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Highlights 

1. Quantification of the neural torque component of ankle hypertonia 
2. Comparison of the neural torque component between children with CP and 

control 
3. Sensitivity of the neural torque component to treatment with Botulinum Toxin-A 

Abstract  
Clinical assessment of spasticity is compromised by the difficulty to distinguish neural from 
non-neural components of increased joint torque. Quantifying the contributions of each of these 
components is crucial to optimize the selection of anti-spasticity treatments such as Botulinum Toxin 
(BTX). The aim of this study was to compare different biomechanical parameters that quantify the 
neural contribution to ankle joint torque measured during manually-applied passive stretches to the 
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gastrocsoleus in children with spastic cerebral palsy (CP). The gastrocsoleus of 53 children with CP 
(10.9 ± 3.7yrs; females n=14; bilateral/unilateral involvement n=28/25; Gross Motor Functional 
Classification Score I-IV) and 10 age-matched typically developing (TD) children were assessed using a 
manually-applied, instrumented spasticity assessment. Joint angle characteristics, root mean square 
electromyography and joint torque were simultaneously recorded during passive stretches at 
increasing velocities. From the CP cohort, 10 muscles were re-assessed for intra-rater reliability and 19 
muscles were re-assessed 6 weeks post-BTX. A parameter related to mechanical work, containing both 
neural and non-neural components, was compared to newly developed parameters that were based on 
the modeling of passive stiffness and viscosity. The difference between modeled and measured 
response provided a quantification of the neural component. Both types of parameters were reliable 
(ICC>0.95) and distinguished TD from spastic muscles (p<0.001). However, only the newly developed 
parameters significantly decreased post-BTX (p=0.012). Identifying the neural and non-neural 
contributions to increased joint torque allows for the development of individually tailored tone 
management. 

 

 

1. Introduction 

Common clinical assessment of spasticity in children with Cerebral Palsy (CP) is based 

on manipulation of the joint to feel the resistance in a passively stretched muscle. In 

1954, Tardieu and colleagues emphasized the importance of differentiating between 

different causes of this increased resistance, or hypertonia [1]. According to the currently 

prevailing definition of spasticity, an increase in resistance during passive muscle stretch 

is termed spasticity when there is an accompanying velocity-dependent pathological 

stretch reflex activation resulting in muscle activity that resists or stops the motion[2]. In 

the absence of muscle activation, all other excessive increase in resistanceduring 

stretch isthought to be caused by passivestiffness and viscosity due to alterations of 

intra- and extracellular muscle, soft-tissue, and joint structures.Therefore, different 

components contribute to the feeling of increased resistancein passively stretched 

muscle: neural and non-neural components. Direct quantification of the different 

components in a clinical setting is highly relevant allowing for comprehensive tone 

assessment. 
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Tone-reducing medication, such as Botulinum Toxin-A (BTX)targets the neural 

componentby blocking the release of acetylcholine at the cholinergic nerve terminals, 

which prevents the muscle from contracting. This treatment does not work when the 

increased resistanceis of non-neural origin [3]. Methods to treat passive stiffness include 

casting, orthotic management, or when fixed contractures arise, orthopedic surgery. 

Therefore, to provide the appropriate treatment to children with CP, it is imperativeto 

differentiate and quantify the components. 

 

The clinical test proposed by Tardieu, and its modifications [4]attempt to differentiate 

components bycomparing the range of motion (ROM) during a slow muscle stretch (R1 

angle) to thecatch angle during a fast stretch (R2).However, muscle activation during 

slow stretch has been reported in some spastic muscles[5,6]. Without verifying whether 

the muscle is inactive, the validity of R1 is uncertain. Additionally, inaccuracies when 

manually determining R2 have been reported [5]and its reliability is further compromised 

since the velocity of the fast stretch is not measured.Onlyan assessment that 

simultaneously collectselectrophysiological and biomechanical signals during passive 

muscle stretch has the potential to differentiate theinfluence of different componentsin a 

valid and reliable way. This approach is used in research settings using motor-driven 

devices [7–9]thatpermitstandardization ofpositiondisplacements[7] or of the applied 

force[9].For example, using a torque-motor that applied sinusoidal movements ata 

constant force, Lakie et al. used the peak resonance frequency as a measure oflinear 

stiffness and viscosity in the wrist [9]. On the other hand, by controlling displacement 

position, De Vlugt et al. modeled the contribution of different non-linear components to 
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measured ankle torque[7].However, to what extent ‘clinically’ assessed spasticity can be 

replicated by a motor-driven device is questionable. Rabita et al. [10]have shown that 

fewer stretch-reflexes are elicited when spastic muscles arestretched by a robot, than by 

an examiner. 

 

A different group of evaluation techniques makes use of the straight forward clinical 

application combined with a quantitative approach, and are referred to as instrumented 

manual techniques [11,12]. These methods replicate a clinical spasticity testby having 

an examiner applymuscle stretches while simultaneously 

collectingsynchronizedelectromyography (EMG), kinematics, and/or joint torque. By 

examining the change in signals with increasing muscle lengthening velocity, 

parameters that quantify spasticity have been developedand have been shown to be 

applicable and valid in clinical settings[6,11]. However, in these studies, the velocity-

dependent effects from both neural and non-neuralcomponents are reflected in the 

parameters that quantify joint torque. To differentiate between the components, further 

muscle modeling is required. 

 

The non-linear behavior of passive stiffness and viscosity have been well described in 

healthy and hemiplegic subjects [7,13]. However, to the best of our knowledge, these 

models have rarely been applied to data from an instrumented manual spasticity 

assessment[14]. The aim of this study was to quantify the amount of neural contribution 

to the joint torque measured during stretches of the gastrocsoleusin children with spastic 

CP. To achieve this,we model the non-neural components of passive stiffness and 

viscosity on data collected during stretches at increasing velocities. We thenassume that 
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the difference between modeled and measured response,represents the neural 

component.Specifically, we hypothesized that: (1) the neuralcomponent will have good 

between-session reliability; (2) all components will be higher in children with CP than in 

typically developing (TD) children; and (3) in comparison to a previously-described 

parameter [11], the neural component will be more sensitive to the effect of BTX 

treatment. 

 

 

2. Method 

2.1 Participants 

Children with spastic CP aged 5-18 years were recruited from the University Hospital ***. 

Exclusion criteria were: presence of ataxia or dystonia; ankles with fixed varus or valgus 

deformitieshindering pure sagittal plane passive ankle motion; cognitive problems that 

impededassessment; BTX injections within 6 months prior to first testing;previous lower-

limb orthopedic or neuro-surgery.An age-matched group of TD children acted as a 

control group. The hospitals’ ethical committee approved the protocol 

(B32220072814)and all children’s parents signed an informed consent. 

 

To assess between-sessionreliability, asubgroup of children with CP underwent a 

repeated assessment (including replacement of all sensors) after a two hour rest interval 

in which no treatment was administered. As part of an individually-defined, multilevel 

treatment, a secondsubgroup of children with CP were additionally measured 4-8 weeks 

after intramuscular BTX injections (Allergan, UK)in the gastrocnemiusunder short 
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anesthesia. After injections, the children underwent lower-leg casting for ±10 days, 

intensive rehabilitation, and orthotic management (day and night). 

 

In children with unilateral CP, only the affected side was tested. In children with bilateral 

involvement, if time allowed, both sides were tested. If not, the most involved side was 

testedas defined by the clinical spasticity scales[4,15]. 

 

2.2 Experimental procedure 

All assessments were performed by the same trained assessor as detailed in [11].Joint 

motion was tracked using two inertial measurement units,joint forces andtorques were 

measured using a 6 dof load-cell,and surface EMG (sEMG)was collectedfrom the lateral 

gastrocnemius and tibialis anterior(Figure 1). The subjects were asked to remain relaxed 

throughout the measurement. The ankle jointwas moved through the full ROM, at low 

velocity during 5s, at mediumvelocity (1s), and finally at high velocity, performed as fast 

as possible. At each velocity, four repetitions were carried out with an interval of seven 

seconds between. 

 

2.3Data analysis  

2.3.1 Data processing 

Data visualization and analyses were performed inMATLAB©. To estimate joint angles, 

a Kalman smoother [16]was applied on the inertial measurement unitdata. Average 

maximum angular velocity (VMAX) was calculated per velocity trial. Using 

measuredsegment-lengths and moment-arms, the net internal anklejoint torque was 

calculated from the measuredexternal forces and moments as outlined in[11]. EMG 
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onset in the lateral gastrocnemius was defined according to [17] and used to confirm the 

presence or absence of muscle activationduring stretches.Stretch repetitions were 

excluded when performed out-of-plane (see Supplement 1 in [11]), at inconsistent 

velocities between repetitions within a velocity trial (difference >20°/s), and in case of 

poor quality sEMG (low signal-to-noise ratio or obvious artefacts). In children with CP, 

stretches were additionally excluded when there was no EMG onset detected during 

high velocity stretches. 

 

2.3.2 Outcome parameters 

The following model to describe healthy muscle passive stiffness and viscosity was 

approximated from de Vlugt et al.[7]: 

푇 = 1 + 푏	 푒 	( ) + 	푇     (1) 

Where T is the total predicted internal joint torque;b, a viscosity coefficient;k, a passive 

stiffness coefficient;휃, angular position;휃 , angular position offset; and 푇 , offset 

torque.In contrast to the original model, the model is represented in angular positions 

and torques rather than muscle lengths and forces, i.e. assuming that effects of a 

changing lever arm are negligible. The model was fitted to a region starting at the time of 

VMAX to the time at 90% ROM. Based on data visualization, in this region, only the 

agonist, rather than antagonist musclewaselongated, while the influence of end ROM 

discomfort was excluded. An optimal fit of the model to the measurement was computed 

using the Levenberg-Marquardt algorithm [18].Figure 2 shows the measured and 

modeled torque during one low-and one high-velocity stretchin a CP and a TD child. 

However, rather than modeling individual stretches[7], data frommultiple stretches at all 
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velocitieswere used to fit a model per assessed muscleproviding more information on 

which to estimate the distinct model components(Figure 3). 

 

To capture how the measured torque푇 	deviated fromthe modeled torque푇, the following 

two parameters were developed:average model deviation, was defined as the square 

root of the integral from the time atVMAX(푡 ) to the time at 90% ROM(푡 % ) of the 

squared deviation between 푇	and푇  divided by the time interval between 푡  and 

푡 % : 

퐴푣푒푟푎푔푒	푚표푑푒푙	푑푒푣푖푎푡푖표푛 = 	
%	

∫ (푇 − 푇 ) 푑푡%	   (2) 

 

Average work-deviationwas defined as the integral fromthe angular position at 

VMAX(휃 ) to the angular position at 90% ROM (휃 %	 )of the absolute deviation 

between 푇	and푇 divided by the position interval between 휃  and 휃 %	  

퐴푣푒푟푎푔푒	푤표푟푘	푑푒푣푖푎푡푖표푛 =
% 	

∫ ∣ 푇 − 푇 ∣ 푑휃%	   (3) 

This parameter corresponded to the amount of work exchanged between assessor and 

subject during the motion. 

 

Additionally, work was calculated as the integral of 푇  over angular position from 휃  

to 휃 %	  to compare the model parameters to previous literature[11]: 

푊표푟푘 = 	 ∫ Tm(휃)%	 푑휃     (4) 

Average work over the four repetitions at both high and low velocity was calculated. The 

difference of these two was defined as ‘work-change’, see also [11]. 
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2.5Statistics 

Model-deviation, work-deviation and work-changewere calculated for each assessed 

muscle. Intra-class correlation coefficients (ICC1,1) [19]were calculated andinterpreted 

according to [20]. Standard error of measurement (SEM) values were derivedfrom the 

square root of the mean square error from one-way ANOVA [21]. Parameterswere 

compared using t-tests (CP vs. TD)or paired-sample t-tests (pre-vs. post-BTX). The 

average difference between groups and between pre- and post-BTX was evaluated in 

view of the minimal detectable change (MDC) calculated from SEM-values[22].The 

relation between thedevelopedparameters and subject age, diagnosis, clinical spasticity 

scores[4,15], and the Gross Motor Functional Classification Scale were investigated 

using either Pearson correlation coefficients (continuous parameters),or ANOVA and 

post-hoc Tukey tests (categorical parameters). Analyses were performed using SPSS©. 

Significance was set at p<0.05. 

 

 

3. Results 

Fifty-three childrenwith CP and 10 TD children were included (Table 1). Threechildren 

with CP were assessed bilaterally, ten were re-assessed for between-sessionreliability, 

and 16 (19 muscles) underwent re-assessment on average 53.3±11.6 days post-BTX 

(average dosage injected into the gastrocnemius was4.52±0.79 U/Kg). 

 

Study results can be found in Table 2.During high velocity trials, average VMAX was 

higher in the TD group than in the CP and in the CP group post-BTX than pre-BTX.ICC 
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values were high for all parameters except for VMAXat medium velocity. The differences 

between the mean values for CP and TD children for work-change (1.78J), model-

deviation(1.80Nm), and work-deviation(1.54J) were higher than their corresponding 

MDC values (0.82J, 0.84Nm, and 0.72J, respectively). Post-BTX, onlymodel-deviation, 

and work-deviationsignificantly decreased. The mean pre-post decrease in model-

deviation(0.93Nm) was larger than its MDC value (0.84Nm).Model-deviation, work-

deviation, and work-change had fair and good correlations with age (r=0.32; r=0.31; 

r=0.61, p<0.05, respectively). 

 

 

4. Discussion 

The aim of this study was to compare different biomechanical parameters that estimate 

the amount of neural contribution to increased joint torque during manually-applied, 

passive ankle movementsat different velocities. The developed parameters were 

assessed for their between-sessionreliability and validated bycomparing children with 

CP toTD children and by the response of muscles with spasticityto BTX-treatment. 

 

Muscle models have mostly been applied to data collected with motor-driven devices 

[7,13,23]. However, instrumented manual assessments have the advantage of being 

portable, easy to administer, and to tolerate. Their disadvantage isdecreased control 

creating the risk that extracted data are influenced by measurement 

performance.Nevertheless, in the current study, a model approximated from [7],was 

successfully applied to data collected during manually-applied movements. The 

modelaccurately predicted the characteristic shape of the torque-position graph during 
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stretches at different velocities in healthy muscle. However, during high velocity 

stretches of muscle with spasticity,the model only fitted the data with a larger 

approximation error. This was not unexpected since the model did not incorporate neural 

components (reflex muscle activation). On the other hand, the parameters that 

quantified the amount of deviation between the measured and predicted torque during 

stretches were found to be reliable, discriminative between spastic and healthy muscles, 

and sensitive to the effect of BTX. 

 

A major issue when estimating model parameters is the bias-variance trade-off [24]: a 

trade-off between model complexity (the number of parameters) and the accuracy of the 

estimated parameters. A model with many parameters fits the measured data very well 

(low bias), but the variables are not estimated accurately (high variance). Even 

thoughmultiple stretches at different velocities were used for modeling, our motions still 

had a limited dynamic range. This made it even more difficult to estimate reliable model 

parameters. Therefore, a simple modeldescribinghealthy muscle was used. The amount 

of deviation between the model prediction and the measurementsindicated the 

pathological neural activity. As such, the estimated model parameters themselves were 

not used, and the method relies on the assumption that the neural component cannot be 

fitted properly by the applied model. The current approach thus holds a middle 

betweendata-driven parameters (such as in [25]) and a model-driven approach, such as 

in[7]. 

 

Several experimental and modeling assumptions in the current study need to be 

recognized. Firstly, it was assumed that the ankle motion during stretch occurred in the 
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sagittal plane. However, as previously reported [11], small out-of-plane movements 

(<10˚) would cause only a 1-5˚ error. Secondly, formula 2 is a further approximation, 

compared to the work of De Vlugt et al [7], since it describes passivemuscle behavior in 

function of torques and angles instead of muscle forces and lengths. However, as shown 

in Figures 2 and 3, the model could still effectively approximate the joint torque of TD 

subjects. Thirdly, for the reasons stated before with regards to over-fitting, we were 

unable to accurately and repeatedly quantify the stiffness and viscosity coefficients. 

However, this was not our primary aim. Fourthly, despite the gastrocnemius being bi-

articular, the knee joint angle was not included in the model. Since the knee joint was 

fixed during ankle movements (see [11]), this was not necessary. Finally, average VMAX 

during high velocity stretches was higher in the TD group than in CP, and higher post-

BTX. This velocity difference caused an increase of viscous forces. However, our 

deviation parameters wererobust against velocity variations since the model contained a 

viscosity parameter. Different velocities resulted in consistentdeviation parameters. 

 

The proposed modeling approach was validated by clinical results. All investigated 

parameterswere higher in CP than in TD children. The average decrease post-BTX for 

model-deviationwas larger than its MDC-value, indicating that it can be used as a 

measure ofimprovement. However, the heterogeneous results suggest that the 

measurement error is still too high to detect improvement in all subjects. Therefore, 

more effort is required to increase reliability and improve performance standardization. 

 

The effects of BTX were not captured by work-change, which was not surprising as 

work-change was also influenced by stiffness and viscosity. This finding confirmsthat by 
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removing the non-neural components, the deviation parameters better captured the 

neural influence. This is line with previous findings, that report little effect of BTX on 

passive myotendinous stiffness in the calf muscles of children with CP [3]. 

 

Muscle contractures already start developing at an early age [26]and can affect gait in 

children with CP [27]. This emphasizes the need for proper torque differentiation and 

more dedication in developing treatments that targetpassive stiffness. Casting,combined 

with BTX, has been found to be more effective than BTX alone in improving gait [28]. 

Despite the short casting period post-BTX, work-changein the current study,did not 

significantly decrease post-treatment.Recent results suggest that growth velocity, 

ratherthan spasticity,plays a crucial role in contracture development[29]. In line with 

these findings, musclestiffness increaseswhereas spasticity decreases, with age [30].In 

the current study, age had a better correlation to work-change than to the deviation 

parameters. 

 

There was also a large response variabilityto BTX-treatment. This variation highlights 

the importance of searching for predictors of treatment response in order to better tailor 

individualized treatment. Apart from age, no other relations were found between the 

biomechanical parameters and subject characteristics, but larger studies are 

required.Future studies should investigate whether muscles with a low model-deviation 

value are poorer responders to BTX. Accordingly, the current method offers a way in 

which to fine-tune treatment to the individual muscles’ underlying etiology.However, 

more explorations are required to understand the relation between spasticity as 
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assessed at rest in a non-weight bearing position and functional movements, such as 

gait. 

 

In the current study, EMG was not analyzed and was only used to confirm the 

presence/absence of muscle activation. The amount of EMG was not used as it has 

previously been shown that the relative contribution of the lateral gastrocnemius to the 

total neural torque component in the ankle is only 3% [7]. A future study should collect 

EMG from more muscles acting on the ankle to validate the relation between the 

identified neural component and the amount and timing of pathological muscle 

activation. 

 

In summary, the neural contribution to increased ankle torque during stretches of spastic 

gastrocsoelus muscles was captured in two biomechanical parameters (model-

deviationandwork-deviation) that also decreased post-BTX.Work-change, that includes 

passivestiffness and viscosity, washigher in spastic than in TD muscles, but was not 

affected by BTX. Therefore, while there was a large response variability, treatment with 

BTX combined with casting,predominantly treated the neural component. This highlights 

the need to better fine-tune treatment modalities for the gastrocsoleus in children with 

CP. 
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Table 1. Subject characteristics 

Subjects All children with 
CP (n=53, 56 
muscles) 

Subgroup of 
children with CP for 
reliability study 
(n=10)  

Subgroup of 
children with CP for 
BTX study (n=16, 19 
muscles) 

TD children 
(n=10) 

-40 -20 0 20 40
-10

-5

0

5

10

15

20

25

 

 

-10 0 10 20 30 40
-10

-5

0

5

10

15

20

25

 

 

-60 -40
-10

-5

0

5

10

15

20

25

 

-30 -20
-10

-5

0

5

10

15

20

25

 
-30 -20 -10 0 10 20

-10

-5

0

5

10

15

20

25

 

 

-40 -30 -20 -10 0 10
-10

-5

0

5

10

15

20

25

 

 



Page 20 of 21

Acc
ep

te
d 

M
an

us
cr

ip
t

20 
 

Table 2. Comparison of stretch velocity and the biomechanical parameters in the three studies 

Study 
VMAX low 
(°/s) 

VMAX med. 
(°/s) 

VMAX high 
(°/s) 

Work-
change (J) 

Model- 
deviation 
(Nm) 

Work-
deviation
(J) 

Reliability 
(n=10 CP)       
Test mean 
(SD) 

16.32 
(5.67) 

70.71 
(24.20) 

163.50 
(30.97) 2.95 (1.40) 2.97 (1.35) 

2.22 
(1.05) 

Retest mean 
(SD)  

14.94 
(7.74) 

73.13 
(23.14) 

158.09 
(18.62) 3.04 (1.35) 2.75 (1.39) 

2.16 
(1.10) 

ICC 0.94 0.49 0.90 0.97 0.96 0.96 
SEM 2.66 20.02 10.92 0.35 0.36 0.31 
MDC 5.27  46.58  25.41 0.82 0.84 0.72 

Construct 
validity (n=56 
CP, n=10 TD)       

CP mean (SD) 
19.29 
(6.77) 

85.52 
(29.09) 

168.62 
(28.67) 2.99 (1.29) 2.70 (1.06) 

2.07 
(0.86) 

TD mean (SD)  
21.30 
(4.38) 

50.78 
(23.18) 

209.14 
(34.87) 1.21 (0.55) 0.90 (0.63) 

0.53 
(0.33) 

p-value 0.358 <0.001* <0.001* <0.001* <0.001* <0.001* 
BTX study 
(n=19 CP)       
Pre-BTX mean 
(SD)  

23.34 
(9.07) 

76.18 
(28.66) 

164.88 
(24.49) 3.17 (1.46) 2.74 (1.01) 

2.02 
(0.86) 

Post-BTX 22.01 81.86 177.55 2.67 (1.53) 1.80 (0.80) 1.31 

Gender m/f  39/14 7/3 11/5 6/4 

Mean age years 
(SD) 

10.9 (3.7) 11.9 (3.8) 9.1 (2.7) 10.7 (3.4) 

Diagnosis  Di: 26; LH: 11; RH: 
14; Quad: 2 

Di: 5; LH: 2; RH: 2; 
Quad: 1 

Di: 7; LH: 3; RH: 6 NA 

GMFCS score (I-
IV) 

I: 36; II:15; III:1; IV:1 I: 5; II: 4; IV: 1 I: 13; II:3 NA 

MAS-score (I-V) 1: 4; 1+: 20; 2: 26; 
3: 6 

1+: 4 ;2: 4; 3: 2 1+: 4; 2: 13; 3: 2 NA 

Average MTS-
angle (SD) 

-10.77° (9.1°) -5.5° (10.9°) -11.95° (6.67°) NA 

CP, cerebral palsy; BTX, Botulinum Toxin-A; Di, diplegia; LH, left hemiplegia; RH, right 
hemiplegia; Quad, quadriplegia; GMFCS, Gross Motor Function Classification Score; MAS, 
Modified Ashworth Scale for the gastrocnemius; MTS, Modified Tardieu Scale; TD, typically 
developing; NA, not applicable 
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mean (SD) (7.01) (31.09) (25.52) (0.50) 
p-value 0.451 0.377 0.023* 0.183 0.006* 0.012* 

       
CP: cerebral palsy; TD: typically developing; BTX: botulinum Toxin-A; VMAX: maximum angular velocity; 
low: low velocity stretches; med.: medium velocity stretches; high: high velocity stretches; ICC: intra 
correlation coefficient; SEM: standard error of measurement; MDC: minimal detectable change. *p<0.05 

  


