
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Technology

Nurse rostering: models and
algorithms for theory, practice
and integration with other
problems

Pieter Smet

Dissertation presented in partial
fulfilment of the requirements for the

degree of PhD in Engineering
Technology

July 2015

Supervisor:
Prof. dr. P. De Causmaecker
Prof. dr. ir. G. Vanden Berghe, co-
supervisor

Nurse rostering: models and algorithms for theory,
practice and integration with other problems

Pieter SMET

Examination committee:
Prof. dr. ir. T. Goedemé, chair
Prof. dr. P. De Causmaecker, supervisor
Prof. dr. ir. G. Vanden Berghe, co-supervisor
Prof. dr. E. Demeulemeester
Prof. dr. L. De Raedt
Prof. dr. E. K. Burke
(University of Stirling, United Kingdom)

Dhr. W. Van Doorsselaere
(AAA+ Partners in Zorg, Belgium)

Dissertation presented in partial
fulfilment of the requirements for
the degree of PhD in Engineering
Technology

July 2015

© 2015 KU Leuven – Faculty of Engineering Technology
Uitgegeven in eigen beheer, Pieter Smet, Celestijnenlaan 200A box 2402, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.

Preface

I define nothing. I take each thing as it is, without prior
rules about what it should be.

— Robert Allen Zimmerman

Working on rostering problems has been a rewarding experience, both personally
and professionally. Not only did it offer me the opportunity to explore various
aspects of operational research; it also allowed me to meet many interesting
people and to see different parts of the world. Of course, this dissertation would
not be complete without acknowledging the many people who have contributed
to it.

First and foremost, I would like to thank my supervisors Patrick De Causmaecker
and Greet Vanden Berghe for giving me the opportunity to work in their research
group, and for their expert guidance. Both Patrick and Greet have a high
reputation in the rostering and timetabling community, so it was a privilege
for me to continue the long-lasting line of research on nurse rostering in the
CODeS research group.

I would like to thank Edmund Burke, Erik Demeulemeester, Luc De Raedt and
Wim Van Doorsselaere for accepting to be member of my examination committee,
and for providing valuable feedback which helped shape this dissertation. I
thank Bert Van Bael for chairing my preliminary defence, and Toon Goedemé
for chairing my public defence.

I am also thankful to IWT, the Flemish agency for Innovation by Science and
Technology, for supporting the various projects I have worked on in the course
of my doctoral programme, and to FWO, the Research Foundation - Flanders,
for the grant awarded to do part of my research abroad.

I have been more than lucky to collaborate with many researchers from different
areas who, undoubtedly, helped to create and evolve the research here presented.
Therefore, I would like to thank Burak Bilgin, Peter Brucker, Mihail Mihaylov,

i

ii PREFACE

Mustafa Mısır, Fabio Salassa and Wim Van Den Noortgate. A special word of
thanks goes to Andreas Ernst, for hosting my stay at CSIRO, and for making
me feel at home, far away from home.

Reading academic research papers on nurse rostering can teach you a lot, but,
as the saying goes, practice makes perfect. In the last four years, I had several
enlightening discussions with practitioners who helped me understand rostering
from a practical point of view. For this, I would like to thank Karl Hendrickx,
Jurgen Keymeulen and Wouter Kerkhofs from Tobania, and Annelies Feytens
and Murielle Aendekerk from AZ Jan Portaels.

At least one paragraph should be dedicated to the people I have spent a lot
of time with in the last years: my colleagues, past and present. Besides the
entertaining office hours, I am thankful for the many non-computer scientific
activities we have engaged in, such as the coffee breaks, pizza lunches and
video game nights. I would like to thank Wim, Tony, Jannes, Jan C., Tulio,
David, Thomas S., Evert-Jan, Eline, Thomas V.d.B., Joris K., Sam, Joris M.,
Tim, Katja, Vincent, Jan V., Koen, Laurens, Michiel, Faysal and Jorn. Special
thanks go to Erik Van Achter for helping me with all my text-related issues,
and for the amusing narrative on the vanity of academia.

Finally, I would like to thank my parents, Hans and Marleen, and my brother,
Jasper, for supporting me in the last twenty-eight years. Their unwavering
belief in my abilities to successfully complete my PhD and other engagements
made all the difference. Without them, none of this would have been possible.
And lastly, Sara, you are the best. Thank you for everything and more.

Pieter Smet Ghent, July 2015

Abstract

Nurse rostering is a personnel scheduling problem in health care in which shifts
are assigned to nurses, subject to a large variety of constraints regarding personal
preferences, organisational guidelines, and labour legislation. The present
dissertation discusses models and algorithms for nurse rostering, treating three
aspects: theory, practice and integration with other problems. This research
contributes significantly to scientific, social and industrial aspects in the state
of the art of nurse rostering.

By studying simplified nurse rostering problems, a basic understanding of the
problem’s complexity is established. These new insights identify a boundary
between easy and hard problems, which strongly influences computational search
approaches to the problem. Furthermore, issues regarding consistent constraint
evaluation for long term rostering are exposed, and policies to address these
issues are proposed. Computational experiments illustrate the importance of
a consistent evaluation procedure and are employed to evaluate the presented
policies.

Despite the many academic contributions, few results find their way into practice.
The present dissertation therefore attempts to bridge this gap by offering
two contributions that aim at facilitating the implementation of academic
results. First, a general model for nurse rostering problems is introduced,
which is capable of representing a large variety of personal, organisational and
legislative constraints. Second, an approach is introduced to automatically
order constraints according to their priority extracted from historical data.
For practitioners, this is a complex and unintuitive task, which nevertheless
strongly influences the outcome of any algorithm for nurse rostering. These
two contributions have been implemented in a commercial software package for
personnel rostering, and are currently used in hospitals and other organisations
in Europe.

Finally, the scope of decision making is extended to include characteristics of

iii

iv ABSTRACT

related hard combinatorial optimisation problems. The focus lies on solving
three different integrated task scheduling and personnel rostering problems:
assigning tasks when shifts are predetermined and cannot be changed, assigning
both tasks and shifts for a single isolated day, and assigning tasks and shifts
for a longer scheduling period. Optimal and approximating decomposition
algorithms are proposed which combine exact techniques and heuristic search.
Computational experiments illustrate the effectiveness and versatility of the
proposed approaches on a large variety of benchmark instances.

Beknopte samenvatting

Het opstellen van werkschema’s in de gezondheidszorg kan gedefinieerd worden
als een personeelsplanningsprobleem waarin shifts worden toegewezen aan
verpleegkundigen, rekening houdend met verschillende beperkingen betreffende
voorkeuren van het personeel, richtlijnen opgelegd door de organisatie en
arbeidswetgeving. Deze verhandeling beschrijft modellen en algoritmen voor
personeelsplanningsproblemen in de gezondheidszorg, en belicht drie aspecten:
theorie, praktijk en de integratie met andere problemen. In elk van deze
domeinen worden contributies gemaakt met een significante wetenschappelijke,
sociale en industriële impact.

Door vereenvoudigde personeelsplanningsproblemen te beschouwen, wordt
een eerste grondslag gelegd voor het begrijpen van de complexiteit van het
probleem. Deze nieuwe inzichten laten toe een scheidingslijn te identificeren
tussen eenvoudige en moeilijke problemen, dewelke een directe impact heeft
op oplossingsmethodes voor het probleem. Verder worden ook tekortkomingen
blootgelegd met betrekking tot de consistente evaluatie van beperkingen. Om
deze problemen aan te pakken worden een aantal maatregelen voorgesteld
en geëvalueerd. Computationele experimenten illustreren het belang van een
consistente evaluatieprocedure en tonen de voordelen aan van de voorgestelde
maatregelen.

Ondanks de vele academische bijdragen tot het domein van personeelsplanning
vinden slechts enkele resultaten hun weg naar de praktijk. Deze verhandeling
probeert de kloof tussen academisch onderzoek en praktijk te dichten met twee
contributies die de implementatie van academische resultaten vereenvoudigen.
Eerst wordt een algemeen model voor personeelsplanningsproblemen voorgesteld
dat erin slaagt de grote verscheidenheid aan beperkingen in de gezondheidszorg
te modelleren. Daarna wordt een techniek geïntroduceerd die automatisch de
prioriteit van dergelijke beperkingen bepaalt op basis van historische data. In
de praktijk is dit een complexe en weinig intuïtieve taak met een sterke invloed
op de automatisch gegenereerde planning. Deze twee contributies werden reeds

v

vi BEKNOPTE SAMENVATTING

geïmplementeerd in een softwarepakket voor personeelsplanning dat momenteel
gebruikt wordt in ziekenhuizen en andere instellingen in Europa.

Ten slotte wordt de scope van beslissingsniveau uitgebreid om eigenschappen
van gerelateerde combinatorische optimalisatieproblemen in beschouwing te
nemen. De nadruk ligt op het oplossen van drie geïntegreerde taak- en
personeelsplanningsproblemen: taken toewijzen indien shifts reeds toegekend
en bevestigd zijn, zowel taken als shifts toewijzen voor één geïsoleerde
dag, en taken en shifts toewijzen voor een planningsperiode van meerdere
dagen. Verschillende optimale en benaderende decompositie-algoritmen worden
geïntroduceerd die exacte technieken combineren met heuristische zoekprocessen.
Computationele experimenten tonen de doeltreffendheid en veelzijdigheid aan
van deze algoritmen met behulp van een gevarieerde set van benchmarkinstanties.

Abbreviations

AWE Automated weight extraction

CFC Circulation feasibility condition
CMH Constructive matheuristic

DN Day nodes

GM Geriatric medicine
GS General surgery

INRC International nurse rostering competition

KAHO KAHO dataset

LBIH Local branching improvement heuristic

MDTSS Multi-day task and shift scheduling problem
MT Maternity

NN Nurse nodes
NOTT Nottingham dataset

OT Operating theatre

SDTSS Single day task and shift scheduling problem
SMPTSP Shift minimisation personnel task scheduling

problem

TSS Task and shift scheduling problem

vii

viii ABBREVIATIONS

WN Work nodes

Contents

Abstract iii

Contents ix

List of Figures xv

List of Tables xix

1 Introduction 1

1.1 Context and motivation . 1

1.1.1 Nurse rostering problems 3

1.1.2 Research questions . 3

1.1.3 Background . 5

1.2 Structure of the dissertation . 6

I Theory 9

2 On the complexity of nurse rostering problems 15

2.1 Introduction . 15

2.2 Contributions . 17

2.3 Nurse rostering problems . 17

ix

x CONTENTS

2.4 Results for counter constraints 19

2.4.1 Single shift, varying demand (minimum), number of days
worked (exact), feasibility 20

2.4.2 Multiple shifts, varying demand (range), number of days
worked (exact), domain constraints, optimise preferences 23

2.4.3 Multiple shifts, varying demand (range), number of
shifts worked of each type (range), domain constraints,
feasibility . 29

2.5 Results for succession constraints 31

2.5.1 Multiple shifts, varying demand (range), number of days
worked (exact), domain constraints, incompatible days
(range), optimise preferences 31

2.5.2 Multiple shifts, varying demand (exact), domain con-
straints, shift succession constraints, feasibility 34

2.6 Results for series constraints 37

2.6.1 Single shift, varying demand (minimum), consecutive days
worked (range), consecutive days-off (range), number of
days worked (maximum), minimise staff size 37

2.7 Conclusions . 39

3 Policies for consistent constraint evaluation in nurse rostering 41

3.1 Introduction . 41

3.2 Contributions . 42

3.3 Description of a nurse rostering problem 43

3.4 Inconsistencies in constraint evaluation 44

3.5 Policies for consistent constraint evaluation 46

3.5.1 Counter constraints . 46

3.5.2 Series constraints . 47

3.6 Computational analysis . 48

3.6.1 Experimental setup . 48

3.6.2 Counter constraints . 49

CONTENTS xi

3.6.3 Series constraints . 51

3.7 Extending the INRC dataset 52

3.8 Conclusions . 53

II Practice 55

4 A general object model for rich nurse rostering problems 59

4.1 Introduction . 59

4.2 Contributions . 60

4.3 Object model . 61

4.3.1 Scheduling period . 61

4.3.2 Schedule definitions . 62

4.3.3 Variations in skill type definitions 65

4.3.4 Domains . 67

4.3.5 Schedule . 70

4.3.6 Schedule constraints . 71

4.4 New benchmark dataset . 73

4.5 Conclusions . 74

5 Facilitating the transition from manual to automated nurse rostering 77

5.1 Introduction . 77

5.2 Contributions . 78

5.3 Nurse rostering: theory vs. practice 79

5.3.1 Rostering in the academic literature 80

5.3.2 Rostering by health care practitioners 81

5.3.3 Automation of rostering practices 83

5.4 Automated constraint weight extraction 85

xii CONTENTS

5.5 A retrospective case study . 87

5.5.1 Case description . 87

5.5.2 Study design . 87

5.5.3 Results . 88

5.6 A prospective case study . 90

5.6.1 Case description . 90

5.6.2 Study design . 92

5.6.3 Results . 93

5.7 Discussion . 96

5.8 Conclusions . 97

III Integration with other problems 99

6 The shift minimisation personnel task scheduling problem: a new
hybrid approach and computational insights 105

6.1 Introduction . 106

6.2 Contributions . 107

6.3 Problem definition . 108

6.4 Solution procedure . 109

6.4.1 Constructive heuristics 110

6.4.2 Improvement heuristic 112

6.5 Computational results . 114

6.5.1 Experimental setup . 114

6.5.2 New lower bounds . 114

6.5.3 Constructive heuristics 115

6.5.4 Improvement heuristic 117

6.6 Empirical hardness . 118

CONTENTS xiii

6.6.1 Skilling level . 119

6.6.2 Average task duration 120

6.7 New benchmark instances . 121

6.8 Conclusions . 123

7 Exact and heuristic decomposition approaches to the single and
multi-day task and shift scheduling problem 125

7.1 Introduction . 126

7.2 Contributions . 127

7.3 Related literature . 127

7.4 The single day TSS problem 128

7.4.1 Integer programming formulation 130

7.4.2 Infeasible task pair decomposition 131

7.4.3 Augmented interval graph decomposition 134

7.4.4 Horizontal decomposition 135

7.4.5 Computational evaluation 137

7.5 The multi-day TSS problem 142

7.5.1 Integer programming formulation 142

7.5.2 Horizontal decomposition 144

7.5.3 Vertical decomposition 146

7.5.4 Improvement heuristic 148

7.5.5 Computational evaluation 150

7.6 Conclusions . 155

8 Column generation based heuristics for the multi-day task and shift
scheduling problem 157

8.1 Introduction . 157

8.2 Contributions . 158

xiv CONTENTS

8.3 Set covering reformulation . 159

8.4 Column generation . 160

8.4.1 The pricing problem as an integer program 160

8.4.2 The pricing problem as a decomposed shortest path . . 162

8.4.3 Initialisation . 164

8.4.4 Lagrangian dual bound 164

8.4.5 Stabilisation . 166

8.4.6 Breaking symmetry . 166

8.5 Heuristics . 167

8.5.1 Iterated diving heuristics 167

8.5.2 Priority adjustment heuristic 169

8.6 Computational results . 170

8.6.1 Data and experimental setup 170

8.6.2 Column generation . 172

8.6.3 Heuristics . 176

8.7 Conclusions . 180

IV Conclusions 183

9 Conclusions and future research 185

9.1 Conclusions . 185

9.2 Future research . 188

Bibliography 191

Publications 203

List of Figures

1.1 Tactical and operational decision making in staff scheduling . . 2

2.1 Types of overlap between shifts 18

2.2 Types of demand . 19

2.3 Network G1 corresponding with problem P1. x denotes the flow
through an arc . 21

2.4 Flow network G2 for problem P2, x denotes the flow through an
arc . 25

2.5 Flow networkG? for a days-off rostering problem with hierarchical
substitution. x denotes the flow through an arc 29

2.6 Network G4 corresponding with problem P4. x denotes the flow
through an arc. Arcs from work nodes to nurse nodes for days
not in a set F are not drawn 33

2.7 Example of network G4 in which nurse B has to work at least
two days in the period from Friday (Fr) to Sunday (Su) 33

3.1 Stepping horizon approach [110] 45

3.2 Examples of series at the boundaries of the scheduling period . 45

3.3 Evaluation of series constraints in a stepping horizon approach 48

3.4 Number of days worked per scheduling period 51

4.1 Main elements of the model . 62

xv

xvi LIST OF FIGURES

4.2 Employee skill type elements for different categories regarding
the skill type properties . 67

4.3 Elements used for domain definitions 68

4.4 Schedule element for different cases regarding the skill type
properties . 70

4.5 Coverage constraints . 72

4.6 Collaboration and training constraints 73

5.1 Overview of different levels of automation of rostering practices
and their two main phases. Non-shaded boxes show manual steps,
grey boxes indicate automated ones 81

5.2 Manual and extracted weights for the retrospective case study . 89

5.3 Comparison of constraint violations in the different rosters . . . 90

5.4 Comparison of manually defined and extracted weights, and
constraint violations in the different rosters for the GM ward . 94

5.5 Evaluation scores by human planners for different wards. The
scores are on a scale of 0 to 10, with higher being better 95

6.1 Average and best solution quality and average calculation time
for the CMH with varying block size b = [1, 24] 116

6.2 Average and best solution quality and average calculation time
for the LBIH with varying parameter f = [0.5, 5] on all instances 117

6.3 Average gap from lower bound for the constructive heuristics with
varying skilling level (113 employees, 1112 tasks, 90% tightness) 119

6.4 Median computation time in seconds for different configurations
with varying skilling level (33 employees, 337 tasks, 90% tightness)120

6.5 Average gap from lower bound for the constructive heuristics
with varying average task duration (100 employees, 300 tasks,
60% skilling) . 121

6.6 Median computation time in seconds for different configurations
with varying average task duration (100 employees, 300 tasks,
60% skilling) . 122

LIST OF FIGURES xvii

7.1 Horizontal decomposition of an SDTSS instance with eight
employees and block size b = 3 136

7.2 Relative gap δ (Equation (7.16)) between the results obtained by
the task pair decomposition and the horizontal decomposition,
for varying number of employees n 142

7.3 Horizontal decomposition of an MDTSS instance with eight
employees and a block size b = 3 146

7.4 Vertical decomposition of an MDTSS instance with eight
employees and seven days . 147

7.5 Example of determining cesd in the vertical decomposition for
the maximum three assignments of shift E constraint 150

8.1 Example of packing tasks in shifts [77] 163

List of Tables

2.1 Comparison of characteristics of polynomially solvable rostering
problems from Brucker et al. [17] 16

2.2 Cases used in the proof of Theorem 2 23

2.3 Hard constraints in benchmark instances 27

2.4 Comparison of characteristics of polynomially solvable problems
from Lau [79, 80] . 36

3.1 Soft constraints . 43

3.2 Example debit calculation . 47

3.3 Comparison of the maximum imbalance over a one year period 50

3.4 Comparison of static and stepping horizon approaches for series
constraints . 52

4.1 General characteristics of the problem instances 74

4.2 Skill characteristics of the problem instances 74

5.1 Comparison between different levels of automation in nurse
rostering and the transition from manual to automated rostering 82

5.2 Overview of wards in the prospective case study 91

5.3 Shifts in the geriatric medicine ward 92

6.1 Summary of results for the constructive heuristics 115

xix

xx LIST OF TABLES

6.2 Impact of employee selection for the subproblems 116

6.3 Summary of results for different approaches for the SMPTSP . 118

6.4 Computational results for the new benchmark dataset instances 122

7.1 Overview of related work . 129

7.2 Instance characteristics for the SDTSS dataset 138

7.3 Comparison of different approaches to the SDTSS, as averages
of all instances per class . 140

7.4 Summary of computational results for the SDTSS, out of 300
instances . 141

7.5 Time related constraints in model (7.17) - (7.23) 145

7.6 Instance characteristics for the MDTSS dataset 150

7.7 Definition of time related constraints 151

7.8 Comparison of solution quality for different approaches to the
MDTSS, 7-day instances, as averages of all instances per class . 153

7.9 Comparison of solution quality for different approaches to the
MDTSS, 28-day instances, as averages of all instances per class 154

7.10 Overview of computational results for the MDTSS, out of 360
instances . 155

8.1 Parameter settings for the instance generator 170

8.2 Definition of time related constraints 172

8.3 Results for column generation on instances with 30% skilling . 173

8.4 Results for column generation on instances with 60% skilling . 173

8.5 Results for column generation on instances with 100% skilling . 174

8.6 Results for column generation on instances with 28 days 174

8.7 Calculation times for instances with a skilling level of 35% . . . 177

8.8 Comparison of heuristics for small instances with a scheduling
period of one week . 178

LIST OF TABLES xxi

8.9 Comparison of heuristics for medium sized instances with a
scheduling period of one week 178

8.10 Comparison of heuristics for large instances with a scheduling
period of one week . 179

8.11 Comparison of heuristics for instances with a scheduling period
of four weeks . 179

8.12 Comparison with heuristic decomposition algorithms from
Chapter 7 for instances with a scheduling period of one week . . 181

8.13 Comparison with heuristic decomposition algorithms from
Chapter 7 for instances with a scheduling period of four weeks 182

Chapter 1

Introduction

1.1 Context and motivation

In many organisations, the workforce represents a vital resource which is typically
both costly and scarce. As personnel costs account for a large part of the
operational expenses, it is important to organise a given workforce as efficiently
as possible. This is especially true in health care, where organisations suffer
from a severe shortage of nurses and other staff [97]. In a recent study, 306
residential care facilities in Belgium were asked whether they experienced issues
caused by a structural shortage of nursing personnel; almost 60% of the replies
indicated that this was indeed the case [2].

The ageing population requires an increasing amount of care, while the relative
size of the working population able to deliver such care, is gradually decreasing.
High turnover rates in nursing further reinforce this structural understaffing.
In 2007, Kovner et al. [75] reported that 13% of the newly licensed registered
nurses left their job after one year, and 37% had the intention to leave. Several
studies have pointed out that overall job (dis)satisfaction is strongly influenced
by work-life balance, caused by the shift roster of nurses [62]. Unsurprisingly,
staff scheduling, which is concerned with the construction of the nurses’, and
employees’ in general, rosters, has received a considerable amount of attention
in the academic literature.

Figure 1.1 shows an overview of staff scheduling as a collection of sequential
steps, grouped in three main processes: demand modelling, rostering, and
disruption handling [49]. In practice, it is common for several steps to be
performed simultaneously, or in a different order. The main processes are

1

2 INTRODUCTION

Demand modelling

Shift-based

Task-based

Flexible

Shift design

Days-off

scheduling

Staff

assignment

Task

assignment

Shift

scheduling

Line of work

construction

Rostering Disruption handling

Re-rostering

Tactical Operational

Figure 1.1: Tactical and operational decision making in staff scheduling

classified according to the time horizon of decision making [64]. Decisions
regarding manpower planning are typically taken at a strategic level, and are
not included in Figure 1.1, even though these decisions have a significant impact
on the operational processes [73].

At the tactical level, the number of employees required at different times is
determined based on forecasts of the expected workload or tasks to be performed.
Three different approaches to demand modelling are distinguished. Shift-based
modelling expresses the demand in terms of number of employees needed per
shift, per day, which can be directly used as input to the rostering process.
In task-based modelling, a set of tasks is defined, typically with additional
timing information (e.g. start time, duration, time windows) and qualification
requirements. Flexible modelling specifies the number of employees needed at
different times, e.g. hourly intervals, on each day. Both task-based modelling
and flexible modelling require shift design as a preprocessing step which derives
the appropriate input for rostering [42].

The rostering process is the main focus of this dissertation, and is responsible for
constructing a roster consisting of shift assignments to employees in a specified
scheduling period. There are several steps which can be undertaken to realise
this goal. The two main approaches are to either first construct complete lines
of work and then to assign these to employees, or to first determine on which
days employees are working and then to assign specific shifts on the working
days. The final step of the rostering process is to assign tasks to the employees,
although this step is often included in the line of work construction.

As staff scheduling is often done in a dynamic environment, unexpected events
are common. Typically, such events are related to an unforeseen change in the
availability of staff, e.g. acute illness of an employee. Disruptions caused by
such events are resolved by the re-rostering process, typically while minimising
the impact on the remainder of the current roster [87].

CONTEXT AND MOTIVATION 3

1.1.1 Nurse rostering problems

Nurse rostering problems typically consider the assignment of days-off and
shifts simultaneously; they perform the first steps of the rostering process at
the same time. The input consists of the outcome of the demand modelling
process, and a description of each nurse in terms of qualifications, contracts,
availabilities, requests, and any other personal characteristics relevant to the
scenario. Typically, additional context-specific inter-personnel restrictions are
imposed by the organisation regarding, for example, collaboration, training or
supervision.

The goal of the nurse rostering problem is to assign shifts to nurses in order
to meet the staffing demands, subject to the aforementioned constraints. The
scheduling period in which assignments are made depends on the organisation,
but typically ranges from four weeks to three months. In essence, nurse rostering
is a multi-objective problem, as each stakeholder considers different aspects
of a solution to be important. The hospital management, for example, might
be primarily concerned with satisfying health and safety regulations, while a
head nurse might want to respect the nurses’ preferences as much as possible.
Consequently, the different objectives in a nurse rostering problem can be
contradicting, making it difficult to model and solve the problem.

1.1.2 Research questions

A recent survey of operational research literature by Van den Bergh et al. [119]
showed that 291 articles on the rostering process have been published since
2004. In total, 64 dealt with nurse rostering. The large majority of these
articles introduce a particular variant of the problem along with a (problem
specific) solution approach. It is clear that several important aspects related to
nurse rostering are neglected, regarding both fundamental issues and practical
implications.

Due to a lack of theory in nurse rostering, problems are often introduced without
any verifiable claims regarding their computational complexity. Researchers
assume that the studied problem is hard, but seldom provide actual proof.
However, experience tells us that not all nurse rostering problems are hard
in practice. Moreover, particular constraints strongly influence an intuitive
hardness assessment. Therefore, the present dissertation addresses the following
research question.

Are there nurse rostering problems that can be solved in polynomial
time?

4 INTRODUCTION

Another fundamental issue in academic research is the strong abstraction made
when evaluating constraints at the boundaries of the scheduling period. Often,
the current scheduling period is considered isolated, ignoring assignments from
the preceding period. Beyond doubt, such assumptions strongly influence the
resolution of problems in subsequent periods, an issue not systematically studied
as of yet. This dissertation therefore focuses on this issue in the form of a
second research question.

What is the impact of inconsistently evaluating constraints at the
boundaries of the scheduling period?

Besides neglecting these fundamental issues in nurse rostering, academic research
also tends to overlook some of the practical implications. Kellogg and Walczak
[70] conclude that only a few research results find their way to practice. An
important cause of this gap between research and practice is the absence of a
general model for nurse rostering problems, making it very difficult to apply novel
algorithms to problems other than those they were designed for. Furthermore,
little attention has been paid to the process of actually implementing a system
using automated rostering algorithms in practice. By addressing the following
two research questions, the present dissertation attempts to narrow the research-
application gap.

How can different aspects of practical nurse rostering problems be
modelled?

Can the transition from manual to automated rostering be supported?

Ernst et al. [49] structure the practical rostering process in several steps, the
last ones dealing with assigning shifts and tasks. In practice, the resolution of
rostering problems is intertwined with solving other decision or optimisation
problems. The final contribution in this dissertation consider integrated
problems that combine characteristics of task scheduling and shift rostering,
thereby addressing the following research question.

Can the simultaneous assignment of tasks and shifts be optimised?

These research questions bridge the research-application gap in nurse rostering
from two sides. The lack of theory makes it difficult to refute or confirm claims
made by practitioners that a particular problem is too complex to be solved
efficiently. Clearly, the first research question attempts to directly address this
issue by identifying problems solvable in polynomial time. Furthermore, the

CONTEXT AND MOTIVATION 5

second research question investigates the impact of inconsistencies in academic
models, which have long been ignored, and thereby continue to enforce the
research-application gap. The third and fourth research questions aim to support
practitioners in applying academic results by addressing two issues often faced
by in practice. Finally, the last research question considers the rostering problem
in a broader scope, automating additional steps that increase potential efficiency
gains in practice.

As a final note, the main focus of this dissertation is on personnel rostering in
the context of health care, however the results are applicable in other settings
as well, such as services, logistics or manufacturing.

1.1.3 Background

This dissertation applies many of the established techniques in operational
research for solving the presented optimisation problems. Linear programming
is a mathematical programming technique in which values are assigned to a set
of decision variables so as to minimise or maximise an objective function, subject
to a set of linear constraints. In (mixed) integer programming, (a subset of)
the decision variables are required to have integer values assigned. A complete
theoretical treatment of these topics can be found in the books by Hillier and
Lieberman [63], and Wolsey and Nemhauser [123].

Network flow problems are a special type of combinatorial optimisation problems
in which a flow must be established in a directed graph with arc capacities.
Examples include the shortest path problem, maximum flow problem and
minimum cost flow problem. Despite their apparent abstract nature, many
practical problems have been reformulated as network flow problems, such as
aircraft routing [60] and railroad crew scheduling [117].

Network flow problems have been studied extensively, and, as a result, a wide
range of efficient algorithms have been designed for solving different problem
variations in polynomial time. For example, in a graph with n nodes and m
arcs, Orlin [98] showed that a maximum flow can be found in O(nm) time; a
minimum cost flow can be found in O(n2m3 logn) time using the minimum
mean cycle-cancelling algorithm [56]. For an extensive introduction to network
flow problems and algorithms, the reader is referred to the book by Ahuja et al.
[3].

6 INTRODUCTION

1.2 Structure of the dissertation

This dissertation is structured in four parts: Theory, Practice, Integration
with other problems and Conclusions and future research. Each of these
parts considers particular aspects of nurse rostering, thereby addressing the
aforementioned research questions.

Part I focuses on two fundamental aspects of nurse rostering which have received
little or no attention in the academic literature.

Chapter 2 particularly studies simplified nurse rostering problems to identify
variants which can be solved in polynomial time. The results show that there
exist several nurse rostering problems which can be reformulated as minimum
cost network flow problems. By linking these original results with previously
published proofs, a boundary between easy and hard nurse rostering problems
is identified.

Chapter 3 investigates different approaches for consistent constraint evaluation.
In academic models, assignments in the preceding period are often simply
ignored in constraint evaluation, while in practice, they are crucial to guarantee
feasible long term schedules. The effect of incorporating policies accounting for
these considerations is investigated.

In Part II, the focus is shifted towards bridging the gap between academic
research and practice through two achievements. Both chapters in Part II present
contributions that have been integrated in a commercial software package for
personnel rostering and management, currently used in four European countries.

Chapter 4 introduces a general object model for rich nurse rostering problems,
capable of representing a large variety of constraints. By using modular
components, a high degree of flexibility is achieved, allowing a wide range
of constraints to be modelled. Furthermore, a new benchmark dataset is
introduced, containing 36 instances based on real world data.

Chapter 5 looks beyond the task of constructing rosters in a practical context.
Before hospitals can use algorithms for automatically generating schedules, an
extensive configuration phase is necessary. While it is a time consuming and
an unintuitive task, this step is often ignored in the academic literature. The
focus in Chapter 5 is on automating the transition from manual to automated
rostering.

Part III broadens the scope of the decision making process involved in
constructing work schedules. As is often the case, personnel rostering is not an
isolated process, rather it depends on various other decision or optimisation
problems. Task scheduling is an important aspect of the rostering process

STRUCTURE OF THE DISSERTATION 7

which is intricately linked with assigning shifts, and vice versa. The chapters in
Part III focus on problems that combine characteristics of task scheduling and
personnel rostering.

Chapter 6 studies the shift minimisation personnel task scheduling problem,
where the employees’ working times are predetermined and cannot be changed.
A set of fixed tasks need to be assigned to skilled employees, while minimising
the total number of employees. A decomposition algorithm is presented for this
problem which optimally solves all benchmark instances from the literature.
New, harder, benchmark instances are generated based on a computational
study of which problem characteristics make instances hard.

Chapter 7 studies two problems that generalise the shift minimisation personnel
task scheduling problem. Instead of assuming predetermined work times of the
employees, assigning shifts is considered part of the decision process. The result
is an integrated task and shift scheduling problem. Two variants of this problem
are studied: the single day task and shift scheduling problem, and the multi-day
task and shift scheduling problem. Both exact and heuristic decomposition
approaches are presented and their impact on the obtained solution quality is
investigated.

Chapter 8 further focuses on the multi-day task and shift scheduling problem and
presents a reformulation of the problem. A column generation algorithm used
for solving the linear relaxation of this reformulation is discussed. Furthermore,
three heuristics are proposed, using both the primal and dual solutions obtained
by column generation. Computational results for all algorithms are presented
in detail.

Finally, Part IV summarises the most important conclusions and identifies areas
for future research.

Part I

Theory

9

Introduction to Part I: Theory

Nurse rostering problems are bound to be encountered in every hospital around
the world. Despite possible differences between countries, the core problem
remains the same: assign a shift or day-off to each nurse on each day of
the scheduling period, taking into account a set of personal, organisational
and legislative constraints. The academic literature offers many different
solution techniques to this problem, ranging from exact methods [55, 85] over
metaheuristics [82, 90] to hybrid approaches [40, 118]. Although the problem
has received considerable attention in the last decades, several important open
issues remain in the academic literature. The chapters in Part I investigate
two of these issues: computational complexity and inconsistencies in constraint
evaluation. By studying simple variants of the problem, results are obtained
which refute some of the common misconceptions in academic research on
rostering.

Chapter 2 provides insights into the complexity of nurse rostering. New minimum
cost network flow formulations are presented for nurse rostering problems with
various types of constraints. Known complexity results are reviewed, and links
with the new results are discussed, leading to knowledge about the boundary
between easy and hard problems. These insights into the underlying structure
support further theoretical studies on models for nurse rostering.

Chapter 3 investigates the evaluation of constraints at the boundary of the
scheduling period. Often, academic models consider an isolated scheduling
period, without taking into account assignments from the preceding period. In
practice, however, such an approach is infeasible in the long term. For example,
nurses expect that overtime accumulated in one month is compensated in the
next month. Several policies for evaluating constraints in the critical parts of
a roster are presented. A systematic study is performed to investigate their
impact on roster quality.

11

12

Complementary contributions

Apart from the contributions reported in Chapters 2 and 3, additional work,
focussing on fairness in nurse rostering, was carried out by the author in
the course of the doctoral programme. The results have supported personnel
rostering research conducted by Simon Martin of the University of Portsmouth
and Komarudin of the Vrije Universiteit Brussel. The aforementioned
contributions are briefly reviewed in what follows.

The quality of a satisfactory solution to a nurse rostering problem is typically
evaluated by means of a weighted sum objective function, the result of which is
proportional to the number of contractual constraint violations [112]. Composite
evaluation functions such as the weighted sum are attractive because they are
based on crisp mathematical descriptions of the quality measures. However, such
approaches do not necessarily compare well with the human way of assessing
the quality of a roster. Two solutions with the same objective function value
may differ considerably in terms of pairwise comparison of individual rosters.
This may lead to the perceived quality being unsatisfactory for nurses, while
the solution may actually be optimal according to the weighted sum objective
function.

Smet et al. [114] proposed alternatives to the weighted sum objective function
which achieve a fair distribution of constraint violations. The proposed
alternatives are:

• Improving the worst individual roster

• Minimising the gap between the average and worst individual roster

• Minimising the gap between the best and worst individual rosters

Computational experiments were performed on both artificial benchmark
instances from the literature, and on instances based on data from two Belgian
hospitals. The results showed that fairness comes at the cost of an increased
number of constraint violations. For different objective functions, this trade-off
is biased towards either solutions with fewer violations, or solutions in which
constraint violations are much more balanced among nurses.

In the work by Simon et al. [90], a cooperative search algorithm was used to
construct fair rosters. The analysis of a series of computational results showed
that each of the proposed objectives results in a trade-off between solution
quality (in terms of number of constraint violations), and fairness.

13

Komarudin et al. [74] proved a number of properties of the fairness objective
functions, and proposed a new lexicographic approach to fair rostering.
Computational experiments on real world data showed that the lexicographic
objective functions result in a more favourable trade-off between fairness and
constraint violations than the other functions.

Chapter 2

On the complexity of nurse
rostering problems

Academic advances in nurse rostering mainly focus on solving specific variants
of the problem using intricate exact or (meta)heuristic algorithms, while little
attention has been devoted to studying the underlying structure or complexity of
the problems. The general assumption is that these problems are NP-complete,
even in their most simplified form. However, such claims are rarely supported
with a proof for the problem under study. The present chapter refutes this
assumption by presenting minimum cost network flow formulations for several
nurse rostering problems. In addition, these problems are situated among the
existing academic literature to obtain insights into what makes nurse rostering
hard.

The content of this chapter is based on joint work with Peter Brucker, University
of Osnabrück, who sadly passed away on July 24, 2013.

2.1 Introduction

Research on nurse rostering, or personnel rostering in general, has focused mostly
on solving some problem at hand. As a result, a large part of the academic
literature details algorithms tailored to one specific problem. Typically, general
complexity claims are made, thereby referring to NP-complete problems that
resemble the problem under discussion. However, in many cases there is no
certainty that these claims hold for this particular nurse rostering problem.

15

16 ON THE COMPLEXITY OF NURSE ROSTERING PROBLEMS

Shifts Demand Employee
availability

Single Multiple Stable Varying Full Contiguous Varying

PThm1 X X X X
PThm2 X X X X
This chapter X X X X X X X

Table 2.1: Comparison of characteristics of polynomially solvable rostering
problems from Brucker et al. [17]

Theoretical studies on models and complexity of nurse rostering have not yet
been extensively studied in the present literature.

There are only a few authors who have formally determined the hardness of
rostering problems. Osogami and Imai [100] and Brunner et al. [18] prove that
rostering problems with constraints on the number of assignments of particular
shifts, and with constraints on consecutive days worked and days-off are hard.
Lau [80] describes a shift assignment problem closely related to rostering, and
proves its NP-completeness. For restricted variants of the problem, Lau [79]
and Lau [80] provide polynomial time algorithms, which are discussed in detail
in Section 2.5.2 of the present chapter.

To the best of our knowledge, Brucker et al. [17] are the only authors to
systematically study personnel scheduling from a theoretical point of view.
Based on a general mathematical model, four polynomially solvable cases have
been identified, two of which are closely related to rostering. The first problem,
PT hm1, considers different shifts requiring a constant number of employees on
different days; the employees are assumed to be available on all days. Without
any further restrictions on the assignment of shifts to employees, the problem
can be solved as a series of transshipment problems. The second problem,
PT hm2, assumes one type of shift, and the availability of employees given by
one interval, i.e. employee availability is assumed to be contiguous. There are
no other restrictions. A reformulation models the problem as a minimum cost
network flow problem.

The present chapter identifies new nurse rostering problems that can be solved
in polynomial time. Table 2.1 compares the two polynomially solvable rostering
problems studied by Brucker et al. [17] with the problems discussed in this
chapter. It is worth noting that neither PT hm1, nor PT hm2 include any time
related constraints, i.e. these problems do not consider the nurses’ contractual
constraints. Therefore, the present chapter emphasises problems that do include
such constraints.

CONTRIBUTIONS 17

The remainder of this chapter is organised as follows. Section 2.2 outlines
the main contributions. Basic definitions of concepts in nurse rostering are
introduced in Section 2.3. Section 2.4 investigates problems with restrictions on
the number of assignments to each nurse. Several polynomially solvable cases are
identified by formulating them as minimum cost network flow problems. Based
on these results, an efficient approach to an existing problem from the literature
is presented, and the complexity of commonly used benchmark datasets for nurse
rostering is discussed. Sections 2.5 and 2.6 consider problems with constraints
on consecutive assignments. Again, polynomially solvable cases are presented,
and linked with results from the literature. For all results, practical implications
are discussed. Finally, Section 2.7 formulates conclusions.

2.2 Contributions

By identifying different nurse rostering problems that can be reformulated as
minimum cost network flow problems, a number of problems are identified
which can be solved in polynomial time. Based on these new contributions,
complexity results from the academic literature are revisited to obtain insights
into what makes nurse rostering hard. The contributions of the present chapter
provide an update on the current results, and further establish the foundations
for theoretical studies on nurse rostering models.

Even though all results are discussed in terms of shifts and days, the ideas can
be directly transferred to the domain of tasks and periods. This observation
underpins the idea that the presented results have a potential impact not only
in different rostering application areas (e.g. logistics, manufacturing), but also in
personnel scheduling in general. Other problems are also subject to constraints
with structures similar to the ones identified in this chapter. High school
timetabling, for example, restricts the workload of a resource (e.g. student,
teacher or room) by a minimum and maximum value [105].

2.3 Nurse rostering problems

This section introduces common concepts in nurse rostering, which will be used
throughout the chapter.

Nurses have to be assigned to shifts in a way that satisfies a variety of constraints.
These problems are characterised by a set of n nursesN = {1, ..., n}, a scheduling
period of t days T = {1, ..., t} and a set of s shifts S = {1, ..., s}.

18 ON THE COMPLEXITY OF NURSE ROSTERING PROBLEMS

6h 12h 18h

Day 1

Shift i

Shift j

(a) In-day overlap

18h 24h 6h

Day 1 Day 2

Shift i

Shift j

(b) Next-day overlap

Figure 2.1: Types of overlap between shifts

A shift is a fixed time interval which denotes a working period. Each shift is
characterised by a unique type which classifies the shifts in various ways, e.g.
by time interval (morning, late), by required qualifications (senior, junior), or
by a combination of these (morning-senior, late-junior). A shift is considered to
occur on the day containing the start time of its time interval.

An assignment is the allocation of a nurse to a shift on a day. A roster (or
schedule) is an n× t matrix which contains in each cell either an assignment or
a day-off. If there is only one shift, the solution is referred to as a days-off roster
in which the single shift represents a day-on. This work considers non-cyclic
rosters, in contrast to cyclic rosters in which all nurses have the same schedule,
but lagged in time [108].

Two shifts are in-day overlapping if their time intervals overlap when considering
the shifts on the same day. An ordered set of two shifts is next-day overlapping
if a nurse cannot be assigned to these shifts on consecutive days without overlap
of their time intervals. Figure 2.1 visualises these concepts. This distinction
is important since several models for nurse rostering problems assume that at
most one shift can be assigned per day, thereby automatically eliminating in-day
overlap, but not necessarily next-day overlap.

Domain constraints define the possible assignments for each nurse on each day.
For each nurse i and day j, a set S̄ij is defined which consists of the shifts that
can be feasibly assigned to nurse i on day j. In practice, these constraints can
be used to model restrictions such as part-time nurses can only work 4h or 6h
shifts or a nurse does not want to work late shifts on Wednesday. This concept
can also be used to model nurse skills by only including shifts in S̄ij for which
nurse i is qualified.

The demand djk (or coverage requirement) is the required number of nurses on
day j, shift k. Demand is stable if the same number of nurses is required on
each day and shift, i.e. ∀j ∈ T, k ∈ S : djk = d (Figure 2.2a). Furthermore, if
on each day and shift only one nurse is required, ∀j ∈ T, k ∈ S : djk = 1, there

RESULTS FOR COUNTER CONSTRAINTS 19

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

5 5 5 5 5 5 5Shift 1

5 5 5 5 5 5 5Shift 2

(a) Stable demand

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

1 1 1 1 1 1 1Shift 1

1 1 1 1 1 1 1Shift 2

(b) Unit demand

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

4 2 4 2 4 2 4Shift 1

2 3 2 3 2 3 2Shift 2

(c) Varying demand

Figure 2.2: Types of demand

is unit demand (Figure 2.2b). In contrast, demand is varying if it is not stable
(Figure 2.2c).

The demand types shown in Figure 2.2 are examples of exact coverage
requirements, i.e. the specified value is exactly the number of nurses to be
assigned. Alternative definitions are ranged, minimum or maximum. A ranged
definition requires that the final value should be within a specified interval.
When such an interval has no upper (lower) limit, the constraint is defined as a
minimum (maximum).

Apart from the coverage requirements, nurse rostering problems are typically
also subject to constraints from the nurses’ contracts, which can be categorised
as counters, series or successions. Counters restrict the number of times a
specific roster item (e.g. weekend assignments or days-off) can occur within a
certain period. Series restrict consecutive occurrences of specific roster items
[112]. Similar to the coverage requirements, these different types of constraints
can be expressed as either ranged, minimum, maximum or exact. Finally,
successions denote a special type of series, which restrict occurrences of specific
roster items on two consecutive days.

2.4 Results for counter constraints

This section presents results for problems with counter constraints. More
specifically, constraints on the number of days worked and on the number of
shifts worked of each type are discussed.

Each subtitle describes the problem discussed in that section. The first two
elements describe the number of shifts and demand pattern. The last element
states the objective, if any. All other elements describe constraints of the

20 ON THE COMPLEXITY OF NURSE ROSTERING PROBLEMS

problem. The type of definition (exact, range, etc.) for each constraint is
mentioned between parentheses.

2.4.1 Single shift, varying demand (minimum), number of
days worked (exact), feasibility

The number of days worked constraint limits the number of assignments per
nurse in the scheduling period. In practice, this constraint is used to model
different contract types. For example, a full time nurse will be required to work
20 days in a monthly scheduling period, whereas a part time nurse should only
work 15 days.

Consider the set of nurses N to be homogeneous, i.e. each nurse has to work
exactly a days. The problem can be formulated as the following integer linear
program.

xij =
{

1 if nurse i works on day j
0 otherwise

P1 :
∑
i∈N

xij ≥ dj ∀ j ∈ T (2.1)

∑
j∈T

xij = a ∀ i ∈ N (2.2)

xij ∈ {0, 1} ∀ i ∈ N, j ∈ T (2.3)

Constraints (2.1) are the coverage requirements. Constraints (2.2) restrict the
number of days worked. Integrality of the decision variables is ensured by
Constraints (2.3).

Problem P1 is a special case of the many-to-many generalised assignment
problem [102], in which tasks need to be assigned to agents. The contribution
of each task to an agent’s workload is always one. Furthermore, all agents are
required to work an exact number of tasks, while for each task only a minimum
number of required agents is specified.

RESULTS FOR COUNTER CONSTRAINTS 21

s f

Day nodes Work nodes

j <i,j> i

j = 1,...,t i = 1,...,n j = 1,...,t i = 1,...,n

Nurse nodes

..
..

..
..

..
..

0 ≤ x ≤ 1 x = adj ≤ x ≤ ∞ 0 ≤ x ≤ 1

Source Sink

Figure 2.3: Network G1 corresponding with problem P1. x denotes the flow
through an arc

Minimum number of nurses

Inspired by Burns and Carter [27], a lower bound on the number of nurses
required for problem P1 can be calculated using parameters a and dj (Equation
(2.4)).

n = max

(⌈∑t
i=1 di

a

⌉
, d1, d2, ..., dt

)
(2.4)

The remainder of this section proves that a solution exists with n nurses, by
applying network flow techniques. First, a layered network is constructed in
which a feasible flow corresponds to a solution of problem P1. Let G1 = (V,E)
be a network with V the set of nodes, and E the set of arcs (Figure 2.3). The
set V consists of four types of nodes.

Day nodes For each day j ∈ T , one node represents the demand on day j.

Work nodes For each nurse i ∈ N and each day j ∈ T , one node represents
nurse i working on day j.

Nurse nodes For each nurse i ∈ N , one node keeps account of the number of
assignments to nurse i.

Other nodes The network contains one source node s and one sink node f .

Each day node has one incoming arc from the source node. Its outgoing arcs
are directed towards the work nodes associated with the same day. Each nurse
node has incoming arcs only from work nodes associated with the nurse. Finally,
each nurse node has one outgoing arc to the sink node.

The supply in all nodes V \ {source, sink} is zero. The supply in the source is
na, which can be interpreted as the maximum number of possible assignments,
based on the number of nurses and their contracts, i.e. the parameter a. The
supply in the sink is −na.

22 ON THE COMPLEXITY OF NURSE ROSTERING PROBLEMS

Lemma 1. A feasible flow in network G1 corresponds to a feasible solution for
problem P1.

Proof. Due to the configuration of network G1, a flow respecting the capacity
and demand constraints is equivalent to a solution for problem P1. One unit
of flow in an arc between a work node defined for nurse i, day j and a nurse
node defined for nurse i, corresponds to a working day for nurse i. By forcing
a units of flow in the arc between the nurse node i and the sink node, nurse i
will work exactly a days. One unit of flow from the day node associated with
day j to the work node associated with day j, nurse i, corresponds to nurse
i working on day j. The flow conservation constraints ensure that at least dj

units of flow will be divided among the arcs leaving the associated day node,
thereby fulfilling the staffing demands. Since there is an upper bound equal to
one on the arcs between the day nodes and work nodes, a nurse can fulfil at
most one unit of demand per day.

Based on Lemma 1, there exists a solution with n nurses for problem P1 if a
feasible flow exists in network G1. Ahuja et al. [3] show that the latter can be
proven by verifying that the circulation feasibility condition (CFC) holds in
network G1.

Theorem 1. CFC: a circulation problem with non-negative lower bounds on
arc flows is feasible if and only if, for every set S of nodes, with S̄ = V − S [3]∑

(i,j)∈(S̄,S)

lij ≤
∑

(i,j)∈(S,S̄)

uij (2.5)

Theorem 2. There exists a solution to problem P1 with n nurses as calculated
by Equation (2.4).

Proof. First, G1 is transformed to a network G′1, representing the corresponding
circulation problem, by adding a circulation arc from the sink to the source with
infinite positive capacity. Next, it is verified that the CFC holds in network
G′1 by checking Equation (2.5) for 14 cases which, due to the network’s layered
structure, cover all possibilities. Table 2.2 shows for each case, which types
of nodes are in the sets S and S̄, as well as the left and right hand sides of
Equation (2.5). As mentioned before, the different types of nodes are the source
(s), day nodes (DN), work nodes (WN), nurse nodes (NN), and sink (f).
Note that it is assumed that all nodes of a type are in the set for the cases
shown in Table 2.2. Changing this assumption does not change the correctness
of the proof, but makes the calculation of the CFC terms more complicated.

RESULTS FOR COUNTER CONSTRAINTS 23

S S̄
∑

(i,j)∈(S̄,S)

lij

∑
(i,j)∈(S,S̄)

uij

{s} {DN,WN,NN, f} 0
∑

j∈T dj
{s,DN} {WN,NN, f} 0 nt
{s,DN,WN} {NN, f} 0 nt
{s,DN,WN,NN} {f} 0 +∞
{DN} {s,WN,NN, f}

∑
j∈T dj nt

{DN,WN} {s,NN, f}
∑

j∈T dj nt
{DN,WN,NN} {s, f}

∑
j∈T dj na

{DN,WN,NN, f} {s}
∑

j∈T dj +∞
{WN} {s,DN,NN, f} 0 nt
{WN,NN} {s,DN, f} 0 na
{WN,NN, f} {s,DN} 0 +∞
{NN} {s,DN,WN, f} 0 na
{NN, f} {s,DN,WN} 0 +∞
{f} {s,DN,WN,NN} na +∞

Table 2.2: Cases used in the proof of Theorem 2

Table 2.2 shows that most of the cases are trivial, except the ones with DN ∈ S
and s ∈ S̄. From Equation (2.4) follows that na ≥

∑
j∈T dj . Furthermore, since

a ≤ t always holds, nt will always be greater or equal then
∑

j∈T dj . It will thus
always be possible to construct a feasible flow in G′1. From Lemma 1 follows
that there will always be a solution for problem P1 with n nurses, as calculated
by Equation (2.4).

2.4.2 Multiple shifts, varying demand (range), number of
days worked (exact), domain constraints, optimise
preferences

An important objective in nurse rostering is to respect the nurses’ preferences
as much as possible [7, 121]. This is often modelled by minimising an integer
cost cijk defined for assigning nurse i to shift k on day j.

Let ai be the number of days nurse i is allowed to work in the scheduling period.
Note that this constraint definition generalises the number of days worked
constraint in problem P1, since now, different nurses can be required to work a
different number of days. Let dl

jk, du
jk be the minimum, maximum number of

nurses required to work shift k on day j. The problem can be formulated as an
integer linear program.

24 ON THE COMPLEXITY OF NURSE ROSTERING PROBLEMS

xijk =
{

1 if nurse i works shift k on day j
0 otherwise

P2 : min
∑
i∈N

∑
j∈T

∑
k∈S

cijkxijk (2.6)

s.t.
∑
k∈S

xijk ≤ 1 ∀ i ∈ N, j ∈ T (2.7)

dl
jk ≤

∑
i∈N

xijk ≤ du
jk ∀ j ∈ T, k ∈ S (2.8)

∑
j∈T

∑
k∈S

xijk = ai ∀ i ∈ N (2.9)

∑
k∈S\S̄ij

xijk = 0 ∀ i ∈ N, j ∈ T (2.10)

xijk ∈ {0, 1} ∀ i ∈ N, j ∈ T, k ∈ S (2.11)

The objective function (2.6) minimises the assignment costs. Constraints (2.7)
limit the number of shifts assigned per nurse and per day to at most one.
Constraints (2.8) are the coverage requirements. Constraints (2.9) restrict
the number of days worked. Constraints (2.10) are the domain constraints.
Constraints (2.11) require the decision variables to be either zero or one.

Problem P2 can be reformulated as a minimum cost network flow problem in a
directed network G2 = (V,E), with V the set of nodes and E the set of arcs.
The set V consists of four types of nodes.

Shift nodes For each day j ∈ T and each shift k ∈ S, one node represents the
demand for shift k on day j.

Work nodes For each nurse i ∈ N and each day j ∈ T , one node represents
nurse i working on day j.

Nurse nodes For each nurse i ∈ N , one node keeps account of the number of
assignments to nurse i.

Other nodes The network contains one source node s and one sink node f .

RESULTS FOR COUNTER CONSTRAINTS 25

s f

Shift nodes Work nodes

<j,k> <i,j> i

j = 1,...,t k = 1,...,s i = 1,...,n j = 1,...,t i = 1,...,n

Nurse nodes

..
..

..
..

..
..

0 ≤ x ≤ 1 x = aidl
jk ≤ x ≤ du

jk 0 ≤ x ≤ 1

Source Sink

cijk

arc exists iff k is in Sij
-

Figure 2.4: Flow network G2 for problem P2, x denotes the flow through an arc

Each shift node has one incoming arc from the source node. Its outgoing arcs
are directed towards the work nodes associated with the corresponding day,
if an assignment of the shift to the nurse on that day does not violate the
domain constraints. Each nurse node has incoming arcs only from work nodes
associated with the nurse. Finally, each nurse node has one outgoing arc to the
sink node. Figure 2.4 shows the structure of network G2.

Lemma 2. The size of network G2 is polynomially bounded by the number of
days, nurses and shifts.

Proof. The number of nodes in G2 is t(s+ n) + n+ 2.

ts arcs go from the source node to the shift nodes. Each shift node has n arcs
to work nodes. ts shift nodes thus induce tsn arcs from shift nodes to work
nodes. Each work node has one outgoing arc to a nurse node. Given nt work
nodes, nt arcs exist between the work nodes and the nurse nodes. Finally, there
are n arcs between the nurse nodes and the sink node. The total number of
arcs in G2 is t(s+ n(s+ 1)) + n, if S̄ij = S for each i ∈ N, j ∈ T . Smaller sets
S̄ij will result in fewer arcs.

Flow costs are only defined on the arcs between the shift nodes and the work
nodes, representing the cost cijk of assigning a nurse i to shift k on day j. All
nodes, except the source and sink nodes, are transshipment nodes. The supply
in the source node is

∑
i∈N ai, corresponding to the total number of days all

nurses can work according to their contracts. The supply in the sink node is
equal to

∑
i∈N −ai.

Lower and upper bounds on the capacity of the arcs are appropriately defined
to correctly represent problem P2. The arcs between the source node and the
shift nodes have a lower (upper) bound equal to the minimum (maximum)
coverage requirement. Arcs between the nurse nodes and sink node have a lower
and upper bound equal to the required number of days worked. All other arcs
require a flow of either zero or one.

26 ON THE COMPLEXITY OF NURSE ROSTERING PROBLEMS

Lemma 3. A minimum cost flow in network G2 corresponds to an optimal
solution for problem P2.

Proof. Due to the configuration of network G2, a minimum cost solution
respecting the capacity and demand constraints is equivalent to a solution
for problem P2. A flow in an arc between a work node defined for nurse i, day j
and a nurse node defined for nurse i, corresponds with a working day for nurse
i. By forcing ai units of flow in the arc between the nurse node i and the sink
node, nurse i will work exactly ai days. Shift assignments are determined by
flows in the arcs between the shift nodes and the work nodes. A flow from the
shift node associated with day j, shift k to the work node associated with day
j, nurse i, corresponds with nurse i working shift k on day j, thereby incurring
cost cijk. The flow conservation constraints ensure that at least dl

jk, and at
most du

jk units of flow will be divided among the arcs leaving the associated shift
node, thereby fulfilling the staffing demands. Since there is an upper bound of
one on the arcs between the work nodes and nurse nodes, a nurse cannot be
assigned more than one shift per day.

Theorem 3. Problem P2 can be solved in polynomial time.

Proof. From Lemmas 2 and 3, it follows that problem P2 can be transformed in
polynomial time to a minimum cost network flow problem with integer capacities
and arc costs. The network flow problem can be solved in polynomial time
[3].

In the remainder of this section, two results will be derived from Theorem 3.
First, a discussion on the complexity of academic nurse rostering benchmark
datasets is presented. Second, a problem from the literature is revisited, and a
new network flow-based solution approach is presented.

Complexity of nurse rostering benchmark instances

Benchmark datasets provide interesting indicators for comparing the perfor-
mance of different algorithms. Table 2.3 shows the hard constraints in three
commonly used datasets for nurse rostering: the Nottingham dataset (NOTT)
[15], the dataset from the first International Nurse Rostering Competition
(INRC) [61], and the KAHO dataset [112]. Based on the hard constraints,
INRC can be considered to be a special case of NOTT. Indeed, any algorithm
that constructs feasible solutions for NOTT can construct feasible solutions for
INRC.

RESULTS FOR COUNTER CONSTRAINTS 27

INRC NOTT KAHO

Single assignment per day Single assignment per day Single assignment per day
Coverage requirements Coverage requirements Qualification requirements

Qualification requirements Fixed assignments
Only defined assignments
No overlapping assignments

Table 2.3: Hard constraints in benchmark instances

The NOTT instances can be straightforwardly transformed to problem P2 by
setting ai = t for each i ∈ N . The qualification requirements can be modelled
by the domain constraints. The coverage requirements in NOTT can be defined
as a range, minimum, maximum or exact number. To model these different
definitions, the parameters dl

jk and du
jk should be modified appropriately. An

algorithm that generates a feasible solution for problem P2 can thus produce
feasible solutions for NOTT and INRC. The following corollary is an immediate
consequence of Theorem 3.

Corollary 1. A feasible solution for the instances from the NOTT and INRC
datasets can be obtained in polynomial time.

The objective in NOTT and INRC is to minimise the weighted sum of soft
constraint violations. These soft constraints are various time related contractual
constraints limiting the number of consecutive days worked, weekends worked,
etc. The cost of a solution thus depends on the extent to which certain
constraints are violated, which is quite different from the assignment cost
minimised in problem P2.

State of the art optimisation algorithms for nurse rostering often use a greedy
method to construct an initial solution. Burke et al. [22], for example, use
a randomised greedy constructive algorithm to generate initial solutions by
assigning uncovered shifts to the nurse who incurs the least gain in penalty. A
simple example illustrates how this greedy method can fail to find a feasible
solution: consider an instance without any soft constraints and with two nurses
A and B. Nurse A has qualifications DH and RN , while nurse B only has
qualification RN . The coverage constraints require one RN -shift and one DH-
shift to be assigned. If the greedy algorithm of Burke et al. [22] selects nurse A
to be assigned to the RN -shift, the DH-shift cannot be assigned, and thus no
feasible solution can be constructed without restarting the algorithm. However,
by applying the method presented on page 26, Corollary 1 states that a feasible
solution can be guaranteed in polynomial time.

Corollary 1 cannot be extended to the KAHO dataset due to the last hard
constraint forbidding overlapping assignments. The structure of network G2

28 ON THE COMPLEXITY OF NURSE ROSTERING PROBLEMS

cannot prevent next-day overlap. All other hard constraints can be included
in G2 by making small modifications as follows. Assignments can be fixed by
changing the capacity bounds on the arcs between day nodes and work nodes.
The second to last constraint states that shift k can only be assigned on day j
if djk > 0. This can be modelled in G2 by only adding shift nodes if at least
one nurse is required on that day and shift.

A network based algorithm for a days-off rostering problem with hierarchical
substitution

Hung [65] and Billionnet [12] describe a days-off rostering problem with
hierarchical substitution. Based on their qualifications, employees are classified
intom types, with nk the number of employees of type k. Coverage requirements
are defined in terms of these qualifications: djk is the number of employees
required on day j with qualification k. The qualifications are organised in a
hierarchical manner, i.e. a higher qualified employee can substitute for a lower
qualified employee, but not the other way around. A cost ck is associated with
each type k employee. When an employee substitutes for a lower qualification,
its cost ck still corresponds to the employee’s original, higher qualification. The
scheduling period is one week. Each employee should receive o days off, or,
equivalently, each employee should work a = 7 − o days. The objective is to
find the least cost workforce composition, and to construct a days-off roster.

Hung [65] presents sufficient conditions for a workforce composition to be feasible.
A two-phase approach is used for solving the problem: the workforce composition
is determined first, the actual roster is constructed afterwards. An exhaustive
search determines the workforce composition, suitable for problems with m ≤ 3.
Furthermore, a single pass method is described, which does not guarantee
feasible solutions. Billionnet [12] presents an integer programming formulation
to determine the number of employees working a particular qualification each
day. A feasible roster is constructed with the solution of the integer program.

A network flow reformulation is proposed which enables the direct construction
of the roster given the least cost workforce, by solving a minimum cost flow
problem in network G? (Figure 2.5). This network is near-identical to G2.
However, skills are used instead of shifts. Arcs between skill nodes and work
nodes are only present if the employee is qualified or can substitute for the
skill. Lemma 3 holds for G?; a minimum cost flow solution in network G? thus
corresponds with a feasible roster.

Note that network G? has a pseudo-polynomial number of nodes with respect
to the coverage requirements of an instance, since the coverage requirements

RESULTS FOR COUNTER CONSTRAINTS 29

s f

Skill nodes Work nodes

<j,k> <i,j> i

j = 1,...,7 k = 1,...,m j = 1,...,7 k = 1,...,m i = 1,...,nk k = 1,...,m i = 1,...,nk

Nurse nodes

..
..

..
..

..
..

0 ≤ x ≤ 1 x = ax = djk 0 ≤ x ≤ 1

Source Sink

ci / a

Figure 2.5: Flow network G? for a days-off rostering problem with hierarchical
substitution. x denotes the flow through an arc

directly impact the workforce composition, and thus the number of work nodes
and nurse nodes.

By including flow costs on the arcs between the nurse nodes and the sink node,
the cost of each employee is modelled. These arcs have lij = uij = a and a flow
cost of ci/a, with ci = ck if employee i is of type k. If the employee is working,
a units of flow result in a cost of ci/a× a = ci, which is the employee’s cost in
the original problem definition.

2.4.3 Multiple shifts, varying demand (range), number of
shifts worked of each type (range), domain constraints,
feasibility

The constraint on the number of days worked discussed in Section 2.4.1 is a
special case of the number of shifts worked of each type constraint. The former
limits the number of assignments in the scheduling period, whereas the latter
restricts the number of assignments of each shift type within the scheduling
period. This constraint has various applications in practice, e.g. balancing
undesirable shifts among nurses or applying health and safety regulations.

Osogami and Imai [100] discuss a feasibility problem with one counter constraint
on the number of shifts worked of each type. This constraint is defined as a
range, e.g. nurse i has to be assigned to shift j on at least two days, and at most
five days in the scheduling period. Furthermore, there are coverage requirements
for each day, shift, also expressed as a range.

The problem can be formulated as an integer linear program. Let dl
jk, du

jk be
the minimum, maximum number of nurses required to work shift k on day j.
Let al

ik, au
ik be the minimum, maximum number of days nurse i is allowed to

work shift k.

xijk =
{

1 if nurse i works shift k on day j
0 otherwise

30 ON THE COMPLEXITY OF NURSE ROSTERING PROBLEMS

P3 :
∑
k∈S

xijk ≤ 1 ∀ i ∈ N, j ∈ T (2.12)

dl
jk ≤

∑
i∈N

xijk ≤ du
jk ∀ j ∈ T, k ∈ S (2.13)

al
ik ≤

∑
j∈T

xijk ≤ au
ik ∀ i ∈ N, k ∈ S (2.14)

∑
k∈S\S̄ij

xijk = 0 ∀ i ∈ N, j ∈ T (2.15)

xijk ∈ {0, 1} ∀ i ∈ N, j ∈ T, k ∈ S (2.16)

Constraints (2.12) ensure that at most one shift is assigned per day, per nurse.
Constraints (2.13) are the coverage requirements. Constraints (2.14) limit
the number of shifts worked of each type. Constraints (2.15) are the domain
constraints. Constraints (2.16) require the decision variables to be either zero
or one.

Problem P3 is proven to be NP-complete by reduction from a timetabling
problem [100]. However, by relaxing the constraint on the number of shifts
worked of each type to a constraint on the number of days worked, problem
P3 can be reduced to a feasible circulation problem in a network obtained
by modifying network G2 in the following way. One additional arc is added
to G2 from the sink node to the source node with infinite positive capacity.
Furthermore, the capacities on the arcs between nurse nodes and sink node are
modified to correctly model the range on the number of days worked.

The following theorem follows from Lemmas 2 and 3.
Theorem 4. Problem P3 without ranged constraints on the number of shifts
worked of each type can be solved in polynomial time.

From Theorem 4, it follows that the granularity of a counter constraint has
a significant impact on a problem’s complexity. Defining a counter for days
worked allows the problem to be solved as a minimum cost network flow problem,
whereas restricting the number of shifts worked of each type makes the problem
NP-complete. This results in interesting practical considerations when solving
nurse rostering problems. It might be sufficient to model regulations at day-level,
rather than at shift-level, thereby inevitably making abstraction of some of the
administration’s guidelines. The result, however, is a computationally tractable
problem.

RESULTS FOR SUCCESSION CONSTRAINTS 31

2.5 Results for succession constraints

This section presents results for a problem with succession constraints on shifts.
First, a problem is discussed with a constraint that generalises the number of
days worked constraint, and which can be used to model constraints on day
successions. Afterwards, the relationship between this problem and a known
academic result is discussed.

As in Section 2.4, the titles of the subsections describe the problems discussed.

2.5.1 Multiple shifts, varying demand (range), number of days
worked (exact), domain constraints, incompatible days
(range), optimise preferences

Problem P2 can be extended with a constraint restricting assignments on days
from pairwise disjoint sets. For each nurse i, let D̄i be a set of day sets F , from
which at least ml

iF , and at most mu
iF days can be worked. All sets in D̄i must

be pairwise disjoint, i.e. each day in T can occur in at most one set F ∈ D̄i.
There should thus be no overlap between the sets in D̄i. The incompatible days
constraint restricts the number of days worked by nurse i in set F to values
between ml

iF and mu
iF .

This constraint can be interpreted as a number of days worked constraint for
periods which are subsets of the scheduling period. This first interpretation
allows various practical restrictions to be modelled, e.g. balancing the number
of assignments per week, or limiting the number of Sundays worked in the
scheduling period.

The disjoint sets furthermore offer the opportunity to model succession
constraints. Consider the example in which a hospital’s administration requires
a nurse to have a day-off after working on a bank holiday. For each bank holiday,
a set F is added to D̄i consisting of the bank holiday and the day after. By
setting ml

iF = 0 and mu
iF = 1, nurse i will not be allowed to work on both the

bank holiday and the day after. Note that, in this example, it is assumed that
there are no consecutive bank holidays, since this would lead to non-disjoint
sets in D̄i.

The problem can be formulated as an integer linear program. Let ai be the
number of days nurse i has to work. Let dl

jk, du
jk be the minimum, maximum

number of nurses required to work shift k on day j.

32 ON THE COMPLEXITY OF NURSE ROSTERING PROBLEMS

xijk =
{

1 if nurse i works shift k on day j
0 otherwise

P4 : min
∑
i∈N

∑
j∈T

∑
k∈S

cijkxijk (2.17)

s.t.
∑
k∈S

xijk ≤ 1 ∀ i ∈ N, j ∈ T (2.18)

dl
jk ≤

∑
i∈N

xijk ≤ du
jk ∀ j ∈ T, k ∈ S (2.19)

∑
j∈T

∑
k∈S

xijk = ai ∀ i ∈ N (2.20)

∑
k∈S\S̄ij

xijk = 0 ∀ i ∈ N, j ∈ T (2.21)

ml
iF ≤

∑
j∈F

∑
k∈S

xijk ≤ mu
iF ∀ i ∈ N,F ∈ D̄i (2.22)

xijk ∈ {0, 1} ∀ i ∈ N, j ∈ T, k ∈ S (2.23)

The objective function (2.17) minimises the assignment costs. Constraints (2.18)
ensure that at most one shift is assigned per day, per employee. Constraints
(2.19) are the coverage requirements. Constraints (2.20) limit the number of
days worked. Constraints (2.21) are the domain constraints. Constraints (2.22)
are the incompatible days constraints. Constraints (2.23) require the decision
variables to be either zero or one.

Problem P4 can be transformed into finding a minimum cost network flow in
a network G4. This network is obtained by including additional compatibility
nodes in network G2. For each F ∈ D̄i, one compatibility node is added to
the network between the work nodes for days in F , and the nurse node of
nurse i. Since D̄i is restricted to pairwise disjoint sets, the maximum size
of D̄i is bounded by t. The flow in the incoming arcs of each compatibility
node is bounded between zero and one. The flow in the outgoing arc of each
compatibility node is bounded between ml

iF and mu
iF . Figure 2.6 shows the

structure of network G4.
Theorem 5. Problem P4 can be solved in polynomial time if D̄i contains only
pairwise disjoint sets of days.

RESULTS FOR SUCCESSION CONSTRAINTS 33

s f

Shift nodes Work nodes

<j,k> <i,j> i

j = 1,...,t k = 1,...,s i = 1,...,n j = 1,...,t i = 1,...,n

Nurse nodes

..
..

..
..

..
..

0 ≤ x ≤ 1 x = aidl
jk ≤ x ≤ du

jk

Source SinkCompatibility nodes

<i,F>

..
..

0 ≤ x ≤ 1

iff j is in Di
-

cijk

ml
iF ≤ x ≤ mu

iF

arc exists iff k is in Sij
-

i = 1,...,n F in Di
-

Figure 2.6: Network G4 corresponding with problem P4. x denotes the flow
through an arc. Arcs from work nodes to nurse nodes for days not in a set F
are not drawn

A

Mo

...

...

Nurse nodes SinkCompatibility nodesWork nodes

A

f

B

Mo

B

Tu

B

We

B

Th

B

Fr

B

Sa

B

Su

...

B

c1

...
...

...
...

0 ≤ x ≤ 1

x =
 5

x = 5

...

0 ≤ x ≤ 1
2 ≤ x ≤ 3

0 ≤ x ≤ 1

Figure 2.7: Example of network G4 in which nurse B has to work at least two
days in the period from Friday (Fr) to Sunday (Su)

Proof. A large part of network G4 is identical to G2; the main ideas from
Lemma 3 thus hold for G4 as well. Since the size of D̄i is bounded by t, the
number of nodes in the network increases maximally with nt. Through the
construction of the compatibility nodes, each nurse will be working between
ml

iF and mu
iF days from the sets F .

Figure 2.7 illustrates this formulation with an example. Each nurse in the
example has to work exactly five days, and nurse B is required to work at least
two days in the period from Friday (Fr) to Sunday (Su). To accommodate for
this constraint, the compatibility node c1 is included in the network.

34 ON THE COMPLEXITY OF NURSE ROSTERING PROBLEMS

The requirement for the sets to be pairwise disjoint is a strong modelling
restriction. If non-disjoint sets would be allowed, additional constraints could
be modelled with the presented networks. Consider the formulation of the
maximum m consecutive days worked constraint in Equation (2.24).

∑
g∈{0,...,m}

∑
k∈S

xi(j+g)k ≤ m ∀ i ∈ N, j ∈ {1, . . . , t−m} (2.24)

Equation (2.24) forces a nurse to work at most m days in a window of size
m + 1, which slides over the scheduling period. Effectively, this formulation
transforms the constraint on consecutive days worked into multiple constraints
on non-disjoint incompatible days. However, non-disjoint sets F would result in
multiple outgoing arcs from each work node in G4, which would allow multiple
assignments to one nurse on one day, which violates the single assignment per
day constraint.

2.5.2 Multiple shifts, varying demand (exact), domain con-
straints, shift succession constraints, feasibility

Health and safety regulations concerning rest time are of major importance in
many organisations. Within this class of guidelines, providing sufficient rest
time between two consecutive working days is regarded as one of the most
important constraints. Forward shift rotation is a common concept in practice,
which requires an assignment to not start earlier than the assignment on the
previous day. A generalisation of this concept is the shift succession constraint,
which forbids two particular shifts to be assigned on consecutive days.

Lau [80] discusses a feasibility problem in which the days-off roster has been
predetermined. The goal is to assign shifts to working nurses. Let T̄i be a set
of days on which nurse i cannot work, i.e. the days-off in the predetermined
roster. Let R be the set of shift pairs (k, k′), which cannot be assigned on two
consecutive days. Coverage requirements are defined for each day and shift,
expressed as an exact value. The problem can be formulated as the following
integer linear program.

xijk =
{

1 if nurse i works shift k on day j
0 otherwise

RESULTS FOR SUCCESSION CONSTRAINTS 35

P5 :
∑
k∈S

xijk ≤ 1 ∀ i ∈ N, j ∈ T \ T̄i (2.25)

∑
i∈N

xijk = djk ∀ j ∈ T, k ∈ S (2.26)

xijk + xi(j+1)k′ ≤ 1 ∀ i ∈ N, j ∈ T \ {t} , (k, k′) ∈ R (2.27)∑
k∈S

xijk = 0 ∀ i ∈ N, j ∈ T̄i (2.28)

∑
k∈S\S̄ij

xijk = 0 ∀ i ∈ N, j ∈ T (2.29)

xijk ∈ {0, 1} ∀ i ∈ N, j ∈ T, k ∈ S (2.30)

Constraints (2.25) ensure that at most one shift is assigned to a nurse on a
working day. Constraints (2.26) are the coverage requirements. Constraints
(2.27) are the shift succession constraints. Constraints (2.28) make sure no
shifts are assigned on days-off. Constraints (2.29) are the domain constraints.
Constraints (2.30) require the decision variables to be either zero or one.

Problem P5 is proven to be NP-complete by reduction from 3SAT [80]. In
addition, Lau [80] presents a greedy algorithm which solves P5 under two
assumptions: the absence of domain constraints, and only allowing monotonic
shift changes (i.e. only allowing assignments such that the indices of the assigned
shifts are monotonically non-decreasing). The latter is not a strong restriction
as it still allows for forward shift rotation to be enforced if the shifts are arranged
in order of their start time.

The following theorem is due to Lau [80].

Theorem 6. Problem P5 without domain constraints and with monotonic shift
succession constraints can be solved in polynomial time [80].

In a follow-up paper, Lau [79] presents a polynomial time algorithm for problem
P5 when the days-off roster has a particular structure. All nurses’ working days
are contiguous and the work stretches either start or stop on the same day,
i.e. the days-off roster is tableau shaped. A solution to this special case can be
obtained from a minimal set of node-disjoint paths in a layered network.

The following theorem is due to Lau [79].

36 ON THE COMPLEXITY OF NURSE ROSTERING PROBLEMS

Theorem 7. Problem P5 without domain constraints and with a tableau shaped
days-off roster can be solved in polynomial time [79].

The network flow model presented in Section 2.4.2 supports the proof of a
related result. By omitting the shift succession constraint, problem P5 can be
reduced to the problem of finding a feasible flow in network G2. The fixed
days-off roster can be modelled in the network by changing the capacity upper
bounds of the correct arcs between work nodes and nurse nodes to zero. Since
the number of days worked per nurse is determined by the days-off roster, ai is
set to t− |T̄i|, for each nurse i ∈ N . Finally, the supply in the source node is set
to
∑

j∈T

∑
k∈S djk. The supply in the sink node is equal to

∑
j∈T

∑
k∈S −djk.

Note that neither the structure of the days-off roster, nor the domain constraints
are subject to restrictions.

The following corollary is an immediate consequence of Lemmas 2 and 3.

Corollary 2. Problem P5 without shift succession constraints can be solved in
polynomial time.

Table 2.4 compares characteristics of the polynomially solvable problems
identified by Lau [79, 80], and by Theorem 5 presented in Section 2.5.1.

Domain Unconstrained Shift Day Number of
constraints days-off roster succession succession days worked

Lau [79] X
Lau [80] X (X)1
Theorem 5 X X (X)2 X

1 Only monotonic shift succession constraints
2 Only pairwise disjoint day succession constraints

Table 2.4: Comparison of characteristics of polynomially solvable problems from
Lau [79, 80]

Relating the NP-completeness proof from Lau [80] to Theorem 5 allows further
examination of the boundary between hard and easy definitions of succession
constraints. Problems with the general shift succession constraint are NP-
complete. However, Theorem 5 proved that a restricted version of the day
succession constraint can be solved as a minimum cost flow problem. Similar to
the findings on counter constraints, the transition from succession constraints
on days to succession constraints on shifts transforms a tractable problem into
an intractable one. While for counter constraints, in some cases, the abstraction
from shifts to days could be justified (e.g. by aggregating constraints on the
number of shifts worked of each type to restrict the total number of days

RESULTS FOR SERIES CONSTRAINTS 37

worked), it is harder to do so for the succession constraints. Constraints on
day successions are not useless, rather they have a different purpose to the shift
successions.

2.6 Results for series constraints

This section discusses a problem with series constraints on consecutive days
worked and consecutive days-off. Again, the titles of the subsections describe
the problems discussed.

2.6.1 Single shift, varying demand (minimum), consecutive
days worked (range), consecutive days-off (range),
number of days worked (maximum), minimise staff size

The objective of the problem discussed by Brunner et al. [18] is to minimise
the size of the workforce. Apart from coverage requirements, expressed as
a minimum, there are three other constraints. The first constraint limits
the number of days worked to a maximum value. The second and third
constraints define a range on the number of consecutive days worked and
days-off, respectively.

The problem can be formulated as the following integer linear program. Let
D̄work be the maximum number of days a nurse can work in the scheduling
period. Let D̄on, D̄off be the maximum number of consecutive days worked,
days-off. Let Don, Doff be the minimum number of consecutive days worked,
days-off.

xij =
{

1 if nurse i works on day j
0 otherwise

38 ON THE COMPLEXITY OF NURSE ROSTERING PROBLEMS

P6 : min number of nurses (2.31)

s.t.
∑
i∈N

xij ≥ dj ∀j ∈ T (2.32)

∑
j∈T

xij ≤ D̄work ∀i ∈ N (2.33)

D̄on+j−1∑
n=j

xin ≤ D̄on ∀i ∈ N, j ∈ T (2.34)

Don+j−1∑
n=j

xin ≥ Don(xij − xi(j−1)) ∀i ∈ N, j ∈ T \ {1} (2.35)

D̄off+j−1∑
n=j

(1− xin) ≤ D̄off ∀i ∈ N, j ∈ T (2.36)

Doff+j−1∑
n=j

(1− xin) ≥ Doff(−xij + xi(j−1)) ∀i ∈ N, j ∈ T \ {1} (2.37)

xij ∈ {0, 1} ∀ i ∈ N, j ∈ T (2.38)

The objective function (2.31) minimises the number of nurses. Constraints
(2.32) are the coverage requirements. Constraints (2.33) limit the number of
days worked. Constraints (2.34) and (2.35) are the minimum and maximum
number of consecutive days worked, respectively. Constraints (2.36) and (2.37)
are the minimum and maximum number of consecutive days-off, respectively.
Constraints (2.38) require the decision variables to be either zero or one.

Brunner et al. [18] proved that problem P6 is NP-complete by showing that it
has the circulant problem as a special case. Removing all constraints regarding
consecutive assignments reduces the problem of finding a feasible solution for
P6 to the problem of finding a feasible flow in network G1. The lower bound
on the flow in the arcs from nurse nodes to the sink node needs to be set to
zero, the upper bound should be set to D̄work.

The following corollary is an immediate consequence of Lemmas 1 and 2.

CONCLUSIONS 39

Corollary 3. A feasible solution for problem P6 without ranged constraints on
the number of consecutive days worked and days-off can be found in polynomial
time.

Limiting the number of consecutive days worked and days-off thus makes the
problem difficult. Consequently, almost all problems in practice are difficult.

As was mentioned on page 34, the pairwise disjoint incompatible days constraint
strongly resembles the constraint on the maximum number of consecutive
working days. To strengthen Corollary 3, the same obstacle holds as was
discussed on page 34. Satisfaction of the maximum number of consecutive
working days constraint cannot be guaranteed without the possibility of
modelling a constraint on non-disjoint incompatible days in network G4.

2.7 Conclusions

The present chapter systematically studied the complexity of nurse rostering
problems, thereby further establishing the foundations for theoretical studies
on models for rostering. By presenting transformations of different problems
to minimum cost network flow problems, new cases were identified which can
be solved in polynomial time. Specifically, decision and optimisation problems
were reformulated with multiple shifts, varying demand, and constraints on the
number of days worked, nurses’ domains and incompatible days.

Previously published complexity proofs were discussed in the light of these new
results, and, as a result, a boundary between tractable and intractable nurse
rostering problems was established. The new results show that for both counter
constraints and succession constraints, the difference between easy and hard
problems corresponds to defining the constraint on day-level or on shift-level.

These insights allow decision makers to reconsider the formulation of their
problem, as it could mean making the problem computationally tractable. In
some cases, a revision of the organisational policy could result in alternative
constraint definitions, which then allows the reassessed rostering problem to
be modelled using the network flow formulations presented in this chapter.
As a result, significant savings can be realised by not having to invest in
computational resources necessary to obtain optimal rosters.

Chapter 3

Policies for consistent
constraint evaluation in nurse
rostering

Academic models for nurse rostering typically make significant abstractions of
complex real life problems. Often, one isolated scheduling period is considered,
contradicting common practice where nurse rostering inherently spans multiple
periods. In the present chapter, weaknesses of constraint evaluation processes
are revealed through a series of computational experiments on nurse rostering
instances. To address the identified problems, policies to consistently evaluate
constraints are introduced, when taking into account multiple consecutive
scheduling periods. The proposed methods are evaluated on a set of benchmark
instances, thereby demonstrating the impact of inconsistent constraint evaluation
at the boundaries of the scheduling period.

The content of this chapter is based on joint work with Fabio Salassa, Politecnico
di Torino.

3.1 Introduction

In academic studies on automated nurse rostering, the focus is often on solving
problems with a single, isolated time horizon rather than on improving the
perceived quality of rosters over a long period. Salassa and Vanden Berghe [110]

41

42 POLICIES FOR CONSISTENT CONSTRAINT EVALUATION IN NURSE ROSTERING

denote the former as a static horizon approach to nurse rostering. An argument
for this methodology is that taking into account previous, or future, scheduling
periods does not increase the complexity of the problem at hand. However,
in practice, real hospital applications are strongly influenced by the inertia of
previous periods. Regardless of the performance of the applied algorithm, many
approaches based on the restricted academic models fail to produce rosters
that meet hospital requirements. Nevertheless, they are common in academic
benchmarks [21, 61, 121].

This consideration may, to some extent, explain the gap between academic
and applied approaches to nurse rostering [70]. Some practical aspects should
be included in a model for automated nurse rostering in order to arrive at
a generic automated timetabling procedure. The present chapter discusses
issues regarding continuity in constraint evaluation, arising when an isolated
scheduling period is considered. Policies for different types of constraints are
presented to resolve these issues. In an extensive computational study, the
effects of such policies are investigated.

The rest of the chapter is organised as follows. The main contributions are
summarised in Section 3.2. Section 3.3 briefly introduces a nurse rostering
variant suited for demonstrating the new evaluation methodology. Section 3.4
identifies the main shortcomings with respect to continuity in the current state
of the art of nurse rostering. Related work and the discrepancies with the
current contributions are also discussed. Remedies for the main identified issues
are presented and evaluated in Sections 3.5, 3.6 and 3.7. Finally, Section 3.8
concludes this chapter.

3.2 Contributions

Practitioners are well aware of the pitfalls regarding consistent constraint
evaluation and their implications for long term scheduling. To them, it is
obvious that assignments at the end of the preceding period influence the
assignments at the start of the current scheduling period. This consideration
has been largely ignored in the academic literature, even though it has an
impact on modelling the problem. This chapter expands upon these issues, and
systematically demonstrates potential impact through a series of computational
experiments. Furthermore, policies to address the inconsistencies are proposed
and evaluated for two types of constraints.

In an effort to bring academic research closer to practice, new benchmark
instances have been made publicly available. These instances are available in a
widely adopted format, and include realistic contracts and information regarding

DESCRIPTION OF A NURSE ROSTERING PROBLEM 43

the preceding scheduling period, thereby allowing the proposed policies to be
applied.

3.3 Description of a nurse rostering problem

The problem considered in this study is a common nurse rostering problem,
where a working shift or a day-off should be assigned to each multi-skilled
nurse on each day in the scheduling period, according to several contractual
and operational requirements. There are several types of (possibly overlapping)
shifts, to be assigned in a scheduling period, so that coverage requirements are
met. This assignment is constrained by two hard constraints: 1) the coverage
requirements must be met exactly, and 2) each nurse can be assigned to at
most one shift per day. The quality of a solution is determined by violations of
the soft constraints (Table 3.1). The objective is to maximise the quality by
minimising the weighted sum of soft constraint violations.

The employees’ contractual soft constraints can be categorised as either counter
constraints or series constraints [11]. Counter constraints denote all constraints
that can be evaluated by counting the appearance of certain types of assignment
in a roster. The series constraints on the other hand, correspond to restrictions
on successive assignments.

Counter constraints
Maximum and minimum number of shifts that can be assigned to nurses
Maximum number of working weekends
Day-off/on and shift-off/on requests
Series constraints
Maximum and minimum number of consecutive working days
Maximum and minimum number of consecutive days off
Maximum number of consecutive working weekends
Maximum number of working weekends in four weeks
Avoid isolated days-off
Shift succession (e.g. no Early shift after a Night shift)

Table 3.1: Soft constraints

A more general model for nurse rostering problems is discussed in Chapter 4,
while the more concise variant presented here is suitable for demonstrating the
concepts in this chapter.

44 POLICIES FOR CONSISTENT CONSTRAINT EVALUATION IN NURSE ROSTERING

3.4 Inconsistencies in constraint evaluation

Static horizon approaches lead to inconsistent constraint evaluation at the
boundaries of the scheduling period. This section supports this claim
by identifying consistency issues for both counter and series constraints.
Furthermore, related literature is discussed which addresses some of these
identified problems.

Section 3.3 defined counters as constraints which limit the occurrence of a
particular type of assignment in a period. For example, overtime can be limited
by a counter constraint on the number of hours worked. In practice, violations
of this constraint are carried over from one scheduling period to the next, such
that they can be compensated. This allows overtime to be balanced over a
longer time period than just one scheduling period, which is often necessary due
to peaks in coverage demand. Furthermore, wards with structural understaffing
require nurses to consistently work overtime. In these cases, carrying over
information from one period to the next is a vital requirement for a scheduling
system. Ignoring overtime from the previous scheduling period, which is what
happens when considering a static horizon, results in unbalanced workload and
discontented staff.

Series constraints restrict successive assignments. In a static horizon approach,
the evaluation of these constraints becomes inconsistent at the boundaries of
the scheduling period. Consider the at least three consecutive days worked
constraint. This series constraint cannot be correctly evaluated using only the
data from the current period. Assignments from the preceding schedule, or at
least from the last two days from the previous scheduling period, are necessary
for a consistent constraint evaluation. Ignoring such considerations can lead to
solutions which neglect violations of series constraints at the boundaries of the
scheduling period.

To address these issues, Salassa and Vanden Berghe [110] introduced the stepping
horizon approach to nurse rostering, in which data from the preceding period
imposes restrictions on the current scheduling period. Figure 3.1 illustrates this
concept.

The idea of systematically considering information from the previous period
has been explored by only a few authors in the context of personnel rostering.
Glass and Knight [55] discuss issues regarding continuity in the ORTEC01
benchmark instance. Two ideas are presented to address these problems: 1)
adding specialised continuity constraints at the start of the scheduling period,
and 2) counting additional implied penalties to avoid large, avoidable penalties
in the next scheduling period. By using these two concepts, a more realistic
solution for the ORTEC01 instance is generated.

INCONSISTENCIES IN CONSTRAINT EVALUATION 45

time
Past data Current horizon

optimisation

New data

Current problem data: new data + past data

Figure 3.1: Stepping horizon approach [110]

Previous Current

? On Off

(a) Example 1: no isolated days-on

Previous Current

N N N?

(b) Example 2: maximum number of
consecutive night shifts

Figure 3.2: Examples of series at the boundaries of the scheduling period

Burke et al. [23] describe a commercial nurse rostering system in which
assignments from the previous period are used to initialise the constraints that
apply to the current scheduling period. Based on relevant previous assignments,
the initialisation procedure adjusts the ranges of some constraint parameters.

Smet et al. [112] present a general model for personnel rostering in which
information from past (and future) scheduling periods can be included, so that
constraints can be correctly initialised. Examples are discussed to illustrate
the need for historical information when the evaluation of series constraints is
extended over the boundaries of the scheduling period. To correctly evaluate
series constraints concerning isolated days-on (Figure 3.2a) or the number of
consecutive night shifts (Figure 3.2b), a stepping horizon approach is required
such that necessary information from the previous period can be taken into
account.

Ikegami and Niwa [66] use previous assignments to explicitly model restrictions
on the first few days of the current period, in the form of additional constraints.
Warner [122] models the working history such that the quality of the nurses’
previous rosters and their preferences for the current period can be balanced.

46 POLICIES FOR CONSISTENT CONSTRAINT EVALUATION IN NURSE ROSTERING

A systematic study on the impact of taking into account the previous period
on the quality of the generated rosters has not yet been undertaken. Neither
Burke et al. [23], nor Smet et al. [112] discuss an appropriate methodology for
initialisation and its impact on e.g. balancing constraint violations over multiple
scheduling periods. Glass and Knight [55] present results for one benchmark
instance, but a thorough evaluation of the benefits of their stepping horizon
approach is missing. Furthermore, it may become difficult to generate the
additional constraints for comprehensive constraints, and, when there are many
constraints or nurses, it can increase the problem size significantly. Alternative
stepping horizon approaches should thus be 1) sufficiently flexible to be used in
various models, and 2) general enough to cope with various types of constraints.

3.5 Policies for consistent constraint evaluation

This section presents policies for consistent constraint evaluation for both
counter and series constraints in a stepping horizon approach.

3.5.1 Counter constraints

To alleviate the inconsistencies identified in Section 3.4, the debit system is
introduced. The idea is to calculate debits for each nurse based on assignments
in the previous period, which are then used to modify ranges of counters in the
current scheduling period. Algorithm 1 shows the pseudocode of the algorithm
for calculating the debits. Let Ci be the set of counter constraints associated
with contract type i, and Ni the set of nurses with contract type i. Let vn,c

be the value of constraint c for nurse n in the previous scheduling period. The
range (minimum, maximum) of counter c in the previous and current period
are denoted as ln,c, un,c and l′n,c, u′n,c, respectively.

The mechanism of Algorithm 1 is illustrated through an example concerning
a constraint on the number of days worked. Clearly, the debit system can be
easily applied to other counter constraints as well.

First, within each set of nurses with identical contracts, the nurse working the
most days in the previous scheduling period is identified. Based on the number
of days worked of this nurse (τc), the amount of debit for all nurses is calculated
as the difference between the largest number of days worked and his/her own
number of days worked (dn,c).

POLICIES FOR CONSISTENT CONSTRAINT EVALUATION 47

Algorithm 1 Debits calculation algorithm
1: for all i ∈ contract types do
2: for all c ∈ Ci do
3: τc = max(v1,c, ..., v|Ni|,c)
4: for all n ∈ Ni do
5: dn,c = τc − vn,c

6: l′n,c = ln,c + dn,c

7: u′n,c = un,c + dn,c

8: end for
9: end for

10: end for

Days worked Debit

Nurse1 20 0
Nurse2 18 2
Nurse3 17 3

Table 3.2: Example debit calculation

A concrete example is shown in Table 3.2. In one period, Nurse1 has worked 20
days, Nurse2 18 days, and Nurse3 17 days. The debit system provides a debit
of 20− 18 = 2 to Nurse2 while Nurse3 receives a debit of 20− 17 = 3 days.

Before solving the problem for the current period, the system changes the
range of the allowed number of days worked for each nurse, based on their
received debit. Adapting individual conditions based on previous assignments
corresponds to what is done in practice when, for example, overtime is carried
over to the next period. Continuing the example from Table 3.2, for Nurse1,
nothing changes since the debit is zero. For the remaining nurses, a quantity
equal to the debit is added to both the minimum and maximum allowed number
of days worked. If in the previous period, the number of days worked had to
be between 10 (minimum) and 16 (maximum), then the ranges in the current
period for Nurse2 are set to 12/18 and for Nurse3 to 13/19.

3.5.2 Series constraints

A policy for consistent evaluation of series constraints in a stepping horizon
approach is straightforward. By providing information on the previous period,
the stepping horizon approach is no longer limited to the current period for
evaluation, but can be extended into the previous period.

48 POLICIES FOR CONSISTENT CONSTRAINT EVALUATION IN NURSE ROSTERING

Previous period Current period

Additional series evaluations

Mon Tue Wed Thu FriSunSat

Figure 3.3: Evaluation of series constraints in a stepping horizon approach

Figure 3.3 shows which intervals need to be considered when evaluating the no
isolated day-on constraint. A static horizon approach only checks the intervals
starting in the current scheduling period. The stepping horizon methodology
enables evaluation over the boundaries of the current scheduling period, and
thus arrives at high quality solutions when data regarding preceding roster
periods is available.

3.6 Computational analysis

The identified constraint evaluation inconsistencies influence the quality of
employee rosters. In order to analyse the impact, the results of a series of
computational experiments are analysed. The benefits of applying the proposed
policies in a stepping horizon approach are also evaluated and discussed.

3.6.1 Experimental setup

Instances from the first International Nurse Rostering Competition (INRC) [61]
were used in the experiments. This choice is motivated by the fact that 1) these
instances have become benchmarks for automated nurse rostering research [19],
and 2) they can be solved to optimality, in acceptable computation time, with
an integer programming solver. Furthermore, these instances provide realistic
scenarios in that some of the contractual constraints can never be satisfied
in feasible solutions. For example, to meet the coverage requirements, nurses
have to work more than the maximum allowed number of working days. These
instances are thus very suitable to illustrate the proposed policies.

All experiments were conducted using an integer programming model
implemented in the XPRESS MOSEL modelling language. The XPRESS
solver (v. 21.01.06) was used on an Intel Core 2 Duo CPU at 2.13GHz with
4GB RAM.

COMPUTATIONAL ANALYSIS 49

3.6.2 Counter constraints

The goal of the first set of experiments is to demonstrate that a static horizon
approach risks to generate unacceptable results when looking at successive
scheduling periods, while the debit system in a stepping horizon approach
provides a practical and easily adaptable alternative. The focus is on a constraint
on the number of days worked, which allows workload balancing over multiple
scheduling periods.

An unbalanced shift roster is quantified by the maximum imbalance. This is
the largest difference in number of days worked between all nurses with the
same contract type. Assume, for example, that in an optimal solution, nurse i
works vi days, and nurse j vj days. The imbalance between these two nurses is
|vi− vj |. The largest difference between all nurses with the same contract is the
maximum imbalance. In practice, nurses will want the maximum imbalance to
be spread among different staff members in different scheduling periods, such
that overtime is fairly distributed over staff.

To evaluate the benefit of the debit system over the static horizon approach,
the maximum imbalance was calculated for a one-year period. Using the
static horizon approach, twelve periods of one month were successively solved
without taking into account data from previous periods. In the stepping horizon
approach, after solving each period, the debit system was applied before solving
the next period.

Table 3.3 shows for ten instances, the maximum imbalance (MI), organised
per contract type (100%, 75%, 50% and Night). The contribution of the debit
system is highlighted through the decrease of the maximum imbalance compared
to the results obtained with the static horizon approach (∆). For example, in
the sprint01 instance, the maximum imbalance in one year for the full time
nurses is 48 days when using a static horizon approach. This means that among
the full time nurses, at least one nurse is working 48 days more than another
nurse within one year. This roughly translates to an increased workload of two
months of one nurse over another. By applying the debit system, the maximum
imbalance is reduced to only 8 days, thereby reducing the imbalance with 40
assignments. In most cases, the maximum imbalance is significantly reduced
when using the debit system, while the few increases are relatively small.

Figure 3.4 illustrates the practical implications of the debit system. In the
example, each nurse is allowed to work at most 18 days. However, due to
structural understaffing in the ward, working more assignments than allowed is
unavoidable. The static horizon results in an unbalanced workload among the
nurses, when considering multiple scheduling periods (Figure 3.4a). Each nurse
works the same number of days in each period, without any compensation. In

50 POLICIES FOR CONSISTENT CONSTRAINT EVALUATION IN NURSE ROSTERING

St
at
ic

ho
riz

on
St
ep

pi
ng

ho
riz

on
(d
eb

its
)

10
0%

75
%

50
%

N
ig
ht

10
0%

75
%

50
%

N
ig
ht

M
I

M
I

M
I

M
I

M
I

∆
M
I

∆
M
I

∆
M
I

∆

sp
rin

t0
1

48
12

0
0

8
-4

0
2

-1
0

5
5

0
0

sp
rin

t0
2

24
24

24
0

24
0

12
-1

2
6

-1
8

0
0

sp
rin

t0
3

60
0

12
60

2
-5

8
2

2
13

1
2

-5
8

sp
rin

t0
4

12
0

0
24

3
-9

29
29

15
15

2
-2

2
sp
rin

t0
5

84
24

24
12

17
-6

7
11

-1
3

4
-2

0
13

1
sp
rin

t0
6

24
12

12
36

3
-2

1
1

-1
1

5
-7

9
-2

7
sp
rin

t0
7

36
24

24
12

14
-2

2
1

-2
3

12
-1

2
16

4
sp
rin

t0
8

36
24

0
12

3
-3

3
12

-1
2

8
8

9
-3

sp
rin

t0
9

36
36

12
24

6
-3

0
18

-1
8

3
-9

1
-2

3
sp
rin

t1
0

48
12

24
12

7
-4

1
2

-1
0

27
3

19
7

Av
er
ag
e

41
17

13
19

9
-3

2
9

-8
10

-3
7

-1
2

Ta
bl
e
3.
3:

C
om

pa
ris

on
of

th
e
m
ax

im
um

im
ba

la
nc

e
ov
er

a
on

e
ye
ar

pe
rio

d

COMPUTATIONAL ANALYSIS 51

15

17

19

21

23

25

1 2 3 4 5 6 7 8 9 10 11 12

N
r

o
f

d
ay

s
w

o
rk

ed

Period

Nurse1 Nurse2 Nurse3 Nurse4

(a) Static horizon approach (Nurse3 and Nurse4 have identical values)

15

17

19

21

23

25

1 2 3 4 5 6 7 8 9 10 11 12

N
r

o
f

d
ay

s
w

o
rk

ed

Period

Nurse1 Nurse2 Nurse3 Nurse4

(b) Stepping horizon approach (debits)

Figure 3.4: Number of days worked per scheduling period

practice, such a solution is unacceptable, since nurses 2, 3 and 4 constantly
need to work the same amount of overtime in each period. Using the stepping
horizon approach (Figure 3.4b), the number of assigned days varies in time;
whenever a nurse works a large surplus in one period, it is compensated in the
following period by assigning less days than contractually required.

3.6.3 Series constraints

The second series of experiments compares the impact of the static and stepping
horizon approaches on violations of series constraints when several successive
scheduling periods are considered.

Table 3.4 shows, for ten instances from the INRC dataset, the total penalty
incurred by violations of series constraints over a period of five months (Penalty),
and the gap to the best possible penalty (∆). The best possible penalty was
obtained by solving the five-month period at once in one pass. Results for the
static horizon approach were obtained by solving each month separately, and
then calculating the penalty after concatenating the five solutions. Finally, for
the stepping horizon approach, information regarding the preceding period was

52 POLICIES FOR CONSISTENT CONSTRAINT EVALUATION IN NURSE ROSTERING

Best possible Static horizon Stepping horizon

Penalty Penalty ∆ (%) Penalty ∆ (%)

sprint01 276 332 20.3% 287 4.0%
sprint02 286 306 7.0% 297 3.9%
sprint03 251 287 14.3% 262 4.4%
sprint04 284 315 10.9% 292 2.8%
sprint05 290 310 6.9% 297 2.4%
sprint06 266 314 18.1% 272 2.3%
sprint07 280 312 11.4% 287 2.5%
sprint08 276 296 7.3% 280 1.5%
sprint09 271 307 13.3% 281 3.7%
sprint10 264 304 15.2% 271 2.7%
Average 274 308 12.5% 283 3.0%

Table 3.4: Comparison of static and stepping horizon approaches for series
constraints

provided to enable the evaluation procedure described on page 47. Again, the
results were obtained by concatenating the five one-month solutions, and then
calculating the penalty.

The results in Table 3.4 show that by considering isolated scheduling periods,
valuable information is neglected, causing additional violations of series
constraints at the boundaries of the scheduling periods. This results in
significantly more constraint violations by the static horizon approach than by
the stepping horizon approach and the best possible. There still exists a gap
of on average 3% between the best possible penalty and the penalty obtained
with the stepping horizon approach, mainly due to the fact that the stepping
horizon approach still only considers one-month periods, thereby inevitably
incurring penalties which can be avoided when considering all five months at
once. However, in practice, generating an optimal solution for the aggregated
scheduling period is not realistic, since 1) the input often only become known a
few months before the scheduling period and 2) the problem size would become
too large. The stepping horizon approach thus proves to be a viable alternative.

3.7 Extending the INRC dataset

The instances of the first INRC are used in many academic studies for evaluating
the performance of search algorithms. These instances serve as an excellent
benchmark although they do not fully represent realistic scenarios. This section
introduces new instances based on the INRC data format in an effort to extend
the currently available instances with more practical cases. By adhering to the

CONCLUSIONS 53

model presented by Haspeslagh et al. [61], these new instances can easily be
used for evaluating academic nurse rostering contributions in a more realistic
setting.

Two modifications were made to the existing instances. First, additional
information regarding the previous scheduling period was added to the new
instances so that the evaluation techniques presented in Section 3.5 can be
applied. The organisers of the INRC have supported this research by providing
the best known solutions for each instance. The dates of the assignments in
these solutions were modified by setting them four weeks earlier, so that the
best known solutions represent the preceding schedule of the problem to be
solved. Second, in some of the instances, new constraints were added to the
nurses’ contracts to model important organisational and legislative constraints
from practice. These additional constraints restrict shift assignments within
consecutive working days. For example, in the current instances, there is no
penalty for a nurse who works a shift sequence such as ’EEDLDE’, with E
an early shift, D a day shift, and L a late shift. In practice, however, such
assignments will be avoided since nurses prefer to work in blocks of identical
shifts or in a forward shift rotation. Constraints penalising such assignments
have, therefore, been added to the new instances as forbidden patterns.

The new instances and the extended data format for the input files have been
made available on a dedicated web page1. Furthermore, an evaluator was
developed to validate solutions for these new instances. The validator is similar
to the INRC’s validator, but it also incorporates the debit system for counters
and the stepping horizon methodology for evaluating series constraints.

3.8 Conclusions

This chapter highlighted issues in academic models for nurse rostering which
arise due to the absence of provisions for taking into account continuity. Several
examples illustrated that ignoring assignments from previous periods can result
in solutions that are unacceptable in practice. Policies were proposed to manage
the evaluation of the two main types of constraints in nurse rostering. Both
policies require a stepping horizon to be used such that information from outside
the current scheduling period can be used during constraint evaluation.

By analysing a series of computational experiments, the effectiveness of the
proposed policies in a stepping horizon approach was demonstrated, and
compared with a static horizon approach, which is the standard in academic

1http://gent.cs.kuleuven.be/nurserostering.html

http://gent.cs.kuleuven.be/nurserostering.html

54 POLICIES FOR CONSISTENT CONSTRAINT EVALUATION IN NURSE ROSTERING

nurse rostering. The proposed policy for counter constraints reduced the
unbalanced workload over a one-year period with up to 50%. The stepping
horizon evaluation policy reduced the number of violations for the series
constraints with 8%.

Part II

Practice

55

Introduction to Part II:
Practice

Despite many advances in the field of automated nurse rostering, a significant
gap continues to exist between academic research on nurse rostering and the
implementation of results in practice. Kellog and Walczak [70] discuss several
reasons for this gap, of which the chapters in Part II address two: the narrow
scope of academic models, and academic research neglecting vital practical
issues, specifically regarding the implementation of an automated rostering
system in practice.

Chapter 4 introduces a general model for rich nurse rostering problems. After
several decades of academic research, there exists a large body of literature
detailing various nurse rostering problems. Typically, each study considers a
small set of constraints, only relevant to their particular problem. Few state
of the art models are capable of capturing the complexity of nurse rostering
problems from practice. In Chapter 4, such a feature-rich general model is
proposed for rostering problems, which has been implemented in commercial
software for automated personnel rostering. Additionally, new benchmark
instances are published based on real world data and compliant with the
presented model.

Another practical issue concerns the implementation of software for automated
nurse rostering. Before being able to use such software, typically, practitioners
need to go through an extensive configuration phase. First, various legislative
and departmental rules and regulations need to be transferred to constraints
which can be interpreted by the algorithm. Second, a priority ordering of these
constraints needs to be established, indicating which constraints should be less
likely to be violated than others. Chapter 5 introduces a technique for partially
automating the configuration phase through automatic weight extraction. The
practical applicability of the new approach is evaluated in two case studies.

57

Chapter 4

A general object model for
rich nurse rostering problems

In practice, nurse rostering problems are often too complex to be expressed with
the available academic models. These models are not rich enough to represent
the variegated nature of real world scenarios, and, therefore, rarely find their
way to practical applications. This chapter introduces a general model for
practical nurse rostering problems, aiming to facilitate re-use of academic nurse
rostering approaches in a real world environment. Several complex problem
characteristics are discussed, resulting in an object model capable of handling a
diverse set of problems. Furthermore, a novel benchmark dataset based on this
model is presented.

This chapter is an adaptation of Smet, P., Bilgin, B., De Causmaecker, P. and
Vanden Berghe, G. (2014). Modelling and evaluation issues in nurse rostering.
Annals of Operations Research, 218 (1), 303-326.

Part of the presented model was also included in the doctoral dissertation of
Burak Bilgin [10], as he was responsible for defining many of the core concepts
in the model.

4.1 Introduction

Nurse rostering belongs to the most varied personnel rostering problems within
the academic literature on timetabling and scheduling [119]. With the majority

59

60 A GENERAL OBJECT MODEL FOR RICH NURSE ROSTERING PROBLEMS

of papers addressing real problems from hospitals all over the world, the
differences in hospital management are quite noticeable.

Nevertheless, currently available academic models often do not cover many of
the instances encountered in real rostering environments. This may partially
explain why a vast academic effort to cope with such problems has not yet led
to widespread application in hospitals [70]. Several extensions need to be added
to the standard models in order to address real world instances as accurately as
possible. As a result, the current nurse rostering benchmarks used in academic
research inadequately represent practical scenarios [11, 15, 61, 121].

Bilgin et al. [11] introduced a model for standardising a set of common elements
belonging to a large variety of nurse rostering problems. This chapter builds
upon this work, and presents extensions to their model, mainly regarding skills
and generic constraint domains. The most important components are described
in detail. This chapter does not include mathematical formulations of the
components, but rather provides a description along with several examples
to illustrate their application. An integer programming formulation of the
presented model can be found in Smet et al. [113].

A new benchmark dataset complying with this general model is presented,
containing rich instances based on data obtained from two Belgian hospitals.
This new dataset enables researchers to verify the performance of their
algorithms in highly realistic scenarios.

The rest of this chapter is organised as follows. The main contributions are
discussed in Section 4.2. Section 4.3 describes the proposed general model for
nurse rostering. A new dataset based on this model is introduced in Section 4.4.
Finally, Section 4.5 concludes the chapter.

4.2 Contributions

As many of the academic models make strong abstractions of reality, their impact
in practice is often not significant. This chapter introduces a general model
which takes into account a large variety of important practical considerations.
Algorithms designed to cope with this model would thus be able to solve
problems which are much closer to the problems faced in practice.

The presented model has been implemented in a commercial software package for
(automatically) constructing and managing personnel rosters2, and is currently

2Plan@SAGA, Tobania

OBJECT MODEL 61

used in hospitals and other organisations in Belgium, France, the Netherlands
and Luxembourg.

Furthermore, since the standardised model is capable of representing a large
variety of nurse rostering problems, it can support academic research in
investigating the general applicability of new techniques. As an initial effort,
a new benchmark dataset based on real world data has been made publicly
available on a dedicated web page3, which also allows researchers to validate
new solutions.

4.3 Object model

This section details the different elements of the general model. De Causmaecker
and Vanden Berghe [38] introduced a notation based on the α|β|γ notation for
scheduling problems, to describe and classify nurse rostering problems based on
the presence or absence of specific problem characteristics. Where possible, the
concepts discussed in this chapter are situated in this classification scheme. It
should be noted that some components contain an amount of detail beyond the
α|β|γ scheme and are not classified accordingly.

Figure 4.1a shows the rostering model as a tree structure with scheduling session
as the root element. A scheduling session consists of four elements: scheduling
period, schedule, schedule constraints and schedule definitions.

4.3.1 Scheduling period

The scheduling period in personnel rostering problems varies among different
sectors, countries and times of the year. In Belgian hospitals, scheduling periods
are typically four weeks, or one month. Some periods, such as Christmas and
the summer holidays, require more attention than the rest of the year due to
fewer available personnel. Consequently, in some hospital wards, the scheduling
period is limited to two weeks during these seasons.

In order to address these variations, the definition of the scheduling period in a
personnel rostering model must be flexible. Therefore, the scheduling period
element is defined with a start date and an end date.

3http://gent.cs.kuleuven.be/nurserostering.html

http://gent.cs.kuleuven.be/nurserostering.html

62 A GENERAL OBJECT MODEL FOR RICH NURSE ROSTERING PROBLEMS

Scheduling

Session

Scheduling

Period

Schedule

Definitions

Schedule

Schedule

Constraints

(a) Scheduling session

Schedule

Definitions

Holidays

Skill Types

Shift Types

Constraint

Sets

Employees

Domains

Day Sets

Shift Type

Sets

Skill Type

Sets

Weights

(b) Schedule definitions

Employees

Employee

Identifier

Employee

Skill Types

Contracts

Requests

C. Start

Values

C. Remainder

Values

(c) Employees

Figure 4.1: Main elements of the model

4.3.2 Schedule definitions

The schedule definitions element defines the core concepts of any personnel
rostering problem instance (Figure 4.1b). Elements in bold refer to additions
with respect to the model of Bilgin et al. [11]. The following paragraphs detail
these concepts.

Skill types

Skill types define the levels of qualification of employees, e.g. in health care,
common skill types include head nurse, regular nurse and caregiver. In addition,
skills that require specific training, such as ophthalmology or ambulance driver,
also require modelling. In the general model, the skill types element is a
collection of unique identifiers referring to these skills.

OBJECT MODEL 63

Shift types

Shift types refer to the daily assignment units. In the presented model, neither
the number, nor structure of shift types is fixed.

Each shift is uniquely defined under the shift types element. Each shift type
is defined by a specific start time and end time. Furthermore, a required rest
period before and after is defined for each shift individually. Finally, due to
breaks, the actual job time does not always equal the duration of the shift type.
An additional element allows to specify the net job time, which is an important
consideration for the evaluation of constraints related to work time.

In the α|β|γ notation, the general model covers problems with a variable number
of shifts (N) and with overlapping shifts (O).

Constraint sets

A constraint set is composed of a unique identifier and a set of constraints
corresponding to an employee’s contract. These constraints apply restrictions
to the schedule of an employee. They are called time related constraints in
Burke et al. [23] and correspond to availabilities (A) and sequences (S) in the
α|β|γ notation.

Constraints are modelled around three general types: counters, series and
successive series [11]. In real world problem instances, they are usually
considered soft constraints by defining a weight to express the relative importance
of each constraint. This allows the model to represent rostering problems with
personnel regulations constraints (P) as optimisation objective in the α|β|γ
notation.

The three constraint types use a variety of specific subjects and parameters
to cover a diverse range of employment constraints encountered in real world
problems.

• Counters
This constraint type limits the number of specific roster items in a certain
period, defined by a start date and a number of days. This counter period
does not need to match the scheduling period. Seven subjects can be
restricted by counters: hours worked, shift types worked, days worked, days
idle, weekends worked, weekends idle and domain.
Some of these constraints are further parametrised through domains
(Section 4.3.4). For example, shift types worked counters have a shift type

64 A GENERAL OBJECT MODEL FOR RICH NURSE ROSTERING PROBLEMS

set as a parameter to indicate which shift assignments are constrained.
Besides domain, weekends worked and weekends idle, all counters have
the day types parameter to specify on which days the counter is active,
e.g. all days, only holidays, a combination of week and weekend days, etc.

• Series
This constraint type restricts consecutive occurrences of specific roster
items. They are defined for five subjects: shift types worked, days worked,
days idle, weekends worked and weekends idle. Similar to counters, shift
types worked series are also further parametrised through a shift type set.

• Successive series
This constraint type restricts two consecutive series: if the first series
appears in a roster, it must be immediately succeeded by the second series.
Five successions of series are considered: days worked → days idle, days
idle → days worked, shift types worked → days idle, days idle → shift
types worked and shift types worked → shift types worked.

Employees

Nurse rostering problems encountered in hospitals are typically very diverse in
terms of qualifications, contracts and requests of each employee. The presented
model allows for this diversity by defining each employee with specific employee
skill types, a number of employment contracts and requests (Figure 4.1c).

• Employee skill types
The attributes related to the skill types of an employee are expressed
under the employee skill type elements. This element varies according to
the type of problem. Section 4.3.3 discusses four cases.

• Contracts
A contract element has a start date, end date and an identifier referring
to a constraint set. Each employee has one, or several non-overlapping
contracts. The latter occurs when a new contract starts and an old contract
ends within the same scheduling period. Contracts can be defined for
each employee separately, thereby allowing a high degree of individuality.

• Requests
Employees can express assignment and absence requests, both treated
as soft constraints in the presented model. Assignment requests are
expressed using domain counters. Absence requests are expressed as

OBJECT MODEL 65

separate elements under requests. The reason for this is an additional
element in absence requests, the job time, whose value is added to the
hours worked counter values of the employee. This can be used to model
the paid holidays of the employee.

To correctly evaluate constraints at the boundaries of the scheduling period,
additional information is necessary regarding previous and future assignments
(see also Chapter 3). This information is defined under the counter start values
and counter remainder values elements.

• Counter start values
Counter periods may exceed the scheduling period [29]. For example, a
counter can be defined for one year, but the scheduling period is defined
as four weeks. In this case, the value of the counter up until the current
scheduling period is specified as the counter start value.

• Counter remainder values
If the counter period exceeds the scheduling period, the number of the
corresponding roster elements in the remainder of the counter period
is called the counter remainder value. For example, if the period of a
weekends worked counter is one year and the scheduling period is four
weeks, the number of remaining weekends after the current scheduling
period is given as the counter remainder value.

4.3.3 Variations in skill type definitions

Skill type structures can vary significantly between organisations, thereby also
impacting the modelling requirements regarding employee skill types. This
section considers four of these structures, and shows how the model copes with
them through the flexible definition of employee skill types. Following the
α|β|γ notation, both a variable number of skills (N) as well as individual skill
definitions (I) can be modelled. Figure 4.2 shows an overview of how different
cases are represented in the model. The elements in bold refer to new elements
to the model of Bilgin et al. [11].

One skill type in the problem

In this type of problem, all employees have the same skill type. As a result, the
skill type and employee skill type elements are not needed in the model. Note
that this type of problem almost never occurs in practice.

66 A GENERAL OBJECT MODEL FOR RICH NURSE ROSTERING PROBLEMS

Single skill type per employee

In this category, all employees have a single skill type, but there are multiple
types overall. The required skill type must be specified in the coverage
requirements, but not in the assignments since the skill type information can be
retrieved unambiguously (Figure 4.2a). By grouping employees with the same
skill types, these problems can be decomposed into instances of the previous
category.

Multiple skill types per employee

Employees typically have more than one skill type. For example, in some nurse
rostering models, skill types are organised hierarchically such that nurses higher
in the hierarchy are allowed to substitute nurses at a lower level. Substitutions
of a higher ranked nurse by a lower ranked nurse are often not allowed.

In general, the relevance of individual skill types for an employee with multiple
skills varies. In cases where a nurse has multiple skills and one is more expensive
for the organisation, it is less preferred to assign this nurse to the more menial,
but equally paid, role. The opposite can also occur, representing the financial
promotion of a lower level nurse to a higher role. Therefore, simply listing the
skill types of a nurse in the employment definition does not express the problem
sufficiently accurately.

An element consisting of the skill type identifier and a weight representing the
relevance of the skill is required (Figure 4.2b). The relevance is accounted for
by multiplying the number of assignments with this skill type by the weight
and adding the total to the total penalty of the solution.

Different levels of experience for each skill type of the employees

In some working environments, employees have different levels of experience for
each skill type. Consider, for example, a senior regular nurse who is in training
for the role of head nurse. In this case, the titles ‘regular’ and ‘head nurse’
refer to the skill types, and the titles ‘senior’ and ‘trainee’ refer to the level
of experience. In the presented model, this level of experience can be defined
using integer numbers, thereby not limiting the number of different levels. For
each employee skill type, the level of experience is defined along with the weight
(Figure 4.2c).

OBJECT MODEL 67

Employee

Skill Types

Skill Type

identifier

(a) Case 1

Employee

Skill Types

Employee

Skill Type

Skill Type

identifier

Weight

(b) Case 2

Employee

Skill Types

Employee

Skill Type

Skill Type

identifier

Weight

Level of

Experience

(c) Case 3

Figure 4.2: Employee skill type elements for different categories regarding the
skill type properties

4.3.4 Domains

In addition to the basic modelling concepts, domains are introduced as modelling
elements that considerably increase the expressiveness of constraints (Figure 4.3).
Note that domains have a different meaning here than the domain constraints
discussed in Chapter 2.

Basic domains

• Day sets
In the problem model, some constraints can be defined for a subset of
days. A day set consists of a unique identifier and either a date set or
combination of day types (Figure 4.3a). A day type can be defined in
various ways, e.g. all holidays or particular weekdays (Figure 4.3b). A
date set contains specific dates in the scheduling period, and is given a
handling mode, which provides essential evaluation information (Figure
4.3c). The handling mode can be either individual or as a block, depending
on how violations should be calculated during evaluation.

• Shift type sets
In practice, certain constraints involve a set of shift types rather than a
single shift type. By allowing more than one shift type as a constraint
parameter this problem is addressed. Such shift type sets are defined
under schedule definitions, and are referenced to by their unique identifiers
(Figure 4.3d). For example, a constraint can restrict the number of night
shifts assigned to a nurse. However, some wards might have more than

68 A GENERAL OBJECT MODEL FOR RICH NURSE ROSTERING PROBLEMS

Day Sets

Day Set

Identifier

Date Set

Day Types

(a) Day sets

Day Types

Day Type

Any

Holiday

Weekday

(b) Day types

Date Set

Handling

mode

Date

(c) Date set

Shift Type

Sets

Shift Type

Set

Identifier

Shift Type

identifier

(d) Shift type sets

Skill Type

Sets

Skill Type

Set

Identifier

Skill Type

identifier

(e) Skill type sets

Domains

Domain

Identifier

Day Set

identifier

Shift Type

Set identifier

Skill Type

Set identifier

(f) Domains

Figure 4.3: Elements used for domain definitions

one type of night shift, e.g. distinguished by duration. In this case, the
different night shifts can be combined in a shift type set.

• Skill type sets
Similar to shift type sets, some constraints are defined for a skill type set,
rather than for a single skill type (Figure 4.3e).

Domain elements

Apart from the aforementioned basic domains, more complex definitions of
domains may be achieved by using domain elements. A domain element combines
a day set, shift type set and skill type set to specifically identify which part of
the schedule a constraint applies to (Figure 4.3f). The domain elements are used
by the domain counter, absence request, collaboration and training constraints.
A domain can thus be considered as an abstract element which is only relevant
when used as a parameter in a constraint.

OBJECT MODEL 69

In the following, five examples of employee requests are presented to demonstrate
the application of domains as parameters in constraints. Additionally, an
example is included of how to use domains to define individual holidays.

• Absence request on individual holidays. Suppose an employee applies for
a five day absence for home redecoration. This request does not need to
be granted in its entirety, but the closer to five days the better for the
employee. Here, the date set constitutes the five days being requested, the
shift and skill types are all those defined in the problem instance. Note
that the days in the date set are handled individually. The job time is
the job duration for each granted day which is added to the total working
time of the requesting employee.

• Absence request as a block. Consider the previous example, but with the
reason for absence now being a holiday. The request is fully granted only
if all five days are granted. Here the penalty is a fixed value (the weight
of the constraint) which is added to the total roster penalty upon the
rejection of a request. The date set is considered the block of five days
and the shift and skill type sets are defined as before.

• Absence request on Wednesday afternoons. Since most schools in Belgium
have free Wednesday afternoons, many employees prefer to be at home at
this time for their children. This absence request emphasises the domain
element’s shift type set, which consists of shift types that overlap with
the afternoon. The date set consists of Wednesdays and the dates are
handled individually. The skill type set is defined as before.

• Assignment request for a specific skill type. Employees can increase their
level of experience in certain skill types by utilising that particular skill
type often. Imagine a senior caregiver who is also a trainee regular nurse.
To reach junior level she must work a number of assignments as a regular
nurse. In this case the skill type set consists of the ‘regular nurse’ skill,
the date set represents all the dates in the scheduling period which are
handled individually as in the first example, and the shift type set again
consists of all shift types defined in the problem.

• Individual holidays. Employment legislation decrees that each employee
is entitled to a specific number of official holidays per year, making it
difficult to satisfy coverage requirements on the holidays. However, certain
religious holidays are not relevant to all employees, thus it is beneficial
for the institution to define an individual set of holidays for each religion.
The traditional way to handle the holidays worked constraint is to define
an individual counter for each employee which refers to globally defined
official holidays. Alternatively, domains can be defined such that each

70 A GENERAL OBJECT MODEL FOR RICH NURSE ROSTERING PROBLEMS

Schedule

Assignment

Employee

identifier

Date

Shift Type

identifier

(a) Case 1

Schedule

Assignment

Employee

identifier

Date

Shift Type

identifier

Skill Type

identifier

(b) Case 2

Figure 4.4: Schedule element for different cases regarding the skill type properties

employee has an individual domain representative of their relevant holidays.
A domain counter can then limit the number of holidays worked.

4.3.5 Schedule

The goal of the personnel rostering problem is to generate a schedule, i.e. a
set of assignments. In the model, an assignment consists of four elements: an
employee, a date, a shift type and a skill type.

Contrary to many academic resources on nurse rostering [84, 104], the presented
model considers the skill type as part of the assignment. If a nurse has more
than one skill type, the skill type that he/she uses for the assignment would
be ambiguous unless specified [24]. Figure 4.4 shows the schedule element for
two cases: one in which each employee only has one skill (Figure 4.4a), and one
where employees have multiple skills (Figure 4.4b). The latter requires the used
skill to be explicitly part of the assignment.

Some of the time related constraints overlap two scheduling periods, e.g. series
constraints. The assignments in the overlapping part of the previous scheduling
period must be given as input to ensure an accurate constraint evaluation.
Chapter 3 further elaborates on the importance of providing this additional data
to ensure consistent constraint evaluation at the boundaries of the scheduling
period.

OBJECT MODEL 71

4.3.6 Schedule constraints

The schedule constraints element contains four main concepts that further
constrain the solution: coverage constraints, schedule locks, collaboration
constraints and training constraints.

Coverage constraints

The number of employees needed daily for each shift and skill type is expressed
using coverage constraints (Figure 4.5). Often, the prime objective of a rostering
system is to fulfil these coverage constraints. In the α|β|γ notation, the proposed
model allows for modelling problems that set coverage constraints as determined
(D), range (R) and fluctuating (V). The model allows for each coverage
constraint to be assigned a weight, enabling modelling problems with a load
and coverage constraint objective (L) as part of their optimisation objective.

Every type of problem requires a date and threshold for each defined coverage
constraint (Figure 4.5a). The latter is used to specify the minimum and/or
maximum required number of nurses. Depending on the skill and shift type
properties of a problem instance, additional information may be required. If the
problem instance has multiple skill or shift types, then the information must
also be provided in the definition (Figure 4.5b). A minimum level of experience
must be specified in cases where experience levels are associated with skill types
(Figure 4.5c). Any employee satisfying the requirements will count towards
satisfying the coverage constraint.

Schedule locks

Planners sometimes manually construct a partial schedule. Typically, changes
in these parts of the schedule by an algorithm are not allowed. In the presented
model, parts that are not allowed to be modified are identified with schedule
locks. A schedule lock is defined by an employee and a date.

Collaboration

Situations arise in working environments where specific groups of employees are
required to work together due to complementary skills. However, the opposite
is also true, e.g. when family members request to work different shifts so that
at least one of them can take care of their children. Collaboration constraints
are used to model such scenarios (Figure 4.6a). In the α|β|γ notation, this

72 A GENERAL OBJECT MODEL FOR RICH NURSE ROSTERING PROBLEMS

Coverage

Constraints

Coverage

Constraint

Date

Threshold

Weight

(a) Case 1

Coverage

Constraints

Coverage

Constraint

Date

Shift Type

identifier

Skill Type

identifier

Threshold

Weight

(b) Case 2

Coverage

Constraints

Coverage

Constraint

Date

Shift Type

identifier

Skill Type

identifier

Threshold

Weight

Min level of

experience

(c) Case 3

Figure 4.5: Coverage constraints

constraint is referred to as chaperoning (C). The collaborating employees are
expressed as an employee set containing the identifiers of the relevant employees.
Note that the number of employees to collaborate is not limited to two.

The scope of collaboration constraints can be restricted using domains.
Collaboration constraints can be required only on specific days, for specific shifts
and skill types. Finally, the threshold element defines the type of collaboration.
If the employees are to not work together, then the maximum threshold must
be set to zero, and if n employees should work together, then the minimum
threshold must be set to n.

Training

In an environment with multiple levels of experience, it is desirable that
experienced employees work together with those less experienced to train
them. A training constraint restricts the ratio between the numbers of assigned
employees with different levels of experience (Figure 4.6b). In the α|β|γ notation,
this constraint also corresponds to chaperoning (C).

Consider the following administrative guideline as an example: at least one
senior caregiver should be assigned for every five junior caregivers. In this
case, a training constraint is defined where the preceding level is junior and the
succeeding level is senior. The threshold ratio is 0.2 and the domain identifier

NEW BENCHMARK DATASET 73

Collaborations

Collaboration

Employee

Set

Employee

identifier

Domain

identifier

Threshold

Weight

(a) Collaboration constraints

Training Set

Training

Preceding

Level

Succeeding

Level

Threshold

Ratio

Domain

identifier

Weight

(b) Training constraints

Figure 4.6: Collaboration and training constraints

refers to a domain consisting of all days and shift types but restricted to
caregivers.

This way, the training constraint is defined as a one-way relationship. If a two-
way relationship is required, the complementary constraint must be defined as
well. The following rule is complementary to the example mentioned above: at
least five junior caregivers should be assigned for each senior caregiver assigned.
In this case, the preceding level is senior and the succeeding level is junior. The
threshold ratio is five, while the domain identifier remains the same.

4.4 New benchmark dataset

Based on the proposed model, a new benchmark dataset is introduced allowing
researchers to evaluate the performance of their algorithms on nurse rostering
problems taken from practice. These benchmark problems are based on data
collected from six wards in two Belgian hospitals. Table 4.1 shows an overview
of some general characteristics of the instances.

For each ward, three scenarios are considered. The normal scenario represents
regular working conditions with average coverage requirements as well as the
standard availability of nurses. The overload scenario simulates a situation in
which higher coverage requirements are to be met by the regular staff. This can
happen in situations where the hospital is required to treat a larger number
of patients than normal, e.g. in case of an epidemic. Finally, in the absence
scenario, a nurse is absent for some time during the scheduling period.

74 A GENERAL OBJECT MODEL FOR RICH NURSE ROSTERING PROBLEMS

Instance Employees Shift types Skill types Days

Emergency 27 27 4 28
Psychiatry 19 14 3 31
Reception 19 19 4 42
Meal Preparation 32 9 2 31
Geriatrics 21 9 2 28
Palliative Care 27 23 4 91

Table 4.1: General characteristics of the problem instances

Instance Skill 1 Skill 2 Skill 3 Skill 4

Emergency 1 15 4 26
Psychiatry 1 17 1 -
Reception 1 1 3 15
Meal Preparation 1 31 - -
Geriatrics 4 20 - -
Palliative Care 1 21 4 1

Table 4.2: Skill characteristics of the problem instances

As was discussed on page 65, the presented model includes multi-skilled nurses.
Table 4.2 shows how many nurses are qualified for each skill in each instance.

The instances, as well as an XSD of the model, have been made publicly available
on a dedicated web page4. Current best known results are obtained by the
metaheuristic algorithms presented by Smet et al. [112].

4.5 Conclusions

Academic models often fail to consider vital real world aspects of rostering,
and therefore, their implementation in practice becomes difficult. The present
chapter introduced a general model for feature-rich nurse rostering problems,
conceived so that many complex staff-related aspects can be covered, specifically
regarding contracts and qualifications. The flexibility of the model is important
as it allows representing rostering problems originating from organisations with
few regulations, as well as problems with a high degree of variability among the
employees and complex time related constraints.

4http://gent.cs.kuleuven.be/nurserostering.html

http://gent.cs.kuleuven.be/nurserostering.html

CONCLUSIONS 75

The model has been implemented in a commercial software package for
automated personnel rostering and management, and is currently used in
hospitals and other organisations in Belgium, the Netherlands, France and
Luxembourg.

Complying with the model, a new benchmark dataset was generated, derived
from real hospital data. The new instances are publicly available to researchers
wishing to evaluate the performance of their algorithms on instances closely
resembling real world scenarios.

Chapter 5

Facilitating the transition
from manual to automated
nurse rostering

After several decades of academic research in the field of nurse rostering, few
results find their way into practice. One reason for this is that often, the
configuration of a software system for automated rostering is considered too time-
consuming and difficult. This chapter introduces an approach for automating
part of the costly and unintuitive configuration process by automatically
determining the relative importance of soft constraints based on historical
data. The approach is evaluated in two case studies and is validated with
the help of health care practitioners. The results show that, given relevant
historical data, the presented approach simplifies the transition from manual to
automated rostering, thus bringing academic research on nurse rostering closer
to its practical application.

The content of this chapter is based on joint work with Mihail Mihaylov, Vrije
Universiteit Brussel and Wim Van Den Noortgate, KU Leuven.

5.1 Introduction

Despite the advancements of automated nurse rostering techniques [25],
scheduling by hand is still standard practice in many hospitals. An important

77

78 FACILITATING THE TRANSITION FROM MANUAL TO AUTOMATED NURSE ROSTERING

cause of the research-application gap, as identified by Kellogg and Walczak [70],
concerns the transition from manual to automated rostering. Many hospitals
consider the implementation of an automated rostering approach to be too
costly or too difficult. While the nurse rostering literature focuses mainly on
automatically constructing rosters, it rarely addresses the implications and
difficulties of actually implementing an automated rostering technique in a
hospital environment. Expert knowledge is needed for defining all departmental
rules, hospital regulations and staff preferences, as well as their relative
importance, in an automated rostering system. Configuring the software is
time-consuming, as it involves translating skills and expertise in numerical
form, which is not intuitive, even for experienced planners. Many health care
practitioners see this time investment as a deterrent to the use of automated
nurse rostering software and prefer to continue rostering manually.

In modern hospitals, much of the domain knowledge needed to configure a
software system for rostering is already available in the form of historical data.
This chapter explores the possibility of using this data for partially automating
the configuration of a rostering system in order to facilitate the transition
from manual to automated nurse rostering. A methodology is proposed for
extracting constraint importance, in the form of weights, from past rosters.
The approach has been named Automated Weight Extraction (AWE). This
method has been empirically evaluated on real world data and with the help of
health care practitioners in two case studies concerning Belgian hospitals. The
results show that, given an appropriate set of historical data, the proposed AWE
method is capable of automatically extracting weights suitable for automatically
producing rosters that are usable in practice.

The remainder of this chapter is structured as follows. The main contributions
are summarised in Section 5.2. Section 5.3 outlines the difference between the
focus of the current academic approach to rostering and the actual approach in
health care. The rostering task is classified according to the level of automation
in its two main phases. Section 5.4 presents the proposed AWE approach in
detail. In Sections 5.5 and 5.6, data from two case studies from practice are
studied and AWE is empirically evaluated on hospital data and with the help
of health care practitioners. Finally, Sections 5.7 and 5.8 conclude the chapter.

5.2 Contributions

This chapter introduces a methodology for automatically determining the
relative priority of constraints in automated nurse rostering. This contribution
effectively defines a new rostering technique which alleviates practitioners from

NURSE ROSTERING: THEORY VS. PRACTICE 79

the unintuitive and error-prone task of manually defining weights. In two case
studies, the proposed approach is evaluated on real world data and with the
help of head nurses responsible for creating rosters.

Software vendors are commonly faced with the issue of setting appropriate
weights when configuring software for automated nurse rostering. This
contribution offers a transparent and easy to understand methodology, which
strongly facilitates the configuration process. The AWE approach, introduced
in this chapter, has been implemented in a commercial software package for
personnel rostering5, currently in use in hospitals and other organisations in
Europe.

5.3 Nurse rostering: theory vs. practice

Due to the large variety of guidelines and regulations, constructing rosters in
health care presents a particularly challenging task compared to other personnel
scheduling domains. Hospitals operate around the clock, introducing specific
constraints on rest times and on night and weekend shifts. The problem is
further complicated by a large range of shift types and skill requirements. The
scheduling period typically spans a few weeks to a few months, with staff
requirements varying each day.

The present contribution focuses on departmental rostering, where the head
nurse of the ward is responsible for creating the rosters. This type of rostering
is also applied in the hospitals considered in the case studies. Team rostering
and self rostering are two other rostering techniques where decision making
is delegated to groups or to individual nurses, respectively. These techniques
increase the perception of autonomy and reduce the rostering effort of the head
nurse. They are restricted to small and medium-sized wards [111].

The academic literature on nurse rostering focuses mainly on optimising rosters
of health care personnel. However, in practice, practitioners still need to invest
time and effort transitioning to these automated solutions from traditional
manual planning. In the following subsections, a brief overview of nurse rostering
is presented, both from an academic and a practitioners’ point of view.

5Plan@SAGA, Tobania

80 FACILITATING THE TRANSITION FROM MANUAL TO AUTOMATED NURSE ROSTERING

5.3.1 Rostering in the academic literature

Nurse rostering is typically formulated as a constrained optimisation problem,
attempting to satisfy a number of soft constraints [113]. Feasible solutions need
to respect all hard constraints induced by resource restrictions, departmental
requirements and contractual obligations. The quality of a feasible solution (or
penalty) is measured by an objective function and is related to the number of
respected soft constraints concerning staff and contractual preferences. The
large number of soft constraints, often mutually conflicting, makes it practically
impossible to satisfy all preferences. The objective of nurse rostering problems
is to minimise the constraint violations. Such optimisation problems are thus
multi-objective in nature. Ideally, the planner would have to select from a set
of Pareto-optimal solutions. Here, a Pareto-optimal solution is one where no
constraint violation can be reduced, without increasing another one.

Multi-objective optimisation is often addressed by employing a weighted sum
objective function due to its simplicity and ease of implementation. This method
scalarises the vector of objectives into a single objective value by summing all
violated soft constraints, weighted by their relative importance.

Many nurse rostering approaches in the literature utilise weighted sum objective
functions and define their constraint weights with the help of health care
practitioners [1, 4, 20]. Others simply set the weights by trial-and-error, without
elaborating on the choice of values or on their effect on the overall quality of
generated schedules [4, 5]. A combination of these two settings also exists, where
health care practitioners define only a general preference ordering of constraints
and then researchers choose the numerical values according to some rule [9, 26].
These manual methods of determining constraint weights are time-consuming.
Practitioners need to be consulted, or a large sample of tests needs to be
performed. In addition, there are no explicit guidelines for setting constraint
weights, whereas setting them poorly induces biased solutions. Research has
indicated that setting static weights may result in a solution landscape that is
difficult to explore [101]. Therefore, different methods have been proposed for
varying constraint weights, such as SAWing [47], Noising [32] and other adaptive
weight methods [69]. However, these methods rely on additional parameters
that still need to be tuned manually.

Drawbacks of the weighted sum objective function are that constraint weights are
subjective, need to be explicitly defined and that the final solution is sensitive to
the chosen values. Numerous other approaches to multi-objective optimisation
exist, such as the ε-Constraint method [31], compromise programming [6] and
evolutionary algorithms [34]. Most of these approaches maintain multiple Pareto-
optimal solutions and select a single solution based on some high level problem

NURSE ROSTERING: THEORY VS. PRACTICE 81

Figure 5.1: Overview of different levels of automation of rostering practices
and their two main phases. Non-shaded boxes show manual steps, grey boxes
indicate automated ones

information, input by the user. Nevertheless, the weighted sum objective
function remains the most preferred multi-objective optimisation method. It is
used in the majority of the academic nurse rostering literature [25], as well as
in practical applications [1, 50, 93].

5.3.2 Rostering by health care practitioners

In practice, the rostering task encompasses two phases: the initial investment and
the rostering process. Academic research mainly focuses on the rostering process,
while in practice, the preceding configuration phase is equally important. This
first phase is called the initial investment as the hospital needs to invest resources
into translating departmental rules and regulations to software constraints and
defining their relative importance. Previous academic research has overlooked
this stage, under the assumption that it offers little potential for automated
improvement. However, it constitutes an important, time-consuming phase
in the transition from manual to automated nurse rostering that needs to be
appropriately addressed.

82 FACILITATING THE TRANSITION FROM MANUAL TO AUTOMATED NURSE ROSTERING

R
os
te
rin

g
ty
pe

an
d
tr
an

sit
io
n

Fu
lly

m
an

ua
lr

os
te
r-

in
g

A
ut
om

at
ed

ro
st
er
in
g,

m
an

ua
lt
ra
ns
iti
on

A
ut
om

at
ed

ro
st
er
in
g,

se
m
i-a

ut
om

at
ed

tr
an

sit
io
n

Au
to
m
at
ed

ro
st
er
in
g,

fu
lly

au
to
m
at
ed

tr
an

sit
io
n

Pe
rfo

rm
ed

by
H
ea
lth

ca
re

pr
ac
tic

e
M
os
t

ac
ad

em
ic

re
se
ar
ch

an
d

so
m
e

he
al
th

ca
re

pr
ac
tic

e

T
hi
s
ch
ap

te
r

Fu
tu
re

tr
en

ds

Be
ne

fit
s

+
co
ns
id
er
s
im

pl
ic
it

co
ns
tr
ai
nt
s

+
sa
ve
s
tim

e
in

ro
st
er
-

in
g

+
ea
sie

r
tr
an

sit
io
n

to
au

to
m
at
ed

+
m
in
im

al
tim

e
in
ve
st
-

m
en
t

+
an

sw
er
s

sp
ec
ifi
c

re
qu

es
ts

+
hi
gh

er
de

pa
rt
m
en
ta
l

co
nt
ro
l

+
re
du

ce
d

tim
e

in
ve
st
-

m
en
t

+
no

hu
m
an

bi
as

D
ra
w
ba

ck
s

-l
ab

ou
r
in
te
ns
iv
e

-r
eq
ui
re
s
ex
pe

rie
nc

e
-r

eq
ui
re
s
da

ta
-r

eq
ui
re
s
da

ta
-r

eq
ui
re
se

xp
er
ien

ce
-
un

in
tu
iti
ve

to
tr
an

s-
la
te

ex
pe

rie
nc

e
-
di
ffi
cu

lty
ha

nd
lin

g
tr
an

-
sie

nt
eff

ec
ts

-
di
ffi
cu

lty
ha

nd
lin

g
tr
an

-
sie

nt
eff

ec
ts

-
co
st
s
th
e

de
pa

rt
-

m
en
t

-b
ia
se
d
re
su
lts

-n
ot

su
ita

bl
e
af
te
r
dr
as
tic

re
st
ru
ct
ur
in
g

-m
ay

no
tc

ap
tu
re

co
m
pl
ex

co
ns
tr
ai
nt
s

Ta
bl
e
5.
1:

C
om

pa
ris

on
be

tw
ee
n
di
ffe

re
nt

le
ve
ls

of
au

to
m
at
io
n
in

nu
rs
e
ro
st
er
in
g
an

d
th
e
tr
an

sit
io
n
fr
om

m
an

ua
lt
o

au
to
m
at
ed

ro
st
er
in
g

NURSE ROSTERING: THEORY VS. PRACTICE 83

5.3.3 Automation of rostering practices

Four different rostering practices are identified according to the level of
automation of the initial investment and rostering process. These practices are
shown in Figure 5.1, where tasks in non-shaded boxes represent work performed
by hand, while the grey boxes indicate automated tasks. Table 5.1 shows both
benefits and drawbacks of the different approaches. In the following subsections,
each of these automation levels is explained, situating the present contribution
in the field, and comparing it to academic research, current practice and future
trends.

Fully manual rostering

Many hospitals conduct labour-intensive manual rostering as the transition
to automated rostering is considered costly and unintuitive. Even though
training personnel for manual rostering is equally costly and may sometimes
be more expensive, it follows long-established and implicit procedures, which
practitioners are reluctant to replace. Manual planners need to study hospital
regulations and departmental constraints before they are able to construct
rosters. They need to also learn, through experience, the relative importance of
these rules, in order to minimise violations of important constraints.

Departmental rostering places the responsibility for designing the rosters with
the head nurse, who has the often unrewarding task of balancing departmental
regulations and staff preferences. Nevertheless, manual planning allows head
nurses to tailor rosters to the particular needs of the department based on
their experience and familiarity with the personal qualities of the staff. For
example, a head nurse may avoid the assignment of two nurses who do not get
along well to the same time period, assign shifts based on personal requests, or
assign fewer nurses than required due to a temporary drop in patient admissions.
Although handling such implicit constraints may improve staff contentment, it
often comes at the expense of the overall organisation, which has little control
over the final rosters.

Automated rostering with manual transition

Hospitals have invested in automated rostering software, partially automating
the labour-intensive manual rostering while tightening central control [1, 50].
The initial investment enables automated rostering by allowing different
automatically generated solutions to be evaluated and compared with the
weighted sum objective function. However, as this is only an approximation of

84 FACILITATING THE TRANSITION FROM MANUAL TO AUTOMATED NURSE ROSTERING

the real (perceived) roster quality, staff members often modify the final solution
to correct any perceived faults or to incorporate additional implicit constraints
and personal requests.

With no explicit guidelines for translating the importance of constraints,
practitioners need to rely on their own experience and intuition when configuring
the numerical weights. The manual configuration of the rostering software
becomes a costly trial-and-error process, where human experts attempt to
correct the search by adjusting constraint importance on the basis of the
obtained solutions. This iterative adjustment is bound to result in a vicious
cycle, as neither the health care practitioners understand the search process, nor
can the software interpret the expert’s rationale to deliver satisfactory results.

Automated rostering with semi-automated transition

The two aforementioned rostering practices involve manual work by experienced
planners and require a costly initial investment phase. Defining constraint
weights manually largely depends on the skills of practitioners to translate their
expertise into quantitative data, while full manual rostering relies entirely on
the experience of the human planner.

Many hospitals aim to increase the rostering process’s automation level by
relying on computerised solutions. Such solutions are only as good as the
domain expertise they contain. In order to incorporate domain expertise into
computerised solutions, either humans need to translate their expertise in a
language interpretable by a computer, or the machine needs to extract the human
expertise. Automated rostering with manual transition addresses the human-
computer knowledge gap from the human side first by letting practitioners
explicitly translate their knowledge into the language of the software planner.

This chapter proposes a new rostering practice where the knowledge gap
is tackled from both sides simultaneously. Human experts only define the
variables of the objective function, i.e. the constraints, while the machine
automatically extracts their relative importance (the weights) from past data.
The transition from manual rostering to automated rostering thus becomes
semi-automated. The efforts and costs of the transition are partially performed
by the machine. This technique reduces the initial investment by supporting
the user in configuring the automated rostering software.

In addition to partially automating the initial investment phase, the proposed
technique excludes the need of manual re-adjustment of constraint weights
in the rostering phase. The constraint weights are updated in a way similar
to the initial phase, namely by examining recent rosters and adjusting the

AUTOMATED CONSTRAINT WEIGHT EXTRACTION 85

importance of constraints based on the changes introduced by the human
planner. Automating the re-adjustment step lowers human bias in the final
solution, but has a potential difficulty handling transient effects, such as illness
of a staff member or a sudden peak in patient admissions. Another problem
is that drastic long-term changes, such as re-structuring or merging of wards,
may have a negative influence on the stored domain knowledge and may require
re-learning.

Automated rostering with fully automated transition

A natural extension to the proposed rostering practice would be to entirely
automate the initial investment phase by extracting not only constraint
importance, but also the constraints themselves. The human-computer
knowledge gap would then be addressed entirely from the computer side, as the
initial investment phase is performed exclusively by the machine. This rostering
methodology would allow any manually rostering ward with relevant historical
data to effortlessly transition to automated rostering.

Extraction of constraints can be achieved in two distinct ways that can later
be combined for improved accuracy. Natural language processing techniques
and text mining can be applied to extract information regarding constraints
from written hospital regulations and departmental rules. Another method to
extract information is to perform pattern detection on historical data using
a general knowledge base. This database of constraints can be collected and
updated by wards, and can even be shared by hospitals, so that automated
methods can detect whether a subset of these constraints has been respected
in past (manually constructed) rosters. Once constraints are extracted, their
importance can be determined through automated weight extraction. As with
the above rostering practice, though, automated knowledge extraction may
incorporate transient effects and learn constraints induced by temporary roster
modifications.

5.4 Automated constraint weight extraction

The remainder of this chapter focuses on automatically defining the importance
of constraints in the initial investment phase. The assumptions here are that
sufficient past rosters are available and that their quality is satisfactory to the
department and its personnel. In addition, all necessary constraints have been
input into the automated rostering software. Although the latter represents
a manual task, the process of adding constraints is rather straightforward, as

86 FACILITATING THE TRANSITION FROM MANUAL TO AUTOMATED NURSE ROSTERING

hospital regulations and departmental constraints are often explicitly stated
in legal documents. Constraint importance, on the other hand, is implicit
and takes experience to learn and translate into numerical weights. The past
schedules and constraints need to be available in a structured way. An example
is represented by the object model presented in Chapter 4.

The proposed AWE approach works as follows. For each constraint, the number
of violations is counted in all rosters, as well as the number of times the
constraint is respected. The sum of these two numbers indicates the instances
of the constraint, i.e. the number of times the constraint can be identified in all
rosters. The new (or automated) weights are defined to be proportional to the
ratio of the number of times the corresponding constraint is respected in the
past schedules versus the total number of instances of that constraint. Formally,
the weight wnew

c of each soft constraint c is defined as follows:

wnew
c = (nc − vc)

nc
(5.1)

where nc is the total number of instances of constraint c in all rosters, and vc is
the number of violations of this constraint. The intuition behind this choice
is that constraints with a high percentage of violations are less important and
should therefore be given low weights. Even though violated constraints might
actually be important, they may be difficult (or impossible) to satisfy, e.g. due
to conflicts with other constraints. Associating very high weights with such
constraints may distort the search process and consume computational resources
in vain. Analogously, constraints that are mostly respected in the historical
data are either important, or easy to satisfy, and are given a high weight.

It should be stressed that the proposed technique simply extracts information
from past data. For this reason, an extracted weight configuration cannot steer
an algorithm to generate more preferable schedules than the manual ones, but
rather schedules that conform to the historical data. The main advantage of the
proposed method is that the obtained weights enable automated configuration
of the scheduling software and do not rely on the skills of the practitioner to
quantify his/her expertise. Moreover, it allows any department with sufficient
historical data to switch to automated rostering by allocating only limited
resources during the initial investment phase, as the most time-consuming task
is automated. Various machine learning techniques may be applied to extract
importance values from manual schedules, or to determine an ordering of the
constraints, such as preference learning through regression or classification
[54]. However, the proposed method is intuitive, transparent, computationally
inexpensive and above all, simple to explain to health care practitioners without
a mathematical background.

A RETROSPECTIVE CASE STUDY 87

5.5 A retrospective case study

The weight extraction method was developed when analysing historical data from
a Belgian hospital that has already transitioned from fully manual to automated
rostering. The initial investment phase in all wards was performed fully manually.
Hospital regulations and departmental rules were translated to constraints in
the automated planner, and their importance was set based on the intuition of
the head nurse of the respective ward. In this section, the following rostering
practices are analysed: fully manual rostering, automated rostering with manual
transition, and automated rostering with semi-automated transition. Specifically,
the weights and constraint violations in different solutions are compared.

5.5.1 Case description

This case study concerns the reception ward of Mariaziekenhuis Noord-Limburg,
a modern Belgian hospital with 350 beds. The ward is medium-sized with up
to 21 staff members, each working one of three contract types: full time, 3

4 or
another part time. The employees are further categorised according to whether
they have telephoning skills or not. Coverage requirements are specified for
different types of early, day and late shifts. In addition to the contractually
required number of hours worked each month, hospital-wide and ward-specific
constraints are specified in the employees’ contracts. The former are concerned
with providing sufficient rest time — 35 hours rest per week for each employee,
and adequate time between two consecutive working days. The ward-specific
constraints restrict certain shift types to be assigned to certain employees (e.g.
4h or 6h shifts should not be assigned to full time employees), and ensure a
minimum number of particular shifts per employee. Furthermore, the ward-
specific constraints state that an employee should never work two consecutive
weekends. Finally, a shift may induce a subsequent number of days off. In total,
each roster needs to consider 100 soft constraints of varying importance.

5.5.2 Study design

The hospital provided data in the form of three years of past one-month rosters.
These rosters had been constructed manually by the head nurse and served as
an initial assignment for the ward before corrections were applied due to illness,
unavailability of personnel or reduced workload. These corrections were not
included in the analysis, as they are incidental and not representative of the
ward’s operation.

88 FACILITATING THE TRANSITION FROM MANUAL TO AUTOMATED NURSE ROSTERING

Three sets of one-month rosters were used. The first set consisted of the rosters
manually constructed by the head nurse without the support of the automated
rostering software. This data set is referred to as the ‘Historical data’. For the
same months, two additional sets of rosters were generated using the rostering
software system. This system was manually configured by the head nurse with
all constraints relevant for the department, as well as the constraint weights.
The first of the generated sets, called ‘Generated schedules with manual weights’,
applied the weights defined by the head nurse. The process of automatically
generating rosters was repeated for the last set, but instead of the manual
weights, AWE extracted weights from the historical data. This was done by, for
each constraint c, calculating nc and vc in each monthly roster, summing all
these values, and computing wnew

c according to Equation (5.1). The extracted
weights were then used to generate schedules for each of the monthly periods.
This last data set is called ‘Generated schedules with extracted weights’.

To analyse the differences between the three sets of rosters, the following data
was collected. First, for each constraint, the weights manually set by the head
nurse in the software system were compared with the weights extracted by the
AWE approach. Secondly, for each constraint, the total number of violations in
all rosters was computed, for all three roster sets. This data was used by the
authors to evaluate how the three different types of rosters compare to each
other.

The algorithm used to automatically generate rosters is the heuristic search
algorithm presented by Smet et al. [112], with a time limit of ten minutes.
Mathematical details on the computation of constraint violations are given by
Smet et al. [113].

5.5.3 Results

For all 100 constraints, Figure 5.2 compares the values of the manually defined
weights with the values of the weights extracted by AWE. Although the values
range from 0 to 1500, the manual weights were chosen among only few discrete
values, while the AWE approach results in a much more spread out weight
distribution. Using a limited number of discrete values for constraint weights
may result in multiple plateaus in the search space and therefore numerous
solutions with equivalent search score. A wider range of weight values, on the
other hand, results in a less monotone search space which may be easier to
explore [89].

The graph also shows that the extracted weights deviate significantly from
the manual weights. This illustrates that the weights chosen by the head
nurse do not correspond to the actual priority of constraints according to the

A RETROSPECTIVE CASE STUDY 89

0

200

400

600

800

1000

1200

1400

1600

0 20 40 60 80 100

W
ei

gh
t

Constraint

Manual weights

Extracted weights

Figure 5.2: Manual and extracted weights for the retrospective case study

accepted rosters. In practice, it is common for head nurses to be satisfied after
making changes to the generated rosters, even though the overall penalty after
such modifications increases [46]. This also suggests that the manually defined
constraint weights differ from the perceived importance of constraints.

In addition to studying the raw values of manual and extracted weights,
the constraint violations in the respective rosters are compared. Figure 5.3
shows the total number of violations for each constraint in the three sets of
rosters. Highlighted are the number of violations of ‘Important constraints’, i.e.
constraints weighted 1000 or more by the head nurse (cf. Figure 5.2). Given
the assumption that the head nurse was satisfied with the manually produced
rosters, the line of the historical data can be interpreted as the preference of
the head nurse for trading off constraint violations. Clearly, the constraint
violations of the rosters generated with manual weights do not follow the same
trend as those of the historical data. This confirms the conjecture that the
manually defined weights do not correspond to what the head nurse perceived
as important while constructing the rosters. Analogously, this result shows that
although the head nurse most certainly has an implicit knowledge of constraint
importance, translating experience into numerical form is not trivial and is
bound to produce inaccuracies.

The constraint violations of the rosters generated with extracted weights closely
approximate the trend in the historical data. This outcome suggests that rosters
generated with the weights extracted by AWE resemble the preferences of
the human planner much more than the rosters generated with the manual
weights do. This illustrates that the proposed AWE approach succeeds better in
determining weights corresponding to the real implicit preferences of the head

90 FACILITATING THE TRANSITION FROM MANUAL TO AUTOMATED NURSE ROSTERING

0

500

1000

1500

2000

2500

3000

0 20 40 60 80 100

N
u

m
b

er
 o

f
vi

o
la

ti
o

n
s

Constraint

Historical data

Generated schedules with manual weights

Generated schedules with extracted weights

Important constraints

Figure 5.3: Comparison of constraint violations in the different rosters

nurses, than the head nurses are able to manually define.

5.6 A prospective case study

Since the hospital in the first case study had already performed the transition
from manual to automated rostering, it was of little interest for the practitioners
to let personnel from this hospital evaluate the results of AWE. Therefore, a
different Belgian hospital, which has recently begun this transition, was invited
to validate the approach in practice. This section first presents an analysis
similar to that of the retrospective case study. Additionally, the outcome of an
evaluation by the hospital’s personnel is discussed.

5.6.1 Case description

This second case study was carried out in AZ Jan Portaels, a medium-sized
Belgian hospital with 400 beds. The hospital had purchased the same automated
rostering software as the hospital in the first case study, but only a few wards
had performed the transition. The head nurses of four of these wards manually
incorporated the constraints in the software and associated a weight to each
constraint, based on their experience from manual rostering.

On the one hand, the practitioners were interested in comparing the quality of
the newly automated rosters with those designed by hand. On the other hand,
the hospital was in favour of testing the weight extraction approach in order to

A PROSPECTIVE CASE STUDY 91

Ward Employees Shifts Skills Constraints

Maternity MT 21 7 2 13
General surgery GS 15 15 2 19
Geriatric medicine GM 21 17 4 14
Operating theatre OT 23 12 3 19

Table 5.2: Overview of wards in the prospective case study

facilitate configuration of the software for the remaining wards. Additionally,
it presented an interesting opportunity to evaluate AWE by comparing the
quality of rosters generated with manual weights versus those generated using
the automatically extracted weights. Therefore, an experiment was conducted
that aimed to evaluate the same three rostering techniques discussed in the
retrospective case study.

The four wards who agreed to participate in this case study were maternity
(MT), general surgery (GS), geriatric medicine (GM) and the operating theatre
(OT), as displayed in Table 5.2. Similar to the first case study, the wards
are medium-sized, but now present a mix of care and non-care units. One
difference with the first case study is the number of constraints considered when
constructing the rosters. For example, the GS ward specifies no ward-specific
constraints. In the MT and GM wards, the number of consecutive working
days is limited to a maximum of five, while for night shifts, the number of
consecutive days worked should be between four and seven. The OT ward wants
to balance the number of undesirable shifts among nurses in order to avoid
an uneven distribution of such shifts. All wards, however, are subject to the
organisation-wide constraints, ensuring sufficient rest time between shifts, and
forbidding some shifts to be assigned to certain nurses (e.g. 4h or 6h shifts to
full time nurses).

The number of constraints in the different wards is, furthermore, influenced by
the number of coverage constraints. The MT ward, for example, has many of
these constraints for the different types of shifts.

Table 5.2 shows that there is a relatively high number of shift types for the GS,
GM and OT wards. Typically, there are only four main shift types: early, day,
late and night. However, for some of these types, short (4h), medium (6h) and
long (8h) variants exist, with different break lengths, which should be assigned
to either part time or full time nurses. Table 5.3 shows the different shift types
for the GM ward.

92 FACILITATING THE TRANSITION FROM MANUAL TO AUTOMATED NURSE ROSTERING

Start End Duration Break

Early shifts

V01 6:45 15:15 8h30 30 min
V09 6:45 12:45 6h00 0 min

Day shifts

D44 8:00 14:30 6h30 30 min
D77 8:00 14:30 6h30 22 min
V02 6:45 13:00 6h15 0 min
D10 7:00 15:06 8h06 30 min
D34 8:00 16:30 8h30 30 min
D70 7:00 15:30 8h30 30 min
D83 7:30 13:30 6h00 0 min
D175 7:30 15:36 8h06 30 min
D16 8:00 16:06 8h06 30 min
D82 7:15 15:45 8h30 30 min

Late Shifts

A01 13:30 21:30 8h00 0 min
A11 15:30 21:30 6h00 0 min
A12 15:00 21:30 6h30 0 min

Night shift

N03 21:15 7:00 9h45 0 min

Other

LW8 7:30 11:30 4h00 0 min

Table 5.3: Shifts in the geriatric medicine ward

5.6.2 Study design

For each of the four wards, three years of historical data were supplied in the form
of past rosters, constructed by the head nurses. The hospital again provided the
manually performed software configuration in the form of constraints and their
associated weights. AWE was applied to extract new soft constraint weights for
each ward, based on the violations in the manual rosters.

As in the first case study, three sets of rosters were compiled: the ‘Historical data’,
the ‘Generated schedules with manual weights’, and the ‘Generated schedules
with extracted weights’. Again, the heuristic from Smet et al. [112] was used to
automatically generate the latter two sets of rosters, following the procedure for
manually constructing rosters, i.e. per quarter of a year. Each set consists of
monthly rosters concerning Q1, Q2 and Q4. July, August and September were
not considered, since they present special conditions due to reduced workload.

The evaluation by the head nurses was conducted in the following way. For each

A PROSPECTIVE CASE STUDY 93

month in the considered periods, the rosters from the three sets were printed
in a familiar format, bundled, and presented together with an evaluation form
on which the head nurses were asked to score, for their ward, each roster on a
scale from 1 (very bad) to 10 (very good). To reduce bias, the different rosters
were presented anonymously so that nurses were not aware whether they were
evaluating a manual or automated roster and whether the latter was generated
based on manual or extracted weights.

At the start of the evaluation, an explanation was given, briefly discussing the
context of the experiments. The rosters were then (subjectively) evaluated and,
relying on the experience of the head nurse, ranked based on their perceived
quality. No time limit was imposed for the evaluation of the rosters. The
experiment was conducted at a different time for each head nurse and there was
no interaction between nurses during the experiment.

The outcome of the evaluation relies on the expertise of the head nurses to
evaluate rosters for their ward. It was assumed that each head nurse is sufficiently
experienced to correctly perform this task, even though the required effort might
be greater for more complex wards such as OT. This assumption is reasonable,
since constructing rosters is one of the main responsibilities of the head nurses,
implying that they are skilled at the task. Nevertheless, the results should
be interpreted with care as it is likely that other head nurses would produce
different evaluations for the same rosters.

5.6.3 Results

Before presenting the results of the evaluation forms, the data of the second
case study is discussed.

Analysis

The values of the manual and extracted soft constraint weights are compared, as
well as the number of constraint violations in the three sets of rosters. Results
are only shown for the GM ward. The other wards presented comparable results.

The weights for the 14 constraints of the GM ward are shown in Figure 5.4a.
Similar to the first case study, manual weights are selected from a small set
of discrete values, while the automatically extracted weights span a wider
spectrum of values from 0 to 1000. Figure 5.4b shows the number of soft
constraint violations in the three sets of rosters. The violations of the five
constraints with the highest manually defined weights are indicated on the
graph as ‘Important constraints’.

94 FACILITATING THE TRANSITION FROM MANUAL TO AUTOMATED NURSE ROSTERING

1

10

100

1000

10000

100000

0 2 4 6 8 10 12

W
ei

gh
t

Constraint

Manual weights

Extracted weights

(a) Weights

0%

20%

40%

60%

80%

100%

0 2 4 6 8 10 12

N
u

m
b

er
 o

f
vi

o
la

ti
o

n
s

Constraint

Historical data

Generated schedules with manual weights

Generated schedules with extracted weights

Important constraints

(b) Violations

Figure 5.4: Comparison of manually defined and extracted weights, and
constraint violations in the different rosters for the GM ward

While the retrospective case study revealed a clear difference between the
violations in the two sets of automatically generated rosters, the distinction
is less clear in the second case study. Neither the manual, nor the extracted
weights contribute to generating rosters that approximate the preferences of
the head nurse, i.e. the violations in the historical data. Nevertheless, both
sets of weights appear to generate strictly better solutions in terms of the
number of soft constraint violations. One should, therefore, expect that the
subjective evaluation by the nurses should reveal a comparable score for the
two automatically generated rosters and that this score should exceed the one
for the manual rosters.

One reason for the different outcomes of the two case studies is the recent

A PROSPECTIVE CASE STUDY 95

0

1

2

3

4

5

6

7

8

9

10

MT GS GM OT

Sc
o
re

Historical data Generated schedules with manual weights Generated schedules with extracted weights

Figure 5.5: Evaluation scores by human planners for different wards. The scores
are on a scale of 0 to 10, with higher being better

transition within the second hospital. The manual weights had not significantly
been re-adjusted by the nurse from their initially defined values. Due to the low
number of constraints in the second case study, the search algorithm succeeds in
generating rosters that all Pareto-dominate the manual ones. Another possible
explanation for the results is the low number of constraints, making it easier
for a head nurse to prioritise and weigh constraints appropriately. Although
it may be easier to express their relative importance in numerical form, it is
certainly not trivial to actually take this importance into account when manually
designing the rosters. Again, it is assumed that significant effort was spent in
designing the manual rosters and that the head nurse was satisfied with their
final quality.

Evaluation

An important observation made by all head nurses during the evaluation
experiments was that for constructing the manual rosters, it was occasionally
necessary to consider a different set of constraints than the set defined in the
rostering software, e.g. different coverage requirements or staff availability. The
head nurses argued that there was no incentive to incorporate these short-term
deviations in the software since they were often exceptional. All sets of rosters
were evaluated based on the typical constraints defined in the software without
considering the exceptional ones. This result highlights an important drawback
of automated rostering systems, namely their inability to deal with transient
effects, as suggested in Table 5.1.

96 FACILITATING THE TRANSITION FROM MANUAL TO AUTOMATED NURSE ROSTERING

The averages and standard deviations of the scores given by the head nurses
are depicted in Figure 5.5. In all wards, the manually constructed rosters
received the lowest scores of the three sets. This result can be read as a
strong recommendation to use the automated rostering software, since 1) it
appears to construct rosters that are more preferred than the manual ones and
2) it requires significantly less time to do so. Nevertheless, comparison with
the manual rosters is difficult (if not inapplicable here), since they had been
constructed with an exceptional set of constraints that is not considered by the
algorithm. This explains why in this case study, the AWE approach does not
produce rosters that conform to the historical data.

On the other hand, the two automatically generated sets of rosters show only a
small difference in score. The observations confirm the prediction that the two
sets of automated rosters evaluate comparably and have a better quality than
the manual ones. In addition, the results do support the applicability of AWE:
by automatically extracting weights from past data, the head nurse no longer
needs to go through the time-consuming trial-and-error process of appropriately
adjusting constraint weights.

As was mentioned in the experimental setup, these conclusions build upon
the assumption that head nurses can correctly evaluate rosters for their ward.
Even though the assumptions made were reasonable, the evaluations are still
subjective, and could be different when other head nurses were consulted.

5.7 Discussion

The results from both case studies deviate in their conclusions. In the
retrospective case study, AWE succeeded in producing rosters with a comparable
distribution of constraint violations as in those that were manually constructed.
This result is not observed in the second case study where neither of the two sets
of automated rosters follow the trend of the violation trade-off in the historical
data. Based on knowledge obtained after discussions with the head nurses,
the main cause is that the historical data from which AWE extracted weights
considered a different set of constraints than the actual set used for generating
the automated rosters. Nevertheless, through validation of the AWE results
with health care personnel, it was shown that the results are acceptable for
practical execution. This conclusion was also formulated informally by the head
nurses responsible for constructing manual rosters, at the end of the experiment
when the identity of the three sets of rosters was revealed. The evaluation
scores are to be considered carefully as only four head nurses participated in
the experiment, and more importantly, the evaluations are subjective.

CONCLUSIONS 97

Both case studies illustrate how AWE succeeds in quantifying the head nurses’
preferences regarding constraint priority. This strongly facilitates the initial
investment phase, as it supports head nurses in defining the often subtle trade-off
between constraint violations [45].

As pointed out, the AWE approach generates weights that conform to the
importance of constraints in the historical data. Constraints in the historical
data should therefore be identical to those used in the software for automated
rostering. This assumption emphasises the need to provide a relevant learning
base for harnessing the full potential of automated weight extraction.

Finally, there is no reason to assume that the research results are limited to
the hospitals from the case studies. The contributed AWE approach is general
enough to be applied in yet other hospitals, countries, or even different types of
organisations, provided sufficient relevant data is available.

5.8 Conclusions

Academic work on nurse rostering promises to automate the labour-intensive
task of manually constructing rosters. However, in practice, it is hindered by
the need to translate the practitioner’s experience in numerical form. This
chapter introduced automated weight extraction as a new approach capable
of narrowing the research-application gap by automatically extracting soft
constraint weights from past rosters. The technique facilitates the manual
configuration of automated rostering software for hospital wards, allowing for
easier adoption of state of the art rostering approaches.

Two case studies confirm the effectiveness of the new weight extraction approach,
while also indicating the need for relevant historical data. Initial feedback
received from the head nurses who participated in the evaluation of the proposed
approach, indicates that the potential time savings are substantial, as the
iterative trial-and-error process to determine suitable weights is eliminating.
AWE has been integrated in commercial software for (automated) personnel
rostering and management, currently used in various hospitals in Belgium,
France, the Netherlands and Luxembourg.

Part III

Integration with other
problems

99

Introduction to Part III:
Integration with other
problems

Real world combinatorial optimisation problems do not usually reduce to neatly
delineated theoretical problems. Rather, they combine characteristics of various
subproblems, which appear to be strongly intertwined. This is particularly true
for nurse rostering, and personnel rostering in general, which is typically driven
by other processes. The chapters in Part III focus on such integrated problems
that combine characteristics of task scheduling and personnel rostering.

In the personnel scheduling literature, assigning shifts to personnel is often the
most fine-grained level at which allocation is being discussed [49, 87, 99]. Task
assignment to employees is often not incorporated in the roster construction.
In some cases, employees know beforehand which tasks to perform during their
working hours. In hospitals, for example, nurses know exactly what they must
do during a shift. Indeed, some tasks such as meal distribution and hygienic or
medical care of patients need to be conducted within set time frames. In many
other cases, however, tasks are assigned to employees in an ad hoc manner,
often resulting in excess resource utilisation. It is therefore recommendable to
incorporate task assignment into roster construction for employees, in order to
reduce operational expenses while still maintaining a high quality of service.
Maenhout and Vanhoucke [86] point out the importance of such an integrative
approach to achieve a more efficient and effective allocation.

Three problems are discussed in the following chapters, of which two are new
contributions to the academic literature. The order of the chapters corresponds
to the level of generalisation that the studied problems provide. For each of
these problems, new solution approaches are presented based on decomposition
and the integration of exact and heuristic techniques.

101

102

Chapter 6 studies the shift minimisation personnel task scheduling problem,
in which a set of predefined tasks is assigned to qualified employees whose
working times have been predetermined and cannot be changed. A new two-
phase heuristic is presented. First, a constructive matheuristic builds an initial
solution by sequentially solving heuristically delineated subproblems. Secondly,
the initial solution is refined using a local branching based improvement heuristic.
Computational results show that this algorithm succeeds in finding optimal
solutions for all available benchmark instances from the literature. In addition,
an empirical study is performed to investigate the influence of two problem
characteristics on the hardness of instances. Based on these results, ten new
benchmark instances are generated with the aim of further challenging the
current state of the art algorithms.

In Chapter 7, the scope of decision making is extended to include assigning
shifts as well as assigning tasks. This allows for an increased flexibility as now
the working times of employees are not predetermined. The resulting problem
is denoted as the task and shift scheduling problem and presents a particular
challenge as the assignments of tasks and shifts are strongly interdependent.
Two problem variants are introduced. Firstly, the problem is considered for a
single, isolated day in the single day task and shift scheduling problem. Secondly,
the scheduling period is extended to include multiple days in the multi-day task
and shift scheduling problem, thereby allowing the definition of time related
constraints on the shift allocation to employees. The influence of how the
problems are decomposed by algorithms is investigated through a series of
computational experiments. The results show that the heuristic algorithms
which decompose the problem into horizontal subproblems, are successful in
solving large instances.

Finally, Chapter 8 studies a reformulation of the multi-day task and shift
scheduling problem. A column generation procedure is proposed for solving
its linear programming relaxation. Details are discussed on measures taken to
address some of the well-known issues in column generation. To obtain integer
solutions, three heuristics are presented which start from the solution obtained
by the column generation algorithm. The first two methods are diving heuristics
on different sets of decision variables. The third method is a constructive
heuristic executed after solving the pricing problem of the column generation,
and which uses both primal and dual solutions to generate feasible schedules.

103

Complementary contributions

While Chapters 6, 7 and 8 focus on integrating personnel rostering and task
scheduling problems, additional contributions have been made by the author in
the area of integrated vehicle routing and personnel rostering problems. Mısır
et al. [95] introduce three related problems dealing with scheduling and routing
of home care, security and maintenance personnel.

The author’s main contribution was related to formulating the model. Each
of these integrated problems is modelled as a vehicle routing problem with a
large variety of side constraints corresponding to time related constraints on
e.g. hours worked or rest time between two consecutive days worked.

A general set of low-level heuristics was defined, applicable to all three problems.
In a computational study, the hyper-heuristic of Mısır [94] was used as a tool
to analyse the behaviour of the heuristics. Experimental results revealed that
different low-level heuristics perform better on different problems, and that their
performance varies during a search. Based on these results, the most relevant set
of heuristics was determined for each problem domain. Additional computational
experiments showed that using only the relevant low-level heuristics resulted in
better solutions than applying the full set of heuristics.

Chapter 6

The shift minimisation
personnel task scheduling
problem: a new hybrid
approach and computational
insights

Assigning scheduled tasks to a multi-skilled workforce is a known NP-
complete problem with applications in health care, manufacturing, logistics, etc.
Optimising the use and composition of costly and scarce resources such as staff
has major implications on any organisation’s health. This chapter introduces
a new, versatile two-phase matheuristic approach to the shift minimisation
personnel task scheduling problem (SMPTSP), which considers assigning tasks
to a set of multi-skilled employees, whose working times have been determined
beforehand. Computational results show that the new hybrid method is capable
of finding, for the first time, optimal solutions for all benchmark instances from
the literature, in very limited computation time.

The influence of a set of problem features on the performance of different
algorithms is investigated in order to discover what makes particular problem
instances harder than others. These insights are useful when deciding on
organisational policies to better manage various operational aspects related to
workforce. The empirical hardness results enable to generate hard problem

105

106 A NEW HYBRID APPROACH AND COMPUTATIONAL INSIGHTS FOR THE SMPTSP

instances, which have been made publicly available.

This chapter is a minor adaptation of Smet, P., Wauters, T., Mihaylov, M.,
Vanden Berghe, G. (2014). The shift minimisation personnel task scheduling
problem: a new hybrid approach and computational insights. Omega, 46, 64-73.

6.1 Introduction

This chapter studies the problem of assigning tasks to multi-skilled employees,
while minimising the number of employees. This problem was introduced
by Krishnamoorthy and Ernst [76] as the shift minimisation personnel task
scheduling problem. Krishnamoorthy et al. [77] propose a Lagrangian relaxation
based approach that combines two problem specific heuristics. In doing so,
they were able to find 135 feasible solutions and 67 optimal solutions out of
137 benchmark instances. Furthermore, several properties of the problem were
discussed, and efficient algorithms for solving special cases of the SMPTSP
were introduced. Smet and Vanden Berghe [115] applied a hybrid local search
algorithm based on a fix and optimise strategy to the dataset and found 68 new
best solutions and 81 optimal solutions. They also found new lower bounds for
43 instances.

The SMPTSP is similar to the interval scheduling problem [72], in which a set
of jobs with fixed start and end times are given, as well as a set of machines
on which the jobs should be processed. The goal is to decide which jobs to
process and on which machines, while e.g. maximising profit associated with
each job. The SMPTSP differs from the basic interval scheduling problem in
that it requires all jobs (tasks) to be assigned while not all machines (employees)
can process each job.

This chapter introduces a two-phase approach that can be classified as a
matheuristic, as it combines the strengths of both heuristic and exact approaches
[88]. This family of hybrid approaches recently gained significant attention
because of their ability to solve problems for which traditional (meta)heuristics
or exact approaches fail. Della Croce and Salassa [40] describe a variable
neighbourhood search-based matheuristic for a real world nurse rostering
problem. Neighbourhoods are defined by adding temporary constraints which fix
a subset of heuristically selected assignments. The neighbourhoods are searched
with an exact branch-and-bound algorithm. Computational experiments show
that this matheuristic significantly outperforms a general purpose integer
programming solver. Matheuristic approaches have been applied to many
other hard combinatorial optimisation problems including vehicle routing [43],

CONTRIBUTIONS 107

permutation flow shop scheduling [39] and the multidimensional knapsack
problem [59].

The remainder of this chapter is organised as follows. First, the contributions
and their practical relevance are outlined in Section 6.2. The problem definition
is provided in Section 6.3. Section 6.4 presents different constructive heuristics
for the SMPTSP, as well as a heuristic improvement procedure based on
local branching. A discussion on the algorithm design is included in Section
6.5. Furthermore, the performance of the presented algorithm and recent
approaches from the literature are compared. The influence of instance specific
characteristics on algorithm performance is discussed in Section 6.6. Based on
these empirical hardness results, new hard instances are introduced in Section
6.7. Finally, Section 6.8 concludes the chapter.

6.2 Contributions

The first major contribution of this chapter is the introduction of a hybrid
heuristic approach, which, at present, represents the state of the art of algorithms
for the SMPTSP. A study comparing the performance against recently published
solution techniques from the literature, and against a commercial solver (Gurobi
5.1.0) demonstrates the efficiency and effectiveness of the new hybrid heuristic.
Furthermore, it is shown that the algorithm was able to find, for the first time,
optimal solutions for all instances from the dataset of Krishnamoorthy et al.
[77]. The second contribution is an investigation of SMPTSP properties that
affect algorithm performance. Finally, as a third contribution, based on the
empirical hardness study, a new benchmark dataset is generated containing
more challenging problem instances.

The efficient allocation of scarce resources is an ever-present issue for
management, particularly when these resources cause high expenses for the
organisation. This is especially true for the SMPTSP since inefficient assignment
of the available workforce can lead to significant costs, for example when
hiring additional temporary workers becomes inevitable. Manual planners often
simplify the assignment by making abstraction of intricate problem properties
such as start and end times of tasks or qualification requirements. However, many
organisations require this complexity to be incorporated in the decision making
process. Ignoring it would render any decision support approach inapplicable.
Algorithms for problems entailing the full complexity enable better decision
making on both strategic and operational level. The former is achieved by
determining the optimal composition of an organisation’s workforce, the latter

108 A NEW HYBRID APPROACH AND COMPUTATIONAL INSIGHTS FOR THE SMPTSP

by efficiently deploying these costly resources and thereby reducing operational
expenses.

6.3 Problem definition

Let T = {1, ..., n} be the set of tasks to be assigned and E = {1, ...,m} the set
of employees. Each task j ∈ T has a duration uj , a start time sj and a finish
time fj = sj + uj . Each employee e has a set of tasks Te ⊆ T that he/she
can perform. Similarly, for each task j, a set Ej ⊆ E exists, which contains
all employees that can perform task j. Both Te and Ej are defined based on
qualifications, time windows of tasks and availabilities of employees.

An interval graph G = (V,A) can be defined with one node for each task, and A
the set of arcs. Two nodes i and j are connected if their respective time intervals,
[si,fi] and [sj ,fj], overlap. Let C be the set of maximal cliques in G. This
set can be found in polynomial time by first sorting the nodes based on start
time and then applying a forward pass algorithm. The set C = {K1, ...,Kt}
consists of subsets of T such that any pair of tasks in K overlap in time and
K is maximal. No tasks in T \ K overlap with any of the tasks in K. In
terms of the SMPTSP, it is clear that overlapping tasks, represented by nodes
in K, should be assigned to different employees. For each employee e, the set
of maximal cliques Ce = {K1, ...,Kt} is constructed in the same way as C,
while only considering tasks for which the employee is qualified. An employee e
can only be assigned to one of the tasks from each set K ∈ Ce. This prevents
overlapping assignments in a solution.

In a feasible solution, all tasks in T are assigned to qualified employees from E
in a non-preemptive manner. The objective is to minimise the total number of
employees.

Decision variables

xje =
{

1 if task j is assigned to employee e
0 otherwise

ye =
{

1 if employee e is assigned to at least one task
0 otherwise

SOLUTION PROCEDURE 109

Model [77]

min
∑
e∈E

ye (6.1)

s.t.
∑

e∈Ej

xje = 1 ∀ j ∈ T (6.2)

∑
j∈K

xje ≤ ye ∀ e ∈ E, K ∈ Ce (6.3)

0 ≤ ye ≤ 1 ∀ e ∈ E (6.4)

xje ∈ {0, 1} ∀ j ∈ T, e ∈ E (6.5)

The objective function (6.1) minimises the number of employees. Constraints
(6.2) ensure that each task is performed by exactly one employee, and that no
infeasible assignments in terms of qualifications are made. Constraints (6.3)
make sure that tasks are only assigned to active employees and that tasks
assigned to an employee do not overlap. Finally, Constraints (6.4) and (6.5) set
bounds for the decision variables.

The SMPTSP can be seen as an application of list colouring on interval
graphs, which is NP-complete [13]. Colours correspond to employees and nodes
correspond to tasks. Two nodes are connected whenever the corresponding
tasks overlap in time. The qualifications of the employees are represented by
the list of feasible colours on each node. Other applications of list colouring on
interval graphs include classroom allocation [30] and register assignment [124].

6.4 Solution procedure

A two-phase hybrid heuristic algorithm is presented which integrates exact
optimisation techniques and heuristic search. A constructive heuristic first
generates an initial solution, which is improved in the second phase. Section
6.4.1 describes several constructive heuristics for providing the initial solution.
The improvement heuristic is presented in Section 6.4.2.

110 A NEW HYBRID APPROACH AND COMPUTATIONAL INSIGHTS FOR THE SMPTSP

6.4.1 Constructive heuristics

Three different constructive approaches are presented: first fit, best fit and a
constructive matheuristic algorithm.

First fit and best fit heuristics

Krishnamoorthy et al. [77] state that when the qualification constraints of the
SMPTSP are relaxed, i.e. when all employees are qualified to perform all tasks,
the resulting problem can be solved in polynomial time with a forward pass
maximal clique algorithm on an interval graph [57]. This algorithm assigns all
tasks in order of increasing start time, considering first, if possible, an employee
who already has tasks assigned. This property is incorporated in the first fit
and best fit heuristics presented in this section. Both heuristics first order
the tasks by start time in ascending order. Ties are broken by taking into
account the qualifications of employees, i.e. the tasks are sorted again by the
number of qualified personnel able to perform them, also in ascending order.
This results in an ordering in which tasks with the smallest number of feasible
personnel appear before others. These highly constrained tasks, which are the
most difficult to assign, are thus first to be assigned.

An additional mechanism is introduced to ensure that the first fit and best fit
heuristics find feasible solutions in cases where tasks can only be assigned to
a limited number of employees. Whenever a task j cannot be assigned to a
feasible employee due to other overlapping assignments, a qualified employee is
randomly selected and his/her assigned tasks overlapping with j are removed.
Task j is then assigned to this employee and the removed tasks are reassigned
to other employees later in the procedure.

The aforementioned steps outline a general framework for both the first fit and
best fit constructive heuristics. The first fit heuristic assigns tasks to the first
feasible employee (Algorithm 2). The best fit heuristic is designed by changing
line 4 in Algorithm 2 such that it assigns the tasks to the best feasible employee
instead of to the first feasible employee. The best employee is identified by
the largest sum of assigned task durations

∑
j∈Re

uj , with Re the set of tasks
currently assigned to employee e. This way, employees’ schedules will include
as many tasks as possible, thereby minimising the number of employees.

It is worth noting that both the first fit and best fit constructive heuristics are
not guaranteed to terminate, i.e. it is possible that they enter an infinite loop
in which two sets of tasks are repeatedly assigned to and deassigned from the
same set of employees. In order to ensure finite behaviour of these heuristics, a
termination criterion is included, which stops the algorithm when it enters an

SOLUTION PROCEDURE 111

Algorithm 2 First fit constructive heuristic
Input:

T := Tasks to be assigned
Ej := Employees qualified for task j ∈ T
sj := Start time of task j ∈ T
Re := ∅ . tasks assigned to employee e

Output: (Partial) solution
1: Order all j ∈ J by (sj + |Pj |) in ascending order
2: while J 6= ∅ do
3: Remove task j from the first position in T
4: Assign j to the first feasible employee
5: if Cannot feasibly assign j to any qualified employee then
6: Select random employee e ∈ Ej
7: Oj := Tasks overlapping with task j
8: Remove all tasks in Oj from Re
9: Assign j to employee e

10: Add tasks in Oj to the list of tasks to be assigned T
11: end if
12: end while

infinite loop. As a result, tasks may remain unassigned after the constructive
heuristics have finished.

Constructive matheuristic

In the constructive matheuristic (CMH), a solution is constructed by optimally
solving subproblems one by one using an integer programming solver. In each
subproblem, a subset of b employees E′ ⊆ E is considered. Still tasks have to
be feasibly assigned to employees in E′, but instead of minimising the number
of employees, the objective is to maximise the sum of assigned task durations,
thereby implicitly reducing the number of employees (Equation (6.6)).

max
∑
e∈E′

∑
j∈T

ujxje (6.6)

Only the last subproblem is reoptimised for a second time with the original
objective function (6.1). Algorithm 3 shows the pseudocode of the constructive
matheuristic.

112 A NEW HYBRID APPROACH AND COMPUTATIONAL INSIGHTS FOR THE SMPTSP

Algorithm 3 Constructive matheuristic
Input:

T := set of tasks to be assigned
E := set of employees
b := number of employees in one subproblem

Output: (Partial) solution
1: while E 6= ∅ or not all tasks assigned do
2: E′ := sample and remove b employees from E . delineate the subproblem
3: Solve the subproblem for E′
4: Remove the tasks assigned to E′ from T
5: if T = ∅ then
6: Reoptimise E′ using the original objective (Equation (6.1))
7: end if
8: end while

Infeasibility issues

Initial experiments showed that, particularly for small problem instances with
m < 100, the constructive heuristics are not always able to assign all tasks. The
result can thus be infeasible. This issue is addressed in the second phase of the
presented approach, which is a local branching based improvement heuristic.
This general improvement heuristic is particular in that it does not require
a feasible initial solution. Infeasible starting solutions are repaired during
execution of the improvement heuristic.

6.4.2 Improvement heuristic

After generating the initial solution with one of the aforementioned constructive
heuristics, an improvement procedure attempts to further reduce the number of
employees, given that the initial solution was not yet optimal. For this purpose,
a matheuristic based on the idea of local branching is presented [52].

The algorithm constructs a solution x in which at most k binary variables have
flipped values with respect to a given reference solution x̄. This is enforced
by adding the asymmetric Hamming distance constraint (6.7) to the original
integer programming model.

∑
j∈T

∑
e∈E

x̄je(1− xje) ≤ k′(= k

2) (6.7)

SOLUTION PROCEDURE 113

In the context of the SMPTSP, k′ corresponds to the maximum number of
tasks that can be (re)assigned, given the reference solution x̄. In essence, the
improvement heuristic adds Constraint (6.7) to the mathematical model and
solves it to optimality using a general purpose integer programming solver. If
the new solution x is not better than the given solution x̄, or if the solution’s
objective value is equal to the lower bound, the procedure stops, else x is set as
the new reference solution and the previous steps are reiterated.

Algorithm 4 outlines this local branching improvement heuristic (LBIH).

Algorithm 4 Local branching improvement heuristic
Input:

F (x) evaluation function of x
LB := lower bound on the objective value
x̄ := initial reference solution
k′ := maximum number of tasks to reassign

Output: x̄ . improved initial solution
1: improved := true . boolean value to control termination of the algorithm
2: while improved and F (x̄) 6= LB and stop criterion not met do
3: x := solve the model with the Hamming distance constraint with k′ given x̄
4: if x is not feasible then
5: k′ := k′ + 1
6: else if F (x) < F (x̄) then
7: x̄ := x
8: else
9: improved := false

10: end if
11: end while

Algorithm 4 clearly builds upon the matheuristic concept of combining integer
programming and heuristic search by embedding an exact approach for solving
subproblems in an iterative improvement framework. Due to the absence of
problem specific elements, Algorithm 4 also presents a versatile improvement
heuristic applicable to a large class of problems. It can thus be seen as a
general method for which only an integer programming formulation is required.
Moreover, in contrast to many other general improvement algorithms, it does
not require a feasible initial solution. On some occasions, it is worthwhile
spending effort in designing a constructive heuristic which provides a good
initial solution to yield better results. Feasible, or almost feasible, starting
solutions will furthermore benefit the algorithm’s performance since this will
prevent steps 4 and 5 from being executed excessively.

114 A NEW HYBRID APPROACH AND COMPUTATIONAL INSIGHTS FOR THE SMPTSP

6.5 Computational results

The behaviour of the proposed heuristics is evaluated by analysing the results
of a series of experiments. Furthermore, the performance of the new approaches
is compared with the best known results from the literature.

6.5.1 Experimental setup

All instances in the benchmark dataset of Krishnamoorthy et al. [77]6 were used
for the experiments and evaluation. The dimensions of these instances range
from small (23 employees and 40 tasks) to very large (245 employees and 2105
tasks). On average, all employees can perform either 33% or 66% of the tasks.

All experiments were carried out on an Intel Core i7-2600 at 3.4GHz with 8GB
RAM operating on Windows 7. The algorithms were coded in Java. Gurobi
5.1.0 was used as integer programming solver. Each run was repeated ten times
with computation time limited to 1800 seconds per run.

6.5.2 New lower bounds

In order to facilitate evaluation of algorithm performance, a new lower bound
is presented, which improves upon the best reported lower bounds from the
literature.

Proposition 1. The size of the largest clique in the set C is a valid lower
bound for the SMPTSP.

This is a trivial lower bound since it corresponds to the minimum number of
employees needed to cover the largest number of overlapping tasks. A polynomial
time algorithm to calculate this lower bound is described on page 108. This
bound does not provide the minimum number of employees required in a solution
for the SMPTSP, since it does not take into account the employees’ qualifications.
However, the computational experiments show that this lower bound is equal
to the optimal solution for all instances in the dataset of Krishnamoorthy et al.
[77].

6http://people.brunel.ac.uk/~mastjjb/jeb/orlib/ptaskinfo.html

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/ptaskinfo.html

COMPUTATIONAL RESULTS 115

First fit Best fit CMH CMH
b = 10 b = 15

Number of optimal solutions 13 22 118 131
Average solution quality 125.35 125.78 123.01 122.61
Average calculation time (seconds) 0.02 0.11 12.26 44.93
Maximum calculation time (seconds) 0.21 1.10 169.30 889.80

Table 6.1: Summary of results for the constructive heuristics

6.5.3 Constructive heuristics

The first set of experiments compares the performance of the first fit, best fit
and CMH with two different block sizes (b = 10 and b = 15). These values
were determined after preliminary experiments. Table 6.1 summarises the
performance of the different constructive algorithms. Proposition 1 was used to
determine whether a solution is optimal. Detailed computational results can be
found on a dedicated web page7.

Best fit generates more optimal solutions than first fit, whereas first fit has a
slightly better average solution quality, meaning that for instances that cannot be
solved optimally with best fit, first fit obtains better solutions. The calculation
times required for both best fit and first fit are negligible.

The constructive matheuristic produces an optimal solution for the majority of
the instances. This improved solution quality comes at the cost of an increased
calculation time on large instances. The time required by CMH depends on the
block size, which also influences the quality of the constructed solution. Figure
6.1 illustrates this trade-off for an instance with 211 employees and 1647 tasks.
When the block size increases, the subproblems become larger and thus require
more calculation time. However, larger block size means that more employees
are considered in each subproblem, which can result in better solutions.

Based on the results from Table 6.1, CMH with a block size of b = 10 was used
in remaining experiments to generate the initial solution for the improvement
heuristic.

In order to determine the influence of the set of employees composing the
subproblems, an experiment was set up in which three approaches were compared.
First, employees were selected for subproblems based on the number of tasks
they can perform, in ascending order, such that the first subproblem contains the
most restricted employees in terms of number of tasks they can perform. Second,
this order was reversed, so that the most qualified employees were selected first.

7http://gent.cs.kuleuven.be/smptsp.html

http://gent.cs.kuleuven.be/smptsp.html

116 A NEW HYBRID APPROACH AND COMPUTATIONAL INSIGHTS FOR THE SMPTSP

0

200

400

600

800

1000

1200

1400

1600

1800

184

185

186

187

188

189

190

191

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

C
al

cu
la

ti
o

n
 t

im
e

(s
)

So
lu

ti
o

n
 q

u
al

it
y

Block size (b)

Avg. solution quality Best solution quality Avg. calculation time

Figure 6.1: Average and best solution quality and average calculation time for
the CMH with varying block size b = [1, 24]

Ascending Descending Random
order order order

Number of feasible solutions 50 50 50
Average solution quality 160.22 160.32 160.31
Average calculation time (seconds) 22.19 23.82 23.79

Table 6.2: Impact of employee selection for the subproblems

Finally, employees were randomly selected for each subproblem. Table 6.2 shows
the average performance of these three approaches on 50 instances with number
of employees ranging from 88 to 415 and number of tasks ranging from 777 to
2105. The results show that, for the tested instances, the employee selection
procedure does not influence the performance of the constructive matheuristic.
It is important to note, however, that these results were obtained based on
instances in which task qualifications are randomly distributed among employees.
The presence of a clear structure in the employee skills (e.g. hierarchical) may
lead to different conclusions, and, moreover, may warrant a tailor-made selection
mechanism.

COMPUTATIONAL RESULTS 117

0

10

20

30

40

50

60

70

122.22

122.24

122.26

122.28

122.30

122.32

122.34

122.36

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

C
al

cu
la

ti
o

n
 t

im
e

(s
)

So
lu

ti
o

n
 q

u
al

it
y

f

Avg. solution quality Best solution quality Avg. calculation time

Figure 6.2: Average and best solution quality and average calculation time for
the LBIH with varying parameter f = [0.5, 5] on all instances

6.5.4 Improvement heuristic

The parameter k′ of the local branching improvement heuristic is set as a
function of the problem size and is calculated as k′ = df

√
ne. The rationale

behind this is that for instances with many tasks, the number of tasks allowed
to be reassigned should not be too large since this would make the calculation
time for solving the model with the Hamming distance constraint unacceptable.
A linear relation between k′ and the number of tasks n would thus not be
suitable. Therefore, the square root of n was chosen, multiplied by a factor f .
For larger f , more tasks will be allowed to move when solving the model with
the Hamming distance constraint. Figure 6.2 shows, for f varying between 0.5
and 5, the best and average solution quality, and average solution time of ten
runs, for all instances from the benchmark dataset. The results indicate that
when more tasks are allowed to move, better solutions can be obtained, but
at the cost of increased calculation time. Based on these experiments, f = 4.5
proved to be the most appropriate choice.

The combined matheuristic CMH+LBIH (b = 10, f = 4.5) was compared with
an integer programming solver (MIP) and two methods recently reported in the
literature: the Lagrangian relaxation based heuristic from Krishnamoorthy et al.
[77] (KEB12) and the fix and optimise heuristic from Smet and Vanden Berghe

118 A NEW HYBRID APPROACH AND COMPUTATIONAL INSIGHTS FOR THE SMPTSP

MIP KEB12 SV12 CMH+LBIH
(b = 10, f = 4.5)

Number of optimal solutions 88 67 81 137
Average solution quality 129.88 127.00 123.04 122.24
Average calculation time (seconds) - - 958.91 55.52
Maximum calculation time (seconds) 1800.0 1800.00 1800.00 604.87

Table 6.3: Summary of results for different approaches for the SMPTSP

[115] (SV12). Table 6.3 presents the summarised results. A dedicated web page8
provides the detailed computational results. The reported calculation times are
total times, i.e. the sum of computation time of the constructive heuristic and
the time required by the improvement heuristic.

The CMH+LBIH (b = 10, f = 4.5) approach finds, for the first time, an
optimal solution for all the 137 instances, requiring much less than the allowed
calculation time. On average, the presented method requires 55 seconds to find
an optimal solution while the worst case still only takes little more than ten
minutes to produce an optimal solution. Compared to the other approaches,
CMH+LBIH (b = 10, f = 4.5) thus performs significantly better, both in terms
of solution quality and the required calculation time.

6.6 Empirical hardness

In order to understand the behaviour of algorithms for the SMPTSP, a series
of experiments was conducted to determine what makes particular instances
easy or hard for different algorithms. It is generally known that, while the
computational complexity of a problem can be established as hard, easy instances
may exist [81]. The identification of relevant hardness features enables the
development of powerful portfolio techniques [92].

After performing an initial statistical analysis of the performance of different
algorithms on the dataset from Krishnamoorthy et al. [77], the skilling level
and average task duration were seen to be most influential on the hardness of
the problem. This section investigates their influence on the performance of
algorithms for the SMPTSP.

8http://gent.cs.kuleuven.be/smptsp.html

http://gent.cs.kuleuven.be/smptsp.html

EMPIRICAL HARDNESS 119

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

G
ap

 t
o

 lo
w

er
 b

o
u

n
d

Skilling level

First fit Best fit CMH b=10

Figure 6.3: Average gap from lower bound for the constructive heuristics with
varying skilling level (113 employees, 1112 tasks, 90% tightness)

6.6.1 Skilling level

The skilling level of an instance is the percentage of tasks each employee is
qualified for on average. When this level is 100%, each employee can perform
all tasks. A series of experiments was set up to determine the influence of this
instance feature on the performance of both heuristics and a general purpose
integer programming solver. An instance generator, developed according to the
description of Krishnamoorthy et al. [77], was used to generate a set of new
instances in which the skilling level varied from 5% to 100%. For each level, ten
random instances were constructed. The reported results are the average (or
median in case of computation time) of one run on each of the ten instances.

Figure 6.3 shows that the gap to the lower bound for the three constructive
heuristics, presented in Section 6.4.1, decreases when the skilling level increases.
Recall that the constructive heuristics use ideas from the forward pass maximal
clique algorithm for interval graphs. When the skilling level is 100%, the
SMPTSP reduces to exactly that problem, thus making it easier for the
constructive heuristics to find good solutions. For instances with a skilling level
lower than 15%, the heuristics were unable to find a feasible solution.

An analogous experiment was conducted in which the integer programming
model was solved with a commercial solver (Gurobi 5.1.0), using the computation

120 A NEW HYBRID APPROACH AND COMPUTATIONAL INSIGHTS FOR THE SMPTSP

0

10

20

30

40

50

60

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

M
ed

ia
n

 M
IP

 c
al

cu
la

ti
o

n
 t

im
e

(s
)

Skilling level

Default settings No heuristics No cuts

Figure 6.4: Median computation time in seconds for different configurations
with varying skilling level (33 employees, 337 tasks, 90% tightness)

time required for finding an optimal solution as a measurement for hardness.
Figure 6.4 shows, for different configurations of the solver, that it takes longer
to find an optimal solution when the skilling level increases. There is a clear
peak in required calculation time at 35%. In the original dataset, instances
have a skilling level of either 33% or 66%. Clearly, these are thus instances
which are particularly challenging for an integer programming solver, or any
procedure which uses a solver as a subroutine.

6.6.2 Average task duration

A similar series of experiments was conducted to investigate the influence of the
average task duration. The experimental setup was the same as that described
on page 119, but the distribution from which task lengths were sampled was
varied, while keeping the number of employees, the number of tasks and the
skilling level constant. As in the original dataset, the task lengths were sampled
from a triangular distribution Tri(α, β, γ), with β varying between 100 and 440.
The ratios of α and γ to β were kept constant: α = β − 100 and γ = β + 100.

Figure 6.5 shows that, for all three constructive heuristics, the average gap to
the lower bound decreases when tasks become longer. This is particularly clear

NEW BENCHMARK INSTANCES 121

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

5.0%

100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440

A
ve

ra
ge

 g
ap

 t
o

 lo
w

er
 b

o
u

n
d

Average task duration

First fit Best fit CMH b=10

Figure 6.5: Average gap from lower bound for the constructive heuristics with
varying average task duration (100 employees, 300 tasks, 60% skilling)

for the first fit and best fit constructive heuristics.

Figure 6.6 shows the same trend for different configurations of a general purpose
solver: longer tasks make instances easier to solve. Note that the number of
employees and tasks is kept constant and, therefore, the number of variables
in the model also remains the same, such that this factor does not alter the
solver’s performance.

6.7 New benchmark instances

The results from Section 6.6 show that the performance of constructive heuristics
suffers in case of a low skilling level or short tasks. The exact solver performs
worse when tasks are short, but also when the skilling level is either high,
or around 35%. Based on these observations, new benchmark instances were
generated with short tasks (β ∈ {120, 280}) and low skilling level (20%, 30%).

Table 6.4 presents, for each new instance, the clique lower bound (LB), the
best solution found by an integer programming solver after 1800 seconds (MIP),
the best result found in ten repeated runs by CMH+LBIH (b = 10, f = 4.5)

122 A NEW HYBRID APPROACH AND COMPUTATIONAL INSIGHTS FOR THE SMPTSP

0

5

10

15

20

25

30

100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440

M
ed

ia
n

 M
IP

 c
al

cu
la

ti
o

n
 t

im
e

(s
)

Average task duration

Default settings No heuristics No cuts

Figure 6.6: Median computation time in seconds for different configurations
with varying average task duration (100 employees, 300 tasks, 60% skilling)

Instance LB MIP CMH+LBIH (b = 10, f = 4.5)

Fmin Favg Tavg

1_50_258_20 40 40 40 40.80 641.58
2_44_510_20 40 40 41 41.20 683.31
3_102_525_30 77 83 77 77.40 938.62
4_113_647_20 98 99 98 98.00 163.24
5_77_777_30 59 65 59 59.80 1615.46
6_135_777_20 116 119 116 116.90 1699.28
7_70_781_20 59 61 61 61.50 1800.00
8_88_1022_20 79 80 80 80.50 1800.00
9_125_1308_20 98 106 99 101.90 1800.00
10_153_1577_20 116 153 118 123.20 1800.00

Table 6.4: Computational results for the new benchmark dataset instances

(Fmin), the average result over ten runs (Favg) and the average time required
in seconds (Tavg).

Table 6.4 shows that a large part of the new instance set remains unsolved in
the current experimental setting. A web page9 keeps track of new results on

9http://sites.google.com/site/ptsplib

http://sites.google.com/site/ptsplib

CONCLUSIONS 123

these instances.

6.8 Conclusions

This chapter addressed the shift minimisation personnel task scheduling problem,
which deals with the challenge of assigning tasks to employees who are restricted
by qualifications and availabilities. The objective is to minimise the number of
employees while still assigning all tasks.

A two-phase algorithm design was proposed in which, building upon the
matheuristic concept, both phases combine integer programming with heuristic
search, resulting in an efficient and versatile general optimisation method. The
new hybrid algorithm found, for the first time, optimal solutions for all 137
instances from a benchmark dataset, while consuming little calculation time.
Experimental results demonstrate that this novel algorithm holds the state of
the art for the SMPTSP.

An empirical hardness study with three different constructive heuristics showed
that the problem becomes harder when employees are qualified for relatively
few tasks. Furthermore, the constructive heuristics were shown to be sensitive
to the average task duration. In problems with long tasks, these algorithms
generated better solutions than when the tasks were shorter. The behaviour of
an integer programming solver on the standard mathematical model was also
studied. Experiments showed that the solver’s performance worsens when the
average task duration decreases, or when the staff is highly skilled.

A new benchmark dataset was generated consisting of instances satisfying the
properties identified as hard. Since their publication, these new benchmark
instances have been adopted by researchers to further challenge algorithms for
the SMPTSP [51].

Chapter 7

Exact and heuristic
decomposition approaches to
the single and multi-day task
and shift scheduling problem

This chapter investigates the impact of alternative decomposition schemes on a
new integrated task and personnel scheduling problem. The problem generalises
the SMPTSP discussed in Chapter 6, as now both tasks and shifts have to be
assigned to a set of multi-skilled employees. Two variants are considered: one
in which the scheduling period is limited to a single, isolated day and one for a
period of multiple days.

Different exact and heuristic decomposition schemes are proposed, and their
performance is evaluated on a diverse set of instances which have been made
publicly available. The research question is whether a composition of strong
(heuristic) approaches to the subproblems could outperform exact optimisation
approaches applied to the overall problem. Extensive computational experiments
show that decomposing the problem into horizontally delineated subproblems
is particularly suitable for both the single and multi-day variants, thereby
demonstrating the power and versatility of this decomposition scheme.

125

126 DECOMPOSITION APPROACHES FOR THE SDTSS AND MDTSS

7.1 Introduction

Scheduling tasks is an important step in the rostering process, which is often
solved separately since it is assumed not to be computationally practical to deal
with all rostering tasks simultaneously [49]. As a result, the task scheduling
problem on its own has been studied extensively in various forms, e.g. by Kolen
et al. [72] and in Chapter 6.

This chapter introduces the task and shift scheduling problem (TSS). Tasks,
shifts and days-off have to be assigned simultaneously to employees. Here, a
task is a time interval, defined by a fixed start and end time, in which a qualified
employee is required to perform an activity without interruption. A shift is a
time interval in which an employee is available to execute tasks, and is defined
by a fixed start and end time. Tasks can only be assigned to qualified employees
who are working during the tasks’ time interval. Two variants of the TSS are
discussed: the single day case and the multi-day case. The single day TSS
(SDTSS) denotes the problem for a single, isolated day. The multi-day TSS
(MDTSS) extends the scheduling period to multiple days, thereby introducing
additional complexity due to restrictions on the assignment of shifts and days-off.

Decomposition of the problem is a natural approach for exploiting the
relationship between the personnel rostering and task scheduling components of
the problem. In the academic literature, both exact and heuristic cut generation
algorithms have been proposed for problems similar to the TSS [41, 58]. These
algorithms decompose the problem by solving the task scheduling problem as a
subproblem which iteratively adds constraints to the master problem, i.e. the
personnel rostering problem.

Part of the present contribution builds upon the general decomposition scheme
proposed in Chapter 6 for the SMPTSP. Heuristically delineated subproblems
are sequentially solved to optimality. In a second phase, an improvement
procedure repairs possible infeasibilities and further improves the solution
by iteratively (re)assigning tasks and shifts. This chapter shows that this
type of decomposition is very effective for both the SDTSS and the MDTSS.
Furthermore, two exact decomposition algorithms are presented for the SDTSS.

All approaches are evaluated on large, varied benchmark datasets generated by
a publicly available instance generator. The computational results are analysed
to provide insight into the behaviour of different approaches to the SDTSS and
MDTSS.

The remainder of this chapter is organised as follows. The main contributions
are discussed in Section 7.2. Section 7.3 presents an overview of related literature

CONTRIBUTIONS 127

and situates the TSS among similar problems. Mathematical models, dedicated
solution approaches and computational experiments for the SDTSS and MDTSS
are presented in Section 7.4 and Section 7.5, respectively. In Section 7.6,
conclusions are formulated.

7.2 Contributions

By addressing two levels of decision making simultaneously, larger gains can
be realised. The present chapter introduces the integrated task and shift
scheduling problem as a new challenging combinatorial optimisation problem.
Integer programming formulations are presented for two variants: problems
which consider a single isolated day, and problems with a scheduling period
consisting of multiple days. Instance generators for both problems are made
publicly available.

To solve these new problems, exact and heuristic algorithms are proposed,
based on two principles which have proven to be successful in the last decades:
decomposition and matheuristics. By decomposing the problem into multiple
subproblems, efficient algorithms can be used to solve these subproblems [71],
for example, by combining exact and heuristic techniques in a matheuristic
framework.

For single day problems, two exact approaches are presented, as well as a
heuristic which builds upon the CMH introduced in Chapter 6. For problems
with longer scheduling periods, two constructive heuristics are proposed, as well
as an improvement heuristic. Extensive computational experiments illustrate
the success of the two aforementioned algorithmic paradigms.

7.3 Related literature

Few publications focus on the assignment of non-preemptive tasks and shifts.
Dowling et al. [44] assign tasks fixed in time, and flexible shifts to employees.
They address the problem in two separate, sequential phases, in which first
the shift roster is constructed and afterwards tasks are assigned within the
shifts. The objective is to minimise over- and understaffing. Lapègue et al.
[78] present a problem in which tasks are also fixed in time, but shifts are not
explicitly defined. Rather, a set of guidelines is given to which a shift roster
should adhere. Meisels and Schaerf [91] discuss a class of general employee
timetabling problems in which both tasks and shifts are fixed in time. The
main difference with the TSS is that only one task can be assigned to each shift.

128 DECOMPOSITION APPROACHES FOR THE SDTSS AND MDTSS

Elahipanah et al. [48] discuss a task scheduling problem with both pre-emptive
and non-preemptive tasks. The shift roster is considered to be part of the input.
However, there is a high degree of flexibility by allowing additional shifts to be
assigned or existing shifts to be modified. Various costs caused by understaffing,
overtime, additional shifts and task transitions are minimised.

The largest body of related research concerns pre-emptive tasks. Robinson et al.
[107] address a problem in which the pre-emptive tasks are defined by a release
date and a deadline, such that their time of execution must also be determined. A
tabu search algorithm is used to construct a days-off roster, after which, for each
day, a network flow model generates task and shift assignments that minimise
personnel costs. Brucker and Qu [16] extend this model with qualification
requirements. Brucker et al. [17] study the complexity of various personnel
scheduling models, including a project centred planning model that integrates
pre-emptive task scheduling and work pattern assignment. The objective is to
minimise the completion time of the project. The problem presented by Detienne
et al. [41] requires predefined work patterns and activities to be assigned to
employees. The costs associated with the assigned work patterns should be
minimised. Guyon et al. [58] extend this work by introducing time windows for
the tasks.

Côté et al. [36] and Musliu et al. [96] represent pre-emptive tasks as varying
staffing requirements in intervals. Côté et al. [36] use implicit models with
context-free grammars to model complex rules regarding shift design. Musliu et
al. [96] study the minimum shift design problem in which the goal is to decide
on an efficient shift structure and a minimal workforce that can carry out all
the work without, however, explicitly assigning tasks within the shifts.

Table 7.1 presents an overview of related work and situates the TSS. The
literature review on related problems indicates that both the SDTSS and the
MDTSS present new academic challenges, while in practice both problems
present a complex, time consuming task. Particularly, the combination of fixed
shifts and non-preemptive tasks has not been discussed when considering task
and shift scheduling simultaneously.

7.4 The single day TSS problem

The single day TSS considers the task and shift scheduling problem for an
isolated day, such that there are no restrictions on the assignment of shifts to
employees. First, an integer programming formulation of the SDTSS is presented.
Second, exact and heuristic decomposition approaches are introduced. Finally,
their performance is evaluated.

THE SINGLE DAY TSS PROBLEM 129

P
re
-e
m
pt
iv
e

Fi
xe
d

Fi
xe
d

Q
ua

lifi
-

O
bj
ec
tiv

e
ta
sk
s

ta
sk
s

sh
ift
s

ca
tio

ns

B
ru
ck
er

an
d
Q
u
[1
6]

ye
s

no
no

ye
s

sc
he

du
lin

g
co
st
s

B
ru
ck
er

et
al
.[
17
]

ye
s

no
ye
s

ye
s

pr
oj
ec
t
co
m
pl
et
io
n
tim

e
C
ôt
é
et

al
.[
36
]

ye
s

ye
s

no
ye
s

sc
he

du
lin

g
co
st
s

D
et
ie
nn

e
et

al
.[
41
]

ye
s

ye
s

ye
s

ye
s

sc
he

du
lin

g
co
st
s

D
ow

lin
g
et

al
.[
44
]

no
ye
s

no
ye
s

de
vi
at
io
n
fr
om

co
ve
ra
ge

re
qu

ire
m
en
ts

E
la
hi
pa

na
h
et

al
.[
48
]

bo
th

no
no

ye
s

sc
he

du
lin

g
co
st
s

G
uy

on
et

al
.[
58
]

ye
s

no
ye
s

ye
s

sc
he

du
lin

g
co
st
s

K
ris

hn
am

oo
rt
hy

et
al
.[
77
]

no
ye
s

ye
s

ye
s

nu
m
be

r
of

em
pl
oy
ee
s

La
pè

gu
e
et

al
.[
78
]

no
ye
s

no
ye
s

de
vi
at
io
n
fr
om

ta
rg
et
ed

w
or
kl
oa
d

M
ei
se
ls

an
d
Sc
ha

er
f[
91
]

no
ye
s

ye
s

ye
s

sc
he

du
lin

g
co
st
s

M
us
liu

et
al
.[
96
]

ye
s

ye
s

no
no

nu
m
be

r
of

di
ffe

re
nt

sh
ift
s

R
ob

in
so
n
et

al
.[
10
7]

ye
s

no
no

no
sc
he

du
lin

g
co
st
s

T
hi
s
ch
ap

te
r

no
ye
s

ye
s

ye
s

sc
he

du
lin

g
co
st
s
an

d
nu

m
be

r
of

as
si
gn

ed
sh
ift
s

Ta
bl
e
7.
1:

O
ve
rv
ie
w

of
re
la
te
d
wo

rk

130 DECOMPOSITION APPROACHES FOR THE SDTSS AND MDTSS

7.4.1 Integer programming formulation

In the integer programming formulation of the SDTSS, the maximal cliques
in an interval graph are used to efficiently represent overlapping tasks. This
concept was also used by Krishnamoorthy et al. [77] and in Chapter 6 to model
the SMPTSP. An interval graph G = (V,A) is constructed with one node for
each task. Two nodes are connected if the corresponding tasks overlap in time.
A maximal clique in G represents a set of pairwise overlapping tasks. It is clear
that these tasks should all be assigned to different employees.

Parameters

T set of tasks
S set of working shifts
E set of employees
Et set of employees qualified for task t
St set of shifts in which task t can be performed
Ce set of all maximal cliques in the interval graph for employee e

Decision variables

xte =
{

1 if task t is assigned to employee e
0 otherwise

yes =
{

1 if employee e is assigned to shift s
0 otherwise

THE SINGLE DAY TSS PROBLEM 131

Model

min
∑
e∈E

∑
s∈S

yes (7.1)

s.t.
∑

e∈Et

xte = 1 ∀ t ∈ T (7.2)

∑
t∈K

xte ≤ 1 ∀ e ∈ E, K ∈ Ce (7.3)

∑
s∈S

yes ≤ 1 ∀ e ∈ E (7.4)

∑
s∈St

yes ≥ xte ∀ t ∈ T, e ∈ E (7.5)

yes ∈ {0, 1} ∀ e ∈ E, s ∈ S (7.6)

xte ∈ {0, 1} ∀ t ∈ T, e ∈ E (7.7)

The objective function (7.1) minimises the number of shifts assigned to employees.
Constraints (7.2) make sure that each task is assigned to a qualified employee.
Overlapping task assignments are forbidden by Constraints (7.3). Constraints
(7.4) require that an employee cannot work more than one shift. Note that,
since the set of shifts S does not contain a dummy shift representing a day-off,
the left hand side of Constraints (7.4) is not required to be equal to one. When∑

s∈S yes = 0, employee e is not working. Constraints (7.5) link the x and y
decision variables by stating that tasks can only be assigned to employees who
are assigned to a shift in which it can be performed. Finally, Constraints (7.6)
and (7.7) impose bounds on the decision variables.

Note that shift breaks are not explicitly included in the model. However, if the
breaks are fixed in time, they can be modelled by removing the shifts of which
the break overlaps with task t from the set St.

7.4.2 Infeasible task pair decomposition

The infeasible task pair decomposition first assigns tasks to employees and then
allocates shifts. Algorithm 5 outlines the approach.

132 DECOMPOSITION APPROACHES FOR THE SDTSS AND MDTSS

Algorithm 5 Infeasible task pair decomposition
Input: SDTSS problem instance
Output: Optimal solution
1: Determine infeasible task combinations
2: Solve the task assignment problem taking into account the infeasible task

combinations
3: Solve the shift assignment problem given an optimal task assignment

The main idea is to decompose the problem into an optimisation master problem
(task assignment) and a feasibility subproblem (shift assignment). After an
optimal solution for the master problem is found, a feasible solution for the
subproblem is constructed. As the master problem is solved to optimality,
Algorithm 5 returns an optimal solution for the SDTSS.

This approach is inspired by combinatorial Benders decomposition [33] which,
in general, generates an exponential number of cuts in the subproblem. A
preprocessing step is introduced that adds a polynomial number of combinatorial
Benders cuts to the master problem. These cuts dominate all other cuts. As a
consequence, the master and subproblems do not need to be solved repeatedly.

Preprocessing

The first step of Algorithm 5 identifies all infeasible task combinations, which
are then used as constraints in the second step. A set of tasks is infeasible if
there exists no shift that covers the intervals of all tasks in the set. The start
and end times of task t and shift s are denoted by at and bt, and vs and ws,
respectively. Formally, a set of tasks R is infeasible if:

@ s ∈ S : vs ≤ min {at, ∀ t ∈ R} and ws ≥ max {bt, ∀ t ∈ R}

The number of combinations of n tasks is exponential in n, and cannot be checked
efficiently for large instances. However, the number of pairs (i.e. combinations
of size two) is limited, and can thus all be computed in limited time. More
precisely, the total number of task pairs p that need to be checked is:

p = |T |(|T | − 1)
2

By verifying only pairs of tasks, infeasible task combinations of any size are
eliminated. This can be easily understood since a set of tasks is infeasible due

THE SINGLE DAY TSS PROBLEM 133

to the earliest start time and the latest end time being too far apart to be
covered by one shift. All tasks between the first and last assigned task can be
ignored when determining whether a combination is infeasible or not. Thus, by
only checking pairs of tasks, instead of combinations of all sizes, all possibly
infeasible combinations are covered.

The task assignment problem

After the infeasible task pairs are identified, a task assignment problem is solved.
The model is identical to that of the SMPTSP presented in Chapter 6 (model
(6.1) - (6.5)), with additional constraints to ensure that the infeasible task pairs
identified in the preprocessing step are not assigned to the same employee. For
each employee e, let Ie be the set of all infeasible task pairs identified during
preprocessing.

Decision variables

xte =
{

1 if task t is assigned to employee e
0 otherwise

ye =
{

1 if employee e is assigned to at least one task
0 otherwise

Model

min
∑
e∈E

ye (7.8)

s.t.
∑

e∈Et

xte = 1 ∀ t ∈ T (7.9)

∑
t∈K

xte ≤ ye ∀ e ∈ E, K ∈ Ce (7.10)

∑
t∈R

xte ≤ 1 ∀ e ∈ E, R ∈ Ie (7.11)

xte ∈ {0, 1} ∀ t ∈ T, e ∈ E (7.12)

ye ∈ {0, 1} ∀ e ∈ E (7.13)

134 DECOMPOSITION APPROACHES FOR THE SDTSS AND MDTSS

The objective function (7.8) states that the number of active employees should
be minimised. Constraints (7.9) ensure that each task is performed by exactly
one employee, and exclude infeasible assignments in terms of qualifications.
Constraints (7.10) make sure that overlapping tasks are not assigned to the
same employee. Constraints (7.11) prevent infeasible combinations of tasks to
be assigned to the same employee. Note that Ie only contains sets of size two,
meaning that these constraints allow at most one of two tasks from each set
R ∈ Ie to be assigned to the same employee. Finally, Constraints (7.12) and
(7.13) set bounds for the decision variables.

The shift assignment problem

Based on a solution of the task assignment problem, a feasible shift assignment
is constructed as follows. For each active employee, determine the first shift
that covers the interval defined by the earliest start time and the latest end
time of the assigned tasks. By taking into account the infeasible task pairs
when solving the task assignment problem (Constraints (7.11)), a feasible shift
will always be found.

7.4.3 Augmented interval graph decomposition

The second step of the infeasible task pair decomposition uses Constraints (7.10)
and (7.11) to ensure that conflicting tasks are not assigned to the same employee.
These two causes of conflict are considered separately, allowing polynomial time
algorithms to be used for constructing the sets Ce and Ie. However, it is possible
to model both causes of conflict in one graph by augmenting the interval graph G
with additional arcs. Maximal cliques in this augmented interval graph can then
result in stronger clique constraints of the form of Constraints (7.10). Algorithm
6 outlines this approach. Note that this approach also returns optimal solutions.

Algorithm 6 Augmented interval graph decomposition
Input: SDTSS problem instance
Output: Optimal solution
1: Generate the augmented interval graph G′
2: Find all maximal cliques in the augmented interval graph
3: Solve the task assignment problem
4: Solve the shift assignment problem given an optimal task assignment

The augmented interval graph G′ = (V,A) is constructed with one node for each
task. Arcs are added between two nodes in two cases: 1) if the corresponding

THE SINGLE DAY TSS PROBLEM 135

tasks overlap in time, and 2) if the corresponding tasks cannot be performed
within one shift by the same employee. A maximal clique in G′ is then a set of
conflicting tasks that should be assigned to different employees. All maximal
cliques in G′ can be found with the Bron-Kerbosch algorithm [14].

The task assignment problem solved at line 3 of Algorithm 6 is identical to
solving model (7.8) - (7.13), without Constraints (7.11). Finally, the procedure in
the last step is the same as the last step in the infeasible task pair decomposition.

This approach resembles a graph colouring reformulation of the problem. A list
colouring problem on G′ corresponds to solving the task assignment problem at
line 3 of Algorithm 6. The qualifications of the employees define the colour lists
of each node.

7.4.4 Horizontal decomposition

When the number of employees and/or tasks increases, exact approaches fail to
produce optimal or even feasible solutions within acceptable calculation time.
Therefore, an alternative decomposition approach is presented, based on the
CMH algorithm introduced in Chapter 6.

Algorithm 7 shows the pseudocode for the horizontal decomposition approach.
It is a constructive heuristic which builds a solution by sequentially solving
subproblems. In each subproblem, tasks and shifts are assigned to a subset of
b randomly selected employees. Note that, for cases in which there is a clear
structure in the distribution of skills (e.g. hierarchical), a different, tailor-made
selection approach could be more appropriate.

Algorithm 7 Horizontal decomposition approach
Input:

T := set of tasks to be assigned
E := set of employees
b := number of employees in one subproblem

Output: x . partial or complete solution
1: x := empty solution
2: while E 6= ∅ or not all tasks assigned do
3: E′ := sample and remove b employees from E . delineate the subproblem
4: Solve the subproblem for E′ and append the solution to x
5: Remove the tasks assigned to E′ from T
6: end while

The size of the subproblems is determined by the parameter b. In general, a
higher value of b results in better solutions, but it also increases the calculation

136 DECOMPOSITION APPROACHES FOR THE SDTSS AND MDTSS

Employee 1

Employee 2

Employee 3

Employee 4

Employee 5

Employee 6

Employee 7

Employee 8

1
2
3

Figure 7.1: Horizontal decomposition of an SDTSS instance with eight employees
and block size b = 3

time [116]. The decision variables of each subproblem are the same as in the
model on page 130. Let ut be the duration of task t, E′ the employees considered
in the subproblem and T ′ the tasks that have not yet been assigned. The model
solved at line 4 of Algorithm 7 can then be formulated as:

max
∑
e∈E′

∑
t∈T ′

utxte

s.t.
∑

e∈E′
t

xte ≤ 1 ∀ t ∈ T ′

Constraints (7.3) - (7.7) with E = E′ and T = T ′

Figure 7.1 illustrates the decomposition into subproblems with b = 3, for an
instance with eight employees. Three subproblems are delineated. The first
subproblem is defined over employees {1, 2, 3}, the second subproblem considers
employees {4, 5, 6} and the third subproblem only deals with the remaining two
employees {7, 8}.

As is the case for CMH in Chapter 6, the result of applying Algorithm 7 might
be a partial solution in which not all tasks are assigned. To fix such infeasible
schedules, a second algorithm is applied which builds upon the LBIH algorithm
presented in Chapter 6. The repair heuristic (re)assigns a limited number of
tasks until a feasible solution is found, or until a time limit is reached. In this
process, the impact on the quality of the solution obtained by Algorithm 7 is
minimised. Algorithm 8 shows the repair procedure.

The Hamming distance model solved at line 3 of Algorithm 8 is the mathematical
model presented on page 130, with the addition of the asymmetric Hamming

THE SINGLE DAY TSS PROBLEM 137

Algorithm 8 Repair procedure
Input:

x̄ := an infeasible solution
k′ := maximum number of tasks to reassign

Output: x . (feasible) solution
1: infeasible := true . boolean indicating if the solution is feasible
2: while infeasible and time limit not reached do
3: x := solve the Hamming distance model with k′ given x̄
4: if x is feasible then
5: infeasible := false
6: else
7: k′ := k′ + 1
8: end if
9: end while

distance constraint (7.14) [52].

∑
t∈T

∑
e∈E

x̄te(1− xte) ≤ k′ (7.14)

This constraint limits the number of variables that can change value with respect
to a given reference solution x̄. In the context of the SDTSS, this constraint
ensures that an integer programming solver will (re)assign at most k′ tasks.
Due to the restriction of the search space imposed by this constraint, the model
yields a feasible solution much faster than the original model. Note that k′
should be at least as large as the number of unassigned tasks, and possibly larger,
to repair a partial solution. Adapting k′ to this condition is done automatically
at line 7 of Algorithm 8.

Note that the Hamming distance constraint applies to the x variables. Another
possibility would be to restrict the number of y variables that can change value.
However, intuitively, the assignment of shifts follows from the task assignment.
The latter assignment is the most constrained and the most difficult to satisfy.
Therefore, focusing on these variables is the most efficient way to a feasible
solution.

7.4.5 Computational evaluation

The performance of the different approaches was analysed during extensive
computational experiments on a large, varied dataset. First, details on the

138 DECOMPOSITION APPROACHES FOR THE SDTSS AND MDTSS

Characteristic Settings

Number of employees n 20, 40, 60, 80, 100
Skilling s 0.3, 0.6, 1.0
Tightness t 0.6, 0.9

Table 7.2: Instance characteristics for the SDTSS dataset

experimental setup are presented. Afterwards the computational results are
presented and analysed.

Data and experimental setup

Table 7.2 shows the different values of the characteristics of the instances in the
benchmark dataset10.

Skilling is the percentage of tasks for which, on average, an employee is qualified.
For example, s = 0.6 means that each employee can, on average, perform 60%
of all tasks. s = 1 denotes that there are no qualification requirements and all
employees can perform all tasks. During instance generation, task qualifications
are distributed randomly among employees, resulting in a random skill structure.

The tightness of an instance is a parameter of the instance generation procedure
to control the number of tasks. It is a measure for how many tasks will be
performed in each assigned shift. When the number of employees is kept
constant, a higher tightness leads to more tasks in an instance.

The shift structure is the same in all instances, consisting of three partially
overlapping shifts of equal duration. Overlapping shifts are particularly
challenging since, otherwise, the task assignment problem could be solved per
shift, instead of for the entire day. It is conjectured that algorithms performing
well for such a shift structure will also be capable of addressing instances with
less or no shift overlap.

A full factorial experimental design resulted in 5× 3× 2 = 30 instance classes.
For each class, ten random instances were generated, resulting in a dataset of
300 instances. The subproblems in the horizontal decomposition approach were
constructed with b = 5. The repair procedure was initiated with k′ = 40, based
on preliminary experiments and computational results from Chapter 6. The
time limit was set to 1800 seconds. For each instance, ten repeated runs were
executed. All experiments were carried out on a Dell Poweredge T620, 2x Intel

10The instance generator is publicly available at http://gent.cs.kuleuven.be/tss.html.

http://gent.cs.kuleuven.be/tss.html

THE SINGLE DAY TSS PROBLEM 139

Xeon E5-2670, 128GB RAM. Gurobi 5.6.2 was used as an integer programming
solver, configured to use one thread and default settings.

Computational results

Table 7.3 shows computational results for the different algorithms as averages of
all instances per class. Four approaches are compared: the integer programming
solver on the model from Section 7.4.1 (MIP), the infeasible task pair
decomposition (Task pair decomp.), the augmented interval graph decomposition
(Interval graph decomp.), and the heuristic horizontal decomposition approach
(Horizontal decomp). For each of these approaches, the following data is shown:
the objective value of the obtained solution (Obj.), the percentage of instances
in the class for which a feasible solution was found (Feas.), and the computation
time as elapsed wall time in seconds (Time). If an approach failed to find
a feasible solution for at least one instance in the class, the objective value
is annotated with an asterisk. The best results for each instance class are
highlighted in bold.

Furthermore, a lower bound (LB) is given, calculated as shown in Equation
(7.15), with LBMIP the lower bound of the integer programming solver after
1800 seconds, LBtask pair the integer programming solver’s lower bound of the
task assignment problem in the infeasible task pair decomposition after 1800
seconds, and LBinterval the integer programming solver’s lower bound after 1800
seconds when solving the task assignment problem in the augmented interval
graph decomposition.

LB = max(LBMIP , LBtask pair, LBinterval) (7.15)

Table 7.4 summarises the computational results. The infeasible task pair
decomposition finds feasible solutions for 97% of the instances as well as the
highest number of best solutions among the four approaches. The horizontal
decomposition, on the other hand, is always capable of finding a feasible
solution within the time limit, often very close to the (optimal) lower bound.
The difference between the task pair decomposition and augmented interval
graph decomposition is small. However, the former does find a higher number
of feasible and best solutions in, on average, less computation time.

For instances with a high number of employees and a high tightness, the
horizontal decomposition performs better than the other approaches. The
other approaches fail to consistently find feasible solutions for these instances.
Particularly, when n > 40 and t = 0.9, the full integer programming model does
not always produce a feasible solution.

140 DECOMPOSITION APPROACHES FOR THE SDTSS AND MDTSS

In
st
an

ce
M
IP

T
as
k
pa

ir
de

co
m
p.

In
te
rv
al

gr
ap

h
de

co
m
p.

H
or
iz
on

ta
l
de

co
m
p.

n
s

t
L
B

O
bj
.

Fe
as
.

T
im

e
(s
)

O
bj
.

Fe
as
.

T
im

e
(s
)

O
bj
.

Fe
as
.

T
im

e
(s
)

O
bj
.

Fe
as
.

T
im

e
(s
)

20
0.
3

0.
6

15
.5

15
.5

10
0%

0.
2

15
.5

10
0%

0.
1

15
.5

10
0%

0.
1

17
.9

10
0%

0.
1

0.
9

18
.0

18
.0

10
0%

0.
4

18
.0

10
0%

0.
3

18
.0

10
0%

0.
3

20
.5

10
0%

1.
2

0.
6

0.
6

15
.2

15
.2

10
0%

0.
3

15
.2

10
0%

0.
3

15
.2

10
0%

0.
4

15
.8

10
0%

0.
9

0.
9

18
.0

18
.0

10
0%

9.
1

18
.0

10
0%

1.
9

18
.0

10
0%

2.
6

19
.6

10
0%

2.
3

1
0.
6

15
.3

15
.3

10
0%

8.
4

15
.3

10
0%

0.
6

15
.3

10
0%

0.
6

15
.4

10
0%

3.
6

0.
9

18
.0

18
.0

10
0%

12
9.
7

18
.0

10
0%

2.
3

18
.0

10
0%

5.
5

18
.2

10
0%

9.
9

40
0.
3

0.
6

30
.9

30
.9

10
0%

11
8.
0

30
.9

10
0%

3.
1

30
.9

10
0%

2.
6

35
.4

10
0%

1.
2

0.
9

38
.9

39
.0

10
0%

80
2.
3

39
.1

10
0%

39
9.
2

39
.2

10
0%

41
2.
1

44
.0

10
0%

12
.5

0.
6

0.
6

30
.9

30
.9

10
0%

68
5.
8

30
.9

10
0%

6.
7

30
.9

10
0%

9.
3

31
.4

10
0%

5.
0

0.
9

38
.9

38
.9

10
0%

18
00
.0

38
.9

10
0%

94
.5

38
.9

10
0%

13
5.
4

40
.4

10
0%

13
.3

1
0.
6

30
.5

30
.5

10
0%

18
00
.0

30
.5

10
0%

13
.1

30
.5

10
0%

32
.1

30
.5

10
0%

20
.1

0.
9

38
.9

38
.9

10
0%

18
00
.0

38
.9

10
0%

16
3.
6

38
.9

10
0%

39
6.
4

39
.0

10
0%

67
.9

60
0.
3

0.
6

46
.9

46
.9

10
0%

93
6.
3

46
.9

10
0%

23
.4

46
.9

10
0%

17
.7

51
.3

10
0%

3.
0

0.
9

59
.4

*6
1.
8

90
%

18
00
.0

60
.1

10
0%

12
01
.2

59
.9

10
0%

11
61
.4

65
.0

10
0%

10
.6

0.
6

0.
6

45
.8

45
.8

10
0%

18
00
.0

45
.8

10
0%

10
8.
0

45
.8

10
0%

10
2.
5

46
.5

10
0%

13
.7

0.
9

59
.6

*6
9.
6

50
%

18
00
.0

59
.6

10
0%

12
16
.7

*7
1.
4

50
%

18
00
.0

60
.8

10
0%

39
.0

1
0.
6

46
.1

46
.1

10
0%

18
00
.0

46
.1

10
0%

18
6.
3

46
.1

10
0%

62
4.
6

46
.5

10
0%

64
.2

0.
9

59
.5

*7
3.
8

60
%

18
00
.0

*7
2.
9

70
%

18
00
.0

*7
3.
6

70
%

18
00
.0

59
.6

10
0%

15
8.
3

80
0.
3

0.
6

58
.7

58
.7

10
0%

18
00
.0

58
.7

10
0%

34
6.
7

58
.7

10
0%

11
4.
3

63
.7

10
0%

5.
1

0.
9

76
.7

*9
0.
5

20
%

18
00
.0

79
.0

10
0%

17
57
.0

77
.6

10
0%

16
78
.4

83
.7

10
0%

17
.5

0.
6

0.
6

57
.8

60
.9

10
0%

18
00
.0

57
.8

10
0%

55
3.
5

57
.8

10
0%

68
0.
1

58
.3

10
0%

30
.5

0.
9

68
.0

*9
3.
5

40
%

18
00
.0

82
.7

10
0%

18
00
.0

*9
7.
8

60
%

18
00
.0

77
.7

10
0%

77
.2

1
0.
6

52
.9

60
.9

10
0%

18
00
.0

84
.4

10
0%

16
95
.3

79
.2

10
0%

13
04
.2

59
.1

10
0%

11
2.
9

0.
9

56
.5

-
0%

18
00
.0

87
.8

10
0%

18
00
.0

89
.7

10
0%

18
00
.0

77
.5

10
0%

38
9.
3

10
0

0.
3

0.
6

74
.3

79
.9

10
0%

18
00

.0
74

.3
10
0%

43
6.
5

74
.3

10
0%

43
9.
8

78
.3

10
0%

26
.4

0.
9

89
.4

*1
23
.3

30
%

18
00
.0

*1
11
.9

70
%

18
00
.0

*1
23
.3

40
%

18
00
.0

10
4.

1
10
0%

31
.5

0.
6

0.
6

72
.6

80
.8

10
0%

18
00
.0

79
.0

10
0%

14
47
.1

11
0.
1

10
0%

16
87
.5

73
.7

10
0%

56
.3

0.
9

65
.1

*1
26
.2

50
%

18
00
.0

*1
22
.3

80
%

18
00
.0

*1
23
.1

80
%

18
00
.0

97
.9

10
0%

17
2.
8

1
0.
6

66
.8

93
.3

10
0%

18
00
.0

11
3.
7

10
0%

18
00
.0

10
4.
0

10
0%

17
30
.0

74
.6

10
0%

23
5.
0

0.
9

63
.8

*1
20
.0

10
%

18
00
.0

11
2.
7

10
0%

18
00
.0

11
7.
4

10
0%

18
00
.0

97
.3

10
0%

76
1.
9

Ta
bl
e
7.
3:

C
om

pa
ris

on
of

di
ffe

re
nt

ap
pr
oa
ch
es

to
th
e
SD

T
SS

,a
s
av
er
ag
es

of
al
li
ns
ta
nc

es
pe

r
cl
as
s

THE SINGLE DAY TSS PROBLEM 141

MIP Task pair Interval graph Horizontal
decomp. decomp. decomp.

Number of feasible solutions 245 292 280 300
Number of best solutions 172 218 196 127

Table 7.4: Summary of computational results for the SDTSS, out of 300 instances

Comparing the required computation time, once n ≥ 40, the general purpose
solver cannot complete its search before the time limit is reached. For both the
task pair decomposition and the augmented interval graph decomposition,
this only occurs for instances with 80 employees or more. Finally, the
heuristic decomposition clearly terminates its search more quickly than the
other approaches.

Figure 7.2 allows for a more detailed analysis of the performance difference
between two decomposition approaches. The chart shows the relative gap in
objective value obtained by the horizontal decomposition and the task pair
decomposition, as calculated by Equation (7.16). Negative values indicate
that the horizontal decomposition found better solutions than the task pair
decomposition. Each data point corresponds to one of the 300 instances for
which both approaches found a feasible solution. The vertical lines categorise the
instances based on the number of employees. Within each of these categories, the
instances are lexicographically ordered by ascending skilling level and tightness.

δ = Horizontal decomp.− Task pair decomp.
Task pair decomp. × 100 (7.16)

This data visualisation reveals the following three insights: 1) the horizontal
decomposition scales better than the task pair decomposition with an increasing
number of employees, 2) the tightness has the same influence on both approaches,
and 3) the horizontal decomposition performs better than the task pair
decomposition when employees are qualified for a higher number of tasks.
The latter can be explained by the fact that it becomes easier for the horizontal
decomposition to construct solutions when more employees are qualified for each
task, as was observed in Chapter 6. Furthermore, symmetry in the mathematical
model could influence the time required to solve the mathematical model. The
model, and thus the consequences of symmetry, in the task pair decomposition
are typically much larger than the subproblems to be solved in the horizontal
decomposition method.

142 DECOMPOSITION APPROACHES FOR THE SDTSS AND MDTSS

-30%

-20%

-10%

0%

10%

20%

30%

0 60 120 180 240 300

δ

n

20 40 60 80 100

Figure 7.2: Relative gap δ (Equation (7.16)) between the results obtained by the
task pair decomposition and the horizontal decomposition, for varying number
of employees n

7.5 The multi-day TSS problem

The problem definition of the SDTSS can be extended to multiple days. With
the addition of the dimension day, shift assignments are now restricted by
time related constraints, such as forbidden shift successions and maximum
number of days worked in the scheduling period. First, an integer programming
formulation for the MDTSS is presented. Afterwards, two constructive heuristics
and one improvement heuristic are proposed. The effect of decomposing the
problem into either horizontal or vertical subproblems on the solution quality is
investigated.

7.5.1 Integer programming formulation

Let D be the set of days in the scheduling period, and let D′ ⊂ D be the
set containing all Saturdays in D. The model assumes that the last day in D
is never a Saturday, i.e. the scheduling period always includes full weekends
(Saturday and Sunday). The day on which task t is to be performed is denoted
by dt. For modelling purposes, the set of shifts S now also includes a dummy

THE MULTI-DAY TSS PROBLEM 143

shift s0 which represents a day-off. The expression S \ {s0} refers to the set of
working shifts in which tasks can be performed.

Decision variables

xte =
{

1 if task t is assigned to employee e
0 otherwise

yesd =
{

1 if employee e is assigned to shift s on day d
0 otherwise

Model

min days worked + (7.17)∑
soft constraint penalty

s.t.
∑

e∈Et

xte = 1 ∀ t ∈ T (7.18)

∑
t∈K

xte ≤ 1 ∀ e ∈ E, K ∈ Ce (7.19)

∑
s∈S

yesd = 1 ∀ e ∈ E, d ∈ D (7.20)

∑
s∈St

yesdt
≥ xte ∀ t ∈ T, e ∈ E (7.21)

yesd ∈ {0, 1} ∀ e ∈ E, s ∈ S, d ∈ D (7.22)

xte ∈ {0, 1} ∀ t ∈ T, e ∈ E (7.23)

Constraints (7.18) ensure that each task is assigned to a qualified employee.
Constraints (7.19) make sure that there are no overlapping task assignments.
Constraints (7.20) require an employee to be assigned to one shift (working
or dummy) per day. Constraints (7.21) enforce tasks to only be assigned to
employees who are working a suitable shift on the tasks’ day of execution.
Constraints (7.22) and (7.23) require all decision variables to be binary.

144 DECOMPOSITION APPROACHES FOR THE SDTSS AND MDTSS

The objective function (7.17) minimises the cost of the schedule, consisting
of two parts: 1) the number of days necessary to perform all tasks, and 2) a
weighted sum of soft constraint violations. The latter includes different time
related constraints, restricting the assignment of shifts (Table 7.5). Typically,
in practice, it is impossible to respect all time related constraints since they are
often imposed by authorities with conflicting priorities. The general methodology
to deal with such constraints is by considering them as soft constraints, and
penalising violations in the objective function. Additional variables pc count
the degree of violation of each constraint c. These variables are added to the
objective function with a weight corresponding to their relative importance.

7.5.2 Horizontal decomposition

Due to the intricate dependencies between the task and shift assignments, even
constructing a feasible solution for the MDTSS presents a challenge. This is
further complicated by the tasks’ qualification requirements. Two heuristic
decomposition approaches have been developed to construct solutions, as well
as a heuristic to improve these initial solutions. This section details a heuristic
which decomposes the problem horizontally (employee-based). Section 7.5.3
presents an algorithm which delineates subproblems vertically (day-based). Due
to the aforementioned feasibility issues, both approaches build upon the idea of
simultaneously assigning tasks and shifts to efficiently find feasible solutions.
The problem is solved partly with an integer programming solver, which strongly
facilitates constructing a feasible solution for this problem.

The horizontal decomposition of the MDTSS is similar to the CMH algorithm
presented on page 111 in Chapter 6. Subproblems consisting of b employees
are sequentially solved to optimality. The employees in each subproblem are
selected randomly without taking into account any instance specific information.

The decision variables in the subproblems are the same as in the model on
page 143. Furthermore, let ut be the duration of task t, ls the duration of shift
s, E′ the employees considered in the subproblem, T ′ the tasks that are still
unassigned, and T ′ed ⊆ T ′ the unassigned tasks on day d for which employee e
is qualified. The model of the subproblem can then be formulated as:

THE MULTI-DAY TSS PROBLEM 145

D
es
cr
ip
tio

n
Fo

rm
ul
at
io
n

M
ax

η
1
w
or
ki
ng

da
ys

∑ d
∈
D

∑
s
∈
S
\{
s

0
}

y
e
s
d
−
p

1 e
≤
η

1
∀
e
∈
E

M
in
η

2
w
or
ki
ng

da
ys

∑ d
∈
D

∑
s
∈
S
\{
s

0
}

y
e
s
d

+
p

2 e
≥
η

2
∀
e
∈
E

M
ax

η
3 s
as
si
gn

m
en
ts

of
sh
ift

s
∑ d
∈
D

y
e
s
d
−
p

3 es
≤
η

3 s
∀
e
∈
E

M
in
η

4 s
as
si
gn

m
en
ts

of
sh
ift

s
∑ d
∈
D

y
e
s
d

+
p

4 es
≥
η

4 s
∀
e
∈
E

M
ax

η
5
co
ns
ec
ut
iv
e
w
or
ki
ng

da
ys

∑
s
∈
S
\{
s

0
}

η
5 ∑ t=
0

y
e
s
(d

+
t)
−
p

5 ed
≤
η

5
∀
e
∈
E
,
d
∈

[0
,|
D
|−

η
5
[

M
ax

η
6
co
ns
ec
ut
iv
e
da

ys
-o
ff

η
6 ∑ t=
0

y
e
s

0
(d

+
t)
−
p

6 ed
≤
η

6
∀
e
∈
E
,
d
∈

[0
,|
D
|−

η
6
[

C
om

pl
et
e
w
ee
ke
nd

s
∑

s
∈
S
\{
s

0
}(y

e
s
d
−
y
e
s
(d

+
1)

)−
p

7 ed
+
p

7′
e
d

=
0
∀
e
∈
E
,
d
∈
D
′

N
o
is
ol
at
ed

da
y-
off

y
e
s

0
(d
−

1)
−
y
e
s

0
d

+
y
e
s

0
(d

+
1)

+
p

8 ed
≥

0
∀
e
∈
E
,
d
∈

[1
,|
D
|−

1[
Sh

ift
su
cc
es
si
on

(s
,s
′)

y
e
s
d

+
y
e
s

′ (
d
+

1)
−
p

9 ed
≤

1
∀
e
∈
E
,
d
∈

[0
,|
D
|−

1[

Ta
bl
e
7.
5:

T
im

e
re
la
te
d
co
ns
tr
ai
nt
s
in

m
od

el
(7
.1
7)

-(
7.
23
)

146 DECOMPOSITION APPROACHES FOR THE SDTSS AND MDTSS

Employee 1

Employee 2

Employee 3

Employee 4

Employee 5

Employee 6

Employee 7

Employee 8

1
2
3

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Figure 7.3: Horizontal decomposition of an MDTSS instance with eight
employees and a block size b = 3

min
∑
e∈E′

∑
d∈D

(
∑
s∈S

lsyesd −
∑

t∈T ′
ed

utxte)+

∑
soft constraint penalty

s.t.
∑

e∈E′
t

xte ≤ 1 ∀ t ∈ T ′

Constraints (7.19) - (7.23) with E = E′ and T = T ′

Figure 7.3 illustrates how these subproblems are delineated for an instance with
eight employees and seven days. As mentioned on page 136, it is possible that
this method returns an infeasible partial solution, i.e. a solution in which some
tasks remain unassigned. These infeasible assignments are afterwards repaired
by an improvement heuristic (Section 7.5.4).

7.5.3 Vertical decomposition

Constantino et al. [35] decompose a nurse rostering problem into one assignment
problem for each day of the scheduling period. The vertical decomposition
approach presented here is based on this idea and decomposes the problem into
one subproblem per day, taking into account a large variety of soft constraints.
Based on shift assignments from preceding days, a cost is calculated for assigning
a particular shift to an employee such that expected violations of the soft
constraints are minimised.

THE MULTI-DAY TSS PROBLEM 147

Employee 1

Employee 2

Employee 3

Employee 4

Employee 5

Employee 6

Employee 7

Employee 8

1 2 3 4 5 6 7

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Figure 7.4: Vertical decomposition of an MDTSS instance with eight employees
and seven days

Algorithm 9 outlines the vertical decomposition approach. An example
application of this vertical decomposition is shown in Figure 7.4 for an instance
with eight employees and seven days.

Algorithm 9 Vertical decomposition for the MDTSS
Input:

D := set of days in the scheduling period
E := set of employees
S := set of shifts

Output: x . partial or complete solution
1: x := empty solution
2: for all d ∈ D do
3: for all e ∈ E do
4: for all s ∈ S do
5: Calculate cost for assigning shift s on day d to employee e (Algorithm

10)
6: end for
7: end for
8: xd := solve the subproblem for day d
9: if xd = null then
10: Assign s0 to each employee on day d . assign days-off to all employees
11: end if
12: Append xd to x
13: end for

The vertical subproblems are similar to the SDTSS, apart from the addition of
a dummy shift representing an idle day, and the objective function which now
includes a cost cesd for assigning shift s to employee e on day d. Let Td be the
tasks to be performed on day d. The subproblem for day d, which is solved at
line 8 of Algorithm 9, can be formulated as:

148 DECOMPOSITION APPROACHES FOR THE SDTSS AND MDTSS

min
∑
e∈E

∑
s∈S\{s0}

cesdyes

s.t.
∑
s∈S

yesd = 1 ∀ e ∈ E

∑
s∈St

yesd ≥ xte ∀ t ∈ Td, e ∈ E

yesd ∈ {0, 1} ∀ e ∈ E, s ∈ S

Constraints (7.2), (7.3), (7.7)

The shift assignment costs cesd for day d are calculated before the subproblem
corresponding to this day is solved. Algorithm 10 shows the pseudocode for this
procedure, which is executed at line 5 of Algorithm 9. The costs are calculated
based on the sequence of shifts assigned to employee e on the days preceding d.
For each constraint, the algorithm determines whether assigning shift s on day
d results in a violation or not, and appropriately adjusts cesd with either the
weight of the constraint, or with zero. Clearly, this approach can be generalised
to include many other personnel rostering constraints which are not considered
in the current study.

Figure 7.5 illustrates this approach with an example for the maximum η3
s

assignments of shift s constraint from Table 7.5. The parameters of this
constraint state that an employee can work at most three early (E) shifts.
Suppose that an employee is already assigned to three early shifts. This means
that the employee should avoid working another early shift, or else a penalty is
incurred. This is expressed by assigning a high cost to the early shift, and no
costs to any of the other shifts. By minimising the shift assignment costs when
solving the subproblem, the assignment of another early shift is avoided.

7.5.4 Improvement heuristic

Initial solutions constructed by the decomposition heuristics are improved with
the LBIH algorithm presented in Chapter 6. This improvement heuristic tries to
iteratively improve (or repair, if necessary) the solution by reassigning a limited
number of tasks. The initial solution is generated by one of the decomposition
methods. Iteratively, the method solves the Hamming distance model using an
integer programming solver. When there is no improvement in two consecutive
iterations, or when the time limit is reached, the algorithm stops.

THE MULTI-DAY TSS PROBLEM 149

Algorithm 10 Shift assignment cost calculation
Input:

e := employee for which the shift assignment cost is calculated
s̄ := shift for which the assignment cost is calculated
d := day up to which shifts have been assigned

Output: ces̄d . shift assignment cost
1: ces̄d := 0
. Min/max working days

2: Ct := calculate number of working days
3: if Ct ≥ max allowed and s̄ is not an idle shift then
4: ces̄d += (Ct−max allowed+1)×weight ‘max working days’
5: end if
6: if Ct < min allowed and s̄ is an idle shift then
7: ces̄d += (min allowed−Ct)×weight ‘min working days’
8: end if
. Min/max assignments per shift type

9: for all s ∈ S do
10: Cs := calculate number of assignments per shift type s
11: if Cs ≥ max allowed and s = s̄ then
12: ces̄d += (Cs−max allowed+1)×weight ‘max assignments of shift s’
13: end if
14: if Cs < min allowed and s 6= s̄ then
15: ces̄d += (min allowed−Cs)×weight ‘min assignments of shift s’
16: end if
17: end for

. Max consecutive working days/days-off
18: if (d− 1) is a working day then
19: Lw := calculate length of ongoing stretch of working days
20: if Lw ≥ max allowed consecutive working days and s̄ is not an idle shift then
21: ces̄d += (Lw−max allowed+1)×weight ‘max consecutive working days’
22: end if
23: else
24: Lo := calculate length of ongoing stretch of days-off
25: if Lo ≥ max allowed consecutive days-off and s̄ is an idle shift then
26: ces̄d += (Lo−max allowed+1)×weight ‘max consecutive days-off’
27: end if
28: end if

. Isolated days
29: if (d− 2) is a working day and (d− 1) is a day-off and s̄ is not an idle shift then
30: ces̄d += weight of constraint ‘no isolated day-off’
31: end if

. Shift succession
32: for all forbidden shift successions do
33: if the succession is matched by assigning s̄ on d then
34: ces̄d += weight of constraint ‘shift succession’
35: end if
36: end for

. Complete weekends
37: if d is a Sunday and the assignment on (d− 1) 6= s̄ then
38: ces̄d += weight of constraint ‘complete weekends’
39: end if

150 DECOMPOSITION APPROACHES FOR THE SDTSS AND MDTSS

E E E

L

N No cost

No cost

E

No cost

High cost

Figure 7.5: Example of determining cesd in the vertical decomposition for the
maximum three assignments of shift E constraint

Characteristic Settings

Number of employees n 10, 20, 40
Number of days d 7, 28
Skilling s 0.3, 0.6, 1
Tightness t 0.6, 0.9

Table 7.6: Instance characteristics for the MDTSS dataset

7.5.5 Computational evaluation

A series of experiments was performed to compare the two decomposition
methods for the MDTSS, and to illustrate how an integer programming solver
is able to deal with this problem.

Data and experimental setup

Table 7.6 shows the parameter settings used in the instance generation procedure
of the used instances11.

A full factorial design resulted in 3 × 2 × 3 × 2 = 36 instance classes. For
each class, ten random instances were generated, resulting in a dataset of 360
instances.

The set of employees is considered homogeneous in terms of contract, i.e. each
employee’s shift allocation is constrained by the same time related constraints.
Table 7.7 lists the contract’s time related constraints for the instances with
d = 7 and d = 28. All constraints have a weight of 100.

11The instance generator is publicly available at http://gent.cs.kuleuven.be/tss.html.

http://gent.cs.kuleuven.be/tss.html

THE MULTI-DAY TSS PROBLEM 151

Constraint d = 7 d = 28

Minimum number of working days 2 8
Maximum number of working days 6 24
Minimum number of assignments per shift [2, 1, 0, 1] [8, 4, 0, 4]
Maximum number of assignments per shift [4, 6, 7, 6] [16, 24, 28, 24]
Maximum number of consecutive working days 4 4
Maximum number of consecutive days-off 3 3
Complete weekends yes yes
Allow isolated days-off no no
Shift succession (3, 1) (3, 1)

Table 7.7: Definition of time related constraints

All algorithms were tested on the 360 instances. The time limit for the
decomposition approaches was set to 3600 seconds. In the improvement
procedure, the maximum number of tasks to reassign was set to k′ = max(40, µ),
with µ the largest number of unassigned tasks over all days in the scheduling
period. The subproblems in the horizontal decomposition were constructed
with b = 5. A minimum of 50% of the time was allocated to the improvement
procedure in both decomposition approaches. This is achieved by imposing a
time limit of 1800

d|E|/be seconds on each subproblem in the horizontal decomposition.
In the vertical decomposition a time limit of 1800

d seconds was imposed on
each subproblem. All experiments were carried out in the same computing
environment as in Section 7.4.5.

Computational results

Tables 7.8 and 7.9 show computational results as averages of all instances per
class. Four different approaches are compared: an integer programming solver
on the model from Section 7.5.1 with a time limit of one hour (MIP-1h) and ten
hours (MIP-10h), the horizontal decomposition followed by the improvement
heuristic (Horizontal decomp.) and the vertical decomposition followed by the
improvement heuristic (Vertical decomp). For each of these approaches, three
metrics are shown: the objective value of the obtained solution (Obj.), the
relative gap to a lower bound (Gap), and the percentage of instances in the
class for which a feasible solution was found (Feas.). The lower bound (LB) is
the lower bound reported by the integer programming solver after ten hours of
calculation time.

152 DECOMPOSITION APPROACHES FOR THE SDTSS AND MDTSS

If an approach failed to find a feasible solution for at least one instance in the
class, the objective value and gap are annotated with an asterisk. If no feasible
solutions were found within one instance class, a dash is shown. The best results
for each instance class are highlighted in bold.

Table 7.8 shows that for the 7-day instances, feasibility can be obtained
by all approaches, except for MIP-1h on the largest instances. For the
smaller instances, however, MIP-1h and MIP-10h compare very well to the
decomposition approaches as they are able to find the optimal solution within the
time limit, which is not always guaranteed by the heuristics. Out of the latter,
the horizontal decomposition clearly results in the best solutions. Moreover,
for instances with 40 employees, the horizontal decomposition even improves
upon MIP-10h. Note that the gap values are to be considered with some care,
as the objective value rapidly increases with the number of violations of soft
constraints since each constraint weight is set to 100. Due to weight scaling, the
differences in objective values can result in very large gaps, while in practice,
the difference is not significant.

The results for the 28-day instances (Table 7.9) show that even finding a feasible
solution is very challenging. Solving the integer program with a time limit of one
hour leads to poor results, and even when allowing ten hours of computation
time, feasible solutions are not consistently obtained. The decomposition
approaches find significantly more feasible solutions within one hour. The
vertical decomposition has a success rate of 100%. Regarding objective value,
the horizontal decomposition generally finds better solutions.

Table 7.10 summarises the results from Tables 7.8 and 7.9, and shows that when
considering a time limit of one hour, the horizontal decomposition is favourable
to the other approaches, whereas it does not always guarantee a feasible solution
for the larger instances within that time limit. Unsurprisingly, allowing the
integer programming solver ten hours of computation time results in the highest
number of best solutions, thereby establishing it as a very powerful but often
impractical approach to the problem.

The methods always used all available time, except for the small instances with
n = 10 for which the MIP approaches converged earlier than the decomposition
algorithms.

THE MULTI-DAY TSS PROBLEM 153

In
st
an

ce
M
IP

-1
h

M
IP

-1
0h

H
or
iz
on

ta
ld

ec
om

p.
Ve

rt
ic
al

de
co
m
p.

n
s

t
LB

O
bj
.

G
ap

Fe
as
.

O
bj
.

G
ap

Fe
as
.

O
bj
.

G
ap

Fe
as
.

O
bj
.

G
ap

Fe
as
.

10

30
60

12
56

.6
12

56
.6

0.
0%

10
0%

12
56

.6
0.
0%

10
0%

12
60

.5
0.
5%

10
0%

12
56

.7
0.
0%

10
0%

90
18

39
.6

18
39

.6
0.
0%

10
0%

18
39

.6
0.
0%

10
0%

18
43

.6
0.
3%

10
0%

18
39

.8
0.
0%

10
0%

60
60

13
0.
6

13
0.

6
0.
0%

10
0%

13
0.

6
0.
0%

10
0%

13
2.
8

1.
4%

10
0%

13
1.
0

0.
8%

10
0%

90
89

4.
3

10
16

.7
23

.6
%

10
0%

92
6.

6
11

.3
%

10
0%

12
78

.2
40

.3
%

10
0%

13
28

.3
42

.2
%

10
0%

10
0

60
21

1.
4

21
1.

4
0.
0%

10
0%

21
1.

4
0.
0%

10
0%

21
1.

4
0.
0%

10
0%

21
1.

4
0.
0%

10
0%

90
47

2.
9

47
2.

9
0.
0%

10
0%

47
2.

9
0.
0%

10
0%

47
2.

9
0.
0%

10
0%

47
2.

9
0.
0%

10
0%

20

30
60

12
6.
7

39
1.
9

42
.0
%

10
0%

15
9.

8
15

.0
%

10
0%

44
4.
3

60
.3
%

10
0%

80
8.
0

69
.3
%

10
0%

90
31

1.
3

29
84

.8
90

.1
%

10
0%

15
98

.8
81

.5
%

10
0%

21
55

.9
87

.2
%

10
0%

36
15

.1
92

.1
%

10
0%

60
60

10
4.
4

10
6.
0

1.
8%

10
0%

10
6.
0

1.
8%

10
0%

10
5.

9
1.
7%

10
0%

20
8.
3

17
.7
%

10
0%

90
14

6.
4

20
78

.6
91

.6
%

10
0%

36
7.

0
31

.9
%

10
0%

10
66

.7
79

.1
%

10
0%

21
98

.8
92

.8
%

10
0%

10
0

60
11

3.
3

11
5.

8
2.
6%

10
0%

11
5.

8
2.
6%

10
0%

11
5.

8
2.
6%

10
0%

11
6.
4

2.
9%

10
0%

90
54

7.
9

14
41

.5
57

.7
%

10
0%

64
7.

9
22

.7
%

10
0%

80
3.
0

40
.3
%

10
0%

21
33

.2
72

.1
%

10
0%

40

30
60

17
1.
5

18
12

.2
83

.3
%

10
0%

21
1.

6
9.
2%

10
0%

23
0.
0

18
.7
%

10
0%

14
63

.5
72

.4
%

10
0%

90
20

0.
4

*2
50

86
.6

*9
9.
2%

80
%

79
31

.7
97

.0
%

10
0%

49
84

.5
95

.3
%

10
0%

89
14

.7
97

.7
%

10
0%

60
60

14
2.
2

12
31

.7
68

.9
%

10
0%

49
0.
6

45
.0
%

10
0%

18
4.

7
22

.1
%

10
0%

97
6.
0

50
.8
%

10
0%

90
14

6.
6

*2
12

06
.0

*9
9.
3%

70
%

10
20

9.
1

98
.1
%

10
0%

50
52

.2
95

.7
%

10
0%

59
80

.0
97

.4
%

10
0%

10
0

60
14

0.
7

52
7.
6

40
.7
%

10
0%

28
5.
3

31
.7
%

10
0%

22
5.

8
25

.8
%

10
0%

15
18

.8
64

.7
%

10
0%

90
14

9.
6

*1
39

36
.0

*9
8.
6%

80
%

10
27

2.
9

98
.2
%

10
0%

29
53

.5
88

.9
%

10
0%

56
86

.5
97

.1
%

10
0%

Ta
bl
e
7.
8:

C
om

pa
ris

on
of

so
lu
tio

n
qu

al
ity

fo
r
di
ffe

re
nt

ap
pr
oa

ch
es

to
th
e
M
D
T
SS

,7
-d
ay

in
st
an

ce
s,

as
av
er
ag

es
of

al
l

in
st
an

ce
s
pe

r
cl
as
s

154 DECOMPOSITION APPROACHES FOR THE SDTSS AND MDTSS

In
st
an

ce
M
IP

-1
h

M
IP

-1
0h

H
or
iz
on

ta
ld

ec
om

p.
Ve

rt
ic
al

de
co
m
p.

n
s

t
LB

O
bj
.

G
ap

Fe
as
.

O
bj
.

G
ap

Fe
as
.

O
bj
.

G
ap

Fe
as
.

O
bj
.

G
ap

Fe
as
.

10

30
60

58
83
.4

60
57
.7

3.
2%

10
0%

60
18

.6
2.
4%

10
0%

66
60
.2

12
.2
%

10
0%

68
28

.1
14

.4
%

10
0%

90
11
29
4.
6

11
29

4.
8

0.
0%

10
0%

11
29

4.
8

0.
0%

10
0%

11
33

6.
2

0.
4%

10
0%

11
34

4.
0

0.
5%

10
0%

60
60

87
3.
8

12
49
.1

22
.0
%

10
0%

90
7.

9
3.
0%

10
0%

19
66
.6

58
.0
%

10
0%

41
51

.7
78

.9
%

10
0%

90
20
24
.7

*8
67
9.
2

*7
7.
9%

90
%

58
78

.7
65
.3
%

10
0%

76
35
.7

74
.4
%

10
0%

12
28

4.
9

83
.9
%

10
0%

10
0

60
17
07
.4

17
72
.3

2.
9%

10
0%

17
52

.3
1.
8%

10
0%

20
46
.7

18
.5
%

10
0%

42
81

.0
58

.5
%

10
0%

90
17
12
.2

*4
41
8.
3

*6
9.
1%

80
%

20
21

.2
21
.4
%

10
0%

26
00
.8

38
.9
%

10
0%

56
62
.4

70
.8
%

10
0%

20

30
60

38
0.
3

13
30
2.
4

96
.6
%

10
0%

45
07

.6
90
.8
%

10
0%

63
47
.1

93
.8
%

10
0%

14
13

8.
3

97
.2
%

10
0%

90
19
65
.5

-
-

0%
*3
21
64
.6

*9
3.
4%

90
%

23
07

9.
0

91
.9
%

10
0%

35
57
1.
7

94
.5
%

10
0%

60
60

37
9.
8

94
33
.6

95
.2
%

10
0%

10
19

.2
36

.7
%

10
0%

21
15

.6
78
.7
%

10
0%

90
20
.2

95
.7
%

10
0%

90
35
1.
8

*5
79
22
.0

*9
9.
5%

10
%

*3
18
13

.4
*9

8.
9%

50
%

*1
35

69
.9

*9
7.
0%

80
%

21
35

8.
3

98
.3
%

10
0%

10
0

60
30
7.
6

38
15
.7

88
.1
%

10
0%

20
78

81
.4
%

10
0%

15
33

.7
75

.5
%

10
0%

71
62

.9
95

.6
%

10
0%

90
29
6.
2

*4
33
25
.3

*9
9.
3%

30
%

33
31
4.
2

98
.9
%

10
0%

94
36

.2
96

.4
%

10
0%

13
52
1.
3

97
.8
%

10
0%

40

30
60

56
5.
2

*9
16
67
.4

*9
9.
1%

90
%

39
88
0.
7

98
.4
%

10
0%

81
55

.6
91
.7
%

10
0%

25
25

6.
0

97
.7
%

10
0%

90
60
1.
2

-
-

0%
-

-
0%

*1
78

97
1.
0

*9
9.
7%

40
%

56
14

1.
6

98
.9
%

10
0%

60
60

56
8.
8

*1
23
06
8.
9

*9
7.
8%

90
%

89
20
.4

92
.1
%

10
0%

33
68

.3
79
.3
%

10
0%

24
20

4.
0

97
.5
%

10
0%

90
-

-
-

0%
*9
40
51

.0
*9

9.
4%

10
%

*1
66

67
1.
8

*9
9.
7%

50
%

49
66

8.
9

99
.1
%

10
0%

10
0

60
56
7.
6

*1
77
02
4.
0

*9
9.
7%

90
%

79
30
.6

85
.6
%

10
0%

28
23

.1
76
.7
%

10
0%

26
45

8.
9

97
.8
%

10
0%

90
-

-
-

0%
-

-
0%

11
75
28

.7
99

.2
%

10
0%

46
54

7.
2

99
.5
%

10
0%

Ta
bl
e
7.
9:

C
om

pa
ris

on
of

so
lu
tio

n
qu

al
ity

fo
r
di
ffe

re
nt

ap
pr
oa
ch
es

to
th
e
M
D
T
SS

,2
8-
da

y
in
st
an

ce
s,

as
av
er
ag
es

of
al
l

in
st
an

ce
s
pe

r
cl
as
s

CONCLUSIONS 155

MIP-1h MIP-10h Horizontal Vertical
decomp. decomp.

7 days Number of feasible solutions 173 180 180 180
Number of best solutions 74 130 105 56

28 days Number of feasible solutions 118 145 167 180
Number of best solutions 23 77 45 10

Total Number of feasible solutions 291 325 347 360
Number of best solutions 97 207 150 66

Table 7.10: Overview of computational results for the MDTSS, out of 360
instances

7.6 Conclusions

The idea of decomposing a large problem into smaller, tractable subproblems
has been explored in the academic literature before [8, 53, 83]. This chapter
investigated decomposition schemes for integrated task and shift scheduling
problems, which are encountered in various environments such as logistics,
manufacturing, etc.

Two TSS problems were introduced: the first one deals with a single, isolated
day, while the second variant extends the scheduling period to multiple days.
Exact and heuristic decomposition methods were introduced for both variants.
Extensive computational experiments showed that a decomposition scheme
which solves horizontally delineated subproblems, found near-optimal solutions
for SDTSS problems with up to 100 employees, and MDTSS problems with up
to 40 employees and a scheduling period of 28 days. Furthermore, it was shown
how various time related personnel rostering constraints could be accounted
for by the different algorithms. Finally, for both problem variants, an instance
generator was made publicly available to enable researchers further investigating
properties and solution approaches to these problems.

The results in this chapter clearly indicate the need to investigate how to
decompose a problem, and give way to insightful recommendations regarding
decomposition for other problems. The obtained results confirm previous
academic results which have demonstrated the effectiveness of horizontal
decomposition and the LBIH algorithm on other problems, e.g. the SMPTSP
(Chapter 6) and the nurse rostering problem [40].

Chapter 8

Column generation based
heuristics for the multi-day
task and shift scheduling
problem

Column generation is a well-known, exact method for solving large, complex
optimisation problems. This chapter presents a reformulation of the multi-day
task and shift scheduling problem, introduced in Chapter 7. Column generation
is used to solve the linear programming relaxation of the reformulation.
Furthermore, several heuristics are introduced which use the primal and dual
solutions of this relaxation to generate feasible integer solutions. A series
of computational experiments investigate the behaviour of both the column
generation and the heuristics. In addition, a comparison is made with the
approaches proposed in Chapter 7.

The content of this chapter is based on joint work with Andreas Ernst, CSIRO.

8.1 Introduction

Column generation is a well-known method for solving large scale linear
programming problems. Successful applications in various settings have
illustrated both the power and versatility of this technique. Also for personnel

157

158 COLUMN GENERATION BASED HEURISTICS FOR THE MDTSS

rostering, column generation has been able to address large problems for which
other exact approaches fail.

In general, most applications of column generation to personnel rostering
problems follow the same decomposition scheme. The master problem assigns
lines of work to employees, while the subproblem is responsible for generating
new lines of work [28, 67]. Typically, column generation is used within a
branch-and-price algorithm to obtain optimal integer solutions [19, 85, 106].

This chapter proposes a column generation algorithm for solving the linear
relaxation of the MDTSS. Tasks and shifts, both fixed in time, need to be
assigned a set of multi-skilled employees, considering a scheduling period of
multiple days. The objective is to minimise the cost of the schedule, consisting
of the total number of days employees are required to work to perform all tasks,
and a weighted sum of penalties incurred by violating time related constraints.
A detailed description, as well as an integer programming formulation of this
problem are presented in Chapter 7.

In addition to column generation, this chapter also introduces three heuristics
which use both the primal and dual solutions of the linear relaxation.
Computational results are presented, comparing the performance of these
heuristics with the decomposition algorithms presented in Chapter 7.

The remainder of this chapter is organised as follows. Section 8.2 discusses the
main contributions. A set covering reformulation of the MDTSS is presented
in Section 8.3. Details on a column generation algorithm used for solving the
linear relaxation of the reformulation are presented in Section 8.4. Section 8.5
presents the three column generation based heuristics. Computational results
are presented in Section 8.6. Finally, Section 8.7 concludes this chapter.

8.2 Contributions

This chapter applies, for the first time, column generation to the MDTSS.
A dedicated approach is presented for solving the subproblems, using a
decomposition scheme in which the task assignment and shift assignment
decisions are separated, resulting in subproblems which are computationally
feasible. Furthermore, details are discussed on measures taken to address some
of the well-known issues in column generation.

The second contribution of this chapter concerns three column generation based
heuristics for the MDTSS: two diving heuristics and a new priority adjustment
heuristic To generate feasible integer solutions, these methods use both the
primal and dual solutions of the linear relaxation.

SET COVERING REFORMULATION 159

8.3 Set covering reformulation

Chapter 7 presented an integer programming formulation for the MDTSS
(model (7.17) - (7.23)), which will be referred to as the original formulation.
The problem is now reformulated using Dantzig-Wolfe decomposition, resulting
in a set covering problem with exponentially many variables. Here, a column
represents a complete line of work (a pattern), consisting of both task and shift
assignments. The decision variables of the set covering problem assign patterns
to employees.

Let P be the set of patterns, with Pe the subset of patterns for which employee
e is qualified. A binary value atp indicates whether task t is covered in pattern
p (atp = 1), or not (atp = 0). Finally, there is a cost cep for assigning pattern p
to employee e.

Decision variables

xep =
{

1 if pattern p is assigned to employee e
0 otherwise

ut =
{

1 if task t is not assigned
0 otherwise

Model

min
∑
e∈E

∑
p∈Pe

cepxep +
∑
t∈T

Mut (8.1)

s.t.
∑
e∈E

∑
p∈Pe

atpxep + ut ≥ 1 ∀t ∈ T (8.2)

∑
p∈Pe

xep = 1 ∀ e ∈ E (8.3)

xep ∈ {0, 1} ∀ e ∈ E, p ∈ Pe (8.4)

ut ∈ {0, 1} ∀ t ∈ T (8.5)

This set covering problem is denoted as the master problem. Constraints (8.2)
ensure all tasks are covered, either by an employee or by the corresponding u

160 COLUMN GENERATION BASED HEURISTICS FOR THE MDTSS

variable. Constraints (8.3) assign exactly one feasible pattern to each employee.
Constraints (8.4) and (8.5) enforce integrality of the decision variables. The first
term of the objective function (8.1) minimises the cost of the schedule. In the
second term, the u variables with sufficiently large weights M are used to force
all tasks to be assigned to employees. By using the u variables in the model,
any feasibility issues arising when solving the master problem are avoided.

8.4 Column generation

Due to the combinatorial nature of the patterns, the master problem contains
too many variables to be solved directly. The integrality constraints (8.4) and
(8.5) can be relaxed such that xep ≥ 0 and ut ≥ 0. A relaxation of the master
problem is thus obtained, which can be solved using column generation [83].

Instead of solving the master problem directly, the restricted master problem is
solved in which only a subset of variables (patterns) is considered. After solving
the restricted master problem, the pricing problem is solved to determine if
there are non-basic variables with negative reduced cost. Let π be the dual
prices of Constraints (8.2), and γ the duals of Constraints (8.3). The reduced
cost c̄ep of a variable xep is defined as:

c̄ep = cep −
∑
t∈T

atpπt − γe

The pricing problem is solved for each employee separately. Since γe can thus be
considered constant, the pricing problem is to determine whether a new pattern
exists such that cep −

∑
t∈T atpπt ≤ γe − ε, with ε a small constant value to

adjust for rounding errors.

If there are no new variables to enter the basis, the column generation algorithm
has converged and an optimal solution for the master problem has been found.
If a negative reduced cost variable is found, it is added to the restricted master
problem, which is then solved again.

8.4.1 The pricing problem as an integer program

The pricing problem generates one or more feasible complete lines of work. Let
qet be a binary value which is one if employee e is qualified for task t, and zero
otherwise. The problem can be formulated as an integer program that is almost
identical to the original formulation (7.17) - (7.23), without the employee index.

COLUMN GENERATION 161

Decision variables

yt =
{

1 if task t is assigned
0 otherwise

zsd =
{

1 if shift s is assigned on day d
0 otherwise

Model

min c−
∑
t∈T

πtyt (8.6)

s.t.
∑
t∈K

yt ≤ 1 ∀K ∈ Ce (8.7)

yt ≤ qet ∀ t ∈ T (8.8)∑
s∈S

zsd = 1 ∀d ∈ D (8.9)

∑
s∈St

zsdt
≥ yt ∀ t ∈ T (8.10)

c = days worked +
∑

soft constraint penalty (8.11)

yt ∈ {0, 1} ∀ t ∈ T (8.12)

zsd ∈ {0, 1} ∀ s ∈ S, d ∈ D (8.13)

The objective function (8.6) minimises the reduced cost. Constraints (8.8) make
sure that tasks are only assigned to qualified employees. Constraints (8.7), (8.9),
(8.10), (8.12) and (8.13) have their counterparts in the original formulation.

Preliminary computational experiments showed that solving the pricing problem
as an integer program requires too much computation time, thereby severely
impacting the performance of the column generation algorithm. Therefore, an
alternative approach to solving the pricing problem is presented.

162 COLUMN GENERATION BASED HEURISTICS FOR THE MDTSS

8.4.2 The pricing problem as a decomposed shortest path

The construction of a line of work is decomposed into packing tasks in shifts,
and constructing the shift roster. First, for each day d and shift s, a problem
is solved which selects tasks for shift s on day d, thereby maximising the sum
of the dual prices of the selected tasks (the total profit σsd). Afterwards, the
shift roster is constructed while minimising the cost, and maximising the sum
of total profits.

Since a suboptimal task selection can never lead to a better pattern, this
decomposition approach is equivalent to assigning tasks and shifts simultaneously.
Whenever a shift assignment is made, it will always be packed with the most
‘profitable’ tasks, i.e. tasks with the largest dual prices, since the sum of these
duals reduces the objective value.

Step 1: packing tasks

The problem of packing tasks in shift s on day d can be formulated as an integer
program. Let Tsd be the set of tasks to be executed on day d, and whose time
intervals fit in shift s. Csd is the set of all maximal cliques in the interval graph
constructed for tasks in Tsd.

max
∑
t∈T

πtyt (8.14)

s.t.
∑
t∈K

yt ≤ 1 ∀K ∈ Csd (8.15)

yt ∈ {0, 1} ∀ t ∈ Tsd (8.16)

The objective function (8.14) maximises the total profit σ, while making sure that
no overlapping tasks are selected (Constraints (8.15)), and tasks are assigned
at most once (Constraints (8.16)).

This problem can be reformulated as a shortest path problem in a graph
G = (V,A), with V the set of nodes and A the set of arcs [77]. The set V
contains 2|Tsd|+ 2 nodes. The first and last nodes in G are the source and sink
node, respectively. Other nodes correspond with the start and end times of
the tasks in Tsd, ordered by increasing time. Each node is connected with its
neighbours by a directed arc without cost, in the direction of the time horizon.
Furthermore, directed arcs are defined between the start and end time nodes of

COLUMN GENERATION 163

time

(1, 13)

(2, 23)

(3, 17)

(4, 22)

s1 s2 s3 s4f1 f2 f4 f3

(t, πt)

(a) Tasks

source

s1 s2 f1 s3 s4 f2 f4 f3

sink

-23

-13

-17

-22

st ft

-πt

(b) Shortest path graph

Figure 8.1: Example of packing tasks in shifts [77]

a task. These arcs have an cost of −πt. Finally, there are directed arcs with
zero cost between each end node and each subsequent start node. A shortest
path between the source and sink node represents an optimal packing of tasks
according to π.

Consider an example with Tsd = {1, 2, 3, 4}. Figure 8.1a shows the tasks’
time intervals, labelled as (t, πt). The graph G for this example is shown in
Figure 8.1b. The value above each arc is the cost. For arcs with no cost, the
value is not shown. In this example, the shortest path from source to sink
is {source, s1, f1, s4, f4, sink}, and has a distance of -35. The corresponding
optimal task packing is {1, 4}, with a total profit σsd = 35.

Step 2: assigning shifts

After determining the optimal task selection for each shift and each day, the
following integer program is solved to construct the shift roster.

164 COLUMN GENERATION BASED HEURISTICS FOR THE MDTSS

min c−
∑
s∈S

∑
d∈D

σsdzsd (8.17)

s.t.
∑
s∈S

zsd = 1 ∀d ∈ D (8.18)

c = days worked +
∑

soft constraint penalty (8.19)

zsd ∈ {0, 1} ∀ s ∈ S, d ∈ D (8.20)

The objective function (8.17) minimises the cost of the roster, while maximising
the sum of σds. Constraints (8.18) assign one shift on each day. Constraints
(8.19) and (8.20) calculate the cost of the solution and require integrality of the
variables, respectively.

Once the shift roster is constructed, task assignments are made based on the
task packing solutions calculated in the first phase. For each assigned shift, the
packed tasks are assigned.

8.4.3 Initialisation

The u variables allow for the restricted master problem to be solved with
only variables representing empty patterns. An empty pattern only has day-off
assignments, and no tasks assignments. For each employee, this pattern is added
to Pe. In the first solution of the restricted master problem, all u variables will
be set to one, and all employees will have their empty pattern assigned.

8.4.4 Lagrangian dual bound

In each iteration of the column generation, a dual bound on the optimal solution
of the master problem is calculated as follows. First, Constraints (8.2) are
dualised with a vector of multipliers π.

COLUMN GENERATION 165

min
∑
e∈E

∑
p∈Pe

cepxep +
∑
t∈T

Mut +

∑
t∈T

πt

1−
∑
e∈E

∑
p∈Pe

atpxep − ut


s.t.

∑
p∈Pe

xep = 1 ∀ e ∈ E

xep ≥ 0 ∀ e ∈ E, p ∈ Pe

0 ≤ ut ≤ 1 ∀ t ∈ T

Reordering the terms gives:

min
∑
t∈T

(M − πt)ut +
∑
e∈E

∑
p∈Pe

(
cep −

∑
t∈T

πtatp

)
xep +

∑
t∈T

πt

s.t.
∑

p∈Pe

xep = 1 ∀ e ∈ E

xep ≥ 0 ∀ e ∈ E, p ∈ Pe

0 ≤ ut ≤ 1 ∀ t ∈ T

A solution to this problem is a lower bound for the master problem. The term∑
e∈E

∑
p∈Pe

(
cep −

∑
t∈T πtatp

)
xep corresponds to the objective value from

the pricing problem (summed over all employees) and is calculated as such in
each iteration. The problem is thus equivalent to:

min
∑
t∈T

(M − πt)ut +
∑
e∈E

minpc̄ep +
∑
t∈T

πt

s.t. 0 ≤ ut ≤ 1 ∀ t ∈ T

Since πt ≤ M , ut will always be zero in an optimal solution to this problem.
The lower bound can thus be calculated as:

166 COLUMN GENERATION BASED HEURISTICS FOR THE MDTSS

∑
e∈E

minpc̄ep +
∑
t∈T

πt (8.21)

This bound can be used to terminate the column generation earlier in order
to avoid the tailing-off effect. The algorithm can be stopped if the difference
between the objective value and the lower bound is smaller than some small
constant ε. Moreover, since the original objective value will always be integer,
the lower bound can be rounded up to the nearest integer. If the objective
value of the master problem is then smaller or equal to this rounded value, the
column generation can be safely terminated.

8.4.5 Stabilisation

Column generation often convergences slowly due to degeneracy of the set
covering problem. State of the art linear programming solvers usually return
an extreme point of the dual polyhedron, which results in dual variables taking
either very large or very small values. This causes the pricing problem to often
generate columns that will never be used in an optimal solution [109].

To address this issue, different stabilisation approaches have been proposed in
the academic literature [120]. In this work, the column generation is stabilised
by smoothing the dual prices [103]. The dual prices πk passed to the pricing
problem in iteration k are ‘corrected’ based on the dual prices from the previous
iteration. Specifically, the stabilised duals π̃k passed to the pricing problem in
iteration k are calculated as a convex combination of πk and π̃k−1 (Equation
(8.22)).

π̃k = απ̃k−1 + (1− α)πk (8.22)

The parameter α ∈ [0, 1[determines the level of smoothing and is fixed to 0.5.

Solving the pricing problem with the stabilised duals might not yield a negative
reduced cost column, even when one exists for πk. This situation is the result of
a mis-pricing. In this case, the pricing problem is solved again using π̃k = πk.

8.4.6 Breaking symmetry

If the workforce is homogeneous, i.e. employees have identical qualifications and
soft constraints, the master problem exhibits a large degree of symmetry. To
break this symmetry employee classes are introduced. An employee is added to

HEURISTICS 167

a class if he/she is identical to the other employees in the class. Clearly, in case
of a completely homogeneous workforce, there is only one employee class, of
which the size is equal to the number of employees. In contrast, if the workforce
is completely heterogeneous, there is one employee class for each employee.

The master problem is modified to decide which patterns to assign to the
employees in each class. Let L be the set of employee classes. The decision
variables xep of the master problem are redefined as:

xlp =
{

1 if pattern p is assigned to an employee in employee class l
0 otherwise

Let sizel be the number of workers in employee class l. Constraint (8.3) is
changed to:

∑
p∈Pl

xlp = sizel ∀ l ∈ L (8.23)

The Lagrangian dual bound (8.21) becomes:

∑
l∈L

sizelminpc̄lp +
∑
t∈T

πt (8.24)

8.5 Heuristics

Solving the master problem with column generation produces fractional primal
and dual solutions, as well as a lower bound on the optimal integer solution. In
this section, three heuristic algorithms are presented which use this information
to find feasible integer solutions for the problem.

8.5.1 Iterated diving heuristics

A diving heuristic explores one branch of a search tree and is intended to
quickly obtain feasible integer solutions in branch-and-bound algorithms [68].
The algorithm starts by solving the root node to optimality. In the resulting
fractional solution, variables equal to one are fixed to this value. Out of the

168 COLUMN GENERATION BASED HEURISTICS FOR THE MDTSS

other (non-zero) fractional variables, one is selected and also fixed to one. These
steps are repeated until a leaf node at the bottom of the search tree is reached.

This basic algorithm is embedded in an iterative framework as follows. Once a
leaf node is reached, and while the time limit is not reached, the diving heuristic
is restarted. To avoid exploring the same branch, randomness is introduced
when selecting a fractional variable to fix. Roulette wheel selection is used
such that a variable whose value is close to one has a high probability of being
selected. Furthermore, in the spirit of branch-and-bound, if the objective value
of the master problem in a node is larger than the best known integer solution
found so far, the diving heuristic is immediately restarted.

Algorithm 11 outlines this approach.

Algorithm 11 Iterated diving heuristic
Input:

MDTSS problem instance
F (x) evaluation function of x

Output: xbest . best solution found
1: while time limit not reached do
2: while leaf node not reached do
3: Solve LP relaxation using column generation
4: Fix all variables with values equal to one
5: Select one fractional variable with roulette wheel selection
6: Fix the selected variable to one
7: end while
8: if F (leaf node solution) ≤ F (xbest) and leaf node solution is feasible

then
9: xbest := leaf node solution

10: end if
11: end while

The choice of which variables to fix strongly affects the behaviour of the
heuristic. The next sections discuss two diving heuristics, the first branching
on variables of the master problem, the second branching on variables of the
original formulation.

Branching on master variables

Branching on the variables xep only impacts the master problem, i.e. the
branching decisions do not need to be enforced when solving the pricing problem.
In the master problem, branching is done by changing the bounds of the fixed

HEURISTICS 169

variables. However, this branching scheme is possibly too aggressive to obtain
feasible solutions in the leaf nodes.

Branching on original variables

A (fractional) solution for the master problem can be projected onto the task
assignment variables vet of the original formulation. For each task t and employee
e, the values of the master variables for the patterns containing task t, are
summed (Equation (8.25)).

vet =
∑

p∈Pe:atp=1
xep ∀e ∈ E, t ∈ T (8.25)

Fixing an original variable corresponds to fixing the assignment of one task to
an employee. To respect these branching decisions, the algorithm for solving the
pricing problem is modified as follows. First, the dual prices used to pack the
tasks are modified based on whether the original variable is fixed to zero or one.
In case of zero, the dual price of the corresponding task for that employee is
set to −∞, if the original variable is one, the corresponding dual price is set to
+∞. This modification of the dual prices is only done for packing the tasks, the
total profit σsd is still calculated using the original dual prices. When packing
tasks in shifts, for each day d, a set of shifts S̃d is maintained out of which at
least one needs to be assigned such that the fixed tasks can be assigned. In
the second step, the integer program (8.17) - (8.20) for constructing the shift
rosters is extended with Constraints (8.26) to ensure that at least one of the
required shifts from S̃d is assigned.

∑
s∈S̃d

zsd = 1 ∀d ∈ D (8.26)

After each branching step, all patterns which do not contain the fixed
assignments are removed from the model.

8.5.2 Priority adjustment heuristic

The priority adjustment heuristic is an iterative constructive heuristic which
attempts to build a feasible integer solution based on the information available
in each column generation iteration.

170 COLUMN GENERATION BASED HEURISTICS FOR THE MDTSS

Parameter Value

Number of employees 10, 20, 40
Number of days 7, 28
Skilling 0.3, 0.6, 1
Tightness 0.6, 0.9

Table 8.1: Parameter settings for the instance generator

The heuristic uses a value θet to indicate the preference of assigning task t to
employee e. High values for θet correspond to a high preference. At the start
of the algorithm, θet is initialised with dual prices π of the current column
generation iteration. Initially, all employees will thus have the same preference
for each task. In one iteration, the algorithm builds a solution by generating a
complete line of work for each employee sequentially, using the current priority
values θ as an indication for the task assignments. Once all employees have
a complete line of work, the priorities of unassigned tasks are updated so
that they receive a higher priority in the next iteration. The update rule
increases the current priority with the product of the highest π value, and the
fractional solution of the master problem projected onto the original variables
vet, according to Equation (8.25).

If there are no unassigned tasks, a feasible solution is obtained, otherwise the
algorithm continues until a maximum number of iterations is reached.

Algorithm 12 outlines the procedure.

8.6 Computational results

8.6.1 Data and experimental setup

To evaluate the different algorithms, a set of instances was generated with the
instance generator used in Chapter 7. Table 8.1 shows the parameter settings
used during instance generation. In total, 24 instance classes were defined, each
containing two instances.

All employees are subject to the same set of time related constraints (Table
8.2). All constraints have a weight of 100. The shift structure is the same in all
instances, consisting of three partially overlapping shifts of equal duration.

COMPUTATIONAL RESULTS 171

Algorithm 12 Priority adjustment heuristic
Input: π := current dual prices of Constraints (8.2)
Output: 〈shifts, tasks〉 . (feasible) solution
1: θet := πt, ∀e ∈ E
2: feasible := false
3: iterations := 0
4: shifts := ∅ . Vector of shift assignments of length |E|
5: tasks := ∅ . Vector of task assignments of length |E|
6: unassigned := ∅
7: E := shuffle(E) . Randomise order in which employees are processed
8: while iterations < 50 and !feasible do
9: for all t ∈ unassigned do . Increase priority of unassigned tasks
10: for all e ∈ E qualified for t do
11: θet := θet + vetmax(π)
12: end for
13: end for
14: shifts := ∅ . Clear previous shift assignments
15: tasks := ∅ . Clear previous task assignments
16: θ̃et := θet . Copy priorities to be used in this iteration
17: for all e ∈ E do
18: c := generate column for e with θ̃et . Solve pricing problem
19: shiftse := shifts(c) . Assign shifts from column c
20: taskse := tasks(c) . Assign tasks from column c
21: for all t ∈ taskse do
22: for all e ∈ E qualified for t do
23: θ̃et := −∞ . Update priority to reflect already assigned tasks
24: end for
25: end for
26: end for
27: unassigned := ∅ . Collect all unassigned tasks
28: for all t ∈ T : t /∈ tasks do
29: unassigned := unassigned ∪ t
30: end for
31: if unassigned = ∅ then . Check feasibility of solution
32: feasible := true
33: end if
34: iterations := iterations+ 1
35: end while

172 COLUMN GENERATION BASED HEURISTICS FOR THE MDTSS

Constraint 7 days 28 days

Minimum number of working days 2 8
Maximum number of working days 6 24
Minimum number of assignments per shift [2, 1, 0, 1] [8, 4, 0, 4]
Maximum number of assignments per shift [4, 6, 7, 6] [16, 24, 28, 24]
Maximum number of consecutive working days 4 4
Maximum number of consecutive days-off 3 3
Complete weekends yes yes
Allow isolated days-off no no
Shift succession (3, 1) (3, 1)

Table 8.2: Definition of time related constraints

All experiments were carried out on an Intel Core i5 CPU at 2.53GHz with 4 cores
and 4GB RAM. CPLEX 12.6 was used as a linear and integer programming
solver. For solving the linear programming problems, the primal simplex
algorithm was used. In the pricing problem, the number of presolves was limited
to one. In all experiments ε was set to 1e− 6. The allowed computation time
was limited to 3600 seconds wall time.

8.6.2 Column generation

This section investigates two aspects related to the column generation. Firstly,
general characteristics of the algorithm for different problem instances are
analysed. Secondly, the computed lower bound is compared with another lower
bound obtained by solving a relaxation of the original formulation.

Tables 8.3, 8.4 and 8.5 show the main computational results for instances with
a scheduling period of one week and 30%, 60% and 100% skilling, respectively.
Table 8.6 shows the results for instances with a four week period. |E| is the
number of employees, |T | the number of tasks.

Two approaches are compared: solving the linear relaxation with column
generation, and solving the root node of the original formulation using CPLEX.
The following data are shown: the final objective value, i.e. the lower bound
(Obj), the total number of iterations (Iters), the number of columns generated
in the algorithm (Cols), the elapsed wall time in seconds (Ttotal), the time spent
in solving the master problem (Tma), and the time spent in solving the pricing
problems (Tpr).

COMPUTATIONAL RESULTS 173

Instance Root node Column generation

|E| |T | Obj Ttotal Obj Ttotal Tma Tpr Iters Cols

Small

11 205 542.6 6.4 594.9 4.7 0.5 4.1 57 1261
11 200 1213.2 4.3 1144.8 4.6 0.6 4.0 61 1397
11 318 2459.0 3.0 2325.3 16.7 7.8 8.9 157 2681
11 314 2058.0 2.7 1977.7 11.8 4.7 7.1 121 2321

Medium

23 454 101.5 188.2 102.0 13.8 7.2 6.6 43 2821
24 474 99.0 301.2 99.0 15.7 9.5 6.2 45 2713
23 657 642.1 961.0 808.8 198.8 170.9 27.8 135 7948
23 636 108.9 405.1 445.8 164.3 139.4 24.9 134 7115

Large

49 923 147.0 2117.8 176.0 69.8 54.4 15.4 46 5184
44 873 132.0 1372.9 177.0 68.9 53.8 15.1 51 5367
47 1326 141.0 2133.9 210.7 3637.9 3559.1 78.8 136 19815
45 1322 135.0 1938.6 199.9 3608.1 3541.8 66.4 133 17543

Table 8.3: Results for column generation on instances with 30% skilling

Instance Root node Column generation

|E| |T | Obj Ttotal Obj Ttotal Tma Tpr Iters Cols

Small

11 214 51.0 13.1 151.0 4.2 0.7 3.5 43 1262
11 201 49.0 11.1 49.0 3.6 0.6 3.0 39 1181
11 353 829.8 153.2 958.3 45.1 31.6 13.5 164 4116
11 326 484.3 175.6 659.4 27.5 16.3 11.2 113 3520

Medium

25 444 75.0 286.2 90.0 13.4 6.3 7.1 47 2674
23 456 100.0 632.5 200.0 12.9 5.3 7.6 42 2810
23 692 109.0 3480.0 509.0 254.0 228.1 25.9 113 7200
23 685 69.0 1226.9 307.0 482.0 450.5 31.4 135 9014

Large

48 899 144.0 3600.1 177.0 77.8 49.7 28.0 57 6507
50 908 150.0 2801.7 176.0 83.1 54.4 28.6 56 6696
46 1402 140.0 3600.1 416.0 3274.0 3162.5 111.5 127 17404
44 1385 135.0 3600.1 820.2 3668.5 3553.8 114.7 119 17275

Table 8.4: Results for column generation on instances with 60% skilling

174 COLUMN GENERATION BASED HEURISTICS FOR THE MDTSS

Instance Root node Column generation

|E| |T | Obj Ttotal Obj Ttotal Tma Tpr Iters Cols

Small

12 221 36.0 27.0 152.0 1.9 0.3 1.6 140 346
12 234 51.8 34.2 154.0 1.8 0.3 1.5 128 368
11 347 655.0 366.9 855.0 93.9 80.3 13.6 882 2823
11 355 1239.3 138.0 1456.0 228.0 203.4 24.6 1541 4808

Medium

24 437 72.0 237.5 97.0 3.8 1.0 2.8 209 532
23 503 69.0 739.5 304.0 10.8 5.7 5.1 322 1055
22 653 82.0 1205.9 204.0 680.2 646.4 33.8 1647 5486
23 670 78.0 1326.1 1006.0 1042.4 1009.0 33.4 1646 6693

Large

47 885 141.0 3600.1 176.0 34.6 22.3 12.4 600 1350
46 901 138.0 3600.1 181.0 30.4 18.9 11.5 514 1358
47 1333 - 3600.4 281.1 3603.5 3534.7 68.8 1757 6737
44 1359 - 3600.4 - 3601.6 3531.6 70.0 1707 5548

Table 8.5: Results for column generation on instances with 100% skilling

Instance Root node Column generation

|E| |T | Obj Ttotal Obj Ttotal Tma Tpr Iters Cols

30% skilling

12 918 4504.3 108.4 4801.3 1388.5 1146.8 241.7 311 11850
12 853 4098.7 92.6 4173.8 501.9 362.3 139.5 221 8652
11 1345 13107.8 8.9 5935.4 3607.2 3521.2 86.0 466 11482
12 1289 8484.3 71.4 6868.9 3605.6 3460.8 144.8 329 14827

60% skilling

11 855 648.5 473.0 1597.0 317.3 215.2 102.1 124 6738
11 893 409.0 499.2 1707.0 600.4 430.1 170.3 142 8047
12 1427 1230.5 3600.3 - 3641.4 3498.0 143.3 202 14155
11 1295 1911.8 3603.2 - 3622.2 3468.9 153.3 244 15794

100% skilling

11 954 1164.5 1429.1 2812.0 490.5 261.2 229.4 778 4639
11 798 187.0 782.3 685.0 132.5 80.6 51.9 567 2786
12 1348 779.0 3482.0 - 3603.3 3430.3 173.0 1281 8174
12 1343 613.0 3600.1 - 3606.2 3429.8 176.4 1251 8415

Table 8.6: Results for column generation on instances with 28 days

COMPUTATIONAL RESULTS 175

Runtime characteristics

Computational results for non-homogeneous instances in Tables 8.3 and 8.4
show that the column generation algorithm requires around 50 iterations for
instances with a small number of tasks. When the number of tasks increases,
the number of iterations generally increases to around 130 iterations. The total
number of columns generated is proportional to the number of iterations and
the number of employees in an instance, and thus follows a similar trend. Table
8.5 shows that instances with homogeneous employees require significantly more
iterations.

For most instances, the column generation converges within one hour. This is
true for instances with both heterogeneous and homogeneous sets of employees,
indicating that the overall time required to solve the master and pricing problems
is significantly less for the homogeneous instances. In all cases, for the smallest
instances, more time is spent in solving the pricing problems. However, with
increasing instance size, this ratio shifts such that up to an order of magnitude
more time is spent on solving the master problem than on solving the pricing
problems.

Most of these conclusions hold for instances with 28 days as well, but the
number of iterations, and consequently the total computation time, is generally
higher (Table 8.6). Again, most time is spent on solving the master problem.

Lower bound comparison

Tables 8.3 - 8.6 also compare two lower bounds (Obj). For 39 out of the 48
instances, solving the linear relaxation of the set covering formulation results
in a better lower bound compared to solving the root node of the original
formulation. In the nine other cases, either the column generation did not
terminate within the time limit, or the cuts added by CPLEX when solving
the root node significantly strengthened the linear relaxation of the original
formulation.

Comparing the required computation time of both approaches, column
generation generally requires less time to find the optimal solution. For the
instances with homogeneous employees, the difference in required time is up to
two orders of magnitude in favour of column generation.

176 COLUMN GENERATION BASED HEURISTICS FOR THE MDTSS

Influence of skilling level

As was shown in Section 6.6.1, the skilling level has a significant impact on
the performance of algorithms. Figure 6.4 on page 120 clearly illustrated that
SMPTSP instances with a skilling level of 35% are particularly hard for integer
programming solvers. To investigate whether a similar effect also occurs when
solving linear relaxations of the MDTSS, additional experiments were performed.

All instances from Table 8.3, and the 30% skilling instances from Table 8.6
were modified to a skilling level of 35%. For these modified instances, Table
8.7 shows the required calculation time (Time), and the relative difference to
the time required for solving the same instances with a skilling level of 30% (δ).
Instances for which δ is negative require less calculation time when the skilling
level is 35%. In contrast, when δ is positive, more time is required to solve the
35% skilling instance; these cases are highlighted in bold. The results are shown
for solving the root node of the original formulation using CPLEX (Root node),
and for solving the linear relaxation with column generation. For the latter,
time spent in solving the master and pricing problems is shown separately.

The original formulation generally requires more calculation time of an integer
programming solver for instances with 35% skilling level. In some cases, the
required time doubles or triples, and in one extreme case, the time required for
the modified instance is almost ten times larger. This effect is less outspoken
for the column generation. There are fewer increases, and they are generally
smaller. Furthermore, there is no notable difference between the results for the
master problem and for the pricing problems.

These results confirm that for problems in which the task assignment constraints
make up an important part of the model, a skilling level of 35% is harder for
integer programming solvers on the original formulation. By reformulating the
problem, and in this case solving it with column generation, this effect is much
less noticeable.

8.6.3 Heuristics

Tables 8.8, 8.9 and 8.10 show computational results of the three heuristics
for instances with a scheduling period of one week, and varying number of
employees. Results for instances with a period of four weeks are presented in
Table 8.11. In addition to the number of employees and number of tasks in
each instance, the best known lower bound is also shown (LB). For each of the
heuristics, the objective value of the best solution found (Obj), and the gap

COMPUTATIONAL RESULTS 177

Column generation

Instance Root node Total Master Pricing

|E| |T | Time δ Time δ Time δ Time δ

Small (7 days)

11 205 5.8 -11% 5.1 8% 0.7 28% 4.4 6%
11 200 6.2 43% 3.3 -29% 0.6 -9% 2.7 -32%
11 318 12.2 308% 13.8 -18% 6.9 -12% 6.8 -23%
11 314 8.5 216% 10.5 -11% 4.1 -12% 6.4 -10%

Medium (7 days)

23 454 207.0 10% 11.3 -18% 5.6 -23% 5.8 -13%
24 474 316.1 5% 12.7 -19% 7.4 -21% 5.2 -16%
23 657 1970.0 105% 226.0 14% 197.0 15% 29.0 4%
23 636 838.3 107% 182.6 11% 159.5 14% 23.2 -7%

Large (7 days)

49 923 1427.8 -33% 71.3 2% 55.1 1% 16.1 4%
44 873 3278.4 139% 67.8 -2% 52.4 -3% 15.4 2%
47 1326 3600.1 69% 2423.4 -33% 2355.3 -34% 68.1 -14%
45 1322 3600.1 86% 2515.9 -30% 2453.6 -31% 62.3 -6%

Small (28 days)

12 918 297.9 175% 740.8 -47% 554.4 -52% 186.5 -23%
12 853 175.7 90% 577.9 15% 429.3 18% 148.6 7%
11 1345 92.6 944% 3607.2 0% 3512.6 0% 94.6 10%
12 1289 322.6 352% 3610.2 0% 3423.4 -1% 186.8 29%

Table 8.7: Calculation times for instances with a skilling level of 35%

calculated as Obj−LB
Obj (Gap) is also shown. The best results for each instance

are highlighted in bold.

For the priority adjustment heuristic, Algorithm 12 was executed every ten
column generation iterations. In the diving heuristics, only the root node
is solved to optimality each time. In the other nodes, at most ten column
generation iterations are done.

With increasing problem size, there is a clear trend in performance of the
different heuristics. For the small instances (Table 8.8), the diving heuristic
on the master variables obtains the highest number of best solutions, with
six out of twelve instances solved to optimality. As the number of tasks and
employees increases, both diving heuristics fail to consistently find feasible
solutions (Tables 8.9 - 8.11). The priority adjustment heuristic succeeds in
finding feasible solutions for all instances within the time limit. The reason
for this is that the diving heuristics require several nodes to be solved with

178 COLUMN GENERATION BASED HEURISTICS FOR THE MDTSS

Instance Priority adjustment Diving - master Diving - original

|E| |T | LB Obj Gap Obj Gap Obj Gap

30% skilling

11 205 595 855 30.4% 753 21.0% 854 30.3%
11 200 1214 1356 10.5% 1355 10.4% 1455 16.6%
11 318 2459 2560 3.9% 2459 0.0% 2558 3.9%
11 314 2058 2159 4.7% 2058 0.0% 2258 8.9%

60% skilling

11 214 151 252 40.1% 151 0.0% 151 0.0%
11 201 49 50 2.0% 49 0.0% 149 67.1%
11 353 959 1558 38.4% - - - -
11 326 660 1458 54.7% 1458 54.7% 1960 66.3%

100% skilling

12 221 152 256 40.6% 152 0.0% 152 0.0%
12 234 154 357 56.9% 154 0.0% 154 0.0%
11 347 855 1457 41.3% - - - -
11 355 1456 2358 38.3% - - - -

Table 8.8: Comparison of heuristics for small instances with a scheduling period
of one week

Instance Priority adjustment Diving - master Diving - original

|E| |T | LB Obj Gap Obj Gap Obj Gap

30% skilling

23 454 102 1511 93.2% 1210 91.6% - -
24 474 99 109 9.2% 810 87.8% - -
23 657 809 2922 72.3% - - - -
23 636 446 2924 84.7% - - - -

60% skilling

25 444 90 98 8.2% 295 69.5% 90 0.0%
23 456 200 203 1.5% 200 0.0% 200 0.0%
23 692 509 2321 78.1% - - - -
23 685 307 2823 89.1% - - - -

100% skilling

24 437 97 97 0.0% 99 2.0% - -
23 503 304 805 62.2% - - - -
22 653 204 1210 83.1% - - - -
23 670 1006 2216 54.6% - - - -

Table 8.9: Comparison of heuristics for medium sized instances with a scheduling
period of one week

COMPUTATIONAL RESULTS 179

Instance Priority adjustment Diving - master Diving - original

|E| |T | LB Obj Gap Obj Gap Obj Gap

30% skilling
49 923 176 207 15.0% - - - -
44 873 177 4424 96.0% - - - -
47 1326 211 24603 99.1% - - - -
45 1322 200 24796 99.2% - - - -

60% skilling

48 899 177 189 6.3% - - - -
50 908 176 188 6.4% - - - -
46 1402 416 21882 98.1% - - - -
44 1385 821 17073 95.2% - - - -

100% skilling

47 885 176 176 0.0% - - - -
46 901 181 181 0.0% - - - -
47 1333 282 2227 87.3% - - - -
44 1359 0 3926 100.0% - - - -

Table 8.10: Comparison of heuristics for large instances with a scheduling period
of one week

Instance Priority adjustment Diving - master Diving - original

|E| |T | LB Obj Gap Obj Gap Obj Gap

30% skilling

12 918 4802 9143 47.5% - - - -
12 853 4174 8547 51.2% - - - -
11 1345 13108 21360 38.6% - - - -
12 1289 8485 14465 41.3% - - - -

60% skilling

11 855 1597 3409 53.2% - - - -
11 893 1707 3816 55.3% - - - -
12 1427 1231 11866 89.6% - - - -
11 1295 1912 10941 82.5% - - - -

100% skilling

11 954 2812 5620 50.0% - - - -
11 798 685 2893 76.3% - - - -
12 1348 779 6036 87.1% - - - -
12 1343 613 6538 90.6% - - - -

Table 8.11: Comparison of heuristics for instances with a scheduling period of
four weeks

180 COLUMN GENERATION BASED HEURISTICS FOR THE MDTSS

the column generation, while the priority adjustment heuristic can obtain a
feasible solution before the column generation has terminated. Clearly, for
larger problem instances, the time required to solve one node increases, making
it less likely for the diving heuristics to find a feasible solution.

Tables 8.12 and 8.13 compare the best results obtained by the column generation
based heuristics (CG based) with the decomposition heuristics from Chapter 7
(Horizontal decomp and Vertical decomp), for instances with a scheduling period
of one week and four weeks, respectively. Additionally, the results of an integer
programming solver on the original formulation with a time limit of one hour
are also shown (MIP-1h).

For instances considering a one-week scheduling period, the column generation
based heuristics find the best solution for 15 out of 36 instances, while the
horizontal decomposition finds the best solution for 28 out of 36 instances. When
a scheduling period of four weeks is considered, the horizontal decomposition
approach always outperforms the best column generation based heuristic. These
results strongly advocate the type of heuristic decomposition which was the
subject of Chapter 7. However, the column generation based heuristics should
not be dismissed completely, as they outperform the other approaches on
several instances. For example, on large instances with completely homogeneous
workforce, the column generation based heuristics obtain better solutions than
both heuristics from Chapter 7 and the integer programming solver, thereby
presenting a complementary approach.

8.7 Conclusions

This chapter proposed a reformulation of the MDTSS, and a column generation
algorithm to solve its linear programming relaxation. Several of the well-
known issues of column generation were addressed by including dual smoothing,
Lagrangian relaxation and symmetry breaking structures. The algorithm
for solving the pricing problem uses an effective decomposition scheme that
significantly reduces the time required to check for negative reduced cost columns.
Furthermore, it could be adapted to a heuristic algorithm, resulting in an even
smaller calculation time.

The objective value obtained by the column generation was compared with
solving the root node of the original formulation. Computational experiments
showed that the former presents a stronger lower bound, which was, generally,
obtained in less computation time. These results indicate that solving the
reformulation in a branch-and-bound framework could lead to optimal integer
solutions much quicker than solving the original formulation.

CONCLUSIONS 181

Instance CG based Horizontal
decomp.

Vertical
decomp.

MIP-1h

|E| |T |

30% skilling

11 205 753 753 754 753
11 200 1355 1355 1355 1355
11 318 2459 2459 2459 2459
11 314 2058 2078 2058 2058
23 454 1210 467 909 205
24 474 109 228 1715 101
23 657 2922 2861 3622 2620
23 636 2924 2380 3020 2320
49 923 207 185 3317 2522
44 873 4424 248 403 694
47 1326 24603 5042 9742 23006
45 1322 24796 4991 7435 27908

60% skilling

11 214 151 151 151 151
11 201 49 49 49 49
11 353 1558 1638 1558 1257
11 326 1458 1157 1356 1156
25 444 90 90 94 91
23 456 200 200 1004 200
23 692 2321 1816 2416 2618
23 685 2823 1856 3320 3924
48 899 189 177 190 802
50 908 188 176 1112 203
46 1402 21882 4737 6537 22299
44 1385 17073 7297 7629 23993

100% skilling

12 221 152 152 152 152
12 234 154 154 154 154
11 347 1457 855 855 855
11 355 2358 1456 1456 1456
24 437 97 97 97 97
23 503 805 304 308 304
22 653 1210 363 2207 1104
23 670 2216 1048 3013 1811
47 885 176 176 182 182
46 901 181 181 183 186
47 1333 2227 2479 6031 11859
44 1359 3926 4548 5825 14061

Table 8.12: Comparison with heuristic decomposition algorithms from Chapter
7 for instances with a scheduling period of one week

182 COLUMN GENERATION BASED HEURISTICS FOR THE MDTSS

Instance CG based Horizontal
decomp.

Vertical
decomp.

MIP-1h

|E| |T |

30% skilling

12 918 9143 6353 7035 5832
12 853 8547 5970 6330 5129
11 1345 21360 13130 13130 13130
12 1289 14465 9502 9739 9345

60% skilling

11 855 3409 2805 5113 1798
11 893 3816 2770 5620 3408
12 1427 11866 9132 14160 -
11 1295 10941 8148 12736 8526

100% skilling

11 954 5620 3093 7718 2812
11 798 2893 983 1294 685
12 1348 6036 1875 4324 3618
12 1343 6538 2035 5128 3621

Table 8.13: Comparison with heuristic decomposition algorithms from Chapter
7 for instances with a scheduling period of four weeks

Three heuristic algorithms were introduced, all using the primal and dual
solutions found by the column generation algorithm. The presented priority
adjustment heuristic was able to find feasible solutions for all instances, whereas
the diving heuristics only succeeded in this for small instances with around
ten employees. For instances with a large number of employees and tasks, the
new column generation based heuristics improved over the results obtained by
the heuristics presented in Chapter 7. This illustrates the potential of these
algorithms for other problem formulations that have an exponential number of
variables.

Part IV

Conclusions

183

Chapter 9

Conclusions and future
research

9.1 Conclusions

This dissertation investigated theory and practice of nurse rostering, thereby
making significant scientific, social and industrial contributions. The majority
of state of the art studies in nurse rostering focuses on introducing new solution
approaches for particular problem variations. As a result, important aspects of
nurse rostering are neglected, regarding both fundamental issues and practical
implications. The new theoretical insights in this dissertation enable a deeper
understanding of nurse rostering problems, and have direct potential implications
in the way people will address such problems in the future. Decision support
systems, for example, could incorporate the network flow models to address
problem relaxations, embedded in a framework to efficiently find optimal
solutions for problems previously considered too large or too complex. The
practical contributions directly impact the industry by facilitating practitioners
towards applying academic results. Evidently, this would benefit the staff too,
as the literature has repeatedly illustrated that algorithms generate better
solutions than human planners are able to construct.

Furthermore, the dissertation studied problems that combine personnel rostering
with other hard combinatorial optimisation problems. The definition of such
integrated problems addresses challenges deemed too complex to solve by hand.
The contributions in this dissertation, however, show that this type of problem
can be solved, allowing for a better resource utilisation, and consequently, higher

185

186 CONCLUSIONS AND FUTURE RESEARCH

gains.

Contributions to theory: Part I investigated two issues which are generally
neglected in academic research on nurse rostering. Specifically, Chapter 2
identified several nurse rostering problems that can be reformulated as minimum
cost network flow problems. The identified problems included constraints on day
successions and on the number of days worked in both the complete scheduling
period and in subsets thereof. In the light of these new results, previously
published complexity proofs were revisited to obtain a deeper understanding of
what makes nurse rostering hard. For two types of constraints, it was shown
that changing the constraint definition from day-level to shift-level makes the
problem hard.

Chapter 3 addressed inconsistencies which occur when rostering nurses in
multiple, consecutive scheduling periods. Typically, academic models build
upon a static horizon approach to the problem, thereby considering an isolated
scheduling period which ignores assignments from preceding, or future, periods.
This is a significant abstraction of reality, since in practice, assignments in the
current period are strongly influenced by the inertia of the previous scheduling
period. To address this issue, stepping horizon policies for two types of
constraints were introduced and evaluated through a series of computational
experiments. The results showed the impact of incorrectly evaluating constraints
at the boundary of the scheduling period, and illustrated the importance of
including information of the preceding scheduling period. Specifically, the
proposed policies reduced the workload unbalance in a one-year period by up to
50%, while for series constraints, the stepping horizon evaluation policy reduced
the number of violations caused by considering a static horizon by 8%.

Contributions to practice: Part II detailed two academic contributions
which have found their way to practice. The proposed models and algorithms
have been implemented in a commercial software package for personnel rostering
and management, and are currently used in hospitals and other organisations
in Belgium, the Netherlands, France and Luxembourg.

Chapter 4 presented an alternative to the many academic models that fail
to consider vital real world aspects of rostering. A general object model
was introduced, suitable for representing the complex problem characteristics
that originate from practical nurse rostering problems. Particular attention
was devoted to modelling the large variety of organisational and legislative
regulations, and personal requests. A structured description of the model in
the form of an XSD, as well as a large collection of new benchmark instances
based on real world data, have been made publicly available to accommodate
those researchers wishing to work on realistic data.

CONCLUSIONS 187

Chapter 5 presented a solution approach to a problem often faced by software
vendors and practitioners when implementing a system for automated nurse
rostering. To allow algorithms to generate solutions automatically, several
parameters need to be configured beforehand, defining the organisation’s
guidelines and regulations, and their relative importance (the weights). Many
organisations consider this configuration phase too difficult and time-consuming,
as it requires experienced planners to quantify their implicit knowledge; a task
which is also prone to errors. To facilitate this task, a new approach was
developed for automatically extracting weights of constraints from historical
data. The rationale behind the proposed technique is that constraints with many
violations in past rosters are less important and are consequently assigned a low
weight. This approach was evaluated on two case studies concerning Belgian
hospitals, and included a (subjective) evaluation by the head nurses responsible
for creating rosters. The results indicated that the proposed technique succeeds
in extracting suitable weights, which, when used in an algorithm for nurse
rostering, resulted in workable and at the same time high quality rosters.

Contributions to the integration with other problems: Part III
investigated problems which consider the interaction of personnel rostering and
task scheduling. In many organisations, these problems are strongly intertwined
and cannot be considered separately. The three chapters in this part introduced
and discussed problems in which both tasks and shifts need to be assigned
simultaneously.

Chapter 6 introduced new hybrid algorithms for the shift minimisation personnel
task scheduling problem (SMPTSP). Staff availability is predetermined and
cannot be changed, while tasks have to be assigned to the multi-skilled
employees. In addition to the traditional first fit and best fit techniques, a new
constructive heuristic was presented, which combines integer programming and
heuristic search. To further improve the constructed solutions, an algorithm
was presented which integrates local branching in an iterative improvement
framework. The resulting algorithms succeeded in finding the optimal solutions
for all benchmark instances from the literature, for the first time. A series
of computational experiments was conducted to investigate the influence of
two problem characteristics on the performance of the heuristics and of an
integer programming solver. Based on these results, ten new instances were
generated, which have since then been adopted by the research community as
hard instances.

Chapter 7 generalised the SMPTSP to include the decision of when employees
have to work; decisions have to be made regarding both task and shift
assignments. Two variants of this problem were introduced: one considering
a single, isolated day, and one considering a longer scheduling period. For
both variants, integer programming formulations as well as several exact and

188 CONCLUSIONS AND FUTURE RESEARCH

heuristic decomposition approaches were presented. Extensive computational
experiments investigated the different decomposition schemes using a diverse
set of instances. The results showed that the heuristic decomposition of the
problem into horizontal subproblems was particularly successful in solving large
instances.

Finally, Chapter 8 presented a set covering reformulation of the multiple day
task and shift scheduling problem. Due to the large number of variables in the
reformulation, column generation was used for solving the linear programming
relaxation. The algorithm’s performance was improved by stabilising the
duals, reducing the tailing-off effect and breaking symmetry in the set covering
problem. Computational results showed that, for all tested instances, the lower
bound obtained by column generation is stronger than the bound obtained
for the integer programming formulation presented in Chapter 7 by an integer
programming solver. Finally, three heuristics were presented to generate feasible
integer solutions, based on the primal and dual solutions obtained by column
generation. The new heuristics succeeded in finding new best solutions to
instances for which the approaches from Chapter 7 failed.

Overall, the results in this dissertation contribute towards bridging the
gap between theory and practice in nurse rostering from two sides. The
theoretical contributions reinforce the academic foundations of the nurse
rostering problem, allowing researchers to better understand rostering problems,
and the implications of various assumptions. Clearly, such insights are useful
for practitioners as well, as they provide a framework in which the consequences
of redefining a rostering problem can be evaluated. The impact of the practice-
oriented contributions on the research-application gap manifests itself in two
ways that facilitate the application of state of the art academic results. Firstly,
by providing a means to represent feature-rich rostering problems. Secondly, by
automating part of the configuration process of rostering software. The final
contributions in this dissertation illustrate that, when integrating rostering with
other problems, it remains computationally feasible to obtain (near-)optimal
solutions, while enabling decision makers to model problems much closer to
reality.

9.2 Future research

The present dissertation has made several new contributions to the state of
the art of personnel rostering. Nevertheless, a large variety of topics remains
open for future research. Furthermore, based on the contributions, several new

FUTURE RESEARCH 189

research questions have become relevant. In what follows, a list of possible
further extensions is given regarding both models and algorithms.

Models: Chapter 2 showed that the common assumption that all nurse
rostering problems are hard is not valid. The scope in Chapter 2 was limited
to problems with two types of constraints, naturally leading to the question of
whether or not there are other nurse rostering problems that can be solved in
polynomial time. Problems with constraints on consecutive assignments are of
particular interest. Limited appearance of such constraints give rise to dramatic
complexity shifts. Investigating properties of the coefficient matrix of integer
programming formulations (e.g. total unimodularity) can identify efficiently
solvable (sub)problems.

Chapter 3 focused on the impact of the preceding scheduling period. However,
future assignments also influence the current scheduling period. Anticipating the
future can be realised in several ways, e.g. by considering uncertainty of demand
at the start of the next scheduling period through stochastic programming, or
by taking into account already fixed assignments similarly to the techniques
presented in Chapter 3. While it is expected that the impact of ignoring the
next scheduling period(s) is less significant than that of ignoring the preceding
period, it does warrant study as it leads to completely consistent constraint
evaluation policies for rostering problems.

The technique presented in Chapter 5 calculated new weights based on two
solution characteristics: the number of instances of a constraint and the number
of violations of a constraint. While this has the advantage of providing a
transparent methodology and clear understanding of how each weight was
determined, taking into account other characteristics might result in a more
accurate approximation of the real constraint weight. Apart from the number
of violations, the calculation could incorporate the degree of violation, as well
as whether the violation was a result of exceeding a maximum or a minimum.
Furthermore, the weight extraction problem could be reformulated as a machine
learning problem, allowing established techniques to be adapted and applied.

The models for the integrated task and shift scheduling problems introduced
in Chapter 7 are the first formalisation of the problems. However, to facilitate
their practical application, these models should be enriched, much like was done
in Chapter 4 for the rostering problem. For example, in many organisations,
only a subset of tasks will be fixed in time. Other tasks have time windows
in which they should be executed. Such an extension to the models presented
in Chapters 6 and 7 would be interesting both from a practical and academic
point of view.

Algorithms: The algorithms introduced in Chapters 6, 7 and 8 illustrate the

190 CONCLUSIONS AND FUTURE RESEARCH

effectiveness of two algorithmic paradigms: hybridisation and decomposition.
Future research should focus on further exploiting a problem’s structure with
algorithms based on these two principles.

The results in Chapter 2 show that restricted variants of the nurse rostering
problem can be solved efficiently. The presented network flow models allow
fixing assignments, thereby making these reformulations particularly suitable
for enforcing branching decisions. Since only few constraints are captured in
the networks, dualising other constraints would allow Lagrangian relaxation to
calculate lower bounds on the optimal objective value. These two properties of
the reformulations indicate that they are particularly suitable for integration in
a branch-and-bound algorithm for rostering problems with complex constraints.

Smet et al. [112] have applied a suite of metaheuristics to the benchmark
instances introduced in Chapter 4. However, it remains difficult to evaluate the
performance of such results without any indication of what the optimal objective
value is. Therefore, an investigation into a lower bounding procedure or an exact
algorithm for these complex instances presents a relevant, albeit challenging
research objective. Due to the size of the instances and the complex constraint
definitions, traditional techniques such as integer programming cannot be
straightforwardly applied. Decomposition approaches such as branch-and-price
might be more suitable for these instances.

The integrated task and shift scheduling problems discussed in Part III could
be optimally solved using decomposition techniques such as branch-and-price or
(combinatorial) Benders decomposition. The latter could be conceived in the
following way. The master problem would assign shifts to employees, while the
subproblem decides whether a given shift roster is feasible, i.e. whether all tasks
can be assigned to qualified employees. If not, the subproblem generates cuts
which prevent (parts of) solutions to be generated again in the next iterations.

Finally, all instances considered for the problems discussed in Part III have
a random skill structure. It was argued that such a structure presents
a relevant challenge, as in practice, often, the skill structure might vary
significantly among organisations, or even among departments within the
same organisation. Nevertheless, hierarchical skill structures are common
[37]. Dedicated approaches for problems with such skill structure could possibly
outperform the approaches presented in this dissertation, as they currently do
not exploit this information in any way.

Bibliography

[1] S. Abdennadher and H. Schlenker. INTERDIP – an interactive constraint
based nurse scheduler. In Proceedings of the First International Conference
and Exhibition on the Practical Application of Constraint Technologies
and Logic Programming, 1999.

[2] Ablecare. Verpleegkundigen in vlaamse woonzorgcentra, vraag en aanbod,
2010.

[3] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, 1993.

[4] U. Aickelin and K. Dowsland. An indirect genetic algorithm for a nurse-
scheduling problem. Computers & Operations Research, 31(5):761–778,
2004.

[5] E. Ásgeirsson. Bridging the gap between self schedules and feasible
schedules in staff scheduling. Annals of Operations Research, 218(1):51–
69, 2014.

[6] E. Ballestero. Compromise programming: A utility-based linear-
quadratic composite metric from the trade-off between achievement and
balanced (non-corner) solutions. European journal of operational research,
182(3):1369–1382, 2007.

[7] J. F. Bard and H. W. Purnomo. Preference scheduling for nurses using
column generation. European Journal of Operational Research, 164(2):510–
534, 2005.

[8] J. F. Benders. Partitioning procedures for solving mixed-variables
programming problems. Numerische mathematik, 4(1):238–252, 1962.

[9] I. Berrada, J. A. Ferland, and P. Michelon. A multi-objective approach
to nurse scheduling with both hard and soft constraints. Socio-Economic
Planning Sciences, 30(3):183–193, 1996.

191

192 BIBLIOGRAPHY

[10] B. Bilgin. Advanced Models and Solution Methods for Automation of
Personnel Rostering Optimisation. PhD thesis, KU Leuven, 2012.

[11] B. Bilgin, P. De Causmaecker, B. Rossie, and G. Vanden Berghe. Local
search neighbourhoods for dealing with a novel nurse rostering model.
Annals of Operations Research, 194(1):33–57, 2012.

[12] A. Billionnet. Integer programming to schedule a hierarchical workforce
with variable demands. European Journal of Operational Research,
114(1):105–114, 1999.

[13] F. Bonomo, G. Duran, and J. Marenco. Exploring the complexity
boundary between coloring and list-coloring. Annals of Operations
Research, 169(1):3–16, 2009.

[14] C. Bron and J. Kerbosch. Algorithm 457: Finding all cliques of an
undirected graph. Communications of the ACM, 16(9):575–577, 1973.

[15] P. Brucker, E. K. Burke, T. Curtois, R. Qu, and G. Vanden Berghe. A
shift sequence based approach for nurse scheduling and a new benchmark
dataset. Journal of Heuristics, 16(4):559–573, 2010.

[16] P. Brucker and R. Qu. Network flow models for intraday personnel
scheduling problems. Annals of Operations Research, 218(1):107–114,
2014.

[17] P. Brucker, R. Qu, and E. K. Burke. Personnel scheduling: Models and
complexity. European Journal of Operational Research, 210(3):467–473,
2011.

[18] J. O. Brunner, J. F. Bard, and J. M. Köhler. Bounded flexibility in
days-on and days-off scheduling. Naval Research Logistics, 60(8):678–701,
2013.

[19] E. K. Burke and T. Curtois. New approaches to nurse rostering benchmark
instances. European Journal of Operational Research, 237(1):71–81, 2014.

[20] E. K. Burke, T. Curtois, G. Post, R. Qu, and B. Veltman. A hybrid
heuristic ordering and variable neighbourhood search for the nurse
rostering problem. European Journal of Operational Research, 188(2):330–
341, 2008.

[21] E. K. Burke, T. Curtois, R. Qu, and G. Vanden Berghe. A scatter search
approach to the nurse rostering problem. Journal of the Operational
Research Society, 61(11):1667–1679, 2010.

BIBLIOGRAPHY 193

[22] E. K. Burke, T. Curtois, R. Qu, and G. Vanden Berghe. A time
predefined variable depth search for nurse rostering. INFORMS Journal
on Computing, 25(3):411–419, 2013.

[23] E. K. Burke, P. De Causmaecker, S. Petrovic, and G. Vanden Berghe.
Fitness evaluation for nurse scheduling problems. In Proceedings of the
Congress on Evolutionary Computation, pages 1139–1146, 2001.

[24] E. K. Burke, P. De Causmaecker, S. Petrovic, and G. Vanden Berghe.
Metaheuristics for handling time interval coverage constraints in nurse
scheduling. Applied Artificial Intelligence, 20(9):743–766, 2006.

[25] E. K. Burke, P. De Causmaecker, G. Vanden Berghe, and H. Van
Landeghem. The state of the art of nurse rostering. Journal of Scheduling,
7(6):441–499, 2004.

[26] E. K. Burke, J. Li, and R. Qu. Pareto-based optimization for multi-
objective nurse scheduling. Annals of Operations Research, 196(1):91–109,
2012.

[27] R. N. Burns and M. W. Carter. Work force size and single shift schedules
with variable demands. Management Science, 31(5):599–607, 1985.

[28] A. Caprara, M. Monaci, and P. Toth. Models and algorithms for a staff
scheduling problem. Mathematical programming, 98(1-3):445–476, 2003.

[29] R. C. Carrasco. Long-term staff scheduling with regular temporal
distribution. Computer methods and programs in biomedicine, 100(2):191–
199, 2010.

[30] M. W. Carter and C. A. Tovey. When is the classroom assignment problem
hard? Operations Research, 40(S1):28–39, 1992.

[31] V. Chankong and Y. Y. Haimes. Multiobjective decision making: theory
and methodology. North Holland, 1983.

[32] I. Charon and O. Hudry. The noising methods: A generalization of some
metaheuristics. European Journal of Operational Research, 135(1):86–101,
2001.

[33] G. Codato and M. Fischetti. Combinatorial benders’ cuts for mixed-integer
linear programming. Operations Research, 54(4):756–766, 2006.

[34] C. Coello, G. Lamont, and D. Van Veldhuisen. Evolutionary Algorithms
for Solving Multi-Objective Problems. Springer Science & Business Media,
2007.

194 BIBLIOGRAPHY

[35] A. A. Constantino, D. Landa-Silva, E. L. de Melo, C. F. X. Mendonça,
D. B. Rizzato, and W. Romão. A heuristic algorithm based on multi-
assignment procedures for nurse scheduling. Annals of Operations
Research, 218(1):165–183, 2014.

[36] M.-C. Côté, B. Gendron, and L.-M. Rousseau. Grammar-based integer
programming models for multiactivity shift scheduling. Management
Science, 57(1):151–163, 2011.

[37] P. De Bruecker, J. Van den Bergh, J. Beliën, and E. Demeulemeester.
Workforce planning incorporating skills: State of the art. European
Journal of Operational Research, 243(1):1–16, 2015.

[38] P. De Causmaecker and G. Vanden Berghe. A categorisation of nurse
rostering problems. Journal of Scheduling, 14(1):3–16, 2011.

[39] F. Della Croce, A. Grosso, and F. Salassa. A matheuristic approach
for the total completion time two-machines permutation flow shop
problem. In P. Merz and J.-K. Hao, editors, Evolutionary Computation in
Combinatorial Optimization, volume 6622 of Lecture Notes in Computer
Science, pages 38–47. Springer Berlin Heidelberg, 2011.

[40] F. Della Croce and F. Salassa. A variable neighborhood search based
matheuristic for nurse rostering problems. Annals of Operations Research,,
218(1):185–199, 2014.

[41] B. Detienne, L. Péridy, E. Pinson, and D. Rivreau. Cut generation for an
employee timetabling problem. European Journal of Operational Research,
197(3):1178–1184, 2009.

[42] L. Di Gaspero, J. Gärtner, G. Kortsarz, N. Musliu, A. Schaerf, and
W. Slany. The minimum shift design problem. Annals of Operations
Research, 155(1):79–105, 2007.

[43] K. Doerner and V. Schmid. Survey: matheuristics for rich vehicle routing
problems. In M. Blesa, C. Blum, G. Raidl, A. Roli, and M. Sampels,
editors, Hybrid Metaheuristics, volume 6373 of Lecture Notes in Computer
Science, pages 206–221. Springer Berlin Heidelberg, 2010.

[44] D. Dowling, M. Krishnamoorthy, H. Mackenzie, and D. Sier. Staff rostering
at a large international airport. Annals of Operations Research, 72:125–147,
1997.

[45] R. G. Drake. The nurse rostering problem: from operational research
to organizational reality? Journal of Advanced Nursing, 70(4):800–810,
2014.

BIBLIOGRAPHY 195

[46] R. G. Drake. The ‘robust’ roster: exploring the nurse rostering process.
Journal of Advanced Nursing, 70(9):2095–2106, 2014.

[47] A. Eiben and J. Van Hemert. SAW-ing EAs: Adapting the fitness function
for solving constrained problems. In D. Corne, M. Dorigo, F. Glover,
D. Dasgupta, P. Moscato, R. Poli, and K. V. Price, editors, New Ideas in
Optimization, pages 389–402. McGraw-Hill, 1999.

[48] M. Elahipanah, G. Desaulniers, and E. Lacasse-Guay. A two-phase
mathematical-programming heuristic for flexible assignment of activities
and tasks to work shifts. Journal of Scheduling, 16(5):443–460, 2013.

[49] A. Ernst, H. Jiang, M. Krishnamoorthy, and D. Sier. Staff scheduling
and rostering: A review of applications, methods and models. European
Journal of Operational Research, 153(1):3–27, 2004.

[50] P. Eveborn and M. Rönnqvist. Scheduler–a system for staff planning.
Annals of Operations Research, 128(1-4):21–45, 2004.

[51] J.-G. Fages and T. Lapègue. Filtering AtMostNValue with difference
constraints: Application to the shift minimisation personnel task
scheduling problem. Artificial Intelligence, 212:116–133, 2014.

[52] M. Fischetti and A. Lodi. Local branching. Mathematical Programming
Series B, 98:23–47, 2003.

[53] M. L. Fisher. The lagrangian relaxation method for solving integer
programming problems. Management Science, 27(1):1–18, 1981.

[54] J. Fürnkranz and E. Hüllermeier. Preference learning. Springer, 2010.

[55] C. A. Glass and R. A. Knight. The nurse rostering problem: A critical
appraisal of the problem structure. European Journal of Operational
Research, 202(2):379–389, 2010.

[56] A. V. Goldberg and R. E. Tarjan. Finding minimum-cost circulations by
canceling negative cycles. Journal of the ACM, 36(4):873–886, 1989.

[57] U. Gupta, D. Lee, and J.-T. Leung. An optimal solution for the channel-
assignment problem. IEEE Transactions on Computers, C-28(11):807–810,
1979.

[58] O. Guyon, P. Lemaire, E. Pinson, and D. Rivreau. Cut generation for
an integrated employee timetabling and production scheduling problem.
European Journal of Operational Research, 201(2):557–567, 2010.

196 BIBLIOGRAPHY

[59] S. Hanafi, J. Lazic, N. Mladenovic, C. Wilbaut, and I. Crévits. New
hybrid matheuristics for solving the multidimensional knapsack problem.
In M. Blesa, C. Blum, G. Raidl, A. Roli, and M. Sampels, editors, Hybrid
Metaheuristics, volume 6373 of Lecture Notes in Computer Science, pages
118–132. Springer Berlin Heidelberg, 2010.

[60] M. Haouari, N. Aissaoui, and F. Z. Mansour. Network flow-based
approaches for integrated aircraft fleeting and routing. European Journal
of Operational Research, 193(2):591–599, 2009.

[61] S. Haspeslagh, P. De Causmaecker, A. Schaerf, and M. Stølevik. The
first international nurse rostering competition 2010. Annals of Operations
Research, 218(1):221–236, 2014.

[62] B. Hayes, A. Bonner, and J. Pryor. Factors contributing to nurse job
satisfaction in the acute hospital setting: a review of recent literature.
Journal of Nursing Management, 18(7):804–814, 2010.

[63] F. S. Hillier and G. J. Lieberman. Introduction To Operations Research.
McGraw-Hill Education, 2014.

[64] P. Hulshof, N. Kortbeek, R. Boucherie, E. Hans, and P. Bakker. Taxonomic
classification of planning decisions in health care: a structured review of
the state of the art in OR/MS. Health Systems, 1(2):129–175, 2012.

[65] R. Hung. Single-shift off-day scheduling of a hierarchical workforce with
variable demands. European Journal of Operational Research, 78(1):49–57,
1994.

[66] A. Ikegami and A. Niwa. A subproblem-centric model and approach to
the nurse scheduling problem. Mathematical Programming, 97(3):517–541,
2003.

[67] B. Jaumard, F. Semet, and T. Vovor. A generalized linear programming
model for nurse scheduling. European journal of operational research,
107(1):1–18, 1998.

[68] C. Joncour, S. Michel, R. Sadykov, D. Sverdlov, and F. Vanderbeck.
Column generation based primal heuristics. Electronic Notes in Discrete
Mathematics, 36:695–702, 2010.

[69] Ö. Kelemci and S. Uyar. Application of a genetic algorithm to a real
world nurse rostering problem instance. In ICEIS (2), pages 474–477,
2007.

[70] D. L. Kellogg and S. Walczak. Nurse scheduling: From academia to
implementation or not? Interfaces, 37(4):355–369, 2007.

BIBLIOGRAPHY 197

[71] J. Kinable. Decomposition approaches for optimization problems. PhD
thesis, KU Leuven, 2014.

[72] A. Kolen, J. Lenstra, C. Papadimitriou, and F. Spieksma. Interval
scheduling : a survey. Naval Research Logistics, 54(5):530–543, 2007.

[73] Komarudin, M.-A. Guerry, T. De Feyter, and G. Vanden Berghe. The
roster quality staffing problem - a methodology for improving the roster
quality by modifying the personnel structure. European Journal of
Operational Research, 230(3):551–562, 2013.

[74] Komarudin, M.-A. Guerry, P. Smet, T. De Feyter, G. Vanden Berghe,
et al. A two-phase heuristic and a lexicographic rule for improving fairness
in personnel rostering. In Proceedings of the 10th International Conference
on the Practice and Theory of Automated Timetabling, pages 292–308,
2014.

[75] C. T. Kovner, S. Fairchild, S. Poornima, H. Kim, and M. Djukic. Newly
licensed RNs’ characteristics, work attitudes, and intentions to work. The
American Journal of Nursing, 107(9):58–70, 2007.

[76] M. Krishnamoorthy and A. Ernst. The personnel task scheduling problem.
In X. Yang, K. Teo, and L. Caccetta, editors, Optimisation methods and
application, pages 434–368. Kluwer, 2001.

[77] M. Krishnamoorthy, A. Ernst, and D. Baatar. Algorithms for large scale
shift minimisation personnel task scheduling problems. European Journal
of Operational Research, 219(1):34–48, 2012.

[78] T. Lapègue, D. Prot, and O. Bellenguez-Morineau. A constraint-based
approach for the shift design personnel task scheduling problem with
equity. Computers & Operations Research, 40(10):2450–2465, 2013.

[79] H. C. Lau. Combinatorial approaches for hard problems in manpower
scheduling. Journal of the Operations Research Society of Japan, 39(1):88–
98, 1996.

[80] H. C. Lau. On the complexity of manpower shift scheduling. Computers
& Operations Research, 23(1):93–102, 1996.

[81] K. Leyton-Brown, E. Nudelman, and Y. Shoham. Learning the empirical
hardness of optimization problems: The case of combinatorial auctions. In
Proceedings of the 8th International Conference on Principles and Practice
of Constraint Programming, pages 556–572, 2002.

[82] Z. Lü and J.-K. Hao. Adaptive neighborhood search for nurse rostering.
European Journal of Operational Research, 218(3):865–876, 2012.

198 BIBLIOGRAPHY

[83] M. E. Lübbecke. Column generation. In J. J. Cochran, L. A. Cox,
P. Keskinocak, J. P. Kharoufeh, and J. C. Smith, editors, Wiley
Encyclopedia of Operations Research and Management Science. John
Wiley & Sons, 2010.

[84] B. Maenhout and M. Vanhoucke. Comparison and hybridization of
crossover operators for the nurse scheduling problem. Annals of Operations
Research, 159(1):333–353, 2008.

[85] B. Maenhout and M. Vanhoucke. Branching strategies in a branch-and-
price approach for a multiple objective nurse scheduling problem. Journal
of Scheduling, 13(1):77–93, 2010.

[86] B. Maenhout and M. Vanhoucke. An integrated nurse staffing and
scheduling analysis for longer-term nursing staff allocation problems.
Omega, 41(2):485–499, 2013.

[87] B. Maenhout and M. Vanhoucke. Reconstructing nurse schedules:
Computational insights in the problem size parameters. Omega, 41(5):903–
918, 2013.

[88] V. Maniezzo, T. Stutzle, and S. Voss, editors. Matheuristics: Hybridizing
Metaheuristics and Mathematical Programming, volume 10 of Annals of
Information Systems. Springer, 2009.

[89] M.-E. Marmion, C. Dhaenens, L. Jourdan, A. Liefooghe, and S. Verel. Nils:
A neutrality-based iterated local search and its application to flowshop
scheduling. In P. Merz and J.-K. Hao, editors, Evolutionary Computation
in Combinatorial Optimization, volume 6622 of Lecture Notes in Computer
Science, pages 191–202. Springer Berlin Heidelberg, 2011.

[90] S. Martin, D. Ouelhadj, P. Smet, G. Vanden Berghe, and E. Özcan.
Cooperative search for fair nurse rosters. Expert Systems with Applications,
40(16):6674–6683, 2013.

[91] A. Meisels and A. Schaerf. Modelling and solving employee timetabling
problems. Annals of Mathematics and Artificial Intelligence, 39(1-2):41–59,
2003.

[92] T. Messelis and P. De Causmaecker. An automatic algorithm selection
approach for the multi-mode resource-constrained project scheduling
problem. European Journal of Operational Research, 233(3):511–528,
2014.

[93] S. Mirrazavi and H. Beringer. A web-based workforce management
system for Sainsburys Supermarkets Ltd. Annals of Operations Research,
155(1):437–457, 2007.

BIBLIOGRAPHY 199

[94] M. Mısır. Intelligent Hyper-heuristics: A Tool for Solving Generic
Optimisation Problems. PhD thesis, KU Leuven, 2012.

[95] M. Mısır, P. Smet, and G. Vanden Berghe. An analysis of generalised
heuristics for vehicle routing and personnel rostering problems. Journal
of the Operational Research Society, 66:858–870, 2015.

[96] N. Musliu, A. Schaerf, and W. Slany. Local search for shift design.
European Journal of Operational Research, 153(1):51–64, 2004.

[97] OECD. Health at a Glance 2013: OECD Indicators. OECD Publishing,
2013.

[98] J. B. Orlin. Max flows in O(nm) time, or better. In Proceedings of
the forty-fifth annual ACM symposium on Theory of computing, pages
765–774, 2013.

[99] E. L. Ormeci, F. S. Salman, and E. Yücel. Staff rostering in call centers
providing employee transportation. Omega, 43:41–53, 2014.

[100] T. Osogami and H. Imai. Classification of various neighborhood operations
for the nurse scheduling problem. In G. Goos, J. Hartmanis, J. Leeuwen,
D. Lee, and S.-H. Teng, editors, Algorithms and Computation, volume
1969 of Lecture Notes in Computer Science, pages 72–83. Springer Berlin
Heidelberg, 2000.

[101] D. Parr and J. Thompson. Solving the multi-objective nurse scheduling
problem with a weighted cost function. Annals of Operations Research,
155(1):279–288, 2007.

[102] D. W. Pentico. Assignment problems: A golden anniversary survey.
European Journal of Operational Research, 176(2):774–793, 2007.

[103] A. Pessoa, R. Sadykov, E. Uchoa, and F. Vanderbeck. In-out separation
and column generation stabilization by dual price smoothing. In
V. Bonifaci, C. Demetrescu, and A. Marchetti-Spaccamela, editors,
Experimental Algorithms, pages 354–365. Springer, 2013.

[104] S. Petrovic, G. Beddoe, and G. Vanden Berghe. Storing and adapting
repair experiences in personnel rostering. Lecture Notes in Computer
Science, 2740:148–165, 2003.

[105] G. Post, S. Ahmadi, S. Daskalaki, J. Kingston, J. Kyngas, C. Nurmi, and
D. Ranson. An XML format for benchmarks in high school timetabling.
Annals of Operations Research, 194(1):385–397, 2012.

200 BIBLIOGRAPHY

[106] H. W. Purnomo and J. F. Bard. Cyclic preference scheduling for nurses
using branch and price. Naval Research Logistics (NRL), 54(2):200–220,
2007.

[107] R. Robinson, R. Sorli, and Y. Zinder. Personnel scheduling with time
windows and preemptive tasks. In Proceedings of the 5th International
Conference on the Practice and Theory of Automated Timetabling, pages
561–566, 2005.

[108] M. Rocha, J. F. Oliveira, and M. A. Carravilla. Cyclic staff scheduling:
optimization models for some real-life problems. Journal of Scheduling,
16(2):231–242, 2013.

[109] L.-M. Rousseau, M. Gendreau, and D. Feillet. Interior point stabilization
for column generation. Operations Research Letters, 35(5):660–668, 2007.

[110] F. Salassa and G. Vanden Berghe. A stepping horizon view on nurse
rostering. In Proceedings of the 9th International Conference on the
Practice and Theory of Automated Timetabling, pages 161–174, 2012.

[111] R. Silvestro and C. Silvestro. An evaluation of nurse rostering practices in
the national health service. Journal of Advanced Nursing, 32(3):525–535,
2000.

[112] P. Smet, B. Bilgin, P. De Causmaecker, and G. Vanden Berghe. Modelling
and evaluation issues in nurse rostering. Annals of Operations Research,
218(1):303–326, 2014.

[113] P. Smet, P. De Causmaecker, B. Bilgin, and G. Vanden Berghe. Nurse
rostering: A complex example of personnel scheduling with perspectives.
In A. S. Uyar, E. Özcan, and N. Urquhart, editors, Automated Scheduling
and Planning, volume 505 of Studies in Computational Intelligence, pages
129–153. Springer Berlin Heidelberg, 2013.

[114] P. Smet, S. Martin, D. Ouelhadj, E. Özcan, and G. Vanden Berghe.
Fairness in nurse rostering. Technical report, KU Leuven, 2013.

[115] P. Smet and G. Vanden Berghe. A matheuristic approach to the shift
minimisation personnel task scheduling problem. In Proceedings of the
9th International Conference on the Practice and Theory of Automated
Timetabling, pages 145–160, 2012.

[116] P. Smet, T. Wauters, M. Mihaylov, and G. Vanden Berghe. The shift
minimisation personnel task scheduling problem: A new hybrid approach
and computational insights. Omega, 46:64–73, 2014.

BIBLIOGRAPHY 201

[117] B. Vaidyanathan, K. C. Jha, and R. K. Ahuja. Multicommodity network
flow approach to the railroad crew-scheduling problem. IBM Journal of
Research and Development, 51(3):325–344, 2007.

[118] C. Valouxis, C. Gogos, G. Goulas, P. Alefragis, and E. Housos. A
systematic two phase approach for the nurse rostering problem. European
Journal of Operational Research, 219(2):425–433, 2012.

[119] J. Van den Bergh, J. Beliën, P. De Bruecker, E. Demeulemeester, and
L. De Boeck. Personnel scheduling: A literature review. European Journal
of Operational Research, 226(3):367–385, 2013.

[120] F. Vanderbeck. Implementing mixed integer column generation. In
G. Desaulniers, J. Desrosiers, and M. M. Solomon, editors, Column
Generation, pages 331–358. Springer, 2005.

[121] M. Vanhoucke and B. Maenhout. NSPLib – a nurse scheduling problem
library: a tool to evaluate (meta-)heuristic procedures. In Proceedings
of the 31st Annual Meeting of the working group on Operations Research
Applied to Health Services, pages 151–165, 2007.

[122] M. Warner. Nurse staffing, scheduling, and reallocation in the hospital.
Hospital & Health Services Administration, 21(3):77–90, 1976.

[123] L. A. Wolsey and G. L. Nemhauser. Integer and combinatorial optimization.
John Wiley & Sons, 2014.

[124] T. Zeitlhofer and B. Wess. List-coloring of interval graphs with application
to register assignment for heterogeneous register-set architectures. Signal
Processing, 83(7):1411–1425, 2003.

Publications

Articles in internationally reviewed academic journals

T. Wauters, J. Kinable, P. Smet, W. Vancroonenburg, G. Vanden Berghe, and
J. Verstichel. The multi-mode resource-constrained multi-project scheduling
problem. Journal of Scheduling, 2015.

M. Mısır, P. Smet, and G. Vanden Berghe. An analysis of generalised heuristics
for vehicle routing and personnel rostering problems. Journal of the Operational
Research Society, 66:858-870, 2015.

P. Smet, T. Wauters, M. Mihaylov, and G. Vanden Berghe. The shift
minimisation personnel task scheduling problem: a new hybrid approach and
computational insights. Omega, 46:64-73, 2014.

P. Smet, B. Bilgin, P. De Causmaecker, and G. Vanden Berghe. Modelling and
evaluation issues in nurse rostering. Annals of Operations Research, 218(1):303-
326, 2014.

S. Martin, D. Ouelhadj, P. Smet, G. Vanden Berghe, and E. Özcan.
Cooperative search for fair nurse rosters. Expert Systems with Applications,
40(16):6674-6683, 2013.

Article in academic book, internationally recognised
scientific publisher

P. Smet, P. De Causmaecker, B. Bilgin, and G. Vanden Berghe. Nurse rostering:
a complex example of personnel scheduling with perspectives. In A. S. Uyar, E.
Özcan, and N. Urquhart, editors, Automated Scheduling and Planning, volume

203

204 PUBLICATIONS

505 of Studies in Computational Intelligence, pages 129-153. Springer Berlin
Heidelberg, 2013.

Papers at international scientific conferences and
symposia, published in full in proceedings

P. Smet, P. Brucker, P. De Causmaecker, and G. Vanden Berghe. Polynomially
solvable formulations for a class of nurse rostering problems. Proceedings of
the 10th International Conference on the Practice and Theory of Automated
Timetabling (PATAT 2014). York, United Kingdom, 26-29 August 2014, pages
408-419, 2014.

Komarudin, M.-A. Guerry, P. Smet, T. De Feyter, and G. Vanden Berghe. A
two-phase heuristic and a lexicographic rule for improving fairness in personnel
rostering. Proceedings of the 10th International Conference on the Practice
and Theory of Automated Timetabling (PATAT 2014). York, United Kingdom,
26-29 August 2014, pages 292-308, 2014.

P. Smet, G. Vanden Berghe. A matheuristic approach to the shift minimisation
personnel task scheduling problem. Proceedings of the 9th International
Conference on the Practice and Theory of Automated Timetabling (PATAT
2012). Son, Norway, 28-31 August 2012, pages 145-160, 2012.

M. Mısır, P. Smet, K. Verbeeck, and G. Vanden Berghe. Security personnel
routing and rostering: a hyper-heuristic approach. Proceedings of the 3rd
International Conference on Applied Operational Research (ICAOR 2011).
Istanbul, Turkey, 24-26 August 2011, pages 193-205, 2011.

Meeting abstracts, presented at international sci-
entific conferences and symposia, published or not
published in proceedings or journals

W. Vancroonenburg, P. Smet, and G. Vanden Berghe. A two phase heuristic
approach to multi-day surgical case scheduling considering generalized resource
constraints and desiderata. Operational Research Applied to Health Services
(ORAHS 2014). Lisbon, Portugal, 20-25 July 2014.

P. Smet, P. Brucker, P. De Causmaecker, and G. Vanden Berghe. A network
flow formulation and computational experiments for a class of nurse scheduling

PUBLICATIONS 205

problems. New Challenges in Scheduling Theory. Aussois, France, 31 March - 4
April 2014.

P. Smet and G. Vanden Berghe. A heuristic approach to an integrated personnel
rostering and task assignment problem. Proceedings of the 6th Multidisciplinary
International Conference on Scheduling: Theory and Applications (MISTA
2013). Ghent, Belgium, 27-30 August 2013.

P. Smet and G. Vanden Berghe. A hybrid constructive algorithm for
the integrated task and shift scheduling problem. The 10th Metaheuristics
International Conference (MIC 2013). Singapore, 5-8 August 2013.

P. Smet and G. Vanden Berghe. A decomposition approach for the integrated
task and shift scheduling problem. Proceedings of the 26th European Conference
on Operational Research (EURO 2013). Rome, Italy, 1-4 July 2013.

M. Garraffa, P. Smet, and G. Vanden Berghe. A hybrid heuristic for a real
world task assignment problem. Proceedings of the 26th European Conference
on Operational Research (EURO 2013). Rome, Italy, 1-4 July 2013.

D. Ouelhadj, S. Martin, P. Smet, E. Özcan, and G. Vanden Berghe. Fairness
and cooperation in nurse rostering. Proceedings of the 26th European Conference
on Operational Research (EURO 2013). Rome, Italy, 1-4 July 2013.

P. Smet, S. Martin, D. Ouelhadj, E. Özcan, and G. Vanden Berghe.
Investigation of fairness measures for nurse rostering. Proceedings of the 9th
International Conference on the Practice and Theory of Automated Timetabling
(PATAT 2012). Son, Norway, 28-31 August 2012.

P. Smet and G. Vanden Berghe. A comparison of fairness objectives for nurse
rostering. Operational Research Applied to Health Services (ORAHS 2012).
Enschede, Netherlands, 15-20 July 2012.

S. Martin, P. Smet, D. Ouelhadj, E. Özcan, and G. Vanden Berghe. Agent-
based cooperative meta-heuristic search for fairness in nurse rostering. The
25th European Conference on Operational Research (EURO 2012). Vilnius,
Lithuania, 8-11 July 2012.

P. Smet, W. Vancroonenburg, and G. Vanden Berghe. Automated scheduling at
a joinery site. Proceedings of the 5th Multidisciplinary International Conference
on Scheduling: Theory and Applications (MISTA 2011). Phoenix, USA, 9-11
August 2011.

206 PUBLICATIONS

Meeting abstracts, presented at other scientific con-
ferences and symposia, published or not published in
proceedings or journals

P. Smet and A. Ernst. Lower bounds for an integrated task and personnel
scheduling problem. The 29th Annual Conference of the Belgian Operations
Research Society (ORBEL 29). Antwerp, Belgium, 5-6 February 2015.

P. Smet and G. Vanden Berghe. Integrated task scheduling and personnel
rostering problems. The 28th Annual Conference of the Belgian Operations
Research Society (ORBEL 28). Mons, Belgium, 30-31 January 2014.

P. Smet, T. Wauters, and G. Vanden Berghe. Hardness analysis and a new
approach for the shift minimisation personnel task scheduling problem. The
27th Annual Conference of the Belgian Operations Research Society (ORBEL
27). Kortrijk, Belgium, 7-8 February 2013.

M. Mihaylov, P. Smet, and G. Vanden Berghe. Automatic Constraint Weight
Extraction for Nurse Rostering: A Case Study. The 27th Annual Conference of
the Belgian Operations Research Society (ORBEL 27). Kortrijk, Belgium, 7-8
February 2013.

P. Smet and G. Vanden Berghe. A study on fairness objectives for nurse
rostering. The 26th Annual Conference of the Belgian Operations Research
Society (ORBEL 26). Brussels, Belgium, 2-3 February 2012.

P. Smet, M. Mısır, and G. Vanden Berghe. An introduction to new application
domains for the home care scheduling problem. The 25th Annual Conference of
the Belgian Operations Research Society (ORBEL 25). Ghent, Belgium, 10-11
February 2011.

FACULTY OF ENGINEERING TECHNOLOGY
DEPARTMENT OF COMPUTER SCIENCE

COMBINATORIAL OPTIMISATION AND DECISION SUPPORT (CODES)
Celestijnenlaan 200A box 2402

B-3001 Heverlee

	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Context and motivation
	Nurse rostering problems
	Research questions
	Background

	Structure of the dissertation

	I Theory
	On the complexity of nurse rostering problems
	Introduction
	Contributions
	Nurse rostering problems
	Results for counter constraints
	Single shift, varying demand (minimum), number of days worked (exact), feasibility
	Multiple shifts, varying demand (range), number of days worked (exact), domain constraints, optimise preferences
	Multiple shifts, varying demand (range), number of shifts worked of each type (range), domain constraints, feasibility

	Results for succession constraints
	Multiple shifts, varying demand (range), number of days worked (exact), domain constraints, incompatible days (range), optimise preferences
	Multiple shifts, varying demand (exact), domain constraints, shift succession constraints, feasibility

	Results for series constraints
	Single shift, varying demand (minimum), consecutive days worked (range), consecutive days-off (range), number of days worked (maximum), minimise staff size

	Conclusions

	Policies for consistent constraint evaluation in nurse rostering
	Introduction
	Contributions
	Description of a nurse rostering problem
	Inconsistencies in constraint evaluation
	Policies for consistent constraint evaluation
	Counter constraints
	Series constraints

	Computational analysis
	Experimental setup
	Counter constraints
	Series constraints

	Extending the INRC dataset
	Conclusions

	II Practice
	A general object model for rich nurse rostering problems
	Introduction
	Contributions
	Object model
	Scheduling period
	Schedule definitions
	Variations in skill type definitions
	Domains
	Schedule
	Schedule constraints

	New benchmark dataset
	Conclusions

	Facilitating the transition from manual to automated nurse rostering
	Introduction
	Contributions
	Nurse rostering: theory vs. practice
	Rostering in the academic literature
	Rostering by health care practitioners
	Automation of rostering practices

	Automated constraint weight extraction
	A retrospective case study
	Case description
	Study design
	Results

	A prospective case study
	Case description
	Study design
	Results

	Discussion
	Conclusions

	III Integration with other problems
	The shift minimisation personnel task scheduling problem: a new hybrid approach and computational insights
	Introduction
	Contributions
	Problem definition
	Solution procedure
	Constructive heuristics
	Improvement heuristic

	Computational results
	Experimental setup
	New lower bounds
	Constructive heuristics
	Improvement heuristic

	Empirical hardness
	Skilling level
	Average task duration

	New benchmark instances
	Conclusions

	Exact and heuristic decomposition approaches to the single and multi-day task and shift scheduling problem
	Introduction
	Contributions
	Related literature
	The single day TSS problem
	Integer programming formulation
	Infeasible task pair decomposition
	Augmented interval graph decomposition
	Horizontal decomposition
	Computational evaluation

	The multi-day TSS problem
	Integer programming formulation
	Horizontal decomposition
	Vertical decomposition
	Improvement heuristic
	Computational evaluation

	Conclusions

	Column generation based heuristics for the multi-day task and shift scheduling problem
	Introduction
	Contributions
	Set covering reformulation
	Column generation
	The pricing problem as an integer program
	The pricing problem as a decomposed shortest path
	Initialisation
	Lagrangian dual bound
	Stabilisation
	Breaking symmetry

	Heuristics
	Iterated diving heuristics
	Priority adjustment heuristic

	Computational results
	Data and experimental setup
	Column generation
	Heuristics

	Conclusions

	IV Conclusions
	Conclusions and future research
	Conclusions
	Future research

	Bibliography
	Publications

