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Abstract

Most earth observation satellites (EOSs) are equipped with optical sensors, which cannot see through
clouds. Hence, many observations will be useless due to the presence of clouds. In this work, in
order to improve the possibility of completing the tasks under uncertainties of clouds, we take
the scheduling of each task to multiple resources into account and establish a novel non-linear
mathematical model. To solve the problem efficiently under different scenarios, we propose an
exact algorithm and some heuristic algorithms. With respect to the exact algorithm, we divide the
complicated problem into a master problem and multiple subproblems, with a subproblem for each
resource. A labeling-based dynamic programming algorithm is proposed to solve each subproblem.
Afterwards, based on the solutions of the subproblems, we develop an enumeration algorithm to solve
the master problem. Furthermore, we design five heuristics to solve the large-scale problems that
generally fail to be solved by the exact algorithm due to the large space complexity. Experimental
results show that the solutions of our model perform better than those of previous studies, and
we also reveal the strengths and weaknesses of the proposed algorithms while solving different size
instances.

Keywords: earth observation satellites, uncertainties of clouds, model decomposition,
enumeration, dynamic programming, heuristic

1. Introduction

Earth Observation Satellite (EOS) scheduling means to allocate the tasks submitted by users
to satellites, making the schedule satisfy the operational constraints. Because of some special ad-
vantages, e.g. an expansive coverage area, long-term surveillance, a high frequency of repeated
observations, accurate and effective information access and unlimited airspace borders, EOSs have
been extensively employed in earth resources exploration, nature disaster surveillance, urban plan-
ning, crop monitoring, etc. Due to the explosively increased applications, the number of satellites,
in spite of being increased quickly, is still too limited. Hence, it is nontrivial for EOS scheduling to
get high observation effectiveness and efficiency.

Up to now, a great number of studies focusing on EOS scheduling have been proposed, in which
EOS scheduling was formulated and solved in different ways:

Mathematical programming: Without considering memory and energy constraints, Benoist
et al. [4], Habet et al. [19, 20, 21] and Lemâıtre et al. [25] formulated the problem with math-
ematical programming models. Liao et al. [28, 29], Lin et al. [30, 31, 32, 33] and Marinelli et
al. [34] proposed the time-indexed formulations of EOS scheduling, and established mixed integer
programming models. In addition, mixed integer programming models were also constructed on the
basis of a “flow variable” formulation [8, 9, 15, 16]. Hall et al. [22] formulated the problem as a
longest path problem with time windows, and suggested an integer linear programming model.

Constraint satisfaction problem: Lemâıtre et al. [24] and Verfaillie et al. [43] formulated
EOS scheduling as constraint satisfaction problems. Agnèse et al. [1], Bensana et al. [5] and Verfaillie
et al. [44] proposed valued constraint satisfaction problem (VCSP) formulations for SPOT-5 satellite
scheduling, without considering energy constraints.
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Knapsack problem: Vasquez et al. [41, 42] and Wolfe et al. [49] formulated EOS scheduling
as 0-1 knapsack problems.

Graph-based formulation: Gabrel et al. [13, 14] adopted a directed acyclic graph (DAG)
model to describe the satellite scheduling problem. Besides, Sarkheyli et al. [37] and Zufferey et al.
[52] modeled EOS scheduling as graph coloring problems.

Besides, Frank et al. [12] and Pralet et al. [35] adopted the Constraint-Base Interval (CBI)
language to describe the problem.

In addition, the solution approaches for EOS scheduling can be classified into the following
categories.

Exact algorithms: Agnèse et al. [1] and Bensana et al. [5] proposed depth-first branch and
bound algorithms for SPOT-5 satellite scheduling. Also, Benoist et al. [4], Bensana et al. [5]
and Verfaillie et al. [44] suggested Russian Doll search algorithms, which are based on branch and
bound but replace one search by n successive searches on nested subproblems, using the results of
each search when solving larger subproblems, in order to improve the lower bound on the global
valuation of any partial assignment. Besides, Gabrel et al. [14], Hall et al. [22] and Lemâıtre et
al. [25] developed dynamic programming methods to get the optimal solutions of EOS scheduling
problems.

Metaheuristics: A large number of metaheuristics were proposed for EOS scheduling, which
primarily contain tabu search algorithms [5, 9, 11, 31, 33, 41, 51, 52], genetic algorithms [2, 23, 26,
38, 39, 49, 51], ant colony algorithms [27, 45, 50], local search algorithms [24, 25, 43] and simulated
annealing algorithms [17, 18, 51].

Heuristics: Agnèse et al. [1], Bensana et al. [5] and Lemâıtre et al. [25] proposed greedy
algorithms to get feasible solutions for EOS scheduling problems. On the basis of heuristic rules,
Bianchessi et al. [7, 10], Hall et al. [22], Wang et al. [46, 47, 48] and Wolfe et al. [49] developed
constructive algorithms that can solve the problem efficiently, without guaranteeing the optimality
of the solutions. Bianchessi et al. [8], Lin et al. [30, 33] and Marinelli et al. [34] adopted lagrangian
relaxation heuristics to solve the problems, obtaining close-to-optimal solutions.

Many observations performed by EOSs are lost due to the presence of clouds, because most EOSs
are equipped with optical sensors that cannot see through clouds [17, 18]. For example, around 80%
of the observations with the currently operational optical SPOT satellites are useless due to the
presence of clouds [3]. Hence, clouds are a nontrivial issue for EOS scheduling, which cannot be
ignored. Unfortunately, to the best of our knowledge, among all the previous studies, only a few
have considered the impact of clouds. Lin et al. [30, 31, 32, 33] formulated the presence of clouds
as a set of covered time windows, and forbade the tasks to be observed in the covered time windows
of scheduling. In practice, the drawback and infeasibility of Lin’s approach is that there exist a lot
of uncertainties of clouds, which are always changing over time [2, 6, 24] and it is impossible to
be forecasted exactly, so decision makers cannot get the deterministic information of clouds before
scheduling. Liao et al. [28, 29] considered the uncertainties of clouds, formulated the presence of
clouds for each observation window as a stochastic event, and established a model with the objective
of maximizing the weighted sum of a function of the profits and the expected number of executed
tasks.

In deterministic scheduling, a task will be completed successfully once it has been scheduled.
Hence, it is sufficient to be scheduled once to a resource for each task, and there is no difference
between scheduling a task to one resource or to multiple resources. In contrast, in the scheduling
under uncertainties, a scheduled task can fail to be completed at a certain probability. Therefore, if
we allocate a task to multiple resources, the task will have a higher probability to be completed and
the scheduling system will be more robust. Unfortunately, in the previous studies of uncertain EOS
scheduling, the characteristics of deterministic scheduling are simply and inadequately migrated,
and each task will be restricted to be scheduled to only one resource.

In this paper, in order to make more tasks be completed under uncertainties of clouds, we take
into account the scheduling of a task to multiple resources for one time and construct a corresponding
expectation model. Due to the complexities of the problem, the proposed model is neither linear
nor quadratic, which brings too many challenges for solving. Both exact and inexact algorithms
are proposed to find optimal and good feasible solutions, respectively. For the problems of small
size, we divide the complicated problem into a master problem and multiple subproblems. For each
subproblem, we obtain all feasible solutions with a labeling-based dynamic programming algorithm.
Moreover, for the master problem, based on the solutions of the subproblems, all feasible solutions,
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Table 1: Notations

T set of tasks, T = {1, ..., n}
i, j task index, i, j ∈ T ∪ {s,t} , in which s, t are dummy

tasks

$i profit of task i, i ∈ T

O set of orbits, O = {1, ..., m}
k orbit index, k ∈ O

bik bik = 1 if orbit k is available for the observation of

task i, otherwise bik = 0, i ∈ T, k ∈ O

Mk, Ek memory capacity and energy capacity of orbit k, k ∈ O

mk, ek memory and energy consumption for each unit time of

observation of orbit k, k ∈ O

[wsik, weik] time window of observation of task i on orbit k,

i ∈ T, k ∈ O

θik slewing angle of observation of task i on orbit k, i ∈ T, k ∈ O

stk
ij setup time between task i and task j on orbit k,

i, j ∈ T, k ∈ O

ρk
ij energy consumption for slewing between task i and

task j on orbit k, i, j ∈ T, k ∈ O

λ̃ik binary stochastic variable, λ̃ik = 1 denotes that task i

can be successfully observed on orbit k, otherwise

λ̃ik = 0, i ∈ T, k ∈ O

pik probability that task i will be successfully observed

on orbit k, i ∈ T, k ∈ O

which are the combinations of solutions for subproblems, are enumerated and the optimal solution
is selected. In addition, considering the huge space complexity of the exact algorithm and the limit
of computer memory, the exact algorithm based on enumeration is only successful in solving small
to medium size problems. Hence, we design a number of efficient heuristic algorithms to solve the
large-scale problems, to get the feasible solutions that are close-to-optimal efficiently. Afterwards, a
large number of experiments by simulation are conducted to verify that the solutions of our model
perform better than those of previous studies under uncertainties of clouds. Besides, the feasibility
of both the exact algorithm and the heuristics is verified, coupled with an evaluation of the qualities
and the performances of solving.

The paper is organized as follows. In the next section, we describe the problem and formulate
the problem with a novel mathematical model. Subsequently, Section 3 divides the problem into a
master and some subproblems, and proposes an enumeration algorithm and a dynamic programming
algorithm for solving. Section 4 suggests a number of efficient heuristic algorithms for the large-
scale problems. Numerical results of our approach are presented in Section 5. The last section offers
conclusions and directions for future research.

2. The uncertain EOS Scheduling Problem

In this study we focus on the scheduling of multiple EOSs under uncertainties of clouds, in which
the presence of clouds for observations is formulated as stochastic events. Essentially, the problem is
a stochastic programming problem, and we construct a novel mathematical model for this problem.

2.1. Problem description
In EOS scheduling, users normally submit two types of requests: (1) a target, i.e., a circle with

limited dimension, or (2) a polygon which may cover a wide geographical area. Due to its large size,
a polygon usually is failed to be observed in a single orbit and therefore partitioned into multiple
strips [9, 11, 46]. In order to facilitate the description, a target can be seen as a single strip. Hence,
the tasks in this work are corresponding to the strips that require being observed. Furthermore, the
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profit associated with each strip is defined as a piecewise linear convex function of the surface of the
polygon that is acquired, which is illustrated in Figure 1.
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Figure 1: Non-linear profit function P (x) associated with the acquired portion x of a polygon [9, 11, 40]

In the previous studies, researchers usually formulate the satellites as the resources, and a task
will have at most one observation window on each resource. However, if the scheduling horizon is
long enough, a satellite will orbit the earth for multiple orbits and pass over a strip for multiple
times. Hence, the observation windows for a task on each satellite will not be unique [46, 47], which
makes the problem difficult for modeling and solving. To handle the difficulties, we formulate the
orbits of the satellites as the resources. Hence, there will be at most one observation window for
each task on each resource, regardless of the length of the scheduling horizon.

Moreover, we assume that there will be an opportunity for data downloading for each orbit, and
the data will be all downloaded resulting in the memory becoming empty again. Hence, the memory
capacity for each orbit is equal to the fixed capacity of the satellite’s on-board memory. Besides,
satellites collect solar energy by solar panels from the sun and store energy in batteries as they
orbit the earth. Because both the period and the rate of collecting energy can be approximately
considered as constants, and the maximum charge capacity is fixed, we assume the available energy
for each orbit to be a constant. Hence, both the memory and the energy capacities for each orbit
can be formulated as constants in this study.

Some notations of this study are summarized in Table 1. Let T be the set of tasks (strips)
submitted by users and let O be the set of orbits within the scheduling horizon. With each task
i ∈ T is associated a profit $i. Each orbit k ∈ O is associated with a memory capacity Mk, an
energy capacity Ek, a memory consumption for each unit of observation time mk and an energy
consumption for each unit of observation time ek. Let bik = 1 denote that task i can be observed on
orbit k, otherwise bik = 0. [wsik, weik] denotes the time window for task i on orbit k, and θik denotes
the slewing angle. Many of these notions are illustrated in Figure 2. In this work, we only consider
non-agile satellites, which have the maneuverability of rolling (slewing) which indicates a movement
that is perpendicular to the direction of the orbit, without the maneuverability of pitching which
indicates a movement along the direction of the orbit. Hence, the time windows for observations
are fixed without flexibility, such that the start and finish time of task i on orbit k will be fixed as
[wsik, weik], and the duration will be weik − wsik.

After observing a task, the satellite requires a sequence of transformation operations to observe
the next one, which are sensor shutdown→ slewing→ attitude stability→ startup. Hence, there
should be sufficient setup time between two consecutive tasks, and the required setup time can be
calculated by the following formula:

stkij = sdk + |θik − θjk|/sk + ask + suk,

where stkij is the setup time between task i and task j on orbit k, and sdk, ask and suk are the times
of sensor shutdown, attitude stability and startup on orbit k, respectively. Besides, sk is the slewing
velocity of orbit k, and θik and θjk are the slewing angles of tasks i and j on orbit k, respectively.

For observing task i on orbit k, the memory consumption can be computed by (weik −wsik)mk.
Differently from memory, energy will not only be consumed by observation, but also by sensor
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Figure 2: Time window for observation

slewing. The energy consumption for observing task i on orbit k is (weik −wsik)ek. Let ρk
ij denote

the energy consumption of slewing between consecutive tasks i and j on orbit k, which can be
calculated by the formula below:

ρk
ij = |θik − θjk|πk,

where πk is the energy consumption for each unit slewing angle on orbit k. Besides, it should be
noted that the parameters for each orbit, such as the times of sensor shutdown, attitude stability
and startup, memory and energy consumption per unit observation time, and energy consumption
per unit slewing angle, are inherited from the satellite to which the orbit belongs.

Considering the uncertainties of clouds, we formulate the presence of clouds for observations as
stochastic events, denoted by 0-1 stochastic variables λ̃ik, i ∈ T, k ∈ O. λ̃ik = 1 if the observation
of task i on orbit k can be successfully observed without the presence of clouds, otherwise λ̃ik = 0.
Let pik denote the probability for a successful observation of task i on orbit k, i.e., no presence of
clouds, thus we can obtain p{λ̃ik = 1} = pik and p{λ̃ik = 0} = 1− pik. Using this way, the changes
of clouds are implicitly formulated by the different uncertain impacts of clouds on different time
windows, which will be forecasted prior to scheduling.

2.2. Mathematical model
In this study, we formulate the EOS scheduling problem with flow variables, and establish a

non-linear mathematical model. In this model, we use binary decision variables xk
ij ∈ {0, 1} (i, j ∈

T ∪{s, t}, k ∈ O), in which T = {1, ..., n} is the set of real tasks and s, t are dummy tasks for starting
and terminating, respectively. xk

ij = 1 if both tasks i, j are scheduled on orbit k, and task i is the
immediate predecessor of task j; otherwise xk

ij = 0. The mathematical model is given below:

max
∑

i∈T

$i · {1−
∏

k∈O

(1− pik ·
∑

j ∈ T ∪ {t}
j 6= i

xk
ij)} (1)

subject to
∑

j ∈ T ∪ {t}
j 6= i

xk
ij =

∑

j ∈ T ∪ {s}
j 6= i

xk
ji, ∀i ∈ T, k ∈ O (2)

∑

j ∈ T ∪ {t}
j 6= i

xk
ij ≤ bik,∀i ∈ T, k ∈ O (3)

xk
ij = 0,∀i, j ∈ T, k ∈ O, if weik + stkij > wsjk (4)
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∑

i∈T

∑

j ∈ T ∪ {t}
j 6= i

xk
ij(weik − wsik)mk ≤ Mk,∀k ∈ O (5)

∑
i∈T

∑
j ∈ T ∪ {t}
j 6= i

xk
ij(weik − wsik)ek

+
∑
i∈T

∑
j ∈ T
j 6= i

xk
ijρ

k
ij ≤ Ek,∀k ∈ O

(6)

xk
ij ∈ {0, 1},∀i, j ∈ T ∪ {s, t}, k ∈ O (7)

The objective (1) is to maximize the expectation value of the profits of the executed tasks
under uncertainties of clouds, in which 1−∏

k∈O(1− pik ·
∑

j ∈ T ∪ {t}
j 6= i

xk
ij) denotes the completion

probability for task i when it is scheduled to multiple orbits. The set of constraints (2) that are
flow balance constraints ensure that the number of predecessors is equal to the number of successors
for each task. Constraints (3) enforce that each task can only be scheduled to the orbits that are
available for it. There must be sufficient setup times between consecutive tasks for transformations,
which is enforced in constraints (4). Note that the setup time constraints are much stronger than the
common non-overlapping constraints. The setup time constraints do not only forbid the overlapping
of tasks, but also require sufficient setup times between consecutive tasks for some transformation
operations. Constraints (5) check that the memory consumption of the scheduled tasks cannot
exceed the memory capacity for each orbit. Constraints (6) compute the energy consumption of the
task sequence for each orbit, and enforce that the energy consumption must be less than or equal to
the capacity.

Note that constraints (3) and (4) just fix some variables in some cases. Hence, we will fix the
relevant variables prior to solving and modify the constraints to make the model brief. With respect
to constraints (3), if ∃i ∈ T, k ∈ O, bik = 0, we can fix the corresponding variables beforehand:
xk

ij = 0,∀j ∈ T ∪ {t}. Hence, constraints (3) only have an effect when bik = 1,∀i ∈ T, k ∈ O, and
we modify constraints (3) as follows:

∑

j ∈ T ∪ {t}
j 6= i

xk
ij ≤ 1,∀i ∈ T, k ∈ O, bik = 1. (8)

Besides, with respect to constraints (4), we can directly fix the variables and remove the con-
straints prior to solving. Therefore, the simplified model can be formulated as: maximize (1) subject
to (2), (5)-(8).

3. An exact algorithm

It has been described in the previous section that the proposed model in this study is neither
linear nor quadratic, which brings too many challenges for its solution. To the best of our knowledge,
currently there is no existing algorithm that can solve this model. In this paper, we reformulate the
problem as a master problem for selection and some subproblems for path planning. For the master
problem, we propose an enumeration algorithm, and we solve the subproblems with a dynamic
programming algorithm.

3.1. Master problem and enumeration
From the analysis of the model, we can conclude that only the objective is coupled and difficult to

solve, and all constraints can be straightforwardly decomposed by orbits. Hence, the constraints are
structured with diagonal blocks. With the model decomposition, we can reformulate the problem
as a master problem with the objective (1) and some subproblems with the constraints (2), (5)-
(8). Hence, the subproblem is to find all the feasible maximal solutions satisfying the constraints
(2), (5)-(8). The solution of the master problem is the combination of the feasible solutions for all
subproblems.

To facilitate the reformulation, we define the following notations:
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Rk: the set of all feasible solutions for orbit k, k ∈ O.
r: the index of feasible solution, r ∈ Rk, k ∈ O.
αijrk: αijrk = 1 if task i is the immediate predecessor of task j of solution r on orbit k, otherwise

αijrk = 0.
zkr: decision variables, zkr = 1 if feasible solution r is selected for orbit k, r ∈ Rk, k ∈ O,

otherwise zkr = 0.
The formulation of the master problem is described below:

max
∑

i∈T

$i · {1−
∏

k∈O

(1− pik ·
∑

r∈Rk

∑

j ∈ T ∪ {t}
j 6= i

zkr · αijrk)} (9)

subject to ∑

r∈Rk

zkr = 1,∀k ∈ O (10)

zkr ∈ {0, 1},∀r ∈ Rk, k ∈ O (11)

The objective (9) is to maximize the expectation value of the profits of the executed tasks.
Constraints (10) represent that one and only one solution should be selected for each orbit.

Unfortunately, the master problem above is still neither linear nor quadratic, and thus cannot
be solved by existing solvers or algorithms. However, the master problem has been simplified in
comparison with the original model. In this study, using dynamic programming, we can solve the
subproblem for each orbit and get all the feasible maximal solutions. Choosing a feasible solution
for each orbit, we can make a combination that is corresponding to a feasible solution of the original
problem, and then all feasible solutions of the original problem are obtained by enumerating all
combinations. Finally, we will select the optimal solution that is the feasible solution with maximum
objective function value.

3.2. Subproblem and dynamic programming
As described above, the subproblem for each orbit is to search for all feasible solutions, which can

be solved with a dynamic programming algorithm. In order to facilitate the description, we firstly
define a directed acyclic graph Gk = (V k, Ak) for each orbit k, k ∈ O. In the remainder we drop the
superscript when this does not provoke ambiguity. With the task-on-node representation the nodes
in V represent the tasks that are available for the orbit, plus two special nodes {s, t} representing
the dummy starting and dummy terminating tasks. Each node in V represents an available task
and all nodes are numbered following the chronological order of the corresponding time windows. A
is the set of arcs, which is defined as follows:

• ∀j ∈ V ∪ {t}, (s, j) ∈ A;

• ∀j ∈ V ∪ {s}, (j, t) ∈ A;

• ∀i, j ∈ V , (i, j) ∈ A iff task j can be observed after task i, i.e. the setup time constraints
between tasks i and j are satisfied.

In this formulation, it is obvious that a path from the starting node s to the final node t represents
a feasible solution for the subproblem. Hence, for each orbit, the subproblem is regarded as a path
planning problem, which is to search for all feasible paths from s to t.

The subproblem for each orbit can be solved by a labeling-based dynamic programming algorithm.
For each node j, we store a set of labels P (j) that represent all paths from the starting node s to j.
A label in P (j), corresponding to a path p = {s, i1, . . . , ik, j} , is denoted by lp = [ik, ↑ lp′ ,M

′
p, E

′
p],

where ik is the immediate predecessor of j in path p, ↑ lp′ is a pointer on the label referring to the path
p′ = {s, i1, . . . , ik} in P (ik), and M ′

p, E′
p are the memory consumption and energy consumption of

path p, respectively. The labeling-based dynamic programming algorithm is described in Algorithm
1, in which Γ−1(j) is the set of all predecessors of j. At each iteration, we determine the label set
for a node j, j ← 1, . . . , n, t (remember here that t represents the dummy terminating task). For
each subpath in each predecessor i of j, we add the subpath with the node j and the relevant arc
(i, j). If both the memory and energy constraints are satisfied, we will add the label of the path to
P (j), and then access the next subpath.
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Algorithm 1 Labeling-based Dynamic Programming
1: Initialization:
2: P (s) = {[null, null, 0, 0]}
3: P (j) = ∅ (j = 1, . . . , n, t)
4: Solving:
5: for j ← 1, . . . , n, t do
6: for all i ∈ Γ−1(j) do
7: for all lp ∈ P (i) do
8: if memory and energy constraints are satisfied then
9: P (j) ← P (j) ∪ {[i, ↑ lp, M ′

p + m(wej − wsj), E
′
p + e(wej − wsj) + ρij ]}

10: end if
11: end for
12: end for
13: end for

Table 2: A toy EOS scheduling instance

Task no. Profit
Orbit no.

1 2 3
Window Probability Window Probability Window Probability

1 7 [42,48] 0.86 - - [66,72] 0.75
2 9 - - [16,20] 0.92 - -
3 3 [18,25] 0.72 [42,49] 0.87 - -
4 6 [50,55] 0.96 [66,71] 0.89 - -
5 6 - - - - [32,38] 0.86
6 7 [22,27] 0.91 [41,46] 0.87 [57,62] 0.82
7 9 - - [27,34] 0.78 [42,47] 0.91
8 8 [32,38] 0.92 [53,59] 0.64 [18,24] 0.90
Memory capacity 60 40 50
Energy capacity 80 50 70

Memory consumption for
each unit time 2.5 2 2.5

Energy consumption for
each unit time 1.5 2 2

By this algorithm, for each node j, all paths from the starting node s to j will be stored in the
label set P (j). In addition, all feasible paths from s to t, which are corresponding to the feasible
solutions of the subproblem, are stored in the dummy terminating node t.

Definition 1. Path domination
For two feasible paths p and q, path p is dominated by path q if V (p) ⊂ V (q), in which V (p), V (q)

are the set of nodes in paths p and q, respectively.
Definition 2. Dominated path and non-dominated path
Path p is a dominated path if ∃q such that path p is dominated by path q, otherwise path p is a

non-dominated path.
Subsequently, to obtain all the feasible maximal solutions for each subproblem, we need to remove

all the dominated paths from s to t, and then all the non-dominated paths are corresponding to all
the feasible maximal solutions.

3.3. Example
To describe the proposed model and algorithm more clearly, let us introduce a toy instance of

EOS scheduling. The instance is composed of 8 non-dummy tasks and 3 orbits, and Table 2 outlines
the following data: profits of tasks, availabilities for observations, time windows, probabilities of
successful executions, memory and energy capacities, as well as memory and energy consumptions
for each unit observation time. The symbol “-” denotes that the orbit is not available for observing
the task.
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Then the setup times and slewing energy are illustrated in Figures 3-5, in which the normal
numbers above the lines denote the setup times and the italic numbers below the lines denote the
slewing energy. In addition, the dashed lines represent the infeasible paths that do not satisfy the
setup time constraints.

3 6 8 1 4

Orbit 1

6 6 4 5

5

6
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8 7

5

Figure 3: Setup times and slewing energy for orbit 1

2 7 6 3 8 44 6 4 5 5

8
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7 8
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Orbit 2

Figure 4: Setup times and slewing energy for orbit 2

8 5 7 6 1
6 5 8 4

4

6

7

7 6
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Orbit 3

Figure 5: Setup times and slewing energy for orbit 3

With the labeling-based dynamic programming algorithm, we can get all non-dominated feasible
paths for each orbit, which are listed as below:

Orbit 1:

s → 3 → 8 → 1 → t
s → 3 → 8 → 4 → t

s → 6 → 1 → t
s → 6 → 4 → t

Orbit 2:

s → 2 → 7 → 6 → t
s → 2 → 7 → 4 → t
s → 2 → 7 → 8 → t
s → 2 → 6 → 4 → t
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s → 2 → 8 → 4 → t
s → 7 → 6 → 4 → t
s → 2 → 7 → 3 → t
s → 7 → 8 → 4 → t
s → 2 → 3 → 4 → t
s → 7 → 3 → 4 → t

Orbit 3:

s → 8 → 7 → 6 → t
s → 8 → 7 → 1 → t
s → 7 → 6 → 1 → t
s → 8 → 6 → 1 → t
s → 8 → 5 → 6 → t
s → 8 → 5 → 1 → t
s → 5 → 6 → 1 → t

Apparently, there are 280 (4×10×7) combinations of paths for the 3 orbits in this problem, which
means 280 feasible solutions in all. After enumeration and calculating the corresponding objective
function values, we can get that the following solution will yield the maximum objective value, which
is the optimal solution.

Orbit 1: s → 3 → 8 → 4 → t
Orbit 2: s → 2 → 7 → 6 → t
Orbit 3: s → 5 → 6 → 1 → t

It is obvious that in the optimal solution task 6 has been scheduled to two orbits (Orbit 2 & Orbit
3), which increases the probability of completing task 6.

4. Inexact algorithms

As described in the previous text, the proposed exact algorithm will fail to handle large-scale
problems that are more practical, because of its large space complexity. Therefore, in this section,
we design five heuristic procedures for solving the large-scale problems efficiently. In contrast with
the exact algorithm, the heuristics normally can only get feasible solutions without guaranteeing
the optimality. It must be emphasized that all the subsequent heuristics are multi-pass approaches
that apply multiple passes to obtain multiple unique feasible solutions among which the best one
is chosen. As such, sampling is essential. Hence, above all, we briefly introduce some sampling
methods.

4.1. Sampling
In the case of adopting sampling, the selection of the priority rules is made using a bias scheme.

The basic principle is to assign a probability of being selected to each activity (task or column for
this study). Normally, there are three basic sampling methods:

• Random sampling assigns to each activity the same selection probability. Hence, the proba-
bility of activity i to be selected is

pi =
1
|D| ,

in which D is the set of activities, and |D| is the number of activities.

• Biased random sampling assigns the probability dependent on the priority rules applied, to
make sure each activity has a sensible chance of being selected. If the priority rule is to choose
the activity with the highest priority value vi, the probability of activity i being selected from
the set D is pi = vi/

∑
j∈D vj . Besides, if the activity with the smallest priority value should

be chosen, the probabilities can be calculated as pi = 1/(vi ×
∑

j∈D 1/vj).
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• Regret based biased random sampling calculates the probabilities indirectly using regret values.
If again the objective of the priority rule is to select the activity with the highest priority value
vi, then the regret value ri of activity i equals the difference between the priority value vi

and the smallest priority value in the set D: ri = vi − minj∈Dvj . If, however, the activity
with the smallest priority value has to be chosen, then the regret value ri of activity i equals
the difference between the largest priority value in the set D and the priority value vi: ri =
maxj∈Dvj−vi. In this study, we modify the regret values as follows: r′i = ri +ε. The inclusion
of a constant ε > 0, which is set to 1 in this paper, ensures that at each decision the probability
of being selected for each activity is strictly positive. The probability pi of selecting activity i
from the set D can then be calculated as pi = r′i/

∑
j∈D r′j .

4.2. Algorithm description
The first heuristic algorithm Heuristic 1 is based on all the feasible maximal solutions (columns)

for each subproblem (orbit), which can be obtained by labeling-based dynamic programming as
described in the exact algorithm. Differently from the exact algorithm that enumerates all combi-
nations of the columns to get all feasible solutions, Heuristic 1 selects columns for each orbit and
combines them heuristically to get a subset of combinations, which are corresponding to a subset of
feasible solutions. Afterwards, the feasible solution in the subset with the maximum objective will
be marked as the best solution.

Heuristic 1: Column-based heuristic selection
Step 1. Obtain the set of columns COLk for each orbit k, k ∈ O, with labeling-based

dynamic programming algorithm (see Section 3.2).
Step 2. Compute the profits of the columns

profkr =
∑

i∈T $i · pik · πirk, for each column colkr ∈ COLk, each orbit k ∈ O, in
which πirk = 1 if task i is scheduled to orbit k in column colkr, otherwise πirk = 0.

Step 3. Generate a certain number Z of feasible solutions based on the heuristic combination
of the columns
For l = 1, . . . , Z

For each orbit k ∈ O
Select a column colkr from COLk with biased random sampling, with the
profits of the columns being priority values, and the priority rule is to select
the column with the highest priority value.

End for
Combine the obtained columns for each orbit to form a feasible solution soll,
and put soll into the solution set SOL.

End for
Step 4. Select the best solution from SOL, i.e., the solution with the maximum objective

value.

Heuristic 2 produces all the feasible maximal solutions for each orbit, but only the L best
solutions are selected on each orbit for combination. Hence, Heuristic 2 is identical to Heuristic
1 except that there is one more step between step 2 and step 3, which is described as below:

Step 2’. Cut down and update the column sets
For each orbit k ∈ O

Choose a predefined number L of columns from COLk with maximum profits
to form a new and small column set COLk, namely delete the other columns.

End for

Both Heuristic 1 and Heuristic 2 get all columns for each orbit with dynamic programming
which will be much too time consuming. Besides, if we cannot use enough time to get all columns
for each orbit, we will not obtain any solutions, neither optimal nor feasible ones. To overcome
this drawback, we consider obtaining a subset of columns for each orbit using a heuristic procedure,
thus we get Heuristic 3. Heuristic 3 adopts a backtracking approach to obtain L solutions for
each orbit. In detail, the procedure starts from the dummy terminating node t, and it selects
a direct predecessor i using biased random sampling. Subsequently, the above procedure will be
repeated until reaching the starting node s, which implies that a feasible solution has been produced.

11



Finally, the above procedures will be repeated L times to get L feasible solutions. As a consequence,
Heuristic 3 is identical to Heuristic 1 except that Step 1 is replaced by:

Step 1’. Generate a predefined number L of columns for each orbit
For each orbit k ∈ O

COLk ← ∅
For l = 1, . . . , L

j ← t // t is the terminate node of orbit k
While j 6= s // s is the starting node

Select node i, i ∈ Γ−1(j) with biased random sampling, in which Γ−1(j) is
the set of all predecessors of j. The priority value of node i is the sum of
the profit of node i and the profits of all (direct and indirect) predecessors
of node i, and the priority rule is to select the predecessor with the highest
priority value.
j ← i

End while
Obtain the column colkl, COLk ← COLk ∪ {colkl}

End for
End for
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Figure 6: Conflicts of task i

All the above algorithms can be attributed to column-based heuristics, which combine the columns
for each orbit to form feasible solutions. In contrast, Heuristic 4 handles the problem as a knapsack
problem and solves it based on task allocation and retraction. Before describing Heuristic 4 in
detail, some definitions are proposed below:

Definition 3. Task Requirement
We define task requirement TRi that represents the priority to schedule task i:

TRi =
$i · [1−

∏
k∈O(1− pikbik)]∑

k∈O

bik

Definition 4. Conflict
A conflict, say Confik, is defined as the set of conflicting tasks that are scheduled to orbit k and

violating the setup time constraints with task i.
Definition 5. Conflict Set
We define the conflict set ConfSeti of task i to be the set of all distinct conflicts on all orbits.
Figure 6 is a simple example of a task i, where Confik = {j−1, j}. Assume task i is only available

on orbit k, the conflict set of task i is ConfSeti = {Confik}.
Definition 6. Task Retraction Expense
The task retraction expense TREik is defined as the decrease in expected profits if task i is

retracted from orbit k.

TREik = $i · [Pi(Oi)− Pi(Oi \ k)]

in which Oi is the set of orbits that task i has been scheduled, and Pi(Oi) represents the relevant
completing probability of task i. It must be noted that Pi(Oi) = 0 if Oi = ∅.
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Heuristic 4 Knapsack-based heuristic
Step 1. Initialize the current optimal solution CurOptSol = ∅, current optimal objective

value CurOptObj = 0, solution index l = 0, predefined number of solutions Z.
Step 2. If l < Z, Go to Step 3, otherwise the algorithm ends.
Step 3. Initialize the task set T , the orbit set O, the set of scheduled tasks Schek = ∅ for

each orbit k, k ∈ O, and the conflict set ConfSeti = ∅ for each task i, i ∈ T .
Step 4. Update the optimal solution

If T = ∅
Compute the objective value Objl of the current solution Soll
If Objl > CurOptObj

CurOptObj ← Objl, CurOptSol ← Soll
End if
l ← l + 1, go to Step 2

Else
Go to Step 5.

End if
Step 5. Select task i from T with maximum task requirement TRi, T ← T \ i.
Step 6. Schedule task i on each orbit

For each orbit k ∈ O
If there is no conflict of task i on orbit k

Schedule task i to orbit k, Schek ← Schek ∪ {i}
While memory and energy constraints are not all satisfied

Select task j from Schek with regret based biased random sampling, with
the task retraction expense TREjk being the priority values, and the pri-
ority rule is to select the task with the smallest priority value.
Retract task j from orbit k, Schek ← Schek \ j, and update the relevant
memory and energy.

End while
Else

Obtain the conflict Confik, ConfSeti ← ConfSeti ∪ {Confik}
End if

End for
Step 7. If task i has been successfully scheduled to at least one orbit, go to Step 4,

otherwise go to Step 8.
Step 8. Calculate the conflict expense ConfEik for each conflict Confik, Confik ∈

ConfSeti
Step 9. Select the conflict Confik from ConfSeti with regret based biased random sam-

pling, with the priority values being $ipik − ConfEik for each conflict, and the
priority rule is to select the conflict with the highest priority value.

Step 10. Schedule task i to orbit k with conflict Confik

Sche′k ← Schek

For each task j, j ∈ Confik

Schek ← Schek \ j
End for
Schek ← Schek ∪ {i}
If memory and energy constraints are not both satisfied

Schek ← Sche′k
End if
Go to Step 4

Definition 7. Conflict Expense
We define the conflict expense ConfEik of Conflict Confik as the decrease in expected profits if

we retract the conflicting tasks in Confik,

ConfEik =
∑

j∈Confik

TREjk
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Firstly, Heuristic 4 selects the task i from the set T with maximum requirement, and schedules i
to each orbit. For an orbit k, if there are no conflicting tasks, task i will be scheduled on k, and we
retract some tasks based on regret based biased random sampling to satisfy both the memory and
energy constraints if necessary. If task i has been successfully scheduled on at least one orbit, we will
access the next task; otherwise, we will select a conflict Confik from the set ConfSeti with regret
based biased random sampling. Subsequently, the tasks in Confik will be retracted to accommodate
task i if both the memory and energy constraints are satisfied. Then we will select the next task
until T = ∅, which implies that we have obtained a feasible solution. Finally, the above procedure
will be repeated Z times to get Z feasible solutions, and the best solution will be selected.

Heuristic 5 Heuristic based on conflict resolution
Step 1. Initialize the current optimal solution CurOptSol = ∅, current optimal objective

value CurOptObj = 0, solution index l = 0, predefined number of solutions Z.
Step 2. Initialize the task set T , the orbit set O, schedule each task i, i ∈ T to all the

available orbits to get an initial solution IniSol that is normally infeasible.
Step 3. If l < Z, Go to Step 4, otherwise the algorithm ends.
Step 4. Obtain the conflicting assignment set ConfA of the schedule IniSol, as well as

the conflicting assignments ConfAsik for each assignment Assignik, Assignik ∈
ConfA.

Step 5. For each conflicting assignment Assignik, Assignik ∈ ConfA, compute the retrac-
tion preference RPik.

Step 6. Select the conflicting assignment Assignik from ConfA with regret based biased
sampling, with the retraction preference being the priority values, and the priority
rule is to select the assignment with the highest priority value. ConfA ← ConfA\
Assignik, retract the assignment Assignik from the initial solution, IniSol ←
IniSol \Assignik

Step 7. Update the conflicting assignment set ConfA and the retraction preference of the
relevant assignments.

Step 8. If ConfA = ∅, go to Step 9, otherwise go to Step 6.
Step 9. Resolve the memory and energy conflicts

For each orbit k, k ∈ O
While memory and energy constraints are not both satisfied

Select task j from the set Schek of tasks that are scheduled to orbit k with
regret based biased random sampling, with the task retraction expense TREjk

being priority values, and the priority rule is to select the tasks with the
smallest priority value.
Retract task j from orbit k, Schek ← Schek \ j, and update the relevant
memory and energy;

End while
End for

Step 10. Compute the objective value Objl of the current solution Soll. If Objl >
CurOptObj, update the optimal solution CurOptObj ← Objl, CurOptSol ←
Soll. l ← l + 1, go to Step 3.

Also, on the basis of the knapsack formulation, Heuristic 5 firstly allocates each task to all
available orbits to get an initial solution, which is normally infeasible. Then, Heuristic 5 removes
all conflicts to get a solution that respects the setup time constraints. Afterwards, some tasks are
also removed for each orbit in order to satisfy the memory and energy constraints, yielding a feasible
solution. Finally, the above procedures will be repeated for Z times to obtain Z feasible solutions,
and the best solution will be selected. Hence, Heuristic 5 is inspired by the notion of conflict
resolution.

Definition 8. Assignment
An assignment, say Assignik, refers to the assignment of orbit k to task i, namely allocate task i

to orbit k. A is the set of all assignments, Assignik ∈ A.
Definition 9. Conflicting Assignment Set
Conflicting assignment set, say ConfA, is defined as the set of all conflicting assignments. Assignik ∈

ConfA if assignment Assignik is conflicting with some other assignments in the current schedule.
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Table 3: Parameters of satellites

Satellite Slewing Startup Shutdown Stability Memory Energy Energy

velocity time time time /time /time /deg

CBERS-2 2 5 8 3 2 1.5 1.5

IKONOS-2 2.5 8 5 6 4 2.5 4

SPOT-5 3 10 10 9 3 3.5 1

Definition 10. Conflicting Assignments
Conflicting assignments ConfAsik, corresponding to assignment Assignik, is the set of assign-

ments that are conflicting with Assignik.
Definition 11. Assignment Retraction Expense
The assignment retraction expense AREik is defined as the decrease of the objective if assignment

Assignik is retracted.
Definition 12. Implicit Assignment Value
We define the implicit assignment value ImpAssignVik of retracting assignment Assignik as below:

if we don’t retract assignment Assignik, we have to retract the assignments in ConfAsik, which
will also result in the objective decreasing. Hence, retraction of assignment Assignik has the value
to avoid retracting assignments in ConfAsik, which is defined as:

ImpConfVik =
∑

Assignjk∈ConfAsik

AREjk

Definition 13. Retraction Preference
The retraction preference RPik of the conflicting assignment Assignik, Assignik ∈ ConfA is

defined as

RPik = ImpConfVik −AREik

5. Computational results

For this section, we created a great number of problem instances in order to evaluate the effective-
ness and efficiency of our proposed approaches. The computational tests have two components: on
some small instances, we verify the superiority of our proposed non-linear robust model, we verify
the feasibility and we evaluate the performance of both the exact algorithm and the heuristics; on the
other hand, the performances of the heuristics are evaluated and compared on some large problem
instances.

In order to verify the effectiveness and efficiency of our algorithm, the tasks are randomly generated
in the area: latitude 0◦-60◦ and longitude 0◦-150◦. Without loss of generality, the profits of tasks
are integers, uniformly distributed in the interval [1,10]. In correspondence with the literature
[5, 11, 23, 36], three different satellites are considered in this paper. The parameters of the satellites
are outlined in Table 3, and the orbit models of the satellites are obtained from the Satellite Tool
Kit (STK). Hence, the time windows and slewing angles of observations can be calculated by STK
in advance. In addition, the memory capacity and energy capacity for each orbit are randomly
generated in the intervals [120,160] and [180,240], respectively. Considering the uncertainties of
clouds, for each time window of observation, the probability that there is no presence of clouds, i.e.
the observation is successful, will be uniformly distributed in [0.2,1].

The algorithms were implemented in C++ and ran on a personal laptop equipped with an Intel(R)
Core(TM) i5-2430M 2.40 GHz (2 processors) and 4 Gb RAM, with operating system Windows 7.

5.1. Performance evaluation on the small problem instances
Our first computational experiment was ran for verifying the superiority of our proposed model

and the feasibility of both the exact algorithm and the heuristics on some small problem instances.
In this section, we firstly set the scheduling horizon to be 6 hours, which is corresponding to 9 orbits.
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The numbers of tasks are 10, 20, 30, 40, 50 and 60, respectively. Then we increase the number of
orbits to 21, and the numbers of tasks are set to be 10, 20 and 30, respectively. It must be noted
that for 21 orbits, we can only test less tasks because the exact algorithm will fail to solve for more
tasks due to its large space complexity. For each parameter setting, we will randomly generate 10
problem instances. Hence, we will have 90 instances in total. For all problem instances, the exact
algorithm and the heuristics were applied. With respect to the heuristics, the predefined number of
feasible solutions are set to 1000, and the number of columns for each orbit is set to 20.

In order to verify the superiority of our model, we compare the solutions of our model with
those of Liao’s model [29]. Liao also formulated the presence of clouds as stochastic events with
some probabilities, and considered scheduling a task to only one resource and performing only once,
which resembles the traditional deterministic scheduling. In addition, the objective of scheduling is
[29]:

max
γ

E[
∑

k

$kxk +
I∑

i=0

N∑
n=1

yin

I∑

j=1,j 6=i

γijn].

The objective is two-fold: 1) maximize the profits of the complete tasks without uncertainties; 2)
maximize the expected number of the complete tasks under uncertainties of clouds. In this study,
Liao’s model is directly solved by CPLEX because it is a standard mixed integer programming
model.

For the sake of comparison, we test the obtained solutions on a large sample with the sample size
being 100000 for each instance. Then, we will compare the following statistics: the minimal, average
and maximum profits of the complete tasks on the sample.

Table 4 shows the comparison results for each problem instance, in which column “m” shows the
number of orbits, “n” indicates the number of tasks, and “No.” represents the serial number of
the instance. Besides, columns “a”, “b” and “c” are corresponding to the minimum, average and
maximum obtained scheduling profits of all scenarios in the sample, respectively. Because CPLEX
is used to solve Liao’s model that schedules each task to at most one orbit and therefore lacks
robustness, the solutions of CPLEX are on average worse than those of our algorithms, which has
been shown in Table 4. Hence, we can conclude that the proposed model is superior to Liao’s model
under uncertainties of clouds.

In addition, Table 5 describes the performances of both the exact algorithm and the heuristics for
solving the small instances, in which column “m” denotes the number of orbits, and “n” indicates
the number of tasks. In addition, column “Obj” contains the average of the scheduling objective
values for the 10 instances, and “Time” contains the average values of the solution times. In columns
“Time”, 0.000 implies that the average running time is less than 0.001 second. In columns “Obj” of
the heuristics, a bolded number denotes that the heuristic gets the optimal solutions for all problem
instances in that set. From Table 5, it is observed that Heuristic 5 can get optimal solutions
for more instances than the other heuristics. Besides, for most problem instances, Heuristic 2
and Heuristic 5 can get better solutions, as well as Heuristic 3 and Heuristic 4 perform worse
normally. Note that the objective function of Liao’s model that is solved by CPLEX is different
from that of ours. Hence, the comparison between the objective values of CPLEX with those of our
algorithms is meaningless, and we only compare the solution times. With respect to the solution
times, we can conclude that both the exact algorithm and the heuristics can solve the small problems
very fast and efficiently (less than 1 second), which are also much faster than CPLEX.
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Table 6: Parameter setting for Heuristic 2

Number
of orbits

Number
of tasks

ColNum
20 40 60 80 100 120

21
120 266.243 260.458 259.053 257.167 255.686 255.918
160 332.227 326.802 365.518 366.826 368.686 313.108
200 394.446 385.398 450.676 458.468 462.991 375.288

42
120 416.727 409.864 407.020 404.470 401.282 401.327
160 518.572 513.077 531.058 531.771 532.193 499.465
200 612.545 642.876 675.658 681.091 683.462 628.059

AVG 423.460 423.079 448.164 449.965 450.717 412.194

5.2. Performance evaluation on the large problem instances
Due to its large space complexity, it is truly infeasible for the exact algorithm to solve the large-scale

problems that are more practical. Hence, heuristics will be applied more extensively in practice. In
this section, to evaluate the performance of the proposed heuristics, we randomly create a number of
large-scale problem instances. In detail, the numbers of tasks are set to 120, 160 and 200, respectively,
and the numbers of orbits are 21 and 42, respectively. Similarly with the former experiments, for
each parameter setting, we randomly create 10 problem instances. Therefore, we have 60 instances
in total. Besides, differently from the former experiments, we do not limit the number of solutions
beforehand, but we set a time limit on applying each heuristic, and thus the numbers of solutions
considered depend on the solution times. The time limits are set to 1, 10 and 60 seconds, respectively.
We will compare the performances of the heuristics for each time limit.

Then, before we compare the different heuristics, we firstly need to set the parameter that deter-
mines the number of columns for each orbit for Heuristic 2 and Heuristic 3, in order to make
the performances of the algorithms as best as possible. For parameter setting, the time limits are
set to 10 seconds. In addition, to make the performance comparison fair, we will set two problem
instance sets A and B as previously described, respectively. Firstly, we will test the parameter of
Heuristic 2 and Heuristic 3 on the instance set A, and then the performance comparison for all
the heuristics will be performed on the instance set B.

Table 6 and Table 7 outline the testing results for parameter setting, which are the averages of
the objective values. It is shown in Table 6 that setting the number of columns for each orbit to
ColNum = 100 for Heuristic 2 leads to the best solutions for most cases. Thus the parameter for
Heuristic 2 is set to 100 in the following experiments. Similarly with Heuristic 2, Heuristic 3
also yields the best performance with parameter setting ColNum = 100, which will also be set in
this manner in the following experiments.

After setting the parameters, we compare the scheduling results of the different heuristics with
different time limits, which are shown in Tables 8 and 9. In Tables 8 and 9, columns “Obj” are the
average of the objective values of the solvable instances, and “#Fea” are the numbers of problem
instances that can be solved to get feasible solutions. For columns “Obj”, the bold numbers imply
the largest average value for this parameter setting, without considering the number of instances
that are solved successfully. In addition, to make it more intuitive, we also present the comparison
results in Figures 7-12.

It is illustrated in Table 8 and Figures 7-9 that for the problems of 21 orbits, when the number of
tasks is less, namely 120 tasks, Heuristic 4 performs somewhat better than the other algorithms.
However, if the number of tasks increases to 160 or 200, Heuristic 2 will be the best option for most
cases. In addition, the performances of Heuristic 4 and Heuristic 5 are clearly worse than those
of the other heuristics for the larger problems with the number of tasks being 160 or 200. Besides,
if the time limit is small and there are more tasks, Heuristic 1 and Heuristic 2 fail to get feasible
solutions for some instances. That is because these two heuristics are based on all columns for
each orbit that will be obtained by dynamic programming, of which the solution time will increase
exponentially with the number of tasks. Thus, if the dynamic programming algorithm cannot get
all feasible columns for each orbit within the time limit, we cannot get any feasible solutions from
Heuristic 1 and Heuristic 2. Hence, Heuristic 1 and Heuristic 2 are not available for large-scale
problems when the time limits are very small.
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Table 7: Parameter setting for Heuristic 3

Number
of orbits

Number
of tasks

ColNum
20 40 60 80 100 120

21
120 236.524 235.047 236.217 238.496 239.737 237.262
160 307.406 309.543 333.588 335.421 338.577 307.975
200 373.416 373.243 416.720 425.423 423.242 370.361

42
120 369.714 372.766 369.143 371.694 374.839 372.265
160 475.523 477.457 487.087 488.171 488.046 471.544
200 577.483 605.232 622.474 629.974 634.521 598.366

AVG 390.011 395.548 410.871 414.863 416.493 392.962

Table 8: Performance comparisons of the heuristics for 21 orbits

Time
Limits

Number
of tasks

Heuristic 1 Heuristic 2 Heuristic 3 Heuristic 4 Heuristic 5
Obj #F Obj #F Obj #F Obj #F Obj #F

1
120 246.761 10 251.586 10 232.257 10 264.269 10 247.014 10
160 289.689 10 309.153 10 300.236 10 291.534 10 266.616 10
200 340.449 8 375.375 8 364.202 10 301.453 10 284.286 10

10
120 250.776 10 256.141 10 239.850 10 264.568 10 256.571 10
160 348.016 10 362.915 10 336.405 10 297.419 10 272.776 10
200 414.974 10 449.676 10 416.366 10 305.165 10 293.553 10

60
120 254.532 10 259.896 10 241.476 10 266.497 10 257.301 10
160 355.290 10 370.867 10 343.158 10 300.905 10 278.157 10
200 433.487 10 463.934 10 435.598 10 308.597 10 296.174 10

Table 9: Performance comparisons of the heuristics for 42 orbits

Time
Limits

Number
of tasks

Heuristic 1 Heuristic 2 Heuristic 3 Heuristic 4 Heuristic 5
Obj #F Obj #F Obj #F Obj #F Obj #F

1
120 396.169 10 403.608 10 387.431 10 424.069 10 360.123 10
160 450.790 8 476.767 8 464.958 10 480.738 10 364.216 10
200 - 0 - 0 611.007 10 590.293 10 443.651 10

10
120 424.383 10 431.473 10 409.055 10 432.770 10 367.762 10
160 524.721 10 552.304 10 521.883 10 500.973 10 401.163 10
200 637.603 10 692.670 10 660.999 10 606.546 10 451.985 10

60
120 433.018 10 440.953 10 416.056 10 434.317 10 372.956 10
160 537.448 10 564.523 10 530.659 10 502.300 10 409.139 10
200 663.211 10 714.795 10 676.523 10 610.697 10 457.794 10
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Figure 7: Comparison results for 21 orbits with 1 second
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Figure 8: Comparison results for 21 orbits with 10 seconds

Table 9 and Figures 10-12 reveal the comparison results for the problems of 42 orbits, from which
we can also conclude that for fewer tasks or a small time limit, Heuristic 4 is the best algorithm.
However, for more tasks (160 or 200) and larger time limits (10 or 60 seconds), Heuristic 2 will be
the best option. In addition, similarly to the previous experiments, for small time limits and large-
scale problems (1 second for 160 or 200 tasks), Heuristic 1 and Heuristic 2 will fail to get feasible
solutions for some instances. Comparing Heuristic 3 and Heuristic 4, for less tasks, Heuristic
4 performs better, and for more tasks, Heuristic 3 performs better. Unfortunately, Heuristic 5
always performs worst compared with others.

6. Conclusions and future work

In this paper, considering the uncertainties of clouds, we formulated the presence of clouds as
stochastic events, and then investigated the scheduling of multiple EOSs. Due to the uncertainties
of clouds, a task that is scheduled to multiple resources will be completed at a higher probability
than if scheduled to one resource only. Hence, we took into account scheduling each task to multiple
resources and formulated the problem with a novel mathematical model. First of all, we suggested
an exact algorithm to solve the problem optimally, in which we reformulated the problem as a master
problem and multiple subproblems. For each subproblem, a labeling-based dynamic programming
algorithm was suggested to get all feasible solutions. On the basis of the solutions of the subproblems,
we enumerated all feasible solutions of the master problem and selected the optimal solution. Due
to its large space complexity, the proposed exact algorithm mostly fails to solve large-scale problems
that are more practical. To overcome this drawback, we also designed five heuristic algorithms to
solve the large-scale problems.

From the simulation experiments, we verified the superiority of our robust model compared with
the traditional model that allocates each task to only one orbit. In addition, we validated that
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Figure 9: Comparison results for 21 orbits with 60 second
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Figure 10: Comparison results for 42 orbits with 1 second

for small size problems, both the exact and heuristics can be adopted for solving the instances
efficiently, and the heuristics can get feasible solutions that are very close to the optimal ones.
Finally, for large-scale problems, we compare the performances of the different heuristics. From
the comparison results, we conclude that for not too many tasks or small time limits, Heuristic 4
performs best and Heuristic 2 will be the best for larger problems and larger time limits.

In the future, we will consider the scheduling of agile EOSs under uncertainties. Different from
the non-agile satellites in this study, the agile satellites do not only have the maneuverability of
slewing, but also the maneuverability of pitching, along with the orbit. Hence, the satellite will have
a longer time window for observation. Consequently, the scheduling will have more freedom, and we
need not only to allocate the tasks to the orbits, but also to decide the starting and finishing times.
Furthermore, the sequence of task executions will also not be fixed, as for any two tasks i and j, it is
now possible to start the execution of task i before that of task j, or the execution of task j before
that of task i, which obviously will make the problem more complicated. In addition, we will also
take into account the probability of each possible outcome, formulating the problem as a sequential
decision problem, and adopt a multistage stochastic programming approach to solve the problem.

Acknowledgments

This research has been supported by the China Scholarship Council. We would like to acknowledge
the China Scholarship Council for the financial support and the Research Center for Operations
Management of the KU Leuven for providing a visiting research period to Jianjiang Wang. This
research was also supported by the National Natural Science Foundation of China under Grants No.
61104180, and No. 71271213.

24



120 160 200
0

100

200

300

400

500

600

700

Task Number

O
bj

ec
tiv

e

 

 

Heuristic1
Heuristic2
Heuristic3
Heuristic4
Heuristic5

Figure 11: Comparison results for 42 orbits with 10 seconds
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