
MiniSearch: a solver-independent meta-search
language for MiniZinc

Andrea Rendl1, Tias Guns2, Peter J. Stuckey3, and Guido Tack1

1 National ICT Australia (NICTA) and Faculty of IT, Monash University, Australia
andrea.rendl@nicta.com.au, guido.tack@monash.edu

2 KU Leuven, Belgium
tias.guns@cs.kuleuven.be

3 National ICT Australia (NICTA) and University of Melbourne, Victoria, Australia
pstuckey@unimelb.edu.au

Abstract. Much of the power of CP comes from the ability to create
complex hybrid search algorithms specific to an application. Unfortu-
nately there is no widely accepted standard for specifying search, and
each solver typically requires detailed knowledge in order to build com-
plex searches. This makes the barrier to entry for exploring different
search methods quite high. Furthermore, search is a core part of the
solver and usually highly optimised. Any imposition on the solver writer
to change this part of their system is significant.
In this paper we investigate how powerful we can make a uniform lan-
guage for meta-search without placing any burden on the solver writer.
The key to this is to only interact with the solver when a solution is found.
We present MiniSearch, a meta-search language that can directly use
any FlatZinc solver. Optionally, it can interact with solvers through an
efficient C++ API. We illustrate the expressiveness of the language and
performance using different solvers on a number of examples.

1 Introduction

When using constraint programming (CP) technology, one often needs to exert
some control over the meta-search mechanism. Meta-search, such as Branch-
and-Bound search (BaB) or Large Neighbourhood Search (LNS), happens on
top of CP tree search, and aids finding good solutions, often by encoding meta-
information a modeller has about the problem.

Unfortunately, there is no widely accepted standard for controlling search or
meta-search. A wide range of high-level languages have been proposed that are
quite similar in how constraints are specified. However, they differ significantly
in the way search can be specified. This ranges from built-in minimisation and
maximisation only to fully programmable search. The main trade-off in develop-
ing search specification languages is the expressivity of the language versus the
required integration with the underlying solver. Fully programmable search, in-
cluding meta-search, is most expressive but requires deep knowledge of and tight
integration with a specific solver. Languages like OPL [24] and COMET [13] pro-
vide convenient abstractions for programmable search for the solvers bundled

with these languages. On the other hand, some solver-independent languages
such as Esra [3], Essence [5] and Essence′ [6] do not support search specifica-
tions. Zinc [12] and MiniZinc [16] have support for specifying variable and value
ordering heuristics to CP solvers, but also no real control over the search.

Search combinators [19] was recently proposed as a generic meta-search lan-
guage for CP solvers. It interacts with the solver at every node in the search tree.
While very expressive, it requires significant engineering effort to implement for
existing solvers, since typically the solvers’ search engines are highly optimised
and tightly integrated with other components, such as the propagation engine
and state space maintenance.

In this paper, we introduce MiniSearch, a new combinator-like meta-search
language that has three design objectives: a minimal solver interface to facilitate
solver support, expressiveness, and, most importantly, solver-independence.

The objective to obtain a minimal solver interface stems from lessons learnt
in the design of search combinators that interact with the solver at every node.
In contrast, MiniSearch interacts with the underlying solving system only at
every solution, which is a minimal interface. At every solution, constraints can
be added or constraints in a well-defined scope can be removed, before asking
for the next solution. If the underlying solver does not support dynamic adding
and removing of constraints, MiniSearch can emulate this behaviour, for little
overhead.

Despite the lightweight solver interface, MiniSearch is surprisingly expres-
sive and supports many meta-search strategies such as BaB search, lexicographic
BaB, Large Neighbourhood Search variants, AND/OR search, diverse solution
search, and more. MiniSearch can also be used to create interactive optimi-
sation applications. Moreover, since MiniSearch builds upon MiniZinc, all
MiniZinc language features and built-ins can be used, for instance to formulate
custom neighbourhoods.

Solver-independence is the most important contribution of MiniSearch. All
solvers that can read and solve FlatZinc, which the majority of CP solvers
do [15,22], can be used with MiniSearch. Moreover, solvers that provide na-
tive meta-search variants, such as branch-and-bound, can declare so and avoid
executing the MiniSearch decomposition instead. At the language level, this
is similar to the handling of global constraints in MiniZinc. Thus, solvers can
apply their strengths during meta-search, despite the minimal interface.

2 The MiniSearch language

MiniSearch is a high level meta-search language based on MiniZinc 2.0 [23].
MiniZinc is used for formulating the model and the constraints posted dur-
ing search, with language extensions for specifying the search. A MiniSearch
specification is provided, together with the search keyword, as an argument to
MiniZinc’s solve item. It is executed by the MiniSearch kernel (see Sec. 4).
With the built-in language extensions summarised in Tab. 1, users can define
functions such as the following branch-and-bound (BaB) minimisation:

2

Table 1. MiniSearch built-ins

MiniSearch built-ins Description

next() find the next solution
post(c) post the MiniZinc constraint c in the current scope
scope(s) open a local scope containing search s

s1 /\ s2 run s1 and iff successful, run s2
s1 \/ s2 run s1 and iff it fails, run s2
if s then s1 else s2 if s is successful, run s1, otherwise s2
repeat(s) repeat search s until break is executed
repeat (i in 1..N)(s) repeat search s N times or until break is executed
break() break within a repeat
fail() return ‘failure’
skip() return ‘success’
time_limit(ms,s) run s until timelimit ms is reached

print(S) print MiniZinc output string S
print() print solution according to model output specification
c := v assign parameter c the value v
commit() commit to last found solution in function scope
sol(v) return solution value of variable v
hasSol() returns true if a solution has been found

1 include "minisearch.mzn";
2 var int: obj; % other variables and constraints not shown
3 solve search minimize_bab(obj);
4 output ["Objective: "++show(obj)];
5

6 function ann: minimize_bab(var int: obj) =
7 repeat(if next() then commit() /\ print() /\ post(obj < sol(obj))
8 else break endif);

The include item on line 1 includes the built-in MiniSearch function declara-
tions. This is necessary for any MiniZinc model that uses MiniSearch. Line 3
contains the MiniZinc solve item followed by the new search keyword and a
user-defined MiniSearch function that takes a variable representing the objec-
tive as argument. Line 4 is the MiniZinc output item, specifying how solutions
should be printed. Lines 7–8 contain the actual MiniSearch specification. We
will explain the different built-ins in more detail below, but the specification can
be read as follows: repeatedly try to find the next solution; and if that is success-
ful, commit to the solution, print it and add the constraint that the objective
must have a lower value than the current solution. If unsuccessful, break out of
the repeat.

All MiniSearch built-ins are typed as functions returning annotations. Se-
mantically, however, every MiniSearch built-in returns a value that represents
either ‘success’ or ‘failure’, with respect to finding a solution. The handling of
these implicit return values is done by the MiniSearch interpreter (Sec. 4.1).

3

2.1 MiniSearch built-ins involving the solver

Communication with the solver is restricted to three forms: invoking the solver,
adding constraints/variables to the model, and scopes for temporary variables
and constraints.

Invoking the solver. The MiniSearch instruction for finding the next solution
is next(). It is successful if a solution has been found, and fails otherwise. The
variable/value labelling strategy (such as first-fail on the smallest domain value)
can be set in two ways: either by annotating the solve item (as in standard
MiniZinc), which sets the labelling globally, for every call to next(). Oth-
erwise, by annotating any MiniSearch function call, such as minimize_bab,
with a labelling strategy. Note, however, that as in MiniZinc, solvers may ignore
these annotations, for example if the labelling is not supported.

Solvers may declare support for native meta-search strategies, as with global
constraints, in which case these MiniSearch functions are treated as built-ins.

Adding constraints and variables. A constraint is added by calling the post()
built-in with a constraint as argument. Constraints can be formulated using the
same MiniZinc constructs as in the model, including global constraints, user-
defined functions and predicates. Variables can be dynamically added during
search too, using the MiniZinc let construct (see AND/OR search in Sec. 3.3).

Search Scopes. Search scopes define the lifespan of constraints and variables in
the model. MiniSearch has an implicit global search scope that contains all
variables and constraints of the model. A new search scope can be created by
using the scope(s) built-in that takes a MiniSearch specification s as an
argument. When entering a scope, search is assumed to start from the root
again. Whenever the execution leaves a scope, all constraints and variables that
were added in the scope are removed from the model and the solver. Execution
in the enclosing scope resumes from the point where it left off.

2.2 MiniSearch control built-ins

All MiniSearch built-ins have an implicit return value that represents either
‘success’ (true) or ‘failure’ (false). Using this concept, we introduce MiniSearch
control built-ins. All built-ins execute their arguments in order.

And, Or, Repeat. The /\-built-in runs its arguments in order and stops to return
false as soon as one of its arguments fails. Similarly, the \/-built-in stops and
returns success as soon as one of its arguments succeeds. Existing control mech-
anisms of MiniZinc such as if then else endif expressions can be used as
well. The repeat(s) built-in takes a MiniSearch specification s and repeats
it until a break built-in is executed; returns false if a break happened, otherwise
returns what s returned. The delimited variant repeat(i in 1..N)(s) will
execute s for N iterations (or until break is executed).

Time-Limits. The built-in time_limit(ms,s) imposes a time limit ms (in
milliseconds) on any MiniSearch specification s. This way, s stops whenever

4

the time limit is reached, returning its current status. Time-limits are handled
transparently by the MiniSearch kernel as an exception.

Assigning values to constants. In standard MiniZinc constant parameters such
as int: N=10; cannot change their value. However, in MiniSearch we often
want to change constants across different iterations. For this purpose, we added
the assignment operator := which may only be used inside a MiniSearch spec-
ification. It overwrites that constant’s current value by the value supplied.

2.3 Solution management

The strength of any meta-search language lies in using intermediate solutions to
guide the remaining search. For instance, branch-and-bound needs to access the
objective to post further constraints, and a Large Neighbourhood Search thaws
some of the variables in a solution to continue in that neighbourhood.

To facilitate working with solutions, the most recently found solution is al-
ways accessible in MiniSearch using the sol built-in, where sol(x) returns
the value of x in the last solution. MiniSearch also provides a hasSol()
built-in to test whether a solution exists.

User-defined functions. When a MiniSearch strategy is defined as a MiniZinc
function, a local solution scope is created. This means that any solution found
by a call to next() inside the function is visible for the code in the function
body, but not for the caller of the function when the function returns. This
architecture allows for calls to next() to be encapsulated, i.e., a function can
make “tentative” calls to next in a nested search scope and only commit if these
succeed. Sect. 3.3 shows how AND/OR search can be implemented based on
this principle. In order to make the current solution accessible to the caller, the
function must call the commit built-in. A function returns ‘success’ if it called
commit() at least once, and ‘failure’ otherwise, and the last solution committed
by the function will then become the current solution of the caller.

Printing Solutions & Debugging. The print() function without any arguments
prints the last found solution in the format specified in the model’s output item.
Alternatively, print(s) provides more fine-grained control over the output. It
prints the string s, which can be constructed dynamically from values in the
solution using calls to sol. MiniSearch can be debugged using print() and
MiniZinc’s trace() function to display values of parameters, variables, and
arbitrary expressions during search. Furthermore, the MiniSearch interpreter
uses the C++ stack, so C++ debuggers can be used to follow the meta-search.

2.4 A library of search strategies

Using the MiniSearch built-ins, we have defined and collected the most com-
mon meta-search approaches in the standard library minisearch.mzn.4 These
meta-search approaches can be used within any MiniZinc model that includes
the library. In the next section we present some of these meta-searches in detail.

4 The MiniSearch library is part of the open-source MiniSearch implementation [14]

5

3 MiniSearch examples

Despite MiniSearch’s limited communication with the solver, it provides enough
power to implement many useful complex searches that we illustrate here.

3.1 Lexicographic BaB

In multi-objective optimisation, lexicographic optimisation can be used if the ob-
jectives can be ranked according to their importance. The idea is to minimise (or
maximise) an array of objectives lexicographically. Lexicographic optimisation
can be more efficient than the commonly used approach of obtaining a single ob-
jective term by multiplying the components of the lexicographic objective with
different constants, as the latter approach leads to large objective values, and
potentially overflow.

Analogous to the implementation of branch-and-bound we post the global
constraint lex_less so that the next solution is lexicographically smaller than
the previous one. Below we show the respective MiniSearch specification.

1 function ann: minimize_lex(array[int] of var int: objs) =
2 next() /\ commit() /\ print() /\
3 repeat(scope(
4 post(lex_less(objs, [sol(objs[i]) | i in index_set(objs)])) /\
5 if next() then commit() /\ print() else break endif));

In line 2 we search for an initial solution and, if successful, repeatedly open a new
scope (line 3). Then, we post the lexicographic (lex) constraint (line 4) and search
for another solution in line 5. This way, in each iteration of repeat, we add one
lex constraint, and all previously added lex constraints are removed due to the
scope. This is not required but beneficial, since posting several lex-constraints
can cause overhead if many intermediate solutions are found.

3.2 Large Neighbourhood Search (LNS)

Large area neighbourhood search (LNS) [20] is an essential method in the toolkit
of CP practitioners. It allows CP solvers to find very good solutions to very large
problems by iteratively searching large neighbourhoods (close) to optimality.

Randomised LNS explores a random neighbourhood of a given size, which can
be surprisingly effective in practice as long as the neighbourhood size is chosen
correctly. Cumulative scheduling is an example of a successful application [7].

The following MiniSearch specification of randomised LNS takes the objec-
tive variable, an array of decision variables that will be searched on, the number
of iterations, the destruction rate (the size of the neighbourhood) and a time limit
for exploring each neighbourhood. We have two scopes: in the global scope, we
post BaB style constraints (line 10); in the sub-scope (line 5), we search the
neighbourhoods. The predicate uniformNeighbourhood defines the neigh-
bourhood: for each search variable we decide randomly whether to set it to its
solution value of the previous solution (line 15).

6

1 function ann: lns(var int: obj, array[int] of var int: vars,
2 int: iterations, float: destrRate, int: exploreTime) =
3 repeat (i in 1..iterations) (
4 print("Iteration "++show(i)++"\n") /\
5 scope(
6 post(uniformNeighbourhood(vars,destrRate)) /\
7 time_limit(exploreTime, minimize_bab(obj)) /\
8 commit() /\ print()
9) /\

10 post(obj < sol(obj))
11);
12 predicate uniformNeighbourhood(array[int] of var int: x, float: destrRate) =
13 if hasSol() then
14 forall(i in index_set(x)) (
15 if uniform(0.0,1.0) > destrRate then x[i] = sol(x[i]) else true endif)
16 else true endif;

Adaptive LNS modifies the neighbourhood size over the course of the itera-
tions, depending on the success of previous iterations. Below is a simple variant,
where the neighbourhood size parameter nSize (line 3) is step-wise enlarged
each time no solution is found (line 9). The fail command fails the current
conjunction and will hence avoid that the post command on line 10 is executed.

1 function ann: adaptive_lns(var int: obj, array[int] of var int: vars,
2 int: iterations, int: initRate, int: exploreTime) =
3 let { int: nSize = initRate, int: step = 1; } in
4 repeat (i in 1..iterations) (
5 print("Iteration "++show(i)++", rate="++show(nSize)++"\n") /\
6 scope((post(uniformNeighbourhood(vars,nSize/100.0)) /\
7 time_limit(exploreTime, minimize_bab(obj)) /\
8 commit() /\ print()
9) \/ (nSize := nSize + step /\ fail))

10 /\ post(obj < sol(obj)));

Custom Neighbourhoods can sometimes be effective if they capture some
insight into the problem structure. For instance, in a Vehicle Routing Problem
(VRP), we might want to keep certain vehicle tours or vehicle-customer assign-
ments. Below we show such a custom neighbourhood that is easily specified in
MiniSearch. The predicate keepTour (line 1) posts the tour constraints of
a given vehicle number vNum. If a solution exists, the neighbourhood predicate
(line 4) determines the number of customers of each vehicle (line 7), and then
randomly chooses to keep the vehicle’s tour (line 8) where a high customer us-
age results in a higher chance of keeping the vehicle. This predicate can be used
instead of the uniform neighbourhood in the LNS specifications above.

1 predicate keepTour(int: vNum) =
2 forall (i in 1..nbCustomers where sol(vehicle[i]) == vNum)
3 (successor[i] = sol(successor[i]));
4 predicate vehicleNeighbourhood() =
5 if hasSol() then
6 forall (v in 1..nbVehicles) (
7 let {int: usage = sum(c in 1..nbCustomers) (sol(vehicle[c]) == v) } in
8 if usage > uniform(0,nbCustomers) then
9 keepTour(v) % higher usage -> higher chance of keeping the vehicle

10 else true endif)
11 else true endif;

7

3.3 AND/OR Search

Search in CP instantiates variables according to a systematic variable labelling,
corresponding to an OR tree. AND/OR search decomposes problems into a mas-
ter and several conjunctive slave sub-problems. An AND/OR search tree consists
of an OR tree (master problem), an AND node with one branch for each sub-
problem, and OR trees underneath for the sub-problems. A prominent example
is stochastic two-stage optimisation [18], where the objective is to find optimal
first-stage variable assignments (master problem) such that all second-stage vari-
able assignments (sub-problems) are optimal for each scenario. AND/OR search
for stochastic optimisation is called policy based search [27]. AND/OR search is
also applied in other applications, such as graphical models [11].

Below is a MiniSearch example of AND/OR search for stochastic two-stage
optimisation. The variables and constraints of each scenario (sub-problem) are
added incrementally during search.

1 function ann: policy_based_search_min(int:sc) =
2 let {
3 array[1..sc] of int: sc_obj = [0 | i in 1..sc];
4 int: expectedCosts = infinity;
5 } in (
6 repeat (
7 if next() then % solution for master
8 repeat (s in 1..sc) (
9 scope(% a local scope for each subproblem

10 let {
11 array[int] of var int: recourse; % subproblem variables
12 var 0..maxCosts: scenarioCosts;
13 } in (
14 post(setFirstStageVariables() /\ % assign master variables
15 secondStageCts(s,recourse)) /\ % subproblem constraints
16 if minimize_bab(scenarioCosts) then
17 sc_obj[s] := sol(scenarioCosts)
18 else print("No solution for scenario "++show(s)++"\n") /\
19 break endif
20))
21) /\ % end repeat
22 if expectedCosts > expectedValue(sc_obj) then
23 expectedCosts := expectedValue(sc_obj) /\
24 commit() % we found a better AND/OR solution
25 else skip() endif
26 else break endif % no master solution
27));
28 % the following predicates are defined in the model according to the problem class
29 predicate setFirstStageVariables();
30 predicate secondStageCts(int: scenario, array[int] of var: y);
31 function int: expectedValue(var int: sc_obj);

Lines 3-4 initialise parameters that represent the costs for each scenario/sub-
problem and the combined, expected cost of the master and subproblems. Line 7
searches for a solution to the master problem (OR tree), and if this succeeds, we
continue with the AND search by finding the optimal solution for each subprob-
lem, based on the master solution (line 9): we create each subproblem in a local
scope, and add the respective variables (line 11- 12) and constraints (line 15).
Furthermore, we set the master variables to the values in the master solution
(line 14). Then we search for the minimal solution for the scenario (line 16), and,
if successful, store it in sc_obj (line 17). If we find a solution for each scenario,

8

then we compute the combined objective (expectedValue) and compare it to the
incumbent solution (line 22). If we found a better solution, we store its value
(line 23) and commit to it (line 24) and continue in the master scope (line 7).
Otherwise, if we find no solution for one of the scenarios (line 18), the mas-
ter solution is invalid. We therefore break (line 19) and continue in the master
problem scope, searching for the next master solution (line 7).

3.4 Diverse solutions

Sometimes we don’t just require a satisfying or optimal solution, but a diverse
set of solutions [9]. The MiniSearch specification below implements the greedy
approximation method that iteratively constructs a set of K diverse solutions:

1 function ann: greedy_maxDiverseKset(array[int] of var int: Vars, int: K) =
2 let { array[int,int] of int: Store = array2d(1..K, index_set(Vars),
3 [0 | x in 1..K*length(Vars)]),
4 int: L = 0 % current length
5 } in
6 next() /\ commit() /\ print() /\
7 repeat(
8 L := L+1 /\ repeat(i in 1..length(Vars)) (Store[L,i] := sol(Vars[i])) /\
9 if L <= K then

10 scope(
11 let {var int: obj;} in
12 post(obj = sum(j in 1..L,i in index_set(Vars))(Store[j,i] != Vars[i])) /\
13 maximize_bab(obj) /\ commit() /\ print())
14 else print(show(Store)++"\n") /\ break endif
15);

The first few lines initialise the Store, which will contain the K diverse solu-
tions, as well as the current length of the store up to which it already contains
solutions. On line 8 the length is increased and the previously found solution is
saved. If the length does not exceed K, we construct a new objective on line 12.
This objective expresses how different a solution is from the previously found so-
lutions using the Hamming distance. This objective is then maximised, resulting
in the next most diverse solution, and the process repeats.

3.5 Interactive Optimisation

Interactive optimisation lets users participate in the solving process by inspect-
ing solutions, adding constraints, and then re-solving. This has been shown to
improve the trust of end-users into decision support systems, and a number of
successful application have been implemented [2].

MiniSearch supports interactive optimisation by calling MiniZinc built-
ins that ask for user input. The MiniZinc library contains functions such as
read_int() which accept keyboard input. More advanced input facilities can
be added through user-defined MiniZinc built-ins that execute arbitrary C++
code, such as consulting a user through a graphical user interface or other means.

The following is an example of an interactive Vehicle Routing Problem solver
implemented using MiniSearch. We use a Large Neighbourhood search where
in every N -th iteration, the user can chose a vehicle route that should be kept.
This code can be used with the LNS implementations described earlier.

9

1 predicate interactiveNeighbourhood(int: iteration, int: N) =
2 if iteration mod N = 0 then
3 let { string: msg = "Enter a vehicle tour to keep (0 for none):\n";
4 int: n = read_int(msg)
5 } in if n > 0 then keepTour(n) else true endif
6 else true endif;

4 The MiniSearch kernel

This section describes the architecture of the MiniSearch kernel, the engine
that executes MiniSearch specifications, interacting with both the MiniZinc
compiler and the backend solver.

First, let us briefly review how MiniZinc models are solved. The MiniZinc
compiler (usually invoked as mzn2fzn) takes text files containing the model and
instance data and compiles them into FlatZinc, a low-level language supported
by a wide range of solvers. The compiler generates FlatZinc that is specialised
for the capabilities of the particular target solver using a solver-specific library of
predicate declarations. Solvers read FlatZinc text files and produce text-based
output for the solutions. Version 2.0 of MiniZinc is based on the libminizinc
C++ library, which provides programmatic APIs, eliminating the need to com-
municate through text files. The library also defines an API for invoking solvers
directly in C++. MiniSearch is built on top of these APIs.

4.1 The MiniSearch Interpreter

The MiniSearch kernel implements an interpreter that processes MiniSearch
specifications and handles the communication between the MiniZinc compiler
and the solver. The interpreter assumes that the solver interface is incremen-
tal, i.e. variables and constraints can be added dynamically during search. We
provide an emulation layer (see Sec. 4.2) for solvers that do not support incre-
mental operations, including solvers that cannot be accessed through the C++
interface.

The MiniSearch interpreter is a simple stack-based interpreter that main-
tains the following state: A stack of solutions, one for each function scope; a
stack of time-outs and breaks; and a stack of search scopes, containing the solver
state of each scope. The interpreter starts by compiling the MiniZinc model
into FlatZinc, and then interprets each MiniSearch built-in as follows:

– next() invokes the solver for a new solution; if successful, it replaces the
top-most solution on solution stack. If a time-out has been set, the call to
the solver is only allowed to run up to the time-out. Returns true iff a new
solution was found.

– commit() replaces the parent solution (2nd on the stack) with the current
solution. This commits the current solution into the parent function scope.
Returns true. Aborts if not in a function call.

– function calls duplicate the top of the solution stack before executing the
function body. Return true if the function committed a new solution.

10

– time_limit(l,s) adds a new time-out now+l to the stack, executes s,
and then pops the time-out. During the execution of s, calls to next and
repeat check whether any time-outs t have expired (t > now), and if so
they immediately break. Returns whatever s returned.

– repeat(s) pushes a break scope with a Boolean flag on the stack, then
repeats the execution of s as long as the break flag is false and pops the
break scope when s is finished. The break construct sets the break flag in
the current break scope (similar to a time limit).

– post(c) compiles the MiniZinc expression c into FlatZinc. The compi-
lation is incremental, i.e., the result of compiling c is added to the existing
FlatZinc. The interpreter then adds the newly generated variables and
constraints to the current solver instance.

– scope(s) creates a new local scope. The current implementation copies the
flat model and creates a new solver instance based on this flat model.

– Other operations (/\,\/,print) are interpreted with respect to their se-
mantics.

4.2 Emulating advanced solver behaviour

A key goal of this work is to make MiniSearch available for any solver that sup-
ports FlatZinc. Current FlatZinc solvers, however, neither support incremen-
tally adding constraints and variables, nor do they implement the libminizinc
C++ API. We therefore need to emulate the incremental API.

In order to emulate incrementality, we can implement the dynamic addition
of variables and constraints using a restart-based approach, re-running the solver
on the entire updated FlatZinc. To avoid re-visiting solutions, after each call
to next the emulation layer adds a no-good to the model that excludes the
solution that was just found. This emulation reduces the requirements on the
solver to simply being able to solve a given FlatZinc model.

In order to emulate the C++ API, we generate a textual representation of the
FlatZinc and call an external solver process. The emulator then converts the
textual output of the process back into libminizinc data structures. Using
this emulation of the incremental C++ solver API, any current FlatZinc solver
can be used with the MiniSearch kernel.

4.3 Built-in primitives

Solvers can declare native support for a MiniSearch search specification. For
every MiniSearch call such as f(x,y,z), the kernel will check whether the
declaration of f has a function body. If it does not have a function body, the
function is considered to be a solver built-in, and it is executed by passing the
call to a generic solve function in the C++ solver API. This is similar to the
handling of global constraints in MiniZinc, where solvers can either use their
own primitives for a given global constraint, or use the respective MiniZinc
decomposition of the global constraint. This way solvers can easily apply their
own primitives, but can use alternatives if they do not support a certain feature.

11

5 Experiments

In our experimental evaluation, we analyse MiniSearch on practical exam-
ples to study the efficiency and compare the overhead of MiniSearch for dif-
ferent interfaces. Furthermore, we study the benefits of specialised, heuristic
MiniSearch approaches to standard branch-and-bound optimisation; the only
available option in solver-independent CP modelling languages.

5.1 Experimental Setup

The problems and instances are taken from the MiniZinc benchmarks reposi-
tory5. The source code of MiniSearch and the respective solver interfaces will
be released in September 2015 [14].

Experiments are run on Ubuntu 14.04 machines with eight i7 cores and 16GB
of RAM. The MiniSearch kernel is based on the MiniZinc 2.0.1 toolchain. The
native Gecode interface and incremental C++ interface were implemented using
the latest Gecode source code (version 4.3.3+, 20 April 2015). The FZN solvers
used are: Gecode (20 April 2015), Choco 3.3.0, Or-tools source (17 February
2015), and Opturion CPX 1.0.2. All solvers use the same variable/value ordering
heuristic that is part of the MiniZinc model.

5.2 Overhead of different MiniSearch interfaces

First, we study the comparative overhead of MiniSearch with respect to the dif-
ferent interface levels. We do this by analysing the performance of a meta-search
approach on the same solver, Gecode. We compare the following four approaches:
the solver’s native approach (without MiniSearch) through FlatZinc (Nat-F),
the incremental API interface to MiniSearch (MS-Inc) and the non-incremental
text-based (MS-F) interface to MiniSearch. We use Rectangle Packing [21] as
problem benchmark, and standard BaB as meta-search, since it is available na-
tively in FlatZinc for Gecode.

The results are summarised in Table 2, columns 2–4. It shows the runtimes
(in seconds) taken to find the optimal solution for the different approaches using
Gecode. The native approach through the FlatZinc interface is fastest, though
MiniSearch through the incremental API interface performs quite similarly.
Moreover, MiniSearch through the FZN interface is, as expected, slower, but
only by a small factor. These results are very promising, since they show that
the overhead of the MiniSearch interfaces is low.

In addition, we analyse the overhead of MiniSearch for other FlatZinc
solvers in Table 2, columns 5–10. We ran the Rectangle Packing problem for the
FlatZinc solvers or-tools, Choco, and Opturion CPX on a MiniZinc model
using both native branch-and-bound (Nat-F), and MiniSearch branch-and-
bound (MS-F), both through the FlatZinc interface. Overall the MiniSearch
FlatZinc interface, while slower, still gives decent performance. Choco seems
to incur most overhead of the repeated restarts.

5 https://github.com/MiniZinc/minizinc-benchmarks

12

Table 2. Rectangle Packing. Times (sec) averaged over 10 runs. Comparing FlatZinc-
solvers with MiniSearch BaB through FlatZinc (MS-F), MiniSearch BaB through
incremental API (MS-Inc), and native BaB with FlatZinc (Nat-F).

Rectangle Gecode or-tools choco Opturion CPX
Size (N) MS-F MS-Inc Nat-F MS-F Nat-F MS-F Nat-F MS-F Nat-F

14 0.7 0.1 0.2 0.5 0.2 6.4 1.0 0.3 0.1
15 0.8 0.3 0.4 0.6 0.3 6.0 1.3 0.4 0.2
16 1.3 0.5 0.5 1.1 0.5 9.1 1.6 0.6 0.2
17 4.5 2.9 2.9 5.2 3.8 16.6 5.7 0.9 0.4
18 37.4 37.4 36.8 41.2 41.5 38.0 29.8 6.7 6.2
19 77.5 43.2 42.0 59.0 32.8 59.2 28.8 12.7 7.7
20 96.4 97.9 94.1 99.2 98.9 93.9 83.0 6.4 5.6
21 472.4 469.7 462.5 416.3 410.0 250.1 239.2 83.8 82.1

5.3 Heuristic search

MiniSearch strategies are not restricted to complete search. For example, dif-
ferent variants of Large Neighbourhood Search can be tried. To demonstrate the
benefits of having heuristic search at hand, we compare the Randomised LNS
approach from Section 3.2 with the standard out-of-the-box branch-and-bound
approach for a selection of FlatZinc solvers on the Capacitated Vehicle Routing
problem (CVRP).

We run each solver on (1) the standard MiniZinc model that uses branch-
and-bound, and (2) the MiniZinc model with the MiniSearch specification of
Randomised LNS. We use the Augerat et al [1] CVRP instance sets A,B and P,
where the 27 Set-A instances contain random customer locations and demands,
the 22 Set-B instances have clustered locations and the 23 Set-P instances are
modified versions of instances from the literature. The LNS approach uses a
destroy rate of 0.3 (the neighbourhood size is 30%) and an exploration timeout
(for each neighbourhood) of 5 seconds. Both the LNS and BaB approach have
an overall 2 minute timeout, and we report the quality of the best solution found
on time-out.

We can see that LNS provides better solutions than BaB, and Table 3 reports
the average improvement of the objective of LNS over BaB on the three instance
sets. We observe an improvement between 8-15%, which is considerable within
the given time limit. Furthermore, we see that the improvements are similar for
all solvers across the instances sets, in particular for the Set-B instances. This
demonstrates the added value of MiniSearch search strategies to the existing
out-of-the-box optimisation approaches of standard modelling languages.

6 Related work

The starting point for MiniSearch is search combinators [19], and MiniSearch
is indeed a combinator language. The MiniSearch language is more restricted
than search combinators. In particular, search combinators can interact with the

13

Table 3. Average relative improvement of MiniSearch LNS over standard BaB for
the achieved objective within a time limit for different solvers. The figures are averages
over the Augerat et al [1] CVRP instance sets A,B and P.

CVRP Instance-Set Gecode or-tools choco Opt. CPX

Set-A 11.60% 11.76% 11.17% 12.11%
Set-B 13.38% 11.82% 12.62% 14.92%
Set-P 9.78% 10.53% 7.98% 11.35%

search at every node of the tree, essentially replacing the solver’s built-in search,
while MiniSearch only interacts with the solver’s search at the granularity of
solutions. Examples not possible in MiniSearch are the use of average depth of
failure or custom limits based on how many search nodes with a particular prop-
erty have been encountered, and heuristics such as limited discrepancy search [8]
and iterative deepening. Other search combinator expressions are however ex-
pressible with MiniSearch, as witnessed by the library of strategies presented
in this paper.

Neither search combinators nor MiniSearch support fully programmable
search. Especially not variable and value ordering heuristics, which interact with
the internal data structures of the solver. These kinds of search strategies are
important, but cannot be implemented without deep hooks into the solver.

Objective CP [26] can express complex meta-search at the model level, which
can then be executed by any of the Objective CP solvers. For example a CP-
style search can be implemented using a MIP solver. So it also provides solver-
independent search, but through a much more fine grained interface, supporting
interaction at each search node. The fine grained interface however means that
adding a new solver to Objective CP is complex, in particular supporting the
reverse mapping of information from solver objects to model objects.

Possibly the closest system to MiniSearch is OPL Script [25], a scripting
language for combining models. It essentially also communicates to solvers via
models and solutions. Distinct from MiniSearch is that it is object-oriented and
provides models as first-class objects, and hence supports the construction and
modification of multiple models, as opposed to our simpler mechanisms. It can
communicate more information than just variables and constraints, including
dual values, bases, and various statistics. However, the language is tightly linked
to the CP/MIP solver ILOG CPLEX CP Optimizer. MiniSearch on the other
hand can use any FlatZinc solver.

AMPL Script [4] is similar in many respects to OPL script, though a more
basic scripting language, not supporting function definitions for example. It does
not have a concept of scopes, but instead supports adding, dropping and restor-
ing variables and constraints from the model dynamically. It interacts with the
solver through requests to solve, which continue until some termination condi-
tion arises, like optimality proven or a timeout. Hence its natural interaction
level is more like minimize bab() than next().

14

Any meta-search that can be implemented in MiniSearch could also be im-
plemented directly in a solver such as Gecode, Choco, Comet, or CP Optimizer,
although the implementation burden for doing so could be significant. Similarly,
APIs for CP embedded in scripting languages such as Numberjack [10] (through
Python) could offer a MiniSearch-like interface. The benefits of MiniSearch
are that it is programming language- and solver-independent, that it abstracts
away solution and timeout handling. Furthermore, meta-search languages are
easier to use when they extend the language for expressing constraints, in this
case MiniZinc, since this is often a vital component of the search.

7 Conclusion and Future Work

In this paper we present MiniSearch, a solver-independent lightweight lan-
guage to specify meta-search in MiniZinc models. The first contribution of
MiniSearch is its expressiveness: we showed how to formulate different com-
plex search approaches in MiniSearch, such as Large Neighbourhood Search or
AND/OR search. It reuses the MiniZinc modelling language for specifying con-
straints and variables to add during search. It even enables the implementation
of interactive optimisation approaches where the user guides the search process.

The second contribution is the minimal interface of MiniSearch. Since
the kernel interprets all statements, the communication between the solver and
MiniSearch is only necessary at every solution (instead of at every search node
as in search combinators). This makes it more realistic to implement for solver
developers. Furthermore, in our experiments we observed that both the incre-
mental and the text-based interface provide satisfactory performance.

The third and most important contribution is solver -independence. In con-
trast to existing search languages, MiniSearch can already use any solver that
can process FlatZinc, which is the majority of CP solvers. This allows users to
test different solvers with complex meta-searches without having to commit to
one single solver.

For future work, we plan to extend MiniSearch with parallelism, so that
independent searches can be executed in parallel and advanced parallel meta-
search approaches such as Embarrassingly Parallel Search [17] can be specified.
Furthermore, we plan to integrate portfolio search into MiniSearch, so that
different search functions can be executed by different solvers.

Acknowledgements NICTA is funded by the Australian Government through
the Department of Communications and the Australian Research Council through
the ICT Centre of Excellence Program. T.G. is supported by a Postdoc grant
from the Research Foundation – Flanders.

References

1. Augerat, P., Belenguer, J., Benavent, E., Corberan, A., Naddef, D., Rinaldi, G.:
Computational results with a branch and cut code for the capacitated vehicle

15

routing problem. Technical Report 949-M, Universite Joseph Fourier, Grenoble
(1995)

2. Belin, B., Christie, M., Truchet, C.: Interactive design of sustainable cities with a
distributed local search solver. In: Integration of AI and OR Techniques in Con-
straint Programming - 11th International Conference, CPAIOR 2014, Cork, Ire-
land, May 19-23, 2014. Proceedings. pp. 104–119 (2014)

3. Flener, P., Pearson, J., Ågren, M.: Introducing ESRA, a relational language for
modelling combinatorial problems. In: Principles and Practice of Constraint Pro-
gramming - CP 2003, 9th International Conference, CP 2003, Kinsale, Ireland,
September 29 - October 3, 2003, Proceedings. p. 971 (2003)

4. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Math-
ematical Programming. Cengage Learning (2002)

5. Frisch, A.M., Harvey, W., Jefferson, C., Hernández, B.M., Miguel, I.: Essence :
A constraint language for specifying combinatorial problems. Constraints 13(3),
268–306 (2008)

6. Gent, I.P., Miguel, I., Rendl, A.: Tailoring solver-independent constraint models:
A case study with Essence’ and Minion. In: Abstraction, Reformulation, and Ap-
proximation, 7th International Symposium, SARA 2007, Whistler, Canada, July
18-21, 2007, Proceedings. pp. 184–199 (2007)

7. Godard, D., Laborie, P., Nuijten, W.: Randomized large neighborhood search for
cumulative scheduling. In: Proceedings of the Fifteenth International Conference
on Automated Planning and Scheduling (ICAPS 2005), June 5-10 2005, Monterey,
California, USA. pp. 81–89 (2005)

8. Harvey, W.D., Ginsberg, M.L.: Limited discrepancy search. In: Proceedings of the
14th IJCAI. pp. 607–613 (1995)

9. Hebrard, E., Hnich, B., O’Sullivan, B., Walsh, T.: Finding diverse and similar
solutions in constraint programming. In: Veloso, M.M., Kambhampati, S. (eds.)
AAAI. pp. 372–377. AAAI Press / The MIT Press (2005)

10. Hebrard, E., O’Mahony, E., O’Sullivan, B.: Constraint programming and combi-
natorial optimisation in Numberjack. In: Lodi, A., Milano, M., Toth, P. (eds.)
Integration of AI and OR Techniques in Constraint Programming for Combina-
torial Optimization Problems, Lecture Notes in Computer Science, vol. 6140, pp.
181–185. Springer Berlin Heidelberg (2010)

11. Marinescu, R., Dechter, R.: AND/OR branch-and-bound search for combinatorial
optimization in graphical models. Artif. Intell. 173(16-17), 1457–1491 (2009)

12. Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P.J., de la Banda, M.G., Wallace,
M.: The design of the Zinc modelling language. Constraints 13(3), 229–267 (2008)

13. Michel, L., Van Hentenryck, P.: The Comet programming language and system. In:
Principles and Practice of Constraint Programming - CP 2005, 11th International
Conference, CP 2005, Sitges, Spain, October 1-5, 2005, Proceedings. pp. 881–881
(2005)

14. MiniSearch release. http://www.minizinc.org/minisearch
15. MiniZinc challenge. http://www.minizinc.org/challenge.html
16. Nethercote, N., Stuckey, P., Becket, R., Brand, S., Duck, G., Tack, G.: MiniZinc:

Towards a standard CP modelling language. In: Bessiere, C. (ed.) Proceedings of
the 13th International Conference on Principles and Practice of Constraint Pro-
gramming. LNCS, vol. 4741, pp. 529–543. Springer-Verlag (2007)

17. Régin, J., Rezgui, M., Malapert, A.: Embarrassingly parallel search. In: Principles
and Practice of Constraint Programming - 19th International Conference, CP 2013,
Uppsala, Sweden, September 16-20, 2013. Proceedings. pp. 596–610 (2013)

16

18. Ruszczyński, A., Shapiro, A.: Stochastic Programming. Handbooks in operations
research and management science, Elsevier (2003)

19. Schrijvers, T., Tack, G., Wuille, P., Samulowitz, H., Stuckey, P.J.: Search combi-
nators. Constraints 18(2), 269–305 (2013)

20. Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: Principles and Practice of Constraint Programming-CP98,
pp. 417–431. Springer (1998)

21. Simonis, H., O’Sullivan, B.: Search strategies for rectangle packing. In: Stuckey,
P. (ed.) Principles and Practice of Constraint Programming, Lecture Notes in
Computer Science, vol. 5202, pp. 52–66. Springer Berlin Heidelberg (2008)

22. Stuckey, P.J., Feydy, T., Schutt, A., Tack, G., Fischer, J.: The MiniZinc challenge
2008-2013. AI Magazine 35(2), 55–60 (2014)

23. Stuckey, P.J., Tack, G.: MiniZinc with functions. In: Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems,
10th International Conference, CPAIOR 2013, Yorktown Heights, NY, USA, May
18-22, 2013. Proceedings. pp. 268–283 (2013)

24. Van Hentenryck, P.: The OPL Optimization Programming Language. MIT Press,
Cambridge, MA, USA (1999)

25. Van Hentenryck, P., Michel, L.: OPL Script: Composing and controlling models. In:
Apt, K., Monfroy, E., Kakas, A., Rossi, F. (eds.) New Trends in Constraints, Lec-
ture Notes in Computer Science, vol. 1865, pp. 75–90. Springer Berlin Heidelberg
(2000)

26. Van Hentenryck, P., Michel, L.: The Objective-CP optimization system. In:
Schulte, C. (ed.) Principles and Practice of Constraint Programming, Lecture Notes
in Computer Science, vol. 8124, pp. 8–29. Springer Berlin Heidelberg (2013)

27. Walsh, T.: Stochastic Constraint Programming. In: van Harmelen, F. (ed.) ECAI.
pp. 111–115. IOS Press (2002)

17

