Fusion for Free
Efficient Algebraic Effect Handlers

Nicolas Wu'! and Tom Schrijvers?

! Department of Computer Science, University of Bristol
2 Department of Computer Science, KU Leuven

Abstract. Algebraic effect handlers are a recently popular approach for
modelling side-effects that separates the syntax and semantics of effectful
operations. The shape of syntax is captured by functors, and free monads
over these functors denote syntax trees. The semantics is captured by
algebras, and effect handlers pass these over the syntax trees to interpret
them into a semantic domain.

This approach is inherently modular: different functors can be composed
to make trees with richer structure. Such trees are interpreted by applying
several handlers in sequence, each removing the syntactic constructs it
recognizes. Unfortunately, the construction and traversal of intermedi-
ate trees is painfully inefficient and has hindered the adoption of the
handler approach.

This paper explains how a sequence of handlers can be fused into one,
so that multiple tree traversals can be reduced to a single one and no
intermediate trees need to be allocated. At the heart of this optimization
is keeping the notion of a free monad abstract, thus enabling a change
of representation that opens up the possibility of fusion. We demon-
strate how the ensuing code can be inlined at compile time to produce
efficient handlers.

1 Introduction

Free monads are currently receiving a lot of attention. They are at the heart of
algebraic effect handlers, a new purely functional approach for modelling side
effects introduced by Plotkin and Power [15]. Much of their appeal stems from
the separation of the syntax and semantics of effectful operations. This is both
conceptually simple and flexible, as multiple different semantics can be provided
for the same syntax.

The syntax of the primitive side-effect operations is captured in a signature
functor. The free monad over this functor assembles the syntax for the individual
operations into an abstract syntax tree for an effectful program. The semantics
of the individual operations is captured in an algebra, and an effect handler folds
the algebra over the syntax tree of the program to interpret it into a semantic
domain.

A particular strength of the approach is its inherent modularity. Different
signature functors can be composed to make trees with richer structure. Such

trees are interpreted by applying several handlers in sequence, each removing the
syntactic constructs it recognizes.

Unfortunately, the construction and traversal of intermediate trees is rather
costly. This inefficiency is perceived as a serious weakness of effect handlers,
especially when compared to the traditional approach of composing effects with
monad transformers. While several authors address the cost of constructing
syntax trees with free monads, efficiently applying multiple handlers in sequence
has received very little attention. As far as we know, only Kammar et al. [9]
provide an efficient implementation. Unfortunately, this implementation does not
come with an explanation. Hence it is underappreciated and ill-understood.

In this paper we close the gap and explain how a sequence of algebraic effect
handlers can be effectively fused into a single handler. Central to the paper
are the many interpretations of the word free. Interpreting free monads as the
initial objects of the more general term algebras and, in particular, term monads
provide an essential change of perspective where free theorems enable fusion. The
codensity monad facilitates the way, turning any term algebra into a monadic
one for free, and with an appropriate code setup in Haskell the GHC compiler
takes care of fusion at virtually no costﬂ to the programmer. The result is an
effective implementation that compares well to monad transformers.

2 Algebraic Effect Handlers

The idea of the algebraic effect handlers approach is to consider the free monad
over a particular functor as an abstract syntax tree (AST) for an effectful
computation. The functor is used to generate the nodes of a free structure whose
leaves correspond to variables. This can be defined as an inductive datatype
Free f for a given functor f.

data Free f a where
Var ::a — Free f a
Con:: f (Free f a) — Free f a

The nodes are constructed by Con, and the variables are given by Var.

Since a value of type Free f a is an inductive structure, we can define a fold
for it by providing a function gen that deals with generation of values from Var z,
and an algebra alg that is used to recursively collapse an operation Con op.

fold :: Functor f = (f b = b) = (¢ = b) = (Free f a — b)
fold alg gen (Var) =genx
fold alg gen (Con op) = alg (fmap (fold alg gen) op)

Algebraic effect handlers give a semantics to the syntax tree: one way of doing
this is by using a fold.

3 Yes, almost for free!

The behaviour of folds when composed with other functions is described by
fusion laws. The first law describes how certain functions that are precomposed
with a fold can be incorporated into a new fold:

fold alg gen - fmap h = fold alg (gen - h) (1)

The second law shows how certain functions that are postcomposed with a fold
can be incorporated into a new fold:

k - fold alg gen = fold alg’ (k - gen) (2)

this is subject to the condition that k - alg = alg’ - fmap k.
The monadic instance of the free monad is witnessed by the following:

instance Functor f = Monad (Free f) where
return ¢ = Var x
m>=f = fold Con f m

Variables are the way of providing a return for the monad, and extending a
syntax tree by means of a function f corresponds to applying that function to
the variables found at the leaves of the tree.

2.1 Nondeterminsm

A functor supplies the abstract syntax for the primitive effectful operations in
the free monad. For instance, the Nondet functor provides the Or k k syntax for
a binary nondeterministic choice primitive. The parameter to the constructor of
type k marks the recursive site of syntax, which indicates where the continuation
is after this syntactic fragment has been evaluated.

data Nondet k where
Or:: k — k — Nondet k

instance Functor Nondet where

fmap f (Or z y) = Or (f z) (f y)

This allows us to express the syntax tree of a computation that nondeterministi-
cally returns True or Fulse.

coin :: Free Nondet Bool
coin = Con (Or (Var True) (Var False))

The syntax is complemented by semantics in the form of effect handlers—
functions that replace the syntax by values from a semantic domain. Using a fold
for the free monad is a natural way of expressing such functions. For instance,
here is a handler that interprets Nondet in terms of lists of possible outcomes:

handle Nondet;, :: Free Nondet a — [a]

handleNondet[] = fold algNondet[] genNondetH

where alg yopder, is the Nondet-algebra that interprets terms constructed by Or
operations and gen Nondet interprets variables.

alg Nonder, * Nondet [a] = [a]
algNondetH (Or ll ZQ) = ll +H l2

genNondet[] ta— [a’]

genNondet[] T = ['7"]

The variables of the syntax tree are turned into singleton lists by gen Nondety)» and
choices between alternatives are put together by alg Nondet» which appends lists.
As an example, we can interpret the coin program:

> handleNondetU coin
[True, False|

This particular interpretation gives us a list of the possible outcomes.
Generalizing away from the details, handlers are usually presented in the form

hdl::Va . Free F a — H a

where F' and H are arbitrary functors determined by the handler.

2.2 Handler Composition

There are many useful scenarios that involve the (function) composition of effect
handlers. We now consider two classes of this kind of composition.

Effect Composition A first important class of scenarios is where multiple
effects are combined in the same program. To this end we compose signatures
and handlers.

The coproduct functor f 4+ ¢ makes it easy to compose functors:

data (+) f g a where
Inl:fa—=(f+g)a
Inr::ga—(f+g)a
instance (Functor f, Functor g) = Functor (f + g) where
fmap f (Inl s) = Inl (fmap f s)
fmap f (Inr s) = Inr (fmap [s)

The free monad of a coproduct functor is a tree where each node can be built
from syntax from either f or g.

Composing handlers is easy too: if the handlers are written in a compositional
style, then function composition does the trick. A compositional handler for the
functor F' has a signature of the form:

hdl::Vg a . Free (F + g) a — Hy (Free g (G1 a))

This processes only the F-nodes in the AST and leaves the g-nodes as they
are. Hence the result of the compositional handler is a new (typically smaller)
AST with only g-nodes. The variables of type Gy a in the resulting AST are
derived from the variables of type a in original AST as well as from the processed
operations. Moreover, the new AST may be embedded in a context H;.

For instance, the compositional nondeterminism handler is defined as follows,
where F' = Nondet, Gy = [] and implicitly H; = Id.

handle Nondet 2 Functor g = Free (Nondet 4+ g) a — Free g [a]
handle Nondet = fold (alg yonderV CON) GEN N ondet

Here the variables are handled with the monadified version of gen yopgeq,, given
by JEN Nondet -

GEN Nondet o+ Functor g = a — Free g [a]
9EN Nonder T = Var [z]

The g nodes are handled by a Con algebra, which essentially leaves them un-
touched. The Nondet nodes are handled by the algy,.q4.: algebra, which is a
monadified version of alg y,pget, -

alg Nondet :: Functor g = Nondet (Free g [a]) — Free g [a]
algNondet (OT miy ml?) =
do {ll — mll; ZQ «— mlg; Var (ll +H lg)}

The junction combinator (V) composes the algebras for the two kinds of nodes.

(V) (fb—b) = (gb—b)— ((f+9)b—b)
(V) algy alg, (Inl s) = algy s
(V) algy alg, (Inr s) = alg, s

In the definition of handlerNondet, we use alg yonqe: V Con. Since the functor
in question is Nondet + ¢, the values constructed by Nondet are handled by
alg nondet, and values constructed by g are left untouched: the fold unwraps one
level of Con, but then replaces it with a Con again.

A second example of an effect signature is that of state, whose primitive
operations Get and Put respectively query and modify the implicit state.

data State s k where
Put :: s — k — State s k
Get :: (s = k) — State s k

instance Functor (State s) where
fmap f (Put s k) = Put s (f k)
fmap f (Get k) = Get (f - k)

The compositional handler for state is as follows, where F' = State s, Hf = s — —
and implicitly Gy = Id.

handlegiate 2 Functor g = Free (State s + g) a — (s — Free g a)
handlesiate = fOZd (algStatevconState> JEN giate

This time the variable and constructor cases are defined as:

€N gyare = Functor g = a — (s — Free g a)
geNgigre T S = Var z

alg siare 2 Functor g = State s (s — Free g a) — (s — Free g a)
algState (PUt 5/ k) S = k s/
algState (Get k) s=kss

Using gen g,,.0, @ variable x is replaced by a version that ignores any incoming
state parameter s. Any stateful constructs are handled by algg,.., Where a
continuation k proceeds by using the appropriate state: if the syntax is a Put s’ k,
then the new state is s’, otherwise the syntax is Get k, in which case the state is
left unchanged and passed as s.

Finally, any syntax provided by g is adapted by congiaie to take the extra
state parameter s into account:

CONState i+ Functor g = g (s = Free g a) — (s — Free g a)
coNgtate 0p 8 = Con (fmap (Am — m s) op)

This feeds the state s to the continuations of the operation.

To demonstrate effect composition we can put Nondet and State together and
handle them both. Before we do so, we also need a base case for the composition,
which is the empty signature Void.

data Void k
instance Functor Void
The Void handler only provides a variable case since the signature has no

constructors. In fact, a Free Void term can only be a Var x, so x is immediately
output using the identity function.

handle vyiq 2 Free Void a — a
handlev,iq = fold 1 id

Finally, we can put together a composite handler for programs that feature both
nondeterminism and state. The signature of such programs is the composition of
the three basic signatures:

type X = Nondet + (State Int + Void)

The handler is the composition of the three handlers, working from the left-most
functor in the signature:

handley :: Free X a — Int — [a]
handles, prog = handle v,iq - (handlegiare - handle nondet) PTOg

Effect Delegation Another important class of applications are those where a
handler expresses the complex semantics of particular operations in terms of
more primitive effects.

For instance, the following logging handler for state records every update of
the state by means of the Writer effect.

handleogstate = Free (State s) a — s — Free (Writer String + Void) a
handle Logstate = fold alg rogstate 9€N state
alg 1.ogstate : State s (s — Free (Writer String + Void) a)
— s — Free (Writer String + Void) a
alg 1.ogstate (Put s k) s = Con (Inl (Tell "put" (k s')))
alg 1,0gtate (Getk) s=kss

The syntax of the Writer effect is captured by the following functor, where w is
a parameter that represents the type of values that are written to the log:

data Writer w k where
Tell :: w — k — Writer w k

instance Functor (Writer w) where
fmap f (Tell w k) = Tell w (f k)

A semantics can be given by the following handler, where w is constrained to be
a member of the Monoid typeclass.

handle writer :: (Functor g, Monoid w) = Free (Writer w + g) a — Free g (w, a)
handle writer = fold (alg writer V. CON) geN yrpiser

The variables are evaluated by pairing with the unit of the monoid given by
mempty before being embedded into the monad ms.

9EN yrirer : (Monad mg, Monoid w) = a — mg (w, a)
GEN Wrirer T = return (mempty,)

When a Tell w; k operation is encountered, the continuation % is followed by a
state where w; is appended using mappend to any generated logs.

alg writer - (Monad mg, Monoid w) = Writer w (mg (w, a)) = mg (w, a)
alg writer (Tell wy k) = k >= AN we, z) — return (w; ‘mappend’ we,)

To see this machinery in action, consider the following program that makes use
of state:

program :: Int — Free (State Int) Int
program n
|n<0 = Con (Get var)
| otherwise = Con (Get (As — Con (Put (s + n) (program (n — 1)))))

This is then simply evaluated by running handlers in sequence.

example :: Int — (String, Int)
example n = (handlevyiq - handle writer - handle ogsiate (pProgram n)) 0

To fully interpret a stateful program, we must first run handle pogstate, Which
interprets the Tell operations by generating a tree with Writer String syntax.
This generated syntax is then handled with the handle e handler.

3 Fusion

The previous composition examples lead us to the main challenge of this paper:
The composition of two handlers produces an intermediate abstract syntax tree.
How can we fuse the two handlers into a single one that does not involve an
intermediate tree?

More concretely, given two handlers of the form:

handlery :: Free Fy a — Hy (Free Fy (Gy a))
handlery = fold alg, gen,

handlers :: Free Fy a — Hs a
handlers = fold alg, geng

where F; and Fy are signature functors and Hy, G; and Hs are arbitrary functors,
our goal is to obtain a combined handler

pipelineyy :: Free Fy a — Hy (Hy (G a))
pipeline, o = fold alg,5 genqo

such that
fmap handlers - handlery = pipeliney (3)

3.1 Towards Proper Builders

The fact that handler; builds an AST over functor Fy and that handlers folds
over this AST suggests a particular kind of fusion known as shortcut fusion or
fold /build fusion [4].

One of the two key ingredients for this kind of fusion is already manifestly
present: the fold in handlers. Yet, the structure and type of handler; do not
necessarily force it to be a proper builder: fold/build fusion requires that the
builder creates the F»-AST from scratch by generating all the Var and Con
constructors itself. Indeed, in theory, handler; could produce the Fp-AST out of
ready-made components supplied by (fields of) a colluding F; functor.

In order to force handler; to be a proper builder, we require it to be imple-
mented against a builder interface rather than a concrete representation. This
builder interface is captured in the typeclass TermMonad (explained below), and
then, with the following constraint polymorphic signature, handler; is guaranteed
to build properly:

handlery :: (TermMonad mg Fy) = Free F1 a — Hy (mg (G a))

Term Algebras The concept of a term algebra provides an abstract interface
for the primitive ways to build an AST: the two constructors Con and Var of
the free monad. We borrow the nomenclature from the literature on universal
algebras [2].

A term algebra is an f-algebra con :: f (h a) — h a with a carrier h a. The
values in h a are those generated by the set of variables a with a valuation
function var :: a — h a, as well as those that arise out of repeated applications
of the algebra. This is modelled by the typeclass TermAlgebra h f as follows:

class Functor f = TermAlgebra h f | h — f where
var :Va.a—ha
con::Va.f(ha)—=ha

The function var is used to embed a variable into the term, and the function
con is used to construct a term from existing ones. This typeclass is well-defined
only when h a is indeed generated by var and con.

The most trivial instance of this typeclass is of course that of the free monad.

instance Functor f = TermAlgebra (Free [) f where
var = Var
con = Con

Term Monads There are two additional convenient ways to build an AST: the
monadic primitives return and (>>=).

A monad m is a term monad for a functor f, if it there is a term algebra for
f whose carrier is m a. We can model this relationship as a typeclass with no
members.

class (Monad m, TermAlgebra m f) = TermMonad m f | m — f
instance (Monad m, TermAlgebra m f) = TermMonad m f

Again, the free monad is the obvious instance of this typeclass.
instance Functor f = TermMonad (Free) f

Its monadic primitives are implemented in terms of fold, con and var. In the
abstract builder interface TermMonad we only partially expose this fact, by
means of the following two laws. Firstly, the var operation should coincide with
the monad’s return.

var = return (4)

Secondly, the monad’s bind (>>=) should distribute through con.
con op >=k = con (fmap (>=k) op) (5)

This law states that a term constructed by an operation, where the term is
followed by a continuation k, is equivalent to constructing a term from an
operation where the operation is followed by k. In other words, the arguments of
an operation correspond to its continuations.

10

Ezamples All the compositional handlers of Section [2:2] can be easily expressed
in terms of the more abstract TermMonad interface. For example, the revised
nondeterminism handler looks as follows.

handle'yypger = TermMonad m g = Free (Nondet + g) a — m [a]
handle/]\/ondet = fOZd (alg/]\/ondetvcon) genll\/ondet
gen'yonaer -2 TermMonad m g = a — m [a]
gen/Nondet T = var [I]
alg'yonder = TermMonad m g = Nondet (m [a]) — m [a]
alglNondet (07” mll ml2) =

do {lh < mly; b < mily; var (L #k)}

Notice that not much change has been necessary. We have generalized away from
Free g into a type m that is constrained by TermMonad m g.

3.2 Parametricity: Fold/Build Fusion for Free

Hinze et al. [6] state that we get fold/build fusion for free from the free theo-
rem [22I21] of the builder’s polymorphic type. Hence, let us consider what the
new type of handler; buys us.

Theorem 1. Assume that Fy, Fo, Hy, Gy and A are closed types, with Fi,
Fy and H; functors. Given a function h of type Ym . (TermMonad m Fsy) =
Free F1 A — Hy (m (G1 A)), two term monads My and My and a term monad
morphism o ::Va . My a — My a, then:

fmap o - hyr, = by, (6)

where the subscripts of h denote the instantiations of the polymorphic type
variable m.

If handlers is a term monad morphism, then we can use the free theorem to
determine pipeline,5 in one step, starting from Equation .

fmap handlery - handler, = pipeline
= { Parametricity @, assuming handlers is a term monad morphism }
handler, = pipeline o

Unfortunately, handlers is not a term monad morphism for the simple reason
that H, is just an arbitrary functor that does not necessarily have a monad
structure. Hence, in general Hs is only term algebra.

instance TermAlgebra Hy F> where
var = geng
con = algy

Fortunately, we can turn any term algebra into a term monad, thanks to the
codensity monad, which is what we explore in the next section.

11

3.3 Codensity: TermMonads from TermAlgebras

The Codensity Monad It is well-known that the codensity monad Cod turns any
(endo)functor h into a monad (in fact, A need not even be a functor at all). It
simply instantiates the generalised monoid of endomorphisms (e.g., see [16]) in
the category of endofunctors.

newtype Cod h a = Cod {unCod ::Vz . (a > hz) = hz}

instance Monad (Cod h) where
return x = Cod (A\k — k)
Cod m >=f = Cod (At — m (Aa — unCod (f a) k))

TermMonad Construction Given any term algebra h for functor f, we have that
Cod h is also a term algebra for f.

instance TermAlgebra h f = TermAlgebra (Cod h) f where
var = return
con = alg gpq cOM

alg coq : Functor f = (Vz . f (hx) = hz) = (f (Cod h a) — Cod h a)
alg cog alg op = Cod (Nt — alg (fmap (Am — unCod m k) op))

Moreover, Cod h is also a term monad for f, even if A is not.
instance TermAlgebra h f = TermMonad (Cod h) f

The definition of var makes it easy to see that it satisfies the first term monad
law in Equation . The proof for the second law, Equation is less obvious:

con op >=f
= { unfold (>=) }
Cod (At — unCod (con op) (Aa — unCod (f a) k))
= { unfold con }
Cod (A — unCod (alg opq con op) (Aa — unCod (f a) k))
= { unfold algqpy }
Cod (Mt — unCod (Cod (At — con (fmap (Am — unCod m k) op))) (Aa — unCod (f a) k))
= { apply unCod - Cod = id }
Cod (At — (Ak — con (fmap (Am — unCod m k) op)) (Aa — unCod (f a) k))
= { apply B-reduction }
Cod (Mt — con (fmap (Am — unCod m (Aa — unCod (f a) k)) op))
= { apply B-expansion }
Cod (Ak — con (fmap (Am — (Ak — unCod m (Aa — unCod (f a) k)) k) op))
= { apply unCod - Cod = id }
Cod (At — con (fmap (Am — unCod (Cod (At — unCod m (Aa — unCod (f a) k))) k) op))
= {fold (>=) }
Cod (Ak — con (fmap (Am — unCod (m >=f) k) op))
= { apply B-expansion }

12

Cod (Mt — con (fmap (Am — (Am — unCod m k) (m >=k)) op))
= { apply SB-expansion }

Cod (At — con (fmap (Am — (Am — unCod m k) (Am — m >= k) m)) op))
= {fold ()}

Cod (Ak — con (fmap (Am — (Am — unCod m k) - (Am — m >=k)) m) op))
= { apply n-reduction }

Cod (Mt — con (fmap ((Am — unCod m k) - (Am — m >=k)) op))
= { apply fmap-fission and unfold (-) }

Cod (At — con (fmap (Am — unCod m k) (fmap (Am — m >=k) op)))

= {fold algepy }
alg coq con (fmap (Am — m >=k) op)

= { fold con and 7-reduce }
con (fmap (>=f) op)

3.4 Shifting to Codensity

Now we can write handlers as the composition of a term monad morphism
handlerl, with a post-processing function runCod gen.:

handlers :: Free Fy a — Hs a
handlers = runCod gen, - handleré

hcmdler’2 :: Free Fy a — Cod Hy a
handlerl, = fold (alg opy algs) var

runCod :: (a = fz) = Cod f a — f z
runCod g m = unCod m g

This decomposition of handler, hinges on the following property:
fold alg, geny = runCod gen, - fold (algq,q algs) var (7
This equation follows from the second fusion law for folds , provided that:

geny = runCod geny - var

runCod geny - algcoq algs = algy - fmap (runCod gen,)
The former holds as follows:

runCod geny - var
= { unfold - }
Az — runCod gen, (var x)
= { unfold runCod and var }
Az — unCod (Cod (Ak — k x)) gen,
= { apply runCod - Cod = id }
Az — (Ak — k x) gen,
= { B-reduction }
AT — geng, T

13

= { n-reduction }

geng
and the latter:

runCod geny - alg ooq 0lgy
= { unfold - }
Aop — runCod geny (alg cpq algs 0p)
= { unfold runCod and alg-,q }
Aop = unCod (Cod (Ak — algy (fmap (Am — unCod m k) op))) geny
= { apply runCod - Cod = id }
Aop = (Ak — algy (fmap (Am — unCod m k) op)) gen,
= { B-reduction }
Aop = algy (fmap (Am — unCod m gens) op)
= { fold runCod }
Aop — algy (fmap (Am — runCod gen, m) op)
= { n-reduction }
Aop = algy (fmap (runCod geny) op)
= {fold -}
algy - fmap (runCod gens)

3.5 Fusion at Last

Finally, instead of fusing fmap handlery - handler; we can fuse fmap handler’, -
handler; using the free theorem. This yields:

pipeline’, = fold alg, gen,
Now we can calculate the original fusion:

fmap handlers - handlery
= { decomposition of handlers }

fmap (runCod gen, - handlery) - handlery
= { fmap fission }

fmap (runCod gen,) - fmap handlery - handler;
= { free theorem }

fmap (runCod gensy) - handler;

In other words, the fused version can be defined as:
pipeline,5 = fmap (runCod geny) - fold alg, gen,

Observe that this version only performs a single fold and does not allocate any
intermediate tree.

14

3.6 Repeated Fusion

Often a sequence of handlers is not restricted to two. Fortunately, we can easily
generalize the above to a pipeline of n handlers

fmap™ handler, - ... - fmap handler; - handlerg

where handler; = fold alg; gen; (i € 1..n). This pipeline fusion can start by
arbitrarily fusing two consecutive handlers handler; and handler;;, using the
above approach, and then incrementally extending the fused kernel on the left and
the right with additional handlers. These two kinds of extensions are explained
below.

Fusion on the Right Suppose that fmap handlery - handler; is composed
with another handler on the right:

handlerq :: (TermMonad my Fy) = Free Fy a — Hy (my (Go a))
handlerg = fold alg, geng

to form the pipeline:
pipelineg,o = fmap (fmap handlery - handlery) - handler

Can we perform the fusion twice to obtain a single fold and eliminate both
intermediate trees? Yes! The first fusion, as before yields:

pipelineg,o = fmap (fmap (runCod geny) - handlery) - handlerg
Applying fmap fission and regrouping, we obtain:
pipelineg,5 = fmap (fmap (runCod gen,)) - (fmap handlery - handlery)

Now the right component is another instance of the binary fusion problem, which
yields:

pipelinego = fmap (fmap (runCod gen,)) - fmap (runCod gen,) - handlerg

Fusion on the Left Suppose that handler; has the more specialised type:
handlers :: (TermMonad mgz F3) = Free Fo a — Hy (m2 (G2 a))
then we can compose fmap handlers - handler; on the left with another handler:

handlers :: Free F3 a — Hz a
handlers = fold algs gens

This yields a slightly more complicated fusion scenario:

15

pipeline, 43 = fmap (fmap handlers - handlers) - handlery

Of course, we can first fuse handlers and handlers. That would yield an instance
of fusion on the right. However, suppose we first fuse handler; and handlers,
after applying fmap fission.

pipeline,y3 = fmap (fmap handlers) - fmap (runCod geny) - handlery

Now we can shift the carrier of handlers to codensity and invoke the free theorem
on fmap (runCod gens) - handlery. This accomplishes the second fusion.

pipeline 43 = fmap (fmap (runCod gens)) - fmap (runCod geny) - handler;

Summary An arbitrary pipeline of the form:
fmap™ handler,, - ... - fmap handlery - handlerg
where handler; = fold alg; gen; (i € 1..n) fuses into

fmap” (runCod g,,) - ... - fmap (runCod gen,) - handler

3.7 Fusion all the Way

We are not restricted to fusing handlers, but can fuse all the way, up to and
including the expression that builds the initial AST and to which the handlers are
applied. Consider for example the coin example of Section [2.1] The free theorem
of coin’s type is a variant of Theorem 1:

« cotn = coin

where a ::Va . My a — Ms a is a term monad morphism between any two
term monads M; and Ms. We can use this to fuse handlenonger coin into
runCod gen nopaer con. Of course this fusion interacts nicely with the fusion of
a pipeline of handlers.

4 Pragmatic Implementation and Evaluation

This section turns the fusion approach into a practical Haskell implementation
and evaluates the performance improvement.
4.1 Pragmatic Implementation

Before we can put the fusion approach into practice, we need to consider a few
pragmatic implementation aspects.

16

Inlining with Typeclasses In a lazy language like Haskell, fusion only leads
to a significant performance gain if it is performed statically by the compiler
and combined with inlining. In the context of the GHC compiler, the inlining
requirement leaves little implementation freedom: GHC is rather reluctant to
inline in general recursive code. There is only one exception: GHC is keen to
create type-specialised copies of (constraint) polymorphic recursive definitions
and to inline the definitions of typeclass methods in the process.

In short, if we wish to get good speed-ups from effect handler fusion, we need
to make sure that the effectful programs are polymorphic in the term monad and
that all the algebras are held in typeclass instances. For this reason, all handlers
should be made instances of TermAlgebra.

Explicit Carrier Functors The carrier functor of the compositional state handler
is s — mp—. From the category theory point of view, this is clearly a functor.
However, it is neither an instance of the Haskell Functor typeclass nor can it be
made one in this syntactically invalid form. A new type needs to be created that
instantiates the functor typeclass:

newtype StateCarrier s m a = SC {unSC ::s - m a}

instance Functor m = Functor (StateCarrier s m) where
fmap f = = SC (fmap (fmap f) (unSC)

instance TermMonad msy f
= TermAlgebra (StateCarrier s mg) (State s + f) where
con = SC - (alg’ g1416V CONSLate) - frap unSC
var = SC - gen’ gq1e

gen’ giure i TermMonad m f = a — (s = m a)

gen’ giae © = const (var x)

alg’ srate = TermMonad m f = State s (s — m a) = (s = m a)

alg’ grure (Put 8" k) s ks’
alg' sore (Get k) s kss

Now the following function is convenient to run a fused state handler.

runStateC :: TermMonad my f = Cod (StateCarrier s mg) a — (s — mg a)
runStateC = unSC - runCod var

Unique Carrier Functors Even though the logging state handler has ostensiblyﬂ
the same carrier s — my— as the regular compositional state handler, we cannot
reuse the same functor. The reason is that in the typeclass-based approach the
carrier functor must uniquely determine the algebra; two different typeclass
instances for the same type are forbidden. Hence, we need to write a new set of
definitions as follows:

newtype LogStateCarrier s m a = LSC {unLSC ::s = m a}

4 The typeclass constraints on my are different.

instance Functor m = Functor (LogStateCarrier s m) where
fmap f x = LSC (fmap (fmap f) (unLSC z))
instance TermMonad my (Writer String + Void)
= TermAlgebra (LogStateCarrier s my) (State s) where
var = LSC - gen’ g1ute

con = LSC - algogstate = Jmap unLSC

runLogStateC' :: TermMonad mg (Writer String + Void)

= Cod (LogStateCarrier s mg) a — (s — mg a)
runLogStateC = unLSC - runCod var

4.2 Evaluation

17

To evaluate the impact of fusion we consider several benchmarks implemented in
different ways: running handlers over the inductive definition of the free monad

(FREE) and to its Church encoding (CHURCH), the fully fused definitions (FUSED),
and the conventional definitions of the state monad from MTL (MTL).

The benchmarks are run in the Criterion benchmarking harness using GHC
7.10.1 on a MacBook Pro with a 3 GHz Intel Core i7 processor, 16 GB RAM

and Mac OS 10.10.3. All values are in milliseconds, and show the ordinary least-

squares regression of the recorded samples; the R? goodness of fit is above 0.99

in all instances.

Benchmark FREE CHURCH FUSED MTL

county

107 1,017 1,311 3 3

108 10,250 13,220 29 29

10° 103,000 129,700 291 295
counto

108 684 746 167 213

107 6,937 7,344 1,740 2,157

108 102,700 98,010 17,220 20,300
counts

108 559 595 166 205

107 5,759 5,561 1,618 2,132

108 110,900 94,760 16,300 20,120

grammar 794 763 6 77

pipes 1,325 1,351 43 N/A

The count; benchmark consists of the simple count-down loop used by Kam-

mar et al. [9].

18

count, =
do i < get
if i = 0 then return ¢
else put (i — 1); county

We have evaluated this program with three different initial states of 107, 10® and
10°. The results show that all representations scale linearly with the size of the
benchmark. However, the fused representation is about 300 times faster than
the free monad representations and matches the performance of the traditional
monad transformers.

The counts benchmarks extends the count; benchmark with a tell operation
from the Writer effect in every iteration of the loop. It is run by sequencing
the state and writer handler. The improvement due to fusion is now much less
extreme, but still quite significant.

The counts benchmark is the count; program, but run with the logging state
handler that delegates to the writer handler. The runtimes are slightly better
than those of counts.

The grammar benchmark implements a simpler parser by layering the state
and non-determinism effects. Again fusion has a tremendous impact, even con-
siderably outperforming the MTL implementation.

The pipes benchmark consists of the simple producer-consumer pipe used by
Kammar et al. [9]. We can see that fusion provides a significant improvement
over either free monad representation. There is no sensible MTL implementation
to compare with for this benchmark.

The results (in ms) show that the naive approaches based on intermediate
trees, either defined inductively or by Church encoding, incur a considerable
overhead compared to traditional monads and monad transformers. Yet, thanks
to fusion they can easily compete or even slightly outperform the latter.

5 Related Work

5.1 Fusion

Fusion has received much attention, and was first considered as the elimination
of trees by Wadler [23] with his so-called deforestation algorithm, which was then
later generalized by Chin [3].

From the implementation perspective, Gill et al. first introduced the notion
of shortcut fusion to Haskell [4], thus allowing programs written as folds over
lists to be fused. Takano and Meijer showed how fusion could be generalized to
arbitrary datastructures [I9]. The technique of using free theorems to explain
certain kinds of fusion was applied by Voigtlander [20].

Work by Hinze et al. [6] builds on recursive coalgebras to show the theory
and practice of fusion, limited to the case of folds and unfolds. Later work by
Harper [5] provides a pragmatic discussion, that bridges the gap between theory
and practice further, by discussing the implementation of fusion in GHC with
inline rules. Harper also considers the fusion of Church encodings.

19

More recently, recursive coalgebras appear in work by Hinze et al. [7] where
conjugate hylomorphisms are introduced as a means of unifying all presently
known structured recursion schemes. There, the theory behind fusion for general
datatypes across all known schemes is described as arising from naturality laws
of adjunctions. Special attention is drawn to fusion of the cofree comonad, which
is the dual case of free monads we consider here.

5.2 Effect Handlers

Plotkin and Power were the first to explore effect operations [I4], and gave an
algebraic account of effects [I5] and their combination [§]. Subsequently, Plotkin
and Pretnar [13] have added the concept of handlers to deal with exceptions.
This has led to many implementation approaches.

Lazy Languages Many implementations of effect handlers focus on the lazy
language Haskell.

For the sake of simplicity and without regard for efficiency, Wu et al. [24]
use the inductive datatype representation of the free monad for their exposition.
They use the Data Types a la Carte approach [I§] to conveniently inject functors
into a co-product; that approach is entirely compatible with this paper. Wu et
al. also generalize the free monad to higher-order functors; we expect that our
fusion approach generalizes to that setting.

Kiselyov et al. [I0] provide a Haskell implementation in terms of the free
monad too. However, they combine this representation with two optimizations: 1)
the codensity monad improves the performance of (>>=), and 2) their Dynamic-
based open unions have a better time complexity than nested co-products. Due
to the use of the codensity monad, this paper also benefits from the former
improvement. Moreover, we believe that the latter improvement is unnecessary
due to the specialisation and inlining opportunities that are exposed by fusion.

Van der Ploeg and Kiselyov [I2] present an implementation of the free monad
with good asymptotic complexity for both pattern matching and binding; un-
fortunately, the constant factors involved are rather high. This representation is
mainly useful for effect handlers that cannot be easily expressed as folds, and
thus fall outside of the scope of the current paper.

Behind a Template Haskell frontend Kammar et al. [9] consider a range of
different Haskell implementations and perform a performance comparison. Their
basic representation is the inductive datatype definition, with a minor twist: the
functor is split into syntax for the operation itself and a separate continuation.
This representation is improved with the codensity monad. Finally, they provide—
without explanation—a representation that is very close to the one presented
here; their use of the continuation monad instead of the codensity monad is a
minor difference.

Both Atkey et al. [I] and Schrijvers et al. [I7] study the interleaving of a free
monad with an arbitrary monad, i.e., the combination of algebraic effect handlers
and conventional monadic effects. We believe that our fusion technique can be
adapted for optimizing the free monad aspect of their settings.

20

Strict Languages In the absence of lazy evaluation, the inductive datatype
definition of the free monad is not practical.

Kammar et al. [9] briefly sketch an implementation based on delimited contin-
uations. Schrijvers et al. [I7] show the equivalence between a delimited continua-
tions approach and the inductive datatype; hence the fusion technique presented
in this paper is in principle possible. However, in practice, the codensity monad
used for fusion is likely not efficient in strict languages. Hence, effective fusion
for strict languages remains to be investigated.

5.3 Monad Transformers

Monad transformers, as first introduced by Liang et al. [I1], pre-date algebraic
effect handlers as a means for modelling compositional effects. Yet, there exists a
close connection between both approaches: monad transformers are fused forms
of effect handlers. What is particular about their underlying effect handlers is
that their carriers are term algebras with a monadic structure, i.e., term monads.
This means that the Cod construction is not necessary for fusion.

6 Conclusion

We have explained how to fuse algebraic effect handlers by shifting perspective
from free monads to term monads. Our benchmarks show that, with a careful
code setup in Haskell, this leads to good speed-ups compared to the free monad,
and allows algebraic effect handlers to compete with the traditional monad
transformers.

Acknowledgments

The authors would like to thank Ralf Hinze for suggesting that they consider the
specification that free monads satisfy in terms of adjunctions, and to James McK-
inna who helped baptize con for constructing terms. We are also grateful for
the feedback from the members of the IFIP Working Group 2.1 on an early
iteration of this work. This work has been partially funded by the Flemish Fund
for Scientific Research (FWO).

References

1. Atkey, R., Johann, P., Ghani, N., Jacobs, B.: Interleaving data and effects (2012),
submitted for publication

2. Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. No. 78 in Graduate
Texts in Mathematics, Springer-Verlag (1981)

3. Chin, W.N.: Safe fusion of functional expressions ii: Further improvements. Journal
of Functional Programming 4, 515-555 (Oct 1994)

4. Gill, A., Launchbury, J., Peyton Jones, S.L.: A short cut to deforestation. In: Pro-
ceedings of the Conference on Functional Programming Languages and Computer
Architecture. pp. 223-232. FPCA ’93, ACM, New York, NY, USA (1993)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

21

. Harper, T.: A library writer’s guide to shortcut fusion. In: Proceedings of the 4th

ACM Symposium on Haskell. pp. 47-58. Haskell 11, ACM, New York, NY, USA
(2011)

. Hinze, R., Harper, T., James, D.: Theory and practice of fusion. In: Hage, J.,

Morazan, M. (eds.) Implementation and Application of Functional Languages,
Lecture Notes in Computer Science, vol. 6647, pp. 19-37. Springer Berlin Heidelberg
(2011)

. Hinze, R., Wu, N., Gibbons, J.: Conjugate hylomorphisms — the mother of all

structured recursion schemes. In: Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. pp. 527-538. POPL
’15, ACM, New York, NY, USA (2015)

. Hyland, M., Plotkin, G.D., Power, J.: Combining effects: Sum and tensor. Theoret-

ical Computer Science 357(1-3), 70-99 (2006)

. Kammar, O., Lindley, S., Oury, N.: Handlers in action. In: Proceedings of the 18th

ACM SIGPLAN International Conference on Functional programming. pp. 145-158.
ICFP ’14, ACM (2013)

Kiselyov, O., Sabry, A., Swords, C.: Extensible effects: an alternative to monad
transformers. In: Proceedings of the 2013 ACM SIGPLAN symposium on Haskell.
pp. 59-70. Haskell '13, ACM (2013)

Liang, S., Hudak, P., Jones, M.: Monad transformers and modular interpreters.
In: Proceedings of the 22Nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. pp. 333-343. POPL ’95, ACM, New York, NY, USA
(1995)

Ploeg, A.v.d., Kiselyov, O.: Reflection without remorse: Revealing a hidden sequence
to speed up monadic reflection. In: Proceedings of the 2014 ACM SIGPLAN
Symposium on Haskell. pp. 133-144. Haskell '14, ACM, New York, NY, USA (2014)
Plotkin, G.D., Matija, P.: Handling algebraic effects. Logical Methods in Computer
Science 9(4) (2013)

Plotkin, G.D., Power, J.: Notions of computation determine monads. In: Nielsen, M.,
Engberg, U. (eds.) Foundations of Software Science and Computation Structures.
Lecture Notes in Computer Science, vol. 2303, pp. 342-356. Springer (2002)
Plotkin, G.D., Power, J.: Algebraic operations and generic effects. Applied Categor-
ical Structures 11(1), 69-94 (2003)

Rivas, E., Jaskelioff, M.: Notions of computation as monoids. CoRR abs/1406.4823
(2014), http://arxiv.org/abs/1406.4823

Schrijvers, T., Wu, N., Desouter, B., Demoen, B.: Heuristics entwined with handlers
combined. In: Proceedings of the 16th International Symposium on Principles and
Practice of Declarative Programming. pp. 259-270. PPDP ’14, ACM (Sep 2014)
Swierstra, W.: Data types & la carte. Journal of Functional Programming 18(4),
423-436 (2008)

Takano, A., Meijer, E.: Shortcut deforestation in calculational form. In: Proceedings
of the Seventh International Conference on Functional Programming Languages
and Computer Architecture. pp. 306-313. FPCA 95, ACM, New York, NY, USA
(1995)

Voigtlander, J.: Proving correctness via free theorems: The case of the destroy/build-
rule. In: Proceedings of the 2008 ACM SIGPLAN Symposium on Partial Evaluation
and Semantics-based Program Manipulation. pp. 13-20. PEPM ’08, ACM, New
York, NY, USA (2008)

Voigtlander, J.: Free theorems involving type constructor classes: Functional pearl.
In: Proceedings of the 14th ACM SIGPLAN International Conference on Functional
Programming. pp. 173-184. ICFP ’09, ACM, New York, NY, USA (2009)

http://arxiv.org/abs/1406.4823

22

22.

23.

24.

Wadler, P.: Theorems for free! In: Proceedings of the Fourth International Conference
on Functional Programming Languages and Computer Architecture. pp. 347-359.
FPCA ’89, ACM, New York, NY, USA (1989)

Wadler, P.: Deforestation: Transforming programs to eliminate trees. Theoretical
Computer Science 73(2), 231-248 (Jan 1990)

Wu, N., Schrijvers, T., Hinze, R.: Effect handlers in scope. In: Proceedings of the
2014 ACM SIGPLAN Symposium on Haskell. pp. 1-12. Haskell 14, ACM, New
York, NY, USA (2014)

	Fusion for Free

