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ABSTRACT 

In the area of integer programming, it is still very intriguing to explore 
new ways of thinking. Here we propose a fairly unknown approach 
composed of elements in the domain of artificial intelligence and 
combinatorics. From the latter, we retain an as yet not fully explored 
technique called 'preprocessing'. The paper presents the general reasoning 
by means of a representative problem. A more theoretical approach is 
then taken to state the synthesizing algorithm formally, which will then 
be applied to integer linear programn1ing (ILP). It will tum out that the 
synthesizing algorithm is not very suitable for solving ILP problems. 
Then the basics of the algorithm are retained but are supplemented by 
another procedure, called REFINE. In combination with some established 
methods, it will lead to a suitable method for solving ILP. For purposes of 
comparison, some examples were taken from the literature and solved 
with four different methods. At least for these problems, the method 
presents interesting results. Another example concludes our expose. A 
primer on interval arithmetic is provided together with written out 
examples in the appendix . 



1. INTRODUCTION 

The problem considered is the constraint satisfaction problem 
(Mackworth,l990). This implies a set of variables X1,X2, ... ,Xn and a 
number of constraints on subsets of these variables. Then-dimensional 
points which comply with all constraints simultaneously constitute the set 
of feasible solutions. The constrained optimization problem then deals 
with the optimization of a criterion function over this set of points. Under 
these general definitions resort some very wellknown problems like 
mathematical programming problems, combinatorics, a.o. Subsequently a 
method is presented to synthesize all the constraints in one synthesizing 
constraint which corresponds to the feasible region of the whole problem. 
Please note that this paper only considers discrete problems. Basically the 
method uses an iterated reduction of possibilities through constraint 
propagation, which means that constraints are used to gradually reduce 
the different universes in order to obtain the final feasible set 
(Davis,1987). 

The usability of constraint propagation is twofold. On the one hand it is 
used to preprocess other satisfaction and optimization methods and on the 
other hand, occasionally small problems can be solved in the 
preprocessing phase or by combining preprocessing with some further 
enumeration technique (Guignard and Spielberg, 1977). Nevertheless, the 
main purpose is to prepare the formulation of a problem in order to give it 
then to a more sophisticated algorithm. Up til now, a method, which in 
the sequel will be called the 'REFINE' procedure, has been used to 
preprocess continuous satisfaction and optimization problems (Lodwick, 
1989). To the best of our knowledge, the opportunities stemming from 
the use of the REFINE procedure for general integer (linear) 
programming have not yet been investigated. The closest research area 
consists of the papers discussing propagation in (0-1) programs (Crowder, 
Johnson and Padberg, 1983; J olmson, Kostreva and Suhl, 1985; Guignard 
and Spielberg, 1981; Zionts, 1972). Ultimately, Guignard and Spielberg 
(1977) tried to generalize the ideas from 0-1 problems to mixed integer 
problems. 
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2. INTRODUCTORY EXAMPLE 

Let's take the map of Belgium which consists of nine provinces and ask 
ourselves if it is possible to colour the map with three colours while 
avoiding confusion caused by two adjacent provinces having the same 
colour. It must be noted that we are presently only concerned with 
checking the solution and not by the related optimization problem of 
minimizing the number of colours needed to colour the map of Belgium. 
In figure 1 the provinces have been numbered. These numbers are used to 
construct a network in which the nodes (numbers) represent the provinces 
and the edges the adjacency relation:' ... is adjacent to .. .'. Note that not 
all of the nodes are connected, so this is an instance of the general graph 
colouring problem. Of course there's nothing special about this problem 
and it has been described entirely in literature. For instance Papadimitriou 
and Steiglitz (1982) classify it as NP-complete. The reason why three 
colours are proposed is the following : in Belgium there is no point where 
more than three provinces meet each other. This gives us an indication of 
the lower bound on the number of colours that have to be used to colour 
the map. It is clear that only the relative order is important and not the 
absolute value of the colours. If one feasible order is found then, given 
three colours, immediately five other feasible orderings can be obtained 
(3.2.1=6). 

Figure 1 : map of Belgium 
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Many approaches can be taken to solve this problem. The most simple 
but expensive in terms of computational time and memory is explicit 
enumeration. With three colours there are 39=19,683 possibilities to 
consider! Another attempt is a branch and bound scheme using 
backtracking. The B&B approach can be refined by taking into account 
special problem features in order to obtain more efficient algorithms, but 
to illustrate another point of view, consider the following. 

The solution strategy which will be developped is more generic. It means 
that, at least theoretically, the steps of this algorithm in their purest form 
can be used to tackle every integer problem, subject to a set of 
simultaneous constraints. Sometimes it will be impossible to use this 
algorithm because the technical operations needed to perform an 
individual step are nonexisting. This failure is then due to technical 
considerations and not to the logic of the algorithm itself. An example of 
such an impossible operation will occur when this algorithm is used to 
tackle integer linear programming. 
The algorithm is used for the 'Belgian' map colouring problem and all the 
steps are visualized in figure 2. 

Step 1 

Every node has a set of possible colours containing green, blue and red. 
This will be noted as N 1 ={g,b,r} and so for every node Ni where i=1..9. 
These are called the unary nodes, corresponding to the unary constraints, 
meaning that initially, the colour must be one out of the three available 
colours. 
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1-ary 

2-ary 

3-ary 

6-ary 

9-ary 

Figure 2 : constraint network for the map of Belgium 

Step 2 

At this level binary constraints are considered. This concept may not be 
confused with the one of a binary variable which means a variable which 
has only two possible values, mostly one and zero. Here binary means 
consisting of two variables. So it can be extended to n-ary constraints 
meaning constraints with n variables. In the graph colouring problem all 
the constraints are binary and of the type :' ... has not the same colour 
as .. .'. The binary node N 12 is constructed as follows: 
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- N1 and N2 are combined into N12={gg,gb,gr,bg,bb,br,rg,rb,rr}. 
- The constraint between the two nodes is imposed. 
-This yields N12={gb,gr,bg,br,rg,rb}. 

Because the constraint is the same between every two connected nodes it 
is easy to obtain the other binary nodes : 

N12 N23 N34 N46 N56 N67 N7g Ng9 
N15 N25 N36 N47 N5g N68 N79 

N26 

All these nodes have the same set of possible outcomes, namely the one 
stated above. 

Step 3 

Although all the 'real' constraints are dealt with, the final solution is not 
yet obtained. Ultimately the final solution will be established when all of 
the constraints are met simultaneously. By now the notion of constraint 
has been elaborated. A constraint can not only stand for a single 
constraint but also for a set of constraints which must be met 
simultaneously. In this way the whole problem can be understood as one 
constraint composed of the set of all problem constraints. It is obvious 
that this 'synthesizing constraint' will define all feasible solutions. 

Applying the same reasoning procedure, the binary nodes are combined 
into higher order nodes until the final nine-ary node is obtained : 

N125 is a combination ofN12 and N5. So, N125={ 
gbg,gbb,gbr, grg,grb,grr, 
bgg,bgb,bgr, brg,brb,brr, 
rgg,rgb,rgr, rbg,rbb,rbr} 

Node N 15 must be imposed, which means that the first and the 
third colour must be different : gbg,grg,bgb,brb,rgr,rbr are 
discarded. 
Node N25 must also be imposed : gbb,grr,bgg,brr,rgg,rbb are 
discarded. 
Thus N 125= { gbr,grb,bgr,brg,rgb,rbg}. 
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Two other nodes are constructed in a similar fashion: N346 and N789· 
Their set of feasible solutions is the same as the one of N 125· 

Step 6 

Step 4 and step 5 are neglected because in this particular case the steps 
can be skipped without any risk of missing the solution. If the two 
intermediate steps are executed, the result will undoubtedly be the same. 
The reason for this will subsequently be clarified. The six-ary node to be 

constructed is N 123456 which is a combination of N 125 and N346· 

N123456=' 
GB gbRr impose N 56' so discard. 
GBgrRb impose N26' so discard. 
GBbgRr impose Ns6 or N23, so discard. 
GBbrRg impose N23, so discard. 

GBrgRb impose N26, so discard. 
GBrbRg satisfies N23, N26 and Ns6·} 

Note that it is only necessary to impose the constraints which connect the 
'subnetworks' 125 and 346. The other constraints have already been taken 
into account implicitly. This can be done for all the members ofN125 and 
this leads to N 123456= { gbrbrg,grbrbg,bgrgrb,brgrgb,rgbgbr,rbgbgr} 

Step 9 

Again step 7 and 8 are skipped in order to speed things up. The nine-ary 

node is constructed through a combination of N 123456 and N739 as 
follows: 

GBRBRGgbr impose N67, so discard. 
GBRBRGgrb impose N67 or Nsg, so discard. 
GBRBRGbgr impose N47 or N68• so discard. 
GBRBRGbrg impose N47 or Nsg, so discard. 
GBRBRGrgb impose N68• so discard. 
GBRBRGrbg satisfies N47, N67' Nsg and N68· 
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An analogue result can be obtained for the other members of N 123456· 

Finally N 123456789 becomes ( 
GBRBRGRBG 
GRB RBGBRG 
BGRGRBRGB 
BRGRGB GRB 
RGBGBRBGR 
RBG BGR GBR} 

This node of level n=9 is the final node in this example. It's called the 
node corresponding to the synthesizing constraint. This synthesizing 
constraint deals with all the constraints of lower levels simultaneously 
and by definition states the entire set of feasible solutions, which in this 
case consists of six elements. 

Remarks 

1. The alert reader has noticed that the six feasible solutions are 
in fact permutations of each other in the sense that only a certain 
sequence of colours is important and not the absolute value of the colour. 

Consequently, in node N 123456789 it is sufficient to keep track of one 
sequence. This feature can probably be incorporated into the lower nodes 
also. This has not been investigated because it lies outside of the scope of 
this paper. 

2. Other refinements of the algorithm for this particular problem are of 
course possible. However we would like to emphasize that the basic 
algorithm stays the same whatever the application may be. 
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3. THEORETICAL PREREQUISITES 

The basic definitions and the development of the algorithm are based on 
the paper of Freuder (1978). The notions which are not relevant for the 
case at hand are left out. We refer the interested reader to Freuder (1978) 
for the complete description. Please take care of the fact that some terms 
are defined completely different to the ones one is used to. 

A. Basic terminology 

We start with a set of variables X 1 , ... ,Xn the values of which range over 
their own universes U 1 , ... ,Un, respectively. For the algorithm itself it is 
assumed that the Ui are discrete and finite. I={ 1,2, ... n} is defined as the 
set of indices. A lot of definitions use a subset J of I as index (J c I). The 
indexed set of variables { Xj} jE J is denoted by X J- A value ai in Ui is 
called an instantiation of Xi. An instantiation of a set of variables X J, 
denoted by aJ is an indexed set of values {aj}jEJ· 

A constraint on X J• denoted by CJ, is a set of instantiations of XJ. Such 
an instantiation is similar to the representation of an ordered IJI-tuple (IJI 
stands for cardinality of J). In working with this algorithm the 'indexed' 
set notation has been found more useful, especially to represent the 
nodes. So, in this way, given aJ, "ajE a{ denotes the instantiation of Xj 
contained in aJ. Note that CJ can contain more than one 'mathematical' 
constraint. For instance 'x+y=6' and 'x not equal toy' are both 
simultaneously represented by Cxy· See then-queens problem for an 
example. 

A constraint expression of order n is a conjunction of constraints C = 
A JE 2I-{} CJ, one constraint for each subset J of I (except the empty set). 
It represents the logical conjunction of the relations expressed by the CJ 
and therefore the fact that the constraints must hold simultaneously. In 
most of the cases there is not a constraint given for every J c I. 
Nevertheless, it can be assumed that such a constraint exists : a 'non
constraint' can always be specified which represents the set of all 
combinations of elements from the universes of the variables in X J· It 
actually represents a synthesis of other constraints, which does not 
impose additional constraining elements. 
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An instantiation a1 satisfies a constraint CJ if aJ E CJ. The instantiation 
a J satisfies a constraint CH, H c J, if the set { aj E a J} j E H, which is 
called a1 restricted to H, is a member of CH. An instantiation aJ, where 
IJI=k, k-satisfies a 'constraint expression of order n (n~k)' if aJ satisfies 
the constraints CH for all H c J. If an instantiation ai n-satisfies the 
constraint expression of order n, then ai satisfies the expression. 
A constraint expression Cis k-satisfiab1e if for all subsets J of I of 
cardinality k, there exists an aJ such that aJ k-satisfies C (one is enough). 
If C of order n is n-satisfiable it is said to be satisfiable (there exists at 
least one feasible solution). It is clear that a constraint expression defines 
in fact another constraint : the set of all instantiations a I which satisfy the 
constraint expression. This is different from ordinary n-ary constraints 
which of course can appear also. The main purpose of the algorithm will 
be to synthesize the order n constraint (which is an n-ary relation) defined 
on XI by the constraint expression. In that way it is possible to determine 
explicitly the set of instantiations a I which simultaneously satisfy all the 
given constraints. If such an instantiation is obtained, it is called a 
solution of the constraintexpression. These can be zero (no solution, 
infeasible set), one or more. In the case of more than one solution, some 
additional problems can be handled which include optimization. 

A constraint network of order kin n variables, k~n, is a set of constraints 
called nodes, N J, for each J c I, IJI::;k, where a link is said to exist 
between NJ and NH if H c J and IHI = 111-1. When two nodes are linked 
they are called neighbours. A full constraint network is then a constraint 
network of order n inn variables. A node N J corresponds to a given 
constraint CJ if N J = CJ meaning that each instantiation of the first 
implies an instantiation of the other and vice versa. In this way a full 
constraint network in n variables corresponds to a constraint expression 
of order n if each node N J in the network corresponds to the constraint c1 
in the (synthesizing) expression. The order of a node N J, or a constraint 
CJ, is the cardinality of J. So it must be noted that a link between nodes 
has nothing to do with a constraint; it only refers to a lower (higher) order 
node which is the representation of a constraint. The advantage of this is a 
complete correspondance between nodes and constraints so that every 
definition involving the term constraint can be reformulated in terms of 
nodes, which is an easier and more visual representation (The step to 
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programming is also simplified.) For instance, it is possible to speak 
about an instantiation satisfying a node, a synthesizing node, etc. 

B. The issue of constraint propagation 

The local propagation of a constraint NJ to a neighbouring constraint NH 
consists of removing from NH allaH which do not satisfy NJ. A global 
propagation of a constraint NJ through a neighbouring constraint NH 
consists of firstly a local propagation from N J to NH; then, if anything 
was removed from NH during this local propagation, globally propagate 
NH through all its neighbours except NJ. The propagation of a constraint 
NJ is the global propagation of NJ through all its neighbours. 

A constraint network is relaxed if it is possible to propagate every 
constraint N J in the network without causing any change in the network. 
The relaxation of a constraint network is the network obtained by 
propagating all nodes of the network. 

C. Statement of the synthesis algorith1n 

Step 1 : k=l 

Construct a constraint network with nodes N J corresponding to the 
constraints CJ in the given constraint expression, for all J c I of 
cardinality one. 

Step k+l, 2Sk$n-l 

For all J c I of cardinality k+ 1: 
Add the node N J to the network corresponding to the given constraint 
CJ. Link N1 to all NH such that His a cardinality k subset of J. 
Locally propagate to NJ from each of its neighbours. Propagate N1. 
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1-ary 

2-ary 

3-ary 

n-ary 

In other words, this algorithm runs inn steps and the result is a full 
constraint network where NI conesponds to C. A graphical representation 
can be found in figure 3. 

Figure 3 : representation of the general synthesizing constraint network 
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Already some general observations concerning the algorithm can be 
stated, which will be used later to tackle integer linear programming. 

Observation 1 

The network obtained by executing this algorithm is the relaxation of the 
network corresponding to the synthesizing constraint C. An alert reader 
may argue that this also could be obtained by simply starting from the 
order n network and propagating each node. By proceeding by the steps 
outlined above it is possible to eliminate some instantiations at earlier 
stages so as to reduce the effects of combinatorial explosion. Note that 
elimination at a lower level is generally simpler than at a higher level and 
limits thus also the number of higher order instantiations. So every node 
is propagated as soon as it is added. Another opportunity to speed up is to 
add the most constraining node first at a given level, for instance the node 
with the smallest CJ. The purpose being that by propagating this node, 
instantiations of other nodes are eliminated so that the construction of 
future nodes is simplified. This is certainly the case for non-constraints. 
To construct an NJ from NH and NJ-H, it is preferable to take the node 
for which INJixiNJ-HI is the smallest. 

Observation 2 

Provisions should be made for an early termination of the algorithm 
which occurs as soon as a node becomes empty. An empty node means 
that the constraint corresponding to the node has an empty solution set, 
and thus the total problem. Also the propagation can be simplified by 
recognizing non-constraints or by using complementary nodes. 
Sometimes additional links can enable the direct propagation of a node 
NJ to some of the nodes corresponding to subsets of J. 

Observation 3 

It is redundant to include all non-constraints. It is only necessary to have 
one path up to the n-ary node for every real constraint. This is a correct 
approach because only the real constraints have an effect on the global 
solution. On the other hand the non-constraints can be beneficial for the 
pruning process, which is the act of discarding infeasible instantiations. 
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Every node N J groups all the constraints contributing to it, even the ones 
not originally given by CJ- At the end every member of every N J is part 
of some solution of the constraint expression. 

D. Three final notions 

The reason why the synthesis algorithm can be used for preprocessing or 

as a full-fledged integer solution method stems from three powerful 
features : consistency, completeness and compatibility. 

Consistency 

A constraint network of order k or higher, inn variables, is k-consistent if 
for any set XH ofk-1 variables, any instantiation aH ofXH which (k-1)
satisfies NH, and any choice of a kth variable, Xi; there exists an 

instantiation of Xi which combines with aH to k-satisfy NJ, where J is the 
union of H and { i}. N J is here considered as a synthesizing constraint 
corresponding to the partial problem symbolized by NJ ink variables. In 
other words no partial (consistent) solution of level k-1 together with an 
instantiation of an arbitrary kth variable may cause an inconsistency at 
the respective node of level k. The reason for this is the propagation of all 

the nodes N J at creation time. Some familiar consistencies are special 
cases ofk-consistency (Freuder,1978): }-consistency is the same as node 

consistency. When all nodes are checked for their respective unary 
constraints then, by definition, the network is 1-consistent. 2-consistency 

is attained by introducing and propagating all binary constraints. In a 
network where a link is representing a binary constraint, 2-consistency is 
equivalent to arc-consistency. In the same kind of network, path

consistency corresponds to 3-consistency. Consistency can intuitively be 
understood by 'not violating' another constraint which is contained in N J 
but not in NH. 

Furthermore, k steps of the synthesis algorithm produce a network that is 
j-consistent for all j::;k. After k steps of the algorithm, therefore, 
backtracking can be executed on the remaining values knowing that a 
single backtracking step will never have to go more backwards than level 
k. 
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Comp a tibi 1 i ty 

A node N1 of order k is k-compatible with a constraint expression C if all 
members of NJ k-satisfy C. A constraint network of order k or higher is 
k-compatible with C if all nodes of order k are k-compatible with C. If a 
full constraint network of order n is n-compatible with a constraint 
expression C of order n it is said to be compatible with C. Intuitively this 
can be seen as the fact that there is no member of NJ which does not k
satisfy C, although there may be others outside NJ which also k-satisfy C. 

Completeness 

A node N1 of order k is k-complete for C if any instantiation aJ which k
satisfies Cis a member of NJ. A network is k-complete for C if every 
node of order k is k-complete. Ann-complete full constraint network of 
order n is said to be complete. Again intuitively, node NJ must contain all 
instantiations a J which k -satisfies C. Outside this set there are none left. 

While compatibility can be thought of as a 'sufficiency' feature for C, 
completeness is then some kind of 'necessary' feature for C. All of the 
instantiations of NJ k-satisfy C (compatibility) and they are all contained 
in NJ (completeness). 

It can be proven that k steps of the synthesis algorithm achieve k
compatibility and k-completeness to C. When using this algorithm as a 
preprocessor, it is possible to choose an order k node and use its members 
as alternative paths through the first k levels of a search tree (e.g. B&B), 
only branching on the remaining n-k levels. This is applied in the ILP 
example. Due to the consistency feature a backtrack will never occur in 
the first k levels. When the synthesis algorithm has been brought to 
completion, the order n node constitutes the set of feasible solutions 
(synthesizing constraint) and no further search is required. Proofs can be 
found in Freuder (1978). 

14 



What is really important, is the following: 

The algorithm can be used to determine the set of all solutions to 
an integer problem subject to a set of simultaneous constraints. 
Another, possibly more practical use, is to run the algorithm fork 
steps as a preprocessor and then use the more classical solution 
methods. 
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4. INTEGER LINEAR PROGRAMMING 

The integer linear programming problems considered here are not of the 
mixed integer type. Also the objective function value must be integer. 
Note that an objective function with rational coefficients, can always be 
transformed to one with integer coefficients just by rescaling the 
variables. The integer linear program (ILP) can be solved theoretically by 
the synthesis algorithm, but practically technical problems prohibit this. 
First an example of the original synthesis algorithm is used. Knowing the 
cause of the failure to solve the problem, an alternative is developped. 
Then this alternative will be combined with already existing solution 
procedures for ILP which seems a worthwhile approach. 

A. Synthesising algorithm for ILP 

Let's take a very simple example to illustrate the algorithm. Here an 
optimisation problem is chosen to show how the feasibility method is 
integrated in an optimization method. A graphical representation can be 
found in figure 4. 

Optimize 
Subject to 

z 

x+y-z=O 
x-y;::::o 
XE (1,10] 

YE [3,8] 
ZE (2,7] 

The constraint expression C equals (x+y-z=O) A (x-y;::::O) A (xE [1,10]) A 

(yE (3,8]) 1\ (zE (2,7]). 

Step 1 

The level one nodes are straightforward : 

N 1 =[1,10], N2=[3,8], N3=[2,7] 
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Figure 4 : graphical representation of the example problem 

Step 2 

X 

To construct node N 12 we start from the cross product of both linked 
nodes. Next the constraint is imposed on the set (which is :propagate N 1 
and N2 toN 12). If the notation is a 1 for an instantiation which belongs to 
the node, and a zero for an instantiation not belonging to the node then 
the node N 12 can be represented by the following matrix: 

x\y 3 4 5 6 7 8 
1 0 0 0 0 0 0 
2 0 0 0 0 0 0 
3 1 0 0 0 0 0 
4 1 1 0 0 0 0 
5 1 1 1 0 0 0 
6 1 1 1 1 0 0 
7 1 1 1 1 1 0 
8 1 1 1 1 1 1 
9 1 1 1 1 1 1 
10 1 1 1 1 1 1 
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The instantiations 1 and 2 for N 1 are impossible under all circumstances. 
Propagation of N 12 leads to the pruning of the instantiations 1 and 2 for x 
in N 1. This is the only 'real' binary constraint. Now it is possible to 
construct the node N23, corresponding to the non-constraint, as the cross 
product of N2 and N3, with all instantiations being possible ([3,8]X[2,7]). 
But the theoretical discussion stated that one path from each real 
constraint to the synthesizing constraint is enough. This option is chosen 
here. 

Step 3 

The node corresponding to the ternary constraint is added. The result if 
N 12 is propagated and the constraint c123 imposed, is listed below: 
3 3 6 8 3 11 10 3 13 
4 3 7 4 12 4 14 

4 8 5 13 5 15 
5 3 8 6 14 6 16 

4 9 7 15 7 17 
5 10 8 16 8 18 

6 3 9 9 3 12 
4 10 4 13 
5 11 5 14 
6 12 6 15 

7 3 10 7 16 
4 11 8 17 
5 12 
6 13 
7 14 

If the node N3 is propagated then, of all the 3-tuples, only (336) and 
(437) are retained, because z must beE [2,7]. SoN 123={336,437}. Now 
N 123 is propagated. TI1erefore N 123 is globally propagated through all 
its neighbours. 

First N123 is globally propagated through N12· Thus N123 is first locally 
propagated to N 12, which remains as { 33,43}. Because something has 
been removed from N 12• this node must globally propagated. So N 1 
becomes { 3 ,4} and N 2= { 3 } . 
Second, N123 is globally propagated to N3. This node becomes {6,7}. 
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The constraint network is now relaxed, and the feasibility problem is 
completely solved. The constraint network is complete, which means that 
N 123 contains all the possible feasible members, none is left out. The 
constraint network is also compatible, which means that every member in 
N 123 satisfies the constraint expression. By definition of the algorithm, 
the constraint network is 3-consistent. To be complete, all members of 
N 123 are solutions of the constraint expression. The result is shown in 
figure 5. 

Figure 5 :Synthesizing solution for example problem 

If we consider the optimization problem, the following is proposed. The 
(integer) objective function is replaced by a new integer variable while 
the constraint is added to the others. So the example problem could stem 
from: 

Optimize 
subject to 

x+y 
x-y~O 

To continue our example, if it were a maximum (minimum) problem then 
the maximum (minimum) of N3 is taken and propagated. The reason for 
propagation is that there is always a possibility of alternative solutions. 
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So the solution is : 

MAX x=4 
y=3 
z=7 

MIN x=3 
y=3 
z=6 

Of course in this simple example the solution can be derived directly 
from N123· The reason why it is done here in detail, is primarly to show 
how the synthesizing algorithm works. Secondly, in more complex 
problems it will be impossible te 'read' the solution from the synthesizing 
node, especially when the node is represented in an implicit manner e.g. a 
calculation in the form of a formula. 

Evaluation 

It is obvious that the basic control structure of the method is extremely 
simple and in most cases the structure of the network will be known in 
advance. It will always end up with the solution(s) so there are no 
problems of convergence. 
The algorithm is fast and the steps are easy to calculate but the memory 
considerations are impostant due to the higher order nodes. Additionally 
severe technical problems occur when solving sets of more than one real 
constraint, like in node N123· Here it is dealt with by means of an 
enumeration teclmique. This is only possible for small problems. For 
large problems other methods are necessary to 'solve' a set of 
(dis)equations which consist of integer variables. 

B. The refine procedure 

In the previous part the biggest problem stemmed from the fact that a set 
of (dis)equations cannot be solved in an efficient manner when dealing 
with integer valued variables. So this case has to be avoided. Therefore 
the teclmique of tightening bounds is used, which is technically better 
known under the name 'REFINE' procedure. This refine procedure has up 
to now only been used for continuous variables. Based on interval 
arithmetic this procedure can now be used to our advantage for the case 
with integer variables. 
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The comparison of this method with the synthesizing algorithm can be 
visualized in the following manner. In figure 6 the unary nodes are all 
present and so is every real constraint. The real constraints are only 
linked to their respective unary constraints. Note that the node N 12 .. n is 
not a synthesizing node but a node only reflecting one real constraint. If 
more real constraints of a given level exist then this leads to different 
nodes. Consequently, the strong features of the synthesizing algorithm 
disappear. 

The refine procedure is defined as follows : 

Let Ck be a constraint on X (=[Xl, ... ,XnD corresponding to the k-th 
constraint and let Sj be the current interval for Xj. 

REFINE(Ck,Xj) = {aj E Sj I 3 (aiE Si, i=l, ... ,n, i:;t:j) 
A (a 1 , ... ,aj, ... ,an)E Ck} 
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1-ary Nl N2 N3 Nn 

2-ary 

3-ary 

n-ary Nl2 ... n 

Figure 6 : representation of the general refine network 

It looks as if this refinement of the interval Sj is very difficult and time 
consuming. Fortunately, it is not. Especially for linear constraints this 
refine procedure can be very easily performed using interval arithmetic. 
In appendix A we give a survey of the important concepts of interval 
analysis to which reference is made in this paper. It must be noted that 
interval arithmetic can also handle some nonlinear relations. Its very 
power lies in the fact that for calculations with intervals only the upper 
and lower bounds in combination with some additional conditions have to 
be taken into account. Another advantage is that once the tightening 
relations are determined, they remain unchanged during the whole of the 
solution process. TI1e number of tightening relations of one constraint is 
equal to the number of variables appearing in the constraint. These 
numbers summed over all constraints give the total number of tightening 
relations (sum of the levels of all real constraints, excluding the unary 
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constraints). 
For the example cited above this approach yields : 

x+y-z=O 

1x [max(lx,lz-uy),min(ux,uz-ly)] 
1y [max(ly,lz-ux),min(uy,Uz-lx)J 
1z [max(lz,lx+ly),min(uz,ux+uy)J 

x-y;:;::O 

2x [max(lx.ly),uxl 
2y Dy,min(uy,ux)J 

These five tightening relations never change during execution. When 
these relations are repetitively executed, the intervals of all variables are 
reduced. In the case of continuous variables as well as in the case of 
integer variables, both with unity coefficients, this process always 
terminates (cf. relaxation in the synthesizing algorithm). The refine 
process quiesces. In the case of general coefficients and continuous 
variables this process can go into an 'endless' loop, even for small 
problems. Take for example the following problem : 

x E [0,100] and 
y E [0,100] and 

x=y 
2x=y 
The sequence of tightening is : x E [0,50], y E [0,50], x E [0,25], y E 

[0,25], ... If one uses a very accurate computer, then it it takes a long time 
for the computer to figure out the solution x=y=O. So in this case stopping 
criteria must be designed. We consider the latter problem to be far less 
relevant when dealing with integer variables and general coefficients. 
Later it will become clear that as soon as a variable is not integer, its 
fractional part can be truncated. This speeds up the overall process and 
offers a good protection against loops. 

But let's continue to solve the example of which the network is presented 
in figure 7. 
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Nx 

3,4 

33,34,43,44 

· Nxyz 

336,337,346,34 7 
436,437,446,44 7 

Figure 7 : refine network of the example 

Pass 1 

lx [max(l ,2-S),min(l 0,7-3)] = [1,4] 
ly !max(3,2-4),min(8,7-1)] = [3,6] 
lz lmax(2,1+3),min(7,4+6)] = [4,7] 

2x [max(l,3),4] = [3,4] 
2y [3,min(6,4)] = [3,4] 

Pass 2 

lx [max(3,4-4),min(4,7-3)] = [3,4] 
ly [max(3,4-4),min(4,7-3)] = [3,4] 
lz [max(4,3+3),min(7,4+4)] = [6,7] 

Nz 

6,7 
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y 

After this there will be no further tightening. The system quiesces. But 
what does this solution mean? It's the projection of the hull of the feasible 
region derived from the synthesizing constraint on the axes (see figure 8). 
If we make the cross product of these solution intervals, we obtain the 
following result : 

CH={336,337,346,347,436,437,446,447} cardinality= 2 3 

Also the projection of the hull of the feasible region of the individual 
constraints on their respective axes can be determined : 

NH12={33,34,43,44} 
NH 123={336,337 ,346,347,436,437 ,446,447}. 

In other words, the true feasible regions are smaller then the regions 
obtained but are completely covered (note : the exact feasible regions are 
XE {3,4},yE {3},zE {6,7} andthefeasiblesetsarehereN12={33,43}, 
N 123={ 336,437} and C= { 336,437}. All of them are covered). It must be 
stressed that by the refinement procedure some infeasible instantiations 
are not removed. 

X 

Figure 8 : regions after the application of refine 
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C. Turn to a possible formulation for an algorithm 

The 1-compatibility of every unary node with the constraint expression 
still applies, so the constraint network of order 1 is 1-compatible with the 
constraint expression. The instantiations of the variables satisify their 
own starting interval. Other compatibilties cannot be determined because 
the nodes haven't been constructed yet. 

The 1-completeness of the unary nodes for C is not guaranteed, e.g. the 
instantiation 1 of node N 1 1-satisfies C but is not a member anymore of 
N 1 after refinement. This is of course because completeness is defined in 
synthesizing terms. However, it is safe to state that every instantiation ai 
of a unary node Ni is a candidate to satisfy C (in the sense of satisfying C 
through a feasible n-tuple), although it will tum out that some of the ai e 

Ni will never satisfy C, which means that there will never be any 
combination of this instantiation ai with other ones to form an 
instantiation a1 which will satisfy C. This is the case with the instantiation 
4 of N2 in the above example. 

In consistency terms, 1-consistency or node consistency is present. 2-
consistency is, again, not guaranteed. Consequently, it is possible to have 
an instantiation which is 1-consistent, but which certainly not n-satisfies 
C. Note that in the above example the members of the instantiation 337 of 
node N123 are 1-consistent, but 337 does not 3-satisfy C, although e.g. 33 
satisfies the constraint C12· 337 does not even satisfy the constraintC123 
itself. In short, 1-compatibility is guaranteed by the refine procedure, so it 
can be neglected from now on. Additionally, a new definition is 
necessary to go on. 

An instantiation ai of a unary node Ni is k-retainable for a real constraint 
node NJ (Jcl) if it is possible to construct one feasible IJI-tuple with ai 
which satisfies NJ. If an instantiation ai of a unary node Ni is n-retainable 
for the synthesizing constraint C, then ai is retainable for C. The 
instantiation 1 of xis not 2-retainable for N 12· Also the instantiation 4 of 
N2 is not n-retainable for C. As can be noticed k-retainability for one real 
constraint is removed by the refine procedure, by definition of refine. So, 
only retainability for C can remain after the application of refine. If such 
an instantiation ai (not retainable for C) is detected, this instantiation can 
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be removed. Of course only lower or upper bounds can be removed by a 
propagation using refine. In the above example this leads to : 

NH 12={ 33,43} 
NH 123={ 336,337,436,437 }=CH 

It is possible that an instantiation a1 of a real constraint node NJ does not 
satisfy NJ although all members aj of a1 are k-retainable for NJ. 
Consequently, it is also possible that instantiation ai of a synthesizing 
constraint C does not satisfy C although all members aj of a I are 
retainable for C. In other words, if an instantiation a J of a real constraint 
NJ satisfies NJ, then all aiof aJ are k-retainable for NJ. The reverse 
however is not true. In contrast with retainability, this can occur at the 
individual real constraint level after the application of REFINE. Take the 
instantiation 337 of N 123 as an example. All members of 337 are 3-
retainable and still 337 does not satisfy constraint C123· The same is true 
for 436. 34 on the other hand does not satisfy constraint C12 but its 
member 4 was not 2-retainable for N12· After removal of 4 out of N2, 3 
of N 2 is 2-retainable for N 12 and both 3 3 and 4 3 satisfy N 12. REFINE 
does not guarantee that an instantiation satisfies both a real constraint and 
the synthesizing constraint. 

In addition to these difficulties, our optimization problem has not yet 
been solved. If one states that the maximum of z is 7, because it is the 
upper bound of the interval, one only had a lucky strike. This way of 
thinking cannot be generalized. So, based on the obtained results, I 
suggest three possible ways. Let's call this point 'the branching point', 
because we need to decide which one of three options to choose for 
branching: firstly instantiation on a general variable, secondly 
instantiation on the objective function variable and thirdly aLP-run. 

a. Instantiation 

If one interval is small, then this can be an opportunity to take each of the 
values as the starting values for a branching scheme. This branching will 
not overlook any valid candidate for a feasible n-tuple. This is true 
because only non-retainable instantiations are removed by REFINE. 
Because this is the first level of the branching process and the 
retainability for C is not guaranteed by the REFINE procedure, it is 
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possible that an entire branch can be pruned at some moment in time. In 
the example, branching on N2 will lead to a branch of y=4 which cannot 
contain any n-tuple satisfying C. Like we already mentioned, when this 
happens and it involves a bound of the interval, refine can be activated to 
perform an update. Also if a variable is instantiated, the result of this can 
first be checked with refine. In case of a maximum problem for instance, 
it seems logic to start with the upper bound and some subsequent lower 
values of the variable provided this variable has a positive objective 
function coefficient. When appropriate, neighbouring values can be 
gathered in an interval. When the system quiesces the decision point is 
reached again. In our example it will look like : 

Branch to y=4 

Pass 1 

1x [3,3]=3 
1y [ 4,4]=4 
1z [7,7]=7 

2x [ 4,3] => infeasible 

Just using refine leads to the conclusion that instantiating yon 4 is a 
branch which is to be pruned completely. Because y=4 is an upper bound, 
y E [3,3]=3 is propagated using refine : 

Pass 1 

1x [3,4] 
1y [3,3]=3 
1z [6,7] 

2x [3,4] 
2y [3,3]=3 

Nothing has changed to the original intervals, after the execution of 
refine. Note that here also intervals or a combination of intervals and 
individual values could be instantiated. The decision now is equivalent to 
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the earlier one, and therefore again the same three options are available to 
us. 

b. Instantiation of the objective function 

This is technically the same as the previous option, but this variable is 
mostly not bounded by a small interval. Nevertheless, sometimes it can 
be advantageous to instantiate for instance some values of this variable 
and see what happens. The assumption is of course that the objective 
function is integer, which is here a starting assumption. When dealing 
with a maximum problem, values smaller than or equal to the upper 
bound are taken. (For minimization problems, it is just the other way 
around. For ease of statement of the algorithm; it is assumed that a 
minimum problem is transformed into a maximum problem). Of course 
this option is only useful if the interval of the objective is already 'good' 
(for instance after one full LP run). For the above example we have in 
case of maximization, the following: 

Pass 1 

1x [3,4] 
1y [3,4] 
1z [7 ,7]=7 

2x and 2y are not influenced by z 

Nothing has changed. But suppose it was already established (see 1.) that 
y=3. Then it becomes 

1x [4,4]=4 
1y [3,3]=3 
lz [7 ,7]=7 

It is guaranteed that this is the only integer solution of the maximization 
problem. Thus, given y=3 and z=7 then x equals 4. If x were still defined 
as an interval with a length larger than zero (~1), then alternative 
solutions would exist. If the minimum was chosen, then the solution 336 
would be obtained. In general however, after propagation the decision 
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point is reached again. 

c. LP-run 

In this option an LP run with bounds is suggested. It is known that 
imposing bounds on the LP variables does not harm very much the speed 
of the LP run. TI1is is mostly the use of bound tightening in literature, but 
to my opinion more effective use can be made of the tightening 
technique. Suppose we have a maximum problem. If the LP solution is 
feasible, then a candidate for a general lower bound (GLB) on the 
objective is found. On the other hand, if the LP solution is not feasible, 
then at least a local upper bound (LUB) for the objective is known. If this 
LUB has a fractional part then the LUB is replaced by LLUBJ, the largest 
possible integer smaller than LUB. If GUB=GLB then the problem is 
solved, but reservations for alternative solutions must be incorporated. 
Additionally, if a general lower bound is established, every branch with a 
local upper bound lower than GLB can be pruned. The construction of a 
GUB in fact more technical and will become clear when the algorithm is 
formally stated. Afterwards the decision point has been reached again. 
Note that the subsequent LP-runs only differ in their bounds, so they can 
be executed very fastly. 

In the example the LP run is executed with result : 

la. max z 

LP model : max z 
subject to : x+y-z=O 

x-y~O 

XE [3,4],yE [3,4],zE [6,7] 

The LP solutions are : 

z=7 
X= 4, 3.9, ... , 3.6, 3.5 
y = 3, 3.1, ... , 3.4, 3.5 

These are indeed all alternative solutions. z=7 is now a LUB (here also a 
GUB). Because of the feasibility of x=4 together with y=3, the general 
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lower bound is 7. In this case only one solution remains : 
x=4 y=3 z=7 

b. min z 

The model is the same as above except for the objective function of 
course. The LP run gives : x = 3, y = 3 and z = 6. The local (here also the 
general) lower bound is 6 and because of integrality, also the general 
upper bound. The solution procedure stops. 

The example used here is very simple. It has only been used to highlight 
some features of the refine procedure embedded in a broader branch and 
bound scheme. An attentive reader could remark that using unity 
coefficients in an ILP model is very beneficial for a method using LP, 
because the probability of occurence of fractional results is here somehow 
lower than in a problem with general coefficients. Therefore some 
problems with general coefficients have been exploited. It has already 
been pointed out that the refine process in case of integrality conditions is 
speed up by removing fractional parts from the bounds as soon as they 
occur. For instance, if an interval of an integer ends up with [3.5,8.2] then 
this interval can be rewritten as [ 4,8]. This result must be propagated 
again, in order to try to cut off other values of other variables. Before 
turning to the illustrations and a comparison with other well-known 
methods for ILP, some notions about the skeleton algorithm we have in 
mind. The algorithm is stated for a maximization problem, for a 
n1inimization problem transfom1ation to a maximization problem is 

appropriate. 

d. Skeleton algorithm 

The basic control structure in the algorithm is breadth-first. This means 
that, once a branching variable is chosen, it must be completely exploited. 
Nevertheless, some branches can be gathered dynamically with the 
intention to speed up the search. So initially, this breadth-first control 
structure does not harm the efficiency of the algorithm. 

As a matter of initialisation, an empty node is constructed. A strictly 
ordered queue Q is now formed : Q= { 1}. For reasons of clarity, every 
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node has a local lower and upper bound (LLB and LUB respectively) and 
there is all the time only one general lower and upper bound (GLB and 
GUB). U0 and L0 are the upper and lower value of the objective function. 
0 is used as the objective function value of a feasible solution and OLP 
for the objective function value associated with an LP-run. 
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1. PROPAGATION PHASE 

propagate the first node of Q until the system quiesces. Fill in and 
call it the current node. 
if solution is infeasible 

then remove current node from Q 
else 

{if it is the first propagation 
then set GUB=LUB=U0 and GLB=LLB=L0 

else set LUB=U0 and LLB=L0 

if LUB<GLB then remove current node from Q. 
else 

{begin 
if solution is feasible 

then 0=U0 =L0 

ifO~GLB 

then - GLB=O 
- move current node to the back of the 
branching level 

- remove all nodes which LUB<GLB 
else [neither feasible nor infeasible] 

if it was the first propagation 
then take in the next step option three except if 

there is a valid reason to choose option 1 or 2 
(go to the chosen option immediately). 

else put the node at the end of the branching level. 
end}} 
go the decision point. 
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2. THE DECISION .POINT 

if Q is empty then STOP. Infeasible problem solution. 

ifGUB=GLB 
then - one optimal solution is found 

- if alternative solutions are of no interest 
then STOP and give solutions 
else if for all nodes GUB=GLB 

then STOP and give solutions 
else take current unexhausted level 

if it is an objective level 
then - remove from this level all nodes 

concerning lower objective 
instantiations 

else - gather the rest of the level in an 
interval 

- put it in front of the Q 
- propagate. 

if the branching level is not exhausted then propagate. 
if the branching level is exhausted 
then if the next node is of the same branching level 

then help=maximum of the LUB of the branching level 
if the next node is of a higher level 

then help=LUB of the next node 
if help<GUB then GUB=help. 

if GUB=GLB then the same as above. 
go to the branching point. 
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3. THE BRANCHING POINT 
take the first node of Q which is not a solution. 

Option 1 
if a variable has a small interval 
then - instantiate on some individual values and put the rest 

into an interval (exhaustive and in descending 
(ascending) order for positive (negative) objective 

coefficients) 

Option 2 

-remove parent node (remember intervals) 
- add the child nodes in front of Q in descending 

(ascending) order (recall intervals) 

- propagate. 

if the objective is 'good' in spite of a large interval 
then - instantiate on some individual values and put the rest 

into an interval (exhaustive and in descending 
(ascending) order for positive (negative) objective 

coefficients) 

Option 3 

-remove parent node (remember intervals) 
- add child nodes in front of Q in descending order 

(recall intervals) 

- propagate. 

remove parent node (remember intervals) 

add one child node with the LP result. 
if the solution is feasible [=integer] 

then if 0 LP<G LB 
then -prune current node (forget intervals) 

else - GLB=OLP 
- remove all nodes with LUB<GLB 

- remove parent 
- add new node in front (recall intervals) 

-propagate [GLB,LUB]. 
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if solution is infeasible [not integer or empty] 
if not integer 

then LUBLp=lOLpJ 
if LUBLp<GLB 
then -prune current node (forget intervals) 
else - remove parent node 

-add new node to front of Q (recall intervals) 
-propagate [LLB,LUBLp]. 

else [empty] 
then prune current node (forget intervals) 

go to the decision point 

This is very roughly the logic of the skeleton algorithm and it is nothing 
more than a skeleton. The branching point must still be formalized and 
some other characteristics must be represented by parameters. For 
instance : 

The choice of the variable to branche on 
Some useful heuristics must be evaluated : both the variable with the 
smallest interval and the most constrained variable are favourable 
candidates. Probably it is possible to obtain more complicated evaluations 
using a combination of various heuristics. 

The way the branching has to be performed 
The question is whether the number of instantiations should obey a 
certain heuristic. For instance the division of the interval among golden 
ratio logic is worth looking at. Another possibility could be : if the size of 
the interval is smaller than 5, all values will be considered separately; if 
the size is larger than 5, the upper 5 will be instantiated and the rest of the 
interval wille be divided into four parts, etc. With interval arithmetic it is 
possible to use both integers and intervals in the same branching level. 
The way of propagating is technically the same. 

The characterization of a 'good' objective function 
This feature will not easily be established. At least it is possible to treat 
the objective function variable just like any other variable. But to my 
opinion, some characteristics of this 'special' variable can be exploited. 
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For instance if a feasible solution is found after propagation or after aLP
run, this can give valuable information about which values of the 
objective function variable can be neglected (based on general lower 
bound reasonings). Another point can be made by saying that it is useful 
to take the objective function variable to obtain as fast as possible a 
feasible solution in order to be able to limit the intervals of all variables 
and to prune other branches. 

The formalization of the underlying B &B process 
These things will merely consider the computer implementation and 
therefore will not be discussed here. 

Although all this features are not yet incorporated, it is already possible to 
use the skeleton interactively and opportunistly. This will become clear in 
the other examples of ILP. Three principles lie behind the skeleton 
algorithm: 

1 related to cutting planes 

If REFINE encounters non-integer numbers then the fractions are 
truncated. The same way the objective function values can be truncated 
after a LP run. 

2 related to implicit enumeration 

The total instantiaton of a small interval is basically traditional branching. 
Here, instantiation of the objective function or other variables is a hybrid 
form : some individual values will be instantiated and the rest will be left 
in an interval. This does not present a problem at all because every real 
(and by the way integer) number is an interval of length 0. Bounding is 
used in four ways : 
- The LP runs can give general lower or local upper bounds. 
-The intervals in itself contain bounds on all variables. 
- Refine can give local lower and upper bounds and/or a general 
lower bound. 

- The 'controlled' breadth first logic, based on the exhaustive and 
ordered branching strategy, gives always general upper bounds. 
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3 related to opportunistic methods 

The decision point evaluation and subsequent choices are more or less 
opportunistic. When the algorithm is to be implemented these points have 
to be formalized. 

Now the basics of the algorithm should be clear enough to follow the 
reasoning behind the solution procedure applied to four examples. The 
steps are written out in appendix. Here only the results are presented. The 
problems are all four pure ILP problems. The first is taken from Dirickx 
(1987), the second from Van Winckel (1990), the third from Wagner 
(1975) and the fourth is the example already used above. The latter is the 
integer form of a continuous problem proposed by Davis (1987). The 
choice has been based on two criteria : firstly on the fact that different 
authors are invoked in order to have more variety and secondly, the 
availability of other solution methods as to save some work. 

Example 1 
Min z 
S.T. 3x+y-z=O 

3x+2y~6 

5x-4y~5 

2x-y~l 

Example 2 
Max z 

S.T. 7x+9y-z=O 

-l/3x+v~2 
" 

x+1ny~5 

Example 3 
Max v 
S.T. 3x+3y+13z-v=O 

-3x+6y+ 7z~8 
6x-3y+7z~8 

x,y,z E [0,5] 
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Example 4 
Max/Min 
S.T. 

z 
x+y-z=O 
x-y2::0 
X E [1,10] 
y E [3,8] 
Z E (2,7] 

The comparison has been made in function of the number of LP-runs that 
where needed during the solution process. This measure can be criticized, 
but at least it gives an indication of the possible power of the method. For 
0-1 problems, it has already been demonstrated that the reduction of the 

number of LP-runs is promising (Guignard and Spielberg, 1977). The 
other methods are the cutting plane method of Gomory, the Land & Doig 
algorithm and the algorithm of Dakin. The problems were already solved 
by the respective authors using one or more methods. 

Problem Gomory Land & Doig Dakin Skeleton 
1 4 6 5 1 
2 3 6 5 1 
3 13 9 1 or 2 
4 1 1 1 1 

According to these four examples, the skeleton algorithm seems to work 
well. Without special effort, it was possible to solve these examples (by 
hand) with considerable less LP-runs. In fact what happened is that the 
LP-runs have been replaced by propagations. Of course the question 

remains whether these steps are more efficient in terms of execution time 
and memory considerations than the LP-runs. Also it is not known how 
this replacement will evolve when larger problems are encountered. To 
answer these questions, a computer implementation is necessary. The 

algorithm should be programmed in order to be able to tackle larger 

problems, so that the possible advantages of the refine procedure can be 
further investigated. A prerequisite for its implementation is the 

formalization of the parameters discussed above. 
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5. ANOTHER APPLICATION OF THE SYNTHESIZING 
ALGORITHM :THEN-QUEENS PROBLEM DEMYSTIFIED? 

It is very impressive to see how some of the recently available software 
packages solve combinatorical problems in an amazing speed. Examples 
found in literature include warehouse location (Van Hentenryck and 
Carillon, 1988; Van Hentenryck, 1989), the car sequencing problem 
(Dincbas, Simonis and Van Hentenryck, 1988), then-queens problem 
(Van Hentenryck, 1989; Van Hentenryck and Dincbas, 1986), the graph 
colouring problem (Van Hentenryck, 1989; Dincbas, Simonis and Van 
Hentenryck, 1990), the cutting stock problem (Van Hentenryck, 1989) 
and disjunctive project planning (Dincbas, Simonis and Van Hentenryck, 
1990) among probably others. The packages we have seen demonstrated 
are CHARME (Bull), PECOS (E2S) and CHIP (Dincbas et alii, 1988). 
All of these packages are programmed in a language like Pro log, LISP or 
LE-LISP. The striking aspect was that all of them used then-queens 
problem as the ultimate example to show off the speed of their package. 
In this paragraph, it is not the intention to tell how the packages really 
solve then-queens problem, but an attempt is made to show that this 
problem can be solved with the synthesizing algorithm in a polynomial 
time. The pecularities of the individual packages can, according to my 
opinion, be explained by further refinements of 'a synthesizing algorithm 
based' procedure. 

This problem is not an optimization problem, it is a pure constraint 
satisfaction problem. TI1erefore it can be solved completely by the 
synthesizing algorithm. I have chosen to write the solution procedure out 
in full, because it is a good illustration of how the synthesizing algorithm 
really works. 

A. Statement of the problem 

In a chess game, the queen is a very powerfull piece. She can strike 
horizontally, vertically and diagonally. Our chessboard is a 5x5 board. 
The problem is putting on this board five queens, which are unable to 
strike each other. I can assure you that finding all feasible solutions (and 
having the certainty of having all of them) is not that simple. Here a 
branch and bound approach proves to be valuable. So is the synthesizing 
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algorithm. Almost in all available mathematical fom1ulations the problem 
is transformed to a one dimensional vector of five elements [x 1 , ... ,x5] 
where xi denotes the row of the ith column. The vector must satisfy : 

1. 1~xi~5 (1~i~5); 
2. Xi:;t:Xj (ls;i<js;5); 
3. Xi:;t:Xj+U-i) (l~i<j~5); 
4. xi:;t:xrU-i) (l~i<js;5); 

Note that the last three constraints are of the binary type and the first of 
the unary type. So, every binary node will refer to three constraints 
simultaneously. A quick calculation shows that there are 5 unary 
constraints and 10 binary ones (5 into groups of 2). 

B. The solution procedure 

Step 1 

This step is straightforward. All individual values of the xi must take one 
of the values of {1,2,3,4,5} = Ni, i=1, ... ,5. 

Step 2 

Here the nodes of level two are constructed. Let's take N 12 as an 
example. The possible instantiations derived from N 1 and N2 are 
represented by a 5x5 matrix, where all the entries are initially 1. A '0' 
should stand for an instantiation which does not satisfy the constraint. 

Imposing the three constraints on N 12 leads to a matrix R 12 : 

00111 
00011 

R 12= 10001 = R23 = R34 = R45 
11000 
11100 
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And so for the others : 

01011 
10101 

R 13= 01010 = R24 = R35 
10101 
11010 

01101 
10110 

R14= 11011 = R25 
01101 
10110 

01110 
10111 

R15= 11011 
11101 
01110 

It can be seen that the outlook of the matrices depends on the number of 
columns between the variables. This is what could be expected from 
chess reality. Now the algorithm wants to locally propagate the binary 
nodes. This can be done but nothing will change. Formally this can be 
computed by taking the sum of the individual rows (or columns). If this 
sum is equal to zero, the value corresponding to the row(column)number 
can be removed from the respective unary node. This is not the case right 
now. Also if N12 is propagated, nothing can be removed. 

Step 3 

Because all real constraints have been incorporated, the new nodes are 

non-constraints. Let's take node N 123· It is constructed using N 12, N23 

and N13: 
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N12 N23 N13 N123 

13 10001 01011 00001 135 
14 11000 01011 01000 142 

15 11100 01011 01000 152 
24 11000 10101 10000 241 
25 11100 10101 10100 251 and 

253 
31 00111 01010 00010 314 
35 11100 01010 01000 352 
41 00111 10101 00101 413 and 

415 
42 00011 10101 00001 425 
51 00111 11010 00010 514 
52 00011 11010 00010 524 
53 10001 11010 10000 531 

Some clarification is needed. In the first column the node N12 is listed. 
Take matrix element 13. If 1 is fixed in the first variable, then 3 is a 
possible value for the second variable. If node N23 is added, it is shown 
in de second column that if 3 is fixed for the second variable, then 1 and 5 
are possible for the third variable. If node N 13 is added, with 1 fixed for 
the first variable, then 2, 4 and 5 are allowed for the third one. Combining 
these conditions leads to only one instantiation which satisfies N 123 : 
135. This can easily be performed by logical'and'-operations on the 
second and third column. The latter clarifies what is meant by the local 
propagation of the neighbours to the new node. Note that only two 
instantiations of N 12 end up with two alternatives. Still N 123 has to be 
propagated : 

toN 12: no change in R 12 
to N23 :no change in R23 
to N13: some change in R13: 
entries (1,4), (2,5), (4,1), (5,2) must be removed from R13· This can also 
be done by some binary operations, which are beyond the scope of this 
paper, but can be found in Mackworth (1977). 
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This procedure can be repeated for : 

N124 N125 N234 N345 N235 

132 132 134 135 same same 
143 145 142 143 142 as as 
152 153 154 152 N123 N124 
241 243 243 245 241 and 
251 254 251 253 254 251 253 N234 
312 314 315 312315 314 
351 352 354 351 354 352 
412 415 412 413 415 413 415 
423 425 421 423 425 
514 512 513 514 
521 523 523 524 524 
534 532 534 531 

When all these nodes have been propagated, the new binary nodes are 
represented by the following R-matrices. N123 causes R13 to change: 

01001 
10100 

R13= 01010 
00101 
10010 

N 124 causes no changes 
N125 causes R25 to change: 

01101 
10110 

R25= 01010 
01101 
10110 
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N234 causes R24 to change : 

01001 
10100 

R24= 01010 
00101 
10010 

N345 causes R35 to change: 

01001 
10100 

R35= 01010 
00101 
10010 

N235 causes no changes. 

This covers the whole range of binary nodes. This is one way to proceed. 
Another one which minimizes the number of nodes, is the following. 
Because it is only necessary to have one path between each real constraint 
and the synthesizing constraint, only N 123 is constructed. The other 3-ary 
nodes are not constructed. Consequently, only this node is propagated and 
causes changes in R 13. 

Step 4 

Following the first option, the node N 1234 is constructed out of N 123• 

N124 and N234 

N123 N124 N234 

135 1352 1352 
142 1423 1425 1425 
152 1522 
241 2411 2413 2413 
251 2511 2514 2514 
253 2531 2534 2531 
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314 314 2 3 144 3 14 5 3142 

352 3521 3522 3524 3524 

413 4132 4135 4135 

415 4152 4155 4152 
425 4253 4255 4253 
514 5144 
524 5241 5243 5241 
531 5314 5314 

The last column is the result of the propagation of the three ternary nodes 

toN 1234· Propagating N 1234 also causes changes in the respective 
ternary nodes. It summarizes to : 

* 152 514 are removed from N 123. This leads to a change in R 12 : 
entries 15 and 51 are removed. 

* 145 152 241 314 315 351 352 425 514 523 are removed from N124· 
By this way 13 31 35 53 are removed from R 14· 

* 251 415 are removed from N234· Changes to R34: 15 51 are 
withdrawn. 

In a similar fashion, N 1235 and N2345 are constructed. They are listed 
below: 

N1235 N2345 

1354 1352 
1423 1425 
2415 2413 
2534 2531 
3145 3142 
3521 3524 
4132 4135 
4251 4253 
5243 5241 
5312 5314 
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When these two nodes are propagated no changes in other nodes occur. 

Step 5 

The final synthesizing node N 12345 is now constructed. Using the thtee 
4-ary nodes it gives : 

N1234 N1235 N2345 

1352 13522 13524 13524 
1425 14252 14253 14253 
2413 24133 24135 24135 
2514 25141 25143 25144 
2531 25311 25313 25314 25314 
3142 31422 31425 31425 
3524 35241 35244 35241 
4135 41352 41353 41355 41352 
4152 41522 41523 41525 
4253 42531 42533 42531 
5241 52413 52414 52413 
5314 53142 53144 53142 

The third column is again the result of the propagation of all three 4-ary 
nodes. The propagation of N 12345 is not necessary, because the solution 
can de derived from the synthesizing node. If this propagation is done, 
then some values of 4-ary, 3-ary and binary nodes are removed. The final 
results .can be visualized in figure 9. As can be seen, we end up with the 
ten feasible solutions of this problem. Note the power of the horse : it is 
able to strike the queen without being in danger. 

Let's now take again the tum to the other option proposed under step 3. 
Here only node N 123 is constructed and propagated. It is now possible to 
move immediately to step 4, by constructing N1234 out ofN123 and N4. 
The following nodes must be propagated to N1234: N14• N24 and N34: 
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N123 N14 N24 N34 N1234 

135 01101 01010 11100 1352 
142 01101 10101 00011 1425 
152 01101 11010 00011 
241 10110 10101 00111 2413 
251 10110 11010 00111 2514 
253 10110 11010 10001 2531 
314 11011 01011 11000 3142 
352 11011 11010 00011 3524 
413 01101 01011 10001 4135 
415 01101 01011 11100 4152 
425 01101 10101 11100 4253 
514 10110 01011 11000 
524 10110 10101 11000 5241 
531 10110 01010 00111 5314 

Now N 12345 is constructed : 

N1234 
N15 N25 N35 N45 N12345 

1352 01110 11011 11010 00011 13524 
1425 01110 01101 10101 11100 14253 
2413 10111 01101 01011 10001 24135 
2514 10111 10110 01011 11000 
2531 10111 10110 00111 00111 25314 
3142 11011 01101 00011 00011 31425 
3524 11011 10110 11000 11000 35241 
4135 11101 01101 11100 11100 41352 
4152 11101 01101 00011 00011 
4253 11101 10110 10001 10001 42531 
5241 01110 10110 00111 00111 52413 
5314 01110 11011 11000 11000 53142 
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* * * * * * * * * * 13524 14253 

* * * * * * * * * * 24135 25314 

* * * * * * * * * * 
31425 35241 

* * * * * * * * ~ * 41352 42531 

* * 
* * * * 
* * * * 52413 53142 

Figure 9 : final results of the 5-queens problem 



In the same way, the ten feasible solutions are obtained, illustrating that 
the solution can be obtained with a minimal network. 

C. Time complexity 

Without loosing ourselves into details, some results are presented 
concerning the time complexity of the algorithm. 

Like already stated, the n-queens problem is characterized by unary and 
binary constraints only. So, if one could find an algorithm that preserves 
consistency only using binary nodes, then the synthesizing node is linked 
directly to the binary nodes. Such an algorithm exists and an efficient one 
is developped by Mackworth (1977). He called this algorithm 'path 
consistency'. In another paper Mackworth and Freuder (1985) analyse the 
time complexity of his earlier developped algorithms. For path 
consistency he obtained a worst case complexity of O(n3), where n is the 
number of variables (unary nodes). Therefore the following time 
complexity results reported by Van Hentenryck on the n-queens problem 
(1989) are not that amazing : 

N sec 

8 0.7 
16 1 
32 4.2 
64 14.6 
96 35.8 

The fact that the above results are better than cubic, is probably explained 
by the fact that O(n3)is a worst case bound and by additional features of 
the specific implementation. Using then-queens problem as a proof for 
the excellent behaviour of the different packages is not valid if it is used 
to sustain the claim that it is appropriate for solving general integer 
programming or combinatorical problems. However from the supplier's 
point of view, it is undoubtedly a very good marketing argument. To 
elaborate on this issue somewhat further, let's conclude by the following : 
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CHIP tackles also resource constraint project planning (Dincbas, Simonis 
and Van Hentenryck, 1990). But if one knows that precedence relations 
are binary by definition and that the resources in the example used are 
only available in quantity one, so that at any given moment in time the 
resource can only be occupied by one activity (binary disjunctive between 
all consuming activities), then further investigation with other problems is 
necessary in this matter to validate the packages. 
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6. CONCLUSION 

This paper intended to highlight the opportunities of a constraint 
satisfaction method named 'synthesizing algorithm'. Useful concepts were 
partially extended to be able to deal with general integer programming. A 
skeleton for a solution algorithm was developped. Further research topics 
lie ahead, such as : 
- the implementation of the algorithm, for which some elements 
must still be formalized; 

- extensive testing should be conducted; 
- if succesfull, it should be further investigated whether the procedure 

can be adjusted for mixed integer and/or 0/1 problems; 
-because interval arithmetic is still valid if the linear assumption is 
dropped, elaborations in this direction may be possible. 

But as things are at the moment, these things still remain, I admit, 
probably wishfull thinking. 
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APPENDIX A 

II A primer on interval arithmetic 

The basic notion of this kind of arithmetic is an interval, considered as an 
extension of a real number. An interval will be represented by a pair of 
real numbers, its endpoints. The arithmetic developped for this new kind 
of 'numbers', is relatively new but has had already a lot of applications : 
finite computer precision computations and data uncertainty problems 
among others. A real number is simply an interval with the two bounds 
identical, so all real arithmetic is a special case of interval arithmetic. 

There are not so many books that deal with it. Two very good references 
are Moore (1979) and Alefeld and Herzberger (1983). The first one 
contains an extended bibliography. For purpose of this paper only the 
relevant concepts for bound tightening are presented for which I have 
heavily relied on Moore (1979). 

1. Basics 

An interval is a closed bounded set of 'real' numbers [a,b]={x:a~x~}. 
This can be considered as a number represented by an ordered pair of the 
endpoints, which are real numbers. In the same way a rational number is 
represented by alb (an ordered pair of integers) or a complex number by 
a+ib (an ordered pair of real numbers). So, conceptually a set of real 
numbers is replaced by another number. X is an interval. Its bounds are X 
and X. Formally, X=[X,X]. 

An n-dimensional vector, is in this context an ordered n-tuple of intervals 
(X 1 ,X2, ... ,Xn). Interval vectors are also denoted by capitals. For instance, 
if X is a two-dimensional interval vector. Then X=(X 1 ,X2) where 
X 1 =[X 1 ,X 1] and X2=[X2,X2J. This is graphically a two dimensional 
rectangle of all points (x 1 ,x2) such that X 1 ~x 1 ::;;x 1 and X2~x2~X2 

If the real number x is in the interval X, it is denoted as x E X. Similarly, 
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if x=(x 1 ,x2, ... ,xn) is a real vector and X=(X 1 ,X2, ... ,Xn) an interval vector 
then X E X is defined as Xi E Xi for i=1 ,2, ... ,n. The equality relation 
between two intervals holds if their bounds are equal. 

The intersection of two intervals X andY is empty if either X> Y or Y>X. 
Otherwise, the intersection is again an interval 

X n Y = [max(X,Y),min(X,Y)]. 

If two intervals X and Y have a nonempty intersection, their union,XuY = 
[min(X,.Y),max(X,Y)], is also an interval. Other definitions can be given 
but are not relevant for this paper. 

2. Interval arithmetic 

Since intervals can be treated as numbers, operations can be defined. Like 
X+Y=Z, where Z=X+Y and Z=X+Y. This consists of the set ---
X+ Y={x+y:x E X,y E Y} which is clearly an interval. The negative of an 
interval X is -X=-[X,X]=[-X,-X]={ -x:x E X}. The difference of two 
intervals: Z=Y-X=Y+(-X)={y-x:x E X,y E Y}, where Z=Y-X and Z=Y
X. Also a reciprocal 1/X = { 1/x:x E X} can be defined. Also rules for 
multiplication and division can be formulated. Introducing functions is 
the next step. From these preliminaries the whole theory is built up. 

3. Interval arithmetic applied in the refine procedure 

The refine procedure can take advantage of the difference in structure 
between equalities and inequalities. When an inequality is tranformed 
into an equality using slack variables, it leads only to an enlargement of 
the refine procedure, without any additional benefits. 
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A. Take the linear equality : 

where PC={i:ci has a+ sign} 
NC={i:ci has a- sign} 
ci is infact ci without the sign 
Xj E (lj,Uj) 

then refine on xj : 
if j E PC then 

xj E [max(lj,1/cjCc+LiENCcili- LiEPC\{j}ciui)), 
min(uj, 1/cjCc+LiE NCciui -LiE PC\{j} cili))] 

if j E NC then 

xj E [max(lj, 1/cj(-c+LiE pccili -LiE NC\{j} ciui)), 
min(uj,1/cjC -c+LiE pcciui -LiE NC\{j} cili))] 

B. On the other hand the linear inequality: 

where PC={i:ci has a+ sign} 
NC={i:ci has a- sign} 
ci is infact ci without the sign 

Xj E [li,Uj] 

then refine on xj : 
if j E PC then 

xj E [lj,min(uj,l!cjCc+l:iE NCciui- LiE PC\{j} cili))] 

if j E NC then 

xj E [max(lj, 1/cjC-c+l:iE NC\{j} ciui -LiE pccili)),uj] 
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where PC={i:ci has a+ sign} 
NC={i:ci has a- sign} 
ci is infact ci without the sign 
Xi E (li,Uj) 

then refine on xj : 
if j E PC then 

xj E [max(lj,l/cjCc+LiE NCcili -LiE PC\{j} ciui)),uj] 

if j E NC then 
xj E [lj,min(uj,l/cjC-c+:LiE pcciui- LiE NC\{j} cili))] 

These rules can very easily be derived. They can be applied to every 
variable of every constraint. These refinement relations remain 
unchanged during the whole solution procedure. 
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APPENDIX Bl 

Solution of the problem: 

min z 
s.t. 3x+y-z=0 

1. The refinement rules 

3x+2y~6 

Sx-4y55 
2x-y~l 

x,y~O and integer 

c1 X : [max Ox,1/3(0+lz-Uy)} ,min { Ux,1/3(0+uz-ly)} J 
y : [max Oy,O+lz-3ux },min { uy,O+uz-3lx}] 
z : [max { lz,3lx+ ly-0} ,min { uz,3ux+uy-O}] 

c2 X : [max Ox,1/3(6-2uy)} ,uxJ 
y : [max Oy,l/2(6-3ux)} ,uy] 

C3 X: (lx, min{ux,1/5(5+4uy)}J 
y : [max Oy.l/4( -5-5lx) },uy] = Dy,uy] =no change 

c4 X : [max Ox,1/2(1 +ly) Lux] 
y : [ly,min { uy,2ux-1}] 

Now the refine procedure is applied for two passes. To simplify the 
notation, the reference to each of the constraints will be done with a 
number and to the variable with a letter. 

Pass 1 Pass 2 

1x [Q,oo J 1x [l,oo] 
1y [Q,oo] 1y [O,oo] 
lz [O,oo] 1z [3,oo] 
2x [O,oo] 2x [l,oo] 
2y [O,oo] 2y [Q,oo] 
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3x 
3y 

4x 
4y 

[O,oo] 
[O,oo] 

[0.5,=]=> [1,oo] 4x 
[O,oo] 

3x 
3y 

[1,oo] 
4y 

[ 1 ,oo J 
[Q,oo J 

[O,oo] 

No change anymore. Q={ 1 }. LLB=GLB=3, LUB=GUB=oo 

Now we arrived at the branching point. Option 1 and 2 are here out of 
question. So option 3 is taken. Q= { 1 A}. An LP with bounds is run and it 
comes up with: 

X= 1.14 
y = 1.28 
z=.4.71 

The LP result is infeasible. LLBLp=5. Q={2}. Propagation of [5,=]. 

Pass 1 

1x [1,oo] 
1y [O,oo J 
lz [5,oo] 

2x [1,oo] 
2y [O,oo J 

3x [1,oo] 
3y [O,oo] 

4x [l,oo] 
4y [O,oo J 

It quiesces. LLB=5, LUB==. The level is exhausted. Help=5 and so GLB 
becomes 5. At this decision point option 2 is tried. Q={ 3,4,5,6,7}. Back 
to propagation : 

II 



Pass 1 

1x [1 ,5/3]=> x=1 
ly [2,2]=> y=2 
lz [5,5]=5. 

2x [1 ,1]=1 
2y [2,2]=2 

3x [1 ,1]=1 
3y [2,2]=2 

4x [1.5,1]=> infeasible 

So this instantiation leads to an infeasibility. The initial choice of z=5 was 
not valid. Q= { 4,5,6,7}. The result is that we are again at the decision 
point. z is now instantiated at 6 : 

Pass 1 

1x [1,2] 
1y [0,3] 
1z [6,6]=6 

2x [1,2] 
2y [0,3] 

3x [1 ,2] 
3y [0,3] 

4x [1,2] 
4y [0,3] 

LLB=6, LUB=6. Q= {5,6,7 ,4}. Here again the decision point turns up. 
The next node corresponds to the instantiation of z to 7. 
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Pass 1 Pass 2 

1x [1,7/3]=> [1,2] 1x [4/3,2]=2 

1y [1 ,4] 1y [1 ,1]=1 

z [7 ,7]=7 1z [7,7]=7 

2x [1,2] 2x [2,2]=2 

2y [1 ,4] 2y [1 ,1]=1 

3x [1 ,2] 3x [2,1]=>infeasibl 

e 
3y [1 ,4] 

4x [1 ,2] 

4y [1,3] 

Due to the infeasibility, Q becomes {6,7,4 }. The decision point is reached 
again. Arrived at the decision point again, z is instantiated to 8 and 
propagated : 

Pass 1 

1x [1 ,8/3]=>[1,2] 
1y [2,5] 
1z [8,8]=8 

2x [ 1 ,2] 
2y [2,5] 

3x [I ,2] 

3y [2,5] 

4x [3/2,2]=>[2,2]=2 
4y [2,3] 
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Pass 2 

lx [2,2]=2 
ly [2,2]=2 
lz [8,8]=8 

2x [2,2]=2 
2y [2,2]=2 

3x [2,2]=2 
3y [2,2]=2 

4>.;. [2,2]=2 
4y [2,2]=2 

This system quiesces definitely. LLB=8 and LUB=8. The GUB becomes 
now 8. Q={7 ,4,6}. The propagation of z=7 is in fact not necessary 
because we know with certainty that the LLB for the node will be larger 
than or equal to 9 which is larger than the GUB. So node 7 is removed 
from Q. Q= { 4,6}. The branching level is exhausted. Help=6 so GLB=6. 
The branching point is now reached. Option 1 is taken. 4 is removed from 
Q and 8 and 9 are added. Q={8,9,6}. First branching on x=l and a second 
one on x=2, both will be sequentially propagated : 

Pass al 

X (1,1)=1 
ly [3,3]=3 
z [6,6]=6 

Infeasibility on 4 : 

4x [2,1 ]=> infeasible 

Q becomes { 9,6}. The branching level is not exhausted, so the next node 
is propagated. 
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Pass bl 

X 

y 
z 

[2,2]=2 
[0,0]=0 
[6,6]=6 

Infeasibility on 3 : 

3x [2,1]=> infeasible 

Q becomes { 6}. Now the branching level is exhausted. Help is equal to 8, 
so GLB=8. Because GLB=GUB and 6 is the only node with this 
characteristic, the procedure stops and gives the solution. 

VI 



3 

8 

1 

lA x=1.14 
y=1.28 
Z=4.71 

GUB=inf 
GLB=3 

GUB=8 

VII 

GLB=6 



APPENDIX B2 

Solution of the problem : 

max z 
s.t. 7x+9y-z=0 

-113x+y:::;2 
x+ll7y:::;s 
x,y~ 0 and integer 

The relations for this example : 

lx [max Ox,1/7(0+lz-9uy)} ,min { ux,l/7(0+uz-9ly)}] 
ly [max Oy.119(0+lz-7ux)} ,min { uy,1/9(0+uz-7lx)}] 
lz [max {lz,7lx+9ly)} ,min { uz,7ux+9uy)}] 

2x [max {lx,3(-2-ly)} ,ux]=[lx,ux] 
2y [ly,min { uy,2+ l/3ux)}] 

3x [lx,min{ux,5-1!7ly)}] 
3y Dy,min{uy,7(5-lx)}] 

As a first step, refine is executed : 

Pass 1 

lx [O,oo] 

ly [O,oo] 

lz [O,oo J 

2x [O,oo] 

2y [O,oo J 

3x [0,5] 
3y [0,35] 
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Pass 2 

1x [0,5] 
1y [0,35] 
1z [0,350] 

2x 
2y [0,11/3]=[0,3] 

3x [0,5] 
3y [0,3] 

Pass 3 

1x [0,5] 
1y [0,3] 
1z [0,62] 

2x 
2y [0,3] 

3x [0,5] 
3y [0,3] 

Here the system quiesces. Q={ 1}. Bounds are set: GUB=LUB=62 and 

GLB=LLB=O. Option 3 is taken and an LP is solved. The solution is : 

x=4+4!7 
y=3 
z=59 

Q={ 1A}. This solution is not completely integer. A LUBLP is known: 
59. The objective function is integer, so no fraction can be removed. 
However the new interval for z is now [0,59]. Q= { 2}. This can be 
propagated : 

II 



lx [0,5] 
ly l0,3] 
lz [0,59] 

These intervals won't change anymore, because the only constraint 
relating z to the other two is the first one. If this relation undergoes no 
change, then it is not necessary to look at the other constraints which 
involve only other variables. The reason is that the system for these given 
values already quiesced in the former pass. Note that LUB=59 and 
LLB=O. The decision point is reached. Next help is set to 59, thus GUB 
becomes 59. 

At the branching point option 1 with regard toy or x can be taken. Let's 
take x. Q= { 3,4}. Node 3 corresponds to x=5. We now take the upper 
bound of the interval, because it is a maximum problem. Propagation is 
done: 

Pass 1 

lx [5,5]=5 
ly [0,24/9]=[0,2] 
lz [35,59] 

2x 
2y [0,2] 

3x [5,5]=5 
3y [0,0]=0 

Pass 2 

lx [5,5]=5 
ly [0,0]=0 
lz [35,35]=35 

For the same reason as above, the intervals won't change anymore. 

LLB=35=LUB. This solution (0=35) is feasible but we are not sure if it 
is optimal. So we derive a general lower bound on the optimal value 

III 



equal to 35. Q={ 4,3}. Let's now propagate the interval [0,4]. 

Pass 1 

1x [0,4] 
1y [0,3] 
1z [0,55] 

2x 
2y [0,3] 

3x [0,4] 
3y [0,3] 

Pass 2 

1x [0,4] 
ly [0,3] 
1z [0,55] 

Nothing will change anymore. LUB=55 and LLB=O. Q= { 3,4}. The 
branching level is exhausted and the next node is of the same branching 
level. Help= 55, so GUB=55. The first node in Q is 3, but this can not be 
branched any further, so node 4 is taken. Let's now take option 2. 
Q= {5,6,3}. Propagate node 5 which stands for z=55. The propagation : 

Pass 1 

1x [ 4,4 ]=4 
1y [3,3]=3 
1z [55,55]=55 

2x 
2y [3,3]=3 

3x [4,4]=4 
3y [3,3]=3 

IV 



Pass 2 will not change anything. LLB=LUB=55 and also GLB=55. 
Q={6,5,3}. Node 3 can be pruned. Q={6,5}. GUB=GLB so we end up 
with an optimal feasible solution. It can be seen that not all nodes have 
their GUB=GLB. The current branching level is the level corresponding 
to the objective function, so all lower objective levels can be removed. 
Node 6 is pruned. Q={5}. This is the only node where GUB=GLB. Stop. 
The solution : 

x=4 
y=3 
z=55 

As a matter of control, z E [0,54 ]. LUB~54, which is lower than GLB of 
55. This node would be pruned anyway. 

Note that if above we did not instantiated x but y (for reason of the 
smallest interval) the solution went on like this : 

Q={3,4}. Instantiate y=3 and propagate: 

Pass 1 

lx [0,4] 

ly [3,3]=3 
lz [27 ,55] 

2x 
2y [3,3]=3 

3x [0,4] 

3y [3,3]=3 

Pass 2 

lx [0,4] 
ly [3,3]=3 
lz [27 ,55] 

v 



It quiesces. LUB=55 and LLB=27. Q= { 4,3}. Now the alternatives of y E 

[0,2] must still be investigated. Propagation of this interval : 

Pass 1 

1x [0,5] 
1y [0,2] 
1z [0,53] 

LLB=O and LUB=53. Q={3,4 }. The branching level is exhausted with 
not all the nodes infeasible. Help=55 and so becomes GUB=55. The 
branching point is reached. Q={5,6,4}. If an instantiation on x=4 is made 
then we will end up with : 

Pass 1 

1x [4,4]=4 
1y [3,3)=3 
1z [55,55]=55 

This will not lead to an infeasibility. Now a feasible solution is obtained. 
LLB=LUB=55. GLB=55. Q={ 6,5,4}. Node 4 can be pruned. Q={ 6,5}. 
GUB=GLB so one optimal solution is found. Alternatives are of interest 
and not all nodes have GUB=GLB. Current unexhausted level is taken 
and being not the objective level, the rest is gathered in an interval. In this 

particular case node 6 is replaced by the same node. Propagation leads to: 

Pass 1: 

1x [0,3] 
1y [3,3]=3 
1z [27 ,48] 

2x 
2y [3,3]=3 

3x [0,3] 
3y [3,3]=3 

VI 



Pass 2 

lx [0,3] 
ly [3 ,3]=3 
lz [27,48] 

It quiesces. LLB=27 and LUB=48. This LUB=48 is smaller than 
GLB=55, so Q={5}. All nodes have now GUB=GLB. Stop. 

Note that in both cases only one LP was necessary to solve the problem. 

VII 



lA x=4+417 
y=3 
z=59 

GLB=SS 

VIII 
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GLB=55 

lA x=4+417 
y=3 
z=59 
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APPENDIX B3 

Solution of the problem : 

max v 

s.t. 3x+3y+l3z-v=0 
-3x+6y+ 7z~8 
6x-3y+ 7z~8 
x,y,z;:::o and integer 

The rules for this problem are : 

lx 

ly 

lz 

lv 
[max {lv ,3lx+3ly+ 131z)} ,min { uy,3ux+3uy+ 13uz)}] 

2x [max {lx, 1/3( -8-6ly-7lz) },ux]=[lx ,ux] 
2y Dy,min { uy,l/6(8+3ux-7lz)}] 
2z [lz,min{uz,1/7(8+3ux-6ly)}] 

3x [lx,min { ux,l/6(8+3uy-7lz)}] 

3y [max Oy,l/3( -8-6lx-7lz)} ,uy]=[ly,uy] 
3z [lz,min { uz, 1/7 (8+ 3uy-6lx)}] 

x,y,z E [0,5] and v E [O,oo] 

The first propagation phase : 

lx [0,5] 
ly [0,5] 

lz [0,5] 

1 v [0,95] 

I 



II 

2x [0,5] 
2y [0,23/6]=[0,3] 
3z [0,23/7]=[0,3] 

3x [0, 17 /6]=[0,2] 
3y [0,3] 
3z [0,17 /7]=[0,2] 

Pass 2 

1x [0,2] 
1y [0,3] 
1z [0,2] 
1v [0,41] 

2x [0,2] 
2y [0,14/6]=[0,2] 
2z [0,2] 

3x [0, 14/6]=[0,2] 
3y [0,2] 
3z [0,2] 

Pass 3 

lx l 0,2] 
1y 10,2] 
lz 10,2] 
lv [0,38] 

2x [0,2J 
2y [0,2] 
2z [0,2] 

3x [0,2] 
3y [0,2] 
3z [0,2] 



It queiesces. LLB=GLB=O and LUB=GUB=38. Q={ 1 }. The next step is 
the usual LP run. Q={lA}. TI1is ends up with: 

x=2 
y=2 

z=2/7 
v=15+5!7 

This makes it possible to construct a local upper bound of 15. Q= { 2}. 
Consequently the interval of vis set to [0,15]. Propagation: 

Pass 1 

1x [0,2] 
1y [0,2] 
1z [0,15/13]=[0, 1] 
1 v [0,15] 

2x [0,2] 
2y [0,2] 
2z [0,1] 

3x [0,2] 
3y [0,2] 

3z [0,1] 

Pass 2 

1x [0,2] 
1y [0,2] 

1z [0,1] 
1 v [0,15] 

The system quiesces here. LLB=O and LUB=15. The branching level is 

exhausted, so help=15 and by this way GUB=15. Just like in all other 
cases three options are open. Let's now run a second LP run. Q={2A}. 

III 



The results are : 
x=O 
y=O 
z=l 
v=13 

GLB=13. Q={3}. The propagation of [13,15] is now necessary. The 
result is : 
x=O 
y=O 
z=1 
v=13 

The propagation is left out for the unconvinced reader. LUB=LLB=13. 
The branching level is again exhausted with not all infeasibilities, so 
help=13 and GUB=13. GLB=GUB and an optimal solution is found. 
There are no more candidates in Q, so stop. 

Instead of running a second LP run, something else could be done. An 
instantiation on z looks promising, because there are only two values in 
the interval. Branching is chosen. Q={3,4}. Propagation: let's instantiate 
z to 0: 

Pass 1 

lx [0,2] 
ly [0,2] 
lz [0,0]=0 
lv [0,12] 

This does not change anymore. LLB=O and LUB= 12. Q= { 4,3}. If the 
other instantiation is propagated we get : 

Pass 1 

lx [0,2/3]=>[0,0]=0 
1y [0,2/3]=>[0,01=0 

IV 



1z [1,15/13]=>[1,1]=1 
1v [13,13]=13 

This result will not lead to an infeasibility when the rest of the 
propagation is done. LLB=LUB=13. Because of feasibility, GLB=13. 
Q={3,4}. LUB of node 3 is smaller than GLB, so Q={ 4}. The branching 
level is exhausted with not all nodes infeasible. Help=13. GUB=13. 
GUB=GLB and an optimal solution is obtained. It is the only member of 
Q, so stop. 
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1 x=0,2 GUB=38 
y=0,2 GLB=O 
z=0,2 
0 38 

1A X=2 
y=2 
Z=2f7 
V=15+5/7 

2 x=0,2 GUB=15 
y=0,2 
z=0,1 
0 15 

GLB=13 
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