
Hardware/software codesign for stream ciphers

Patrick Schaumont1 and Ingrid Verbauwhede2

1 ECE Department, Virginia Polytechnic Institute and State University, USA,
schaum@vt.edu

2 ESAT/COSIC, Katholieke Universiteit Leuven, Belgium,
ingrid.verbauwhede@esat.kuleuven.be

Abstract. The ESTREAM project has identified two profiles for stream
ciphers: a hardware profile and a software profile. The software profile is
directly applicable to many computer systems. The hardware profile, on
the other hand, does not reflect a complete system design, but instead
represents a stand-alone component. In this paper we consider the inte-
gration of hardware stream ciphers in software systems for the case of
Trivium, Salsa20 and Phelix. We review the different categories of hard-
ware/software interfaces and then present performance- and implemen-
tation results for several stream-cipher configurations. Our conclusion is
that the wide variety of possible hardware/software interfaces has sub-
stantial impact on the resulting performance of the design. We therefore
conclude that the hardware profile should consider not only the intrin-
sic performance and area cost of a stream cipher, but also the required
input-output bandwidth for that given encryption performance.

1 Introduction

It is well known that hardware is a generous provider of parallellism. The hall of
fame for many block cipher implementations in hardware often states through-
puts in Gb/s. For example, an AES-128 implementation that runs at 100MHz
and requires 11 clock cycles per encryption round has a throughput of 1.16
Gb/s (128 bit /11 * 100MHz). This number reflects the ability of the hardware
component to encrypt bits.

In this paper we consider the step beyond the raw processing power of hard-
ware encryption units. How can we harness that encryption performance in soft-
ware? In this case, we are interested in building flexible, hardware-accelerated
solutions.

It is easy to see that communication bandwidth is a critical design factor. For
the example of the 1.16Gb/s block cipher stated above, if we assume that each
encryption round requires the commmunication of a 128-bit key, 128-bit plain-
text and 128-bit cryptext, then we need an input/output bandwidth of about
3.5Gb/s. Dedicated communication hardware (e.g. direct-memory-access chips
on fixed-latency buses) may achieve this bandwidth. In many cases however, this
bandwidth needs to be provided directly through the software. The bandwidth
of 3.5Gb/s (or equivalently 109 million words per second) indeed is outside the
capability of most embedded processors.



This shows that the most optimal hardware design (in terms of performance)
may not always be the most optimal solution at system level. We will use the
term scenario to indicate the manner in which a hardware component is inte-
grated in a system. In this paper, we consider some of the possible scenario’s
for stream ciphers, and apply this to several ESTREAM candidates and several
hardware/software architectures.

We consider Trivium [1], Salsa20 [2] and Phelix [3] as candidates for hard-
ware acceleration, and consider the hardware/software interfaces provided with
StrongARM and Microblaze processors. The results for StrongARM are esti-
mates obtained using (co-)simulation [4] [5]. The results for Microblaze have
been implemented on an FPGA board and measured using a hardware timer.
The Trivium codesign was first presented at an ECRYPT summer school in 2006.
The Salsa20 and Phelix codesigns are the result of student design projects of a
senior course in codesign, organized at Virginia Tech in the Fall of 2006. We can
hardly claim optimality for any of the results. Rather, we wish to point out the
importance of the scenario next to that of the profile of a stream cipher.

2 The scenario of a stream cipher

Fig. 1. Example scenario for a stream cipher

In Figure 1, we have modeled a stream cipher as an abstract, iterated block.
The cipher is initialized by means of a key and a nonce. After initialization it
produces an infinite stream of key values. For each key value, the algorithm
performs a series of iterations: the internal state of the cipher is updated based
on the previous state values and the key and nonce inputs. For encryption, the
keystream is xored with a plaintext stream to produce the cryptext stream.

The scenario of a stream cipher indicates the manner in which the cipher’s
components or subcomponents are mapped into hardware and software. Figure
1 provides an example of such a mapping. The stream cipher kernel and the
iterated state variables are mapped into hardware. Software provides the initial
key and the nonce. The output keystream is returned to the software, which



also performs encryption. During steady-state encryption, the bandwidth for
hardware-software communication is determined by the keystream.

The ESTREAM project defines hardware or software profiles for the imple-
mentation of stream ciphers. For a pure hardware or pure software profile, the
optimality criteria for hardware and software are well known. In hardware, one
wants minimal area (gates) with maximal performance on a given technology.
In software, one wants minimal footprint (memory) with maximal performance
for a given processor. Thus, by defining the technology for hardware profiles, or
the processor for software profiles, one can compare one implementation to the
next.

In a scenario that mixes hardware and software, such comparisons are harder.
Each scenario in fact can claim properties that are not available in another one,
and it is vital to consider the system-level picture of the design. We discuss
several of those system-level trade-offs below.

– One may trade-off communication bandwidth for area. It is often desireable
to create the keystream in blocks equal to the wordlength of the processor
(e.g. 32 bits). This will make optimum use of the available hardware-software
bandwidth in the system. On the other hand, if the stream cipher generates
less bits per encryption round, multiple stream cipher rounds will be needed
for each keystream word. This means that either the hardware clock will have
to be increased, or else that multiple parallel iterations need to be created
in hardware.

– One may trade-off flexibility for performance. Software can provide fine-
granular control on the internal configuration and behavior of a stream ci-
pher. However, performing such control will require additional hardware-
software communication which reduces the throughput of the design.

– One may trade-off re-entrancy for performance. A stream cipher can be im-
plemented as a stateless hardware design or a stateful hardware design. A
stateless hardware design will implement the state feedback loop in software.
This increases the amount of hardware-software communication significantly,
but on the other hand it enables concurrent sharing of stream cipher hard-
ware among different software processes.

For hardware stream cipher profiles, considerations such as the above ones
are vital. They imply that classic hardware optimization criteria alone cannot
address all of the issues at system level.

In the following, we will briefly review different types of hardware-software
interfaces in SoC context, and give several examples in terms of FPGA technol-
ogy. Next, we will discuss three cases of hardware/software codesign for stream
ciphers: one for Trivium, one for Salsa20, and one for Phelix.

3 Hardware/software interfaces

Figure 2 illustrates the three commonly available hardware/software interfaces.
Each of these interfaces is distinguished by the proximity of the custom hardware
(coprocessor) to the processor pipeline.



Fig. 2. Hardware/software interfaces on a typical embedded core

– A Direct-Connection provides direct access to the processor pipeline. This
results in a low-latency, high-bandwidth bus. A CPU will have specific in-
structions to support this interface, since there is no address space at this
level in the processor. These dedicated instructions may introduce (data-)
dependencies on the processor pipeline and cause pipeline stalls. The degree
of coupling between the processor pipeline and the coprocessor hardware
must be evaluated carefully.

– A Local Bus provides a dedicated, low-latency and fixed-latency link to the
processor. Local busses are addressable. Processors caches are attached to the
local bus. Some processors allow dedicated shared memories (scratchpads) to
be attached to the local bus, which in turn connect to coprocessor hardware.

– A Bus Interface provides a general-purpose link to connect processor hard-
ware. Modern bus interfaces support sophisticated transactions to adapt for
the heterogeneity of the components on the system bus. On the flip-side,
general-purposes system busses do not have a low latency nor a fixed la-
tency.

Direct-connection busses and local-busses are processor specific. In contrast,
bus-interfaces are generic. We will briefly discuss the example of a direct-connection
bus (Fast Simplex Link), followed by the example of a general-purpose bus
(On-chip Peripheral Bus). Figure 3 illustrates both interfaces, along with their
system-level cosimulation model in GEZEL [5].

The OPB interface is a traditional memory-mapped interface for peripheral
components. The OPB bus is a shared, variable latency bus which is part of
IBM’s CoreConnect specification. It is also used to interconnect soft-core and
hard-core processors in a Xilinx FPGA. The hardware side of an OPB interface
consists of a decoder for a memory-read or memory-write cycle on a selected
address in the memory range mapped to the OPB. The decoded memory cy-



Fig. 3. Hardware/Software Interface: OPB (left) and FSL (right)

cle is translated to a read-from or a write-into a register in the coprocessor. A
memory-mapped interface is an easy and popular interface technique, in par-
ticular because it works with standard C on any core that has a system bus.
The drawback of this interface is the low-speed connection between hardware
and software. Even on an embedded core, a simple round-trip communication
between software and hardware can run into several tens of CPU clock cycles.

The FSL interface is a point-to-point communications link from hardware to
software. The hardware side of this interface includes a full-handshake protocol
and can transfer a token of 32 data-bits and 1 control-bit per handshake. An
internal queue can buffer up to 8 tokens and provides additional uncoupling be-
tween hardware and software. The CPU has dedicated instructions to write into
and read from this interface, and these instructions can stall the CPU pipeline if
this would be required by the handshake protocol. The FSL is defined specifically
for the MicroBlaze processor (a soft-core FPGA processor by Xilinx).

4 Example Scenario’s

We will now discuss three example scenario’s for stream ciphers, starting with a
Trivium codesign, followed by Salsa20 and Phelix.



4.1 Trivium with a custom-instruction-set processor

Our first scenario is to attach a hardware Trivium stream cipher as a custom-
instruction onto a processor. Custom-instruction-set extensions are supported
with application-specific instruction-set processors (ASIP). A custom instruction
has a limited set of inputs and outputs, in order to limit the number of read- and
write-ports on a processor’s register file. For the Trivium design, we considered
the use of 2-input, 2-output custom instructions (OP2x2) and 3-input, single-
output instructions (OP3x1).

The Trivium kernel is, as suggested by the authors [1], very easy to parallel-
lize. The design in Figure 4 uses a 64-times unrolled kernel. This unrolled kernel
reads 288 state bits from the state register, produces 64 keystream bits, and
generates 288 next-state bits. The 64 keystream bits are captured by an OP2x2
custom instruction.

Fig. 4. Hardware Trivium kernel attached to a custom instruction-set interface

In order to ensure proper synchronization between the Trivium hardware and
the software that accepts the keystream, the state update of the Trivium hard-
ware is under control of software. A single output bit of the OP2x2 instruction is
edge-detected. An upgoing or downgoing transition will enable a single Trivium
state update, which produces the 64 next keystream bits. The Trivium design
also uses an OP3x1 instruction to initialize the stream cipher. The OP3x1 in-
struction passes three fields to the Trivium hardware. Two are used to initialize
Trivium state (64 bits per OP3x1 execution), and one field is used to index the
proper register within the Trivium state variable.



We now examine the steady-state behavior of this design. In steady-state, the
C code accepts a keystream coming from the Trivium hardware, and controls
the update of the stream cipher’s state variable.

unsigned z1, z2, stream[4*N];
for (i=0; i<N; i++) {
OP2x2_1(z1, z2, 1, 0); // read 64 keybits, toggle control high
stream[4*i] = z1; // store low 32 keybits
stream[4*i+1] = z2; // store high 32 keybits
OP2x2_1(z1, z2, 0, 0); // read 64 keybits, toggle control low
stream[4*i+2] = z1; // store low 32 keybits
stream[4*i+3] = z2; // store high 32 keybits

}

The OP2x2 instruction repeatedly updates the Trivium state variable, while
capturing the output from the Trivium kernel. The keystream is stored in data
memory. Table 1 shows the detailed analysis of one iteration of the above loop
during execution from cycle 11923 up to cycle 11934. The umullnv instructions
are unused opcodes of the StrongARM which are reused by our cosimulator to
implement OP2x2 instructions. One loop iteration completes in 11 clock cycles,
and apart from the branch instruction at the end of the loop there are no pipeline
control hazards. Individual instructions have a latency of 5 clock cycles, corre-
sponding to the 5 pipeline stages of the StrongARM. Instructions with 6 clock
cycles include a data hazard (one additional cycle of delay).

Table 1. Loop analysis for Trivium software driver

Cycle PC Latency Instruction

11923 8274 5 umullnv r2, ip, r0, r3

11924 8278 6 str r2, [r1, #-2048]

11925 827c 6 str ip, [r1, #-2044]

11927 8280 5 umullnv r7, r6, r3, r3

11928 8284 5 subs r5, r5, #1

11929 8288 5 str r7, [r1, #-2040]

11930 828c 5 str r6, [r1, #-2036]

11931 8290 5 add r1, r1, #16

11932 8294 2 bpl 0x8274

11933 8298 1 (stall cycle)
11934 8274 5 (next iteration)

During these 11 cycles per iteration, we can collect 128 bits of keystream
in the processor’s data memory. This corresponds to 11.63 bits per clock cycle.
Compared to the orginal 64-times unrolled Trivium kernel (which generates 64
keystream bits per clock cycle), this is 5.5 times slower. This overhead is a direct
consequence of accepting the keystream with a sequential processor. Note also



that the compiler is run with full optimization, and that the assembly code has
good quality.

This example illustrates that even an optimized hardware/software interface
can cause a significant slowdown of a stream cipher.

4.2 Salsa20 Co-design

Our next example illustrates the effect of stateless stream cipher design. The
Salsa20 design [2] generates a keystream using a 64-byte hash function. Figure
5 illustrates how the hash is driven from a Nonce and a key. The Nonce and key
are combined and expanded into a 64-byte Salsa20 hash input. The hash input
is transformed in 10 iterations of row round and column round functions, which
consist of 32-bit additions, xor and rotations. After 10 iterations, the original
Salsa20 hash input is added to the hashed output to create 64 bytes of the key
stream. The next 64 bytes of the key are found by incrementing the Nonce and
repeating the process.

Fig. 5. A Salsa20 hardware accelerator

The Salsa20 design was studied in an undergraduate course at Virginia Tech
called ’Introduction to Codesign’. Three groups of two students implemented the
Salsa20 design as a coprocessor. Through profiling of the reference C code, all
three student groups converged to a design that implements the shaded area in
Figure 5 as a hardware accelerator. By profiling C code, it is indeed easy to show
that the bulk of the computations during Salsa20 encryption will be performed
inside of the Salsa20 hash function. However, profiling of C code does not reveal
the cost of communicating state variables. As a result, all three student groups,
assuming that doing the computations efficiently in hardware is sufficient to
build a powerful hardware accelerator, implemented a stateless stream-cipher
design. For each iteration of the hash, 64 bytes must be moved to and from the
coprocessor.



The implementation results for these teams are illustrated in Table 2, and
indicate that the speedup obtained for these stateless stream ciphers is limited.
In hindsight, this bottleneck can be easily removed by including the hash state,
and possibly also the nonce and key expansion, into the coprocessor.

Table 2. Coprocessor Design Results

Team Algorithm C code GEZEL code Coprocessor Interface Speedup Overall
area speedup

lines lines Spartan3e HW HW+SW
slices vs SW vs SW

A Salsa20 220 533 1381 FSL - 2.54
B Salsa20 178 641 1107 OPB - 1.34
C Salsa20 437 281 554 OPB 24 2
D Phelix 607 357 568 OPB 81 1.2
E Phelix 408 554 4301 OPB - 219

Table 2 lists linecounts for the initial C algorithm and the resulting copro-
cessor in GEZEL. Next, the table mentions the coprocessor area in terms of
slices of the underlying Spartan3E FPGA technology. As a measure of com-
parison, the coprocessors are attached to a 32-bit Microblaze of approximately
1000 slices. Thus, a coprocessor area of 870 slices implies that the design size
nearly doubles. The last two columns of Table 2 document the resulting perfor-
mance of the design after introducing coprocessor hardware. Column 7 considers
only the hardware acceleration and ignores the hardware-software communi-
cation overhead. Column 8 includes this communication overhead. While the
design speedup is often dramatic considering only hardware acceleration, the
resulting speedup after integration can be much lower. This is a typical effect of
aggressive hardware/software partitioning with insufficient consideration of the
resulting communications bottleneck. In all of the cases, the main processor was
in charge of feeding data into the coprocessor and retrieving it.

One particular speedup figure (219 for the case of Phelix) jumps out of Table
2. However, that number turned out to be wishful thinking, as will be discussed
next.

4.3 Phelix Co-design

Our final example illustrates the effect of overly optimistic parallellization of C
code when creating hardware. Like Salsa20, Phelix generates a keystream using
a series of additions, xor, rotations. The keystream is created by repeated trans-
formations on 5 state words, as shown in Figure 6. Each transformation includes
two half-block operations consisting of 10 rounds (rotation/addition). Each half-
block uses one of 8 key-words created through a key-expand function. The key
stream is created by xoring two half-block outputs. Control and initialization in
Phelix are slightly more complex compared to Salsa20.



Fig. 6. A Phelix hardware accelerator

Also Phelix was studied in the codesign course at Virginia Tech. Two student
teams created a coprocessor for Phelix, but both took a very different approach.
A first team worked in an incremental fashion, starting with an accelerator for
each half-block. The second team took a much more aggressive approach: they
unrolled Phelix to implement up to 8 full blocks in parallel in a single clock cy-
cle. Both teams converged to an implementation in which a full-block iteration
is implemented with a hardware accelerator, as shown in Figure 6. This map-
ping allows the accelerator to be implemented as a combinatorial function, and
leaves as much as possible of the control complexity in software. The downside of
this mapping is that this introduces a communication bottleneck between soft-
ware and hardware (which the second team was hoping to avoid by aggressive
parallellization).

The team with a more aggressive approach to parallellization is listed as team
E in Table 2. They concluded at first that a significant speedup could be expected
since the cycle count of an 8-fold unrolled Phelix version is greatly reduced.
After technology mapping onto a Spartan-3E step-5 however, the resulting design
turned out to be too large and too slow. As illustrated in Table 3, subsequent
design iterations created a smaller and faster coprocessor. This trade-off between
design parallellism and achievable clock frequency is well known to a hardware
designer. On the other hand, the trade-off is unfamiliar to a software designer
who focuses on reducing the cycle count only.



Table 3. Unrolling Phelix in hardware (in Spartan 3E step 5)

Version Area Clock
(slices) (MHz)

8x Full Block 4301 7.7
Full Block 1190 48.6
Half Block 459 76

5 Conclusions

The ESTREAM project has identified profiles to describe the technological tar-
gets for stream cipher development. In this paper, we conclude that the currently
defined profiles are coarse definitions at best. We think that especially the hard-
ware profile is unable to predict the performance of a stream cipher in the context
of an actual application.

Our alternative was to extend the hardware profile into a scenario, which
clarifies how the interfaces of a hardware stream cipher are attached to a system.
The examples of Trivium, Salsa20, and Phelix demonstrate the sensitivity of
system performance to the scenario.

6 Acknowledgements

The results presented in this paper for Salsa20 and Phelix were obtained by the
students of the ECE4984 ’Introduction to Codesign’ class at Virginia Tech. Hence
we acknowledge the diligence and commitment of Justin Chong, Mike Bertosh,
Thomas Connors, Amy Anderson, George Eichinger III, Tim Doyle, Mike Gora,
Bill Klinefelter, Jesse Manning, Steve Ressler, John Morris, Syed Haider, Senwen
Kan, Anupam Srivastava, Sumit Ahuja, Mainak Banga, Ian Thornton and Joe
Amato.

References

1. C. De Canniere, B. Preneel, ”Trivium Specifications,” available from ESTREAM
(http://www.ecrypt.eu.org/stream/triviump2.html).

2. D. J. Bernstein, ”Salsa20 specification,” available from ESTREAM
(http://www.ecrypt.eu.org/stream/salsa20p2.html).

3. D. Whiting, B. Schneier, S. Lucks, F. Muller, ”Phelix: Fast Encryption and
Authentication in a Single Cryptographic Primitive,” available from ESTREAM
(http://www.ecrypt.eu.org/stream/phelixp2.html).

4. W. Qin, S. Malik. Flexible and Formal Modeling of Microprocessors with Applica-
tion to Retargetable Simulation, Proceedings of 2003 Design Automation and Test
in Europe Conference (DATE 03), Mar, 2003, pp.556-561.

5. The GEZEL homepage, online at http://rijndael.ece.vt.edu/gezel2.


