manipulating a 156 

custom-made foot orthosis (see Figure 1). For each muscle, four stretch repetitions, at 157 

three velocities, over the full joint range of motion (ROM) were carried out. The hip, 158 
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knee, or ankle was first moved at low velocity during 5 seconds, followed by 159 

intermediate, medium velocity over 1 second, and finally at high velocity, performed as 160 

fast as possible. The interval between each repetition was 7 seconds, to account for the 161 

effects of decreased post-activation depression. 162 

The movement of the distal limb segment with respect to the proximal limb segment was 163 

tracked using two inertial measurement units (IMUs: Analog Devices, ADIS16354) that 164 

recorded angular velocity and acceleration. To compute the anatomical joint angles from 165 

IMU measurements, calibration trials with predefined motions were performed prior to 166 

the stretch trials. For the ADDs, a static calibration was carried out in side lying. The 167 

ankle and knee were supported by a frame, with the knee in extension, the hip joint 168 

positioned to zero degrees abduction, and the pelvis vertically aligned with the table 169 

ensuring no pelvic rotation. The calibration trials of the MEHs and GAS have been 170 

previously described [11]. For the REF and MEHs, the same calibration trial was used. 171 

Throughout the measurement procedure, surface EMG from the four muscles and, in the 172 

case of the GAS, MEHs and REF, also their antagonists (tibialis anterior, REF, and 173 

MEHs, respectively), was collected using a telemetric Zerowire system (Cometa, Milan, 174 

IT) at a sample rate of 2000 Hz. Surface EMG electrodes were placed according to a 175 

standardized procedure and palpation [27]. Antagonist activation was used to detect 176 

other tone problems (e.g. dystonia) or active assistance of the child during stretches. 177 

Prior to stretching, three repetitions of isometric Maximum Voluntary Contractions 178 

(MVCs) were carried out per muscle with the child in supine. EMG data from these 179 

contractions were used as an individual reference to evaluate surface EMG signals 180 

measured during the passive stretch trials [11]. 181 
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In addition to surface EMG and kinematics, joint torque was measured for the 182 

movements of the ankle and knee using a six degrees-of-freedom force/torque sensor 183 

load-cell attached to the orthoses (see Figure 1). Measurements of EMG, motion, and 184 

torque were synchronously captured in order to facilitate an integrated analysis. 185 

However, torque data were not analyzed for the current study. More information on 186 

internal joint torque calculation can be found in [11]. 187 

A complete measurement of all four muscles on one side took half an hour. In children 188 

with unilateral CP, only the affected side was tested. In bilaterally involved children, if 189 

time permitted, both legs were assessed. If not, the most affected side was assessed 190 

(defined as the side with the highest averaged MAS score of the four muscles, or in case 191 

of symmetrical averaged MAS scores, the side with the most severe averaged Modified 192 

Tardieu angle [28]). For a group of ten children the full procedure was repeated 193 

(including replacement of all the sensors) after a rest interval of two hours (during which 194 

they received no treatment). These repeated measurements were used to evaluate the 195 

assessment’s intra-rater reliability. In addition to instrumented spasticity assessments, 196 

another independent assessor performed a full clinical lower-limb assessment, including 197 

determination of spasticity by the MAS [23] and the Modified Tardieu angle [28]. 198 

 199 

Data analysis 200 

The root mean square (RMS) envelope of the surface EMG was computed using a low-201 

pass 30-Hz 6th order zero-phase Butterworth filter on the squared raw EMG signal. ROM 202 

and maximum angular velocity were obtained after applying a Kalman smoother [29] on 203 

the IMU-data. All stretch velocity profiles were bell-shaped. By visualizing the data, 204 
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stretch repetitions were excluded when performed out of plane (see Supplement 1 in 205 

[11]), at inconsistent velocities between different repetitions within a velocity trial 206 

(difference >20°/s), in case of poor quality surface EMG (low signal-to-noise ratio or 207 

obvious artefacts), and in case of antagonist activation. Data visualization and analyses 208 

were carried out using custom software implemented in MATLAB (version 7.10.0 209 

R2010a, MathWorks). 210 

 211 

Outcome parameters 212 

Per velocity trial, the average maximum angular velocity was calculated per muscle. 213 

EMG onset was defined according to the method of Staude and Wolf [30]. This 214 

automatic onset detection method applies an approximated generalized likelihood 215 

principle by detecting statistically optimal changes throughout the signal [30], and has 216 

been shown to perform significantly better compared to threshold based algorithms [31]. 217 

In those cases when no onset was automatically detected due to the activation interval 218 

being too short, the onset could be visually determined on an RMS-EMG time graph 219 

(Figure 2A and B) viewed in a graphical user interphase of the same custom software. 220 

DSRTs, defined as the angles at EMG onset during the different stretch repetitions, were 221 

plotted on a joint angle-angular velocity phase graph as in (Figure 2C) [20]. When EMG 222 

onset occurred at all three stretch velocity conditions (allowing for a minimum of three 223 

data points) the slope of a linear regression through the DSRTs was calculated. This 224 

value represented the sensitivity of the reflexes to stretch [20]. The intersection of this 225 

regression line with the velocity-axis represented the estimated joint angle at which the 226 

muscle would be activated while the limb was at rest, previously defined as the TSRT 227 

[20,32]. The TSRT was expressed as a percentage of the full ROM. This indicated 228 
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where in the available ROM the TSRT would occur, and allowed for comparison 229 

between muscles and between subjects. 230 

The effect of increasing velocity and joint angle on the gain in EMG was investigated by 231 

dividing each movement into three equal zones between 10-90% of the ROM. The 232 

zones were defined as the time windows corresponding to: 10-36.6% ROM (P1), 36.6-233 

63.3% ROM (P2), and 63.3-90% ROM (P3). The time windows corresponding to the 234 

extremes of the ROM (<10% and >90%) were excluded as they appeared to be 235 

influenced by the performance of the therapist and the comfort of the patient. Average 236 

RMS-EMG per position zone was defined as the area underneath the RMS-EMG curve, 237 

divided by the duration of the corresponding position zone. These values were 238 

normalized by expressing them as a percentage of the peak RMS-EMG value of the 239 

three MVCs. One normalized RMS-EMG value per position zone at each velocity was 240 

calculated by averaging all stretch repetitions per velocity trial. These values were then 241 

plotted on a 3D bar graph (Figure 2D). The following parameters were created:  242 

1. Within each position zone, the change in average normalized RMS-EMG between 243 

high and low velocity stretches (EMG P1 high-low, EMG P2 high-low, and EMG 244 

P3 high-low). 245 

2. At low velocity, the change in average normalized RMS-EMG between P2 and P1 246 

and between P3 and P1 (EMG low P2-P1, and EMG low P3-P1, respectively). 247 

 248 

Visual pattern categorization 249 

Two researchers independently allocated each muscle to one of five possible activation 250 

patterns. When a disagreement occurred between the two researchers, a third was 251 

involved and the majority decision defined the final pattern for each muscle. The 252 
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following criteria were used to classify muscles. Examples of graphs from each type of 253 

pattern can be found in Figure 3. 254 

1. A muscle was categorized as having a high velocity-dependent (HVD) activation 255 

pattern when EMG onset was not automatically, or visually detected in the 256 

stretches performed during the low velocity trial, but was detected during the 257 

stretches performed at the high velocity trial. Additionally, average normalized 258 

RMS-EMG increased with higher stretch velocity. 259 

2. A muscle was categorized as having a mixed high velocity-dependent (MHVD) 260 

activation pattern when EMG onset was automatically, or visually detected in all 261 

stretches performed during low, medium, and high velocity trials. EMG onset was 262 

detected earlier in the ROM the faster the velocity of the stretch. Average 263 

normalized RMS-EMG increased more with higher stretch velocity than with 264 

increasing ROM. 265 

3. A muscle was categorized as having a mixed (MIX) activation pattern when EMG 266 

onset was automatically, or visually detected in all stretches performed during 267 

low, medium, and high velocity trials. EMG onset was detected earlier in the ROM 268 

the faster the velocity of stretch, but average normalized RMS-EMG increased as 269 

much with higher stretch velocity as with increasing ROM. 270 

4. A muscle was categorized as having a low velocity-dependent (LVD) activation 271 

pattern when EMG onset was automatically, or visually detected around the same 272 

joint angle in all stretches performed during low, medium, and high velocity trials. 273 

Average normalized RMS-EMG increased with increasing ROM and was 274 

unaffected by higher velocity. 275 
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5. A muscle was categorized as having a mixed low velocity-dependent (MLVD) 276 

activation pattern when EMG onset was automatically, or visually detected in all 277 

stretches performed during low, medium, and high velocity trials. EMG onset was 278 

either detected earlier in the ROM with faster stretch velocity, or onsets were 279 

centered around one joint angle. Average normalized RMS-EMG increased more 280 

with increasing ROM than with higher stretch velocity. 281 

 282 

Statistical analysis 283 

Percentage exact agreement between researchers to visually classify the activation 284 

patterns was calculated. Freeman Holton tests were used to assess whether the final 285 

allocation to different activation patterns differed significantly between muscles. Intra-286 

rater reliability of the developed parameters was assessed using intraclass correlation 287 

coefficients (ICC1,1) [33] with 95% confidence intervals and the standard error of 288 

measurement (SEM). The SEM was calculated from the square root of the mean square 289 

error from one-way ANOVA [34]. ICC-values 0.80 indicated high; 0.60 moderately high; 290 

and 0.40 moderate reliability [35]. Face validity of the visual classification was tested by 291 

comparing the developed parameters between muscles categorized into activation 292 

patterns using either t-tests, or in case of more than two categories, ANOVA and post-293 

hoc Tukey tests. In addition, age, gender, and anatomic distribution of the motor 294 

impairment (unilateral vs. bilateral involvement) of the children whose muscles were 295 

classified into different activation patterns were compared per muscle using similar 296 

statistical tests (continuous parameters), or Chi Square tests (categorical parameters). 297 

Significance was set at p<0.05. All statistical analyses were carried out in SPSS (IBM 298 

Statistics 20). 299 
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 300 

Results 301 

Fifty-four children, 36 males and 19 females, participated in the study (Table 1). Due to 302 

time-restrictions, not all subjects underwent instrumented spasticity assessments in all 303 

four muscles. In bilaterally involved children, both sides were tested on 7 occasions for 304 

the MEHs, 3 times for the ADDs and the GAS, and once for the REF. Four ADDs, 7 305 

GAS, 3 MEHs and 2 REF were not classifiable and were therefore excluded for further 306 

data analysis. These muscles could not be classified because of: absence of any EMG 307 

activity at any velocity, poor EMG quality, or an unrecognizable and inconsistent pattern 308 

which was judged as being affected by the performance of the measurement. In total, 28 309 

ADDs, 44 GAS, 55 MEHs and 34 REF muscles were analysed. EMG onset was visually 310 

determined in 64 of the total 318 ADD stretch repetitions, in 40 of the 492 GAS stretch 311 

repetitions, in 38 of the 658 MEH stretch repetitions, and in 46 of the 392 REF stretch 312 

repetitions. 313 

Percentage exact agreement between assessors to categorise muscles into activation 314 

patterns ranged from 83% to 97%. An overview of the final pattern categorization can be 315 

found in Table 2. ADDs, GAS and REF were categorized as MHVD or HVD. One MEHs 316 

muscle was classified as MIX and one as LVD. The rest of the MEHs were classified as 317 

HVD, MHVD or, MLVD. There were significantly more GAS and REF muscles 318 

categorized as HVD than MEHs (p<0.001). Among MHVD patterns, there were 319 

significantly more ADDs and MEHs muscles than GAS and REF (p<0.001). To allow for 320 

group comparisons, the muscle with an LVD pattern was added to the MLVD group and 321 

the muscle with a MIX pattern was added to the MHVD group. 322 
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The reliability results of all outcome parameters can be found in Table 3. One ADDs trial 323 

from the reliability study was excluded due to bad quality EMG data. The reliability of the 324 

slope of the DSRTs and of the value of the TSRT could only be calculated in those 325 

muscles with an EMG onset at low velocity (in 8 of the 10 ADDs and MEHs). Relative 326 

reliability values were moderate to high (ICC 0.45-0.97). The SEM values tended to be 327 

lower for parameters of the MEHs and GAS than for the ADDs and REF. 328 

Most of the developed outcome parameters were significantly different between 329 

activation patterns highlighting good face validity (Table 4). Two parameters (EMG low 330 

P2-P1, and EMG low P3-P1) were able to distinguish between all patterns in all muscles 331 

(p<0.01). The slope of the DSRTs and TSRT were not calculated for HVD patterns as 332 

they required an EMG onset at low velocity. In the MEHs, the median slope of the 333 

DSRTs in MHVD patterns was significantly steeper (p=0.002), and the TSRT occurred 334 

significantly later in the ROM (p=0.001) than in MLVD patterns. Children with GAS 335 

muscles categorized as MHVD were younger than those with a HVD pattern (p=0.002). 336 

Children with MEHs muscles classified as MHVD or MLVD were more likely to be 337 

bilaterally involved, while the children with MEHs muscles classified as HVD often had a 338 

unilateral involvement (p=0.009) (Table 4). 339 

 340 

Discussion 341 

This is the first study to report and quantitatively assess different muscle activation 342 

patterns during passive stretching of lower-limb muscles in a large number of children 343 

with spastic CP. In addition, we are the first to report on the reliability of quantitative 344 

parameters that can distinguish between patterns in the lower-limb muscles of children 345 

with CP. The velocity profiles and EMG onsets were repeatable both in the individual 346 
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muscle (see Figures 2 and 3) and on a group analysis (Table 3). The relative intra-rater 347 

reliability of the TSRT in the MEHs and ADDs was higher than that reported by Calota et 348 

al. who used a similar hand-held device to calculate the TSRT in elbow flexors of 349 

persons post-stroke. It was also higher than that reported by Jobin and Levin (2000) who 350 

applied a torque motor to stretch the muscles of children with CP [20]. In the latter 351 

studies, EMG onset was automatically defined as the point at which the EMG signal 352 

increased 2SDs above the mean baseline EMG. This automatic onset detection method 353 

is inaccurate in situations of any baseline noise or gradual onset rise time [30]. Although 354 

more robust than the threshold method, the automatic detection method applied in the 355 

current study failed to detect any activation in 10% of all stretch repetitions. In these 356 

cases, onset was visually determined which may have contributed to the higher 357 

reliability. While visual determination is considered to provide accurate event detection 358 

due to the signal being assessed by an expert, it is still subjective and time consuming. 359 

In order to highlight true differences, it is important that the system’s measurement error 360 

is smaller than the average differences between patterns. The information from this 361 

study proves promising for carrying out a sensitivity analysis to compare alterations in 362 

muscle activation patterns over time, or after treatment. However, in the current study, 363 

the limited number of subjects used to assess reliability, especially for the TSRT, and 364 

the visual determination of EMG onset in 10% of the stretch repetitions, necessitates 365 

caution when interpreting the results. 366 

Assessing spasticity using instrumented measurements has been found superior to 367 

clinical spasticity assessments [5]. Quantitative interpretation of data by integration of 368 

muscle stretch characteristics with EMG, provided a visual as well as quantified way to 369 

highlight low or high velocity-dependent muscle activation. We applied previously-370 
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developed parameters that captured the sensitivity of reflex thresholds, and EMG gain. 371 

Both components are important contributors to spasticity severity. Thresholds represent 372 

the initiators of motor neuron recruitment (hyperexcitability) while EMG gain represents 373 

the number of motor neurons recruited (hypersensitivity). However, developing 374 

parameters that quantify reflex thresholds and gain, presents some methodological 375 

challenges. Wu et al. have shown that spasticity with velocity-dependency may also be 376 

partly due to position change because the joint is moved further in the ROM at higher 377 

velocities [36]. Secondly, applying manual stretches results in inconsistencies in velocity. 378 

These two issues confound the direct comparison of absolute EMG threshold joint 379 

angles between subjects and between muscles. Calculation of the slope of the DSRTs 380 

and the TSRT (as a percentage of the ROM) helped to overcome these issues. The 381 

slope of the DSRTs was found to be steeper and the TSRT later in the ROM in MHVD 382 

than in MLVD patterns. Calota et al. found that manual stretches at variable velocities 383 

are preferred for calculation of the TSRT [37]. In their study, the TSRT was more difficult 384 

to locate in muscles with low spasticity where the DSRT values were either widely 385 

dispersed due to faulty EMG onset detection, or only a limited number of DSRT values 386 

could be identified. Similarly, in the current study, the TSRT could not be calculated in 387 

pure HVD patterns, which may also be considered to reflect low levels of spasticity. 388 

EMG gain is known to be velocity-dependent [9,11]. This was confirmed in the current 389 

study by the existence of some velocity-dependent increase in EMG gain in all the 390 

studied muscles. However, in muscles categorised as MHVD and MLVD, EMG gain also 391 

increased with increasing muscle length even when stretch velocity was low. Similar, 392 

longer duration, tonic activations have been reported by other authors during low 393 

velocity stretches of spastic muscles in adults [8,9,22,38]. Two of the developed EMG 394 
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gain parameters successfully distinguished between all patterns in all muscles. These 395 

were: the change between position zones 1 and 2, and between position zones 1 and 3 396 

at low velocity. The higher these values, the lower the activation threshold. Furthermore, 397 

the SEM values for these two parameters for all muscles, and for the slope of the 398 

DSRTs of the MEHs, were sufficiently low to detect differences between activation 399 

patterns. Malhotra et al. (2008) identified pure LVD activation patterns in some spastic 400 

wrist flexors post-stroke, whereby there was no influence of increasing velocity on EMG 401 

gain [16]. Such a pattern was only found in one MEHs muscle in the current CP cohort, 402 

and confirms the finding that velocity-sensitivity is higher in children with CP than in 403 

persons post-stroke [20]. 404 

While it was not possible to explore the exact pathophysiological basis for the variations 405 

in the muscle activation patterns, possible contributing mechanisms may be considered. 406 

Pure HVD activation patterns may be related to the velocity sensitivity of Ia afferents and 407 

decreased central control (e.g. decreased presynaptic inhibition on Ia afferent pathways) 408 

[12]. LVD activation may be related to changes in the membrane properties, PIC, and 409 

the creation of plateau potentials in spinal neurons [13]. Some authors have also 410 

suggested that LVD activation reflects hypersensitivity of type II muscle spindle afferents 411 

[12,16]. However, histological results regarding fiber type distribution and transformation 412 

due to spasticity are inconclusive [39]. More conclusive are the findings of altered 413 

muscle properties in spastic versus healthy muscles; such as increased muscle cell 414 

stiffness, and decreased quality of the extracellular matrix [40]. These changes result in 415 

stiffer muscles that are less compliant. Since the discharge rate of muscle spindles is 416 

dependent on absolute, as well as relative fiber length, and the velocity of fiber 417 

movement [18,41], stiffer muscles may affect spindle hypersensitivity, possibly due to 418 
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increased fusimoto activation [42]. This may help explain why in LVD and MLVD 419 

activation patterns, the gain in RMS-EMG was sensitive to increasing muscle length. On 420 

the other hand, Dietz and Sinkjaer (2007) suggested, that changes in the muscle 421 

properties might also influence the stretch reflex behavior via non-spindle 422 

mechanoreceptors, such as pain-related group III/IV sensory muscle afferents [43]. 423 

The current study provides evidence of a large variability in the amount of activation and 424 

patterns among subjects. Similarly, Lebiedowska at al. (2009) also reported a larger 425 

heterogeneity of muscle activation patterns in response to stretch among subjects with 426 

CP compared to patients post-stroke [8]. In the current study, children who had an 427 

MHVD pattern in their GAS tended to be younger than those categorized as HVD. 428 

Additionally, children who had mixed patterns in their MEHs were more likely to be 429 

bilaterally involved. The link between certain patterns and patient or pathology 430 

characteristics should be further investigated in larger samples. 431 

The classification of activation patterns was also found to be muscle-specific. The ADDs 432 

and the MEHs had a greater tendency towards MHVD; the GAS and REF were more 433 

HVD. MLVD patterns were only present in the MEHs. The amount of muscle stretch, and 434 

therefore the number and type of activated muscle spindles, will depend on fibre 435 

arrangement, length, orientation and, as previously described, muscle extensibility [42]. 436 

Therefore, our finding that different activation patterns occur in different muscles was not 437 

unexpected. Additionally, several studies have reported length dependent activation 438 

described by findings of a relationship between the starting muscle length and the 439 

appearance of SRTs during passive stretch [18,21,41]. This relationship may also be 440 

muscle specific. The REF and GAS were found to be less sensitive when stretched from 441 

initially longer lengths [44], whilst in the hamstrings, the opposite was reported [12]. In 442 
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bi-articular muscles, the position of both joints is important when considering length 443 

dependency [21]. It is therefore possible that in the current study, due to the flexed hip at 444 

starting position, the MEHs were already being partly stretched from an elongated initial 445 

position, therefore increasing the likelihood of the SRT being reached faster. Since a 446 

similar starting position is applied during a clinical evaluation of the hamstrings (knee 447 

ROM, MAS, and Modified Tardieu angle), clinicians should be careful not to mistake 448 

MLVD activation with the evaluation of contracture. 449 

The results of this study open many avenues for future clinical and research 450 

investigations. Given the large treatment response variability among children with CP to 451 

treatment with BTX [5], an investigation into whether the type of activation pattern 452 

present affects treatment outcome, is warranted. Secondly, identifying muscle-specific 453 

patterns may help in the development of more targeted treatment modalities. For 454 

example, a longer casting period may be recommended for MLVD muscles. Thus far, 455 

the muscle activation patterns described in literature do not seem to be related to the 456 

amount or shape of joint torque produced as the passive muscle is lengthened [16]. 457 

Nevertheless, a comprehensive assessment of spasticity should also include an 458 

evaluation of resistance to muscle stretch. Differentiation between the neural and non-459 

neural contributions to increased joint torque during muscle stretch is essential to 460 

effectively distinguish spasticity from contracture. Therefore, assessments should be 461 

expanded to investigate how different activation patterns specifically contribute to the 462 

measured joint torque. Finally, as the ultimate goal of spasticity management is to 463 

improve function, the extent to which the existence of different activation patterns are 464 

related to abnormal voluntary movement and gait patterns should be further investigated 465 

[21]. 466 
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To conclude, different muscle activation patterns were identified in four lower limb 467 

muscles of children with spastic CP. Activation patterns were found to be subject and 468 

muscle-specific. These differences can best be quantified by parameters that highlight 469 

the effect of increased muscle lengthening on the gain in EMG, during low velocity 470 

stretches. Such parameters were reliable, contained a low measurement error, and were 471 

sensitive to distinguish between different activation patterns in subjects and muscles. 472 

Information on the type, and quantification of the different activation patterns, may be 473 

useful in explaining response variability and directing spasticity treatment. 474 
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 596 

Figure Legends 597 

Figure 1. Measurement procedure for four lower limb muscles. ADDs, adductors; MEHs, 598 

medial hamstrings; REF, rectus femoris; GAS, gastrocnemius. The arrow indicates the 599 

direction of joint movement during stretch. Instrumentation: (1) two inertial measurement 600 

units (joint angle measurement); (2) surface electromyography (muscle activation 601 

measurement); and (3) a six DoF force-sensor attached to a shank or foot orthosis 602 

(torque measurement); (4) support frame.  603 

 604 

Figure 2. Graphs used during the visual categorization into patterns and for parameter 605 

development. Root mean square electromyography plotted versus time for medial 606 

hamstring during low (black), medium (gray, dashed) and, high (gray, dotted) velocity 607 

stretches. Zero seconds was expressed as the time that maximum velocity occurred. In 608 

A. a mixed low velocity-dependent, and in B. a high velocity-dependent activation 609 

pattern, is shown. C. Dynamic stretch reflex thresholds (DRSTs - dots) of the medial 610 

hamstrings in an angle-velocity phase graph at three stretch velocities: high (continuous 611 

line), medium (dotted line) and low (dashed line) velocities. The slope of a regression 612 

line through the DRSTs represents the sensitivity of reflexes to velocity [37]. The 613 

intersection of the regression line with the velocity-axis is defined as the Tonic stretch 614 

reflex threshold (TSRT) [37]. D. Average normalized RMS-EMG across three position 615 

zones (P1, P2, P3) and across three velocities (low, medium, high). I: Change in 616 

average normalized RMS-EMG in P1 (position zone 1: 10-36.6% of the ROM) between 617 
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high and low velocity; II: Change in average normalized RMS-EMG in P2 (position zone 618 

2: 36.6-63.3% of the ROM) between high and low velocity; III: Change in average 619 

normalized RMS-EMG in P3 (position zone 3: 63.3-90% of the ROM) between high and 620 

low velocity; IV: Change in average normalized RMS-EMG at low velocity between P1 621 

and P2; V: Change in average normalized RMS-EMG at low velocity between P1 and 622 

P3. 623 

 624 

Figure 3. Examples of different activation patterns in the medial hamstrings. The graphs 625 

in the first, second and third column are further explained by Figures 2A, B, and C. 626 

EMG, electromyography; ROM, joint range of motion; RMS, root mean square. 627 

628 
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Tables 629 

 630 
Table 1. Patients characteristics 631 

Characteristics Subjects (n=54) Subjects reliability study (n=10) 

Age (mean ± SD) 10.9yrs ± 3.9 yrs 11.9yrs ± 3.8yrs 

Gender (n) 36 Males; 18 Females 7 Males; 3 Females 

Level of involvement (n) 
22 Unilateral (11 RH; 11 LH)  
32 Bilateral (28 Di; 2 Tri; 2 Quad) 

4 Unilateral (2 LH; 2 RH) 
6 Bilateral (5 Di; 1 Quad) 

GMFCS level I-IV (n) I: 32; II: 15; III: 6; IV: 1 I: 5; II: 4; III: 0; IV: 1 

MAS score 0-5  0 1 1+ 2 3 0 1 1+ 2 3 

MAS ADDs (n) 8 7 4 7 2 1 5 2 2 0 

MAS MEHs (n)  2 8 23 16 6 0 0 2 7 1 

MAS GAS (n) 0 4 18 18 4 0 0 4 4 2 

MAS REF (n) 13 11 5 4 1 3 2 2 2 1 

Abbreviations: RH, right hemiplegia; LH, left hemiplegia; Di, diplegia; Tri, triplegia; Quad, quadriplegia; 632 
GMFCS, Gross Motor Function Classification Score; MAS, Modified Ashworth Scale; ADDs, adductors; 633 
GAS, gastrocnemius; MEHs, medial hamstrings; REF, rectus femoris 634 
 635 
 636 
Table 2. Allocation of muscles to activation patterns based on visual categorization. 637 

Activation pattern 
Muscle 

MIX MLVD MHVD HVD LVD PEA 

ADDs 0 0 20 8 0 85.71% 

GAS 0 0 13 31 0 72.73% 

MEHs 1 7 34 12 1 83.64% 

REF 0 0 7 27 0 97% 

*p-value NR NR <0.001 <0.001 NR NR 

Note: Percentage Exact Agreement (PEA) of two independent assessors. The final allocation was based 638 
on majority decision with involvement of a third independent assessor. 639 
Abbreviations: ADDs, adductors; GAS, gastrocnemius; MEHs, medial hamstrings; REF, rectus femoris; 640 
MIX, mixed; MHVD, mixed, high velocity-dependent; MLVD, mixed, low velocity-dependent; HVD, high 641 
velocity-dependent, LVD, low velocity-dependent; PEA, percentage exact agreement; NR, not relevant. 642 
*Freeman Holton tests for significantly different allocation of muscles to HVD and MHVD patterns p<0.05 643 
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Table 3A. Averages and standard deviations (SD) of parameters of the adductors (ADDs) and gastrocnemius (GAS) in both sessions (test, retest) 644 
and intra-class correlation coefficients (ICC) and standard error of measure (SEM) for intra-rater reliability. 645 

Table 3B. Averages and standard deviations (SD) of parameters of the medial hamstrings (MEHs) and rectus femoris (REF) in both sessions (test, 646 
retest) and intra-class correlation coefficients (ICC) and standard error of measure (SEM) for intra-rater reliability. 647 

Abbreviations: VMAX, maximum angular velocity; low, low velocity stretches; high, high velocity stretches; ROM, range of motion; EMG, 648 
electromyography; P1, position zone 1; P2, position zone 2; P3, position zone 3; DSRT, dynamic stretch reflex threshold; TSRT, tonic stretch reflex 649 
threshold. 650 

 ADDs (n=9) GAS (n=10) 

 
Test Retest ICC SEM Test Retest ICC SEM 

VMAX low (°/s) 11.52 (2.76) 10.87 (3.68) 0.54 2.66 16.46 (5.99) 15.09 (7.73) 0.94 2.24 

VMAX med (°/s) 49.08 (9.31) 40.27 (7.26) -0.07 7.53 66.52 (19.01) 68.22 (16.34) 0.74 12.02 

VMAX high (°/s) 102.52 (19.82) 88.74 (16.71) 0.62 11.28 163.50 (30.97) 158.32 (18.85) 0.90 10.65 

ROM (°) 19.82 (37.64)  16.71 (33.37) 0.48 7.17 51.53 (8.77) 50.27 (6.68) 0.86 3.93 

EMG P1 high-low (%) 7.13 (6.95) 6.30 (5.82) 0.69 4.56 0.79 (2.19) 0.56 (1.83) 0.51 1.69 

EMG P2 high-low (%) 12.30 (9.30) 10.68 (7.53) 0.82 4.75 13.54 (9.60) 15.38 (15.53) 0.88 6.13 

EMG P3 high-low (%) 10.09 (5.39) 9.93 (6.60) 0.80 3.63 7.09 (5.76) 5.24 (6.97) 0.61 4.83 

EMG low P2-P1 (%) 0.93 (1.00) 1.26 (1.84) 0.86 0.75 0.21 (0.36) 0.39 (0.57) 0.81 0.22 

EMG low P3-P1 (%) 3.55 (3.28) 3.71 (4.10) 0.75 2.48 1.59 (2.36) 1.57 (2.11) 0.69 1.60 

Slope of the DSRTs (°/s) (n=8) -0.28 (0.13) -0.35 (0.20) 0.75 0.10 NR NR NR NR 

TSRT (°) (n=8) 18.27 (11.72) 14.71 (9.49) 0.91 3.74 NR NR NR NR 

 MEHs (n=10) REF (n=10) 

 
Test Retest ICC SEM Test Retest ICC SEM 

VMAX low (°/s) 17.46 (7.65) 17.61 (6.36) 0.86 3.59 19.81 (6.18) 18.48 (8.18) 0.96 2.00 

VMAX med (°/s) 98.84 (30.09) 102.26 (25.06) 0.71 19.21 107.65 (33.08) 98.61 (30.08) 0.90 13.52 

VMAX high (°/s) 265.05 (39.18) 263.14 (41.17) 0.89 18.34 249.01 (34.47) 246.70 (33.98) 0.68 25.17 

ROM (°) 69.84 (13.15) 72.82 (14.34) 0.96 3.09 86.83 (10.23) 86.74 (15.76) 0.91 5.80 

EMG P1 high-low (%) 4.49 (5.04) 2.09 (3.35) 0.45 3.46 10.60 (17.60) 11.66 (20.23) 0.57 15.44 

EMG P2 high-low (%) 17.16 (9.72) 18.65 (9.65) 0.76 6.21 35.21 (28.82) 46.90 (46.63) 0.78 22.08 

EMG P3 high-low (%) 16.97 (12.88) 14.12 (6.01) 0.76 6.21 24.52 (18.82) 27.70 (25.73) 0.86 11.71 

EMG low P2-P1 (%) 1.87 (2.33) 1.81 (2.06) 0.84 1.20 0.16 (0.39) 0.27 (0.51) 0.70 0.32 

EMG low P3-P1 (%) 4.42 (4.81) 5.11 (5.63) 0.89 2.43 0.62 (0.95) 0.96 (1.65) 0.44 1.18 

Slope of the DSRTs (°/s) (n=8) -0.07 (0.11) -0.05 (0.06) 0.89 0.04 NR NR NR NR 

TSRT (°) (n=8) 83.13 (15.49) 83.11 (14.73) 0.97 4.06 NR NR NR NR 
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Table 4A. Means and (SD) of outcome parameters and patient characteristics for the adductors (ADDs) and gastrocnemius (GAS) - comparison 651 
within each muscle between activation patterns 652 

 653 
Table 4B. Means and (SD) of outcome parameters and patient characteristics for the medial hamstrings (MEHs) and rectus femoris (REF)- 654 
comparison within each muscle between activation patterns 655 

 ADDs GAS 

Parameters MHVD (n=20) HVD (n=8) p MHVD (n=13) HVD (n=31) p 

VMAX low (°/sec) 12.70 (3.58) 13.92 (3.63) 0.45 18.60 (5.48) 18.35 (4.39) 0.87 

VMAX high (°/sec) 108.30 (28.51) 130.61 (44.90) 0.13 164.27 (23.97) 168.30 (32.33) 0.69 

ROM (°) 41.41 (11.68) 47.43 (15.81) 0.28 54.21 (11.11) 53.86 (9.87) 0.91 

EMG P1 high-low (%) 7.38 (7.61) 11.58 (18.15) 0.39 1.04 (1.60) 0.21 (1.52) 0.11 

EMG P2 high-low (%) 12.12 (9.41) 3.67 (4.40) 0.02
**
 13.34 (6.04) 7.45 (7.56) 0.02

**
 

EMG P3 high-low (%) 11.69 (9.46) 4.64 (3.82) 0.53 8.00 (5.21) 3.62 (4.37) 0.01
**
 

EMG low P2-P1 (%) 1.02 (1.18) <0.01 (0.47) 0.03
**
  0.53 (0.71) 0.10 (0.32) 0.01

**
 

EMG low P3-P1 (%) 3.84 (4.13) 0.31 (0.86) 0.03
**
 3.00 (2.26) 0.45 (0.69) <0.01

**
 

Slope of DSRTs (°/s) 0.29 (0.19) NR NR 0.06 (0.03) NR NR 

TSRT % ROM (%) 76.42 (21.10) NR NR 58.67 (11.20) NR NR 

Age (years) 11.59 (3.83) 10.92 (4.02) 0.68 8.57 (2.83) 12.19 (3.45) <0.01
**
 

Gender: male/female (n) 13/7 4/4 0.46 8/5 23/8 0.40 

Unilateral/bilateral involvement (n) 7/13 2/6 0.61 3/10 14/17 0.17 

 MEHs REF 

Parameters MLVD (n=8) MHVD (n=35) HVD (n=12) p MHVD (n=7) HVD (n=27) p 

VMAX low (°/sec) 21.85 (10.37) 21.95 (5.90) 20.66 (3.70) 0.83 26.26 (8.40) 22.18 (5.66) 0.13 

VMAX high (°/sec) 239.26 (5.40) 283.26 (43.68) 310.08 (27.89) <0.01
*
 230.67 (45.46) 252.90 (29.37) 0.12 

ROM (°) 67.63 (19.73) 77.7 (9.52) 81.32 (7.77) 0.03 85.64 (16.99) 89.02 (9.39) 0.48 

EMG P1 high-low (%) 4.46 (10.59) 4.32 (3.67) 0.80 (1.29) 0.10 8.75 (9.54) 7.81 (11.38) 0.84 

EMG P2 high-low (%) 29.19 (22.72) 22.82 (13.51) 7.93 (6.23) <0.01
* b,c

 55.64 (57.21) 30.77 (39.95) 0.19 

EMG P3 high-low (%) 10.44 (4.41) 16.65 (12.03) 8.81 (6.64) 0.05 36.34 (36.80) 20.64 (23.85) 0.18 

EMG low P2-P1 (%) 8.26 (8.82) 1.38 (1.74)  0.10 (0.27) <0.01
* a, c

 10.69 (16.15) -0.03 (0.23) <0.01
**
 

EMG low P3-P1 (%) 23.47 (24.79) 4.24 (4.24) 0.25 (0.50) <0.01
* a, b, c

 11.17 (11.43) 0.09 (0.44) <0.01
**
 

Slope of DSRTs (°/s) 0.02 (0.05) 0.10 (0.08) NR 0.01
**
 0.10 (0.08) NR NR 

TSRT % ROM (%) 30.48 (9.23) 58.22 (10.10) NR <0.01
**
 47.07 (17.04) NR NR 

Age (years) 11.00 (4.13) 10.38 (3.33) 11.25 (3.53) 0.72 10.03 (3.77) 11.46 (3.72) 0.37 

Gender: male/female (n) 5/3 24/11 7/5 0.80 5/2 17/7 0.68 

Unilateral/bilateral involvement (n) 0/8 12/23 8/4 <0.01
* b, c

 2/5 11/16 0.56 
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Abbreviations: ADDs, adductors; GAS, gastrocnemius; MEHs, medial hamstrings; REF, rectus femoris; MHVD, mixed, high velocity-dependent; 656 
HVD, high velocity-dependent; MLVD, mixed, low velocity-dependent; VMAX, maximum angular velocity; low, low velocity stretches; high, high 657 
velocity stretches; ROM, range of motion; EMG, electromyography; P1, position zone 1; P2, position zone 2; P3, position zone 3; DSRTs, dynamic 658 
stretch reflex thresholds; TSRT, tonic stretch reflex threshold. 659 
*
Significant difference: p<0.05 (ANOVA/Freeman Holton) 660 

**
Significant difference: p<0.05 (t-test/Chi square) 661 

a
Significant difference between MHVD and MLVD (Post-hoc Tukey test/Chi Square) 662 

b
Significant difference between MHVD and HVD (Post-hoc Tukey test/Chi Sqaure) 663 

c
Significant difference between MLVD and HVD (Post-hoc Tukey test/Chi Square) 664 



 

Muscle Involved 
joint(s) 

Subject 
position 

Fixated 
joints 

Manipulated 
limb 
segment(s) 

Passive 
motion 

Measurement set-up  

ADDs Hip Side-lying, 
leg being 
assessed 
on top 

Pelvis 
(neutral), 
knee 
(extension) 

Upper and 
lower leg 

Hip  
abduction  

 

MEHs Hip, knee Supine Hip (90° 
flexion) 

Lower leg Knee 
extension 

 

REF Hip, knee Supine Hip (0° 
flexion) 

Lower leg Knee  
Flexion 

 

GAS Knee, 
ankle 

Supine Hip (0° 
flexion), 
knee 
(measured) 

Foot Ankle 
dorsiflexion 

 

1 

3 
2 

1 

2 

4 

3 

1 

2 

4 

1 

3 

2 
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Abstract 15 

The definition of spasticity as a velocity-dependent activation of the tonic stretch reflex 16 

during a stretch to a passive muscle is the most widely accepted. However, other 17 

mechanisms are also thought to contribute to pathological muscle activity and, in 18 

patients post-stroke and spinal cord injury, can result in different activation patterns. In 19 

the lower-limbs of children with spastic cerebral palsy (CP) these distinct activation 20 

patterns have not yet been thoroughly explored. The aim of the study was to apply an 21 

instrumented assessment to quantify different muscle activation patterns in four lower-22 

limb muscles of children with CP. Fifty-four children with CP were included 23 

(males/females n=35/19; 10.8 ± 3.8yrs; bilateral/unilateral involvement n= 32/22; Gross 24 

Motor Functional Classification Score I-IV) of whom ten were retested to evaluate intra-25 

rater reliability. With the subject relaxed, single-joint, sagittal-plane movements of the 26 

hip, knee, and ankle were performed to stretch the lower-limb muscles at three 27 

increasing velocities. Muscle activity and joint motion were synchronously recorded 28 

using inertial sensors and electromyography (EMG) from the adductors, medial 29 

hamstrings, rectus femoris, and gastrocnemius. Muscles were visually categorised into 30 

activation patterns using average, normalized root mean square EMG (RMS-EMG) 31 

compared across increasing position zones and velocities. Based on the visual 32 

categorisation, quantitative parameters were defined using stretch-reflex thresholds and 33 

normalized RMS-EMG. These parameters were compared between muscles with 34 

different activation patterns. All patterns were dominated by high velocity-dependent 35 

muscle activation, but in more than half, low velocity-dependent activation was also 36 

observed. Muscle activation patterns were found to be both muscle- and subject-specific 37 

(p<0.01). The intra-rater reliability of all quantitative parameters was moderate to good. 38 
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Comparing RMS-EMG between incremental position zones during low velocity stretches 39 

was found to be the most sensitive in categorizing muscles into activation patterns 40 

(p<0.01). Future studies should investigate whether muscles with different patterns react 41 

differently to treatment. 42 

 43 

Introduction 44 

Cerebral Palsy (CP) is the most common neurological disorder in children [1] and is 45 

associated with an upper motor neuron lesion occurring in the immature brain. Of the 46 

patients with CP, 80-90% are classified as having spasticity. Secondary problems to 47 

spasticity include pain, muscle and soft tissue contracture, bony deformities, and as a 48 

result of these, increasing limitations in activity and function [2]. Therefore, spasticity 49 

management begins at an early age and aims to prevent these secondary impairments 50 

[3]. However, there is a large response variability to current spasticity treatment, such as 51 

Botulinum Toxin A (BTX) [4,5]. It is therefore important to correctly assess spasticity, 52 

differentiate it from other positive signs of the upper motor neuron syndrome, and try to 53 

understand why some children react better than others to tone-reduction treatment. This 54 

in turn, will ensure that a child with CP receives therapy tailored to the mechanisms 55 

contributing to his or her specific symptoms. 56 

Spasticity is most commonly defined as “a velocity-dependent increase in tonic stretch 57 

reflex with exaggerated tendon jerks, resulting from hyper excitability of the stretch 58 

reflex, as one component of the upper motor neurone syndrome” [6]. Multiple studies 59 

have also shown increased activation when relaxed muscles were stretched at very low 60 

velocities [7–11] sometimes continuing once the movement had stopped [12]. This 61 

suggests the involvement of physiological mechanisms other than activation of the 62 
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phasic stretch-reflex. One explanation is that changes in the membrane properties of 63 

alpha motor neurones increase their sensitivity to weak afferent input, such as that 64 

during very low velocity stretch [13]. This in turn triggers persistent inward currents (PIC) 65 

that lead to prolonged depolarization states called plateau potentials. Following loss of 66 

normal central regulation, PIC and plateaus can result in continuous low-level motor 67 

output [13]. These have been found to be related to spasticity in chronic spinal cord 68 

injury, [14] and in persons post-stroke [15].Other mechanisms that may potentiate 69 

sustained activation could involve group-II muscle spindle afferents that are more 70 

sensitive to muscle length than to velocity [12,16], cutaneous [17] or nociceptive [18] 71 

stimulation. 72 

Pandyan et al. observed a variety of muscle activation patterns in the elbow flexors that 73 

can be associated with clinical spasticity in subjects post-stroke: (a) an increase in 74 

muscle activity during quiet sitting, (b) movement-dependent muscle activity also 75 

occurring at stretch velocities <10°/s, and (d) muscle activation patterns consistent with 76 

a clasp-knife phenomenon [9]. Similar patterns were reported by Lebeidowska et al. 77 

(2009) for the hamstrings and rectus femoris (REF) in persons post-stroke and with CP 78 

[8]. Unfortunately, in these studies the distinction between the patterns was only 79 

described qualitatively. On the other hand, based on the idea that spasticity is related to 80 

a deregulation of stretch reflex thresholds (SRTs), Levin and Feldman (1994) measured 81 

dynamic SRTs (DSRTs) and used them to identify the tonic SRT (TSRT) in persons with 82 

elbow flexor spasticity [19]. DSRTs were defined as the joint angles at which 83 

electromyography (EMG), evoked by stretch at defined velocities, increased. By plotting 84 

the DSRTs on velocity-angle phase diagrams, a regression line was fitted to the data. 85 

Extrapolating this regression line to zero velocity allowed them to determine the TSRT, 86 
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which represented the joint position beyond which motor unit recruitment would begin 87 

[19]. In comparison to healthy muscles, highly velocity-dependent DSRTs and a reduced 88 

TSRT were found in the elbow flexors of persons post-stroke [19], and in a later study, in 89 

children with CP [20]. When the TSRT occurred within the biomechanical joint range, 90 

voluntary relaxation and activation was limited and interfered with movement [21]. Apart 91 

from proving to be a reliable and valid way to assess spasticity, SRTs also present a 92 

way to understand the influence of velocity and length on individual muscles. In the 93 

triceps surae of subjects with spinal cord injury, Van der Salm et al. found that it was the 94 

position, rather than the velocity that determined the onset of pathological muscle 95 

activation [22]. Levin and Feldman (1994) reported that the amount of muscle activation 96 

would be proportional to the amount and rate of muscle lengthening [19]. This was 97 

confirmed by a study of Malhotra et al. (2008) who showed that muscles that were 98 

visually classified into activation patterns, also had significantly different EMG gain 99 

values with an increasing joint angle [16]. 100 

In daily clinical practice, commonly used spasticity assessment scales such as the 101 

Modified Ashworth Scale (MAS) [23], do not provide information on the underlying 102 

pathological muscle activation pattern during stretch [24]. Instead, in the aforementioned 103 

studies, muscle activation patterns have mostly been described using instrumented 104 

techniques that record biomechanical and electrophysiological signals during the stretch. 105 

By measuring kinematics while simultaneously registering muscle response using EMG, 106 

the instrumented methods are able to identify velocity and position thresholds and gain. 107 

Quantitative methods to assess activation patterns have received less attention in the 108 

lower-limb muscles of children with spastic CP. Recently, a manually-controlled 109 

instrumented spasticity assessment has been verified as psychometrically sound to 110 
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quantitatively assess spasticity in the medial hamstrings (MEHs) and gastrocnemius 111 

(GAS) of children with CP by quantifying the increase in pathological muscle activation 112 

and joint torque with increasing stretch velocities [11]. By integrating biomechanical and 113 

electrophysiological data, this instrumented assessment also has the potential to record 114 

muscle activation patterns. Identifying muscle and subject-specific activation patterns in 115 

children with CP will lend insight into the pathophysiology of spasticity, and may 116 

eventually help to explain the observed treatment response variability. 117 

Therefore, the aims of this study were to (1) describe the occurrence of muscle 118 

activation patterns in children with CP; (2) develop a visual classification method to 119 

identify activation patterns; (3) apply quantitative parameters that validate the use of this 120 

visual classification; and (4) check the reliability of the developed parameters. These 121 

aims are realised using a previously validated instrumented spasticity assessment [11] 122 

with quantitative parameters [20]. In addition, we aimed to expand the protocol of the 123 

instrumented spasticity assessment to four lower limb muscles (MEHs, GAS, REF and 124 

adductors -ADDs) as we hypothesised that spasticity patterns would be both muscle- 125 

and subject-specific. 126 

 127 

Materials and Methods 128 

 129 

Ethics Statement 130 

Ethical approval was granted by the University Hospitals’ Ethics Committee 131 

(B32220072814). Parents and subjects were informed of the procedure and provided 132 

written informed consent in accordance with the Declaration of Helsinki. 133 

 134 
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Participants 135 

Fifty-four children with spastic CP between the ages of 5 and 18 years, participated in 136 

this study. Exclusion criteria were the presence of ataxia or dystonia, severe muscle 137 

weakness (<2+ on the Manual Muscle Test [25]), poor selectivity [26], bone deformities 138 

or contractures compromising the performance of pure single-plane muscle stretch, 139 

cognitive problems that could impede the measurements, previous lower limb 140 

orthopaedic surgery, intrathecal baclofen pump, selective dorsal rhizotomy, or BTX 141 

injections in the past 6 months. 142 

 143 

Measurement protocol 144 

All evaluations with the instrumented spasticity assessment were carried out by the 145 

same trained assessor. An overview of the measurement protocol per muscle can be 146 

found in Figure 1. Measurements of the MEHs and GAS have been previously described 147 

[11]. Stretches of the passive ADDs, MEHs, REF, and GAS, were performed by an 148 

examiner who moved one joint at a time (hip, knee, or ankle, respectively) while keeping 149 

non-moving joints fixated. For stretching the ADDs, hip abduction was performed with 150 

the subject in side-lying with the assessed leg on top, the knee extended, and the pelvis 151 

vertically aligned with the table ensuring no pelvic rotation. All other motions were 152 

performed in the sagittal plane with the patient in supine position. To stretch the MEHs 153 

and REF, knee flexion and extension were performed by manipulating a custom-made 154 

shank orthosis, strapped either to the posterior or anterior aspect of the lower leg, 155 

respectively. To stretch the GAS, ankle dorsiflexion was performed by manipulating a 156 

custom-made foot orthosis (see Figure 1). For each muscle, four stretch repetitions, at 157 

three velocities, over the full joint range of motion (ROM) were carried out. The hip, 158 
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knee, or ankle was first moved at low velocity during 5 seconds, followed by 159 

intermediate, medium velocity over 1 second, and finally at high velocity, performed as 160 

fast as possible. The interval between each repetition was 7 seconds, to account for the 161 

effects of decreased post-activation depression. 162 

The movement of the distal limb segment with respect to the proximal limb segment was 163 

tracked using two inertial measurement units (IMUs: Analog Devices, ADIS16354) that 164 

recorded angular velocity and acceleration. To compute the anatomical joint angles from 165 

IMU measurements, calibration trials with predefined motions were performed prior to 166 

the stretch trials. For the ADDs, a static calibration was carried out in side lying. The 167 

ankle and knee were supported by a frame, with the knee in extension, the hip joint 168 

positioned to zero degrees abduction, and the pelvis vertically aligned with the table 169 

ensuring no pelvic rotation. The calibration trials of the MEHs and GAS have been 170 

previously described [11]. For the REF and MEHs, the same calibration trial was used. 171 

Throughout the measurement procedure, surface EMG from the four muscles and, in the 172 

case of the GAS, MEHs and REF, also their antagonists (tibialis anterior, REF, and 173 

MEHs, respectively), was collected using a telemetric Zerowire system (Cometa, Milan, 174 

IT) at a sample rate of 2000 Hz. Surface EMG electrodes were placed according to a 175 

standardized procedure and palpation [27]. Antagonist activation was used to detect 176 

other tone problems (e.g. dystonia) or active assistance of the child during stretches. 177 

Prior to stretching, three repetitions of isometric Maximum Voluntary Contractions 178 

(MVCs) were carried out per muscle with the child in supine. EMG data from these 179 

contractions were used as an individual reference to evaluate surface EMG signals 180 

measured during the passive stretch trials [11]. 181 
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In addition to surface EMG and kinematics, joint torque was measured for the 182 

movements of the ankle and knee using a six degrees-of-freedom force/torque sensor 183 

load-cell attached to the orthoses (see Figure 1). Measurements of EMG, motion, and 184 

torque were synchronously captured in order to facilitate an integrated analysis. 185 

However, torque data were not analyzed for the current study. More information on 186 

internal joint torque calculation can be found in [11]. 187 

A complete measurement of all four muscles on one side took half an hour. In children 188 

with unilateral CP, only the affected side was tested. In bilaterally involved children, if 189 

time permitted, both legs were assessed. If not, the most affected side was assessed 190 

(defined as the side with the highest averaged MAS score of the four muscles, or in case 191 

of symmetrical averaged MAS scores, the side with the most severe averaged Modified 192 

Tardieu angle [28]). For a group of ten children the full procedure was repeated 193 

(including replacement of all the sensors) after a rest interval of two hours (during which 194 

they received no treatment). These repeated measurements were used to evaluate the 195 

assessment’s intra-rater reliability. In addition to instrumented spasticity assessments, 196 

another independent assessor performed a full clinical lower-limb assessment, including 197 

determination of spasticity by the MAS [23] and the Modified Tardieu angle [28]. 198 

 199 

Data analysis 200 

The root mean square (RMS) envelope of the surface EMG was computed using a low-201 

pass 30-Hz 6th order zero-phase Butterworth filter on the squared raw EMG signal. ROM 202 

and maximum angular velocity were obtained after applying a Kalman smoother [29] on 203 

the IMU-data. All stretch velocity profiles were bell-shaped. By visualizing the data, 204 
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stretch repetitions were excluded when performed out of plane (see Supplement 1 in 205 

[11]), at inconsistent velocities between different repetitions within a velocity trial 206 

(difference >20°/s), in case of poor quality surface EMG (low signal-to-noise ratio or 207 

obvious artefacts), and in case of antagonist activation. Data visualization and analyses 208 

were carried out using custom software implemented in MATLAB (version 7.10.0 209 

R2010a, MathWorks). 210 

 211 

Outcome parameters 212 

Per velocity trial, the average maximum angular velocity was calculated per muscle. 213 

EMG onset was defined according to the method of Staude and Wolf [30]. This 214 

automatic onset detection method applies an approximated generalized likelihood 215 

principle by detecting statistically optimal changes throughout the signal [30], and has 216 

been shown to perform significantly better compared to threshold based algorithms [31]. 217 

In those cases when no onset was automatically detected due to the activation interval 218 

being too short, the onset could be visually determined on an RMS-EMG time graph 219 

(Figure 2A and B) viewed in a graphical user interphase of the same custom software. 220 

DSRTs, defined as the angles at EMG onset during the different stretch repetitions, were 221 

plotted on a joint angle-angular velocity phase graph as in (Figure 2C) [20]. When EMG 222 

onset occurred at all three stretch velocity conditions (allowing for a minimum of three 223 

data points) the slope of a linear regression through the DSRTs was calculated. This 224 

value represented the sensitivity of the reflexes to stretch [20]. The intersection of this 225 

regression line with the velocity-axis represented the estimated joint angle at which the 226 

muscle would be activated while the limb was at rest, previously defined as the TSRT 227 

[20,32]. The TSRT was expressed as a percentage of the full ROM. This indicated 228 
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where in the available ROM the TSRT would occur, and allowed for comparison 229 

between muscles and between subjects. 230 

The effect of increasing velocity and joint angle on the gain in EMG was investigated by 231 

dividing each movement into three equal zones between 10-90% of the ROM. The 232 

zones were defined as the time windows corresponding to: 10-36.6% ROM (P1), 36.6-233 

63.3% ROM (P2), and 63.3-90% ROM (P3). The time windows corresponding to the 234 

extremes of the ROM (<10% and >90%) were excluded as they appeared to be 235 

influenced by the performance of the therapist and the comfort of the patient. Average 236 

RMS-EMG per position zone was defined as the area underneath the RMS-EMG curve, 237 

divided by the duration of the corresponding position zone. These values were 238 

normalized by expressing them as a percentage of the peak RMS-EMG value of the 239 

three MVCs. One normalized RMS-EMG value per position zone at each velocity was 240 

calculated by averaging all stretch repetitions per velocity trial. These values were then 241 

plotted on a 3D bar graph (Figure 2D). The following parameters were created:  242 

1. Within each position zone, the change in average normalized RMS-EMG between 243 

high and low velocity stretches (EMG P1 high-low, EMG P2 high-low, and EMG 244 

P3 high-low). 245 

2. At low velocity, the change in average normalized RMS-EMG between P2 and P1 246 

and between P3 and P1 (EMG low P2-P1, and EMG low P3-P1, respectively). 247 

 248 

Visual pattern categorization 249 

Two researchers independently allocated each muscle to one of five possible activation 250 

patterns. When a disagreement occurred between the two researchers, a third was 251 

involved and the majority decision defined the final pattern for each muscle. The 252 
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following criteria were used to classify muscles. Examples of graphs from each type of 253 

pattern can be found in Figure 3. 254 

1. A muscle was categorized as having a high velocity-dependent (HVD) activation 255 

pattern when EMG onset was not automatically, or visually detected in the 256 

stretches performed during the low velocity trial, but was detected during the 257 

stretches performed at the high velocity trial. Additionally, average normalized 258 

RMS-EMG increased with higher stretch velocity. 259 

2. A muscle was categorized as having a mixed high velocity-dependent (MHVD) 260 

activation pattern when EMG onset was automatically, or visually detected in all 261 

stretches performed during low, medium, and high velocity trials. EMG onset was 262 

detected earlier in the ROM the faster the velocity of the stretch. Average 263 

normalized RMS-EMG increased more with higher stretch velocity than with 264 

increasing ROM. 265 

3. A muscle was categorized as having a mixed (MIX) activation pattern when EMG 266 

onset was automatically, or visually detected in all stretches performed during 267 

low, medium, and high velocity trials. EMG onset was detected earlier in the ROM 268 

the faster the velocity of stretch, but average normalized RMS-EMG increased as 269 

much with higher stretch velocity as with increasing ROM. 270 

4. A muscle was categorized as having a low velocity-dependent (LVD) activation 271 

pattern when EMG onset was automatically, or visually detected around the same 272 

joint angle in all stretches performed during low, medium, and high velocity trials. 273 

Average normalized RMS-EMG increased with increasing ROM and was 274 

unaffected by higher velocity. 275 
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5. A muscle was categorized as having a mixed low velocity-dependent (MLVD) 276 

activation pattern when EMG onset was automatically, or visually detected in all 277 

stretches performed during low, medium, and high velocity trials. EMG onset was 278 

either detected earlier in the ROM with faster stretch velocity, or onsets were 279 

centered around one joint angle. Average normalized RMS-EMG increased more 280 

with increasing ROM than with higher stretch velocity. 281 

 282 

Statistical analysis 283 

Percentage exact agreement between researchers to visually classify the activation 284 

patterns was calculated. Freeman Holton tests were used to assess whether the final 285 

allocation to different activation patterns differed significantly between muscles. Intra-286 

rater reliability of the developed parameters was assessed using intraclass correlation 287 

coefficients (ICC1,1) [33] with 95% confidence intervals and the standard error of 288 

measurement (SEM). The SEM was calculated from the square root of the mean square 289 

error from one-way ANOVA [34]. ICC-values 0.80 indicated high; 0.60 moderately high; 290 

and 0.40 moderate reliability [35]. Face validity of the visual classification was tested by 291 

comparing the developed parameters between muscles categorized into activation 292 

patterns using either t-tests, or in case of more than two categories, ANOVA and post-293 

hoc Tukey tests. In addition, age, gender, and anatomic distribution of the motor 294 

impairment (unilateral vs. bilateral involvement) of the children whose muscles were 295 

classified into different activation patterns were compared per muscle using similar 296 

statistical tests (continuous parameters), or Chi Square tests (categorical parameters). 297 

Significance was set at p<0.05. All statistical analyses were carried out in SPSS (IBM 298 

Statistics 20). 299 
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 300 

Results 301 

Fifty-four children, 36 males and 19 females, participated in the study (Table 1). Due to 302 

time-restrictions, not all subjects underwent instrumented spasticity assessments in all 303 

four muscles. In bilaterally involved children, both sides were tested on 7 occasions for 304 

the MEHs, 3 times for the ADDs and the GAS, and once for the REF. Four ADDs, 7 305 

GAS, 3 MEHs and 2 REF were not classifiable and were therefore excluded for further 306 

data analysis. These muscles could not be classified because of: absence of any EMG 307 

activity at any velocity, poor EMG quality, or an unrecognizable and inconsistent pattern 308 

which was judged as being affected by the performance of the measurement. In total, 28 309 

ADDs, 44 GAS, 55 MEHs and 34 REF muscles were analysed. EMG onset was visually 310 

determined in 64 of the total 318 ADD stretch repetitions, in 40 of the 492 GAS stretch 311 

repetitions, in 38 of the 658 MEH stretch repetitions, and in 46 of the 392 REF stretch 312 

repetitions. 313 

Percentage exact agreement between assessors to categorise muscles into activation 314 

patterns ranged from 83% to 97%. An overview of the final pattern categorization can be 315 

found in Table 2. ADDs, GAS and REF were categorized as MHVD or HVD. One MEHs 316 

muscle was classified as MIX and one as LVD. The rest of the MEHs were classified as 317 

HVD, MHVD or, MLVD. There were significantly more GAS and REF muscles 318 

categorized as HVD than MEHs (p<0.001). Among MHVD patterns, there were 319 

significantly more ADDs and MEHs muscles than GAS and REF (p<0.001). To allow for 320 

group comparisons, the muscle with an LVD pattern was added to the MLVD group and 321 

the muscle with a MIX pattern was added to the MHVD group. 322 
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The reliability results of all outcome parameters can be found in Table 3. One ADDs trial 323 

from the reliability study was excluded due to bad quality EMG data. The reliability of the 324 

slope of the DSRTs and of the value of the TSRT could only be calculated in those 325 

muscles with an EMG onset at low velocity (in 8 of the 10 ADDs and MEHs). Relative 326 

reliability values were moderate to high (ICC 0.45-0.97). The SEM values tended to be 327 

lower for parameters of the MEHs and GAS than for the ADDs and REF. 328 

Most of the developed outcome parameters were significantly different between 329 

activation patterns highlighting good face validity (Table 4). Two parameters (EMG low 330 

P2-P1, and EMG low P3-P1) were able to distinguish between all patterns in all muscles 331 

(p<0.01). The slope of the DSRTs and TSRT were not calculated for HVD patterns as 332 

they required an EMG onset at low velocity. In the MEHs, the median slope of the 333 

DSRTs in MHVD patterns was significantly steeper (p=0.002), and the TSRT occurred 334 

significantly later in the ROM (p=0.001) than in MLVD patterns. Children with GAS 335 

muscles categorized as MHVD were younger than those with a HVD pattern (p=0.002). 336 

Children with MEHs muscles classified as MHVD or MLVD were more likely to be 337 

bilaterally involved, while the children with MEHs muscles classified as HVD often had a 338 

unilateral involvement (p=0.009) (Table 4). 339 

 340 

Discussion 341 

This is the first study to report and quantitatively assess different muscle activation 342 

patterns during passive stretching of lower-limb muscles in a large number of children 343 

with spastic CP. In addition, we are the first to report on the reliability of quantitative 344 

parameters that can distinguish between patterns in the lower-limb muscles of children 345 

with CP. The velocity profiles and EMG onsets were repeatable both in the individual 346 
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muscle (see Figures 2 and 3) and on a group analysis (Table 3). The relative intra-rater 347 

reliability of the TSRT in the MEHs and ADDs was higher than that reported by Calota et 348 

al. who used a similar hand-held device to calculate the TSRT in elbow flexors of 349 

persons post-stroke. It was also higher than that reported by Jobin and Levin (2000) who 350 

applied a torque motor to stretch the muscles of children with CP [20]. In the latter 351 

studies, EMG onset was automatically defined as the point at which the EMG signal 352 

increased 2SDs above the mean baseline EMG. This automatic onset detection method 353 

is inaccurate in situations of any baseline noise or gradual onset rise time [30]. Although 354 

more robust than the threshold method, the automatic detection method applied in the 355 

current study failed to detect any activation in 10% of all stretch repetitions. In these 356 

cases, onset was visually determined which may have contributed to the higher 357 

reliability. While visual determination is considered to provide accurate event detection 358 

due to the signal being assessed by an expert, it is still subjective and time consuming. 359 

In order to highlight true differences, it is important that the system’s measurement error 360 

is smaller than the average differences between patterns. The information from this 361 

study proves promising for carrying out a sensitivity analysis to compare alterations in 362 

muscle activation patterns over time, or after treatment. However, in the current study, 363 

the limited number of subjects used to assess reliability, especially for the TSRT, and 364 

the visual determination of EMG onset in 10% of the stretch repetitions, necessitates 365 

caution when interpreting the results. 366 

Assessing spasticity using instrumented measurements has been found superior to 367 

clinical spasticity assessments [5]. Quantitative interpretation of data by integration of 368 

muscle stretch characteristics with EMG, provided a visual as well as quantified way to 369 

highlight low or high velocity-dependent muscle activation. We applied previously-370 
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developed parameters that captured the sensitivity of reflex thresholds, and EMG gain. 371 

Both components are important contributors to spasticity severity. Thresholds represent 372 

the initiators of motor neuron recruitment (hyperexcitability) while EMG gain represents 373 

the number of motor neurons recruited (hypersensitivity). However, developing 374 

parameters that quantify reflex thresholds and gain, presents some methodological 375 

challenges. Wu et al. have shown that spasticity with velocity-dependency may also be 376 

partly due to position change because the joint is moved further in the ROM at higher 377 

velocities [36]. Secondly, applying manual stretches results in inconsistencies in velocity. 378 

These two issues confound the direct comparison of absolute EMG threshold joint 379 

angles between subjects and between muscles. Calculation of the slope of the DSRTs 380 

and the TSRT (as a percentage of the ROM) helped to overcome these issues. The 381 

slope of the DSRTs was found to be steeper and the TSRT later in the ROM in MHVD 382 

than in MLVD patterns. Calota et al. found that manual stretches at variable velocities 383 

are preferred for calculation of the TSRT [37]. In their study, the TSRT was more difficult 384 

to locate in muscles with low spasticity where the DSRT values were either widely 385 

dispersed due to faulty EMG onset detection, or only a limited number of DSRT values 386 

could be identified. Similarly, in the current study, the TSRT could not be calculated in 387 

pure HVD patterns, which may also be considered to reflect low levels of spasticity. 388 

EMG gain is known to be velocity-dependent [9,11]. This was confirmed in the current 389 

study by the existence of some velocity-dependent increase in EMG gain in all the 390 

studied muscles. However, in muscles categorised as MHVD and MLVD, EMG gain also 391 

increased with increasing muscle length even when stretch velocity was low. Similar, 392 

longer duration, tonic activations have been reported by other authors during low 393 

velocity stretches of spastic muscles in adults [8,9,22,38]. Two of the developed EMG 394 
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gain parameters successfully distinguished between all patterns in all muscles. These 395 

were: the change between position zones 1 and 2, and between position zones 1 and 3 396 

at low velocity. The higher these values, the lower the activation threshold. Furthermore, 397 

the SEM values for these two parameters for all muscles, and for the slope of the 398 

DSRTs of the MEHs, were sufficiently low to detect differences between activation 399 

patterns. Malhotra et al. (2008) identified pure LVD activation patterns in some spastic 400 

wrist flexors post-stroke, whereby there was no influence of increasing velocity on EMG 401 

gain [16]. Such a pattern was only found in one MEHs muscle in the current CP cohort, 402 

and confirms the finding that velocity-sensitivity is higher in children with CP than in 403 

persons post-stroke [20]. 404 

While it was not possible to explore the exact pathophysiological basis for the variations 405 

in the muscle activation patterns, possible contributing mechanisms may be considered. 406 

Pure HVD activation patterns may be related to the velocity sensitivity of Ia afferents and 407 

decreased central control (e.g. decreased presynaptic inhibition on Ia afferent pathways) 408 

[12]. LVD activation may be related to changes in the membrane properties, PIC, and 409 

the creation of plateau potentials in spinal neurons [13]. Some authors have also 410 

suggested that LVD activation reflects hypersensitivity of type II muscle spindle afferents 411 

[12,16]. However, histological results regarding fiber type distribution and transformation 412 

due to spasticity are inconclusive [39]. More conclusive are the findings of altered 413 

muscle properties in spastic versus healthy muscles; such as increased muscle cell 414 

stiffness, and decreased quality of the extracellular matrix [40]. These changes result in 415 

stiffer muscles that are less compliant. Since the discharge rate of muscle spindles is 416 

dependent on absolute, as well as relative fiber length, and the velocity of fiber 417 

movement [18,41], stiffer muscles may affect spindle hypersensitivity, possibly due to 418 
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increased fusimoto activation [42]. This may help explain why in LVD and MLVD 419 

activation patterns, the gain in RMS-EMG was sensitive to increasing muscle length. On 420 

the other hand, Dietz and Sinkjaer (2007) suggested, that changes in the muscle 421 

properties might also influence the stretch reflex behavior via non-spindle 422 

mechanoreceptors, such as pain-related group III/IV sensory muscle afferents [43]. 423 

The current study provides evidence of a large variability in the amount of activation and 424 

patterns among subjects. Similarly, Lebiedowska at al. (2009) also reported a larger 425 

heterogeneity of muscle activation patterns in response to stretch among subjects with 426 

CP compared to patients post-stroke [8]. In the current study, children who had an 427 

MHVD pattern in their GAS tended to be younger than those categorized as HVD. 428 

Additionally, children who had mixed patterns in their MEHs were more likely to be 429 

bilaterally involved. The link between certain patterns and patient or pathology 430 

characteristics should be further investigated in larger samples. 431 

The classification of activation patterns was also found to be muscle-specific. The ADDs 432 

and the MEHs had a greater tendency towards MHVD; the GAS and REF were more 433 

HVD. MLVD patterns were only present in the MEHs. The amount of muscle stretch, and 434 

therefore the number and type of activated muscle spindles, will depend on fibre 435 

arrangement, length, orientation and, as previously described, muscle extensibility [42]. 436 

Therefore, our finding that different activation patterns occur in different muscles was not 437 

unexpected. Additionally, several studies have reported length dependent activation 438 

described by findings of a relationship between the starting muscle length and the 439 

appearance of SRTs during passive stretch [18,21,41]. This relationship may also be 440 

muscle specific. The REF and GAS were found to be less sensitive when stretched from 441 

initially longer lengths [44], whilst in the hamstrings, the opposite was reported [12]. In 442 
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bi-articular muscles, the position of both joints is important when considering length 443 

dependency [21]. It is therefore possible that in the current study, due to the flexed hip at 444 

starting position, the MEHs were already being partly stretched from an elongated initial 445 

position, therefore increasing the likelihood of the SRT being reached faster. Since a 446 

similar starting position is applied during a clinical evaluation of the hamstrings (knee 447 

ROM, MAS, and Modified Tardieu angle), clinicians should be careful not to mistake 448 

MLVD activation with the evaluation of contracture. 449 

The results of this study open many avenues for future clinical and research 450 

investigations. Given the large treatment response variability among children with CP to 451 

treatment with BTX [5], an investigation into whether the type of activation pattern 452 

present affects treatment outcome, is warranted. Secondly, identifying muscle-specific 453 

patterns may help in the development of more targeted treatment modalities. For 454 

example, a longer casting period may be recommended for MLVD muscles. Thus far, 455 

the muscle activation patterns described in literature do not seem to be related to the 456 

amount or shape of joint torque produced as the passive muscle is lengthened [16]. 457 

Nevertheless, a comprehensive assessment of spasticity should also include an 458 

evaluation of resistance to muscle stretch. Differentiation between the neural and non-459 

neural contributions to increased joint torque during muscle stretch is essential to 460 

effectively distinguish spasticity from contracture. Therefore, assessments should be 461 

expanded to investigate how different activation patterns specifically contribute to the 462 

measured joint torque. Finally, as the ultimate goal of spasticity management is to 463 

improve function, the extent to which the existence of different activation patterns are 464 

related to abnormal voluntary movement and gait patterns should be further investigated 465 

[21]. 466 
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To conclude, different muscle activation patterns were identified in four lower limb 467 

muscles of children with spastic CP. Activation patterns were found to be subject and 468 

muscle-specific. These differences can best be quantified by parameters that highlight 469 

the effect of increased muscle lengthening on the gain in EMG, during low velocity 470 

stretches. Such parameters were reliable, contained a low measurement error, and were 471 

sensitive to distinguish between different activation patterns in subjects and muscles. 472 

Information on the type, and quantification of the different activation patterns, may be 473 

useful in explaining response variability and directing spasticity treatment. 474 
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 596 

Figure Legends 597 

Figure 1. Measurement procedure for four lower limb muscles. ADDs, adductors; MEHs, 598 

medial hamstrings; REF, rectus femoris; GAS, gastrocnemius. The arrow indicates the 599 

direction of joint movement during stretch. Instrumentation: (1) two inertial measurement 600 

units (joint angle measurement); (2) surface electromyography (muscle activation 601 

measurement); and (3) a six DoF force-sensor attached to a shank or foot orthosis 602 

(torque measurement); (4) support frame.  603 

 604 

Figure 2. Graphs used during the visual categorization into patterns and for parameter 605 

development. Root mean square electromyography plotted versus time for medial 606 

hamstring during low (black), medium (gray, dashed) and, high (gray, dotted) velocity 607 

stretches. Zero seconds was expressed as the time that maximum velocity occurred. In 608 

A. a mixed low velocity-dependent, and in B. a high velocity-dependent activation 609 

pattern, is shown. C. Dynamic stretch reflex thresholds (DRSTs - dots) of the medial 610 

hamstrings in an angle-velocity phase graph at three stretch velocities: high (continuous 611 

line), medium (dotted line) and low (dashed line) velocities. The slope of a regression 612 

line through the DRSTs represents the sensitivity of reflexes to velocity [37]. The 613 

intersection of the regression line with the velocity-axis is defined as the Tonic stretch 614 

reflex threshold (TSRT) [37]. D. Average normalized RMS-EMG across three position 615 

zones (P1, P2, P3) and across three velocities (low, medium, high). I: Change in 616 

average normalized RMS-EMG in P1 (position zone 1: 10-36.6% of the ROM) between 617 
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high and low velocity; II: Change in average normalized RMS-EMG in P2 (position zone 618 

2: 36.6-63.3% of the ROM) between high and low velocity; III: Change in average 619 

normalized RMS-EMG in P3 (position zone 3: 63.3-90% of the ROM) between high and 620 

low velocity; IV: Change in average normalized RMS-EMG at low velocity between P1 621 

and P2; V: Change in average normalized RMS-EMG at low velocity between P1 and 622 

P3. 623 

 624 

Figure 3. Examples of different activation patterns in the medial hamstrings. The graphs 625 

in the first, second and third column are further explained by Figures 2A, B, and C. 626 

EMG, electromyography; ROM, joint range of motion; RMS, root mean square. 627 

628 
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Tables 629 

 630 
Table 1. Patients characteristics 631 

Characteristics Subjects (n=54) Subjects reliability study (n=10) 

Age (mean ± SD) 10.9yrs ± 3.9 yrs 11.9yrs ± 3.8yrs 

Gender (n) 36 Males; 18 Females 7 Males; 3 Females 

Level of involvement (n) 
22 Unilateral (11 RH; 11 LH)  
32 Bilateral (28 Di; 2 Tri; 2 Quad) 

4 Unilateral (2 LH; 2 RH) 
6 Bilateral (5 Di; 1 Quad) 

GMFCS level I-IV (n) I: 32; II: 15; III: 6; IV: 1 I: 5; II: 4; III: 0; IV: 1 

MAS score 0-5  0 1 1+ 2 3 0 1 1+ 2 3 

MAS ADDs (n) 8 7 4 7 2 1 5 2 2 0 

MAS MEHs (n)  2 8 23 16 6 0 0 2 7 1 

MAS GAS (n) 0 4 18 18 4 0 0 4 4 2 

MAS REF (n) 13 11 5 4 1 3 2 2 2 1 

Abbreviations: RH, right hemiplegia; LH, left hemiplegia; Di, diplegia; Tri, triplegia; Quad, quadriplegia; 632 
GMFCS, Gross Motor Function Classification Score; MAS, Modified Ashworth Scale; ADDs, adductors; 633 
GAS, gastrocnemius; MEHs, medial hamstrings; REF, rectus femoris 634 
 635 
 636 
Table 2. Allocation of muscles to activation patterns based on visual categorization. 637 

Activation pattern 
Muscle 

MIX MLVD MHVD HVD LVD PEA 

ADDs 0 0 20 8 0 85.71% 

GAS 0 0 13 31 0 72.73% 

MEHs 1 7 34 12 1 83.64% 

REF 0 0 7 27 0 97% 

*p-value NR NR <0.001 <0.001 NR NR 

Note: Percentage Exact Agreement (PEA) of two independent assessors. The final allocation was based 638 
on majority decision with involvement of a third independent assessor. 639 
Abbreviations: ADDs, adductors; GAS, gastrocnemius; MEHs, medial hamstrings; REF, rectus femoris; 640 
MIX, mixed; MHVD, mixed, high velocity-dependent; MLVD, mixed, low velocity-dependent; HVD, high 641 
velocity-dependent, LVD, low velocity-dependent; PEA, percentage exact agreement; NR, not relevant. 642 
*Freeman Holton tests for significantly different allocation of muscles to HVD and MHVD patterns p<0.05 643 
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Table 3A. Averages and standard deviations (SD) of parameters of the adductors (ADDs) and gastrocnemius (GAS) in both sessions (test, retest) 644 
and intra-class correlation coefficients (ICC) and standard error of measure (SEM) for intra-rater reliability. 645 

Table 3B. Averages and standard deviations (SD) of parameters of the medial hamstrings (MEHs) and rectus femoris (REF) in both sessions (test, 646 
retest) and intra-class correlation coefficients (ICC) and standard error of measure (SEM) for intra-rater reliability. 647 

Abbreviations: VMAX, maximum angular velocity; low, low velocity stretches; high, high velocity stretches; ROM, range of motion; EMG, 648 
electromyography; P1, position zone 1; P2, position zone 2; P3, position zone 3; DSRT, dynamic stretch reflex threshold; TSRT, tonic stretch reflex 649 
threshold. 650 

 ADDs (n=9) GAS (n=10) 

 
Test Retest ICC SEM Test Retest ICC SEM 

VMAX low (°/s) 11.52 (2.76) 10.87 (3.68) 0.54 2.66 16.46 (5.99) 15.09 (7.73) 0.94 2.24 

VMAX med (°/s) 49.08 (9.31) 40.27 (7.26) -0.07 7.53 66.52 (19.01) 68.22 (16.34) 0.74 12.02 

VMAX high (°/s) 102.52 (19.82) 88.74 (16.71) 0.62 11.28 163.50 (30.97) 158.32 (18.85) 0.90 10.65 

ROM (°) 19.82 (37.64)  16.71 (33.37) 0.48 7.17 51.53 (8.77) 50.27 (6.68) 0.86 3.93 

EMG P1 high-low (%) 7.13 (6.95) 6.30 (5.82) 0.69 4.56 0.79 (2.19) 0.56 (1.83) 0.51 1.69 

EMG P2 high-low (%) 12.30 (9.30) 10.68 (7.53) 0.82 4.75 13.54 (9.60) 15.38 (15.53) 0.88 6.13 

EMG P3 high-low (%) 10.09 (5.39) 9.93 (6.60) 0.80 3.63 7.09 (5.76) 5.24 (6.97) 0.61 4.83 

EMG low P2-P1 (%) 0.93 (1.00) 1.26 (1.84) 0.86 0.75 0.21 (0.36) 0.39 (0.57) 0.81 0.22 

EMG low P3-P1 (%) 3.55 (3.28) 3.71 (4.10) 0.75 2.48 1.59 (2.36) 1.57 (2.11) 0.69 1.60 

Slope of the DSRTs (°/s) (n=8) -0.28 (0.13) -0.35 (0.20) 0.75 0.10 NR NR NR NR 

TSRT (°) (n=8) 18.27 (11.72) 14.71 (9.49) 0.91 3.74 NR NR NR NR 

 MEHs (n=10) REF (n=10) 

 
Test Retest ICC SEM Test Retest ICC SEM 

VMAX low (°/s) 17.46 (7.65) 17.61 (6.36) 0.86 3.59 19.81 (6.18) 18.48 (8.18) 0.96 2.00 

VMAX med (°/s) 98.84 (30.09) 102.26 (25.06) 0.71 19.21 107.65 (33.08) 98.61 (30.08) 0.90 13.52 

VMAX high (°/s) 265.05 (39.18) 263.14 (41.17) 0.89 18.34 249.01 (34.47) 246.70 (33.98) 0.68 25.17 

ROM (°) 69.84 (13.15) 72.82 (14.34) 0.96 3.09 86.83 (10.23) 86.74 (15.76) 0.91 5.80 

EMG P1 high-low (%) 4.49 (5.04) 2.09 (3.35) 0.45 3.46 10.60 (17.60) 11.66 (20.23) 0.57 15.44 

EMG P2 high-low (%) 17.16 (9.72) 18.65 (9.65) 0.76 6.21 35.21 (28.82) 46.90 (46.63) 0.78 22.08 

EMG P3 high-low (%) 16.97 (12.88) 14.12 (6.01) 0.76 6.21 24.52 (18.82) 27.70 (25.73) 0.86 11.71 

EMG low P2-P1 (%) 1.87 (2.33) 1.81 (2.06) 0.84 1.20 0.16 (0.39) 0.27 (0.51) 0.70 0.32 

EMG low P3-P1 (%) 4.42 (4.81) 5.11 (5.63) 0.89 2.43 0.62 (0.95) 0.96 (1.65) 0.44 1.18 

Slope of the DSRTs (°/s) (n=8) -0.07 (0.11) -0.05 (0.06) 0.89 0.04 NR NR NR NR 

TSRT (°) (n=8) 83.13 (15.49) 83.11 (14.73) 0.97 4.06 NR NR NR NR 
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Table 4A. Means and (SD) of outcome parameters and patient characteristics for the adductors (ADDs) and gastrocnemius (GAS) - comparison 651 
within each muscle between activation patterns 652 

 653 
Table 4B. Means and (SD) of outcome parameters and patient characteristics for the medial hamstrings (MEHs) and rectus femoris (REF)- 654 
comparison within each muscle between activation patterns 655 

 ADDs GAS 

Parameters MHVD (n=20) HVD (n=8) p MHVD (n=13) HVD (n=31) p 

VMAX low (°/sec) 12.70 (3.58) 13.92 (3.63) 0.45 18.60 (5.48) 18.35 (4.39) 0.87 

VMAX high (°/sec) 108.30 (28.51) 130.61 (44.90) 0.13 164.27 (23.97) 168.30 (32.33) 0.69 

ROM (°) 41.41 (11.68) 47.43 (15.81) 0.28 54.21 (11.11) 53.86 (9.87) 0.91 

EMG P1 high-low (%) 7.38 (7.61) 11.58 (18.15) 0.39 1.04 (1.60) 0.21 (1.52) 0.11 

EMG P2 high-low (%) 12.12 (9.41) 3.67 (4.40) 0.02
**
 13.34 (6.04) 7.45 (7.56) 0.02

**
 

EMG P3 high-low (%) 11.69 (9.46) 4.64 (3.82) 0.53 8.00 (5.21) 3.62 (4.37) 0.01
**
 

EMG low P2-P1 (%) 1.02 (1.18) <0.01 (0.47) 0.03
**
  0.53 (0.71) 0.10 (0.32) 0.01

**
 

EMG low P3-P1 (%) 3.84 (4.13) 0.31 (0.86) 0.03
**
 3.00 (2.26) 0.45 (0.69) <0.01

**
 

Slope of DSRTs (°/s) 0.29 (0.19) NR NR 0.06 (0.03) NR NR 

TSRT % ROM (%) 76.42 (21.10) NR NR 58.67 (11.20) NR NR 

Age (years) 11.59 (3.83) 10.92 (4.02) 0.68 8.57 (2.83) 12.19 (3.45) <0.01
**
 

Gender: male/female (n) 13/7 4/4 0.46 8/5 23/8 0.40 

Unilateral/bilateral involvement (n) 7/13 2/6 0.61 3/10 14/17 0.17 

 MEHs REF 

Parameters MLVD (n=8) MHVD (n=35) HVD (n=12) p MHVD (n=7) HVD (n=27) p 

VMAX low (°/sec) 21.85 (10.37) 21.95 (5.90) 20.66 (3.70) 0.83 26.26 (8.40) 22.18 (5.66) 0.13 

VMAX high (°/sec) 239.26 (5.40) 283.26 (43.68) 310.08 (27.89) <0.01
*
 230.67 (45.46) 252.90 (29.37) 0.12 

ROM (°) 67.63 (19.73) 77.7 (9.52) 81.32 (7.77) 0.03 85.64 (16.99) 89.02 (9.39) 0.48 

EMG P1 high-low (%) 4.46 (10.59) 4.32 (3.67) 0.80 (1.29) 0.10 8.75 (9.54) 7.81 (11.38) 0.84 

EMG P2 high-low (%) 29.19 (22.72) 22.82 (13.51) 7.93 (6.23) <0.01
* b,c

 55.64 (57.21) 30.77 (39.95) 0.19 

EMG P3 high-low (%) 10.44 (4.41) 16.65 (12.03) 8.81 (6.64) 0.05 36.34 (36.80) 20.64 (23.85) 0.18 

EMG low P2-P1 (%) 8.26 (8.82) 1.38 (1.74)  0.10 (0.27) <0.01
* a, c

 10.69 (16.15) -0.03 (0.23) <0.01
**
 

EMG low P3-P1 (%) 23.47 (24.79) 4.24 (4.24) 0.25 (0.50) <0.01
* a, b, c

 11.17 (11.43) 0.09 (0.44) <0.01
**
 

Slope of DSRTs (°/s) 0.02 (0.05) 0.10 (0.08) NR 0.01
**
 0.10 (0.08) NR NR 

TSRT % ROM (%) 30.48 (9.23) 58.22 (10.10) NR <0.01
**
 47.07 (17.04) NR NR 

Age (years) 11.00 (4.13) 10.38 (3.33) 11.25 (3.53) 0.72 10.03 (3.77) 11.46 (3.72) 0.37 

Gender: male/female (n) 5/3 24/11 7/5 0.80 5/2 17/7 0.68 

Unilateral/bilateral involvement (n) 0/8 12/23 8/4 <0.01
* b, c

 2/5 11/16 0.56 
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Abbreviations: ADDs, adductors; GAS, gastrocnemius; MEHs, medial hamstrings; REF, rectus femoris; MHVD, mixed, high velocity-dependent; 656 
HVD, high velocity-dependent; MLVD, mixed, low velocity-dependent; VMAX, maximum angular velocity; low, low velocity stretches; high, high 657 
velocity stretches; ROM, range of motion; EMG, electromyography; P1, position zone 1; P2, position zone 2; P3, position zone 3; DSRTs, dynamic 658 
stretch reflex thresholds; TSRT, tonic stretch reflex threshold. 659 
*
Significant difference: p<0.05 (ANOVA/Freeman Holton) 660 

**
Significant difference: p<0.05 (t-test/Chi square) 661 

a
Significant difference between MHVD and MLVD (Post-hoc Tukey test/Chi Square) 662 

b
Significant difference between MHVD and HVD (Post-hoc Tukey test/Chi Sqaure) 663 

c
Significant difference between MLVD and HVD (Post-hoc Tukey test/Chi Square) 664 
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this naming takes both the threshold and the gain into account when describing the level of 
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hyperexcitability (low threshold for activation) and hypersensitivity (amount of activation) of the 

stretch reflex.  
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p. 5. l. 88-90. In comparison to healthy muscles, highly velocity-dependent DSRTs and a reduced 
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p. 12. l. 260-262. A muscle was categorized as having a mixed high velocity-dependent (MHVD) 
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p. 13. l. 276-278. A muscle was categorized as having a mixed low velocity-dependent (MLVD) 
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p. 14. 316-322. ADDs, GAS and REF were categorized as MHVD or HVD. One MEHs muscle 

was classified as MIX and one as LVD. The rest of the MEHs were classified as HVD, MHVD 

or, MLVD. There were significantly more GAS and REF muscles categorized as HVD than 

MEHs (p<0.001). Among MHVD patterns, there were significantly more ADDs and MEHs 

muscles than GAS and REF (p<0.001). To allow for group comparisons, the muscle with an LVD 

pattern was added to the MLVD group and the muscle with a MIX pattern was added to the 

MHVD group. 

 

p. 15. 332-339. The slope of the DSRTs and TSRT were not calculated for HVD patterns as they 

required an EMG onset at low velocity. In the MEHs, the median slope of the DSRTs in MHVD 

patterns was significantly steeper (p=0.002) and the TSRT occurred significantly later in the 

ROM (p=0.001) than in MLVD patterns. Children with GAS muscles categorized as MHVD 

were younger than those with a HVD pattern (p=0.002). Children with MEHs muscles classified 

as MHVD or MLVD were more likely to be bilaterally involved, while the children with MEHs 

muscles classified as HVD often had a unilateral involvement (p=0.009) (Table 4). 

 



p. 16-17. l. 368-370. Quantitative interpretation of data by integration of muscle stretch 

characteristics with EMG provided a visual as well as quantified way to highlight low or high 

velocity-dependent muscle activation. 

 

p. 17. l. 381-383. The slope of the DSRTs was found to be steeper and the TSRT later in the 

ROM in MHVD than in MLVD patterns. 

 

p. 17. l. 387-388. Similarly, in the current study, the TSRT could not be calculated in pure HVD 

patterns which may also be considered to reflect low levels of spasticity. 

 

p. 17. l. 391-392. However, in muscles categorised as MHVD and MLVD, EMG gain also 

increased with increasing muscle length even when stretch velocity was low. 

 

p. 18. l. 400-402. Malhotra et al. (2008) identified pure LVD activation patterns in some spastic 

wrist flexors post-stroke whereby there was no influence of increasing velocity on EMG gain 

[16]. 

 

p. 18. l. 407-412. Pure HVD activation patterns may be related to the velocity sensitivity of Ia 

afferents and decreased central control (e.g. decreased presynaptic inhibition on Ia afferent 

pathways) [12]. LVD activation may be related to changes in the membrane properties, PIC, and 

the creation of plateau potentials in spinal neurons [13]. Some authors have also suggested that 

LVD activation reflects hypersensitivity of type II muscle spindle afferents [12,16]. 

 

p. 19. l. 419-420. This may help explain why in LVD and MLVD activation patterns, the gain in 

RMS-EMG was sensitive to increasing muscle length. 

 

p. 19. l. 427-428. In the current study, children who had an MHVD pattern in their GAS tended to 

be younger than those categorized as HVD. 

 

p. 19. l. 432-434. The ADDs and the MEHs had a greater tendency towards MHVD; the GAS and 

REF, were more HVD. MLVD patterns were only present in the MEHs. 

 

p. 20. l. 446-449. Since a similar starting position is applied during a clinical evaluation of the 

hamstrings (knee ROM, MAS, and Modified Tardieu angle), clinicians should be careful not to 

mistake MLVD activation with the evaluation of contracture. 

 

p. 20. l. 454-455. For example, a longer casting period may be recommended for MLVD muscles. 

 

 

2. l. 61-62. Also, in order to avoid confusion, the line should read: "....physiological 

mechanisms other than the phasic stretch reflex'.  

 

Reply: this alteration has been made 

 

3. l. 64. Please remove the word 'passive' here. Indeed, the stretch is of the passive muscle. 

The stretch itself is not passive. This should be corrected throughout the manuscript. 

 



Reply: Yes, the authors agree that the word passive is incorrectly placed and appreciate that this 

was pointed out by the reviewer. Corrections have been made throughout the manuscript. 

 

Changes in the manuscript: 

p 2. l. 17. The definition of spasticity as a velocity-dependent activation of the tonic stretch reflex 

during a stretch to a passive muscle is the most widely accepted. 

 

p. 2. l. 26-28. With the subject relaxed, single-joint, sagittal-plane movements of the hip, knee, 

and ankle were performed to <the word ‘passively’ has been removed> stretch the lower-limb 

muscles at three increasing velocities. 

 

p. 3. l. 59-61. Multiple studies have also shown increased activation when relaxed muscles were 

<the word ‘passively’ has been removed> stretched at very low velocities [7–11] sometimes 

continuing once the movement had stopped [12]. 

 

p. 4. l. 83-84. DSRTs were defined as the joint angles at which electromyography (EMG), evoked 

by <the word ‘passive’ has been removed> stretch at defined velocities, increased. 

 

p. 5. l. 101-105. In daily clinical practice, commonly used spasticity assessment scales, such as 

the Modified Ashworth Scale (MAS) [23], do not provide information on the underlying 

pathological muscle activation pattern during <the word ‘passive’ has been removed> stretch 

[24]. Instead, in the aforementioned studies, muscle activation patterns have mostly been 

described using instrumented techniques that record biomechanical and electrophysiological 

signals during the <the word ‘passive’ has been removed> stretch. 

 

p. 7. l. 137-142. Exclusion criteria were the presence of ataxia or dystonia, severe muscle 

weakness (<2+ on the Manual Muscle Test [25]), poor selectivity [26], bone deformities or 

contractures compromising the performance of pure single-plane muscle stretch, cognitive 

problems that could impede the measurements, previous lower limb orthopaedic surgery, 

intrathecal baclofen pump, or selective dorsal rhizotomy, or BTX injections in the past 6 months.  

 

p. 7. l. 148-150. Stretches to the passive ADDs, MEHs, REF, and GAS, were performed by an 

examiner who moved one joint at a time (hip, knee, or ankle, respectively) while keeping non-

moving joints fixated. 

 

p. 7. l. 157-158. For each muscle, four stretch repetitions <the words ‘of passive stretch’ have 

been removed>, at three velocities, over the full joint range of motion (ROM) were carried out. 

 

p. 8. l. 165-167. To compute the anatomical joint angles from IMU measurements, calibration 

trials with predefined motions were performed prior to the <the word ‘passive’ has been 

removed> stretch trials. 

 

p. 8. l. 176-181. Antagonist activation was used to detect other tone problems (e.g. dystonia) or 

active assistance of the child during <the word ‘passive’ has been removed> stretches. Prior to 

<the word ‘passive’ has been removed> stretching, three repetitions of isometric Maximum 

Voluntary Contractions (MVCs) were carried out per muscle with the child in supine. EMG data 



from these contractions were used as an individual reference to evaluate surface EMG signals 

measured during the passive stretch trials [11]. 

 

p. 9-10. l. 204-208. By visualizing the data, stretch repetitions were excluded when <the words 

‘passive stretches were’ have been removed> performed out of plane (see Supplement 1 in [11]), 

at inconsistent velocities between different repetitions within a velocity trial (difference >20°/s), 

in case of poor quality surface EMG (low signal-to-noise ratio or obvious artefacts), and in case 

of antagonist activation. 

 

p. 16. l. 350-351. It was also higher than that reported by Jobin and Levin (2000) who applied a 

torque motor to stretch the muscles of children with CP [20]. 

 

p. 19. l. 425-427. Similarly, Lebiedowska at al. (2009) also reported a larger heterogeneity of 

muscle activation patterns in response to during <the word ‘passive’ has been removed> stretch 

among subjects with CP compared to patients post-stroke [8]. 

 

p. 20. l. 455-457. Thus far, the muscle activation patterns described in literature do not seem to be 

related to the amount or shape of joint torque produced as the passive muscle is <the word 

‘passively’ has been removed> lengthened [16]. 

 

p. 20. l. 458-461. Nevertheless, a comprehensive assessment of spasticity should also include an 

evaluation of resistance to muscle <the word ‘passive’ has been removed> stretch. Differentiation 

between the neural and non-neural contributions to increased joint torque during <the word 

‘passive’ has been removed> muscle stretch is essential to effectively distinguish spasticity from 

contracture. 

 

 
 

2. Is the manuscript technically sound, and do the data support the conclusions? 

 

The manuscript must describe a technically sound piece of scientific research with data that 

supports the conclusions. Experiments must have been conducted rigorously, with 

appropriate controls, replication, and sample sizes. The conclusions must be drawn 

appropriately based on the data presented. 

 

Reviewer #1: Yes 

 

 
 

Please explain (optional). 

 

Reviewer #1: (No Response) 

 

 
 

3. Has the statistical analysis been performed appropriately and rigorously? 

 



Reviewer #1: Yes 

 

 
 

Please explain (optional). 

 

Reviewer #1: (No Response) 

 

 
 

4. Does the manuscript adhere to standards in this field for data availability? 

 

Authors must follow field-specific standards for data deposition in publicly available 

resources and should include accession numbers in the manuscript when relevant. The 

manuscript should explain what steps have been taken to make data available, particularly 

in cases where the data cannot be publicly deposited. 

 

Reviewer #1: Yes 

 

 
 

Please explain (optional). 

 

Reviewer #1: (No Response) 

 

 
 

5. Is the manuscript presented in an intelligible fashion and written in standard English? 

 

PLOS ONE does not copyedit accepted manuscripts, so the language in submitted articles 

must be clear, correct, and unambiguous. Any typographical or grammatical errors should 

be corrected at revision, so please note any specific errors below. 

 

Reviewer #1: Yes 

 

 
 

6. Additional Comments to the Author (optional) 

 

Please offer any additional comments here, including concerns about dual 

publication or research or publication ethics. 

 

Reviewer #1: (No Response) 

 

 
 

7. If you would like your identity to be revealed to the authors, please include your name 

https://owa.groupware.kuleuven.be/owa/redir.aspx?C=XOMuWfQlIUO0F5wYJaBFh8H6B3vv9tAIGeclw_d7VqWMHnrhdDtsk-xS49sc3kZjEFw2yciS4bI.&URL=http%3a%2f%2fwww.plosone.org%2fstatic%2fpublication.action%23results
https://owa.groupware.kuleuven.be/owa/redir.aspx?C=XOMuWfQlIUO0F5wYJaBFh8H6B3vv9tAIGeclw_d7VqWMHnrhdDtsk-xS49sc3kZjEFw2yciS4bI.&URL=http%3a%2f%2fwww.plosone.org%2fstatic%2fpublication.action%23results
https://owa.groupware.kuleuven.be/owa/redir.aspx?C=XOMuWfQlIUO0F5wYJaBFh8H6B3vv9tAIGeclw_d7VqWMHnrhdDtsk-xS49sc3kZjEFw2yciS4bI.&URL=http%3a%2f%2fwww.plosone.org%2fstatic%2fpublication.action%23ethical


here (optional). 

 

Your name and review will not be published with the manuscript. 

 

Reviewer #1: (No Response) 
 

 


