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Experimental Validation of Robust
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Abstract: This paper presents an experimental validation of a recently proposed robust norm-
optimal iterative learning control (ILC). The robust ILC input is computed by minimizing the
worst-case value of a performance index under model uncertainty, yielding a convex optimization
problem. The proposed robust ILC design is experimentally validated on a lab scale overhead
crane system, showing the advantages of the approach over classical ILC designs in monotonic
convergence and tracking performance.
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1. INTRODUCTION

Iterative learning control (ILC) is widely adopted in con-
trol applications as an effective approach to improve per-
formance of repetitive processes (Bristow et al., 2006; Ahn
et al., 2007). The key idea of ILC is to update the control
signal iteratively based on measured data from previous
trials, such that the output converges to the given reference
trajectory. Most ILC update laws use the system model as
a basis for the learning algorithm. Since system models
are never perfect in practical applications, accounting for
model uncertainty in the ILC design and analysis is im-
portant.

The robustness of a variety of ILC approaches has been
discussed in the literature: linear ILC (Longman, 2000),
norm-optimal ILC (Donkers et al., 2008; Haber et al.,
2012), two dimensional learning system (Rogers et al.,
2001), and gradient-based ILC algorithms (Owens and
Daley, 2008). In general, these papers derive ILC con-
vergence conditions. Some papers present ILC designs
that explicitly account for model uncertainty to improve
robust performance. In (Moore et al., 2005), the authors
consider higher order ILC, while (Bristow and Alleyne,
2008) investigate the choice of time-varying filtering. (Ahn
et al., 2006) designs a robust ILC that account for interval
uncertainty on each impulse response. Moreover,H∞ norm
based design techniques are studied in (Roover, 1996;
van de Wijdeven et al., 2011).

Recently, we have proposed a robust norm-optimal ILC ap-
proach taking into account model uncertainty (Son et al.,
2013). The robust control design is formulated as a min-
max problem with a quadratic cost function to minimize
its worst-case value under model uncertainty. Then the
algorithm is reformulated as a convex optimization prob-
lem, yielding a global optimal solution. The robust ILC
algorithm has shown advantages in convergence and per-
formance analysis. In this paper, the proposed robust ILC

is validated experimentally with a lab scale overhead crane
system.

The paper is organized as follows. Section 2 provides the
background on robustness of norm-optimal ILC. Section
3 formulates the developed robust ILC approach. Ex-
perimental results are given in Section 4, and Section 5
concludes this paper.

2. BACKGROUND

2.1 ILC System representation

The ILC design is considered in discrete time, where the
discrete time instants are labeled by k = 0, 1, . . . and q
denotes the forward time shift operator. The trials are
labeled by the subscript j = 0, 1, . . . Each trial comprises
N time samples and prior to each trial the plant is returned
to the same initial conditions. The robust ILC design
considers linear time-invariant (LTI), single-input single-
output (SISO) systems that are subject to unstructured
additive uncertainty. That is, the method accounts for a
set of systems P∆(q) of the following form:

P∆(q) = P̂ (q) + ∆(q)W (q) , ∆(q) ∈ B∆ , (1a)

with

B∆ = {∆(q) = stable, causal LTI system : ‖∆(q)‖∞ ≤ 1} ,
(1b)

where ‖.‖∞ is the H∞ norm. P̂ (q) is the nominal plant
model and the weight W (q) determines the size of the

uncertainty. P̂ (q), W (q), and ∆(q) are stable transfer

functions. Without loss of generality, P̂ (q) and W (q) are
assumed to have relative degree 1, while ∆(q) has relative
degree 0. Let p̂(k), δ(k) and w(k) denote the impulse

responses of P̂ (q), ∆(q) and W (q), respectively, leading

to P̂ (q) =
∑N
k=1 p̂(k)q−k, ∆(q) =

∑N−1
k=0 δ(k)q−k, and

W (q) =
∑N
k=1 w(k)q−k. The system input in trial j is

denoted by uj(k), and yj(k) is the system output.



The ILC design is formulated in the trial domain, relying
on the lifted system representation (Bristow et al., 2006).
The input, output and reference trajectory samples during
the trial are grouped into large vectors

uj = [uj(0) uj(1) · · · uj(N − 1)]
T
,

yj = [yj(1) yj(2) · · · yj(N)]
T
,

yd = [yd(1) yd(2) · · · yd(N)]
T
,

and the plant dynamics are reformulated between uj and
yj :

yj = P∆ uj . (2)

Let T be the Toeplitz operator:

T (x1, x2, . . . , xN ) :=


x1 0 · · · 0

x2 x1
. . .

...
...

. . .
. . . 0

xN · · · x2 x1

 , (3)

then P∆ is given by

P∆ = P̂ + ∆W , (4)

where

P̂ = T (p̂(1), p̂(2), . . . , p̂(N)) ,

∆ = T (δ(0), δ(1), . . . , δ(N − 1)) ,

W = T (w(1), w(2), . . . , w(N)) .

In the lifted form, the set B∆ translates into the following
set B∆ for the matrices ∆:

B∆ = {∆ = T (δ(0), . . . , δ(N − 1)) : ∆(q) =

N−1∑
k=0

δ(k)q−k

= stable, causal LTI system with ‖∆(q)‖∞ ≤ 1} . (5)

2.2 Robustness in Norm-optimal ILC

Norm-optimal ILC is an optimization-based ILC design,
where the control signal is computed by minimizing the
following performance index with respect to uj+1:

J(uj+1,∆) = ‖ej+1‖2Q + ‖uj+1 − uj‖2R + ‖uj+1‖2S, (6)

where Q, R, S are symmetric positive definite matrices.
We define ‖x‖2 = xTx and ‖x‖2M = xTMx. In the
cost function, ej+1 is the (j + 1)-th trial tracking error,
ej+1 = yd −P∆uj+1, and is given by

ej+1 = ej − (P̂ + ∆W)(uj+1 − uj). (7)

In classical norm-optimal ILC, the error ej+1 is replaced
by the nominal estimated error êj+1 assuming ∆ = 0. This
leads to the following ILC update law:

uj+1 = Quj + Lej , (8a)

where

Q = (P̂TQP̂ + S + R)−1(P̂TQP̂ + R), (8b)

L = (P̂TQP̂ + S + R)−1P̂TQ. (8c)

Consequently, robust monotonic convergence is achieved
if:

‖Q−LP∆‖ < 1, ∀∆ ∈ B∆, (9)

yielding

‖(P̂TQP̂ + S + R)−1(R− P̂TQ∆W)‖ < 1, ∀∆ ∈ B∆.
(10)

Any attempt to remove ∆ for deriving a robust mono-
tonic convergence condition usually results in conservative

results. A common approach is to increase S sufficiently
such that (10) can be satisfied, but it then reduces the
converged performance. Note that the use of ‖S‖ > 0
is similar to using low-pass filter in frequency-domain
ILC (Gunnarsson and Mikael Norrlöf, 2001). This com-
promise motivates our robust ILC design approach such
that both monotonic convergence and high performance
are achieved.

3. ROBUST ILC DESIGN

In our proposed robust norm-optimal ILC approach (Son
et al., 2013), we consider minimizing the cost function (6)
without the assumption ∆ = 0. In other words, ∆ is taken
into account in the cost function.

First, in order to obtain a tractable reformulation of the
proposed robust ILC design, the set B∆ in (5) is replaced
by an outer approximation:

Bo
∆ =

{
∆ ∈ RN×N : ‖∆‖ ≤ 1

}
, (11)

where ‖.‖ is the induced matrix 2-norm. Hence, we replace
‖∆(q)‖∞ ≤ 1 by ‖∆‖ ≤ 1, and extend the set of lower
triangular Toeplitz matrices to RN×N . With the first
replacement, we also extent the set B∆ since for stable,
causal, LTI systems ∆(q), it holds that ‖∆‖ ≤ ‖∆(q)‖∞
(Norrlöf and Gunnarsson, 2002). In addition, equality
holds for N →∞.

Next, we propose a robust norm-optimal ILC design by
considering the following worst-case optimization problem:

minimize
uj+1

sup
‖∆‖≤1

{J (uj+1,∆)} (12a)

where substituting (7) in (6) yields

J (uj+1,∆) = ‖ej − (P̂ + ∆W)(uj+1 − uj)‖2Q
+ ‖uj+1 − uj‖2R + ‖uj+1‖2S. (12b)

The following results present solution and convergence
properties of the proposed robust ILC approach.

Lemma 3.1. The robust ILC algorithm (12) is equivalent
to the following convex optimization problem:

minimize
uj+1,λj+1

Jdual(uj+1, λj+1)

subject to λj+1I−Q � 0
Qêj+1 ∈ R (Q− λj+1I) ,

(13a)

where λj+1 is a scalar variable and

Jdual(uj+1, λj+1) = êTj+1

(
Q−1 − λ−1

j+1I
)†

êj+1

+ λj+1‖W(uj+1 − uj)‖2 + ‖uj+1 − uj‖2R + ‖uj+1‖2S.
(13b)

Proof. The derivation of (13) is elaborated in (Son et al.,
2013).

Theorem 3.1. Given the nominal system model P̂ and the
additive uncertainty weight W, the robust ILC algorithm
obtaining from (13) is monotonic convergent. Moreover,
perfect asymptotic tracking error, i.e. e∞ = 0, can be
achieved if there are no constraints on the input signal.

Proof. See (Son et al., 2013).

This Theorem provides the main advantage of our robust
design over classical ILC, that is, the robust ILC can



achieve both monotonic convergence and high performance
tracking error. Next, we consider the convergence speed.

Lemma 3.2. The proposed robust ILC algorithm (13) can
be interpreted as the classical norm-optimal ILC formu-
lation (8), except that the weight matrices Q and R are
updated trial-by-trial, determined by the optimal λj+1:

Qj+1(λj+1) =
(
Q−1 − λ−1

j+1I
)†

(14a)

Rj+1(λj+1) = R + λj+1W
TW. (14b)

Moreover, λj+1 → +∞ as j →∞.

Proof. See (Son et al., 2013).

Consequently, ‖Qj+1‖ converges to ‖Q‖, while ‖Rj+1‖
continuously increases to very large values. The ILC con-
vergence speed decreases as the trial number increases.
In order to avoid a continuous decrease of convergence
speed in the trial domain, λj+1 in the equivalent algorithm
(14) can be fixed to a value that yields a sufficiently
large updated weight ‖Rj+1‖, i.e. ‖Rj+1‖ ≈ 106‖R‖, and
‖Qj+1‖ ≈ ‖Q‖.
Remark 3.1. When the uncertainty is very small, i.e.
‖W‖ ≈ 0, the updated weights are approximately equal to
the given Q and R which means that the robust ILC design
is analogous to classical ILC. The larger W, the larger
λj+1, resulting in larger ‖Rj+1‖ and in smaller ‖Qj+1‖
closer to ‖Q‖. Thus, the convergence speed is lower.

Remark 3.2. In the robust ILC (13), input constraints can
be considered by the following constrained optimization
problem, which is still a convex problem, i.e.

minimize
uj+1,λj+1

Jdual(uj+1, λj+1)

subject to λj+1I−Q � 0
Qêj+1 ∈ R (Q− λj+1I)
‖uj+1‖∞ ≤ u
‖δuj+1‖∞ ≤ δu,

(15)

where inequality constraints on uj+1(k) and δuj+1(k) =
uj+1(k) − uj+1(k − 1) are taken into account to avoid
actuator saturation.

4. EXPERIMENTAL VALIDATION ON AN
OVERHEAD CRANE

The presented robust ILC algorithm is implemented and
evaluated experimentally on a lab scale overhead crane.
We also compare our robust ILC with the classical norm-
optimal ILC and zero-phase low-pass filter ILC designs.
The objective is to examine the properties of the ILC
methods for two different levels of uncertainty. Therefore
two models of the setup are considered: an inaccurate
model with large uncertainty weight and an accurate
model with small uncertainty weight. This section consists
of three main parts. The first part describes the system
and experimental setup. The second part discusses the
implementation and comparison of the robust ILC, classi-
cal norm-optimal ILC, and zero-phase low-pass filter ILC
based on the accurate model. Finally, part three repeats
the comparison with the inaccurate model.

4.1 System Formulation

System descriptions: The overhead crane is shown in
Figure 1 and drawn schematically in Figure 2. The position

Fig. 1. Picture of the lab
scale overhead crane

xc

xl

θ
l

Fig. 2. Schematic represen-
tation

of the cart and the load are denoted by xc [m] and xl [m],
respectively. The length of the cable, which is fixed, is
denoted by l [m]. The angle of the load with respect to the
vertical is θ [rad]. The single input u [V] is the command
sent to the cart velocity controller. The single output is
the load position, which is calculated as xl = xc + l sin θ.
The encoder on the cart measures the cart position xc, and
another encoder measures θ. The angle is assumed small,
i.e. sin θ ≈ θ, thus the load position can be approximated
by xl = xc + lθ. The system is sampled at 100 Hz. The
input and the input rate of variation defined as δu(k) =
u(k)−u(k−1) are limited to the ranges [−0.8, 0.8] V and
[−0.05, 0.05] V respectively, in order to avoid saturation
of the velocity controller.

System models: If we neglect friction forces, the continu-
ous time transfer function relating input u to load position
xl equals:

Xl(s)

U(s)
=

Ag

s(ls2 + g)
, (16)

where A = −0.6, g = 9.8m/s2, and the cable length l
is 45.5cm. There are two models that are used in the
experiment: an inaccurate model and an accurate model.
First, in order to derive the inaccurate model with large
uncertainty weight, the cable length l is assumed to
be 65cm in the analytical model (16). The zero-order-
hold discrete-time equivalent of this inaccurate model,
P̂inacc(z), is given by

P̂inacc(z) =
−10−6(1.508z2 + 6.03z + 1.508)

z3 − 2.998z2 + 2.998z − 1
. (17)

Second, the accurate discrete-time system model P̂acc(z) is
derived using multisine excitation and frequency domain
identification (Pintelon and Schoukens, 2001), yielding
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Fig. 3. Bode plots of measured frequency response func-
tion, and the accurate and inaccurate model
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Fig. 4. Additive uncertainty weights for the inaccurate
model (upper) and accurate model (lower) w.r.t. the
absolute error

P̂acc(z) =
0.0001448z2 − 0.0003015z + 0.0001438

z3 − 2.998z2 + 2.997z − 0.9998
. (18)

The frequency responses of the inaccurate model and
the accurate model are shown in Fig. 3, along with
the measured frequency response function (FRF). The
additive uncertainty weight corresponding to both models
is obtained by manually tuning a stable transfer function
that is an upper bound on the difference between the
measured FRF and the system models, shown in Fig. 4.

Control objectives: The aim of the experiments is to
track a reference trajectory, shown in Fig. 5, considering
input constraints: |u(k)| ≤ 0.8 V and |δu(k)| ≤ 0.05 V.

0 1 2 3 4 5

0

0.15

0.3

Time [s]

y
d
[m

]

Fig. 5. Reference output

Robust ILC and classical norm-optimal ILC: First the
discrete-time system model derived from the inaccurate
model, the accurate model and the uncertainty weights
are lifted with N = 500 samples, yielding P̂ and W. Next,
the weight parameters of both controllers are designed as
follows:

• The weight Q determines the transient and converged
performance errors. Q is selected as an identity ma-
trix, i.e. Q = I for an equal weight on all time
samples.
• The weight R determines the convergence speed, and
‖R‖ > 0 is used to be robust against trial-varying
effects such as random disturbances and initial con-
ditions. We select R = 10−6I for fast convergence
speed purposes.

• The weight S is selected as S = 0 for the smallest
possible steady state error.

In order to deal with input constraints, the constraints
‖uj+1‖∞ ≤ 0.8 and ‖δuj+1‖∞ ≤ 0.05 are imposed in both
robust ILC algorithm (15) and classical norm-optimal ILC
algorithm (8).

Zero-phase low-pass filter ILC: The zero-phase low-pass
filter ILC approach is an ILC design that can cope with
high frequency un-modelled dynamics (Longman, 2000).
The main idea of zero-phase low-pass filter ILC is to
achieve robustness by turning off the learning process
at frequencies above a certain cut-off frequency, without
introducing lag. First, a low-pass Butterworth filter is
designed based on the selected cut-off frequency and order.
Then, in order to achieve zero-phase filtering, the filter
is applied forward and backward to the signal, which is
similar to the MATLAB filtfilt filtering command. Finally,
the zero-phase low-pass filter is combined with the classical
norm-optimal ILC algorithm. The filter cut-off frequency
in the inaccurate and the accurate model case is chosen as
0.4775Hz and 1.4324Hz, respectively, which is just below
the first peak of the respective estimated uncertainties (see
Fig. 4).

4.2 Experiment 1: Accurate system model

This subsection evaluates the robust ILC, classical norm-
optimal ILC, and zero-phase low-pass filter ILC designs,
all using the accurate model (18). The experimental results
are shown in Fig. 6, Fig. 7 and Fig. 8.

Fig. 6 demonstrates that both robust ILC and classical
norm-optimal ILC can achieve monotonic convergence
and similar steady state error (e∞ ≈ 0.1), while the
convergence speed of robust ILC is slightly lower than
for classical ILC design, especially in the first 5 trials.
The difference in convergence speed is explained by the
compromise between robustness and convergence speed in
the robust algorithm. The tracking errors of the load at
the 10th trial are shown in Fig. 7. The remaining error is
mainly the result of the impulse input constraints (see Fig.
8). Other important sources of this error are trial-varying
effects such as random disturbances and a non-zero initial
load angle which is difficult to realise because of the low
system damping.

Fig. 6 and Fig. 7 also show that the zero-phase low-pass
filter ILC achieves monotonic convergence; however, this
approach produces a significantly large steady state error
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Fig. 6. Tracking errors in trial domain of the ILC con-
trollers for the accurate model
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Fig. 7. Output and error signals at the 10th trial

compared to both robust ILC and classical norm-optimal
ILC.
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Fig. 8. Input and input rate signals at the 10th trial with
constraints (dash-dotted line)

In addition, Fig. 8 shows the input and input rate signals
at the 10th trial. The figure illustrates that the input signal
of both robust ILC and classical norm-optimal ILC hit the
constraints, while this is not the case for the input of low-
pass filter ILC. Moreover, the input of the robust ILC is
significantly smoother than the input of the classical ILC.
This can be explained by the fact that the robust ILC
learning speed is lower than the classical design, especially
at high frequencies, and hence the input of the robust
ILC has not yet converged completely at the 10th trial.
Clearly, the robust input signal is more desirable in this
case, because it causes less oscillations as shown in Fig. 7.

4.3 Experiment 2: Inaccurate system model

This part compares the robust ILC, classical norm-optimal
ILC, and zero-phase low-pass filter ILC using the inaccu-
rate model (17). The system uncertainty and correspond-
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Fig. 9. Tracking errors in trial domain of the ILC con-
trollers for the inaccurate model

ing uncertainty weight are now substantially larger than
in the previous case. The experimental results are shown
in Fig. 9, Fig. 10, and Fig. 11.

From the results in Fig. 9, it can be seen that the classical
norm-optimal ILC shows divergence of the tracking error
after 3 trials. In contrast, the proposed robust ILC yields
monotonic convergence of the tracking error, and this error
still keeps decreasing after 10 trials. Fig. 10 shows the
output and error signals of both approaches at the 4th
trial, where the load swings excessively in the classical
design. Clearly, this demonstrates the main advantage of
the robust ILC design over the classical ILC: the robust
ILC can achieve monotonic convergence even for large
uncertainty. From the 5th trial of the robust controller, the
equivalent norm-optimal ILC approach (14) is applied with
λj+1 = 1.1, which corresponds to ‖Rj+1‖ = 3.6× 106‖R‖
and ‖Qj+1‖ ≈ ‖Q‖, in order to obtain a faster convergence
speed. The output and error signals at the 10th trial are
shown in Fig. 11, showing an improvement with respect to
the 4th trial.

Fig. 9, Fig. 10, and Fig. 11 also show the performance of
the zero-phase low-pass filter ILC. Compared to the clas-
sical norm-optimal ILC, using the filter approach avoids
divergence of error at the 3rd trial, and yields monotonic
convergence. However, the performance of the robust ILC
design is still significantly better than the zero-phase low-
pass filter ILC.

An additional simulation analysis, assuming the true sys-
tem is the accurate model, shows that the robust ILC error
converges monotonically to a steady state error that is
comparable to the results shown in Fig. 6, i.e. ‖e∞‖ → 0.1.
The classical ILC error converges to the same steady
state error with higher convergence speed; however, bad
transient learning is observed. Finally, the low-pass filter
ILC converges monotonically to a larger steady state error
that is comparable to the error at the 10th trial shown in
Fig. 9 (dashed line).

5. CONCLUSION

A robust norm-optimal ILC design has been experimen-
tally validated and compared with classical norm-optimal
ILC and zero-phase low-pass filter ILC on a lab scale
overhead crane. Two system models with different levels
of uncertainty were considered. For the model with large
uncertainty, the experimental results show that the classi-
cal norm-optimal ILC design yields divergence of tracking
error while the robust ILC design achieves monotonic
convergence. Adding a zero-phase low-pass filter helps the
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Fig. 10. Output and error signals at the 4th trial
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Fig. 11. Output and error signals at the 10th trial

classical ILC to avoid divergence, however at the cost of
larger converged tracking error than the proposed robust
ILC. For the model with small uncertainty, both the clas-
sical ILC and robust ILC achieve monotonic convergence
with similar converged performance.
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Norrlöf, M. and Gunnarsson, S. (2002). Time and fre-
quency domain convergence properties in iterative learn-
ing control. International Journal of Control, 75(14),
1114–1126.

Owens, D. and Daley, S. (2008). Robust gradient iterative
learning control: time and frequency domain conditions.
International Journal of Modelling, Identification and
Control, 4(4), 315–322.

Pintelon, R. and Schoukens, J. (2001). System Identi-
fication: A Frequency Domain Approach. Wiley-IEEE
Press, New York.

Rogers, E., Lam, J., Galkowski, K., Xu, S., Wood, J., and
Owens, D. (2001). LMI based stability analysis and
controller design for a class of 2D discrete linear systems.
In Proceedings of the 40th IEEE Conference on Decision
and Control, volume 5, 4457–4462.

Roover, D. (1996). Synthesis of a robust iterative learning
controller using an H∞ approach. In Proceedings of
the 35th IEEE Conference on Decision and Control,
volume 3, 3044–3049.

Son, T.D., Pipeleers, G., and Swevers, J. (2013). Robust
optimal iterative learning control with model uncer-
tainty. In Proceedings of the 52nd IEEE Conference on
Decision and Control. Florence, Italy.

van de Wijdeven, J.J.M., Donkers, M.C.F., and Bosgra,
O.H. (2011). Iterative learning control for uncertain
systems: Noncausal finite time interval robust control
design. International Journal of Robust and Nonlinear
Control, 21(14), 1645–1666.

ACKNOWLEDGEMENTS

This work was supported by the European Commission
under the EU Framework 7 funded Marie Curie Initial
Training Network (ITN) IMESCON (grant no. 264672).
This work also benefits from the IWT-SBO 80032 (LECO-
PRO) project of the Institute for the Promotion of Inno-
vation through Science and Technology in Flanders (IWT-
Vlaanderen), from KU Leuven-BOF PFV/10/002 Cente of
Excellence: Optimization in Engineering (OPTEC), and
from the Belgian Network Dynamical Systems, Control
and Optimization (DYSCO), initiated by the Belgian Sci-
ence Policy Office. Goele Pipeleers is Postdoctoral Fellow
of the Research Foundation Flanders (FWO).


