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Abstract 

The supply risk for some critical rare-earth elements (REEs), which are instrumental in many 

cleantech applications, has sparked the development of innovative recycling schemes for End-

of-Life fluorescent lamps, permanent magnets and nickel metal hydride batteries. These waste 

fractions represent relatively small volumes, albeit with relatively high rare-earth contents. 

Nevertheless, rare earths are also present in lower concentrations in a multitude of industrial 

process residues, such as phosphogypsum, bauxite residue (red mud), mine tailings, 

metallurgical slags, coal ash, incinerator ash and waste water streams. This review discusses 

the possibilities to recover rare earths from these ”secondary resources”, which have in 

common that they contain only low concentrations of rare-earth elements, but are available in 

very large volumes and could provide significant amounts of rare earths. The success rate is 

set to increase if the rare-earth recovery from these industrial waste streams is part of a 

comprehensive, zero-waste, “product-centric” valorisation scheme, in which applications are 

found for the residual fractions that are obtained after removal of not only the rare earths but 

also other valuable (base) metals. 

 

Keywords: bauxite residue; lanthanides; phosphogypsum; rare earths; red mud; zero-waste 

valorisation; metal recovery; mine tailings; slag and ash. 
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1. Introduction 

For more than two decades, at least 95% of the annual global supply of the rare earths 

(REEs) has been provided by Chinese rare-earth producers. The tightening of rare-earth 

export quotas has caused supply risks outside China, as evidenced by the rare-earth crisis of 

2011 with record high prices. This situation endangers the secure and sustainable supply of 

these critical (clean) technology metals, in particular the heavy rare earths, to many 

economies in the world. Paradoxically, on the positive side, this situation has also stimulated 

other countries to look for alternative rare-earth resources and to develop their own rare-earth 

industry. To tackle the rare-earth supply challenge, a threefold approach can be proposed. 

This strategy is particularly relevant for the heavy rare earths for which the supply risk is far 

greater than for light rare earths such as lanthanum and cerium. A first component of this 

strategy is to substitute critical rare earths by less critical metals. Secondly, the supply risk can 

be mitigated by investing in sustainable primary mining from old or new rare-earth deposits. 

Mining companies are now actively seeking for new exploitable rare-earth deposits, while old 

mines are being re-opened. A good example is the Mountain Pass Mine in California, which 

restarted production in 2012. Nevertheless, many non-Chinese mines, such as the Mountain 

Pass mine, are mostly light rare earth mines and, hence, do not deliver a meaningful stream of 

the most critical heavy rare earths. Furthermore, many countries such as Japan and most EU 

Member States do not possess any type of primary rare-earth deposits on their territory. 

Consequently, they will have to invest in technospheric mining (Johansson et al., 2013) of 

secondary rare-earth containing resources in order to obtain a source of both light rare earths 

and, particularly, heavy rare earths. This is the third component of the strategy. 

Technospheric mining, however, can take many forms. With respect to (critical) metal 

containing streams, such mining incorporates (1) the direct (preconsumer) recycling of metal 

scrap and swarf generated during the production of metal based (intermediate) products (as 
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for instance NdFeB magnets) and (2) the (postconsumer) recycling and/or urban mining of, 

respectively, flows and stocks of complex, multi-material, metal-containing products (as for 

instance a hybrid electric vehicle). (3) landfill mining of historic urban solid waste (Jones et 

al., 2011), (4) metal recovery from flows of industrial process residues from primary and 

secondary metal production and, finally, (5) metal recovery from stocks of landfilled 

industrial process residues, as shown in Figure 1. When considering the potential for rare-

earth recovery from these five secondary sources, it is clear that at present most attention is 

going out to the direct recycling of scrap and the recycling/urban mining of End-of-Life rare-

earth containing products. The state-of-the-art in this domain has been described in detail in 

recent review papers (Binnemans et al., 2013a; Binnemans and Jones, 2014; Tanaka et al., 

2013; Anderson et al., 2013; Innocenzi et al., 2014). The most interesting (heavy) rare earths 

sources intended for recycling/urban mining are permanent magnets and lamp phosphors 

(Binnemans et al., 2013a).  

In contrast to recycling of rare earths from End-of-Life products, much less attention has 

been devoted to previously landfilled stocks and freshly produced flows of rare–earth-

containing industrial process residues (Binnemans et al., 2013c) (top part in Figure 1). In 

general, these secondary resources contain much lower concentrations of rare earths than the 

End-of-Life consumer goods that are considered for direct recycling or postconsumer 

recycling/urban mining activities. Nevertheless, the volumes of these residues are enormous 

so that the total amounts of rare earths locked in these residues are also very large and may 

secure an independent source of rare earths as well as shield resource-poor countries from 

export quotas and price fluctuations. This review paper gives on overview of the possibilities 

to recover rare earths from the most important industrial process residues. These include 

residues from metal production (as shown in Figure 1) – phosphogypsum, bauxite residue (red 

mud), mine tailings, metallurgical slags – and industrial process residues from thermal 
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treatment facilities (coal ash, incinerator ash). Likewise, it is investigated if waste water 

streams may be a source of rare-earths as well. In all cases the zero-waste valorisation concept 

is promoted. For more background on the extractive metallurgy of rare earths, the reader is 

referred to general references (Gupta and Krishnamurthy, 2004; Gupta and Krishnamurthy, 

1992; Habashi, 2013; Xie et al., 2014). 

 

Figure 1: Closing the loop through technospheric mining, revealing the importance of metal 

recovery from both flows and stocks of industrial process residues from primary and 

secondary metal production.  
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2. Phosphogypsum 

2.1. Formation and composition of phosphogypsum 

Phosphogypsum is the main by-product of the production of phosphoric acid (H3PO4) 

by sulphuric acid (H2SO4) digestion of a concentrated slurry of pulverised phosphate ores 

(Koopman and Witkamp, 2000). Phosphoric acid is an important raw material for the 

manufacturing of phosphate fertilisers. Phosphate ores can be divided into two main types 

according to their origin: sedimentary and igneous phosphate rock (Habashi, 1998). 

Sedimentary phosphate rock (also known as phosphorite) represents about 85–90 % of the 

world reserves and is found in Florida, Morocco and the Middle East. Igneous phosphate rock 

represents the remaining 10–15 % of the world reserves. It is found in the Kola Peninsula 

(Russia) and Brazil. Phosphate rock varies widely in composition (Becker, 1989). Apatite is 

the main phosphate mineral in most phosphate deposits (Rutherford et al., 1994). In 

sedimentary phosphate rock, apatite occurs in an amorphous form: francolite. Francolite has a 

complex chemical composition and can be represented by the formula 

(Ca,Mg,Sr,Na)10(PO4,SO4,CO3)6F2−3 (Benmore et al., 1983). In igneous phosphate rock, 

apatite occurs as the variety fluoroapatite, Ca10(PO4)6F2. Phosphate rock also contains trace 

amounts of many other elements, including thorium, uranium and rare earths. The rare-earth 

content depends on the type of phosphate rock (Habashi, 1998; Habashi, 1985) (Table 1). 

Sedimentary phosphate rock contains 0.01–0.1 wt% of rare earths, but also about 0.01 wt% of 

uranium. Igneous phosphate rock is much richer in rare earths than sedimentary phosphate 

rock (1–2 wt%) and contains only very small amounts of uranium. The potential of phosphate 

rock as a source of rare earths has already been recognised in the 1960s (Anonymous, 1966). 

Analysis of phosphate rock from Florida gave a total rare-earth content of 0.059%, with the 

main elements being lanthanum (0.015 wt%), cerium (0.012 wt%), yttrium (0.011 wt%) and 

neodymium (0.007 wt%). The scandium concentration was very low: 0.0003 wt% (3 ppm). It 
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was estimated that the 6 million tonnes of phosphate rock that have been processed in the 

USA in 1964 could have yielded 3,500 tonnes of rare earths (cf. estimated worldwide REO 

production in 2013: 110,000 tonne (Gambogi, 2014). Cerium, lanthanum and neodymium 

account for 80% of the total rare-earth content of phosphate rock (Habashi, 1985). 

 

Table 1. Rare-earth content of phosphate rock. Adapted from (Habashi, 1985). 

Locality Total rare-earth oxides (wt%) 

Kola (Russia) 0.8–1.0 

Florida (USA) 0.06–0.029 

Algeria 0.13–0.18 

Morocco 0.14–0.16 

Tunesia 0.14 

Egypt 0.028 

Vietnam 0.031 

 

The H2SO4 digestion of fluoroapatite can be represented by the following chemical 

reaction scheme (Habashi, 1985):  

Ca10(PO4)6F2+10 H2SO4+20 H2O  6 H3PO4+10 CaSO4·2H2O+ 2 HF   (1) 

Depending on the production method, the phosphogypsum formed primarily consists of 

either calcium sulphate dihydrate, CaSO42H2O (gypsum) or calcium sulphate hemihydrate, 

CaSO4½H2O, and it contains also small amounts of silica, fluoride compounds and unreacted 

phosphate rock. The amount of phosphogypsum produced during phosphoric acid production 

exceeds the mass of the product, i.e. 4.5 to 5.5 tonnes of phosphogypsum are generated per 
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tonne of phosphorus pentoxide (El-Didamony et al., 2012). Phosphogypsum is stored in 

stacks. The stacks form as the slurry containing the by-product phosphogypsum is pumped 

from the phosphoric acid plant onto a disposal site. The major component of the material in 

these waste piles is calcium sulphate dihydrate. In Table 2, the average composition of 

phosphogypsum produced via different processes is shown (Rutherford et al., 1994). 

Table 2. Typical elemental composition (wt%) of phosphogypsum prepared via different 

processes. Adapted from (Rutherford et al., 1994). 

Component Dihydrate Hemihydrate Hemi-dihydrate 

CaO 32.5 36.9 32.2 

SO3 44.0 50.3 46.5 

P2O5 0.65 1.50 0.25 

F 1.2 0.8 0.5 

SiO2 0.5 0.7 0.4 

Fe2O3 0.1 0.1 0.05 

Al2O3 0.1 0.3 0.3 

MgO 0.1 – – 

H2O (crystalline) 19.0 9.0 20.0 

 

The rare earths are concentrated in phosphogypsum during the production of phosphoric 

acid. About 70 to 85% of the rare earths originally present in the phosphate rock end up in the 

phosphogypsum. The remainder stays dissolved in the leaching solution, which also contains 

the phosphoric acid. A smaller part of the rare earths is incorporated in the phosphogypsum if 

the leaching is performed at lower temperatures or with less concentrated H2SO4 (Habashi, 

1985). The concentrations of the different rare earths in a phosphogypsum sample is shown in 



9 
 

Table 3 (Germeau et al., 2013).The average concentration of rare earths in phosphogypsum is 

0.4 wt% (Habashi, 1985). This seems to be a very low value compared to the rare-earth 

content of ore minerals such as bastnäsite, monazite or xenotime. Indeed, the rare-earth 

deposits that are currently mined have rare-earth oxide (REO) contents between 3 and 15 

wt%. However, the estimated global production of phosphate rock in 2013 was 224 million 

tonnes (Jasinski, 2014), so that the total amount of rare earths in the mined phosphate rock is 

also large in absolute terms. This indicates that phosphate rock and the derived product 

phosphogypsum may become valuable sources of rare earths in the near future, provided the 

rare-earth prices are high enough. In comparison with red mud (see section 3), 

phosphogypsum contains lower concentrations of scandium. 

 

Table 3. Concentrations of rare earths in a phosphogypsum sample of the Belgian company 

Prayon SA, dried at 250 °C (Germeau et al., 2013). 

Element Concentration (ppm) 

La 1450 

Ce 2310 

Pr 235 

Nd 899 

Sm 163 

Eu 34.9 

Gd 98.7 

Tb 7.45 

Dy 45.5 

Ho 7.37 
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Er 15.7 

Tm 1.36 

Yb 5.6 

Lu 0.568 

Y 180 

Sc 1.21 

Total 5455 

 

2.2. Recovery of rare earths from phosphogypsum 

About 50% of the rare earths present in phosphogypsum can be recovered by leaching the 

phosphogypsum at ambient temperature with a 0.1 to 0.5 M H2SO4 solution in a solid-to-

liquid ratio of 1:10 (Habashi, 1985). It is impossible to recover all the rare earths present in 

phosphogypsum without destruction of the phosphogypsum lattice. The leaching efficiencies 

can be increased by a gravity flow of the H2SO4 solution through a column packed with 

phosphogypsum (Lokshin et al., 2011). Another method for enhanced H2SO4 leaching is the 

mechanical activation of phosphogypsum by ball-milling (Todorovsky et al., 1997). The rare 

earths can be recovered from the leaching solution by precipitation, for instance as sodium 

rare-earth double sulphates (Lokshin and Tareeva, 2010) or rare-earth hydroxides (Habashi, 

1985), or by solvent extraction (Habashi, 1985). In Figure 2, a flow sheet is shown for H2SO4 

attack of phosphate rock, with precipitation of rare-earths as hydroxides (Habashi, 1985). 

Jarosinki and co-authors described a comprehensive process for the recovery of rare earths 

from phosphogypsum (Jarosinski et al., 1993) (Figure 3). The three basic steps are: (1) 

leaching of the rare earths from the phosphogypsum with dilute H2SO4; (2) concentration of 

the leachate by evaporation, followed by recovery of the rare earths by solvent extraction with 

nonyl–phenyl phosphoric acid (NPPA) or by selective precipitation with hydrofluoric acid; 
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(3) production of anhydrite (CaSO4) from the purified phosphogypsum by recrystallisation in 

concentrated H2SO4. Different process parameters had to be used, depending on whether the 

starting materials were calcium sulphate hemihydrate or dihydrate. The purified anhydrite can 

be used for production of plaster. Not all rare earths present in phosphate rock end up in 

phosphogypsum; a part dissolves in the aqueous phosphoric acid solution. The process was 

tested on a pilot scale, but showed to be too complicated and uneconomical to be 

industrialised (Wang et al., 2010).  

In a two-stage hemihydrate–dihydrate process, calcium sulphate hemihydrate is 

precipitated and separated from phosphoric acid by filtration in the first step and the 

hemihydrate is hydrated to the dihydrate in the second step (Zielinski et al., 1993). The 

second step offers the best conditions for the rare earth recovery because the hydration 

proceeds via dissolution of hemihydrates salt. This dissolution step brings all rare earths into 

solution. On the other hand, rare-earth ions in solution inhibit the crystallisation of the 

dihydrate, so that the rare earths have to be removed from the solution. The rare earths can be 

recovered from the solution by solvent extraction with a dialkylphosphoric acid, followed by 

precipitation stripping to form sodium rare-earth double sulphates.  

Leveque and Sabot developed a process for the comprehensive recovery of rare earths, 

uranium and thorium from phosphogypsum. This process consists of a leaching step with 

H2SO4, followed by solvent extraction of rare earths, uranium and thorium from the sulphate 

solution by a mixture of bis(octylphenyl)phosphoric acid and trioctylphosphine oxide (TOPO) 

(Leveque and Sabot, 1981). By using a mixture of extractants, a synergistic effect was 

achieved. H2SO4 was used as leachant, because (1) it showed selectivity towards the 

dissolution of the targeted metals, (2) it did not change the filterability of the phosphogypsum, 

(3) the process can be easily integrated in an existing phosphoric production plant, based on 
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H2SO4 attack of phosphate rock. Nevertheless, no evidence of commercialisation of this 

process was found in the literature.  

The Belgian company Prayon SA developed a process for the recovery of rare earths from 

phosphogypsum (Germeau et al., 2013). Leaching is done by a dilute H2SO4 solution, while a 

suspension is stirred at high speeds (up to 6000 rpm). It is proposed to recover the rare earths 

from the leachate by solvent extraction or by precipitation with oxalic acid. 
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Figure 2. Flow sheet for the attack phosphate rock by H2SO4, with recovery of rare earths by 

precipitation as hydroxides. Adapted with permission from (Habashi, 1985). Copyright 1985 

Society of Chemical Industry. 
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Figure 3. Process for recovery of rare earths from phosphogypsum, with production of 

purified anhydrite for use as plaster. Adapted with permission from (Jarosinski et al., 1993). 

Copyright 1993 Published by Elsevier B.V.. 

 

Preston and co-workers developed a process to recover rare earths from calcium sulphate 

sludge derived from the production of phosphoric acid from South-African phosphate rock 

(Preston and Du, 1998). Higher leaching efficiencies were obtained by leaching with HNO3 

instead of H2SO4, and maximum recovery of rare earths was observed for 3M HNO3 (Preston 

et al., 1996a). The recovery markedly decreased with increasing temperatures. Interesting 

observations were made upon addition of Ca(NO3)2 to the HNO3 leachant. Mixtures of 

Ca(NO3)2 and HNO3 were found to be much more effective than solutions of only HNO3. For 

instance, the treatment of a sludge containing 6.8% of rare-earth oxides by 1M HNO3 resulted 

in 35% recovery of the rare earths after 72 h, whereas a mixture of 1M HNO3 and 0.5M 

Ca(NO3)2 yielded a 76% recovery under similar conditions. The enhanced leaching was 

attributed to replacement of the rare-earth ion impurities in the calcium sulphate matrix by 

calcium ions. An alternative explanation is a lowering effect on the free fluoride ion 

concentration, which leads to a higher solubility of rare-earth ions. Addition of Ca(NO3)2 

reduces the HNO3 concentration required for maximum leaching from 3M to 1M. The 

dissolved rare-earth ions were recovered from the leach solution by solvent extraction with 

tributyl phosphate (TBP) or dibutylbutylphosphonate (DBBP) dissolved in xylene. The 

highest extraction percentages were observed for DBBP. For efficient extraction, the nitrate 

concentration in the leachate had to be increased by addition of 2.5M NH4NO3. By using a 

higher concentration of Ca(NO3)2 (3M) in the leachant, NH4NO3 could be omitted, and the 

DBBP could be replaced by the cheaper TBP. Stripping could be performed by water. 

Precipitation by oxalic acid and calcination gave a mixed rare-earth oxide. The process was 
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further tested by continuous counter-current tests on a lab scale, and also on a pilot-plant scale 

(Preston et al., 1996a). It was suggested to integrate the process in an existing plant that 

produces nitrate and phosphate fertilisers, in line with the previous suggestion to redesign the 

overall process, also upstream. Further research and development led to the invention of three 

additional processes: (1) a process for the precipitation of high-purity cerium dioxide and the 

recovery of a heavy rare-earth concentrate (Preston et al., 1996b), (2) a process for the 

separation of the light (La, Ce, Pr, Nd) and middle (Sm, Eu, Gd, Tb) rare-earth fractions by 

solvent extraction with bis(2-ethylhexyl)phosphoric acid (Preston et al., 1996c), and (3) a 

process for preparation of magnet-grade (95%) neodymium oxide from the light rare-earth 

fraction by extraction with the quaternary ammonium salt Aliquat 336 nitrate (Preston, 1996). 

HNO3 was found to be a more efficient leachant than H2SO4 for the recovery of rare earths 

from hemihydrates phosphogypsum, because of the high solubility of rare-earth phosphates 

and rare-earth alkali metal double sulphates in HNO3 (Lokshin et al., 2002). Leaching with 

fresh portions of HNO3 led to a 96% recovery of the rare earths, while only 7.8% of the 

calcium content went into solution. Based on these observations, the authors concluded that 

the rare earths do not isomorphously co-crystallise with CaSO4½H2O, but rather exist as 

separate phases. Grinding of the hemihydrates phosphogypsum before leaching with HNO3 

led to a higher recovery of rare earths, because the grinding process removed the calcium 

sulphate crust that covers the surface of the grains of the rare-earth phases. In contrast to what 

was observed by Preston for leaching of calcium sulphate sludge (Preston et al., 1996a), 

Lokshin and co-workers did not observe enhanced leaching of hemihydrate phosphogypsum 

upon addition of Ca(NO3)2 to the HNO3 leachant (Lokshin et al., 2002). 

Although leaching of metal values from phosphogypsum is typically done by aqueous 

solutions of mineral acids, it is possible to largely suppress the aqueous phase and to make use 

of organic solvents. In that case one should use the term “solvometallurgical processing” (or 
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“lyometallurgical processing”) rather than “hydrometallurgical processing”. 

Solvometallurgical methods have been invented in the 1950s and early 1960s for the recovery 

of uranium from low grade complex ores (Grinstead, 1958; Grinstead, 1959b; Grinstead, 

1959a; Kruse, 1963; Galvanek, 1959), but unfortunately these methods have been largely 

neglected ever since, notwithstanding their potential to recover metals from ores and 

industrial process residues. Two different approaches can be used: solvent leaching and slurry 

solvent extraction. In solvent leaching, the leaching process is performed with a complexing 

agent (acting as an extractant) dissolved in an organic solvent. The organic solvent can be 

miscible or immiscible with water, but it is important that both the extractant and the metal 

complex are soluble in the solvent. After leaching, the metals can be recovered from the 

organic phase. In slurry solvent extraction, the finely crushed ore is wetted by a small volume 

of acid solution, and this slurry is contacted with a water-immiscible organic phase, 

containing an extractant. This approach is similar to conventional solvent extraction, but the 

volume of the aqueous phase is significantly reduced. The solvometallurgical processing 

methods are generic in the sense that they can be applied to a host of different ore types. 

Besides the largely reduced consumption of acids and a major reduction in the volumes of the 

leaching solutions, the main advantage is the possibility to achieve a much higher selectivity 

for metal recovery compared to conventional hydrometallurgical leaching methods. El-

Didamony and co-workers investigated the possibility to leach metals from phosphogypsum 

with organic extraction agents dissolved in kerosene (El-Didamony et al., 2012). Although the 

main aim of this study was the removal of radionuclides from phosphogypsum, the 

experimental results also indicated that this method was applicable to recover the rare earths. 

The best results were observed for leaching of phosphogypsum with tributylphosphate (TBP) 

dissolved in kerosene. This treatment removed 69.8% of the rare earths present in the solid 

material. The method was improved by using mixtures of TBP and TOPO (TOPO = 
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trioctylphosphine oxide) in kerosene instead of pure TBP mixtures. In this case the recovery 

of the rare earths equalled 80% (EI-Didamony et al., 2013). 

 

2.3. Leaching of phosphate rock by nitric acid or hydrochloric acid 

Instead of using H2SO4, phosphate rock can also be treated by HNO3 or HCl. In contrast 

to leaching with H2SO4 no solid residues comparable to phosphogypsum are created by 

leaching with HNO3 or HCl, although still some solid residues will be formed. When 

phosphate rock is leached with a HNO3 solution, all rare earths are solubilised as nitrates 

(Habashi, 1985). Phosphate rock, with the exception of silicate gangue material, is readily 

soluble in 50–60 % HNO3 at 60 °C:  

Ca10(PO4)6F2+20 HNO3  6 H3PO4+10 Ca(NO3)2+ 2 HF    (2) 

After dissolution of the phosphates, the slurry has to be filtered to remove silica. The solution 

is cooled to -5 °C to induce crystallisation of Ca(NO3)2·4H2O, which is removed from the 

solution by centrifugation. The solution can be defluorinated by addition of NaNO3 to 

precipitate Na2SiF6. The rare earths can be recovered by adjusting the pH to 0.3–1.4 with 

ammonia, resulting in the formation of a phosphate precipitate containing 80 to 100% of the 

rare earths (Habashi, 1985). Another method to recover the rare earths is to extract them with 

tributylphosphate (TPB) (Werner et al., 1966a; Werner et al., 1966b), but this solvent 

extraction step should be done before crystallisation of Ca(NO3)2·4H2O, since the calcium 

ions enhance the extraction. After extraction, the rare-earths can be removed from the organic 

phase by stripping with water, followed by precipitation as hydroxides by addition of 

ammonia to the water phase. Uranium is also extracted by TBP. Selectivity can be obtained 

by pH control: uranium is extracted at very low pH values (0.6–0.7) and the extraction 

efficiency drops at higher pH values, whereas maximum recovery of rare earths can be 
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achieved at a pH of 1.0 where a precipitate starts to form (Habashi et al., 1986). Uranium can 

be extracted from the solution together with H3PO4 by tertiary amyl alcohol and can be 

stripped by a 50% NH4NO3 solution (Habashi and Awadalla, 1986). The co-extracted H3PO4 

may be stripped with NH3. The rare earths, left behind in the leachate solution, can be 

extracted by TBP. A flow sheet for the treatment of phosphate rock with HNO3 and the 

recovery of the rare earths from the chloride solution is shown in Figure 4. 

 

Figure 4. Proposed flow sheet for the treatment of phosphate rock with HNO3, with recovery 

of rare earths. Adapted with permission from (Habashi et al., 1986). Copyright 1986 Society 

of Chemical Industry. 
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 The HCl route has received less attention than the HNO3 route. Just as in the case of 

HNO3, digestion of phosphate rock with HCl will bring all the solid material in solution, with 

the exception of silicate gangue material (Habashi et al., 1987):  

Ca10(PO4)6F2 + 20 HCl  6H3PO4 + 10CaCl2 + 2HF     (3) 

A flow sheet for the treatment of phosphate rock by HCl and the recovery of the rare earths 

from the chloride solution can be found in Figure 5. The phosphate rock is leached with a 

stoichiometric amount of HCl at 40 °C. Addition of NaCl to the leachate will cause removal 

of fluorine by precipitation of Na2SiF6. Radium can be removed from the solution by co-

precipitation with BaSO4 upon consecutive addition of BaCl2 and Na2SO4. Uranium can be 

removed by solvent extraction with a dilute solution (5%) of TBP in an aliphatic diluent. 

H3PO4 is separated from CaCl2 by solvent extraction with TBP. Stripping of H3PO4 from the 

organic phase by ammonia gives ammonium phosphate fertiliser. The CaCl2 in the aqueous 

solution can be precipitated as gypsum by addition of H2SO4. In this way, HCl is reformed. In 

contrast to phosphogypsum, the gypsum formed by precipitation with H2SO4 from chloride 

solution is not radioactive. The rare-earth elements can be recovered from the solution by 

precipitation as phosphates by partial neutralisation of the acidic solution by Ca(OH)2. 

Alternatively, the rare earths can be recovered from the solution as hydroxides by 

precipitation with ammonia, before gypsum is precipitated. The recovery of the rare earths by 

this process is about 60%. Attack of phosphate rock by HCl was recommended because it 

facilitates the recovery of rare earths compared to attack by H2SO4 (Shlewit, 2011). 
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Figure 5. Proposed flow sheet for the treatment of phosphate rock with HCl, with recovery of 

rare earths. Adapted with permission from (Habashi et al., 1987). Copyright 1987 Society of 

Chemical Industry. 
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 Habashi proposed in situ, dump or vat leaching of phosphate rocks with dilute HNO3 

(20%) or HCl (10%) to get a solution of monocalcium phosphate, and to allow recovering 

uranium and rare earths (Habashi and Awadalla, 1988; Habashi, 1989; Habashi, 1994). The 

rare earths can be recovered from the nitrate leach solution at the natural pH of the leach 

solution by TBP and from the chloride leach solution by bis(2-ethylhexyl)phosphoric acid . 

Evaporation of the leach solution leads to formation of the double salts CaClH2PO4·H2O or 

Ca(NO3)H2PO4·H2O. The double salts can be decomposed at 200–250 °C to CaHPO4. 

Advantages of this process include (1) low capital costs, (2) elimination of the 

phosphogypsum problem, (3) enhanced possibility to recover rare earths, uranium and 

fluorine, and (4) enhanced possibility to control the radium content of the phosphate rock. 

 Phosphogypsum can be decomposed by reaction with ammonium carbonate, so that 

ammonium sulphate fertiliser and calcium carbonate are formed (Habashi, 1985; Burnett et 

al., 1996): 

CaSO4·2H2O + (NH4)2CO3  (NH4)2SO4 + CaCO3 + 2H2O   (4) 

The rare earths report to CaCO3 and can be recovered by dissolution of CaCO3 in HNO3, 

followed by removal of the rare earths by solvent extraction (Habashi, 1985). Alternatively, 

CaCO3 can be calcined to CaO and this compound can be dissolved by leaching with an 

NH4Cl solution. This results in a rare-earth rich residue.  

 

2.4. Recovery of rare earths from phosphoric acid 

Phosphoric acid produced by H2SO4 leaching contains about 1 g L
-1

 of rare earths. This is 

only 15 to 30% of the rare earths originally present in the phosphate rock, since most of the 

rare earths report to the phosphogypsum. This is in contrast to uranium that largely reports to 
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the phosphoric acid solution (Bunus, 2000). Many researchers have investigated the 

possibility to recover rare earths and uranium from these phosphoric acid leaching solutions, 

and most of these methods were based on solvent extraction or ion-exchange (Kumar et al., 

2011; Radhika et al., 2011; Kumar et al., 2010; Reddy et al., 2009; Bunus and Dumitrescu, 

1992; Bunus et al., 1994; Bunus, 2000; Koopman et al., 1999b; Koopman et al., 1999a; 

Habashi, 1985). Lower temperatures, higher concentrations of phosphoric acid and larger 

liquid-to-solid ratios increase the rare-earth concentration in the phosphoric acid leach 

solution (Wang et al., 2010). Addition of surfactants enhances the growth of gypsum crystals 

and improves the leaching of rare earths (Wang et al., 2010). Non-equilibrium extraction via 

centrifugal contacting was able to increase the separation factor between rare earths and iron 

more than 250 times (Wang et al., 2011a). 

 

3. Bauxite residue (red mud) 

3.1. Formation and composition of bauxite residue 

Bauxite, a mixture of impure hydrated aluminium oxides, is the most important 

aluminium ore. The estimated global production of bauxite in 2013 was 259 million tonnes 

(Bray, 2014). There are different classification schemes for bauxites, depending on their 

origin (Patterson et al., 1986). An often used method of classification divides the bauxites into 

laterite and karst types. The laterite-type bauxite deposits are the very large blanket deposits 

formed mainly by surficial weathering in tropical regions, and these bauxites are mostly lying 

on top of aluminosilicate rocks. The karst-type deposits are found on top of carbonate rocks. 

Lateric bauxites (about 88% of the global reserves) are found in Suriname, Guyana, 

Venezuela, Brazil, Guinea, India, Indonesia, Vietnam, Australia and the USA. Karstic 

bauxites (about 12% of the global reserves) are mainly found in Europe (Greece, France, 
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Hungary, Romania), Jamaica, Russia and China. Karstic-type bauxites are richer in rare earths 

compared to lateritic bauxite. Depending on the type of deposit, the principal aluminium-

bearing components are Al(OH)3 (gibbsite), γ-AlO(OH) (boehmite) and α-AlO(OH) 

(diaspore). Lateritic bauxites contain mainly gibbsite, whereas the karstic bauxites are rich in 

boehmite and diaspore. The chemical composition of representative bauxites is given in Table 

4. Aluminium metal is produced from pure Al2O3, which is obtained via the Bayer process, 

where bauxite is digested in a concentrated NaOH solution at temperatures and pressures. 

This digestion in NaOH converts the aluminium minerals to sodium aluminate, which is 

soluble in the NaOH solution due to the amphoteric character of aluminium. The other 

components of bauxite do not dissolve or are converted to sparsely soluble compounds. The 

solution, which is rich in dissolved Al2O3, is separated from the bauxite residue (BR), more 

commonly known as red mud (Jones and Haynes, 2011; Power et al., 2011; Klauber et al., 

2011; Grafe et al., 2011; Grafe and Klauber, 2011). In the translated Russian literature, the 

term “red sludge” is used. The pH of the wet red mud slurry varies between 9.7 and 12.9, 

with an average of 11.3 (Grafe et al., 2011). The bauxite residue composition depends on the 

type of bauxite and the process parameters of the Bayer process (Table 5) (Grafe et al., 2011). 

Bauxite residue has a complex mineralogy (Table 6). In Table 7, the main chemical 

components of different bauxite residues are given. Worldwide there is an annual bauxite 

residue production of 1.210
8
 tonnes (dry matter) and a total inventory of 310

9
 tonnes, 

stored in huge tailing ponds (International Aluminium Institute, 2013). These tailing ponds 

carry risks, as revealed in 2010 by the dam failure of the Ajka refinery in Hungary and the 

resulting loss of human lives and environmental catastrophe (Ruyters et al., 2011; Gelencser 

et al., 2011).  

 



24 
 

Table 4. Chemical compositions of typical bauxites (in wt%). Adapted from (Patterson et al., 

1986). 

Origin Al2O3 SiO2 Fe2O3 TiO2 Loss on 

ignition 

Australia 54.8 3.4–4.2 17.1 3.4 26.4 

Brazil 55.9 4.8 9.4 1.3 28.6 

France 53.0 7.8 21.4 2.6 13.3 

Ghana 51.6 1.3 17.4 1.9 13.3 

Greece 57.6 3.0 22.8 2.75 12.17 

Guyana 55–61 1–10 0.8–5 2–5 30–35 

Jamaica 49.1–50.6 0.7–6.1 18.9–20.5 2.5–2.7 24.6–27.3 

Suriname 58.5–60.0 3.4–4.3 2.7–4.4 2.4–2.7 30.7–31.4 

Arkansas (USA) 45–50 13 8 2.5–3 25 

 

Table 5. Process parameters of the Bayer process (Grafe et al., 2011). 

 Gibbsite-rich bauxite Boehmite-rich bauxite 

Temperature (°C) 104–145 200–232 

Pressure (atm) 1.0–3.0 6.0 

Concentration NaOH (M) 3.6–8.9 3.6–5.0 
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Table 6. Mineralogical composition of bauxite residues. Adapted from (Grafe et al., 2011) 

Mineral Chemical formula Range (wt%) 

Hematite -Fe2O3 7–29 

Goethite -FeOOH 7.3–24.3 

Magnetite Fe3O4 0–8 

Diaspore -AlOOH 0.5–0.6 

Boehmite -AlOOH 1–9.6 

Gibbsite Al(OH)3 1–5 

Quartz SiO2 1.2–4.9 

Rutile TiO2 1.1–5.4 

Anatase TiO2 0.3–5 

Sodalite Na8[Al6Si6O24][(OH)2] 2.7–24 

Cancrinite Na6[Al6Si6O24]∙2CaCO3 0–51 

Calcite CaCO3 1–11.2 

Perovskite CaTiO3 0–11.5 
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Table  7. Elemental compositions of bauxites residues (wt%) Adapted from reference (Grafe 

et al., 2011). 

Bauxite 

Origin 

Refinery Al2O3 Fe2O3 SiO2 TiO2 CaO Na2O 

Greece Aluminium 

de Greece 

15.6 42.5 9.2 5.9 19.7 2.4 

Hungary Ajka 14.8 42.1 13.5 5.2 6.1 8.2 

Turkey Seydisehir 20.24 39.84 15.27 4.15 1.8 9.43 

China Shandong 6.9 12.8 19.1 3.43 46.0 2.37 

China Shanxi 7.3 6.8 13.9 2.5 33.9 2.7 

India Renukoot 21.9 28.1 7.5 15.6 10.2 4.5 

India Korba 19.4 27.9 7.3 16.4 11.8 3.3 

India Damanjodi 14.5 54.8 6.4 3.7 2.5 4.8 

Australia Pinjarra 17.1 36.2 23.8 3.9 3.9 1.6 

Jamaica Kirkvine 13.2 49.4 3.0 7.3 9.4 4.0 

Guinea Aughinish 23.6 30.4 9.65 17.85 6.4 5.3 

Ghana Burntisland 23.43 36.31 18.25 5.97 4.38 12.36 

 

3.2. Recovery of rare earths from red mud 

All rare earths end up in the bauxite residue during the processing of bauxite by the 

Bayer process, because these elements are associated with iron and titanium minerals that 

remain unchanged (Derevyankin et al., 1981c). The enrichment factor of the rare earths in 

bauxite residue compared to bauxite is about a factor of two (Table 8) (Ochsenkühn-

Petropoulou et al., 1994). The average concentration of rare earths in bauxite from the 
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Parnassos-Ghiona mountains in Greece is 506 ppm, whereas the average concentration of the 

resulting bauxite residue is 1040 ppm (Ochsenkühn-Petropoulou et al., 1994). It must be 

mentioned that Greek bauxite is often mixed with tropical bauxites during its processing to 

alumina. The rare-earth concentration in Jamaican red mud varies between 1500 and 2500 

ppm (Wagh and Pinnock, 1987). Bauxite residue is rich in scandium: bauxite residue from 

Greece contains about 130 ppm of scandium, whereas bauxite residue produced from 

Jamaican bauxite contains up to 390 ppm (Wagh and Pinnock, 1987). However, the highest 

rare-earth concentrations can be found in the bauxite residue produced from bauxites from 

Moengo in Suriname , with scandium concentrations as high as 1700 ppm (Logomerac, 

1971), while Russian bauxite residue was reported to contain 135 ppm of Sc2O3 (Fomin et al., 

2004). These scandium concentrations are much higher than the average abundance of 22 

ppm of scandium in the Earth’s crust, and point to a significant enrichment of scandium in 

bauxite and bauxite residue . Although minerals with a high scandium content do exist (e.g. 

thortveitite and kolbeckite), they only form very small deposits (Wang et al., 2011b). The lack 

of rich scandium deposits hampers the widespread use of scandium, although scandium could 

find useful applications as an alloying metal for aluminium (Royset and Ryum, 2005) and as a 

recyclable Lewis acid catalyst for the production of fine chemicals (Kobayashi, 1999). It can 

be expected that the demand of scandium will be increasing in the near future, due to the 

increasing need of scandium for preparing scandium-stabilised zirconia used in solid oxide 

fuel cells (Badwal et al., 2000). For these reasons, the recovery of scandium from red mud 

could be of high economic interest (Petrakova et al., 2014). Scandium represents more than 

95% of the economic value of rare earths in red mud. Every alumina plant with a capacity of 

more than 1 million tonnes of Al2O3 has the potential of producing 150 tonnes of scandium or 

more (Yatsenko and Pyagai, 2010). However, very little information is available on the 

mineralogy of the rare-earth-rich phases in red mud. Allanite-(La) and dissakisite-(Ce) were 
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identified as the rare-earth phases in an Indian bauxite residue sample, containing 70 ppm of 

lanthanum and 100 ppm of cerium (Abhilash et al., 2014). 

 

Table 8. Average concentration of rare earths in Greek bauxites and bauxite residues, and the 

enrichment factor of rare earths in bauxite residue. Adapted from reference (Ochsenkühn-

Petropoulou et al., 1994). The values are expressed in ppm (g/tonne). 

Element Bauxite Bauxite residue Enrichment factor 

La 87.2 149.0 1.78 

Ce 224.3 418.0 1.87 

Pr 13.9 25.8 2.13 

Nd 62.4 115.0 1.99 

Sm 13.2 28.9 2.30 

Eu 2.5 5.0 1.89 

Gd 12.8 23.3 1.86 

Tb n.d. n.d n.d. 

Dy 7.0 12.8 2.15 

Ho 2.0 4.3 2.15 

Er 8.1 17.2 2.15 

Tm n.d. n.d. n.d. 

Yb 8.0 15.6 1.99 

Lu 1.4 2.4 1.76 

Y 55.9 93.9 1.68 

Sc 59.0 127.9 2.17 

 



29 
 

There are numerous studies on the extraction of rare earths, and of scandium in 

particular, from bauxite residue. The two main approaches are either purely 

hydrometallurgical flow sheets or a combination of pyrometallurgical and hydrometallurgical 

processes (Wang et al., 2011b). The purpose of the hydrometallurgical processes is to 

selectively leach the minor metals from bauxite residue. It has been an important discovery 

that the rare earths are readily leachable from bauxite residue by diluted mineral acids, 

whereas majority elements such as iron cannot be leached from bauxite under the same 

experimental conditions (Fulford et al., 1991a). A comparative study of leaching with 

different acids (HCl, HNO3 or H2SO4), has shown that 0.5 M HNO3 is the best leachant and 

that the leaching process can be performed at ambient temperatures and pressures 

(Ochsenkühn-Petropoulou et al., 1996). 80% of scandium and 96% of yttrium could be 

recovered, but the leaching procedure was less efficient for the light lanthanides (30 to 50% 

recovery). The leaching process with dilute HNO3 has been performed at a pilot scale and 

optimised for the recovery of scandium from bauxite residue (Ochsenkühn-Petropoulou et al., 

2002) (Figure 6). An issue related to leaching with HNO3 is the difficulty to recover nitrate 

ions adsorbed to bauxite residue (Petrakova et al., 2014). Flushing with an excess of water 

create large volumes of waste water contaminated by nitrate ions. Removal of nitrate ions 

from waste water is difficult since most nitrate salts are water soluble, so that nitrates cannot 

be precipitated. An analytical method based on reverse-phase HPLC was developed for the 

determination and quantification of rare earths from red mud (Tsakanika et al., 2004). Dilute 

H2SO4 is the most efficient leachant for leaching of scandium from Australian bauxite residue 

(Wang et al., 2013), in contrast to leaching of scandium from Greek bauxite residue. This 

difference in leaching behaviour was attributed to the differences in mineralogical 

composition of these two types of bauxite residue (Wang et al., 2013). Subsequent tests to 

recover scandium from the leachate were not done on real samples but rather on synthetic 
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ones prepared by dissolution of rare-earth sulphate salts. Scandium could be extracted from 

the leachate by a mixture of bis(2-ethylhexyl)phosphoric acid (D2EPHA) and 

tributylphosphate (TBP) at pH 0.4, with hardly any co-extraction of iron. The authors 

proposed a conceptual flow sheet for the recovery of Sc2O3 from bauxite residue (Figure 7). 

Leaching with HCl is very efficient for recovery of rare earths, but a main disadvantage of 

this method is that large amounts of iron are codissolved (Borra et al., 2015).  

H2SO4 leaching studies on Indian bauxite residue sample containing 70 ppm of 

lanthanum and 110 ppm of cerium showed that maximum recovery was obtained with a 3M 

H2SO4 solution (Abhilash et al., 2014). However, while maximum recovery of lanthanum was 

achieved at 35 °C, the maximum recovery of cerium occurred at 75 °C. It must be realised 

that upon leaching of bauxite residue with acids, part of the acid is consumed for 

neutralisation of the highly alkaline bauxite residue. After leaching, the rare earths can be 

recovered from the leachate by selective precipitation as oxalate, or by solvent extraction. 

Different ion-exchange resins have been tested to selectively take up scandium from the 

leachate after leaching bauxite residue with H2SO4 (Smirnov and Molchanova, 1997). 

Scandium could be eluted from the loaded resin by a Na2CO3 solution and scandium was 

precipitated as Sc(OH)3 from the concentrated eluate by addition of NaOH solution. The 

literature data show that the acid leaching results strongly depend on the type of bauxite 

residue, because the mineralogical composition of the bauxite residue determines which acid 

is best suited for leaching. Therefore, a recovery process for rare earths from bauxite residue 

needs to be tailored for a given type of bauxite residue. For instance, results obtained for 

experiments on Greek bauxite residue samples are not necessarily applicable to Australian 

bauxite residue. The close association of scandium with iron minerals is evident from the 

correlation between the dissolution of iron and the recovery of scandium (Borra et al., 2015). 

About 50% of the scandium in bauxite residue samples can be recovered without bringing too 
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much iron into solution. However, trying to recover more than 50% of the scandium does 

inevitably result in dissolution of a major part of the iron. It is not be possible to recover 

100% of the scandium present in the bauxite residue without dissolving all of the iron. 
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Figure 6. Conceptual flow sheet for the recovery of scandium from bauxite residue by a 

HNO3 leaching method. Adapted with permission from (Ochsenkühn-Petropoulou et al., 

2002). Copyright 2002 American Chemical Society. 
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Figure 7. Conceptual flow sheet for the recovery of scandium from bauxite residue by a 

H2SO4 leaching method. Adapted with permission from (Wang et al., 2013). Copyright 2013 

Elsevier B.V.. 

 

The rare earths can be selectively dissolved by digesting bauxite residue with a dilute 

acid solution made by saturating water with SO2 (forming sulphurous acid), leaving most of 

the iron undissolved (Fulford et al., 1991a; Fulford et al., 1991b; Kuwabara et al., 1967). Also 

sodium, aluminium and silicon present in the form of sodalite are brought into solution. The 

rare earths can be recovered by solvent extraction. In the Canadian Orbite process, bauxite 

residue is leached with a concentrated HCl solution in an autoclave at temperatures between 

125 and 150 °C (Boudreault et al., 2013b) (Figure 8). This brings aluminium, iron and the rare 

earths into solution. By saturating the leachate with HCl, it is possible to induce crystallisation 

of AlCl3·6H2O. Solid AlCl3·6H2O is separated from the solution and converted by 

calcinations to Al2O3, with recovery of HCl gas. The remaining solution is concentrated and 

FeCl3 is hydrolysed to Fe2O3 (hematite) between 155 to 170 °C. After removal of Fe2O3 a 

solution of rare earths is obtained, from which the rare earths can be recovered by solvent 

extraction. A main issue of a process based on HCl is the highly corrosive character of HCl 

gas and HCl solutions.  In 2013 the Japanese company Nippon Light Metals has set up pilot 

plant studies on the grounds of the Jamaica Bauxite Institute (JBI) in Hope Gardens, St. 

Andrew (Jamaica) to extract rare earths and especially scandium from bauxite residue 

(Richardson, 2013). Technical information on this Japanese process is not available. In a 

recent review, leaching with H2SO4 is considered to the economically most efficient method 

for recovery of rare earths from bauxite residue (Petrakova et al., 2014). 
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Figure 8. Flow sheet of the Canadian Orbite process for zero-waste valorisation of bauxite 

residue, including recovery of rare earths. Adapted from (Boudreault et al., 2013b). 

 

Meanwhile, Russian researchers have reported that it is possible to efficiently leach 

scandium from bauxite residue in alkaline conditions (Yatsenko and Pyagai, 2010; Fomin et 

al., 2004). The development of the process was based on the observation that scandium forms 

a soluble anionic complex compound with carbonate ions (Pasechnik et al., 2004). Whereas 

only 0.43 g L
-1

 Sc2O3 can be dissolved at 25 °C in a solution containing 100 g L
-1

 Na2CO3, 

scandium is much better soluble in a NaHCO3 solution: 16.7 g L
-1

 Sc2O3 can be dissolved in a 

solution containing 100 g L
-1

 NaHCO3 (Fomin et al., 2004). In one version of the process, 

bauxite residue is leached with solutions of Na2CO3 and/or NaHCO3 (5–12%) in three steps at 

50 °C for 2 h at a solid-to-liquid ratio of 1:2.5 to 1:5. The scandium is precipitated from the 

leachate by adding a solution of sodium aluminate or sodium zincate (prepared by dissolving 
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Al2O3 or ZnO in an aqueous NaOH solution) while heating the solution for 2 h at 80 °C. The 

resulting precipitate is separated from the solution, washed with an aqueous NaOH solution 

(10–25%) with simultaneous heating until boiling, followed by filtration and washing with an 

aqueous NaOH solution (1–5%). In a next step, the solid is dissolved in an aqueous HCl 

solution (1–5%) and the remaining solid is filtered off. Scandium is precipitated as Sc(OH)3 

by addition of an excess of an aqueous NH3 solution (10–25%) to the filtrate (Diev et al., 

2003). In a modified version of the process, leaching is carried out by passing a gas mixture 

containing air with CO2 (10–17 vol.%) through the mixed Na2CO3/NaHCO3 solutions 

(Yatsenko et al., 2005). The leachate is first treated with an organic flocculant to precipitate 

titania, is subsequently electrolysed to remove impurities, and finally scandium is precipitated 

by sodium zincate in combination with an organic flocculant. In a further improved version of 

the process, multiple leaching steps with mixtures of sodium carbonate and sodium 

hydrogencarbonate are carried out while a flow of flue gases from the bauxite sintering or 

calcination furnaces (containing CO2) is passed through the solution (Yatsenko and Pyagai, 

2010; Pyagai et al., 2012). Scandium is co-precipitated with zinc oxide. The advantage of 

alkaline leaching is that no acid is consumed to acidify the highly alkaline red mud sludge. 

The disadvantage is that only scandium can be recovered and not the other rare earths, 

because the other rare earths have a much weaker tendency to form soluble carbonato 

complexes . 

The imidazolium ionic liquid 1-ethyl-3-methylimidazolium hydrogensulphate, 

[EMIM][HSO4], has been used for high-temperature leaching of bauxite residue (Davris et al., 

2014). At a temperature of 190 °C, recovery was between 60 and 70% for most of the rare-

earth elements, although 100% recovery of lanthanum pas possible under some conditions. 

All of the iron and titanium present was solubilised, as well as about 35% of aluminium. 

Substitution of the ethyl group by a longer alkyl chain had little effect on the leaching 
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efficiencies. By leaching with the carboxyl-functionalised ionic liquid betainium 

bis(trifluoromethylsulphonyl)imide, [Hbet][Tf2N], a much higher selectivity for dissolution of 

the rare earths was achieved, even though the recovery percentages are lower than in 

[EMIM][HSO4]. [Hbet][Tf2N] is able to selectively dissolve rare-earth oxides, leaving behind 

aluminium and iron oxides (Nockemann et al., 2006). 

Bioleaching experiments on bauxite residue have been carried out with the acid-

producing fungus Penicillium tricolor to remove the rare earths and radionuclides (Qu and 

Lian, 2013). The authors directly isolated from bauxite residue this strain of fungi, which can 

excrete the maximum amounts of organic acids (oxalic acid and citric acid). They tested the 

bioleaching efficiency under various bioleaching processes and pulp densities. The highest 

leaching efficiencies were found for yttrium and the heavy rare earths, followed by scandium. 

The lowest efficiencies were found for the light rare earths. This leaching behaviour is similar 

to what is observed for mineral acids.  

Most combined pyro/hydrometallurgical treatments of bauxite residue use a 

pyrometallurgical step to first recover iron from bauxite residue and to subsequently 

concentrate the rare earths in an oxide slag (Liu et al., 2009b; Logomerac, 1979a; Logomerac, 

1979b; Loginova et al., 2013). The efforts made to extract iron from bauxite residue have 

been described above. The hydrometallurgical step consists of leaching the rare earths from 

the slag with a diluted mineral acid (Sargic and Logomerac, 1974). During reductive smelting 

of bauxite residue, 98–99% of the scandium content reports to the slag phase (Tanutrov et al., 

2013). Scandium has been recovered from slag obtained by smelting of Chinese bauxite 

residue, by leaching with 30% H2SO4, followed by solvent extraction with bis(2-

ethylhexyl)phosphoric acid in sec-octanol/kerosene diluent, and stripping with NaF solution 

from the loaded organic phase to obtain Na3ScF6 (Xu and Li, 1996) The combined use of 

pyrometallurgical and hydrometallurgical methods for recovery of metal values of bauxite 
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residue is called complex processing (Zazubin et al., 1967; Sargic and Logomerac, 1974; 

Loginova et al., 2013). 

 

4. Mine tailings 

The older beneficiation methods to separate rare-earth ores from gangue were not very 

efficient. Large losses occurred during the flotation process of ground rare-earth ores, which 

has led to the cumulative generation of large volumes of solid waste still containing 

significant concentrations of rare earths (Jordens et al., 2013). This powdery solid waste was 

often dumped in tailing ponds close to the mine or the beneficiation plant. The concentrations 

in these residues are so high that these tailings can be considered as genuine rare-earth 

deposits. For instance, the tailings of the Mountain Pass mine in California are considered as 

the second largest rare-earth deposit in the United States (the largest being the Mountain Pass 

mine itself). The Mountain Pass mine tailings still contain between 3 to 5% of rare-earth 

oxides. The recovery of rare earths from the huge polymetallic iron-niobium-REE deposit of 

Bayan Obo in Inner-Mongolia (China) is very inefficient. The deposit is mainly mined for its 

iron ore and only about 10% of the rare-earth content is recovered (Zhang et al., 2014). The 

situation is even worse for niobium, with virtually zero recovery of this metal. Concurrently, 

large volumes of mine tailings rich in rare earths are found near the Chinese rare-earth 

deposits or processing units (Xu and Peng, 2009). Also these “alternative” deposits represent  

a vast untapped resource of rare earths. The tailings in Baotou are receiving wide attention 

because they are polluting the environment with radioactive thorium-containing dust. More 

than 150 million of tonnes of tailings are being stored in a pond with an area of circa 12 km
2
 

close to the Yellow River in Baotou city (Yu et al., 2012). Rare-earth-tailings from Bayan 

Obo ore in China have been used for the production of glass ceramics (Zhao et al., 2010; Luo 
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and Xiao, 2011). Research is ongoing towards the concentration of the rare earths in the slag 

phase upon reductive smelting of the iron-rich Bayan Obo tailings. This work is discussed in 

section 6 on metallurgical slags. Carbochlorination is a promising method for the recovery of 

rare earths, thorium and niobium from the tailings of Bayan Obo ore (Yu et al., 2012). The 

tailings powders are mixed and heated in a stream of chlorine gas at 550 to 600 °C, 

transforming the metal compounds into chlorides. Some of these metal chlorides are volatile 

and can be removed from the reaction mixture by sublimation. Chloride salts of the rare earths 

and thorium are left behind in the solid residue, and can be subsequently recovered. Another 

approach to solubilise the rare earths and niobium from the Bayan Obo tailings is by 

sulphating roasting at 250 °C, followed by leaching with water at 60 °C (Zhang et al., 2014). 

Not only during the beneficiation process, but also during the cracking of rare-earth ores by 

acids or bases, significant amounts of rare earths are lost. Likewise, the historical processing 

of monazite has generated large volumes of rare-earth-rich tailings at Rhodia Solvay’s rare-

earth processing plant at La Rochelle (France). 

More efficient extraction of rare earths from old mine tailings would not only give an easy 

access to significant amounts of rare earths, but is also beneficial from an environmental point 

of view as this could be integrated in remediating mine sites through either in situ landfill 

mining or ex situ landfill mining (Jones et al., 2013; Jones et al., 2012). In the former case the 

metals are extracted in situ; in the latter case the residues are excavated and further processed 

to recover any critical metals and to, ideally, valorise the remaining mineral phases in other 

applications, in line with the zero-waste principle (see further).  

Economically interesting concentrations of rare earths are found not only near rare-earth 

mines, but at tailing deposits of other mines as well. For instance, apatite associated with iron 

ores often contains significant amounts of rare-earth elements. The apatite-rich rocks on the 

tailings of the iron mines of the Mineville district, New York (USA), are a typical example 
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(Long et al., 2010). Reddish-brown apatite of this deposit contains between 5.8 and 20.6 wt% 

total rare earths, the green variety between 0.5 and 2.0 wt%, and the white and transparent 

varieties only trace amounts. Monazite and bastnäsite fill microfractures in apatite crystals. 

The tailings of the Pea Ridge iron ore mine, Washington County, Missouri (USA) contain 

considerable amounts of rare earths (Grauch et al., 2010; Long et al., 2010). The rare earths 

are present in the material from breccia pipes that cross-cut the magnetite-hematite ore body 

and its altered rhyolite host rock. The main rare-earth-bearing ore minerals are monazite and 

xenotime, that are present as fine grains within apatite. The apatite does not occur only in the 

breccia, but is also dispersed throughout the whole iron ore body. The apatite itself contains 

minor amounts of rare earths in its crystal structure. Besides the rare earths, the breccia 

contains significant concentrations of gold, silver and tin. The Pea Ridge deposit is a high-

grade rare-earth deposit (on average 12 wt% rare-earth oxides, estimated total: 72,000 metric 

tonnes) and is relatively rich in heavy rare earths and yttrium. In Europa, apatite-iron ores are 

found in the Kiruna area in northern Sweden (Palsson et al., 2014). The main rare-earth 

minerals are apatite, monazite and allanite. Flotation tests have been carried out on the solid 

materials from the tailing pond in order to concentrate the rare-earth-containing minerals.  

Haine and Filippov explored the potential to recover rare earths from the waste generated by 

kaolin (China clay) extraction plants in Cornwall, UK (Dehaine and Filippov, 2014). The 

kaolin deposits are formed by weathering of granite rocks. In the micaceous waste fraction, 

the rare earths are concentrated in monazite grains, and the main rare earths are cerium, 

lanthanum and neodymium. Likewise, tailings of uranium mines often contain large 

concentrations of rare earths. For instance, tailings of uranium mines in Queensland 

(Australia), Kazachstan and Kyrgyzstan are presently under investigation as possible new 

rare-earth “alternative deposits” (Golev et al., 2014). Furthermore, tailings of titanium mines 

could also offer possibilities for the extraction of rare earths (Jha et al., 2008). Ilmenite is 
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transformed into water-insoluble alkali titanate and water-soluble ferrite by alkali roasting 

(Sanchez-Segado et al., 2015; Jha et al., 2011; Lahiri and Jha, 2009). After roasting, the 

insoluble alkali titanate is separated from the rare-earth oxide mixture in colloidal form and 

water-soluble ferrite. Further leaching of alkali titanate is carried out with oxalic acid and 

ascorbic acid solutions, to remove the remaining Fe
2+

 ions into the leachate and to precipitate 

a high-purity synthetic rutile containing more than 95% TiO2. The mining tailings  of tin 

placer deposits often contain considerable amounts of monazite and xenotime (Szamalek et 

al., 2013). Cassiterite is the main tin ore in these deposits. 

On the other hand, an interesting source of scandium can be found in the residues of the 

processing of tungsten ores (Xu and Li, 1996; Natansohn et al., 1992; Gokhale and Bhat, 

1967; Guo et al., 1988). If pressurised leaching with aqueous alkali is used to yield sodium 

wolframate from wolframite, scandium is left behind in the tungsten residue. Scandium can be 

recovered from this residue by leaching with HCl solution, followed by solvent extraction 

with bis(2-ethylhexyl)phosphoric acid (D2EPHA). Scandium can also be recovered from the 

residues generated during the processing of tin, nickel, tantalum and niobium ores (Wang et 

al., 2011b).  

 

5. Coal ash and incinerator ash 

Coal contains trace concentrations of many elements, including rare earths. These 

elements, with the exception of volatile elements such as mercury and cadmium, end up in the 

bottom and fly ashes of power plants after burning the coal for electricity production (Querol 

et al., 1995). The burning of coal leads to an enrichment of some metals in the ashes so that 

these ashes be considered as low-grade ores for different metals (Seredin and Finkelman, 

2008; Seredin et al., 2013; Franus et al., 2015). Concentrations of more than 0.1% of rare-
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earth oxides are often found in coal ashes (Seredin and Dai, 2012). Ashes from coal of the 

Russian Far East contain even more than 1% of rare-earth oxides (Seredin, 1996). Given the 

fact that still huge amounts of coal are burnt worldwide – despite the negative environmental 

and climate impact of this energy source – coal ashes could be an important source of rare 

earths (Calus-Moszko and Bialecka, 2013). It has been recommended to use method similar to 

those used for the extraction of rare earths from weathered crust deposits (ion adsorption 

clays) (Blissett et al., 2014). Experiments to leach rare earths with dilute H2SO4 from coal fly 

ash have been carried out (Kashiwakura et al., 2014). First, a fast dissolution of the rare earths 

on the surface of the ash particles was observed, followed by slow dissolution of the rare 

earths inside the particles. In a patented process, it has been proposed to leach the rare earths 

from coal ashes by dilute HNO3, followed by solvent extraction with TBP (Joshi et al., 2013). 

In another process, it is proposed to leach the rare earths with HCl from coal fly ash 

(Boudreault et al., 2013a).  

Ashes from oil shales are another potential resource of rare earths (Yang et al., 2010). 

Extraction of rare earths from these ashes is a challenge due to the high iron and aluminium 

contents relative to the rare-earth concentrations. A conceptual flow sheet for the recovery of 

rare earths was proposed, consisting of four steps: (1) leaching with HCl; (2) removal of iron 

by solvent extraction with the trialkylamine N235; (3) selective precipitation of aluminium 

and rare earths as hydroxide and separation from impurities; (4) dissolution of the hydroxides 

in HNO3, followed by extraction of the rare earths by TBP to remove them from other metals 

dissolved in the solution. 

 The ashes of incineration plants contain a wide variety of metals. A study of the ashes 

of a Swiss incineration plant burning municipal solid waste showed that the concentrations of 

rare earths are very low and the extraction of these elements from the ashes would not be 

economically feasible (Morf et al., 2013). Analysis of the metal content of a Danish 
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incineration plant gave similar low concentrations of rare earths (Allegrini et al., 2014). The 

concentration of rare earths in Chinese medical waste incinerator ashes was found to be lower 

than the crustal abundance of the rare earths (Zhao et al., 2008). Research on the ashes of 

incineration plants show that landfills storing municipal waste are unlikely to become a 

resource of rare earths, although these landfills often contain high concentrations of base 

metals (Jones et al., 2013; Jones et al., 2012). This is not a surprise, given the fact that 

widespread use of rare-earth products (e.g. neodymium permanent magnets) in consumer 

goods is only a quite recent phenomenon. The situation could be different in the case of some 

specialised industrial landfills, for instance landfills storing lamp phosphor waste from End-

of-Life fluorescent lamps. 

 

6. Metallurgical slags 

Efficient pyrometallurgical processes have been developed for the recovery of metal 

values from electronic scrap, spent automobile exhaust catalysts and spent industrial catalysts. 

In its Hoboken site near Antwerp (Belgium) Umicore operates an integrated smelter and 

refining plant for recovering metals from Waste Electrical and Electronic Equipment (WEEE) 

(Felix and Vanriet, 1994; Meskers et al., 2009; Vanbellen and Chintinne, 2006). Recovered 

metals include: silver, gold, indium, bismuth, tin, selenium, tellurium, antimony, arsenic, the 

platinum-group metals (platinum, palladium, ruthenium, rhodium, iridium) and the base 

metals copper, nickel and lead. However, the employed metallurgical flow sheets have not 

been developed for the recovery of rare earths. Due to the high affinity of the rare-earth 

metals for oxygen, these elements end up in diluted (oxidic) form in the slag of the so-called 

“copper smelter” and finally in the slag of the lead blast furnace. Moreover, the rare-earth 

content of these slags consists largely of cerium, which is not a critical metal. In fact, there is 
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an oversupply of cerium, due to the large natural abundance of cerium and its relatively low 

demand (Binnemans et al., 2013b). Other companies such as Aurubis and Boliden use 

pyrometallurgical processes comparable to that of Umicore for the multi-metal recycling from 

electronic scrap, but none of cases the rare earths are recovered from the slag phases (Boliden, 

2014; Aurubis, 2014). 

Concurrently, pyrometallurgical flow sheets for the recycling of valuable metals from 

batteries can produce a slag relatively rich in rare earths. In 2011, Rhodia (Solvay) and 

Umicore announced that they had jointly developed a process for recycling of rare earths from 

nickel metal hydride rechargeable batteries (Anonymous, 2011; Rhodia, 2011). Although the 

details of the process have not been disclosed, it is based on Umicore’s patented Ultra High 

Temperature (UHT) smelting technology (Cheret and Santen, 2007). An industrial-scale pilot 

plant is operational in Hoboken since September 2011 and this pilot plant has an initial annual 

capacity of 7000 tonnes, corresponding to approximately 150000 (hybrid) electric vehicle 

batteries or 250 million mobile phone batteries (Umicore, 2011; Umicore, 2009). Not only 

nickel metal hydride batteries, but also lithium-ion batteries could be recycled in this facility. 

At this moment, the process has been optimised for End-of-Life portable nickel metal hydride 

batteries. The batteries are fed in a vertical shaft furnace, together with a small amount of 

coke and a slag former (Cheret and Santen, 2007). At the bottom of the shaft furnace, oxygen-

enriched air is injected into the furnace. The process requires relatively little external energy 

input, because the combustion of both the plastic casing of the batteries and the organic 

electrolytes releases large amounts of energy. The metals are converted into a Ni-Co-Cu-Fe 

alloy and a slag. The slag consists mainly of oxides of calcium, aluminium, silicon, and iron, 

and also contains lithium and rare earths (Verhaeghe et al., 2011). These oxide slags can be 

processed to recover lithium and to produce rare-earth concentrates that are subsequently used 
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as a feed in the rare-earth separation plant of Solvay (formerly Rhodia) in La Rochelle, 

France.  

In comparison to natural ores, slags have the advantage that the formation of mineral 

phases during cooling can be influenced by use of different slag formers, cooling rates and 

furnace conditions. This processing of slags is defined as hot stage slag engineering (Durinck 

et al., 2008). The slag composition and microstructure can be changed by adjusting the 

primary pyrometallurgical process directly or immediately after separation of the slag from 

the molten metal, while the slag is still at high temperature. If a metal can be enriched in a 

certain mineralogical slag phase embedded in a matrix of other minerals by choosing a 

suitable slag composition and cooling trajectory, then a separation of this mineral phase might 

be possible by conventional ore processing methods. The metal could be much more 

effectively extracted from the resulting mineral concentrate than by processing the complete 

slag (Elwert et al., 2014). To present, interest from academia for research on the recovery of 

rare earths from metallurgical slags has been limited. Müller and Friedrich investigated the 

recycling of nickel metal hydride batteries and measured the rare-earth content in CaO–SiO2–

CaF2 based slag both in laboratory tests and pilot scale trials (Muller and Friedrich, 2006; 

Muller and Friedrich, 2004). As expected, the rare-earth metals collected in the slag phase and 

a rare-earth-rich slag (50–60 wt% rare earths) were obtained. In a pyrometallurgical process 

for recycling of NiMH batteries, the batteries were first dismantled (Tang et al., 2013). In a 

next step, the electrodes and the polymer were heated to 600 °C to combust the organic 

components. After separation of nickel metal from the black powder that contained NiO, CoO 

and the rare earths, the powder was further treated by a slagging process using a calcium 

silicate slag. Nickel and cobalt were recovered as an iron-copper-cobalt-nickel alloy and the 

rare earths reported to the slag phase. The affinity of neodymium and dysprosium to 

phosphate-containing phases was investigated for the Al2O3–CaO–MgO–P2O5–SiO2 slag 
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system, with slags originating from pyrometallurgical recycling of NdFeB magnets (Elwert et 

al., 2014). In the phosphate-free Al2O3–CaO–MgO–SiO2 slag system, dysprosium and 

neodymium were more or less randomly distributed throughout the different silicate phases, 

although local enrichments of up to 15 wt% of rare-earth oxides were found. Addition of P2O5 

led to the formation of a britholite-like silicophosphate, with up to 57 wt% of rare-earth 

oxides. This phase formed at an early stage of the cooling process and it is assumed that it 

scavenged the rare earths before the silicate phases were crystallising. Even at a content of 

P2O5 as low as 4.57%, the concentration of rare-earth oxides in the silicate matrix phase was 

already very strongly reduced. This shows that the rare earths in slags have a strong affinity 

for phosphate-containing phases. A rare-earth-rich slag has been obtained by a 

pyrometallurgical process based on carbon-bearing pellet reduction and melting technology to 

recover iron from complex ores of Bayan Obo in China (Ding et al., 2012; Ding et al., 2013). 

The main mineral phases of the ore were iron oxides, bastnäsite-(Ce) and fluorite. During the 

smelting process, nearly all the rare earths reported to the slag phase and the resulting slag 

contained 14% of rare-earth oxides. The slag was remelted at 1400 °C and the melt was 

cooled using three types of cooling conditions (water quenching, air cooling, and furnace 

cooling) to investigate the influence of cooling on the microstructure and phase characteristics 

of the slag. The rare-earth elements were concentrated in a cerium calcium silicate phase and 

could be leached from the slag by 4 M HCl, leaving behind CaF2 and ThO2. The recovery of 

the rare earths was more than 97% in all cases; the lowest recovery was observed for the 

water-quenched slag, while the highest recoveries (> 99%) were observed for the air-cooled 

and the furnace-cooled slag. The recovery of the rare earths from the original slag was in 

between the two extremes. One could wonder whether remelting of the slag is justified from 

an economic point of view, since it resulted in only 1% extra leaching of the rare earths. 

Although the rare earths report to a cerium calcium silicate slag phase, europium and 
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scandium do not. These rare earths are concentrated in rare-earth-containing barium 

fluorophlogopite phase (Zheng and Lin, 1994). This rare-earth-rich phase could be collected 

from crushed and powdered slag by a flotation process. Another type of rare-earth-rich slag 

was obtained by the reductive smelting of a magnetite ore containing monazite (Kim et al., 

2014). The authors investigated the kinetics of lanthanum leaching from this slag by 0.3 M 

H2SO4. Scandium reports to the slag phase during the reduction of tungsten residue in an 

electric arc furnace (Xu and Li, 1996).  

Additionally, some information on the presence of rare-earth oxides in flux powders used 

in the continuous casting of steels is available, as well as on slag resulting from the smelting 

of rare-earth-containing iron ores (Zheng and Lin, 1994; Anacleto et al., 1993; Derevyankin et 

al., 1981a; Derevyankin et al., 1981b; Fang et al., 2001; Jia et al., 1995; Lin and Zheng, 1997; 

Yang et al., 2011). A wealth of information on the formation of rare-earth-containing minerals 

in magmas is available in the geological community, although geological conditions and time 

scales may not be very relevant for rare-earth-recovery operations. The available 

thermodynamic data for rare earths elements in FactSage, the most widely used 

thermodynamic calculation system for high temperature oxide systems, is fairly limited 

(Factsage, 2013). In order to make the recovery of rare earths from metallurgical slags more 

efficient, the problem of dilution of the rare earths in oxide slags has to be solved. Once the 

rare earths have been concentrated into solid rare-earth-rich phases, they can subsequently be 

removed much more easily from these phases by acid leaching.  

 

7. Waste water 

Waste water could also be a source for rare earths, but the potential of this waste stream for 

the recovery of rare earths is largely unexplored. In the first instance, rare earths could be 
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recovered from waste water produced during the extraction and separation of rare earths. Acid 

mine drainage (AMD) often contains considerable concentrations of rare earths (Merten and 

Buchel, 2004; Protano and Riccobono, 2002; Delgado et al., 2012). AMD is the outflow of 

acidic water from (old) metal mines or coal mines, and it is often heavily contaminated by 

metals (Akcil and Koldas, 2006). Some studies report on the possibility to recover uranium 

and other metals from AMD by ion-exchange resins or by biosorption, but limited 

information is available on the possibility to recover rare earths (Roig et al., 1997; Geremias 

et al., 2003; Fu and Wang, 2011). Whereas solvent extraction is the preferred method for 

recovery of rare-earth ions from concentrated aqueous waste streams and pregnant leach 

solutions, this method is not recommended for removal of rare-earth ions from diluted 

aqueous waste streams, because of the unavoidable contamination of the aqueous phase by 

organic solvents. Therefore, ion-exchange resins and chelating resins are to be preferred. 

Yantasee and co-workers have investigated the possibility to bind rare-earth ions by 

functional groups on the surface of a mesoporous silica support (Yantasee et al., 2009). It has 

been proposed to use these materials for recovery of rare earths from acidic industrial waste 

water streams and mining effluents. Nanoporous silica surface modified with 3,4-

hydroxypyridinone was tested for the recovery of cerium and europium from aqueous 

solutions (Johnson et al., 2012). The mechanism of the uptake of rare earths by chitosan 

functionalised with EDTA or DTPA has been studied (Roosen and Binnemans, 2014; Inoue, 

2000; Roosen et al., 2014). Functionalised magnetic nanoparticles are efficient for the capture 

of rare-earth elements from water, and such nanoparticles can be easily retrieved from the 

solution by a permanent magnet (Dupont et al., 2014a; Dupont et al., 2014b; Legaria et al., 

2015). Also functionalized non-magnetic nanoparticles such as SiO2 have been used for 

uptake of rare-earth ions from aqueous solutions, but recovery of the metals is less 

straightforward than with magnetic nanoparticles (Dupont et al., 2014a; Topel et al., 2014). 
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Although the biosorption of precious metals and uranium by algae, fungi, bacteria and yeast 

has been widely explored, up to now relatively little attention has been paid to the biosorption 

of rare earths (Das and Das, 2013; Philip et al., 2000; Anagnostopoulos and Symeopoulos, 

2008; Tsuruta, 2007; Moriwaki and Yamamoto, 2013; Andres et al., 2003). The fungus 

Ganoderma lucidum has been tested for the uptake of rare earths and thorium from waste 

water from the processing of monazite (Muraleedharan et al., 1994). By-pass cement dust 

(BCD) has been tested as a cheap adsorbent for rare-earth ions from aqueous solutions (Ali et 

al., 2011). BCD is a by-product of the manufacture of Portland cement and is generated 

during the calcination process in the kiln. This fine-grained material mainly consists of 

calcium oxide. Supported flowerlike nano-Mg(OH)2 exhibits a large specific surface area and 

high extraction ability for rare earths (Li et al., 2013). Pilot-scale experiments showed that this 

material is promising to recycle rare earths from industrial waste water.  

 

8. Towards zero-waste valorisation 

8.1. Concept of zero-waste valorisation 

In this paper we have used the term “valorisation” to refer to the economically viable 

utilisation of a material stream which was hitherto considered as a non-valuable waste stream. 

The term “valorisation” differs from the official meaning of the word in UK English where it 

is described as the increase in the value of capital assets through the application of value-

forming labour in production. However, as the term “valorisation” has been used for many 

years by a multitude researchers in the context of “slag valorisation” (Jones et al., 2009) or 

“waste valorisation”, we also employ it in this meaning in the present review paper. Hence, 

valorisation of industrial process residues implies that a certain value is created in a cost-

effective way.  
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When considering the valorisation of rare-earth containing secondary resources, one can 

take a straightforward metal-centric approach in which the most valuable rare-earths are 

extracted from the residue. As these metals form only a minor fraction of the overall residue 

the chosen metal-centric processing method is only delivering a suboptimal solution, in which 

the largest fraction of the residue is not catered for, often implying that more costly and 

environmentally-unfavourable stockpiling or landfilling is required. It is clear that this metal-

centric approach is not in line with the whole-system approach that is conveyed by the zero-

waste philosophy. The latter strives to eliminate waste at source and at all points down the 

supply chain, thereby rejecting one-way linear resource-use in favour of a “closed-loop” 

circular system (Curran and Williams, 2012). In the zero-waste vision, “waste” is considered 

as the symbol of an inefficient society where resources are badly allocated (Zaman and 

Lehmann, 2013; Zaman, 2014). Zero-waste, therefore, envisions that all industrial inputs are 

somehow being used in final products or converted into value-added feedstocks for other 

industries or processes. This vision is completely in-line with the industrial symbiosis 

approach, in which distinct industries are re-organised into clusters in such a way that each 

company’s by-products match the input requirements of another industry, whereby the 

integrated whole produces (near) zero wastes (Curran and Williams, 2012). As pointed out by 

ZWIA, products and processes need to be designed and managed to avoid and eliminate waste 

and to recover all resources from a given waste stream (ZWIA, 2004). For industry greater 

competitiveness can be obtained, representing a continuation of the inevitable drive towards 

(resource) efficiency (Curran and Williams, 2012). Translated to the domain of zero-waste 

valorisation of metal-containing industrial process residues, this implies that a rare-earth 

metal-centric recovery approach needs to be replaced by a product-centric, whole system 

approach, in which (almost) all components of the residue need to be turned into value, i.e. 

“valorised”. The rejection of a metal-centric in favour of a product-centric approach has 
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received ample attention in the most recent UNEP report Metal Recycling – Opportunities, 

Limits, Infrastructure (Reuter et al., 2013). Although the concept was mainly developed for 

the integrated valorisation of critical and technology metal containing End-of-Life products 

(cf. Waste Electrical and Electronic Waste, WEEE), it is perfectly fit for secondary resources 

as well. In the context of End-of-Life products, it has been pointed out that the product-centric 

view considers the complex metallurgy of all elements at the same time, optimising both the 

metallurgy and recycling infrastructure in order to minimise losses, but also addressing the 

related issues, such as liberation, sorting and consumer recycling (Reuter and van Schaik, 

2013). The work of Reuter and colleagues demonstrates that zero-waste valorisation will 

require more than the development of technological solutions, as also pointed out by Klauber 

et al. (Klauber et al., 2011). In the case of industrial process residues, the “secondary 

resource” should thus be regarded as a polymetallic raw material product, also hosting a 

number of potentially valuable minerals. Zero-waste, product-centric valorisation, therefore, 

means that tailored, integrated flow sheets need to be designed to recover both critical and 

base metals, while simultaneously finding solutions for the residual mineral matrix as well. 

For instance, in the case of stocks of previously produced bauxite residue, this zero-waste 

vision implies that all valuable metals (including the lanthanides and scandium) etc. need to 

be recovered, while valorising the mineral matrices into, for example, innovative construction 

materials. In the case of future bauxite residues or phosphogypsum, an even more ideal, 

whole-system scenario is to redesign the overall flow sheet upstream so that different residues 

are generated, which can find better valorisation options further downstream the valorisation 

chain. The zero-waste valorisation concept is now discussed in more detail for 

phosphogypsum (section 8.2) and bauxite residue (section 8.3). 
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8.2. Towards zero-waste valorisation of phosphogypsum 

Phosphogypsum could be used as a resource for the manufacturing of cement, plasters and 

gypsum construction materials, but the high contents of fluorides, phosphates and water-

soluble sodium compounds turn phosphogypsum into a raw material that is of an inferior 

quality compared to natural gypsum or anhydrite for these applications. Also organic matter 

can cause problems. After or during the recovery of the metal values, phosphogypsum needs 

to be treated before it can be used in the construction industry. Lokshin and co-workers 

described a zero-waste valorisation approach for the processing of phosphogypsum, which 

includes purification of phosphogypsum on dumps by percolation leaching with dilute H2SO4 

solutions to remove these fluorides, phosphates and water-soluble sodium compounds of 

sodium, with simultaneous dissolution of rare-earth sulphates (Lokshin et al., 2013). Indian 

phosphogypsum was purified by treating it with a 10–20 % aqueous ammonia solution, 

followed by washing with water (Singh et al., 1993). The purified phosphogypsum was tested 

on a lab scale for cement manufacturing and the produced Portland cement was found to have 

properties similar to cement produced from the mineral gypsum.  

Another approach is to purify phosphogypsum by treating it with a 3–4 wt% citric acid 

solution, followed by washing with water (Singh, 2002). This treatment transforms phosphate 

and fluoride impurities in water-soluble citrates, aluminates and iron compounds. The residue 

can be used for the production of Portland cement or gypsum plaster. The Belgian company 

Prayon SA has recently developed an integrated process to recover rare earths from 

phosphogypsum by leaching with H2SO4, yielding a pure, white residue that can be valorised 

as a construction material (Germeau et al., 2013). 

One particular point of attention for the zero-waste valorisation of phosphogypsum is the 

fact that phosphate rocks are slightly radioactive due to the presence of uranium and its decay 



52 
 

products. The contribution of thorium to the radioactivity of phosphate rock is low, due to the 

very low thorium concentrations in phosphate rock. Upon the acid attack of phosphate rock, 

the radioactive equilibrium existing in the phosphate rock is disturbed and a redistribution of 

the radionuclides occurs. Most of the uranium and thorium report to the phosphoric acid and 

subsequently finish up in the phosphate fertiliser, while radium will be incorporated in the 

phosphogypsum since it shows chemical similarities to calcium (Papastefanou et al., 2006; 

Hull and Burnett, 1996). Also polonium will end up in the phosphogypsum. Four 

radionuclides in phosphogypsum are of concern: 
226

Ra, 
231

Pa, 
210

Pb and 
210

Po (Vanderheijde 

et al., 1990). Most attention has been paid to the radium content of phosphogypsum. 

Phosphogypsum may contain specific activities of 
226

Ra between one and two orders of 

magnitude higher than those of natural gypsum, depending on the uranium content of the ore 

(Menzel, 1968). Due to the enrichment of radionuclides, phosphogypsum is classified as a 

technologically enhanced naturally occurring radioactive material (TENORM) (Shakhashiro 

et al., 2010; Tayibi et al., 2009; Gezer et al., 2012). The decay of 
226

Ra in the phosphogypsum 

will result in the formation and reappearance of daughter nuclides and radioactive equilibrium 

will be re-established. Radiological measurements on phosphogypsum of Thessaloniki 

(Greece) showed that the activity of 
226

Ra varied between 261 to 688 Bq kg
-1

, with a mean 

value of 508 Bq kg
-1

 (Papastefanou et al., 2006). It must be mentioned that also part of the 

uranium originally present in the phosphate rock ends up in the phosphogypsum (with the 

concentration depending on the type of phosphate rock and the chemical process used), so that 

also daughter elements of 
238

U can be found in the phosphogypsum (Rutherford et al., 1994). 

The possible inhalation of the radon (
222

Rn) formed by the decay of 
226

Ra is considered as a 

health concern (Haridasan et al., 2002). Several authors have investigated the activities of 

radionuclides in phosphogypsum at different geographic locations. Hence, more information 

is available on radioactivity issues of phosphogypsum compared to bauxite residue (red mud) 
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(see section 4) (Rutherford et al., 1994; Mazzilli et al., 2000; Saueia et al., 2005; Azouazi et 

al., 2001; Hull and Burnett, 1996; Zielinski et al., 2011; Papastefanou et al., 2006; Paridaens 

and Vanmarcke, 2008; Paridaens and Vanmarcke, 2001; Vanderheijde et al., 1990). The 

presence of radionuclides in phosphogypsum is of concern when phosphogypsum is valorised, 

both at the stage of rare earths recovery and during the transformation of phosphogypsum into 

cement, plaster or other building materials. This implies that safety measures are required 

when working with phosphogypsum in order to avoid uncontrolled release of the 

radionuclides and to avoid the risk of exposure of the workers to those radionuclides. In the 

conversion of phosphogypsum to ammonium sulphate by reaction with ammonium carbonate, 

all the radionuclides that were originally present in the phosphogypsum (
226

Ra, 
210

Pb and 

210
Po) will report to the calcium carbonate by-product (Burnett et al., 1996). As a result, the 

ammonium sulphate fertiliser will have a very low radioactivity. However, it must be taken 

into account that the concentration of radionuclides in the calcium carbonate has 

consequences if this calcium carbonate is further treated for recovery of rare earths. 

Recovery of rare earths from phosphogypsum could be combined with removal of 

radionuclides, as part of remediation or recultivation of old phosphogypsum stacks to leave 

the landfills in a safer condition. If the phosphogypsum is not of a high enough quality for use 

in plaster or similar applications, excavation and ex situ leaching of the radionuclides and rare 

earths is not a feasible option. In such cases, in situ leaching could be option. This approach 

implies injecting lixiviants in the phosphogypsum stack, followed by collection of the 

leachates and recovery of the dissolved metals. No studies on in situ leaching of 

phosphogypsum stacks have been done yet, although in situ leaching is commonly used for 

recovery of metals from low grades ores, especially from low grade uranium ores (Gupta and 

Singh, 2003). However, in situ leaching can only be applied if precautions are taken to avoid 

contamination of ground water. 
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8.3. Towards zero-waste valorisation of bauxite residue 

Zero-waste valorisation of bauxite residue implies not only removal of the rare earths and 

other metal values, but also finding applications for the metal-lean residues. Unlike some 

other high volume industrial wastes such as fly ash and metallurgical slag, bauxite residue 

currently finds no major industrial applications, besides minor use in cement and ceramic 

production (Pontikes and Angelopoulos, 2013; Liu and Zhang, 2011). Many researchers have 

already looked at the valorisation of bauxite residue, apart from its valorisation in the 

construction industry (Paramguru et al., 2005; Sushil and Batra, 2008; Liu et al., 2009b; 

Bhatnagar et al., 2011; Klauber et al., 2011; Liu and Wu, 2012). The removal of rare earths 

can be done in a preprocessing step consisting of leaching the rare earths from bauxite 

residue, followed by further processing of the remaining residue for recovery of the other 

metal metals (Piga et al., 1993). However, other processing schemes are possible. For 

instance, the rare earths could be removed from the slag that are formed during the removal of 

iron as pig iron. 

Bauxite residue has a high (base) metal content and extraction of metals from bauxite 

residue might be economically feasible. Iron oxide is a main constituent of bauxite residue (up 

to 60% of the mass) and causes its red colour. In view of the rather large content of iron 

oxide, attempts have been made in the past to use bauxite residue as a source of iron. Iron 

recovery studies were initiated as early as in the 1950s and may be classified into two major 

approaches, i.e. smelting and solid state reduction (Hammond et al., 2013). In the former, 

bauxite residue is treated in a blast furnace in the presence of a reducing agent where the iron 

oxides are reduced, generating pig iron and a titanium-rich slag (also containing the rare 

earths) (Ercag and Apak, 1997; Kumar et al., 2006; Xenidis et al., 2011; Logomerac, 1979a; 
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Raspopov et al., 2013). In the solid-state reduction, bauxite residue is mixed with a reducing 

agent or contacted with a reducing gas at certain temperature, resulting in the formation of 

metallic iron or the conversion of ferric iron to magnetite, which can be used in a next step as 

feed for a conventional blast furnace (Xenidis et al., 2009; Samouhos et al., 2013; Chun et al., 

2014; Liu et al., 2009a). So far, these iron recovery processes have not been commercially 

successful. The large sodium content of bauxite residue prohibits the use of blast furnaces. 

The high temperatures lead to the evaporation of sodium oxide in the lower (hotter) regions of 

the blast furnace and its re-deposition in the colder regions, where it attacks the ceramic 

refractory bricks and also leads to the formation of so-called sodium nests. These sodium 

nests are hard outgrowths that obstruct the free flow of the charge inside the furnace. 

Moreover, bauxite residue contains a lot of water, which would have to be removed first, thus 

representing a high cost if fossil fuels are used for drying. The solid-state reduction process, 

resulting into a beneficiated stream of magnetite, appears feasible but most likely 

economically not viable.  

A concurrent valorisation of the iron and iron-lean residue, designed for bauxite residue, 

would possibly address the above. This implies a mentality shift from the concept of 

introducing bauxite residue into an existing process, to the concept where a process is 

developed specifically for bauxite residue. Obviously, the commitment of resources in the 

second trajectory is much higher, although it could be the way forward. An example of that 

approach is the ENEXAL bauxite residue treatment process (Balomenos et al., 2014; 

Balomenos et al., 2013). Through electric arc furnace carbothermic smelting, bauxite residue 

is fully converted into two marketable products: pig iron and mineral wool. Pig iron is used in 

the secondary steel industry as a steel scrap substitute, while the mineral wool can applied for 

the production of thermo-acoustic insulating products for the construction industry. No solid 

or liquid waste products are generated in this process, and thus in conjunction with the 
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alumina refinery plant, zero-waste valorisation of the bauxite ore can be achieved. This novel 

process has been applied for more than a year in Aluminium of Greece’s industrial scale pilot 

plant. So recovery of rare earths is not done in the ENEXAL process, but new process flow 

sheets with recovery of rare earths could be developed. 

Besides iron, bauxite residue also contains economically relevant concentrations of 

aluminium and titanium. High silica contents in bauxites result in reduced Al2O3 recovery in 

the Bayer process since a part of the dissolved Al2O3 will precipitate in the form of complex 

aluminosilicates, e.g. cancrinite Na6Ca2[Al6Si6O24](CO3)2 (Smith, 2009). Re-feeding these 

residues in the Bayer process does not result in recovering significant amounts of alumina. In 

conjunction with losses during the digestion and settling in the Bayer process, bauxite residue 

contains as a result up to 20 wt% Al2O3 which is a serious loss for the industry. To achieve 

Al2O3 recovery from high-silica bauxite residues, several processes have been developed in 

the past. The “MgO–Na2CO3 sinter process” involves adding MgO to bauxite residue and 

sintering at 900–1100 °C (Meher et al., 2011a). A variant of this method is the “BaO-Na2CO3 

sinter process”, which also achieves high alumina recovery as dissolved sodium aluminates 

and low silicon dissolution (Meher et al., 2011b). An alternative to the sintering process is the 

Orbite process which uses high temperature HCl leaching to dissolve aluminium and iron as 

chlorides (Boudreault et al., 2013b). Efforts have also been made to recover titanium from 

bauxite residue by leaching with H2SO4 (Gatzini-Leonardou et al., 2008; Sayan and 

Bayramoglu, 2004). The recovery of metal values from bauxite residue has been reviewed 

recently (Liu and Naidu, 2014). 

In fact, the work on alumina extraction should be seen in a wider scope and be coupled 

also with the iron removal as a first step. In this approach, a great amount of work already 

done in the early 1960s by the US Bureau of Mines on clays, could be now extrapolated both 

on bauxite residue and iron-lean slags (e.g. from the ENEXAL process) (Balomenos et al., 
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2014; Balomenos et al., 2013). The processes investigated on clays were based on HNO3, 

sulphurous acid, HCl–isopropyl ether extraction, lime-soda with wet or dry grind option, 

H2SO4–electrolytic iron removal, H2SO4 –chemical iron removal and potassium alum (Peters 

et al., 1967). The most promising acid processes were those based on HCl and HNO3, with the  

separation of dissolved iron and aluminium salts, recovery of acid and crystallisation of an 

aluminium salt of sufficient purity to yield reduction-grade alumina identified as the major 

challenges to overcome (Goldberg, 1970). 

Considering that bauxite residue contains small quantities of radionuclides (mainly 
232

Th, 

238
U, 

226
Ra), bauxite residue can be classified as Technologically Enhanced Naturally 

Occurring Radioactive Material (TENORM) and falls under the legislation for Naturally-

Occurring Radioactive Materials (NORM) (Klauber et al., 2011; O'Connor et al., 2013; Qin 

and Wu, 2011; Gu et al., 2012; Somlai et al., 2008). These legal constraints have to be taken 

into account when bauxite residues are used in building materials. One could think of 

developing a process to leach out the radionuclides together with the rare earths, so the 

resulting bauxite residue would have very low radiation levels. However, this implies that 

downstream processing of the rare-earth-containing leachates should also include a step to 

safely dispose of the radionuclides present in these solutions. 

 

9. Conclusions and outlook 

In general, the concentrations of rare earths in industrial waste streams are low, typically 

less than 1% of rare-earth oxides. However, since the available waste volumes are huge, the 

total amount of rare earths in these waste fractions is very substantial, so that they can 

represent an interesting alternative source of rare earths, complementing rare earths obtained 

through primary mining and recycling of End-of-Life product flows. The recovery of rare 
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earths and other valuable elements can be part of a remediation process of historic landfills of 

industrial wastes. Recovery of valuable metals from industrial waste streams must be 

integrated in larger recycling schemes that recover most (base) metals and also find 

applications for the residues left after removal of the metals. The recovery of metals must thus 

be part of zero-waste valorisation schemes of industrial waste streams. Whereas radioactivity 

is not an issue in case of recycling of rare earths from End-of-Life consumer goods, it can be a 

serious issue in the case of processing industrial waste streams such as bauxite residue (red 

mud) or phosphogypsum. From an economic point of view, the most interesting industrial 

waste stream is bauxite residue because of its high concentrations of scandium. Extraction of 

scandium from bauxite residue can be an economically feasible industrial process, especially 

if bauxite residues with high scandium content can be processed, for instance Greek or 

Jamaican bauxite residues. Phosphogypsum can be a potential resource of light rare earths, 

but it is recommended to integrate the production of phosphoric acid and the recovery of the 

rare earths into one process, so that the rare earths are not incorporated in the 

phosphogypsum. It is a challenge to develop economically feasible and environmentally-

friendly “new metallurgical systems” for the recovery of rare earths from industrial waste 

streams containing low concentrations of rare earths. However, as (heavy) rare earth prices 

tend to increase, recovery flow sheets for industrial process residues will become more 

attractive. By also finding medium to high value outlets for the other residues arising during 

these flow sheets, the overall business case of such flow sheets can be further improved. To 

provide more resilience to the rare-earth and raw materials industry, innovative fundamental 

and applied research in this field should, therefore, be of strategic interest, targeting 

comprehensive “new metallurgical systems”. These research activities can provide medium to 

long term answers for a likely situation in the future when the demand for (heavy) rare earths 

exceeds the available supply. Concerted efforts will be required as much of the reported 
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research data have been obtained on a trial-and-error basis, rather than on the basis of a 

rational design. Presently, only limited information is available with respect to the mineralogy 

of the different rare-earth rich phases in bauxite residue, phosphogypsum and metallurgical 

slag. Knowledge of these phases could aid the development of new more efficient leaching 

processes. There is also a need for methods that allow efficient recovery of rare-earth ions 

from dilute aqueous solutions, not only from waste water streams, but especially from the 

dilute leachates. Due to the fact that the concentrations of rare earths in industrial waste 

residues are low compared to primary rare-earth ores and reclaimed End-of-Life consumer 

goods (WEEE), tailored, zero-waste processes dedicated to the recovery of rare earths from 

these dilute waste streams must be developed. 
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