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Abstract This paper investigates the scheduling of mul-
tiple earth observation satellites (EOSs) under uncer-
tainties of clouds. Firstly, we formulate the presence of
clouds as stochastic events, transforming the problem
into a stochastic programming problem. Based on dif-
ferent perspectives, we model the problem mathemat-
ically using both an expectation model and a chance
constrained programming (CCP) model. Afterwards,
for the first time, we employ a Dantzig-Wolfe decompo-
sition and a column generation technique for the uncer-
tain scheduling of EOSs. With respect to the expecta-
tion model, we devise a branch-and-price algorithm to
solve the model optimally and efficiently. On the other
hand, we first reformulate the CCP model as a mixed in-
teger programming (MIP) model using sample approx-
imation. Subsequently, considering the difficulties and
the infeasibility of the branch-and-price algorithm for
this MIP model, we suggest a column generation based
heuristic algorithm to get “good” feasible solutions. By
numerous simulation experiments, we verify the effec-
tiveness and test the performance of our proposed for-
mulations and approaches.
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1 Introduction

Earth observation satellites are the platforms equipped
with sensors that orbit the earth to take photographs
of special areas at the request of users [10,16]. EOSs
can take photographs, while moving along their orbits,
which is shown in Fig. 1. After capturing the pho-
tographs, the acquired data will be stored in the on-
board limited memory and transferred to a ground sta-
tion when the satellites are in the feasible transferring
range. Most of EOSs operate at low altitudes with the
orbital periods being dozens of minutes or several hours.
However, it takes several days for a single EOS to view
the whole area of the Earth. Hence, multi-satellite col-
laboration has been applied extensively in order to ac-
celerate the response to users.

In this work, the satellite management process is
taken into account while multiple EOSs are operated
to satisfy users’ requests. The requests require the se-
lection, allocation and scheduling in the ground station
according to some operational constraints of the satel-
lites before the derived sequence is transmitted.

Because of some unique advantages, e.g. an expan-
sive coverage area, long-term surveillance, a high fre-
quency of repeated observations, accurate and effec-
tive information access and unlimited airspace borders,
EOSs have been extensively employed in earth resources
exploration, nature disaster surveillance, urban plan-
ning, crop monitoring, etc. With the development of
space science and technology, the number of satellites
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Fig. 1 The satellite captures the photographs [48]

increases continuously. However, satellites are still lim-
ited in comparison with the explosively increased num-
ber of applications. Hence, scheduling is a significative
issue to satisfy more requests and obtain a high obser-
vation efficiency.

Although a large number of studies concerning EOS
scheduling have been proposed, unfortunately, to the
best of our knowledge, the previous studies considering
the impact of clouds are extremely limited (see details
in Section 2). However, EOS observations are signifi-
cantly affected by the presence of clouds, since most
EOSs are equipped with optical sensors that cannot
see through clouds [23,24]. For instance, around 80%
of the observations with the currently operational op-
tical SPOT satellites are useless due to the presence of
clouds [3]. Besides, the presence and status of clouds
are normally random, which cannot be forecasted de-
terministically. The uncertainties of clouds bring more
difficulties for EOS scheduling. Hence, clouds are a non-
trivial issue, which requires more focus.

In this study, considering the uncertainties of clouds,
we formulate the presence of clouds for observations as
stochastic events. From different perspectives, we pro-
pose both an expectation model and a CCP model to
formulate the scheduling problem of multiple EOSs un-
der uncertainties. With regard to the expectation model
that is in fact an integer programming (IP) model, we
decompose it into a set-packing master problem and
some subproblems using Dantzig-Wolfe decomposition.
Moreover, we design a branch-and-price algorithm to
solve the model. On the other hand, for the CCP model,
we firstly transform it to a MIP model using sample
approximation. Subsequently, we also decompose the
MIP model into a master problem and some subprob-
lems, and suggest a column generation heuristic (CGH)
algorithm to get “good” integer feasible solutions. By
numerous simulation experiments, we prove that the
branch-and-price algorithm can solve the expectation
model optimally and efficiently, and the CGH can solve

the CCP model to get feasible solutions that are close-
to-optimal in a short time.

The remainder of this paper is organized as follows.
In the next section we reveal the previous work. Subse-
quently, Section 3 describes the problem in detail, and
formulates the problem with an expectation model and
a CCP model, respectively. In Section 4, we present
a branch-and-price algorithm to solve the expectation
model. Furthermore, Section 5 proposes a CGH algo-
rithm to solve the CCP model. Numerical results of our
approaches are presented in Section 6. The last section
offers conclusions and directions for future research.

2 Previous work

Up to now, a great number of studies focusing on EOS
scheduling have been proposed, in which EOS schedul-
ing was formulated and solved in different ways:

Mathematical programming: Benoist et al. [5],
Habet et al. [25], Lemâıtre et al. [28] and Tangpat-
tanakul et al. [48] developed general mathematical pro-
gramming models for EOS scheduling. Liao et al. [31],
Lin et al. [32,33] and Marinelli et al. [39] proposed the
time-indexed formulation of EOS scheduling, and estab-
lished integer programming models. In addition, integer
programming models are also constructed on the basis
of a “flow variable” formulation [9,10,21,22].

Constraint satisfaction problem: Lemâıtre et
al. [27] formulated EOS scheduling as a constraint sat-
isfaction problem. Bensana et al. [6] and Verfaillie et
al. [52] proposed valued constraint satisfaction problem
(VCSP) formulations for SPOT-5 satellite scheduling.

Knapsack problem: Vasquez et al. [50,51] and
Wolfe et al. [58] formulated EOS scheduling as 0-1 knap-
sack problems.

Graph-based formulation: Gabrel et al. adopted
a directed acyclic graph model was adopted to describe
the satellite scheduling problem [20]. Besides, Sarkheyli
et al. [45] and Zufferey et al. [60] modeled EOS schedul-
ing as graph coloring problems.

Alternatively, Frank et al. [19] and Pralet et al. [41]
adopted the Constraint-Base Interval (CBI) language
to describe the problem.

In addition, the solution approaches for EOS schedul-
ing can be classified into the following categories.

Exact algorithms: Bensana et al. [6] proposed a
depth-first branch and bound algorithm for SPOT-5
satellite scheduling. Also, Benoist et al. [5], Bensana
et al. [6] and Verfaillie et al. [52] suggested Russian
Doll search algorithms, which are based on branch-and-
bound but replace one search by n successive searches
on nested subproblems, using the results of each search
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when solving larger subproblems, to improve the lower
bound on the global valuation of any partial assign-
ment. Besides, Gabrel et al. [20] and Lemâıtre et al.
[28] developed dynamic programming methods to get
the optimal solutions of EOS scheduling problems.

Metaheuristics: A large number of metaheuristics
were proposed for EOS scheduling, which primarily con-
tain tabu search algorithms [6,10,16,26,33,50,60], ge-
netic algorithms [2,29,46,47,58], ant colony algorithms
[30,59], local search algorithms [27,28,48] and simu-
lated annealing algorithms [23,24,26].

Heuristics: Bensana et al. [6] and Lemâıtre et al.
[28] proposed greedy algorithms to get feasible solutions
for EOS scheduling problems. On the basis of heuristic
rules, Bianchessi et al. [8,11], Karapetyan et al. [26],
Wang et al. [53,54] and Wolfe et al. [58] developed con-
structive algorithms that can solve the problem effi-
ciently, without guaranteeing the optimality of the solu-
tions. Bianchessi et al. [9], Lin et al. [33] and Marinelli et
al. [39] adopted lagrangian relaxation heuristics to solve
the problems, obtaining close-to-optimal solutions.

Among all the previous studies, only a few have con-
sidered the impact of clouds. Lin et al. [32,33] formu-
lated the presence of clouds as a set of covered time
windows, and forbade the tasks to be observed in the
covered time windows. In practice, the drawback and
infeasibility of Lin’s approach is that there exist a lot
of uncertainties of clouds, which are always changing
over time and are impossible to be forecasted exactly
[3,7,27]. Thus decision makers cannot get the determin-
istic information of clouds before scheduling. Liao et al.
[31] considered the uncertainties of clouds, formulated
the presence of clouds for each observation window as a
stochastic event, and established a model with the ob-
jective of maximizing the weighted sum of a function of
the profits and the expected number of executed tasks.
In [3], the online scheduling of a Pleiades satellite that
is equipped with a cloud detection instrument is con-
sidered, and the decisions are made on board based on
the detection results of clouds.

Based on the principle of Dantzig-Wolfe decompo-
sition, column generation algorithms have been proven
to be one of the most successful approaches for solv-
ing linear programmes or for getting bounds for integer
programmes. Currently, column generation and branch-
and-price that is a combination of column generation
and branch-and-bound have been successfully used in
many fields [12–14,17,40,42,44]. However, with respect
to EOS scheduling, the studies of column generation
are still very limited. The column generation technique
has been invoked in the deterministic EOS scheduling
to provide a better upper bound [21,38] and to eval-
uate the feasible solutions derived from some heuris-

Table 1 Notations

T set of tasks, T = {1, ..., n}
i, j task index, i, j ∈ T ∪ {s,t} , in which s, t are

dummy tasks
ωi profit of task i, i ∈ T
O set of orbits, O = {1, ..., m}
k orbit index, k ∈ O
bik bik = 1 if orbit k is available for the observation

of task i, otherwise bik = 0, i ∈ T, k ∈ O
Mk, Ek memory capacity and energy capacity of orbit k,

k ∈ O
mk, ek memory and energy consumption for each unit

time of observation of orbit k, k ∈ O
[wsik, weik] time window of observation of task i on orbit k,

i ∈ T, k ∈ O
θik slewing angle of observation of task i on orbit k,

i ∈ T, k ∈ O
stk

ij setup time between task i and task j on orbit k,
i, j ∈ T, k ∈ O

ρk
ij energy consumption for slewing between task i

and task j on orbit k, i, j ∈ T, k ∈ O

λ̃ik binary stochastic variable, λ̃ik = 1 denotes that
task i can be successfully observed on orbit k,

otherwise λ̃ik = 0, i ∈ T, k ∈ O
pik probability that task i will be successfully

observed on orbit k, i ∈ T, k ∈ O

tics [10]. To the best of our knowledge, only Wang and
Reinelt [57] has taken the branch-and-price algorithm
into account to get the optimal solutions for some small
instances of EOS scheduling.

3 The uncertain EOS scheduling problem

In this study we focus on the scheduling of multiple
EOSs under uncertainties of clouds, in which the pres-
ence of clouds for observations is formulated as stochas-
tic events. Essentially, the problem is a stochastic pro-
gramming problem, and we construct both a mathe-
matical expectation model and a CCP model to formu-
late the problem.

3.1 Problem description

In EOS scheduling, users normally submit two types of
requests: (1) a spot, i.e., a circle with limited dimension,
or (2) a polygon which may cover a wide geographical
area. Due to its large size, a polygon usually is failed to
be observed in a single orbit and therefore partitioned
into multiple rectangular strips [10,16,48,53]. In order
to facilitate the description, a spot can be seen as a sin-
gle strip. Hence, the tasks in this work are correspond-
ing to the strips that require being photographed.
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In this work, we consider the orbits of the satellites
as the resources. Hence, there will be at most one ob-
servation window for each task on each resource. Some
notations of this study are summarized in Table 1. Let
T be the set of tasks (strips) submitted by users and
let O be the set of orbits within the scheduling horizon.
With each task i ∈ T is associated a profit ωi. Each
orbit k ∈ O is associated with a memory capacity Mk,
an energy capacity Ek, a memory consumption for each
unit of observation time mk and an energy consump-
tion for each unit of observation time ek. Let bik = 1
denote that task i can be observed on orbit k, other-
wise bik = 0. [wsik, weik] denotes the time window for
task i on orbit k, and θik represents the slewing an-
gle. Many of these notions are illustrated in Fig. 2. In
this work, we only consider non-agile satellites, which
have the maneuverability of rolling (slewing) which in-
dicates a movement that is perpendicular to the direc-
tion of the orbit, without the maneuverability of pitch-
ing which indicates a movement along the direction of
the orbit. Hence, the time windows for observations are
fixed without flexibility, such that the start and finish
time of task i on orbit k will be fixed as [wsik, weik],
and the duration can be calculated as weik − wsik.

observation area

ik
θ

i

ik
t ws=

ik
t we=

ground track of satellite

orbit k

Fig. 2 Time window for observation

After observing a task, the satellite requires a se-
quence of transformation operations to observe the next
one, which are sensor shutdown→ slewing→ attitude
stability→ startup. Hence, there should be sufficient
setup time between two consecutive tasks, and the re-
quired setup time can be calculated by the following
formula [55]:

stkij = sdk + |θik − θjk|/sk + ask + suk,

where stkij is the setup time between task i and task
j on orbit k, and sdk, ask and suk are the times of

sensor shutdown, attitude stability and startup of orbit
k, respectively. Besides, sk is the slewing velocity of
orbit k, and θik and θjk are the slewing angles of tasks
i and j on orbit k, respectively.

For observing task i on orbit k, the memory con-
sumption can be computed by (weik − wsik)mk. Dif-
ferently from memory, energy will not only be con-
sumed by observation, but also by sensor slewing. The
energy consumption for observing task i on orbit k is
(weik−wsik)ek. Let ρk

ij denote the energy consumption
of slewing between consecutive tasks i and j on orbit
k, which can be calculated by the formula below:

ρk
ij = |θik − θjk|πk,

where πk is the energy consumption for each unit slew-
ing angle on orbit k.

Considering the uncertainties of clouds, we formu-
late the presence of clouds for observations as stochas-
tic events, denoted by 0-1 stochastic variables λ̃ik, i ∈
T, k ∈ O. λ̃ik = 1 if the observation of task i on or-
bit k can be successfully observed without the pres-
ence of clouds, otherwise λ̃ik = 0. Let pik denote the
probability for a successful observation of task i on or-
bit k, i.e., no presence of clouds, thus we can obtain
p{λ̃ik = 1} = pik and p{λ̃ik = 0} = 1− pik.

At present, two different ways for formulating the
stochastic programming have been proposed to suit the
different purposes of management [34,35]. The first way
for stochastic programming is the expectation model,
which optimizes the expected values of the criteria sub-
ject to some expected constraints. The second, chance
constrained programming, was pioneered by Charnes
and Cooper [15] as a means of handling uncertainty by
specifying a confidence level at which it is desired that
the stochastic constraint holds [35]. In this paper, we
formulate the stochastic programming using both ways
and construct the relevant mathematical models.

3.2 Expectation model

In this study, we formulate the EOS scheduling problem
with flow variables, and establish a mathematical ex-
pectation model, which maximizes the expected profits
of successful observations. In this model, we use binary
decision variables xk

ij ∈ {0, 1} (i, j ∈ T ∪ {s, t}, k ∈ O),
in which T = {1, ..., n} is the set of real tasks and s, t
are dummy tasks for starting and terminating, respec-
tively. xk

ij = 1 if both tasks i, j are scheduled on orbit
k, and task i is the immediate predecessor of task j;
otherwise xk

ij = 0. The mathematical model is given
below:
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max
∑

i∈T

∑

j ∈ T ∪ {t}
j 6= i

∑

k∈O

ωi · pik · xk
ij (1)

subject to

∑

j ∈ T ∪ {t}
j 6= i

∑

k∈O

xk
ij ≤ 1,∀i ∈ T (2)

∑

j ∈ T ∪ {t}
j 6= i

xk
ij =

∑

j ∈ T ∪ {s}
j 6= i

xk
ji, ∀i ∈ T, k ∈ O (3)

∑

j ∈ T ∪ {t}
j 6= i

xk
ij ≤ bik,∀i ∈ T, k ∈ O (4)

xk
ij(wsjk − weik − stkij) ≥ 0,∀i, j ∈ T, k ∈ O (5)

∑

i∈T

∑

j ∈ T ∪ {t}
j 6= i

xk
ij(weik − wsik)mk ≤ Mk,∀k ∈ O (6)

∑
i∈T

∑
j ∈ T ∪ {t}
j 6= i

xk
ij(weik − wsik)ek

+
∑
i∈T

∑
j ∈ T
j 6= i

xk
ijρ

k
ij ≤ Ek,∀k ∈ O

(7)

xk
ij ∈ {0, 1},∀i, j ∈ T ∪ {s, t}, k ∈ O (8)

The objective (1) is to maximize the expected value
of the profits of the executed tasks under uncertainties
of clouds. The set of constraints (2) guarantees that
each task will be observed at most once. Constraints
(3) are flow balance constraints that force the number
of predecessors to be equal to the number of successors
for each task. Constraints (4) enforce that each task
can only be scheduled to the orbits that are available
for it. There must be sufficient setup times between con-
secutive tasks for transformations, which is enforced in
constraints (5). Constraints (6) check that the memory
consumption of the scheduled tasks cannot exceed the
memory capacity for each orbit. Constraints (7) com-
pute the energy consumption of the task sequence for
each orbit, and enforce that the energy consumption
must be less than or equal to the capacity.

3.3 Chance constrained programming model

Next to the expectation model, we also construct the
chance constrained programming model for the schedul-
ing of multiple EOSs under uncertainties of clouds. From
the above problem description and the previous expec-
tation model, we can arrive at the conclusion that the
constraints of our problem are deterministic, but the
scheduling objective, namely maximizing the profits of
the executed tasks, is stochastic. In [34], Liu has proven
that the chance constrained programming is also avail-
able for stochastic objectives.

Let (1 − α) denote the predefined confidence level.
The objective of the chance constrained programming
model is:

maxf̄, (9)

in which f̄ is constrained by the following chance con-
straint:

P{
∑

i∈T

∑

j ∈ T ∪ {t}
j 6= i

∑

k∈O

ωi · λ̃ik · xk
ij ≥ f̄} ≥ 1− α (10)

The chance constraint (10) states that the probabil-
ity that the profits of executed tasks under uncertain-
ties of clouds will be at least f̄ is larger than or equal
to the confidence level 1 − α. Besides, the remaining
constraints, such as unicity constraints, setup time con-
straints, memory constraints, etc, are identical to those
of the expectation model. Therefore, the CCP model is
formulated as: maxf̄ subject to: (2)-(8),(10). Compared
with the expectation model, the solution complexity of
the CCP model is indeed larger due to the chance con-
straint.

4 Solution approach for the expectation model

Note that, the proposed expectation model is charac-
terized by a block diagonal structure, which facilitates
being decomposed. Hence, in order to solve the expec-
tation model more efficiently, we decompose and for-
mulate it as a set packing (master) problem and some
subproblems using Dantzig-Wolfe decomposition.

4.1 Set packing model

To formulate the set packing problem, we define the
following notations:

Rk: the set of all feasible solutions (schedules) for
orbit k, k ∈ O.

r: a feasible solution, r ∈ Rk, k ∈ O.
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αijrk: αijrk = 1 if task i is the immediate pre-
decessor of task j of solution r on orbit k, otherwise
αijrk = 0.

ckr: the expected scheduling profits of feasible solu-
tion r on orbit k, r ∈ Rk, k ∈ O.

Decision variables:
zkr: zkr = 1 if feasible solution r is selected for orbit

k, r ∈ Rk, k ∈ O, otherwise zkr = 0.
The set packing model for the scheduling of multiple

EOSs under uncertainties of clouds can be formulated
as follows:

max
∑

k∈O

∑

r∈Rk

ckrzkr (11)

subject to

∑

k∈O

∑

r∈Rk

∑

j ∈ T ∪ {t}
j 6= i

αijrkzkr ≤ 1,∀i ∈ T (12)

∑

r∈Rk

zkr = 1,∀k ∈ O (13)

zkr ∈ {0, 1},∀r ∈ Rk, k ∈ O (14)

The objective (11) is to maximize the expected value
of the profits of executed tasks. Constraints (12) are
corresponding to constraints (2), which enforce each
task to be executed at most once. Constraints (13) are
the convexity constraints representing that a feasible
solution should be selected for each orbit. Explicitly,
the above formulation only take the unicity constraints
into account for EOS scheduling. However, the remain-
ing constraints are also involved implicitly to constitute
the feasible solutions for each orbit (see Section 4.3).

It should be noted that the above set packing model
decreases the number of constraints compared with the
original expectation model, which seems to be faster for
solving. However, the number of feasible solutions for
each orbit grows exponentially with the problem size,
which results in an exponential growth in the computa-
tional time. Hence, in order to avoid the ”explosion” of
the solution time, we intend to solve the linear program-
ming (LP) relaxation of the above set packing problem
using column generation, as described in the next sec-
tion.

4.2 Column generation

Despite the large number of feasible solutions for each
orbit, it is possible to solve the LP relaxation using col-
umn generation. In essence, column generation is an it-
erative procedure that starts by solving the problem us-
ing a subset of all feasible solutions (columns), which is
the so-called Restricted Master Problem (RMP). Then
the RMP is solved to optimality. In the next step, in
the subproblems the dual variables are used to price out
the absent columns that can improve the objective. If
one or multiple promising columns are identified (i.e.,
columns with a positive reduced cost for our problem),
the column(s) will be added to the RMP and the RMP
is re-optimized. Then, the procedure will terminate if
we cannot find any columns to improve the objective
(e.g. the reduced costs of all absent columns are nega-
tive).

In the first iteration, we solve the RMP using a sub-
set of columns R′k, R′k ⊆ Rk for each orbit k, k ∈ O,
in which the subset R′k are provided by a dynamic pro-
gramming algorithm (see Section 4.4.1). Thereafter, for
each successive iteration, the following dual variables
are passed to the subproblems for identifying feasible
columns with positive reduced costs:

– µi: dual variables corresponding to constraints (12),
– δk: dual variables corresponding to constraints (13).

On the basis of the dual variables from the RMP, we
can theoretically calculate the reduced cost for each ab-
sent column, and add the columns with positive reduced
costs to the RMP. However, due to the large number of
columns, it is impractical and much too time consum-
ing to enumerate all absent columns. Hence, we transfer
the problem to an optimization problem that searches
for the column with the most positive reduced cost. In
addition, because of the block diagonal structure, the
column with the most positive reduced cost for each
orbit can be identified and added separately.

4.3 Subproblem

In each iteration of column generation, we solve m sub-
problems, one for each orbit k, k ∈ O. In each subprob-
lem, the objective is to find the feasible solution for
the specified orbit with the most positive reduced cost
to be added to the current pool of active columns in
RMP. Hence, the objective of the subproblem for orbit
k, k ∈ O is outlined as below:

max
r∈Rk

{ckr −
∑

i∈T

∑

j ∈ T ∪ {t}
j 6= i

αijrkµi − δk} (15)



Proactive scheduling algorithms for multiple earth observation satellites under uncertainties of clouds 7

Note that the index k can be removed from all de-
cision variables and parameters for each subproblem,
since each subproblem is solved separately. Therefore,
the above objective function can be rewritten as:

max
r∈R

{cr −
∑

i∈T

∑

j ∈ T ∪ {t}
j 6= i

αijrµi − δ} (16)

In which cr =
∑
i∈T

∑
j ∈ T ∪ {t}
j 6= i

ωipiαijr, and the index

r can also be neglected for the optimization problem,
thus the objective is:

max
∑

i∈T

∑

j ∈ T ∪ {t}
j 6= i

αij(ωipi − µi)− δ (17)

Parameters. The additional parameters employed in
the subproblem are:

µi, δ: the dual variables obtained from the restricted
master problem, i ∈ T .

bi: bi = 1 if it is available to observe task i, otherwise
bi = 0, i ∈ T .

M, E: memory capacity and energy capacity.
m, e: memory and energy consumption for each unit

time of observation.
[wsi, wei]: time window of observation of task i, i ∈

T .
stij : setup time between task i and task j, i, j ∈ T .
ρij : energy consumption for slewing between task i

and task j, i, j ∈ T .
pi: probability that task i will be successfully exe-

cuted, i ∈ T .
Decision variables. The decision variables used in

the subproblem are:
αij : αij = 1 if both tasks i, j are scheduled, and

task i is the immediate predecessor of task j; otherwise
αij = 0.

Subproblem formulation. The subproblem can be for-
mulated as follows:

max
∑

i∈T

∑

j ∈ T ∪ {t}
j 6= i

αij(ωipi − µi)− δ (18)

subject to

∑

j ∈ T ∪ {t}
j 6= i

αij =
∑

j ∈ T ∪ {s}
j 6= i

αji, ∀i ∈ T (19)

∑

j ∈ T ∪ {t}
j 6= i

αij ≤ bi,∀i ∈ T (20)

αij(wsj − wei − stij) ≥ 0,∀i, j ∈ T (21)

∑

i∈T

∑

j ∈ T ∪ {t}
j 6= i

αij(wei − wsi)m ≤ M (22)

∑
i∈T

∑
j ∈ T ∪ {t}
j 6= i

αij(wei − wsi)e +
∑
i∈T

∑
j ∈ T
j 6= i

αijρij ≤ E

(23)

αij ∈ {0, 1},∀i, j ∈ T ∪ {s, t} (24)

Constraints (19)-(24) are corresponding to constraints
(3)-(8) of the original problem, respectively. Since the
subproblem is solved separately for each orbit, the com-
plexity of the problem is significantly reduced compared
to the original problem. Subsequently, we solve the sub-
problems with a forward-checking dynamic program-
ming algorithm (see Section 4.4.2).

4.4 Dynamic programming

In this work, dynamic programming based on some
labels (see [20]) is proposed significantly, which can-
not only provide some initial columns for solving the
RMP, but also solve the subproblems to price out some
promising columns. In order to facilitate the descrip-
tion, we first define a directed acyclic graph (DAG)
Gk = (V k, Ak) for each orbit k. Note that, the problems
can be solved separately for each orbit. Hence, without
provoking ambiguity, we drop the superscript k in the
remaining text. Using a task-on-node representation,
the nodes in V represent the tasks that are available,
plus two special nodes {s, t} representing the dummy
starting and dummy terminating tasks. Each node in V
represents an available task and all nodes are numbered
in the chronological order of the time windows. A is the
set of arcs, which is defined as below:

– ∀j ∈ V ∪ {t}, (s, j) ∈ A;
– ∀j ∈ V ∪ {s}, (j, t) ∈ A;
– ∀i, j ∈ V , (i, j) ∈ A iff task j can be observed after

task i, i.e. the setup time constraints between tasks
i and j are satisfied.
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It is obvious that a path from the starting node s to
the terminating node t that satisfies the memory and
energy constraints represents a feasible solution. Based
on the above formulation, we can both obtain the initial
feasible solutions and solve the subproblems to add the
new columns to the RMP.

4.4.1 Initial feasible solutions

In this study, in order to generate some initial feasible
solutions for each orbit, we first assign each node i of
the directed acyclic graph a weight ω′i, ω′i = ωipi. Af-
terwards, we originally proposed to enumerate all feasi-
ble solutions for each orbit, but unfortunately, for some
large-scale problems, this is infeasible due to the limi-
tation on the computer memory. Hence, as an alterna-
tive, we enumerate a great number ColNum of feasible
solutions using a dynamic programming algorithm. Ul-
timately, among the ColNum solutions, a predefined
number L of elements of maximum weight are selected
to be used in the column generation algorithm.

For each node j, we store a set of labels P (j) that
represent all paths from the starting node s to j. A label
in P (j), corresponding to a path p = {s, i1, . . . , ik, j},
is denoted by lp = [ik, ↑ lp′ , Ωp,M

′
p, E

′
p], where ik is the

immediate predecessor of j in path p, ↑ lp′ is a pointer
on the label referring to the path p′ = {s, i1, . . . , ik}
in P (ik), Ωp is the weight of path p, i.e., the sum of
weights of the nodes in path p, and M ′

p, E′
p are the

memory consumption and energy consumption of path
p, respectively. Besides, N(j) is defined as the num-
ber of labels in P (j). To respect the memory limita-
tion, N(j) must be less than or equal to ColNum for
each node j. The dynamic programming algorithm is
described in Algorithm 1, in which Γ−1(j) is the set
of all predecessors of j. At each iteration, we determine
the label set for a node j, j ← 1, . . . , n, t (remember
here that t represents the dummy terminating task).
For each subpath in each predecessor i of j, we add the
subpath with the node j and the relevant arc (i, j). If
both the memory and energy constraints are satisfied,
we will add the label of the path to P (j), and then
access the next subpath.

By this algorithm, for each node j (including the ter-
minating node t), at most a number ColNum of paths
from the starting node s to j will be stored in the label
set P (j). Meanwhile, each feasible path stored in the
label set P (t) is corresponding to a feasible solution.
Then, a predefined number L of feasible solutions of
maximum weight will be selected as the initial feasible
solutions. In addition, in order to guarantee that the
master problem is feasible, we add an “empty” solution

Algorithm 1 Dynamic programming
1: P (s) ← {[null, null, 0, 0, 0]}
2: P (j) ← ∅,N(j) ← 0 (j ← 1, . . . , n, t)
3: for j ← 1, . . . , n, t do
4: for all i ∈ Γ−1(j) do
5: for all lp ∈ P (i) do
6: if memory and energy constraints are satisfied

and N(j) < ColNum then
7: P (j) ← P (j)∪{[i, ↑ lp, Ωp +ω′j , M ′

p +m(wej−
wsj), E′p + e(wej − wsj) + ρij ]}

8: N(j) ← N(j) + 1
9: end if

10: end for
11: end for
12: end for

that is corresponding to the direct path from s to t for
each orbit.

4.4.2 Solution for the subproblems

For each subproblem, we want to find the absent fea-
sible solution with the most positive reduced cost, and
add it to the RMP to improve the objective. Hence,
based on the DAG formulation, the subproblem is to
search for a path from s to t with the maximum weight
respecting the memory and energy constraints, which in
essence is a constrained longest weighted path planning
problem. Notably, at each iteration of column genera-
tion, the weight of each node i should be updated with
the dual variables from the RMP, namely ω′i = ωipi−µi.
On the basis of [20], the subproblem can be solved using
a forward-checking dynamic programming algorithm.
Before describing the algorithm, we first introduce some
definitions.

Definition 1: Path domination. From the start-
ing node s to node j, there are two feasible paths p, q,
i.e., lp, lq ∈ P (j), path p is dominated by path q if and
only if Ωp ≤ Ωq, M ′

p ≥ M ′
q, E′

p ≥ E′
q, and at least one

inequality holds.
Definition 2: Dominated path and nondomi-

nated path. From the starting node s to node j, path
p, lp ∈ P (j) is a dominated path if ∃lq ∈ P (j) such that
path p is dominated by path q, otherwise path p is a
non-dominated path.

Definition 3: Optimal path. For the paths from
s to t, optimal path p is the path with maximum Ωp,
which is corresponding to the optimal solution for the
subproblem.

The forward-checking dynamic programming algo-
rithm is outlined in Algorithm 2. At each iteration,
we determine the label set P (j) for j = 1, 2, . . . , n, t
in two stages. In the first stage, we define for all pre-
decessors i of node j the set Pi(j) of labels associated
with efficient subpaths from s to i plus the arc (i, j),
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with both the memory constraints and the energy con-
straints being satisfied. In the second stage, we merge
the sets Pi(j) for all predecessors i, i ∈ Γ−1(j) while
removing all dominated paths in order to obtain P (j).
Dominance tests are applied only between paths be-
longing to different sets Pi(j). At the end of the algo-
rithm, P (t) describes all feasible non-dominated paths
from s to t, among which the optimal path correspond-
ing to the optimal solution is selected.

Algorithm 2 Forward-checking dynamic pro-
gramming
1: P (s) ← {[null, null, 0, 0, 0]}
2: P (j) ← ∅ (j ← 1, . . . , n, t)
3: Pi(j) ← ∅; (i ∈ Γ−1(j), j ← 1, . . . , n, t)
4: for j ← 1, . . . , n, t do
5: {First stage}
6: for all i ∈ Γ−1(j) do
7: for all lp ∈ P (i) do
8: if memory and energy constraints are satisfied

then
9: Pi(j) ← Pi(j)∪{[i, ↑ lp, Ωp+ω′j , M ′

p+m(wej−
wsj), E′p + e(wej − wsj) + ρij ]}

10: end if
11: end for
12: end for
13: {Second stage}
14: for all i ∈ Γ−1(j) do
15: for all lp ∈ Pi(j) do
16: for all lp′ ∈ P (j) do
17: if P dominated P ′ then P (j) ← P (j)\lp′
18: if P ′ dominated P then Pi(j) ← Pi(j)\lp
19: end for
20: end for
21: P (j) ← P (j) ∪ Pi(j)
22: end for
23: end for

4.5 Branch-and-bound

From the column generation algorithm, we can solve
the LP relaxation of the set packing model to get the
optimal solution, which is an upper bound to the opti-
mal solution of the original problem. However, column
generation cannot guarantee the integrality. In many
cases, the solutions of column generation are not inte-
ger solutions. Hence, in order to get the optimal integer
solution of the original problem, a branch-and-price al-
gorithm, which is a combination of column generation
and branch-and-bound, is required to solve the prob-
lem. In the branch-and-price algorithm, column gener-
ation is employed at each node of the branch-and-bound
tree, then if the solution from column generation is not
integer, branching will be employed.

Branching is an important issue in the branch-and-
price algorithm, which is different from the typical branch-
and-bound algorithm. Normally, direct branching strate-
gies on the column variables of the RMP are thought
to be inappropriate, because it could cause a signifi-
cant alteration to the subproblem and yield an unbal-
anced branch-and-bound tree [4,49]. Currently, there
have been some effective branching strategies proposed
by researchers. One of the strategies is Ryan-Foster
branching, and the other way is to branch on the vari-
ables of the original problem.

In this study, we plan to use the branching on the
variables of the original problem. For each subproblem
(orbit) k, if there exist fractional variables, there will
be at least two variables that are fractional, say zkr and
zks, due to the convexity constraints (13). Hence, for the
two columns corresponding to the fractional variables, if∑

j ∈ T ∪ {t}
j 6= i

αijrk 6=
∑

j ∈ T ∪ {t}
j 6= i

αijsk for task i, i ∈ T ,

we will branch on task i, i.e., set
∑

j ∈ T ∪ {t}
j 6= i

xk
ij = 0

or
∑

j ∈ T ∪ {t}
j 6= i

xk
ij = 1. The main advantage of this

branching scheme is that it does not destroy the struc-
ture of the subproblem, because the resulting modifi-
cations simply entail amending the weight of the corre-
sponding node in the DAG. For instance, if

∑
j ∈ T ∪ {t}
j 6= i

xk
ij

is set to 1, the corresponding weight ω′i is set to +∞
for orbit k; otherwise if

∑
j ∈ T ∪ {t}
j 6= i

xk
ij is set to 0, ω′i is

set to −∞ for orbit k. The second advantage is the fact
that this branching strategy yields a balanced branch-
and-bound tree.

In Algorithm 3, an overview of the branch-and-
price algorithm is given.

5 Solution approach for the CCP model

Because of some difficulties, the CCP model is intractable
to solve directly [36,37]. In order to solve the CCP
model, we have transferred it to a mixed integer pro-
gramming model by sample approximation in the pre-
vious research [55].

5.1 Sample approximation

A sample W is a set of scenarios of the random vector
w(λ̃ik), i ∈ T, k ∈ O, such that W = {w1, ..., w|W |},
in which |W | is the sample size. The basic idea of the
reformulation introduced in [43] is to solve the problem
and get a solution, which is infeasible for at most b|W | ·
εc scenarios. Thus the solution will be feasible for the
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Algorithm 3 BRANCH-AND-PRICE
1: Initialize a predefined number of columns with the maximum weights using Algorithm 1.
2: GlobalUpperBound ← +∞, GlobalLowerBound ← −∞, OptSolObj ← 0
3: Initialize an empty stack S for storing the nodes of the branch-and-bound tree.
4: Initialize the RootNode and S ← push(S, RootNode).
5: while (S 6= ∅) do
6: CurrentNode ← Pop(S);
7: LP opt found ← FALSE;
8: while (LP opt found = FALSE) do
9: LP opt found ← TRUE;

10: CurrentNode.LocalUpperBound ← SOLVE-MASTER-LP(); /*solve the linear programming relaxation of the master
problem*/

11: for (k = 1, . . . , m) do
12: RCk ← FIND-NEW-COLUMN(k); /*solve the subproblem k with Algorithm 2 to get the maximum reduced

cost of the absent columns*/
13: if (RCk > 0) then
14: add the new column to the restricted master problem;
15: LP opt found ← FALSE
16: end if
17: end for
18: end while
19: if CurrentNode = RootNode then
20: GlobalUpperBound = CurrentNode.LocalUpperBound;
21: end if
22: if CurrentNode.LocalUpperBound ≤ GlobalLowerBound then
23: Continue; /*In this situation, we cannot find a better solution in the subtree of the current node, and prune*/
24: else
25: if (integer solution) then
26: if (CurrentNode.LocalUpperBound = GlobalUpperBound) then
27: OptSolObj ← CurrentNode.LocalUpperBound;
28: register the optimal solution;
29: algorithm ends;
30: end if
31: if (CurrentNode.LocalUpperBound < GlobalUpperBound and CurrentNode.LocalUpperBound >

GlobalLowerBound) then
32: GlobalLowerBound ← CurrentNode.LocalUpperBound;
33: OptSolObj ← GlobalLowerBound;
34: register the solution as the current optimal solution found;
35: end if
36: end if
37: if (fractional solution) then
38: branch to get LeftChildNode and RightChildNode;
39: S ← Push(S, RightChildNode),S ← Push(S, LeftChildNode);
40: end if
41: end if
42: end while

sample approximation problem with a confidence level
at least (1− ε) that is refereed to the sample confidence
level. Normally, we set 1 − ε > 1 − α. Afterwards, we
reformulate the CCP model as below:

Let yl for each scenario wl, wl ∈ W be binary vari-
ables, yl = 0 if the obtained solution must be feasible
for scenario wl and yl = 1 otherwise.

Chance constraint (10) can be replaced by the fol-
lowing constraints:

∑

i∈T

∑

j ∈ T ∪ {t}
j 6= i

∑

k∈O

ωi · λl
ik · xk

ij ≥ −ylM + f̄ ,∀wl ∈ W

(25)

∑

wl∈W

yl ≤ b|W | · εc (26)

yl ∈ {0, 1},∀wl ∈ W (27)

Constraints (25) state that the profits of the obser-
vations have to be larger than or equal to f̄ for scenario
wl if yl = 0, in which λl

ik is the value of stochastic vari-
able λ̃ik under scenario wl, and M is assumed to be a
sufficiently large number, which can be set to the sum
of the profits of all tasks. Constraint (26) imposes that
the number of scenarios for which the solution is not
necessarily feasible, which means the profits of the ob-
servations are not necessary to be larger than or equal
to f̄ , will be at most b|W | · εc. Thus, the sample ap-
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proximation formulation of the original CCP problem
is: maximize f̄ subject to (2)-(8), (25)-(27).

5.2 Set packing model

Similarly with the expectation model, we also reformu-
late the sample approximation formulation as a master
problem and some subproblems using Dantzig-Wolfe
decomposition. Note that, the master problem is also
a set packing problem, which only involves the unicity
constraints and the sample related constraints.

To facilitate the reformulation, we add the following
notations to those in Section 4.1:

cl
kr: the profit of column r of orbit k under scenario

wl, r ∈ Rk, k ∈ O, wl ∈ W .
The set packing model of the CCP problem can be

formulated as follows:

max f̄ (28)

subject to

∑

k∈O

∑

r∈Rk

∑

j ∈ T ∪ {t}
j 6= i

αijrkzkr ≤ 1,∀i ∈ T (29)

∑

r∈Rk

zkr = 1,∀k ∈ O (30)

f̄ − ylM −
∑

k∈O

∑

r∈Rk

cl
krzkr ≤ 0,∀wl ∈ W (31)

∑

wl∈W

yl ≤ b|W | · εc (32)

zkr, yl ∈ {0, 1},∀r ∈ Rk, k ∈ O, wl ∈ W (33)

The objective is to maximize the value of the real
variable f̄ that is constrained by the chance constraints.
Constraints (29) are corresponding to constraints (2),
which ensure that each task will be executed at most
once. Constraints (30) are the convexity constraints
representing that a feasible solution should be selected
for each orbit. Constraints (31) state that the profits of
the observations have to be larger than or equal to f̄
for scenario wl if yl = 0. Constraint (32) is identical to
constraint (26).

5.3 Column generation

Similarly with the expectation model, the above set
packing model for chance constrained programming can
also be solved by column generation to obtain the opti-
mal solution of the LP relaxation. For the first iteration
of the column generation, the set of initial columns R′k,
R′k ⊆ Rk for each orbit k can also be obtained by Al-
gorithm 1, except that the weight for each node i will
be modified as ω′i = (

∑
wl∈W

ωiλ
l
i)/|W |. For each itera-

tion, the following dual variables are passed to the sub-
problems for identifying feasible columns with positive
reduced costs:

– µi: dual variables corresponding to constraints (29),
– δk: dual variables corresponding to constraints (30),
– φl: dual variables corresponding to constraints (31).

In this study, it is not necessary to consider the dual
variable corresponding to constraint (32) since this con-
straint does not involve the zkr variables and therefore
the associated dual variable does not impact the re-
duced costs of the zkr variables. On the basis of the
dual variables, we can model and solve the subproblem
for each orbit to add the column with the most positive
reduced cost.

5.4 Subproblem

In order to find the absent column with the most posi-
tive reduced cost, the objective of subproblem k, k ∈ O

is defined as:

max
r∈Rk

{
∑

wl∈W

cl
krφl −

∑

i∈T

∑

j ∈ T ∪ {t}
j 6= i

αijrkµi − δk} (34)

Because each subproblem can be solved separately,
we can remove the index k without provoking ambigu-
ity. In addition, noting that cl

r =
∑
i∈T

∑
j ∈ T ∪ {t}
j 6= i

ωiλ
l
iαijr,

and we can formulate the objective as:

max
∑

i∈T

∑

j ∈ T ∪ {t}
j 6= i

(
∑

wl∈W

ωiλ
l
iφl − µi) · αij − δ (35)

Hence, with the notations similar to Section 4.3, we
can formulate the subproblem as: maximize (35) sub-
ject to (19)-(24).

The above subproblem can also be solved using Al-
gorithm 2 with the modification that the weight for
each node i should be

∑
wl∈W

ωiλ
l
iφl − µi.
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Table 2 Parameters of satellites

Satellite
Slewing Startup Shutdown Stability Memory Energy Energy
velocity time time time /time /time /deg

CBERS-2 2 5 8 3 2 1.5 1.5
IKONOS-2 2.5 8 5 6 4 2.5 4
SPOT-5 3 10 10 9 3 3.5 1

5.5 Column generation heuristic

As described previously, the optimal solutions obtained
from the column generation algorithm normally are not
integer feasible solutions. Intuitively, we also intended
to use the branch-and-price algorithm to get the op-
timal integer solutions of the original problem. How-
ever, after experimental testing, we discovered that it
is difficult and inappropriate to solve the chance con-
strained programming using the branch-and-price algo-
rithm. The first reason is that in the RMP of the CCP
model, not only zik, i ∈ T, k ∈ O, but also yl, wl ∈
W are integer variables. Among the integer variables,
branching on zik, i ∈ T, k ∈ O that are associated
with columns can be easily handled by the branch-
ing strategies: branching on the original variables and
modifications of the weights of the relevant nodes (see
Section 4.5). However, for the sample associated vari-
ables yl, wl ∈ W , branching will destroy the structure
of the master problem, which will make the problem ex-
tremely difficult to be solved. Secondly, from the sample
approximation formulation of the CCP model, we found
that if we solve the LP relaxation of the set packing
model (28)-(32), most (even all) variables yl, wl ∈ W

will be fractional, and one branching can only set one
variable to be integer. Due to the large size of the sam-
ple, numerous branches will be required, which will re-
sult in the branch-and-price algorithm being much too
time consuming.

Fortunately, some column generation heuristic algo-
rithms can solve the complicated combinational opti-
mization problems efficiently and provide a lower bound
close to the optimal solution [1,18]. Hence, in order to
get the integer feasible solutions of the CCP problem,
we propose to solve the problem using a column gen-
eration based heuristic algorithm. It solved the inte-
ger programming model of the restricted master prob-
lem to find an integer solution based on the existing
columns when we have solved the LP relaxation op-
timally. Clearly, the obtained integer feasible solution
cannot be guaranteed to be optimal. However, we can
get a “good” integer feasible solution in a short time
even for large-scale problems.

The pseudocode of the column generation heuristic
algorithm is outlined in Algorithm 4.

6 Computational results

For this section, we created a great number of prob-
lem instances in order to evaluate the effectiveness and
efficiency of our proposed approaches. By the simula-
tions, the performances of both the branch-and-price al-
gorithm and the column generation heuristic algorithm
are evaluated.

In order to verify the effectiveness and efficiency of
our algorithms, the tasks are randomly generated in the
area: latitude 0◦-60◦ and longitude 0◦-150◦. Without
loss of generality, the profits of tasks are integers, uni-
formly distributed in the interval [1,10]. In this work,
three different satellites are considered. The parameters
of the satellites are outlined in Table 2, and the orbit
models of the satellites are obtained from the Satel-
lite Tool Kit (STK). In addition, the memory capacity
and energy capacity for each orbit are randomly gen-
erated in the intervals [200,240] and [240,320], respec-
tively. Considering the uncertainties of clouds, for each
time window of observation, the probability that there
is no presence of clouds, i.e. the observation is success-
ful, will be uniformly distributed in [0.5,1).

The algorithms in this study were implemented in
C++ using the CPLEX 12.3 API and ran on a personal
laptop equipped with an Intel(R) Core(TM) i5-2430M
2.40 GHz (2 processors) and 4 Gb RAM, with operating
system Windows 7.

6.1 Performance evaluation of the branch-and-price
algorithm

In this experiment, the number of tasks ranges from 20
to 180 with an increment of 20. The scheduling horizons
are set to 12 and 24 hours, which are corresponding to
21 and 42 orbits, respectively. For each parameter set-
ting, we create 10 problem instances randomly. Hence,
we will have 180 instances in total.

Before evaluating the performance of our branch-
and-price algorithm, we need to set the parameters L
and ColNum reasonably in order to make the perfor-
mance of the algorithm as best as possible. Table 3
shows the parameter testing results, in which only the
solution times are given due to the fact that all in-
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Algorithm 4 Column generation heuristic
1: Initialize a predefined number of columns with the maximum weights using Algorithm 1.
2: LP opt found ← FALSE;
3: while (LP opt found = FALSE) do
4: LP opt found ← TRUE;
5: CurrentNode.LocalUpperBound ← SOLVE-MASTER-LP(); /*solve the linear programming relaxation of the master

problem*/
6: for (k = 1, . . . , m) do
7: RCk ← FIND-NEW-COLUMN(k); /*solve the subproblem k with Algorithm 2 to get the maximum reduced cost

of the absent columns*/
8: if (RCk > 0) then
9: add the new column to the restricted master;

10: LP opt found ← FALSE
11: end if
12: end for
13: end while
14: FeaSolObj ← SOLVE-MASTER(); /*solve the master problem based on the existing columns to obtain a “good” integer

feasible solution*/

Table 3 Average solution times for different parameter set-
tings of the branch-and-price algorithm

Parameter L
Parameter ColNum

1000 2000 3000 4000
5 4.447 4.871 4.347 6.661
10 4.481 5.278 5.062 6.667
15 5.130 6.064 5.263 8.707
20 5.776 5.909 6.777 8.939
25 6.810 6.042 7.461 10.368
30 6.054 7.190 6.305 9.483
35 6.293 9.225 7.240 11.061
40 7.692 9.520 8.005 9.861

stances are solved optimally with the same objective
function values. Table 3 reveals that the branch-and-
price algorithm will perform best with the parameter
setting “ColNum = 3000,L = 5”. Hence, in the fol-
lowing experiments, we will adopt this setting for the
branch-and-price algorithm.

To verify the superiority of the branch-and-price al-
gorithm, we first compare its performance with that
of CPLEX. In addition, there is also another intuitive
approach to solve the expectation model. Using the
Dantzig-Wolfe decomposition, we can construct the set
packing model and some subproblems (see Section 4),
and then we solve the set packing model directly to get
integer solutions based on all columns or the maximum
number (limited by computer memory) of columns that
can be obtained by Algorithm 1 for each orbit. In the
subsequent text, we call this approach Dantzig-Wolfe
decomposition based heuristic (DWDH) algorithm, and
we will also compare the performance of our branch-
and-price algorithm with that of the DWDH algorithm.

Table 4 shows the comparison results, in which columns
“Obj” contain the average of the schedule objective
values for the 10 instances, and columns “Time” con-
tain the average values of the solution times. Besides,

columns “(opt,fea)” show the number of instances that
are solved optimally and the number of instances for
which we can only get feasible solutions, respectively.
Furthermore, more details for each problem instance
are outlined in Tables 6 and 7 of the Appendix, in
which the nonoptimal solutions are denoted in under-
lined numbers. According to the results in Table 4, we
can conclude that both the proposed branch-and-price
algorithm and CPLEX can derive the optimal solutions
for all instances. Hence, the scheduling objective values
are equivalent all the time. However, the branch-and-
price algorithm is much faster to obtain the optimal so-
lutions, which is more efficient compared with CPLEX.
Additionally, it can be observed that the DWDH al-
gorithm solves faster than our branch-and-price algo-
rithm, especially for the larger problems (from 60 to
180 tasks). This is because the DWDH algorithm only
solves the set packing model once to get the integer
solution, without the iteration procedure for generat-
ing columns. Moreover, the DWDH can get all opti-
mal solutions for small size problems (form 20 to 100
tasks), because there are not too many columns for
each orbit, and we can easily enumerate all columns
and solve the set packing problems optimally. However,
with the number of tasks increasing, the number of
columns for each orbit increases, and we cannot enu-
merate all columns for some instances due to the limi-
tation of computer memory. Hence, for some instances,
we cannot get the optimal solutions, as shown in Table
4.

6.2 Performance evaluation of the column generation
heuristic algorithm

In this section, in order to evaluate the performance of
the proposed column generation heuristic algorithm for
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Table 4 Scheduling objective, solving time and the number of instances of (optimal, feasible) solutions

Number
of orbits

Number
of tasks

Branch-and-price CPLEX DWDH
Obj Time (opt,fea) Obj Time (opt,fea) Obj Time (opt,fea)

21

20 64.650 0.051 (10,0) 64.650 0.278 (10,0) 64.650 0.291 (10,0)
40 134.740 0.121 (10,0) 134.740 0.624 (10,0) 134.740 0.315 (10,0)
60 195.553 0.361 (10,0) 195.553 1.032 (10,0) 195.553 0.318 (10,0)
80 265.357 1.012 (10,0) 265.357 1.614 (10,0) 265.357 0.297 (10,0)
100 306.544 1.205 (10,0) 306.544 2.676 (10,0) 306.544 0.353 (10,0)
120 370.447 3.438 (10,0) 370.447 4.170 (10,0) 370.285 0.711 (9,1)
140 415.264 2.570 (10,0) 415.264 5.364 (10,0) 415.206 1.255 (9,1)
160 451.481 4.421 (10,0) 451.481 9.592 (10,0) 450.509 2.047 (8,2)
180 504.276 6.533 (10,0) 504.276 21.519 (10,0) 501.727 4.178 (3,7)

42

20 85.057 0.057 (10,0) 85.057 0.354 (10,0) 85.057 0.282 (10,0)
40 179.776 0.259 (10,0) 179.776 0.818 (10,0) 179.776 0.267 (10,0)
60 261.264 0.568 (10,0) 261.264 1.419 (10,0) 261.264 0.270 (10,0)
80 353.237 1.003 (10,0) 353.237 2.393 (10,0) 353.237 0.416 (10,0)
100 434.372 2.060 (10,0) 434.372 3.681 (10,0) 434.372 1.092 (10,0)
120 519.401 2.848 (10,0) 519.401 6.213 (10,0) 519.401 1.746 (10,0)
140 595.663 8.690 (10,0) 595.663 10.340 (10,0) 595.368 4.563 (7,3)
160 695.135 9.085 (10,0) 695.135 14.727 (10,0) 692.669 7.790 (5,5)
180 753.849 12.501 (10,0) 753.849 59.098 (10,0) 744.476 10.655 (0,10)

the CCP problem, we compare the solutions of CGH
with those of the DWDH algorithm (see Section 6.1),
the branch-and-cut algorithm in [55] and CPLEX. In
this experiment, the number of tasks is set to 20, 40,
60, 80 and 100, and the number of orbits is set to 21
and 42, respectively. For each parameter setting, we
also create 10 problem instances randomly. Addition-
ally, the sample confidence level 1− ε is set to 0.95, and
the sample size |W | is set to 100. Besides, the sample
for each instance is randomly generated using Monte-
Carlo simulation. According to the parameter testing
results in Section 6.1, we will adopt the parameter set-
ting “ColNum = 3000, L = 5” for the CGH algorithm.

Table 5 reveals the evaluation results, in which columns
“M” and “N” represent the number of orbits and the
number of tasks, respectively. Besides, columns “Obj”,
“Time” and “(opt,fea)” are identical to those in Ta-
ble 4, and columns “GAP %” describe the average gap
between the objective function values of the feasible so-
lutions and those of the optimal solutions. Furthermore,
with respect to the CGH algorithm, we can at least get
feasible solutions for all instances. However, for the in-
stances that are not included in (opt,fea), we cannot
figure out whether the solutions are optimal or nonop-
timal because we cannot get the optimal solutions. In
contrast, with regard to the other algorithms, for the
instances that are not included in (opt,fea), we cannot
get feasible solutions due to out-of-memory problems.
Note that, for most large-scale instances, the DWDH al-
gorithm, the branch-and-cut algorithm and CPLEX fail
to solve the instances due to out-of-memory problems.
Therefore, we solve the instances of 80 tasks for 42 or-
bits with the CGH algorithm only and we do not solve

the instances of 100 tasks for 42 orbits. Furthermore,
more details for each problem instance are outlined in
Tables 8 and 9 of the Appendix, in which the nonopti-
mal solutions are denoted in underlined numbers.

From Tables 5, we can conclude that the CGH can
get “good” feasible solutions in reasonable times for
most instances. Additionally, although CPLEX and the
branch-and-cut algorithm can get the optimal solutions,
the solution times will increase explosively. Especially,
for some large-scale problems, no feasible solutions can
be obtained due to the limit of computer memory. For-
tunately, using our proposed column generation heuris-
tic algorithm, we can solve the problems very efficiently,
and at least the feasible solutions can be obtained. Fur-
thermore, for the small or medium size instances, the
DWDH gets better solutions that are mostly the op-
timal solutions, compared with the CGH algorithm.
However, for the large-scale instances, the DWDH algo-
rithm performs worse, as it will cost much more time to
get the optimal solutions than the branch-and-cut algo-
rithm and CPLEX. Even worse, for some larger problem
instances (100 tasks for 21 orbits and 60 tasks for 42
orbits), the DWDH algorithm cannot get feasible solu-
tions due to the limited memory. For the comparisons
between CPLEX and the branch-and-cut algorithm, for
the small or medium size instances (less than 80 tasks
for 21 orbits), the solution times of the branch-and-
cut algorithm are less than those of CPLEX. On the
contrary, for the large-scale instances (100 tasks for 21
orbits and all the instances for 42 orbits), the branch-
and-cut algorithm will be more time consuming.
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7 Conclusions and future work

In this paper, considering the uncertainties of clouds,
we formulated the presence of clouds for observations
as stochastic events, and then investigated the schedul-
ing of multiple EOSs. Based on different viewpoints,
we proposed both an expectation model and a chance
constrained programming model to formulate the prob-
lem. With respect to the expectation model, we devise
an exact algorithm based on branch-and-price to solve
the model optimally and efficiently. On the other hand,
because of the difficulties and the infeasibility of the
branch-and-price algorithm for solving the CCP model,
a column generation based heuristic algorithm is de-
signed to obtain “good” feasible solutions efficiently.
To the best of our knowledge, this is the first study
that suggests exact and heuristic algorithms based on
column generation to solve the scheduling of multiple
EOSs under uncertainties of clouds. Finally, by a great
number of simulation experiments, we proved that: 1)
the branch-and-price algorithm can solve the expecta-
tion model optimally for all generated instances and
this faster than CPLEX; 2) for the CCP model, the
column generation heuristic algorithm can get close-to-
optimal solutions for all instances efficiently.

In the future, the first extension of our research is to
consider the scheduling of agile satellites under uncer-
tainties. Different from the non-agile satellites in this
study, the agile satellites do not only have the maneu-
verability of slewing, but also the maneuverability of
pitching, along with the orbit. Hence, the satellite will
have a long time window for observation. Consequently,
we need not only allocate the tasks to the orbits, but
also need to decide the start and finish times. In addi-
tion, for a unique window, the impact of clouds for dif-
ferent parts will be different, which will make the prob-
lem more complicated. Moreover, besides the proactive
scheduling, we will also consider developing reactive
scheduling algorithms for EOSs. Currently, most of the
new generations of EOSs will be equipped with cloud
detection instruments [3] that can detect the status of
clouds for specified areas before observation. Hence, the
scheduling decisions can be made according to the de-
tection results on board. However, the time interval
between detection and observation will be very short,
thus the decision should be made very quickly. Hence,
it will be important to design highly efficient reactive
scheduling algorithms. Further, we will also consider in-
corporating some more sophisticated techniques such as
dual stabilization and dynamic constraint aggregation
to speed up the convergence of the column generation
process.
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28. Lemâıtre, M., Verfaillie, G., Jouhaud, F., Lachiver, J.M.,
& Bataille, N. (2002). Selecting and scheduling observa-
tions of agile satellites. Aerospace Science Technology,
6 (5), 367-381.

29. Li, J., Li, J., Chen, H., & Jing, N. (2014). A data trans-
mission scheduling algorithm for rapid-response earth-
observing operations. Chinese Journal of Aeronautics,
27 (2), 349-364.

30. Li, Y., Wang, R., & Xu, M. (2014). Rescheduling of ob-
serving spacecraft using fuzzy neural network and ant
colony algorithm. Chinese Journal of Aeronautics, 27 (3),
678-687.

31. Liao, D., & Tang, Y. (2007). Imaging order scheduling
of an earth observation satellite. IEEE Transactions on
Systems Man and Cybernetics Part C-Applications and
Reviews, 37 (5), 794-802.

32. Lin, W., & Chang, S. (2005). Hybrid algorithms for satel-
lite imaging scheduling. In Proceedings of the IEEE in-
ternational conference on systems, man and cybernetics
(pp. 2518-2523).

33. Lin, W., Liao, D., Liu, C., & Lee, Y. (2005). Daily Imag-
ing Scheduling of an Earth Observation Satellite. IEEE
Transactions on Systems Man and Cybernetics Part A-
Systems and Humans, 35 (2), 213-223.

34. Liu, B. (1999). Uncertain Programming. New York: Wi-
ley.

35. Liu, B., & Liu, B. (2002). Theory and practice of uncer-
tain programming. Heidelberg: Physica-verlag.

36. Luedtke, J., & Ahmed, S. (2008). A sample approxima-
tion approach for optimization with probabilistic con-
straints. SIAM Journal on Optimization, 19 (2), 674-699.

37. Luedtke, J., Ahmed, S., & Nemhauser, G.L. (2010).
An integer programming approach for linear programs
with probabilistic constraints. Mathematical Program-
ming, 122 (2), 247-272.

38. Mancel, C., & Lopez, P. (2003). Complex optimiza-
tion problems in space systems. In Proceedings of the
13th international conference on automated planning
and scheduling.

39. Marinelli, F., Salvatore, N., Rossi, F., & Smriglio, S.
(2011). A lagrangian heuristic for satellite range schedul-
ing with resource constraints. Computers Operations Re-
search, 38 (11), 1572-1583.

40. Montoya, C., Morineau, O.B., Pinson, E., & Rivreau,
D. (2014). Branch-and-price approach for the multi-skill
project scheduling problem. Optimation Letters, 8 (5),
1721-1734.

41. Pralet, C., Verfaillie, G., Maillard, A., et al. (2014). Satel-
lite data download management with uncertainty about
the generated volumes. In Proceedings of the 24th inter-
national conference on automated planning and schedul-
ing.

42. Robenek, T., Umang, N., Bierlaire, M., & Ropke, S.
(2014). A branch-and-price algorithm to solve the inte-
grated berth allocation and yard assignment problem in
bulk ports. European Journal of Operational Research,
235 (2), 399-411.
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Appendix

Table 6: Branch-and-price: scheduling objectives and solution times for 21 or-
bits

Number
of tasks

Instance
No.

Branch-and-price CPLEX DWDH
Obj Time Obj Time Obj Time

20

0 85.189 0.032 85.189 0.273 85.189 0.228
1 52.442 0.061 52.442 0.319 52.442 0.346
2 54.731 0.053 54.731 0.219 54.731 0.125
3 67.887 0.048 67.887 0.246 67.887 0.348
4 71.161 0.040 71.161 0.324 71.161 0.369
5 93.917 0.046 93.917 0.224 93.917 0.127
6 55.590 0.060 55.590 0.341 55.590 0.403
7 53.703 0.053 53.703 0.246 53.703 0.272
8 58.466 0.056 58.466 0.285 58.466 0.366
9 53.413 0.056 53.413 0.298 53.413 0.328

Average 64.650 0.051 64.650 0.278 64.650 0.291

40

0 137.882 0.057 137.882 0.807 137.882 0.257
1 147.874 0.060 147.874 0.564 147.874 0.361
2 142.777 0.369 142.777 0.676 142.777 0.321
3 115.471 0.049 115.471 0.621 115.471 0.414
4 134.805 0.055 134.805 0.573 134.805 0.345
5 147.542 0.076 147.542 0.583 147.542 0.260
6 126.355 0.146 126.355 0.630 126.355 0.172
7 128.986 0.086 128.986 0.534 128.986 0.282
8 118.005 0.046 118.005 0.639 118.005 0.373
9 147.706 0.268 147.706 0.610 147.706 0.360

Average 134.740 0.121 134.740 0.624 134.740 0.315

60

0 196.728 0.270 196.728 0.919 196.728 0.241
1 221.495 0.327 221.495 0.873 221.495 0.338
2 163.606 0.198 163.606 0.900 163.606 0.308
3 185.217 0.324 185.217 1.023 185.217 0.323
4 190.113 0.247 190.113 0.837 190.113 0.292
5 173.637 0.541 173.637 0.972 173.637 0.364
6 175.067 0.051 175.067 0.872 175.067 0.179
7 185.011 0.776 185.011 1.436 185.011 0.516
8 211.800 0.080 211.800 1.095 211.800 0.374
9 252.853 0.795 252.853 1.388 252.853 0.242

Average 195.553 0.361 195.553 1.032 195.553 0.318

80

0 278.899 0.677 278.899 1.531 278.899 0.252
1 299.610 3.502 299.610 1.968 299.610 0.291
2 276.498 0.825 276.498 1.755 276.498 0.208
3 249.193 0.599 249.193 1.311 249.193 0.254
4 236.116 1.813 236.116 1.339 236.116 0.317
5 251.623 0.718 251.623 1.762 251.623 0.369
6 241.594 0.601 241.594 1.559 241.594 0.482
7 300.114 0.617 300.114 1.513 300.114 0.210
8 241.515 0.365 241.515 1.511 241.515 0.326
9 278.403 0.400 278.403 1.895 278.403 0.262

Average 265.357 1.012 265.357 1.614 265.357 0.297

100

0 344.398 2.314 344.398 2.756 344.398 0.426
1 315.877 1.218 315.877 3.175 315.877 0.679
2 298.680 0.926 298.680 2.790 298.680 0.369
3 306.887 1.151 306.887 2.394 306.887 0.229
4 281.197 1.164 281.197 1.738 281.197 0.220
5 305.543 2.008 305.543 2.827 305.543 0.338
6 282.026 1.185 282.026 2.698 282.026 0.266
7 352.937 1.002 352.937 2.904 352.937 0.298
8 299.303 0.479 299.303 3.136 299.303 0.316
9 278.596 0.604 278.596 2.343 278.596 0.391

Average 306.544 1.205 306.544 2.676 306.544 0.353

120

0 330.243 0.571 330.243 3.399 330.243 0.466
1 418.603 16.584 418.603 5.607 416.983 2.656
2 366.373 0.846 366.373 3.055 366.373 0.378
3 395.652 1.631 395.652 3.519 395.652 0.907
4 394.852 1.181 394.852 3.772 394.852 0.366
5 355.232 1.376 355.232 4.508 355.232 0.429
6 357.197 6.318 357.197 4.648 357.197 0.531
7 385.708 1.012 385.708 4.223 385.708 0.264
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8 337.870 3.776 337.870 4.321 337.870 0.778
9 362.738 1.082 362.738 4.643 362.738 0.333

Average 370.447 3.438 370.447 4.170 370.285 0.711

140

0 424.157 0.890 424.157 4.566 424.157 0.859
1 452.395 2.361 452.395 5.005 452.395 2.310
2 441.600 2.388 441.600 5.175 441.600 1.681
3 413.634 8.057 413.634 7.616 413.634 1.822
4 379.223 1.005 379.223 4.798 379.223 1.100
5 445.239 2.849 445.239 5.373 445.239 1.089
6 391.512 1.114 391.512 5.224 391.512 0.965
7 387.088 1.163 387.088 5.551 387.088 0.301
8 413.825 2.656 413.825 4.538 413.825 1.027
9 403.971 3.215 403.971 5.795 403.390 1.400

Average 415.264 2.570 415.264 5.364 415.206 1.255

160

0 464.522 1.072 464.522 5.707 464.522 1.208
1 441.268 20.525 441.268 10.856 438.172 2.013
2 469.092 3.063 469.092 10.028 469.092 1.889
3 467.692 4.397 467.692 7.757 467.692 1.895
4 415.887 3.232 415.887 8.939 415.887 1.591
5 431.997 4.339 431.997 7.764 431.997 1.107
6 447.246 1.541 447.246 9.422 447.246 0.960
7 455.412 1.332 455.412 11.034 455.412 2.156
8 464.610 3.016 464.610 18.806 457.992 6.081
9 457.079 1.691 457.079 5.608 457.079 1.571

Average 451.481 4.421 451.481 9.592 450.509 2.047

180

0 495.112 6.480 495.112 18.028 492.447 4.570
1 528.673 1.050 528.673 7.741 527.499 2.823
2 533.262 2.909 533.262 7.514 522.832 11.092
3 498.317 1.443 498.317 15.226 497.944 3.401
4 511.670 10.077 511.670 20.535 511.670 4.711
5 512.192 7.567 512.192 96.956 508.054 2.793
6 500.597 27.907 500.597 12.596 500.597 3.167
7 484.206 2.736 484.206 13.008 478.806 4.680
8 473.988 1.366 473.988 14.290 472.676 2.465
9 504.744 3.796 504.744 9.298 504.744 2.075

Average 504.276 6.533 504.276 21.519 501.727 4.178

Table 7: Branch-and-price: scheduling objectives and solution times for 42 or-
bits

Number
of tasks

Instance
No.

Branch-and-price CPLEX DWDH
Obj Time Obj Time Obj Time

20

0 82.141 0.039 82.141 0.408 82.141 0.374
1 93.639 0.049 93.639 0.346 93.639 0.307
2 94.820 0.059 94.820 0.380 94.820 0.284
3 86.304 0.064 86.304 0.287 86.304 0.248
4 73.268 0.053 73.268 0.321 73.268 0.313
5 85.736 0.069 85.736 0.378 85.736 0.234
6 91.975 0.054 91.975 0.370 91.975 0.348
7 81.353 0.064 81.353 0.344 81.353 0.207
8 75.932 0.056 75.932 0.360 75.932 0.248
9 85.403 0.065 85.403 0.345 85.403 0.256

Average 85.057 0.057 85.057 0.354 85.057 0.282

40

0 179.332 0.209 179.332 0.700 179.332 0.179
1 185.616 0.055 185.616 0.769 185.616 0.274
2 181.413 0.543 181.413 0.897 181.413 0.246
3 165.315 0.220 165.315 0.926 165.315 0.231
4 167.618 0.355 167.618 0.757 167.618 0.305
5 170.068 0.108 170.068 0.812 170.068 0.264
6 192.601 0.556 192.601 0.773 192.601 0.336
7 198.124 0.413 198.124 0.749 198.124 0.389
8 183.284 0.072 183.284 0.942 183.284 0.258
9 174.388 0.054 174.388 0.858 174.388 0.191

Average 179.776 0.259 179.776 0.818 179.776 0.267

60

0 235.424 0.702 235.424 1.368 235.424 0.229
1 261.037 0.484 261.037 1.425 261.037 0.264
2 269.794 1.026 269.794 1.479 269.794 0.277
3 243.804 0.230 243.804 1.380 243.804 0.279
4 264.553 0.555 264.553 1.309 264.553 0.220
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5 255.099 0.462 255.099 1.501 255.099 0.216
6 274.514 0.277 274.514 1.388 274.514 0.233
7 251.616 0.372 251.616 1.547 251.616 0.346
8 276.225 0.401 276.225 1.328 276.225 0.345
9 280.573 1.174 280.573 1.466 280.573 0.286

Average 261.264 0.568 261.264 1.419 261.264 0.270

80

0 384.777 0.846 384.777 2.302 384.777 0.505
1 324.193 0.878 324.193 2.604 324.193 0.421
2 345.339 1.370 345.339 2.325 345.339 0.469
3 361.666 0.909 361.666 2.450 361.666 0.389
4 324.252 1.159 324.252 2.342 324.252 0.295
5 350.838 1.246 350.838 2.242 350.838 0.381
6 345.012 0.768 345.012 2.353 345.012 0.481
7 365.825 0.951 365.825 2.522 365.825 0.313
8 373.299 1.132 373.299 2.404 373.299 0.416
9 357.168 0.771 357.168 2.386 357.168 0.488

Average 353.237 1.003 353.237 2.393 353.237 0.416

100

0 429.873 1.739 429.873 3.264 429.873 0.911
1 459.140 1.974 459.140 3.290 459.140 0.753
2 433.824 1.409 433.824 3.599 433.824 0.890
3 462.789 1.580 462.789 3.084 462.789 0.860
4 458.231 2.491 458.231 3.373 458.231 0.863
5 393.861 1.450 393.861 5.083 393.861 0.908
6 430.496 2.406 430.496 3.392 430.496 1.209
7 447.369 3.340 447.369 4.370 447.369 2.454
8 397.893 1.957 397.893 3.824 397.893 1.061
9 430.244 2.254 430.244 3.532 430.244 1.012

Average 434.372 2.060 434.372 3.681 434.372 1.092

120

0 512.406 2.493 512.406 4.645 512.406 2.555
1 467.842 2.768 467.842 6.166 467.842 1.573
2 525.099 2.751 525.099 6.146 525.099 2.361
3 491.345 2.374 491.345 7.221 491.345 1.143
4 523.082 3.007 523.082 7.104 523.082 1.989
5 485.355 2.677 485.355 8.371 485.355 1.731
6 557.310 3.212 557.310 5.699 557.310 1.148
7 561.606 2.760 561.606 5.029 561.606 1.464
8 563.867 3.157 563.867 6.078 563.867 1.792
9 506.096 3.276 506.096 5.674 506.096 1.708

Average 519.401 2.848 519.401 6.213 519.401 1.746

140

0 584.946 3.162 584.946 7.551 584.946 4.375
1 592.659 3.229 592.659 11.298 592.659 3.874
2 579.876 7.997 579.876 8.244 579.852 3.560
3 587.649 5.138 587.649 8.832 587.649 3.596
4 622.100 11.798 622.100 11.971 622.100 5.500
5 608.550 6.053 608.550 9.533 608.550 8.208
6 624.674 18.905 624.674 9.955 624.120 4.643
7 589.878 16.334 589.878 11.521 589.878 4.575
8 556.978 11.009 556.978 13.228 554.605 4.683
9 609.320 3.275 609.320 11.264 609.320 2.612

Average 595.663 8.690 595.663 10.340 595.368 4.563

160

0 677.001 5.276 677.001 15.768 677.001 7.335
1 721.612 11.136 721.612 16.479 721.612 7.341
2 698.823 6.269 698.823 10.586 697.885 7.004
3 717.109 8.556 717.109 16.551 717.109 12.686
4 707.563 8.950 707.563 20.118 706.207 9.233
5 643.955 20.183 643.955 11.795 643.955 10.321
6 687.957 11.196 687.957 15.423 673.578 5.492
7 707.804 5.550 707.804 11.608 707.804 5.425
8 696.164 5.027 696.164 12.655 690.526 7.632
9 693.362 8.706 693.362 16.291 691.009 5.432

Average 695.135 9.085 695.135 14.727 692.669 7.790

180

0 771.124 26.368 771.124 351.992 766.928 15.632
1 738.813 4.303 738.813 31.596 736.901 9.305
2 810.086 19.715 810.086 23.149 800.439 10.136
3 762.752 11.281 762.752 22.356 747.790 8.689
4 770.516 11.810 770.516 36.185 765.229 13.991
5 752.441 17.867 752.441 22.538 739.037 12.253
6 728.828 7.763 728.828 20.165 719.788 8.897
7 649.328 6.117 649.328 14.811 636.985 7.168
8 788.548 16.100 788.548 35.338 773.126 12.614
9 766.049 3.681 766.049 32.849 758.532 7.865
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Average 753.849 12.501 753.849 59.098 744.476 10.655

Table 8: CGH: scheduling objectives and solution times for 21 orbits

Number
of tasks

Instance
No.

CGH DWDH CPLEX Branch-and-cut
Obj Time GAP % Obj Time GAP % Obj Time Obj Time

20

0 73 1.991 0.00 73 1.906 0.00 73 2.419 73 2.167
1 43 0.505 0.00 43 0.373 0.00 43 0.588 43 0.573
2 41 0.641 0.00 41 0.556 0.00 41 0.684 41 0.495
3 57 1.461 0.00 57 1.325 0.00 57 1.247 57 0.902
4 59 0.740 0.00 59 0.656 0.00 59 0.995 59 0.643
5 76 0.594 0.00 76 0.535 0.00 76 0.563 76 0.631
6 46 5.880 0.00 46 5.814 0.00 46 4.891 46 4.724
7 45 1.877 0.00 45 1.860 0.00 45 1.405 45 1.558
8 48 1.761 0.00 48 1.679 0.00 48 1.283 48 1.430
9 42 1.715 0.00 42 1.604 0.00 42 1.490 42 0.932

Average 53 1.717 0.00 53 1.631 0.00 53 1.557 53 1.406

40

0 120 5.872 0.00 120 7.943 0.00 120 7.546 120 4.794
1 132 6.074 0.00 132 7.258 0.00 132 12.853 132 16.227
2 128 18.383 0.00 128 113.550 0.00 128 69.841 128 40.753
3 98 2.867 0.00 98 4.258 0.00 98 3.866 98 1.555
4 114 1.732 0.00 114 1.567 0.00 114 1.552 114 1.669
5 126 3.973 0.79 127 5.950 0.00 127 6.848 127 5.091
6 106 7.041 0.93 107 46.767 0.00 107 40.790 107 15.875
7 112 2.284 0.00 112 3.744 0.00 112 4.145 112 1.468
8 104 3.403 0.00 104 4.926 0.00 104 5.199 104 2.380
9 129 5.177 0.77 130 11.731 0.00 130 12.868 130 5.546

Average 116.9 5.681 0.25 117.2 20.769 0.00 117.2 16.551 117.2 9.536

60

0 180 13.195 0.00 180 37.635 0.00 180 43.127 180 216.074
1 194 5.204 2.02 198 21.703 0.00 198 21.676 198 26.309
2 145 5.302 2.68 149 17.842 0.00 149 10.365 149 3.986
3 165 7.977 0.00 165 27.258 0.00 165 27.822 165 15.593
4 170 15.801 0.00 170 27.257 0.00 170 28.080 170 40.577
5 150 26.711 5.66 159 79.636 0.00 159 68.780 159 147.520
6 157 10.596 0.00 157 39.101 0.00 157 41.042 157 25.575
7 162 8.747 4.14 169 789.748 0.00 169 3855.450 169 253.252
8 190 5.175 0.00 190 10.572 0.00 190 15.362 190 14.438
9 201 5.476 0.00 201 20.697 0.00 201 22.364 201 16.594

Average 171.4 10.418 1.45 173.8 107.145 0.00 173.8 413.407 173.8 75.992

80

0 257 30.193 0.39 258 314.013 0.00 258 458.391 258 652.555
1 243 15.934 1.62 247 125.579 0.00 247 228.871 247 149.294
2 254 24.889 1.55 258 622.660 0.00 258 1006.310 258 187.044
3 219 8.097 3.95 228 43.290 0.00 228 34.741 228 9.032
4 198 9.266 8.33 216 145.485 0.00 216 167.248 216 61.464
5 216 4.618 4.42 224 106.361 0.88 226 136.157 226 26.583
6 216 13.894 0.92 218 77.992 0.00 218 55.704 218 139.679
7 271 8.573 1.45 275 56.521 0.00 275 51.180 275 50.964
8 216 26.152 2.26 221 249.142 0.00 221 185.598 221 371.529
9 245 14.525 3.92 255 1654.770 0.00 255 1990.710 255 2318.000

Average 233.5 15.614 2.88 240 339.581 0.09 240.2 431.491 240.2 396.614

100

0 317 22.788 1.55 297 302.120 7.76 322 440.876 322 753.468
1 283 8.391 2.41 - - - 290 1049.260 290 664.961
2 272 15.591 0.73 272 92.144 0.73 274 253.277 274 422.815
3 265 6.504 5.69 281 309.532 0.00 281 205.237 281 25.737
4 253 16.388 1.56 233 1153.790 9.34 257 658.817 257 1156.200
5 268 8.478 3.25 262 291.990 5.42 277 280.450 277 276.502
6 248 19.936 3.88 215 1095.160 16.67 258 823.305 258 1300.600
7 252 14.595 1.18 - - - 255 1280.720 255 14594.300
8 272 18.460 2.51 279 158.091 0.00 279 227.410 279 166.140
9 230 12.620 10.51 - - - 257 239.944 257 263.980

Average 266 14.375 3.33 262.714 486.118 5.70 275 545.930 275 1962.470
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Table 9: CGH: scheduling objectives and solution times for 42 orbits

Number
of tasks

Instance
No.

CGH DWDH CPLEX Branch-and-cut
Obj Time GAP % Obj Time GAP % Obj Time Obj Time

20

0 74 12.131 0.00 74 22.428 0.00 74 14.489 74 21.991
1 81 4.145 0.00 81 4.016 0.00 81 4.226 81 4.843
2 83 9.360 0.00 83 9.318 0.00 83 9.025 83 12.846
3 73 4.181 0.00 73 4.011 0.00 73 5.487 73 9.523
4 63 4.323 0.00 63 4.203 0.00 63 3.698 63 4.446
5 75 17.286 0.00 75 19.252 0.00 75 18.918 75 67.237
6 80 223.835 0.00 80 795.389 0.00 80 344.195 80 481.045
7 66 5.254 0.00 66 5.157 0.00 66 6.438 66 9.081
8 65 5.996 0.00 65 4.875 0.00 65 6.859 65 12.291
9 76 11.050 0.00 76 9.437 0.00 76 8.467 76 16.824

Average 73.6 29.756 0.00 73.6 87.809 0.00 73.6 42.180 73.6 64.013

40

0 167 71.339 0.00 167 863.867 0.00 167 179.806 167 446.879
1 170 22.120 0.58 171 35.880 0.00 171 21.200 171 28.252
2 161 453.900 1.23 163 1856.870 0.00 163 511.442 163 635.959
3 146 17.912 3.31 151 40.826 0.00 151 28.043 151 20.940
4 151 182.232 2.58 155 206.825 0.00 155 100.401 155 135.448
5 157 101.285 0.63 158 83.307 0.00 158 62.440 158 41.600
6 173 106.300 1.70 176 2208.530 0.00 176 713.506 176 588.397
7 181 17.699 2.16 185 401.512 0.00 185 167.803 185 226.633
8 159 329.845 2.45 163 229.994 0.00 163 99.504 163 399.091
9 162 657.175 0.00 162 6076.200 0.00 162 546.776 162 1184.340

Average 162.7 195.981 1.47 165.1 1200.381 0.00 165.1 243.092 165.1 370.754

60

0 217 21931.900 - - - - - - - -
1 242 39.949 1.22 245 234.491 0.00 245 57.817 245 140.723
2 237 202.123 5.20 - - - 250 1036.100 250 616.951
3 232 495.250 1.69 236 1089.110 0.00 236 683.180 236 486.577
4 244 42.932 3.17 252 126.548 0.00 252 206.201 252 123.849
5 238 49.873 0.83 240 1940.460 0.00 240 786.109 240 2320.240
6 254 147.829 - - - - - - - -
7 232 571.249 2.93 - - - 239 2602.840 239 3196.570
8 257 560.283 0.39 - - - 258 3614.520 258 2962.360
9 262 123.248 1.87 - - - 267 7435.410 267 9652.730

Average 241.5 2416.464 1.73 243.25 847.652 0.00 248.375 2052.772 248.375 2437.500

80

0 354 1160.630
1 273 32.233
2 290 373.435
3 309 15065.100
4 287 622.822
5 288 388.124
6 303 12898.600
7 325 154.644
8 324 101.593
9 310 163.596

Average 306.3 3096.078
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