
ONDERZOEKSRAPPORT NR 9220

A Synthesizing Algorithm and Interval Arithmetic

as a Basis for Integer Linear Programming

by

Nico VANDAELE

D/1992/2376/26

*

A SYNTHESIZING ALGORITHM AND

INTERVAL ARITHMETIC

AS A BASIS FOR

INTEGER LINEAR PROGRAMMING*

NICO VANDAELE

- In cooperation with CIBRE, Center for Interdisciplinary Business Research, De
Beriotstraat 32, 3000 Leuven, 016/28 37 02.
- FKFO, Just-in-time project

ABSTRACT

In the area of integer programming, it is still very intriguing to explore
new ways of thinking. Here we propose a fairly unknown approach
composed of elements in the domain of artificial intelligence and
combinatorics. From the latter, we retain an as yet not fully explored
technique called 'preprocessing'. The paper presents the general reasoning
by means of a representative problem. A more theoretical approach is
then taken to state the synthesizing algorithm formally, which will then
be applied to integer linear programn1ing (ILP). It will tum out that the
synthesizing algorithm is not very suitable for solving ILP problems.
Then the basics of the algorithm are retained but are supplemented by
another procedure, called REFINE. In combination with some established
methods, it will lead to a suitable method for solving ILP. For purposes of
comparison, some examples were taken from the literature and solved
with four different methods. At least for these problems, the method
presents interesting results. Another example concludes our expose. A
primer on interval arithmetic is provided together with written out
examples in the appendix .

1. INTRODUCTION

The problem considered is the constraint satisfaction problem
(Mackworth,l990). This implies a set of variables X1,X2, ... ,Xn and a
number of constraints on subsets of these variables. Then-dimensional
points which comply with all constraints simultaneously constitute the set
of feasible solutions. The constrained optimization problem then deals
with the optimization of a criterion function over this set of points. Under
these general definitions resort some very wellknown problems like
mathematical programming problems, combinatorics, a.o. Subsequently a
method is presented to synthesize all the constraints in one synthesizing
constraint which corresponds to the feasible region of the whole problem.
Please note that this paper only considers discrete problems. Basically the
method uses an iterated reduction of possibilities through constraint
propagation, which means that constraints are used to gradually reduce
the different universes in order to obtain the final feasible set
(Davis,1987).

The usability of constraint propagation is twofold. On the one hand it is
used to preprocess other satisfaction and optimization methods and on the
other hand, occasionally small problems can be solved in the
preprocessing phase or by combining preprocessing with some further
enumeration technique (Guignard and Spielberg, 1977). Nevertheless, the
main purpose is to prepare the formulation of a problem in order to give it
then to a more sophisticated algorithm. Up til now, a method, which in
the sequel will be called the 'REFINE' procedure, has been used to
preprocess continuous satisfaction and optimization problems (Lodwick,
1989). To the best of our knowledge, the opportunities stemming from
the use of the REFINE procedure for general integer (linear)
programming have not yet been investigated. The closest research area
consists of the papers discussing propagation in (0-1) programs (Crowder,
Johnson and Padberg, 1983; J olmson, Kostreva and Suhl, 1985; Guignard
and Spielberg, 1981; Zionts, 1972). Ultimately, Guignard and Spielberg
(1977) tried to generalize the ideas from 0-1 problems to mixed integer
problems.

1

2. INTRODUCTORY EXAMPLE

Let's take the map of Belgium which consists of nine provinces and ask
ourselves if it is possible to colour the map with three colours while
avoiding confusion caused by two adjacent provinces having the same
colour. It must be noted that we are presently only concerned with
checking the solution and not by the related optimization problem of
minimizing the number of colours needed to colour the map of Belgium.
In figure 1 the provinces have been numbered. These numbers are used to
construct a network in which the nodes (numbers) represent the provinces
and the edges the adjacency relation:' ... is adjacent to .. .'. Note that not
all of the nodes are connected, so this is an instance of the general graph
colouring problem. Of course there's nothing special about this problem
and it has been described entirely in literature. For instance Papadimitriou
and Steiglitz (1982) classify it as NP-complete. The reason why three
colours are proposed is the following : in Belgium there is no point where
more than three provinces meet each other. This gives us an indication of
the lower bound on the number of colours that have to be used to colour
the map. It is clear that only the relative order is important and not the
absolute value of the colours. If one feasible order is found then, given
three colours, immediately five other feasible orderings can be obtained
(3.2.1=6).

Figure 1 : map of Belgium

2

Many approaches can be taken to solve this problem. The most simple
but expensive in terms of computational time and memory is explicit
enumeration. With three colours there are 39=19,683 possibilities to
consider! Another attempt is a branch and bound scheme using
backtracking. The B&B approach can be refined by taking into account
special problem features in order to obtain more efficient algorithms, but
to illustrate another point of view, consider the following.

The solution strategy which will be developped is more generic. It means
that, at least theoretically, the steps of this algorithm in their purest form
can be used to tackle every integer problem, subject to a set of
simultaneous constraints. Sometimes it will be impossible to use this
algorithm because the technical operations needed to perform an
individual step are nonexisting. This failure is then due to technical
considerations and not to the logic of the algorithm itself. An example of
such an impossible operation will occur when this algorithm is used to
tackle integer linear programming.
The algorithm is used for the 'Belgian' map colouring problem and all the
steps are visualized in figure 2.

Step 1

Every node has a set of possible colours containing green, blue and red.
This will be noted as N 1 ={g,b,r} and so for every node Ni where i=1..9.
These are called the unary nodes, corresponding to the unary constraints,
meaning that initially, the colour must be one out of the three available
colours.

3

1-ary

2-ary

3-ary

6-ary

9-ary

Figure 2 : constraint network for the map of Belgium

Step 2

At this level binary constraints are considered. This concept may not be
confused with the one of a binary variable which means a variable which
has only two possible values, mostly one and zero. Here binary means
consisting of two variables. So it can be extended to n-ary constraints
meaning constraints with n variables. In the graph colouring problem all
the constraints are binary and of the type :' ... has not the same colour
as .. .'. The binary node N 12 is constructed as follows:

4

- N1 and N2 are combined into N12={gg,gb,gr,bg,bb,br,rg,rb,rr}.
- The constraint between the two nodes is imposed.
-This yields N12={gb,gr,bg,br,rg,rb}.

Because the constraint is the same between every two connected nodes it
is easy to obtain the other binary nodes :

N12 N23 N34 N46 N56 N67 N7g Ng9
N15 N25 N36 N47 N5g N68 N79

N26

All these nodes have the same set of possible outcomes, namely the one
stated above.

Step 3

Although all the 'real' constraints are dealt with, the final solution is not
yet obtained. Ultimately the final solution will be established when all of
the constraints are met simultaneously. By now the notion of constraint
has been elaborated. A constraint can not only stand for a single
constraint but also for a set of constraints which must be met
simultaneously. In this way the whole problem can be understood as one
constraint composed of the set of all problem constraints. It is obvious
that this 'synthesizing constraint' will define all feasible solutions.

Applying the same reasoning procedure, the binary nodes are combined
into higher order nodes until the final nine-ary node is obtained :

N125 is a combination ofN12 and N5. So, N125={
gbg,gbb,gbr, grg,grb,grr,
bgg,bgb,bgr, brg,brb,brr,
rgg,rgb,rgr, rbg,rbb,rbr}

Node N 15 must be imposed, which means that the first and the
third colour must be different : gbg,grg,bgb,brb,rgr,rbr are
discarded.
Node N25 must also be imposed : gbb,grr,bgg,brr,rgg,rbb are
discarded.
Thus N 125= { gbr,grb,bgr,brg,rgb,rbg}.

5

Two other nodes are constructed in a similar fashion: N346 and N789·
Their set of feasible solutions is the same as the one of N 125·

Step 6

Step 4 and step 5 are neglected because in this particular case the steps
can be skipped without any risk of missing the solution. If the two
intermediate steps are executed, the result will undoubtedly be the same.
The reason for this will subsequently be clarified. The six-ary node to be

constructed is N 123456 which is a combination of N 125 and N346·

N123456='
GB gbRr impose N 56' so discard.
GBgrRb impose N26' so discard.
GBbgRr impose Ns6 or N23, so discard.
GBbrRg impose N23, so discard.

GBrgRb impose N26, so discard.
GBrbRg satisfies N23, N26 and Ns6·}

Note that it is only necessary to impose the constraints which connect the
'subnetworks' 125 and 346. The other constraints have already been taken
into account implicitly. This can be done for all the members ofN125 and
this leads to N 123456= { gbrbrg,grbrbg,bgrgrb,brgrgb,rgbgbr,rbgbgr}

Step 9

Again step 7 and 8 are skipped in order to speed things up. The nine-ary

node is constructed through a combination of N 123456 and N739 as
follows:

GBRBRGgbr impose N67, so discard.
GBRBRGgrb impose N67 or Nsg, so discard.
GBRBRGbgr impose N47 or N68• so discard.
GBRBRGbrg impose N47 or Nsg, so discard.
GBRBRGrgb impose N68• so discard.
GBRBRGrbg satisfies N47, N67' Nsg and N68·

6

An analogue result can be obtained for the other members of N 123456·

Finally N 123456789 becomes (
GBRBRGRBG
GRB RBGBRG
BGRGRBRGB
BRGRGB GRB
RGBGBRBGR
RBG BGR GBR}

This node of level n=9 is the final node in this example. It's called the
node corresponding to the synthesizing constraint. This synthesizing
constraint deals with all the constraints of lower levels simultaneously
and by definition states the entire set of feasible solutions, which in this
case consists of six elements.

Remarks

1. The alert reader has noticed that the six feasible solutions are
in fact permutations of each other in the sense that only a certain
sequence of colours is important and not the absolute value of the colour.

Consequently, in node N 123456789 it is sufficient to keep track of one
sequence. This feature can probably be incorporated into the lower nodes
also. This has not been investigated because it lies outside of the scope of
this paper.

2. Other refinements of the algorithm for this particular problem are of
course possible. However we would like to emphasize that the basic
algorithm stays the same whatever the application may be.

7

3. THEORETICAL PREREQUISITES

The basic definitions and the development of the algorithm are based on
the paper of Freuder (1978). The notions which are not relevant for the
case at hand are left out. We refer the interested reader to Freuder (1978)
for the complete description. Please take care of the fact that some terms
are defined completely different to the ones one is used to.

A. Basic terminology

We start with a set of variables X 1 , ... ,Xn the values of which range over
their own universes U 1 , ... ,Un, respectively. For the algorithm itself it is
assumed that the Ui are discrete and finite. I={ 1,2, ... n} is defined as the
set of indices. A lot of definitions use a subset J of I as index (J c I). The
indexed set of variables { Xj} jE J is denoted by X J- A value ai in Ui is
called an instantiation of Xi. An instantiation of a set of variables X J,
denoted by aJ is an indexed set of values {aj}jEJ·

A constraint on X J• denoted by CJ, is a set of instantiations of XJ. Such
an instantiation is similar to the representation of an ordered IJI-tuple (IJI
stands for cardinality of J). In working with this algorithm the 'indexed'
set notation has been found more useful, especially to represent the
nodes. So, in this way, given aJ, "ajE a{ denotes the instantiation of Xj
contained in aJ. Note that CJ can contain more than one 'mathematical'
constraint. For instance 'x+y=6' and 'x not equal toy' are both
simultaneously represented by Cxy· See then-queens problem for an
example.

A constraint expression of order n is a conjunction of constraints C =
A JE 2I-{} CJ, one constraint for each subset J of I (except the empty set).
It represents the logical conjunction of the relations expressed by the CJ
and therefore the fact that the constraints must hold simultaneously. In
most of the cases there is not a constraint given for every J c I.
Nevertheless, it can be assumed that such a constraint exists : a 'non
constraint' can always be specified which represents the set of all
combinations of elements from the universes of the variables in X J· It
actually represents a synthesis of other constraints, which does not
impose additional constraining elements.

8

An instantiation a1 satisfies a constraint CJ if aJ E CJ. The instantiation
a J satisfies a constraint CH, H c J, if the set { aj E a J} j E H, which is
called a1 restricted to H, is a member of CH. An instantiation aJ, where
IJI=k, k-satisfies a 'constraint expression of order n (n~k)' if aJ satisfies
the constraints CH for all H c J. If an instantiation ai n-satisfies the
constraint expression of order n, then ai satisfies the expression.
A constraint expression Cis k-satisfiab1e if for all subsets J of I of
cardinality k, there exists an aJ such that aJ k-satisfies C (one is enough).
If C of order n is n-satisfiable it is said to be satisfiable (there exists at
least one feasible solution). It is clear that a constraint expression defines
in fact another constraint : the set of all instantiations a I which satisfy the
constraint expression. This is different from ordinary n-ary constraints
which of course can appear also. The main purpose of the algorithm will
be to synthesize the order n constraint (which is an n-ary relation) defined
on XI by the constraint expression. In that way it is possible to determine
explicitly the set of instantiations a I which simultaneously satisfy all the
given constraints. If such an instantiation is obtained, it is called a
solution of the constraintexpression. These can be zero (no solution,
infeasible set), one or more. In the case of more than one solution, some
additional problems can be handled which include optimization.

A constraint network of order kin n variables, k~n, is a set of constraints
called nodes, N J, for each J c I, IJI::;k, where a link is said to exist
between NJ and NH if H c J and IHI = 111-1. When two nodes are linked
they are called neighbours. A full constraint network is then a constraint
network of order n inn variables. A node N J corresponds to a given
constraint CJ if N J = CJ meaning that each instantiation of the first
implies an instantiation of the other and vice versa. In this way a full
constraint network in n variables corresponds to a constraint expression
of order n if each node N J in the network corresponds to the constraint c1
in the (synthesizing) expression. The order of a node N J, or a constraint
CJ, is the cardinality of J. So it must be noted that a link between nodes
has nothing to do with a constraint; it only refers to a lower (higher) order
node which is the representation of a constraint. The advantage of this is a
complete correspondance between nodes and constraints so that every
definition involving the term constraint can be reformulated in terms of
nodes, which is an easier and more visual representation (The step to

9

programming is also simplified.) For instance, it is possible to speak
about an instantiation satisfying a node, a synthesizing node, etc.

B. The issue of constraint propagation

The local propagation of a constraint NJ to a neighbouring constraint NH
consists of removing from NH allaH which do not satisfy NJ. A global
propagation of a constraint NJ through a neighbouring constraint NH
consists of firstly a local propagation from N J to NH; then, if anything
was removed from NH during this local propagation, globally propagate
NH through all its neighbours except NJ. The propagation of a constraint
NJ is the global propagation of NJ through all its neighbours.

A constraint network is relaxed if it is possible to propagate every
constraint N J in the network without causing any change in the network.
The relaxation of a constraint network is the network obtained by
propagating all nodes of the network.

C. Statement of the synthesis algorith1n

Step 1 : k=l

Construct a constraint network with nodes N J corresponding to the
constraints CJ in the given constraint expression, for all J c I of
cardinality one.

Step k+l, 2Sk$n-l

For all J c I of cardinality k+ 1:
Add the node N J to the network corresponding to the given constraint
CJ. Link N1 to all NH such that His a cardinality k subset of J.
Locally propagate to NJ from each of its neighbours. Propagate N1.

10

1-ary

2-ary

3-ary

n-ary

In other words, this algorithm runs inn steps and the result is a full
constraint network where NI conesponds to C. A graphical representation
can be found in figure 3.

Figure 3 : representation of the general synthesizing constraint network

11

Already some general observations concerning the algorithm can be
stated, which will be used later to tackle integer linear programming.

Observation 1

The network obtained by executing this algorithm is the relaxation of the
network corresponding to the synthesizing constraint C. An alert reader
may argue that this also could be obtained by simply starting from the
order n network and propagating each node. By proceeding by the steps
outlined above it is possible to eliminate some instantiations at earlier
stages so as to reduce the effects of combinatorial explosion. Note that
elimination at a lower level is generally simpler than at a higher level and
limits thus also the number of higher order instantiations. So every node
is propagated as soon as it is added. Another opportunity to speed up is to
add the most constraining node first at a given level, for instance the node
with the smallest CJ. The purpose being that by propagating this node,
instantiations of other nodes are eliminated so that the construction of
future nodes is simplified. This is certainly the case for non-constraints.
To construct an NJ from NH and NJ-H, it is preferable to take the node
for which INJixiNJ-HI is the smallest.

Observation 2

Provisions should be made for an early termination of the algorithm
which occurs as soon as a node becomes empty. An empty node means
that the constraint corresponding to the node has an empty solution set,
and thus the total problem. Also the propagation can be simplified by
recognizing non-constraints or by using complementary nodes.
Sometimes additional links can enable the direct propagation of a node
NJ to some of the nodes corresponding to subsets of J.

Observation 3

It is redundant to include all non-constraints. It is only necessary to have
one path up to the n-ary node for every real constraint. This is a correct
approach because only the real constraints have an effect on the global
solution. On the other hand the non-constraints can be beneficial for the
pruning process, which is the act of discarding infeasible instantiations.

12

Every node N J groups all the constraints contributing to it, even the ones
not originally given by CJ- At the end every member of every N J is part
of some solution of the constraint expression.

D. Three final notions

The reason why the synthesis algorithm can be used for preprocessing or

as a full-fledged integer solution method stems from three powerful
features : consistency, completeness and compatibility.

Consistency

A constraint network of order k or higher, inn variables, is k-consistent if
for any set XH ofk-1 variables, any instantiation aH ofXH which (k-1)
satisfies NH, and any choice of a kth variable, Xi; there exists an

instantiation of Xi which combines with aH to k-satisfy NJ, where J is the
union of H and { i}. N J is here considered as a synthesizing constraint
corresponding to the partial problem symbolized by NJ ink variables. In
other words no partial (consistent) solution of level k-1 together with an
instantiation of an arbitrary kth variable may cause an inconsistency at
the respective node of level k. The reason for this is the propagation of all

the nodes N J at creation time. Some familiar consistencies are special
cases ofk-consistency (Freuder,1978): }-consistency is the same as node

consistency. When all nodes are checked for their respective unary
constraints then, by definition, the network is 1-consistent. 2-consistency

is attained by introducing and propagating all binary constraints. In a
network where a link is representing a binary constraint, 2-consistency is
equivalent to arc-consistency. In the same kind of network, path

consistency corresponds to 3-consistency. Consistency can intuitively be
understood by 'not violating' another constraint which is contained in N J
but not in NH.

Furthermore, k steps of the synthesis algorithm produce a network that is
j-consistent for all j::;k. After k steps of the algorithm, therefore,
backtracking can be executed on the remaining values knowing that a
single backtracking step will never have to go more backwards than level
k.

13

Comp a tibi 1 i ty

A node N1 of order k is k-compatible with a constraint expression C if all
members of NJ k-satisfy C. A constraint network of order k or higher is
k-compatible with C if all nodes of order k are k-compatible with C. If a
full constraint network of order n is n-compatible with a constraint
expression C of order n it is said to be compatible with C. Intuitively this
can be seen as the fact that there is no member of NJ which does not k
satisfy C, although there may be others outside NJ which also k-satisfy C.

Completeness

A node N1 of order k is k-complete for C if any instantiation aJ which k
satisfies Cis a member of NJ. A network is k-complete for C if every
node of order k is k-complete. Ann-complete full constraint network of
order n is said to be complete. Again intuitively, node NJ must contain all
instantiations a J which k -satisfies C. Outside this set there are none left.

While compatibility can be thought of as a 'sufficiency' feature for C,
completeness is then some kind of 'necessary' feature for C. All of the
instantiations of NJ k-satisfy C (compatibility) and they are all contained
in NJ (completeness).

It can be proven that k steps of the synthesis algorithm achieve k
compatibility and k-completeness to C. When using this algorithm as a
preprocessor, it is possible to choose an order k node and use its members
as alternative paths through the first k levels of a search tree (e.g. B&B),
only branching on the remaining n-k levels. This is applied in the ILP
example. Due to the consistency feature a backtrack will never occur in
the first k levels. When the synthesis algorithm has been brought to
completion, the order n node constitutes the set of feasible solutions
(synthesizing constraint) and no further search is required. Proofs can be
found in Freuder (1978).

14

What is really important, is the following:

The algorithm can be used to determine the set of all solutions to
an integer problem subject to a set of simultaneous constraints.
Another, possibly more practical use, is to run the algorithm fork
steps as a preprocessor and then use the more classical solution
methods.

15

4. INTEGER LINEAR PROGRAMMING

The integer linear programming problems considered here are not of the
mixed integer type. Also the objective function value must be integer.
Note that an objective function with rational coefficients, can always be
transformed to one with integer coefficients just by rescaling the
variables. The integer linear program (ILP) can be solved theoretically by
the synthesis algorithm, but practically technical problems prohibit this.
First an example of the original synthesis algorithm is used. Knowing the
cause of the failure to solve the problem, an alternative is developped.
Then this alternative will be combined with already existing solution
procedures for ILP which seems a worthwhile approach.

A. Synthesising algorithm for ILP

Let's take a very simple example to illustrate the algorithm. Here an
optimisation problem is chosen to show how the feasibility method is
integrated in an optimization method. A graphical representation can be
found in figure 4.

Optimize
Subject to

z

x+y-z=O
x-y;::::o
XE (1,10]

YE [3,8]
ZE (2,7]

The constraint expression C equals (x+y-z=O) A (x-y;::::O) A (xE [1,10]) A

(yE (3,8]) 1\ (zE (2,7]).

Step 1

The level one nodes are straightforward :

N 1 =[1,10], N2=[3,8], N3=[2,7]

16

y

8

7
6

5

4

3

0 2

- -

5 6

" x+y=2 "

I
- I - - -

I - - -

x+y=6

Figure 4 : graphical representation of the example problem

Step 2

X

To construct node N 12 we start from the cross product of both linked
nodes. Next the constraint is imposed on the set (which is :propagate N 1
and N2 toN 12). If the notation is a 1 for an instantiation which belongs to
the node, and a zero for an instantiation not belonging to the node then
the node N 12 can be represented by the following matrix:

x\y 3 4 5 6 7 8
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 1 0 0 0 0 0
4 1 1 0 0 0 0
5 1 1 1 0 0 0
6 1 1 1 1 0 0
7 1 1 1 1 1 0
8 1 1 1 1 1 1
9 1 1 1 1 1 1
10 1 1 1 1 1 1

17

The instantiations 1 and 2 for N 1 are impossible under all circumstances.
Propagation of N 12 leads to the pruning of the instantiations 1 and 2 for x
in N 1. This is the only 'real' binary constraint. Now it is possible to
construct the node N23, corresponding to the non-constraint, as the cross
product of N2 and N3, with all instantiations being possible ([3,8]X[2,7]).
But the theoretical discussion stated that one path from each real
constraint to the synthesizing constraint is enough. This option is chosen
here.

Step 3

The node corresponding to the ternary constraint is added. The result if
N 12 is propagated and the constraint c123 imposed, is listed below:
3 3 6 8 3 11 10 3 13
4 3 7 4 12 4 14

4 8 5 13 5 15
5 3 8 6 14 6 16

4 9 7 15 7 17
5 10 8 16 8 18

6 3 9 9 3 12
4 10 4 13
5 11 5 14
6 12 6 15

7 3 10 7 16
4 11 8 17
5 12
6 13
7 14

If the node N3 is propagated then, of all the 3-tuples, only (336) and
(437) are retained, because z must beE [2,7]. SoN 123={336,437}. Now
N 123 is propagated. TI1erefore N 123 is globally propagated through all
its neighbours.

First N123 is globally propagated through N12· Thus N123 is first locally
propagated to N 12, which remains as { 33,43}. Because something has
been removed from N 12• this node must globally propagated. So N 1
becomes { 3 ,4} and N 2= { 3 } .
Second, N123 is globally propagated to N3. This node becomes {6,7}.

18

The constraint network is now relaxed, and the feasibility problem is
completely solved. The constraint network is complete, which means that
N 123 contains all the possible feasible members, none is left out. The
constraint network is also compatible, which means that every member in
N 123 satisfies the constraint expression. By definition of the algorithm,
the constraint network is 3-consistent. To be complete, all members of
N 123 are solutions of the constraint expression. The result is shown in
figure 5.

Figure 5 :Synthesizing solution for example problem

If we consider the optimization problem, the following is proposed. The
(integer) objective function is replaced by a new integer variable while
the constraint is added to the others. So the example problem could stem
from:

Optimize
subject to

x+y
x-y~O

To continue our example, if it were a maximum (minimum) problem then
the maximum (minimum) of N3 is taken and propagated. The reason for
propagation is that there is always a possibility of alternative solutions.

19

So the solution is :

MAX x=4
y=3
z=7

MIN x=3
y=3
z=6

Of course in this simple example the solution can be derived directly
from N123· The reason why it is done here in detail, is primarly to show
how the synthesizing algorithm works. Secondly, in more complex
problems it will be impossible te 'read' the solution from the synthesizing
node, especially when the node is represented in an implicit manner e.g. a
calculation in the form of a formula.

Evaluation

It is obvious that the basic control structure of the method is extremely
simple and in most cases the structure of the network will be known in
advance. It will always end up with the solution(s) so there are no
problems of convergence.
The algorithm is fast and the steps are easy to calculate but the memory
considerations are impostant due to the higher order nodes. Additionally
severe technical problems occur when solving sets of more than one real
constraint, like in node N123· Here it is dealt with by means of an
enumeration teclmique. This is only possible for small problems. For
large problems other methods are necessary to 'solve' a set of
(dis)equations which consist of integer variables.

B. The refine procedure

In the previous part the biggest problem stemmed from the fact that a set
of (dis)equations cannot be solved in an efficient manner when dealing
with integer valued variables. So this case has to be avoided. Therefore
the teclmique of tightening bounds is used, which is technically better
known under the name 'REFINE' procedure. This refine procedure has up
to now only been used for continuous variables. Based on interval
arithmetic this procedure can now be used to our advantage for the case
with integer variables.

20

The comparison of this method with the synthesizing algorithm can be
visualized in the following manner. In figure 6 the unary nodes are all
present and so is every real constraint. The real constraints are only
linked to their respective unary constraints. Note that the node N 12 .. n is
not a synthesizing node but a node only reflecting one real constraint. If
more real constraints of a given level exist then this leads to different
nodes. Consequently, the strong features of the synthesizing algorithm
disappear.

The refine procedure is defined as follows :

Let Ck be a constraint on X (=[Xl, ... ,XnD corresponding to the k-th
constraint and let Sj be the current interval for Xj.

REFINE(Ck,Xj) = {aj E Sj I 3 (aiE Si, i=l, ... ,n, i:;t:j)
A (a 1 , ... ,aj, ... ,an)E Ck}

21

1-ary Nl N2 N3 Nn

2-ary

3-ary

n-ary Nl2 ... n

Figure 6 : representation of the general refine network

It looks as if this refinement of the interval Sj is very difficult and time
consuming. Fortunately, it is not. Especially for linear constraints this
refine procedure can be very easily performed using interval arithmetic.
In appendix A we give a survey of the important concepts of interval
analysis to which reference is made in this paper. It must be noted that
interval arithmetic can also handle some nonlinear relations. Its very
power lies in the fact that for calculations with intervals only the upper
and lower bounds in combination with some additional conditions have to
be taken into account. Another advantage is that once the tightening
relations are determined, they remain unchanged during the whole of the
solution process. TI1e number of tightening relations of one constraint is
equal to the number of variables appearing in the constraint. These
numbers summed over all constraints give the total number of tightening
relations (sum of the levels of all real constraints, excluding the unary

22

constraints).
For the example cited above this approach yields :

x+y-z=O

1x [max(lx,lz-uy),min(ux,uz-ly)]
1y [max(ly,lz-ux),min(uy,Uz-lx)J
1z [max(lz,lx+ly),min(uz,ux+uy)J

x-y;:;::O

2x [max(lx.ly),uxl
2y Dy,min(uy,ux)J

These five tightening relations never change during execution. When
these relations are repetitively executed, the intervals of all variables are
reduced. In the case of continuous variables as well as in the case of
integer variables, both with unity coefficients, this process always
terminates (cf. relaxation in the synthesizing algorithm). The refine
process quiesces. In the case of general coefficients and continuous
variables this process can go into an 'endless' loop, even for small
problems. Take for example the following problem :

x E [0,100] and
y E [0,100] and

x=y
2x=y
The sequence of tightening is : x E [0,50], y E [0,50], x E [0,25], y E

[0,25], ... If one uses a very accurate computer, then it it takes a long time
for the computer to figure out the solution x=y=O. So in this case stopping
criteria must be designed. We consider the latter problem to be far less
relevant when dealing with integer variables and general coefficients.
Later it will become clear that as soon as a variable is not integer, its
fractional part can be truncated. This speeds up the overall process and
offers a good protection against loops.

But let's continue to solve the example of which the network is presented
in figure 7.

23

Nx

3,4

33,34,43,44

· Nxyz

336,337,346,34 7
436,437,446,44 7

Figure 7 : refine network of the example

Pass 1

lx [max(l ,2-S),min(l 0,7-3)] = [1,4]
ly !max(3,2-4),min(8,7-1)] = [3,6]
lz lmax(2,1+3),min(7,4+6)] = [4,7]

2x [max(l,3),4] = [3,4]
2y [3,min(6,4)] = [3,4]

Pass 2

lx [max(3,4-4),min(4,7-3)] = [3,4]
ly [max(3,4-4),min(4,7-3)] = [3,4]
lz [max(4,3+3),min(7,4+4)] = [6,7]

Nz

6,7

24

y

After this there will be no further tightening. The system quiesces. But
what does this solution mean? It's the projection of the hull of the feasible
region derived from the synthesizing constraint on the axes (see figure 8).
If we make the cross product of these solution intervals, we obtain the
following result :

CH={336,337,346,347,436,437,446,447} cardinality= 2 3

Also the projection of the hull of the feasible region of the individual
constraints on their respective axes can be determined :

NH12={33,34,43,44}
NH 123={336,337 ,346,347,436,437 ,446,447}.

In other words, the true feasible regions are smaller then the regions
obtained but are completely covered (note : the exact feasible regions are
XE {3,4},yE {3},zE {6,7} andthefeasiblesetsarehereN12={33,43},
N 123={ 336,437} and C= { 336,437}. All of them are covered). It must be
stressed that by the refinement procedure some infeasible instantiations
are not removed.

X

Figure 8 : regions after the application of refine

25

C. Turn to a possible formulation for an algorithm

The 1-compatibility of every unary node with the constraint expression
still applies, so the constraint network of order 1 is 1-compatible with the
constraint expression. The instantiations of the variables satisify their
own starting interval. Other compatibilties cannot be determined because
the nodes haven't been constructed yet.

The 1-completeness of the unary nodes for C is not guaranteed, e.g. the
instantiation 1 of node N 1 1-satisfies C but is not a member anymore of
N 1 after refinement. This is of course because completeness is defined in
synthesizing terms. However, it is safe to state that every instantiation ai
of a unary node Ni is a candidate to satisfy C (in the sense of satisfying C
through a feasible n-tuple), although it will tum out that some of the ai e

Ni will never satisfy C, which means that there will never be any
combination of this instantiation ai with other ones to form an
instantiation a1 which will satisfy C. This is the case with the instantiation
4 of N2 in the above example.

In consistency terms, 1-consistency or node consistency is present. 2-
consistency is, again, not guaranteed. Consequently, it is possible to have
an instantiation which is 1-consistent, but which certainly not n-satisfies
C. Note that in the above example the members of the instantiation 337 of
node N123 are 1-consistent, but 337 does not 3-satisfy C, although e.g. 33
satisfies the constraint C12· 337 does not even satisfy the constraintC123
itself. In short, 1-compatibility is guaranteed by the refine procedure, so it
can be neglected from now on. Additionally, a new definition is
necessary to go on.

An instantiation ai of a unary node Ni is k-retainable for a real constraint
node NJ (Jcl) if it is possible to construct one feasible IJI-tuple with ai
which satisfies NJ. If an instantiation ai of a unary node Ni is n-retainable
for the synthesizing constraint C, then ai is retainable for C. The
instantiation 1 of xis not 2-retainable for N 12· Also the instantiation 4 of
N2 is not n-retainable for C. As can be noticed k-retainability for one real
constraint is removed by the refine procedure, by definition of refine. So,
only retainability for C can remain after the application of refine. If such
an instantiation ai (not retainable for C) is detected, this instantiation can

26

be removed. Of course only lower or upper bounds can be removed by a
propagation using refine. In the above example this leads to :

NH 12={ 33,43}
NH 123={ 336,337,436,437 }=CH

It is possible that an instantiation a1 of a real constraint node NJ does not
satisfy NJ although all members aj of a1 are k-retainable for NJ.
Consequently, it is also possible that instantiation ai of a synthesizing
constraint C does not satisfy C although all members aj of a I are
retainable for C. In other words, if an instantiation a J of a real constraint
NJ satisfies NJ, then all aiof aJ are k-retainable for NJ. The reverse
however is not true. In contrast with retainability, this can occur at the
individual real constraint level after the application of REFINE. Take the
instantiation 337 of N 123 as an example. All members of 337 are 3-
retainable and still 337 does not satisfy constraint C123· The same is true
for 436. 34 on the other hand does not satisfy constraint C12 but its
member 4 was not 2-retainable for N12· After removal of 4 out of N2, 3
of N 2 is 2-retainable for N 12 and both 3 3 and 4 3 satisfy N 12. REFINE
does not guarantee that an instantiation satisfies both a real constraint and
the synthesizing constraint.

In addition to these difficulties, our optimization problem has not yet
been solved. If one states that the maximum of z is 7, because it is the
upper bound of the interval, one only had a lucky strike. This way of
thinking cannot be generalized. So, based on the obtained results, I
suggest three possible ways. Let's call this point 'the branching point',
because we need to decide which one of three options to choose for
branching: firstly instantiation on a general variable, secondly
instantiation on the objective function variable and thirdly aLP-run.

a. Instantiation

If one interval is small, then this can be an opportunity to take each of the
values as the starting values for a branching scheme. This branching will
not overlook any valid candidate for a feasible n-tuple. This is true
because only non-retainable instantiations are removed by REFINE.
Because this is the first level of the branching process and the
retainability for C is not guaranteed by the REFINE procedure, it is

27

possible that an entire branch can be pruned at some moment in time. In
the example, branching on N2 will lead to a branch of y=4 which cannot
contain any n-tuple satisfying C. Like we already mentioned, when this
happens and it involves a bound of the interval, refine can be activated to
perform an update. Also if a variable is instantiated, the result of this can
first be checked with refine. In case of a maximum problem for instance,
it seems logic to start with the upper bound and some subsequent lower
values of the variable provided this variable has a positive objective
function coefficient. When appropriate, neighbouring values can be
gathered in an interval. When the system quiesces the decision point is
reached again. In our example it will look like :

Branch to y=4

Pass 1

1x [3,3]=3
1y [4,4]=4
1z [7,7]=7

2x [4,3] => infeasible

Just using refine leads to the conclusion that instantiating yon 4 is a
branch which is to be pruned completely. Because y=4 is an upper bound,
y E [3,3]=3 is propagated using refine :

Pass 1

1x [3,4]
1y [3,3]=3
1z [6,7]

2x [3,4]
2y [3,3]=3

Nothing has changed to the original intervals, after the execution of
refine. Note that here also intervals or a combination of intervals and
individual values could be instantiated. The decision now is equivalent to

28

the earlier one, and therefore again the same three options are available to
us.

b. Instantiation of the objective function

This is technically the same as the previous option, but this variable is
mostly not bounded by a small interval. Nevertheless, sometimes it can
be advantageous to instantiate for instance some values of this variable
and see what happens. The assumption is of course that the objective
function is integer, which is here a starting assumption. When dealing
with a maximum problem, values smaller than or equal to the upper
bound are taken. (For minimization problems, it is just the other way
around. For ease of statement of the algorithm; it is assumed that a
minimum problem is transformed into a maximum problem). Of course
this option is only useful if the interval of the objective is already 'good'
(for instance after one full LP run). For the above example we have in
case of maximization, the following:

Pass 1

1x [3,4]
1y [3,4]
1z [7 ,7]=7

2x and 2y are not influenced by z

Nothing has changed. But suppose it was already established (see 1.) that
y=3. Then it becomes

1x [4,4]=4
1y [3,3]=3
lz [7 ,7]=7

It is guaranteed that this is the only integer solution of the maximization
problem. Thus, given y=3 and z=7 then x equals 4. If x were still defined
as an interval with a length larger than zero (~1), then alternative
solutions would exist. If the minimum was chosen, then the solution 336
would be obtained. In general however, after propagation the decision

29

point is reached again.

c. LP-run

In this option an LP run with bounds is suggested. It is known that
imposing bounds on the LP variables does not harm very much the speed
of the LP run. TI1is is mostly the use of bound tightening in literature, but
to my opinion more effective use can be made of the tightening
technique. Suppose we have a maximum problem. If the LP solution is
feasible, then a candidate for a general lower bound (GLB) on the
objective is found. On the other hand, if the LP solution is not feasible,
then at least a local upper bound (LUB) for the objective is known. If this
LUB has a fractional part then the LUB is replaced by LLUBJ, the largest
possible integer smaller than LUB. If GUB=GLB then the problem is
solved, but reservations for alternative solutions must be incorporated.
Additionally, if a general lower bound is established, every branch with a
local upper bound lower than GLB can be pruned. The construction of a
GUB in fact more technical and will become clear when the algorithm is
formally stated. Afterwards the decision point has been reached again.
Note that the subsequent LP-runs only differ in their bounds, so they can
be executed very fastly.

In the example the LP run is executed with result :

la. max z

LP model : max z
subject to : x+y-z=O

x-y~O

XE [3,4],yE [3,4],zE [6,7]

The LP solutions are :

z=7
X= 4, 3.9, ... , 3.6, 3.5
y = 3, 3.1, ... , 3.4, 3.5

These are indeed all alternative solutions. z=7 is now a LUB (here also a
GUB). Because of the feasibility of x=4 together with y=3, the general

30

lower bound is 7. In this case only one solution remains :
x=4 y=3 z=7

b. min z

The model is the same as above except for the objective function of
course. The LP run gives : x = 3, y = 3 and z = 6. The local (here also the
general) lower bound is 6 and because of integrality, also the general
upper bound. The solution procedure stops.

The example used here is very simple. It has only been used to highlight
some features of the refine procedure embedded in a broader branch and
bound scheme. An attentive reader could remark that using unity
coefficients in an ILP model is very beneficial for a method using LP,
because the probability of occurence of fractional results is here somehow
lower than in a problem with general coefficients. Therefore some
problems with general coefficients have been exploited. It has already
been pointed out that the refine process in case of integrality conditions is
speed up by removing fractional parts from the bounds as soon as they
occur. For instance, if an interval of an integer ends up with [3.5,8.2] then
this interval can be rewritten as [4,8]. This result must be propagated
again, in order to try to cut off other values of other variables. Before
turning to the illustrations and a comparison with other well-known
methods for ILP, some notions about the skeleton algorithm we have in
mind. The algorithm is stated for a maximization problem, for a
n1inimization problem transfom1ation to a maximization problem is

appropriate.

d. Skeleton algorithm

The basic control structure in the algorithm is breadth-first. This means
that, once a branching variable is chosen, it must be completely exploited.
Nevertheless, some branches can be gathered dynamically with the
intention to speed up the search. So initially, this breadth-first control
structure does not harm the efficiency of the algorithm.

As a matter of initialisation, an empty node is constructed. A strictly
ordered queue Q is now formed : Q= { 1}. For reasons of clarity, every

31

node has a local lower and upper bound (LLB and LUB respectively) and
there is all the time only one general lower and upper bound (GLB and
GUB). U0 and L0 are the upper and lower value of the objective function.
0 is used as the objective function value of a feasible solution and OLP
for the objective function value associated with an LP-run.

32

1. PROPAGATION PHASE

propagate the first node of Q until the system quiesces. Fill in and
call it the current node.
if solution is infeasible

then remove current node from Q
else

{if it is the first propagation
then set GUB=LUB=U0 and GLB=LLB=L0

else set LUB=U0 and LLB=L0

if LUB<GLB then remove current node from Q.
else

{begin
if solution is feasible

then 0=U0 =L0

ifO~GLB

then - GLB=O
- move current node to the back of the
branching level

- remove all nodes which LUB<GLB
else [neither feasible nor infeasible]

if it was the first propagation
then take in the next step option three except if

there is a valid reason to choose option 1 or 2
(go to the chosen option immediately).

else put the node at the end of the branching level.
end}}
go the decision point.

33

2. THE DECISION .POINT

if Q is empty then STOP. Infeasible problem solution.

ifGUB=GLB
then - one optimal solution is found

- if alternative solutions are of no interest
then STOP and give solutions
else if for all nodes GUB=GLB

then STOP and give solutions
else take current unexhausted level

if it is an objective level
then - remove from this level all nodes

concerning lower objective
instantiations

else - gather the rest of the level in an
interval

- put it in front of the Q
- propagate.

if the branching level is not exhausted then propagate.
if the branching level is exhausted
then if the next node is of the same branching level

then help=maximum of the LUB of the branching level
if the next node is of a higher level

then help=LUB of the next node
if help<GUB then GUB=help.

if GUB=GLB then the same as above.
go to the branching point.

34

3. THE BRANCHING POINT
take the first node of Q which is not a solution.

Option 1
if a variable has a small interval
then - instantiate on some individual values and put the rest

into an interval (exhaustive and in descending
(ascending) order for positive (negative) objective

coefficients)

Option 2

-remove parent node (remember intervals)
- add the child nodes in front of Q in descending

(ascending) order (recall intervals)

- propagate.

if the objective is 'good' in spite of a large interval
then - instantiate on some individual values and put the rest

into an interval (exhaustive and in descending
(ascending) order for positive (negative) objective

coefficients)

Option 3

-remove parent node (remember intervals)
- add child nodes in front of Q in descending order

(recall intervals)

- propagate.

remove parent node (remember intervals)

add one child node with the LP result.
if the solution is feasible [=integer]

then if 0 LP<G LB
then -prune current node (forget intervals)

else - GLB=OLP
- remove all nodes with LUB<GLB

- remove parent
- add new node in front (recall intervals)

-propagate [GLB,LUB].

35

if solution is infeasible [not integer or empty]
if not integer

then LUBLp=lOLpJ
if LUBLp<GLB
then -prune current node (forget intervals)
else - remove parent node

-add new node to front of Q (recall intervals)
-propagate [LLB,LUBLp].

else [empty]
then prune current node (forget intervals)

go to the decision point

This is very roughly the logic of the skeleton algorithm and it is nothing
more than a skeleton. The branching point must still be formalized and
some other characteristics must be represented by parameters. For
instance :

The choice of the variable to branche on
Some useful heuristics must be evaluated : both the variable with the
smallest interval and the most constrained variable are favourable
candidates. Probably it is possible to obtain more complicated evaluations
using a combination of various heuristics.

The way the branching has to be performed
The question is whether the number of instantiations should obey a
certain heuristic. For instance the division of the interval among golden
ratio logic is worth looking at. Another possibility could be : if the size of
the interval is smaller than 5, all values will be considered separately; if
the size is larger than 5, the upper 5 will be instantiated and the rest of the
interval wille be divided into four parts, etc. With interval arithmetic it is
possible to use both integers and intervals in the same branching level.
The way of propagating is technically the same.

The characterization of a 'good' objective function
This feature will not easily be established. At least it is possible to treat
the objective function variable just like any other variable. But to my
opinion, some characteristics of this 'special' variable can be exploited.

36

For instance if a feasible solution is found after propagation or after aLP
run, this can give valuable information about which values of the
objective function variable can be neglected (based on general lower
bound reasonings). Another point can be made by saying that it is useful
to take the objective function variable to obtain as fast as possible a
feasible solution in order to be able to limit the intervals of all variables
and to prune other branches.

The formalization of the underlying B &B process
These things will merely consider the computer implementation and
therefore will not be discussed here.

Although all this features are not yet incorporated, it is already possible to
use the skeleton interactively and opportunistly. This will become clear in
the other examples of ILP. Three principles lie behind the skeleton
algorithm:

1 related to cutting planes

If REFINE encounters non-integer numbers then the fractions are
truncated. The same way the objective function values can be truncated
after a LP run.

2 related to implicit enumeration

The total instantiaton of a small interval is basically traditional branching.
Here, instantiation of the objective function or other variables is a hybrid
form : some individual values will be instantiated and the rest will be left
in an interval. This does not present a problem at all because every real
(and by the way integer) number is an interval of length 0. Bounding is
used in four ways :
- The LP runs can give general lower or local upper bounds.
-The intervals in itself contain bounds on all variables.
- Refine can give local lower and upper bounds and/or a general
lower bound.

- The 'controlled' breadth first logic, based on the exhaustive and
ordered branching strategy, gives always general upper bounds.

37

3 related to opportunistic methods

The decision point evaluation and subsequent choices are more or less
opportunistic. When the algorithm is to be implemented these points have
to be formalized.

Now the basics of the algorithm should be clear enough to follow the
reasoning behind the solution procedure applied to four examples. The
steps are written out in appendix. Here only the results are presented. The
problems are all four pure ILP problems. The first is taken from Dirickx
(1987), the second from Van Winckel (1990), the third from Wagner
(1975) and the fourth is the example already used above. The latter is the
integer form of a continuous problem proposed by Davis (1987). The
choice has been based on two criteria : firstly on the fact that different
authors are invoked in order to have more variety and secondly, the
availability of other solution methods as to save some work.

Example 1
Min z
S.T. 3x+y-z=O

3x+2y~6

5x-4y~5

2x-y~l

Example 2
Max z

S.T. 7x+9y-z=O

-l/3x+v~2
"

x+1ny~5

Example 3
Max v
S.T. 3x+3y+13z-v=O

-3x+6y+ 7z~8
6x-3y+7z~8

x,y,z E [0,5]

38

Example 4
Max/Min
S.T.

z
x+y-z=O
x-y2::0
X E [1,10]
y E [3,8]
Z E (2,7]

The comparison has been made in function of the number of LP-runs that
where needed during the solution process. This measure can be criticized,
but at least it gives an indication of the possible power of the method. For
0-1 problems, it has already been demonstrated that the reduction of the

number of LP-runs is promising (Guignard and Spielberg, 1977). The
other methods are the cutting plane method of Gomory, the Land & Doig
algorithm and the algorithm of Dakin. The problems were already solved
by the respective authors using one or more methods.

Problem Gomory Land & Doig Dakin Skeleton
1 4 6 5 1
2 3 6 5 1
3 13 9 1 or 2
4 1 1 1 1

According to these four examples, the skeleton algorithm seems to work
well. Without special effort, it was possible to solve these examples (by
hand) with considerable less LP-runs. In fact what happened is that the
LP-runs have been replaced by propagations. Of course the question

remains whether these steps are more efficient in terms of execution time
and memory considerations than the LP-runs. Also it is not known how
this replacement will evolve when larger problems are encountered. To
answer these questions, a computer implementation is necessary. The

algorithm should be programmed in order to be able to tackle larger

problems, so that the possible advantages of the refine procedure can be
further investigated. A prerequisite for its implementation is the

formalization of the parameters discussed above.

39

5. ANOTHER APPLICATION OF THE SYNTHESIZING
ALGORITHM :THEN-QUEENS PROBLEM DEMYSTIFIED?

It is very impressive to see how some of the recently available software
packages solve combinatorical problems in an amazing speed. Examples
found in literature include warehouse location (Van Hentenryck and
Carillon, 1988; Van Hentenryck, 1989), the car sequencing problem
(Dincbas, Simonis and Van Hentenryck, 1988), then-queens problem
(Van Hentenryck, 1989; Van Hentenryck and Dincbas, 1986), the graph
colouring problem (Van Hentenryck, 1989; Dincbas, Simonis and Van
Hentenryck, 1990), the cutting stock problem (Van Hentenryck, 1989)
and disjunctive project planning (Dincbas, Simonis and Van Hentenryck,
1990) among probably others. The packages we have seen demonstrated
are CHARME (Bull), PECOS (E2S) and CHIP (Dincbas et alii, 1988).
All of these packages are programmed in a language like Pro log, LISP or
LE-LISP. The striking aspect was that all of them used then-queens
problem as the ultimate example to show off the speed of their package.
In this paragraph, it is not the intention to tell how the packages really
solve then-queens problem, but an attempt is made to show that this
problem can be solved with the synthesizing algorithm in a polynomial
time. The pecularities of the individual packages can, according to my
opinion, be explained by further refinements of 'a synthesizing algorithm
based' procedure.

This problem is not an optimization problem, it is a pure constraint
satisfaction problem. TI1erefore it can be solved completely by the
synthesizing algorithm. I have chosen to write the solution procedure out
in full, because it is a good illustration of how the synthesizing algorithm
really works.

A. Statement of the problem

In a chess game, the queen is a very powerfull piece. She can strike
horizontally, vertically and diagonally. Our chessboard is a 5x5 board.
The problem is putting on this board five queens, which are unable to
strike each other. I can assure you that finding all feasible solutions (and
having the certainty of having all of them) is not that simple. Here a
branch and bound approach proves to be valuable. So is the synthesizing

40

algorithm. Almost in all available mathematical fom1ulations the problem
is transformed to a one dimensional vector of five elements [x 1 , ... ,x5]
where xi denotes the row of the ith column. The vector must satisfy :

1. 1~xi~5 (1~i~5);
2. Xi:;t:Xj (ls;i<js;5);
3. Xi:;t:Xj+U-i) (l~i<j~5);
4. xi:;t:xrU-i) (l~i<js;5);

Note that the last three constraints are of the binary type and the first of
the unary type. So, every binary node will refer to three constraints
simultaneously. A quick calculation shows that there are 5 unary
constraints and 10 binary ones (5 into groups of 2).

B. The solution procedure

Step 1

This step is straightforward. All individual values of the xi must take one
of the values of {1,2,3,4,5} = Ni, i=1, ... ,5.

Step 2

Here the nodes of level two are constructed. Let's take N 12 as an
example. The possible instantiations derived from N 1 and N2 are
represented by a 5x5 matrix, where all the entries are initially 1. A '0'
should stand for an instantiation which does not satisfy the constraint.

Imposing the three constraints on N 12 leads to a matrix R 12 :

00111
00011

R 12= 10001 = R23 = R34 = R45
11000
11100

41

And so for the others :

01011
10101

R 13= 01010 = R24 = R35
10101
11010

01101
10110

R14= 11011 = R25
01101
10110

01110
10111

R15= 11011
11101
01110

It can be seen that the outlook of the matrices depends on the number of
columns between the variables. This is what could be expected from
chess reality. Now the algorithm wants to locally propagate the binary
nodes. This can be done but nothing will change. Formally this can be
computed by taking the sum of the individual rows (or columns). If this
sum is equal to zero, the value corresponding to the row(column)number
can be removed from the respective unary node. This is not the case right
now. Also if N12 is propagated, nothing can be removed.

Step 3

Because all real constraints have been incorporated, the new nodes are

non-constraints. Let's take node N 123· It is constructed using N 12, N23

and N13:

42

N12 N23 N13 N123

13 10001 01011 00001 135
14 11000 01011 01000 142

15 11100 01011 01000 152
24 11000 10101 10000 241
25 11100 10101 10100 251 and

253
31 00111 01010 00010 314
35 11100 01010 01000 352
41 00111 10101 00101 413 and

415
42 00011 10101 00001 425
51 00111 11010 00010 514
52 00011 11010 00010 524
53 10001 11010 10000 531

Some clarification is needed. In the first column the node N12 is listed.
Take matrix element 13. If 1 is fixed in the first variable, then 3 is a
possible value for the second variable. If node N23 is added, it is shown
in de second column that if 3 is fixed for the second variable, then 1 and 5
are possible for the third variable. If node N 13 is added, with 1 fixed for
the first variable, then 2, 4 and 5 are allowed for the third one. Combining
these conditions leads to only one instantiation which satisfies N 123 :
135. This can easily be performed by logical'and'-operations on the
second and third column. The latter clarifies what is meant by the local
propagation of the neighbours to the new node. Note that only two
instantiations of N 12 end up with two alternatives. Still N 123 has to be
propagated :

toN 12: no change in R 12
to N23 :no change in R23
to N13: some change in R13:
entries (1,4), (2,5), (4,1), (5,2) must be removed from R13· This can also
be done by some binary operations, which are beyond the scope of this
paper, but can be found in Mackworth (1977).

43

This procedure can be repeated for :

N124 N125 N234 N345 N235

132 132 134 135 same same
143 145 142 143 142 as as
152 153 154 152 N123 N124
241 243 243 245 241 and
251 254 251 253 254 251 253 N234
312 314 315 312315 314
351 352 354 351 354 352
412 415 412 413 415 413 415
423 425 421 423 425
514 512 513 514
521 523 523 524 524
534 532 534 531

When all these nodes have been propagated, the new binary nodes are
represented by the following R-matrices. N123 causes R13 to change:

01001
10100

R13= 01010
00101
10010

N 124 causes no changes
N125 causes R25 to change:

01101
10110

R25= 01010
01101
10110

44

N234 causes R24 to change :

01001
10100

R24= 01010
00101
10010

N345 causes R35 to change:

01001
10100

R35= 01010
00101
10010

N235 causes no changes.

This covers the whole range of binary nodes. This is one way to proceed.
Another one which minimizes the number of nodes, is the following.
Because it is only necessary to have one path between each real constraint
and the synthesizing constraint, only N 123 is constructed. The other 3-ary
nodes are not constructed. Consequently, only this node is propagated and
causes changes in R 13.

Step 4

Following the first option, the node N 1234 is constructed out of N 123•

N124 and N234

N123 N124 N234

135 1352 1352
142 1423 1425 1425
152 1522
241 2411 2413 2413
251 2511 2514 2514
253 2531 2534 2531

45

314 314 2 3 144 3 14 5 3142

352 3521 3522 3524 3524

413 4132 4135 4135

415 4152 4155 4152
425 4253 4255 4253
514 5144
524 5241 5243 5241
531 5314 5314

The last column is the result of the propagation of the three ternary nodes

toN 1234· Propagating N 1234 also causes changes in the respective
ternary nodes. It summarizes to :

* 152 514 are removed from N 123. This leads to a change in R 12 :
entries 15 and 51 are removed.

* 145 152 241 314 315 351 352 425 514 523 are removed from N124·
By this way 13 31 35 53 are removed from R 14·

* 251 415 are removed from N234· Changes to R34: 15 51 are
withdrawn.

In a similar fashion, N 1235 and N2345 are constructed. They are listed
below:

N1235 N2345

1354 1352
1423 1425
2415 2413
2534 2531
3145 3142
3521 3524
4132 4135
4251 4253
5243 5241
5312 5314

46

When these two nodes are propagated no changes in other nodes occur.

Step 5

The final synthesizing node N 12345 is now constructed. Using the thtee
4-ary nodes it gives :

N1234 N1235 N2345

1352 13522 13524 13524
1425 14252 14253 14253
2413 24133 24135 24135
2514 25141 25143 25144
2531 25311 25313 25314 25314
3142 31422 31425 31425
3524 35241 35244 35241
4135 41352 41353 41355 41352
4152 41522 41523 41525
4253 42531 42533 42531
5241 52413 52414 52413
5314 53142 53144 53142

The third column is again the result of the propagation of all three 4-ary
nodes. The propagation of N 12345 is not necessary, because the solution
can de derived from the synthesizing node. If this propagation is done,
then some values of 4-ary, 3-ary and binary nodes are removed. The final
results .can be visualized in figure 9. As can be seen, we end up with the
ten feasible solutions of this problem. Note the power of the horse : it is
able to strike the queen without being in danger.

Let's now take again the tum to the other option proposed under step 3.
Here only node N 123 is constructed and propagated. It is now possible to
move immediately to step 4, by constructing N1234 out ofN123 and N4.
The following nodes must be propagated to N1234: N14• N24 and N34:

47

48

N123 N14 N24 N34 N1234

135 01101 01010 11100 1352
142 01101 10101 00011 1425
152 01101 11010 00011
241 10110 10101 00111 2413
251 10110 11010 00111 2514
253 10110 11010 10001 2531
314 11011 01011 11000 3142
352 11011 11010 00011 3524
413 01101 01011 10001 4135
415 01101 01011 11100 4152
425 01101 10101 11100 4253
514 10110 01011 11000
524 10110 10101 11000 5241
531 10110 01010 00111 5314

Now N 12345 is constructed :

N1234
N15 N25 N35 N45 N12345

1352 01110 11011 11010 00011 13524
1425 01110 01101 10101 11100 14253
2413 10111 01101 01011 10001 24135
2514 10111 10110 01011 11000
2531 10111 10110 00111 00111 25314
3142 11011 01101 00011 00011 31425
3524 11011 10110 11000 11000 35241
4135 11101 01101 11100 11100 41352
4152 11101 01101 00011 00011
4253 11101 10110 10001 10001 42531
5241 01110 10110 00111 00111 52413
5314 01110 11011 11000 11000 53142

49

* * * * * * * * * * 13524 14253

* * * * * * * * * * 24135 25314

* * * * * * * * * *
31425 35241

* * * * * * * * ~ * 41352 42531

* *
* * * *
* * * * 52413 53142

Figure 9 : final results of the 5-queens problem

In the same way, the ten feasible solutions are obtained, illustrating that
the solution can be obtained with a minimal network.

C. Time complexity

Without loosing ourselves into details, some results are presented
concerning the time complexity of the algorithm.

Like already stated, the n-queens problem is characterized by unary and
binary constraints only. So, if one could find an algorithm that preserves
consistency only using binary nodes, then the synthesizing node is linked
directly to the binary nodes. Such an algorithm exists and an efficient one
is developped by Mackworth (1977). He called this algorithm 'path
consistency'. In another paper Mackworth and Freuder (1985) analyse the
time complexity of his earlier developped algorithms. For path
consistency he obtained a worst case complexity of O(n3), where n is the
number of variables (unary nodes). Therefore the following time
complexity results reported by Van Hentenryck on the n-queens problem
(1989) are not that amazing :

N sec

8 0.7
16 1
32 4.2
64 14.6
96 35.8

The fact that the above results are better than cubic, is probably explained
by the fact that O(n3)is a worst case bound and by additional features of
the specific implementation. Using then-queens problem as a proof for
the excellent behaviour of the different packages is not valid if it is used
to sustain the claim that it is appropriate for solving general integer
programming or combinatorical problems. However from the supplier's
point of view, it is undoubtedly a very good marketing argument. To
elaborate on this issue somewhat further, let's conclude by the following :

50

CHIP tackles also resource constraint project planning (Dincbas, Simonis
and Van Hentenryck, 1990). But if one knows that precedence relations
are binary by definition and that the resources in the example used are
only available in quantity one, so that at any given moment in time the
resource can only be occupied by one activity (binary disjunctive between
all consuming activities), then further investigation with other problems is
necessary in this matter to validate the packages.

51

6. CONCLUSION

This paper intended to highlight the opportunities of a constraint
satisfaction method named 'synthesizing algorithm'. Useful concepts were
partially extended to be able to deal with general integer programming. A
skeleton for a solution algorithm was developped. Further research topics
lie ahead, such as :
- the implementation of the algorithm, for which some elements
must still be formalized;

- extensive testing should be conducted;
- if succesfull, it should be further investigated whether the procedure

can be adjusted for mixed integer and/or 0/1 problems;
-because interval arithmetic is still valid if the linear assumption is
dropped, elaborations in this direction may be possible.

But as things are at the moment, these things still remain, I admit,
probably wishfull thinking.

52

7. REFERENCES

ALEFELD G., HERZBERGER J. (1983), Introduction to interval

computations, Academic Press.

CROWDER H., JOHNSON L., PADBERG M. (1983), Solving large
scale zero-one linear programming problems, Operations Research 31,
803-834.

DAVIS E. (1987), Constraint propagation with interval labels, Artificial
Intelligence 32,281-331.

DINCBAS M., SIMONIS H., VAN HENTENRYCK P. (1988), Solving
the car sequencing problem in constraint logic programming, In
European Conference on Artificial Intelligence (ECAI-88), Munich, W.
Germany, 290-295.

DINCBAS M., SIMONIS H., VAN HENTENRYCK P. (1990), Solving
large combinatorial problems in logic programming, Journal of Logic
Programming 8,75-93.

DINCBAS M., SIMONIS H., VAN HENTENRYCK P., AGGOUN A.,
GRAFT., BERTHIER F. (1988), The constraint logic programming
language CHIP, Proceedings of the International Conference on Fifth
Generation Computer Systems 1988, 693-702.

DIRICKX Y.M.I, BAAS S.M., DORHOUT B. (1987), Operationele
research, Academic Service.

FREUDER E. C. (1978), Synthesizing constraint expressions, Comm.
ACM 21,958-966.

GUIGNARD M., SPIELBERG K. (1977), Reduction methods for state

enumeration integer programming, Annals of Discrete Mathematics 1,
273-285.

GUIGNARD M., SPIELBERG K. (1981), Logical reduction methods in

53

zero-one programming, Operations Research 29, 49-74.

JOHNSON L., KOSTREVA M., SUHL H. (1985), Solving 0-1 integer
programming problems arising from large scale planning models,
Operations Research 33, 803-819.

LODWICK W. (1989), Constraint propagation, relational arithmetic in
AI systems and mathematical programs, Annals of Operations Research
21, 143-148.

MACKWORTH A.K. (1977), Consistency in networks of relations,
Artificial Intelligence 8,99-118.

MACKWORTH A.K. (1990), Constraint satisfaction, In Encyclopedia of
Artificial Intelligence, S.C. Shapiro (ed.), John Wiley & Sons, 205-211.

MACKWORTH A.K., FREUDER E. C. (1985), The complexity of some
polynomial network consistency algorithms for constraint satisfaction
problems, Artificial Intelligence 25,65-74.

MOORE R.E. (1979), Methods and applications of interval analysis,
SIAM publications, Philadelphia.

PAPADIMITRIOU C., STEIGLITZ (1982), Combinatorial optimization:
algorithms and complexity, Prentice Hall.

VAN HENTENRYCK P. (1989), A logic language for combinatorial
optimization, Annals of Operations Research 21,247-274.

VAN HENTENRYCK P., CARILLON J-P. (1989), Generality versus
specificity: an experience with AI and OR techniques, In American
Association for A1tificial Intelligence (AAAI-86), St. Paul, MI, 660-664.

VAN HENTENRYCK P., DINCBAS M. (1986), Domains in logic
programming, In AAAI-86, Philadelphia, PA, 759-765.

VAN WINCKEL F. (1990), Lineaire programmatie en aanverwante
methoden, Acco Leuven.

54

WAGNER H.M. (1973), Principles of operations research, Prentice Hall.

ZIONTS S. (1972), Generalized implicit enumeration using bounds on
variables for solving linear programs with zero-one variables, Naval
Research Logistics quarterly 19, 165-181.

55

APPENDIX A

II A primer on interval arithmetic

The basic notion of this kind of arithmetic is an interval, considered as an
extension of a real number. An interval will be represented by a pair of
real numbers, its endpoints. The arithmetic developped for this new kind
of 'numbers', is relatively new but has had already a lot of applications :
finite computer precision computations and data uncertainty problems
among others. A real number is simply an interval with the two bounds
identical, so all real arithmetic is a special case of interval arithmetic.

There are not so many books that deal with it. Two very good references
are Moore (1979) and Alefeld and Herzberger (1983). The first one
contains an extended bibliography. For purpose of this paper only the
relevant concepts for bound tightening are presented for which I have
heavily relied on Moore (1979).

1. Basics

An interval is a closed bounded set of 'real' numbers [a,b]={x:a~x~}.
This can be considered as a number represented by an ordered pair of the
endpoints, which are real numbers. In the same way a rational number is
represented by alb (an ordered pair of integers) or a complex number by
a+ib (an ordered pair of real numbers). So, conceptually a set of real
numbers is replaced by another number. X is an interval. Its bounds are X
and X. Formally, X=[X,X].

An n-dimensional vector, is in this context an ordered n-tuple of intervals
(X 1 ,X2, ... ,Xn). Interval vectors are also denoted by capitals. For instance,
if X is a two-dimensional interval vector. Then X=(X 1 ,X2) where
X 1 =[X 1 ,X 1] and X2=[X2,X2J. This is graphically a two dimensional
rectangle of all points (x 1 ,x2) such that X 1 ~x 1 ::;;x 1 and X2~x2~X2

If the real number x is in the interval X, it is denoted as x E X. Similarly,

I

II

if x=(x 1 ,x2, ... ,xn) is a real vector and X=(X 1 ,X2, ... ,Xn) an interval vector
then X E X is defined as Xi E Xi for i=1 ,2, ... ,n. The equality relation
between two intervals holds if their bounds are equal.

The intersection of two intervals X andY is empty if either X> Y or Y>X.
Otherwise, the intersection is again an interval

X n Y = [max(X,Y),min(X,Y)].

If two intervals X and Y have a nonempty intersection, their union,XuY =
[min(X,.Y),max(X,Y)], is also an interval. Other definitions can be given
but are not relevant for this paper.

2. Interval arithmetic

Since intervals can be treated as numbers, operations can be defined. Like
X+Y=Z, where Z=X+Y and Z=X+Y. This consists of the set ---
X+ Y={x+y:x E X,y E Y} which is clearly an interval. The negative of an
interval X is -X=-[X,X]=[-X,-X]={ -x:x E X}. The difference of two
intervals: Z=Y-X=Y+(-X)={y-x:x E X,y E Y}, where Z=Y-X and Z=Y
X. Also a reciprocal 1/X = { 1/x:x E X} can be defined. Also rules for
multiplication and division can be formulated. Introducing functions is
the next step. From these preliminaries the whole theory is built up.

3. Interval arithmetic applied in the refine procedure

The refine procedure can take advantage of the difference in structure
between equalities and inequalities. When an inequality is tranformed
into an equality using slack variables, it leads only to an enlargement of
the refine procedure, without any additional benefits.

II

A. Take the linear equality :

where PC={i:ci has a+ sign}
NC={i:ci has a- sign}
ci is infact ci without the sign
Xj E (lj,Uj)

then refine on xj :
if j E PC then

xj E [max(lj,1/cjCc+LiENCcili- LiEPC\{j}ciui)),
min(uj, 1/cjCc+LiE NCciui -LiE PC\{j} cili))]

if j E NC then

xj E [max(lj, 1/cj(-c+LiE pccili -LiE NC\{j} ciui)),
min(uj,1/cjC -c+LiE pcciui -LiE NC\{j} cili))]

B. On the other hand the linear inequality:

where PC={i:ci has a+ sign}
NC={i:ci has a- sign}
ci is infact ci without the sign

Xj E [li,Uj]

then refine on xj :
if j E PC then

xj E [lj,min(uj,l!cjCc+l:iE NCciui- LiE PC\{j} cili))]

if j E NC then

xj E [max(lj, 1/cjC-c+l:iE NC\{j} ciui -LiE pccili)),uj]

III

where PC={i:ci has a+ sign}
NC={i:ci has a- sign}
ci is infact ci without the sign
Xi E (li,Uj)

then refine on xj :
if j E PC then

xj E [max(lj,l/cjCc+LiE NCcili -LiE PC\{j} ciui)),uj]

if j E NC then
xj E [lj,min(uj,l/cjC-c+:LiE pcciui- LiE NC\{j} cili))]

These rules can very easily be derived. They can be applied to every
variable of every constraint. These refinement relations remain
unchanged during the whole solution procedure.

IV

APPENDIX Bl

Solution of the problem:

min z
s.t. 3x+y-z=0

1. The refinement rules

3x+2y~6

Sx-4y55
2x-y~l

x,y~O and integer

c1 X : [max Ox,1/3(0+lz-Uy)} ,min { Ux,1/3(0+uz-ly)} J
y : [max Oy,O+lz-3ux },min { uy,O+uz-3lx}]
z : [max { lz,3lx+ ly-0} ,min { uz,3ux+uy-O}]

c2 X : [max Ox,1/3(6-2uy)} ,uxJ
y : [max Oy,l/2(6-3ux)} ,uy]

C3 X: (lx, min{ux,1/5(5+4uy)}J
y : [max Oy.l/4(-5-5lx) },uy] = Dy,uy] =no change

c4 X : [max Ox,1/2(1 +ly) Lux]
y : [ly,min { uy,2ux-1}]

Now the refine procedure is applied for two passes. To simplify the
notation, the reference to each of the constraints will be done with a
number and to the variable with a letter.

Pass 1 Pass 2

1x [Q,oo J 1x [l,oo]
1y [Q,oo] 1y [O,oo]
lz [O,oo] 1z [3,oo]
2x [O,oo] 2x [l,oo]
2y [O,oo] 2y [Q,oo]

I

3x
3y

4x
4y

[O,oo]
[O,oo]

[0.5,=]=> [1,oo] 4x
[O,oo]

3x
3y

[1,oo]
4y

[1 ,oo J
[Q,oo J

[O,oo]

No change anymore. Q={ 1 }. LLB=GLB=3, LUB=GUB=oo

Now we arrived at the branching point. Option 1 and 2 are here out of
question. So option 3 is taken. Q= { 1 A}. An LP with bounds is run and it
comes up with:

X= 1.14
y = 1.28
z=.4.71

The LP result is infeasible. LLBLp=5. Q={2}. Propagation of [5,=].

Pass 1

1x [1,oo]
1y [O,oo J
lz [5,oo]

2x [1,oo]
2y [O,oo J

3x [1,oo]
3y [O,oo]

4x [l,oo]
4y [O,oo J

It quiesces. LLB=5, LUB==. The level is exhausted. Help=5 and so GLB
becomes 5. At this decision point option 2 is tried. Q={ 3,4,5,6,7}. Back
to propagation :

II

Pass 1

1x [1 ,5/3]=> x=1
ly [2,2]=> y=2
lz [5,5]=5.

2x [1 ,1]=1
2y [2,2]=2

3x [1 ,1]=1
3y [2,2]=2

4x [1.5,1]=> infeasible

So this instantiation leads to an infeasibility. The initial choice of z=5 was
not valid. Q= { 4,5,6,7}. The result is that we are again at the decision
point. z is now instantiated at 6 :

Pass 1

1x [1,2]
1y [0,3]
1z [6,6]=6

2x [1,2]
2y [0,3]

3x [1 ,2]
3y [0,3]

4x [1,2]
4y [0,3]

LLB=6, LUB=6. Q= {5,6,7 ,4}. Here again the decision point turns up.
The next node corresponds to the instantiation of z to 7.

III

Pass 1 Pass 2

1x [1,7/3]=> [1,2] 1x [4/3,2]=2

1y [1 ,4] 1y [1 ,1]=1

z [7 ,7]=7 1z [7,7]=7

2x [1,2] 2x [2,2]=2

2y [1 ,4] 2y [1 ,1]=1

3x [1 ,2] 3x [2,1]=>infeasibl

e
3y [1 ,4]

4x [1 ,2]

4y [1,3]

Due to the infeasibility, Q becomes {6,7,4 }. The decision point is reached
again. Arrived at the decision point again, z is instantiated to 8 and
propagated :

Pass 1

1x [1 ,8/3]=>[1,2]
1y [2,5]
1z [8,8]=8

2x [1 ,2]
2y [2,5]

3x [I ,2]

3y [2,5]

4x [3/2,2]=>[2,2]=2
4y [2,3]

IV

Pass 2

lx [2,2]=2
ly [2,2]=2
lz [8,8]=8

2x [2,2]=2
2y [2,2]=2

3x [2,2]=2
3y [2,2]=2

4>.;. [2,2]=2
4y [2,2]=2

This system quiesces definitely. LLB=8 and LUB=8. The GUB becomes
now 8. Q={7 ,4,6}. The propagation of z=7 is in fact not necessary
because we know with certainty that the LLB for the node will be larger
than or equal to 9 which is larger than the GUB. So node 7 is removed
from Q. Q= { 4,6}. The branching level is exhausted. Help=6 so GLB=6.
The branching point is now reached. Option 1 is taken. 4 is removed from
Q and 8 and 9 are added. Q={8,9,6}. First branching on x=l and a second
one on x=2, both will be sequentially propagated :

Pass al

X (1,1)=1
ly [3,3]=3
z [6,6]=6

Infeasibility on 4 :

4x [2,1]=> infeasible

Q becomes { 9,6}. The branching level is not exhausted, so the next node
is propagated.

v

Pass bl

X

y
z

[2,2]=2
[0,0]=0
[6,6]=6

Infeasibility on 3 :

3x [2,1]=> infeasible

Q becomes { 6}. Now the branching level is exhausted. Help is equal to 8,
so GLB=8. Because GLB=GUB and 6 is the only node with this
characteristic, the procedure stops and gives the solution.

VI

3

8

1

lA x=1.14
y=1.28
Z=4.71

GUB=inf
GLB=3

GUB=8

VII

GLB=6

APPENDIX B2

Solution of the problem :

max z
s.t. 7x+9y-z=0

-113x+y:::;2
x+ll7y:::;s
x,y~ 0 and integer

The relations for this example :

lx [max Ox,1/7(0+lz-9uy)} ,min { ux,l/7(0+uz-9ly)}]
ly [max Oy.119(0+lz-7ux)} ,min { uy,1/9(0+uz-7lx)}]
lz [max {lz,7lx+9ly)} ,min { uz,7ux+9uy)}]

2x [max {lx,3(-2-ly)} ,ux]=[lx,ux]
2y [ly,min { uy,2+ l/3ux)}]

3x [lx,min{ux,5-1!7ly)}]
3y Dy,min{uy,7(5-lx)}]

As a first step, refine is executed :

Pass 1

lx [O,oo]

ly [O,oo]

lz [O,oo J

2x [O,oo]

2y [O,oo J

3x [0,5]
3y [0,35]

I

Pass 2

1x [0,5]
1y [0,35]
1z [0,350]

2x
2y [0,11/3]=[0,3]

3x [0,5]
3y [0,3]

Pass 3

1x [0,5]
1y [0,3]
1z [0,62]

2x
2y [0,3]

3x [0,5]
3y [0,3]

Here the system quiesces. Q={ 1}. Bounds are set: GUB=LUB=62 and

GLB=LLB=O. Option 3 is taken and an LP is solved. The solution is :

x=4+4!7
y=3
z=59

Q={ 1A}. This solution is not completely integer. A LUBLP is known:
59. The objective function is integer, so no fraction can be removed.
However the new interval for z is now [0,59]. Q= { 2}. This can be
propagated :

II

lx [0,5]
ly l0,3]
lz [0,59]

These intervals won't change anymore, because the only constraint
relating z to the other two is the first one. If this relation undergoes no
change, then it is not necessary to look at the other constraints which
involve only other variables. The reason is that the system for these given
values already quiesced in the former pass. Note that LUB=59 and
LLB=O. The decision point is reached. Next help is set to 59, thus GUB
becomes 59.

At the branching point option 1 with regard toy or x can be taken. Let's
take x. Q= { 3,4}. Node 3 corresponds to x=5. We now take the upper
bound of the interval, because it is a maximum problem. Propagation is
done:

Pass 1

lx [5,5]=5
ly [0,24/9]=[0,2]
lz [35,59]

2x
2y [0,2]

3x [5,5]=5
3y [0,0]=0

Pass 2

lx [5,5]=5
ly [0,0]=0
lz [35,35]=35

For the same reason as above, the intervals won't change anymore.

LLB=35=LUB. This solution (0=35) is feasible but we are not sure if it
is optimal. So we derive a general lower bound on the optimal value

III

equal to 35. Q={ 4,3}. Let's now propagate the interval [0,4].

Pass 1

1x [0,4]
1y [0,3]
1z [0,55]

2x
2y [0,3]

3x [0,4]
3y [0,3]

Pass 2

1x [0,4]
ly [0,3]
1z [0,55]

Nothing will change anymore. LUB=55 and LLB=O. Q= { 3,4}. The
branching level is exhausted and the next node is of the same branching
level. Help= 55, so GUB=55. The first node in Q is 3, but this can not be
branched any further, so node 4 is taken. Let's now take option 2.
Q= {5,6,3}. Propagate node 5 which stands for z=55. The propagation :

Pass 1

1x [4,4]=4
1y [3,3]=3
1z [55,55]=55

2x
2y [3,3]=3

3x [4,4]=4
3y [3,3]=3

IV

Pass 2 will not change anything. LLB=LUB=55 and also GLB=55.
Q={6,5,3}. Node 3 can be pruned. Q={6,5}. GUB=GLB so we end up
with an optimal feasible solution. It can be seen that not all nodes have
their GUB=GLB. The current branching level is the level corresponding
to the objective function, so all lower objective levels can be removed.
Node 6 is pruned. Q={5}. This is the only node where GUB=GLB. Stop.
The solution :

x=4
y=3
z=55

As a matter of control, z E [0,54]. LUB~54, which is lower than GLB of
55. This node would be pruned anyway.

Note that if above we did not instantiated x but y (for reason of the
smallest interval) the solution went on like this :

Q={3,4}. Instantiate y=3 and propagate:

Pass 1

lx [0,4]

ly [3,3]=3
lz [27 ,55]

2x
2y [3,3]=3

3x [0,4]

3y [3,3]=3

Pass 2

lx [0,4]
ly [3,3]=3
lz [27 ,55]

v

It quiesces. LUB=55 and LLB=27. Q= { 4,3}. Now the alternatives of y E

[0,2] must still be investigated. Propagation of this interval :

Pass 1

1x [0,5]
1y [0,2]
1z [0,53]

LLB=O and LUB=53. Q={3,4 }. The branching level is exhausted with
not all the nodes infeasible. Help=55 and so becomes GUB=55. The
branching point is reached. Q={5,6,4}. If an instantiation on x=4 is made
then we will end up with :

Pass 1

1x [4,4]=4
1y [3,3)=3
1z [55,55]=55

This will not lead to an infeasibility. Now a feasible solution is obtained.
LLB=LUB=55. GLB=55. Q={ 6,5,4}. Node 4 can be pruned. Q={ 6,5}.
GUB=GLB so one optimal solution is found. Alternatives are of interest
and not all nodes have GUB=GLB. Current unexhausted level is taken
and being not the objective level, the rest is gathered in an interval. In this

particular case node 6 is replaced by the same node. Propagation leads to:

Pass 1:

1x [0,3]
1y [3,3]=3
1z [27 ,48]

2x
2y [3,3]=3

3x [0,3]
3y [3,3]=3

VI

Pass 2

lx [0,3]
ly [3 ,3]=3
lz [27,48]

It quiesces. LLB=27 and LUB=48. This LUB=48 is smaller than
GLB=55, so Q={5}. All nodes have now GUB=GLB. Stop.

Note that in both cases only one LP was necessary to solve the problem.

VII

lA x=4+417
y=3
z=59

GLB=SS

VIII

5

GLB=55

lA x=4+417
y=3
z=59

IX

APPENDIX B3

Solution of the problem :

max v

s.t. 3x+3y+l3z-v=0
-3x+6y+ 7z~8
6x-3y+ 7z~8
x,y,z;:::o and integer

The rules for this problem are :

lx

ly

lz

lv
[max {lv ,3lx+3ly+ 131z)} ,min { uy,3ux+3uy+ 13uz)}]

2x [max {lx, 1/3(-8-6ly-7lz) },ux]=[lx ,ux]
2y Dy,min { uy,l/6(8+3ux-7lz)}]
2z [lz,min{uz,1/7(8+3ux-6ly)}]

3x [lx,min { ux,l/6(8+3uy-7lz)}]

3y [max Oy,l/3(-8-6lx-7lz)} ,uy]=[ly,uy]
3z [lz,min { uz, 1/7 (8+ 3uy-6lx)}]

x,y,z E [0,5] and v E [O,oo]

The first propagation phase :

lx [0,5]
ly [0,5]

lz [0,5]

1 v [0,95]

I

II

2x [0,5]
2y [0,23/6]=[0,3]
3z [0,23/7]=[0,3]

3x [0, 17 /6]=[0,2]
3y [0,3]
3z [0,17 /7]=[0,2]

Pass 2

1x [0,2]
1y [0,3]
1z [0,2]
1v [0,41]

2x [0,2]
2y [0,14/6]=[0,2]
2z [0,2]

3x [0, 14/6]=[0,2]
3y [0,2]
3z [0,2]

Pass 3

lx l 0,2]
1y 10,2]
lz 10,2]
lv [0,38]

2x [0,2J
2y [0,2]
2z [0,2]

3x [0,2]
3y [0,2]
3z [0,2]

It queiesces. LLB=GLB=O and LUB=GUB=38. Q={ 1 }. The next step is
the usual LP run. Q={lA}. TI1is ends up with:

x=2
y=2

z=2/7
v=15+5!7

This makes it possible to construct a local upper bound of 15. Q= { 2}.
Consequently the interval of vis set to [0,15]. Propagation:

Pass 1

1x [0,2]
1y [0,2]
1z [0,15/13]=[0, 1]
1 v [0,15]

2x [0,2]
2y [0,2]
2z [0,1]

3x [0,2]
3y [0,2]

3z [0,1]

Pass 2

1x [0,2]
1y [0,2]

1z [0,1]
1 v [0,15]

The system quiesces here. LLB=O and LUB=15. The branching level is

exhausted, so help=15 and by this way GUB=15. Just like in all other
cases three options are open. Let's now run a second LP run. Q={2A}.

III

The results are :
x=O
y=O
z=l
v=13

GLB=13. Q={3}. The propagation of [13,15] is now necessary. The
result is :
x=O
y=O
z=1
v=13

The propagation is left out for the unconvinced reader. LUB=LLB=13.
The branching level is again exhausted with not all infeasibilities, so
help=13 and GUB=13. GLB=GUB and an optimal solution is found.
There are no more candidates in Q, so stop.

Instead of running a second LP run, something else could be done. An
instantiation on z looks promising, because there are only two values in
the interval. Branching is chosen. Q={3,4}. Propagation: let's instantiate
z to 0:

Pass 1

lx [0,2]
ly [0,2]
lz [0,0]=0
lv [0,12]

This does not change anymore. LLB=O and LUB= 12. Q= { 4,3}. If the
other instantiation is propagated we get :

Pass 1

lx [0,2/3]=>[0,0]=0
1y [0,2/3]=>[0,01=0

IV

1z [1,15/13]=>[1,1]=1
1v [13,13]=13

This result will not lead to an infeasibility when the rest of the
propagation is done. LLB=LUB=13. Because of feasibility, GLB=13.
Q={3,4}. LUB of node 3 is smaller than GLB, so Q={ 4}. The branching
level is exhausted with not all nodes infeasible. Help=13. GUB=13.
GUB=GLB and an optimal solution is obtained. It is the only member of
Q, so stop.

v

1
/ "'\

x=0,2
y=0,2
z=0,2
0 38

'\. ./

I
1A x=2

y=2
z=217
v=15+517

I
I '\

x=0,2 2
y=0,2
z=0,1
0 15

'\.

I
2A x=O

y=O
Z=1
v=13

I
3

/
x=O '
y=O
Z=1
1313

'- /

GUB=13

G
G

G

G

UB=38
LB=O

UB=15

LB=13

VI

3

1 x=0,2 GUB=38
y=0,2 GLB=O
z=0,2
0 38

1A X=2
y=2
Z=2f7
V=15+5/7

2 x=0,2 GUB=15
y=0,2
z=0,1
0 15

GLB=13

VII

