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Abstract

Networked embedded systems are slowly gaining more acceptance in mainstream
applications. This causes a shift in the paradigms regarding research and
development. While classic research often focused on single-purpose and single-
owner networks, we are seeing that modern applications no longer adhere to these
paradigms. Rather embedded networks will consist of devices owned by many
different parties, and these devices will need to be accessible by many different
users. As such, there is a clear need for security in these networked embedded
systems. This thesis aims to answer two questions: (1) what are the necessary
abstractions required by the different stakeholders to express their security
policies and requirements, and (2) what is the minimal required infrastructure
to secure all crucial multi-party interactions, with as little overhead as possible.

While classic approaches for both embedded and back-end systems provide a
useful starting point, we do see significant gaps in the work for both abstractions
and security infrastructure. Current related work in networked embedded
systems provides several abstractions to model the underlying platform or the
data produced, but none to actually model the security policies or requirements.
There are some generic security policy declaration languages, which provide a
way to express data, but do not provide the necessary abstractions to enable
systems to operate. While looking at available infrastructure, we see that related
work mainly proposes point solutions for specific types of interactions, but does
not provide a holistic infrastructure securing all crucial multi-party interactions.
Second, related work for resource constrained embedded networks still only focus
on single-owner networks, while research for multi-owner embedded networks
always uses resource intensive algorithms to ensure security.

The two key contributions presented in this thesis are: (1) a set of abstractions
that provides the stakeholders with the necessary means to express their security
policies and requirements, and (2) a security middleware that secures the
multi-party interactions driven by the previously mentioned policies. These
contributions together from the SecLooClI security middleware framework. To
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develop the abstractions, we defined three stakeholder roles: the application
owner, the platform owner, and the network owner. For each of these three roles,
we designed a set of abstractions to express their relevant security requirements
and policies. These abstraction then drive the security middleware, which
consists of five sub-systems, each of which secures one of the 5 key multi-party
interactions: (1) network join, (2) application deployment, (3) node service
usage, (4) application communication, and (5) application monitoring. These
five sub-systems, together with the policy abstractions, form the SecLooCI
framework, which provides the necessary functionality for all stakeholders to
secure their systems, and offers clear points of modification to allow application
specific customisation.

These contributions are validated on state-of-the-art constrained embedded
platforms, in the form of an integrated prototype implementation. This
implementation is validated through a number of representative scenarios derived
from industry collaborations in the domain of smart logistics and smart offices.
Additionally these contributions were published into multiple peer-reviewed
venues. These results show that the SecLooCI middleware is able to secure
multi-party ecosystems on current constrained embedded platforms.



Beknopte samenvatting

Genetwerkte ingebedde systemen worden langzaam aan meer en meer gebruikt
in mainstream applications. Dit zorgt voor een verschuiving in de paradigma’s
met betrekking tot onderzoek en ontwikkeling. Terwijl klassiek onderzoek zich
vooral richt op networken met één eigenaar en één functie, zien we dat moderne
applicaties deze paradigma’s niet meer volgen. Genetwerkte ingebedde systemen
zullen daarentegen bestaan uit genetwerkte platformen van vele verschillende
eigenaars, die door meerdere verschillende gebruikers gebruikt zullen worden.
Dit leidt duidelijk tot een grote noodzaak voor beveiliging. Deze thesis probeert
dan ook de volgende twee vragen te beantwoorden: (1) wat zijn de noodzakelijk
abstracties voor de verschillende belanghebbenden om hun beveiligingsrichtlijnen
en vereisten uit te drukken, en (2) wat is de noodzakelijke infrastructuur om alle
cruciale multi-party interacties te beveiligen, met zo weinig mogelijk belasting
van de platformen.

Hoewel de klassieke kijk op zowel ingebedde systemen als serversystemen een
nuttig startpunt biedt, zien we toch significante lacunes in het gerelateerde werk
voor zowel abstracties als beveiligingsinfrastructuur. Het huidige gerelateerde
werk in genetwerkte ingebedde system biedt verschillende abstracties aan
die toelaten om het onderliggende platform of de geproduceerde data en
context te modelleren, maar bieden geen abstracties aan die toelaten de
beveiligingsvoorschriften of vereisten te modelleren. In een server omgeving zijn
er verschillende generische talen die toelaten om algemene beveiligingsvereisten
te encoderen, maar deze bieden geen specifieke abstracties en modellen aan om
genetwerkte ingebedde systemen te beheren. Als we kijken naar de beschikbare
infrastructuur, zien we dat het huidige werk vooral puntoplossingen aanbiedt,
terwijl we nood hebben aan een hollistische architectuur die alle multi-partij
interacties beveiligd. Daarnaast focust het huidige gerelateerde werk in systemen
met beperkte hulpbronnen zich vooral op networken met slecht één eigenaar,
terwijl onderzoek naar ingebedde netwerken met meerdere gebruikers en partijen
typisch altijd gebruik maakt van dure algoritmen.
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De twee onderzoeksbijdragen, die deze thesis presenteert, zijn: (1) een set
abstracties die de verschillende belanghebbenden de noodzakelijke instrumenten
geeft om hun beveilingsbeleid en -vereisten te modelleren, en (2) een
beveiligingsmiddleware die de multi-partij interacties beveiligd op basis
van de vermeldde vereisten. Deze bijdragen vormen samen het SecLooCI
beveiligingsraamwerk. Om de abstracties te ontwikkelen, identificeerde we
de drie rollen die de belanghebbenden kunnen aannemen: (1) de applicatie
eigenaar, (2) de platform eigenaar, en (3) de netwerk eigenaar. Voor elk van
deze drie rollen ontwikkelden we een set van abstracties dat hen toelaat hun
beveiligingsvereisten en beleid te modelleren. De beveiligings middleware bestaat
uit vijf sub-systemen, die elks een van de vijf cruciale multi-partij interacties
beveiligd: (1) verbinden met een netwerk, (2) installeren van een applicatie,
(3) gebruiken van diensten, (4) applicatie communicatie, en (5) opvolging van
middelenverbruik. Deze vijf subsystemen samen met de beleidsabstracties
vormen het SecLooCI raamwerk, dat de noodzakelijke functionaleit aanbiedt
aan alle belanghebben om hun systemen te beveiligingen, en hun toelaat om
het systeem aan te passen aan hun specifieke situatie door middel van duidelijk
gedefinieerde uitbreidingspunten.

Deze bijdragen zijn gevalideerd door van middel een geintegreerde implementatie
van een prototype, academische publicaties, en via onderzoeksprojecten. Het
prototype toont aan dat de beveilingsmiddleware kan geinstalleerd worden op
moderne ingebedde hardware. De resultaten en principes van dit onderzoek zijn
academisch gevalideerd door middel van meerdere publicaties met beoordeling
door vakgenoten. Tot slotte zijn deze resultaten gepresenteerd binnen meerdere
onderzoeksprojecten in het domein van de intelligente logistiek en het intelligente
kantoor. Dit toont aan dat het SecLooCI beveiligingsraamwerk een bruikbaar en
noodzakelijk instrument is ter beveiliging van toekomste multi-partij ingebedde
ecosystemen.
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Chapter 1

Introduction

The past 25 years have seen a transformation in computing devices from big
immovable machines that often had very limited connectivity, to devices that
can be carried everywhere, used anytime and continuously communicate with
many other systems all over the world. This evolution will not stop. Computing
devices are becoming even more ubiquitous, and computing platforms are being
embedded in virtually every thing we know and see, connected with other devices
locally in the network, and globally across the Internet. Current electronics, such
as TVs, fridges, washing machines, smoke detectors, etc. are being equipped
with network capabilities, allowing more integration between the digital and
real world. Devices are being deployed inside buildings [68] and even inside
humans [44], to monitor their current condition, and in some cases to even
enact changes in the environment, such as for example a pace-maker. This is
the domain of Networked Embedded Systems (NES) research, or what is often
called the Internet of Things.

Clearly there are vast opportunities for these tiny computing devices, but with
these vast opportunities also come new threats. Being able to turn off a coffee
machine remotely can be useful, someone else being able to remotely turn on
my coffee machine is much less so. In case of a coffee machine, the risk is low.
However, the technology to turn on a coffee machine remotely, is very similar
to remotely telling a pacemaker to deliver a mortal shock [61]. Similarly, being
able to tell when someone is in my house when I am away is useful. Someone
else learning that I am not at home, makes my home suddenly a very interesting
target for burglars. There is a need to be able to limit and control access to
these devices and the data they produce.

The remainder of this introduction lists some interesting current application
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domains for networked embedded systems. The characteristics of the different
devices and applications in such environments are then classified, followed by
an overview of the main open issues, to conclude with the problem statement
and contributions of this thesis.

1.1 Networked Embedded Systems

Networked embedded systems (NES) are used in a wide variety of areas. This
section lists a few areas often identified as key areas for NES applications namely
domotics, healthcare, research and industry.

A first application area with particular interest for end-users is domotics
[123, 92]. The rise of smart phones and wireless networks enabled the creation of
many gadgets which connect to these smart phones and computing infrastructure.
Recent examples are smoke detectors, weight scales, radios and video cameras.
The level of integration is currently pretty basic. All applications are created
and deployed pretty much independently of each other, and often require custom
software and equipment. But it is already possible to wirelessly interact with
some electronics, and perform some basic kind of actuation. These current
stove-pipe systems will start integrating with each other to a single integrated
system. This can then offer a consistent end-user experience, and enables
connecting different systems with each other to increase our quality of life.

NES also have a large potential to change healthcare [87, 44]. Past research has
often suggested to have people wear monitoring equipment, that continuously
tracks their body temperature, heart rate, blood pressure, movement, etc. The
first generation of devices that perform these functions are coming to market,
mostly for wear during sport activity such as the Polar and TomTom sports
watches. However, the added value for continuous measurement could be great
[109]. Research has shown that many problems can be detected much earlier if
only the patient had been properly monitored. The early onset of many problems
or illnesses are often invisible to the patient, but can be clearly seen in long
term monitoring data. Especially for the elderly or disabled, this monitoring
equipment has high promises. They enable an early detection and warning
system for detecting falls, or cardiac arrest, allowing for life saving intervention
to be triggered. Such technology will not only save a lot of suffering, but also
allow the elderly to be more independent for longer, reducing cost and again
increasing quality of life.

These networked embedded systems do not only change our daily life, but also
the way we do research, especially of our environment [12]. Wireless battery
powered sensors change the way researchers can observe the world. As every
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good engineer knows: to measure is to know. But also as physicists know, to
measure is to change. In the past, sensors were bulky and intrusive, prohibiting
the easy, fast, and inconspicuous deployment needed to monitor nature and
wildlife in their natural and unimpeded state. Small sensors have enabled
researchers to measure many phenomena with previously unknown accuracy
and breadth, with minimal disturbance of the environment [93, 33, 85]. The
prototypical example in the past, is the monitoring of bird colonies at the Great
Duck Island [76]. Here researchers deployed many small sensors in birds nests.
This provided continuous long term measurements, without having to go to
the island and disturb the birds, risking altering their behaviour. Many other
research deployments have been done since, and many more will be done.

Not only in society can NES have a vast impact, but also in industry, there are
vast opportunities for improvements [124, 43]. Live monitoring offers producers
and transporters a previously unknown level of information. This information
can be used to ensure quality through the entire production process, to more
quickly detect and react to failures, and to optimise processes, leading to
increased efficiency and decreased costs. A series of industry collaboration
projects has provided a set of interesting use cases, such as container monitoring,
industry automation, and harbour monitoring, which we will use throughout
this dissertation as reference examples.

Clearly, networked embedded systems have vast possibilities in a wide variety
of areas. However, what most of these use cases have in common, is that many
use cases involve multiple people and multiple different heterogeneous devices
working together, and have a need for security. For example, in office domotics
solutions many users should be able to interact with the office systems. In
healthcare systems, different doctors potentially need to interact with medical
devices, in addition to patients themselves being able to read the devices. In
industry, many different parties or administrative units often have to work
together, and share data provided by these embedded monitoring and control
systems. These cases also show large need for security. For domotics, healthcare,
and industry, it is crucial that only authorised parties can interact with the
node systems, and often only have clear and limited capabilities.

1.2 The Embedded Device

The embedded devices used in the applications can differ widely in many different
dimensions.

The first dimension is computational power. Devices used in embedded
systems span a wide range of computational power. The low end range consists
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of the microcontrollers with around 10 MHz computational speed. Typical
examples of this class are the Tmote Sky [99], Atmel Raven [3], and many
Arduino devices. The next order of magnitude are the cheap microprocessor
devices. In this class are the raspberry pi (700 MHz), and many current day
smart phones. The next class of devices are the typical servers, which often
have multiple GHz of processing speed, and can be embedded in cars, or work
as central gateway in homes.

The second dimension is energy. Here two classes can be distinguished: limitless
power, and limited power. The first class of devices have unlimited power,
meaning they are not dependent on a battery, but are connected to the power
grid. This allows them to operate indefinitely, but requires a constant physical
connection, limiting mobility. The class of limited power contains those devices
that are powered by battery. The smaller the battery, the more aware the device
and applications have to be of unnecessary power consumption. There are
advances on power harvesting [102], which allow these small devices to harvest
power from the environment, for example from light, shocks, or temperature
variations. This has the potential to significantly increase the lifetime of these
wireless mobile devices.

The third dimension is network connectivity. Networked embedded systems
are by definition networked with other devices. This connection can be wired
or wireless. Most research looks at wireless devices, since this allows for greater
mobility and flexibility. There are however many different and incompatible
types of wireless communication: some currently popular wireless standards
are WiFi [55], 3g [24], 4g/LTE [25], Bluetooth [8], Bluetooth Low Energy [40],
RFID [116], NFC [117] and 802.15.4 wireless communication [79]. Each of these
protocols differ in the range at which devices can communicate, energy cost,
and ability to support many devices in a network. For in depth comparison we
refer to related work.

The last dimension is memory capacity. The devices used in the mentioned
applications can have a wide range of possible storage capabilities. On the low
range are again the microcontrollers, which often support only about a dozen
kilobytes of RAM memory, and about 100 kilobytes of ROM /flash memory. Due
to this low storage capacity, it is necessary that these devices can communicate
their measured data to other more capable devices for processing and storage.
On the high end, we again find the smart phones and servers, which have
multiple gigabytes or terabytes of data storage.

This thesis focuses on the minimal and most constrained case: small battery
powered, mobile, low memory, and low computational power devices, that
communicate with each other over the wireless network. This is the most
constrained class, and as such the most difficult class to ensure security. This
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class is often referred to as Wireless Sensor Networks. These minimalistic
devices cost the least, which is naturally the most interesting for producers
and buyers of embedded devices. Only if the cost is low enough, will most
producers be willing to put additional computing devices in their products,
and will consumers be willing to buy those products. Additionally, since this
is the border case, we can extrapolate that all systems that are in any way
more capable than the resource constrained systems, will be able to support all
services that the more resource constrained version can support.

1.3 The Embedded Application

Over the past years, many Networked Embedded Systems (NES) applications
have been deployed, mostly for research purposes. These deployments have
evolved on different aspects. Previously, deployments were static, isolated
entities with very little dynamism, managed and controlled by a single entity.
Recently, the integration of smart phones, and increase in scale have caused much
more integration and dynamism in these application. This section identifies
four dimensions on which these applications have evolved over recent years.

A first dimension is the single application focus. Many organisations looked
at NES systems as single application environments, where the system is deployed
with a single static goal in mind. These systems typically monitor a limited
number of variables such as temperature and humidity, or provide access control
to a door. Multiple such systems might exist next to each other in a stove-pipe
fashion, where each application is isolated from everything else. Networked
embedded systems however will contain many different types of devices, that are
horizontally integrated. Single embedded nodes and the control infrastructure
need to integrate in a single large interconnected infrastructure, to enable highly
customised interaction. A good example would be a person entering a building
automatically causes his workspace to be adapted to his personal settings.

A second dimension is the level of dynamism in the systems. Dynamism is
the level of change, which can be divided into hardware dynamism and software
dynamism. Hardware dynamism is the amount of churn of devices in the
network. Building networks can be considered fairly static. Devices are more or
less fixed, and stay alive for a long time. Vehicle and other ad-hoc networks are
more dynamic, where the neighbourhood of devices is constantly changing. Most
deployed systems often start static, but evolve into more dynamic systems when
more mobile nodes, such as smart phones, are assimilated in the larger system.
Software dynamism is the evolution of the software running in the network. In
current networks, the software running on the devices is continuously evolving:
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new applications are being installed, existing applications are being upgraded,
and old applications are removed. Current embedded systems sometimes ignore
this aspect, but many foresee that software evolution will be a vital aspect of
any networked embedded system deployment.

A third dimension is the level of sharing. The traditional research viewpoint
of networked embedded systems is that systems are built, owned and maintained
by a single party. Data and services are sometimes offered to other parties, but
usually exclusively through back-end web services. However, the use cases show
that networked embedded systems are evolving towards ecosystems comprised
of devices owned by many parties, where these parties want direct access to the
services provided by devices in the network.

A fourth dimension is the required skillset of the users of the NES application.
In most NES deployments, the construction and maintenance of these systems
requires specialists to put all required hardware components together, and
then write the correct software for these devices. However to truly unlock the
capabilities of these systems, the deployment and management frameworks must
reach a level of usability so virtually anyone can create and maintain a NES.
This also drives a specialisation, with clearly defined interfaces between different
parties involved in the network.

This thesis focuses on multi-application, dynamic and shared systems, since
we consider this the most general case. While this case is often simplified
in literature, industrial use cases clearly show the need for dynamic systems,
that support sharing at the device level. This thesis aims to increase the
level of abstraction to allow specialisation, and decrease the complexity of
managing the system for specialist network and system administrators. This
thesis does not target an average consumer of electronics, but rather tries to
create higher-level abstractions allowing domain experts to easily specify their
security requirements. This provides another step towards the ultimate end
goal of enabling future plug-and-play deployments, where anyone can set up
and manage their own smart environment.

1.4 Open Issues

Currently there are still several open issues in the field of networked embedded
systems. This section gives a short and general overview of current research
issues from the network to the application layer, and some cross-cutting concerns.
This list intends to give a brief summary of some of the major issues, and should
not be considered complete.
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The first issue is the wireless network. Current main-stream network
solutions such as WiFi are considered impractical to run on embedded networks
due to resource constraints and scale. These characteristics have caused renewed
interest in optimising the wireless network for this class of devices. This ranges
from physical radio optimisation [57], through medium access control protocols
[110], to networking [21] and routing protocols [118]. These protocols are
currently still in a prototype stage. However, to enable the integrated scenarios
as previously described, it is necessary for one or a few common standards to
emerge, in order to ensure interoperability at the network level.

The second issue is the application paradigm. Developing applications for
embedded networks poses many challenges. This drives research to investigate
what application development paradigms can be considered most interesting
for these systems. The client server application paradigm for example has
been optimised for constrained embedded networks in the form of the CoAP
protocol standard. Other approaches apply event-based and component-based
application paradigms to more easily develop scalable applications.

The third issue is data storage and processing. Instrumenting the
environment produces vast amounts of continuous data, requiring significant
storage space. To make this data useful however, it must be processed. Many
researchers are looking at intelligent algorithms to extract knowledge and
optimal settings from this vast amount of data. Due to the large variety in
environments, there is currently not a single approach defined which works
everywhere. It may even be impossible to create common algorithms to analyse
and optimise all environment, requiring significant and specific future research
for each topic.

The fourth issue is system and application management. Current
management of large scale systems is often the work of very few, very skilled
system and network administrators, who use highly customised scripts and
systems to ensure consistency of their assets. Networked embedded systems will
bring these large scale systems within our homes. However, most people are not
computer experts, yet want their systems to work continuously, be upgraded to
the latest version, and have significant control over the operation. How these
people can be empowered is still an open issue.

The last and perhaps most important issue is security. Security is often cited as
the crucial enabler in order for NES to receive widespread adoption in industry
as well as the home [101]. Since NES applications will typically gather a lot
of sensitive information, disclosure of such information offers clear and big
risks regarding safety and privacy. When these systems are used for actuation,
attackers can potentially apply lethal damage to people or goods [61]. In order
to prevent and mitigate these threats, security must be a key concern in any
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NES application. Constrained systems are currently unable to use the common
security standards such as TLS. Additionally these standards are often not
sufficient to fully secure the wide variety of interactions and systems present in
NES applications.

This thesis primarily focuses on the securing Wireless Networked Embedded
System applications, given the characteristics described previously. While a lot
of related work exists on securing networks of constrained devices, it typically
assumes a simplified, static, single-owner environment. As such it is unsuited for
the complex multi-actor real-world environments. Since security is considered
one of the key enablers of successful real-world applications, this thesis will
look into expanding the current state of the art by identifying and creating the
required infrastructure to allow the secure shared usage of dynamic constrained
Networked Embedded Systems.

1.5 Problem Statement

The previous section looked at the different characteristics and open issues in
Networked Embedded System deployments. It specified that this thesis will
look at the secure sharing of dynamic constrained NES deployments. This
section identifies two main problems that must be solved in order to create these
deployments: 1) the different stakeholders must be able to clearly express and
encode the necessary policies and security requirements, and 2) the underlying
embedded nodes must be able to enforce these policies.

The first problem is the control and management of the security of these
embedded nodes. In a static and isolated environment, the owner and builder
of the network can often manage all complexity by himself, or can keep the
complexity manageable for a small team. The users can manually code their
policies, or configure the systems on a fairly low level. The users of these
systems need to have significant knowledge of each part of the system, including
the security sub system. However in order to enable non-expert users to setup
and maintain these systems, higher levels of abstraction are necessary. While
this thesis will not specifically target the non-expert, it does attempt to provide
the different stakeholders with the necessary abstractions and tools in order for
them to easily express their security policies.

The second problem this thesis tackles is the security architecture for embedded
networks. While writing down policies is a necessary first step; if the policies
cannot be enforced, the system cannot be secure. Related work has proposed
significant work on how to secure embedded networks. However, most of
these systems look at embedded networks as static isolated systems, owned
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and managed by a single party. As touched upon in our application analysis,
these assumptions are evolving. More and more Networked Embedded Systems
deployments are required to integrate many different systems, cope with both
hardware and software dynamism, and enable sharing at a device level. These
changes require additions to the security services available on these constrained
devices. Several key functions, such as network setup, code deployment, node
management, and secure end-to-end application communication need to be
revisited to ensure they can be optimally and securely used in these shared
environments.

So the two main problems this thesis aims to solve are:

e How can users effectively and easily configure this security system to
ensure the executed security matches the user’s requirements?

e Which are the minimal system requirements for a node middleware that
enables secure, shared usage of these resource constrained nodes based on
the previously expressed policies?

To handle these problems, this thesis will 1) define a set of policy abstractions
which allow users to easily define their security requirements in policies, and 2)
design and implement an embedded node middleware that is able to enforce the
policies. These solutions will follow the separation of concerns design principle
on both the policy abstractions and the node architecture.

Many different stakeholders have different security requirements, which need
to be enforced. To enable this, the different stakeholders must be able to
express their requirements into policies. These policies must then drive the
decision making of the different security systems, allowing or denying users or
applications from performing certain actions. This policy driven security allows
the end-users to easily declare and update their requirements, with limited
knowledge of the underlying system which enforces their policies.

When developing the embedded node architecture, the security concern must
be separated from the functional application concern. This means that the
security infrastructure must operate transparently for applications. This allows
application developers to purely focus on the creation of their applications,
without having to be concerned about the underlying security infrastructure.
The security infrastructure must then operate underneath. This separation of
concerns simplifies the application creation process, and ensures application
developers do not have to develop their own security solutions. Recent
revelations have shown that even popular security software can contain errors,
even if it was written by security professionals. Requiring application developers
to create their own security framework has shown to often create even more
security holes.
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To create a reusable and extensible environment, we aim to create this system
as a security framework. Gamma et al. [38] define a framework as a set
of cooperating classes that make up a reusable design for a specific class of
software.” The frameworks also defines how different systems cooperate, and
the thread of control. This allows application developers to create applications
faster and easier. As such, our goal is to define a set of modules and systems
that together make up a reusable system and design for securing multi-party
networked embedded systems. We will implement and prototype this system,
and propose clear points of extension, allowing users to customize the framework
to adapt to specific use cases.

1.6 Contributions

To tackle the problems listed in the previous section, this thesis presents the
SecLooClI infrastructure: a policy driven security infrastructure that enables
sharing of constrained networked embedded systems. SecLooCI provides security
feature to easily enforce security on resource constrained nodes. The two
scientific contributions of SecLooCI are 1) a set of abstractions that allow
the different stakeholders to express their policies, and 2) a per-node security
middleware that can enforce the previous policies.

The security management abstractions allows application owners, plat-
form owners and network owners to specify their requirements in high level
policies. By creating clear abstractions, it is possible to assist and guide the
users while entering policies and to verify that the entered policies are consistent
and feasible. During the lifecycle of the networked embedded system, these
abstractions are enforced by the per-node security middleware.

The per-node security middleware secures the interactions necessary to
set up, run and maintain shared NES deployments based on the policies entered
by the different parties. More specifically this middleware enables the secure
joining of networks, deployment and management of applications, securing
application communication and monitoring application and user node usage.
The middleware is controlled by lightweight policies, and is transparent for the
applications running on top of the middleware. This allows the easy addition of
security to any supported application, and allows the application developer to
focus on the application logic, while the security developer can focus on offering
reusable security systems. This increases security, and promotes reuse.

The SecLooCI middleware provides security on top of the LooCI component
middleware. The LooCI middleware offers a loosely coupled semantically typed
communication layer and easy application deployment for embedded systems.
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The loosely coupled communication layer allows for the addition of the security
middleware and lightweight communication system necessary for configuration
and management. The LooCI application deployment framework offers the
basis for the secure application deployment framework.

All parts are individually evaluated using state-of-the-art constrained hardware,
as is the system as a whole. Next these systems have been validated through
a use case derived from experiences gained in industrial projects. A final
integrated evaluation is performed using a real-world deployment of the security
middleware in a smart lab environment.

1.7 Overview of Thesis

The remainder of this dissertation is structured as follows:

e Chapter 2 details the context of this thesis. It first provides two use cases:
the smart office use case and the smart logistics use case. Next, based on
these two use cases, it presents the three main roles a stakeholder can take
in the shared embedded ecosystem. Then it presents an extended lifecycle
for shared networked embedded system applications. It continuous with
detailing the two main problems this thesis will tackle: the need for
adequate security abstractions which the stakeholders need to express
their requirements, and the need of a security middleware to enforce those
policies during the five main data flows that involve multiple stakeholders.
Finally it lists a set of security and non-functional requirements for this
system.

e Chapter 3 provides an overview of the related work of this thesis. It
first looks at the current related work in managing the security and
the applications of an embedded network. Next it looks at the current
state-of-the-art solutions for each of the five data flows which the security
middleware aims to secure.

e Chapter 4 provides an overview of the SecLooCI network architecture.
It identifies the five main architectural elements in this environment, and
details for each of them their roles and responsibilities: 1) the end-user
tool, 2) the application owner server, 3) the platform owner server, 4)
the network owner gateway, and 5) the shared embedded node. Next it
provides an overview of the SecLooCI embedded node security middleware
architecture, starting from a basic embedded node system. Finally it
provides an example smart logistics scenario that shows how the SecLooCI
security framework operates during the previously presented lifecycle.
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e Chapter 5 presents the first contribution of this thesis: a set of

management abstractions that allow the different roles to express their
security requirements and model their applications and environments. It
then also provides a small evaluation of these management abstractions.

Chapter 6 presents the second contribution of this thesis: an embedded
node security middleware: the SecLooCI middleware which consists of
five subsystems: each of them securing one of the five main data flows
crucial to creating shared networked embedded systems: 1) network setup,
2) application deployment, 3) application management, 4) application
communication, and 5) service usage. Finally this section presents an
overview of the integrated prototype.

Chapter 7 provides an evaluation of the SecLooClI framework. It first
details the overhead of the different subsystems based on the previously
presented smart logistics scenario. Next it presents the real world smart
office deployment: it lists the different smart office applications, some
metrics provided by the deployment, and some general observations. This
evaluation shows that the SecLooClI infrastructure is able to continuously
operate on resource constrained embedded nodes and is able to provide
the necessary security for enabling secure shared embedded networks.

Chapter 8 provides a discussion of the SecLooCI infrastructure. It first
goes over the non-functional requirements as presented in Chapter 2, and
discusses how the SecLooClI framework meets those requirements. Second
it provides a security analysis of the SecL.ooCI node middleware. Finally, it
discusses the SecLooClI framework with regards to the trust requirements,
the energy consumption, and the trade-offs and limitations.

Chapter 9 finally provides the conclusion of this dissertation. It first
summarizes this work and lists the contributions again. Second, it provides
some lessons learned during the execution of this work, Next, it provides
some interesting avenues of future work, to finally end with an outlook on
the future of shared networked embedded systems.
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Context

This section first presents the context and requirements of this thesis. First it
lists the two main use cases in the area of networked embedded systems (NES)
which have driven the development of this thesis: the smart logistics case, and
the smart office case. Both cases have been developed in research project in
collaboration with industrial and academic partners. Next this section identifies
the three generic roles that can be identified in both case: the platform owner,
the node owner, and the application owner. Then this section presents a shared
NES lifecycle. From this lifecycle and role identification, the problem statement
is explained in detail. Lastly, this section lists the attacker model, and the
non-functional requirements of the framework.

2.1 Use Cases

This section presents the two use cases that drive the research presented in
the thesis. These cases are the result of multiple projects in collaboration with
Flanders and European collaborators from both industry and academia. The
first use case is the smart office use case, which has been developed in the frame
of the ITEA DiY-SE project, and further worked out using an in-house smart
office development project. The second use case is a smart logistics use case,
which has been developed in the industrial research projects ICON STADiUM
and ICON COMACOD.

13
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2.1.1 Smart Office

Domotics environments offer an interesting use case, especially when applied to
office environments. It showcases a multi-party environment, dynamism, and a
clear need for security. It is also of particular local relevance as companies in
and near Flanders are exploring this interesting application domain, as observed
during the ITEA DiY-SE project.

Smart office scenarios typically start with the deployment of sensing nodes
in the building, and slowly evolve towards the adaptation of building services
and environment depending on the requirements of the people present in the
building. For example when a worker enters the building, automatically his
office gets lighted and the heating turned on to his preferred temperature, or a
mean temperature between all occupants of the space. When no one is using a
space, heating and lighting are shut off, potentially providing significant energy
gains. Access to certain equipment might need to be monitored or controlled,
such as for example opening door and cupboard locks, or using electronics such
as coffee machines.

There clearly are multiple parties that need to collaborate with each other.
Each office worker has his or her own preferences, requirements and devices.
These systems should be able to seamlessly integrate, allowing preferences to
be applied across multiple systems. For example a worker should be able to
have a single set of preference applying to both his work and office conditions,
and interact with different systems using his own smart devices. These systems
should not be site specific, since this would greatly increase cost and effort.
Hence there is a clear need for collaboration.

Second there is also clear dynamism. Each worker carries his or her own mobile
smart phone, that should be able to interact with the different smart systems.
These devices come and go into the system frequently. Additionally, these
systems will not be built in one shot. Rather there will be a continuous addition
and integration of devices when new needs or capabilities arise. These new
devices need to be able to seamlessly integrate with existing infrastructure.
Finally existing hardware might break down, or contain bugs, requiring hardware
or software updates. Applications should be able to handle these upgrades, and
functionality should be easily transferable between different devices.

Lastly again there is a clear need for security. Access to office spaces should be
controlled, but also monitoring data of the buildings and control of building’s
actuation systems and electronics must be secure. Intruders should not be
able to manipulate lighting and heating, potentially causing increased cost, or
decreased working comfort. Electronics usage should also be monitored, to
ensure consumption can be attributed to users, or just to create visibility on
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resource usage.

2.1.2 Smart Logistics

The logistics industry offers a second excellent use case for shared networked
embedded systems. While it is similar to the smart office use case in that
it showcases a multi-party environment and has a clear need of security, the
smart logistics case expands on these concepts. In Smart Logistics, there is a
higher level of network heterogeneity, and a much higher level of dynamism
due to the mobile trucks and containers. Again, this research is driven by the
local Flanders context, as shown by collaboration with multiple industry and
academic partners in the ICON STADiUM and ICON COMACOD research
projects.

In logistics scenarios, cargo owners want some cargo to be transported. These
cargo owners use the services of logistics providers, which provide end-to-end
transport. To do the actual transportation, these logistics providers use the
services of transport providers, which provide point to point transport, such as
warehouse to harbour transport, or sea transport.

In recent year, an increased demand in supply chain visibility has driven an
increase in container monitoring. Logistic providers are instrumenting their
containers with embedded nodes to provide environment monitoring inside the
container, such as temperature and humidity. Transport providers also install
embedded nodes in their trucks which monitor other variables, such as truck
location, driver speed, and driver efficiency.

All parties in this environment are clearly interested in integration and
collaboration in order to access the sensor data of other parties. Cargo owners
want both data about the internal environment and truck positioning. Logistics
providers need to ensure that the transport provider transports goods with
adequate quality of service. Transport providers on the other hand want the
internal monitoring data, so they can immediately react in case of issues. The
transport providers prefer to receive data immediately from the embedded
nodes to ensure low latency data. In return for direct access to the embedded
nodes, the transport provider could provide network access to the embedded
nodes in the container. Lastly government and customs officials also require
access to temperature, lock, and location data to ensure security and quality.
For example both the US C-TPAT [22] treaty, and the European Authorised
Economic Operator certificate [88] require container lifecycle visibility to ensure
security and allow more smooth customs processing. This again shows a clear
need for collaboration and sharing.
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These environments are also highly heterogeneous. Different logistics providers or
transport providers likely will not use the same hardware, so different containers
will contain different types of embedded nodes. This heterogeneity also shows
in node capabilities. The embedded nodes in the container are typically fairly
constrained to save space, weight and energy consumption. The embedded
nodes installed in trucks are typically standard consumer computers, which are
far less constrained, but require more energy and space.

These environments are also dynamic. Trucks connect to different trailers daily.
Containers travel all across the world, needing to communicate with whatever
local entity is present. Each network thus likely consists of some static parts,
nodes that are always present such as those at gates, or lights, or motion sensors,
and nodes that are mobile, and can appear and disappear at arbitrary times.
Depending on the parties present in the network, the applications running on
top of these networks can differ too. For example, some networks at harbours
might run certain localisation applications, requiring custom software to be
installed on some nodes. Some containers might want to use services of nodes
around them to for example use Internet services, or use sensing services to
verify their own measurements, or handle failures.

Security is again a major concern. Authorised parties, such as container owners
or customs, should be able to communicate with the container nodes, inspecting
the content, change cooling requirements, or open a door lock. Of course
non-authorised parties should be prevented from accessing the node data and
services, since disclosure and tampering might lead to significant economic loss.
Imagine a burglar who can just inspect the container’s contents, and chose the
most profitable containers, or a vandal who turns the cooling off in a medicine
container, spoiling the contents.

2.2 Stakeholders

This section presents the different stakeholders present in the different
environment. These stakeholders are identified based on the industrial use
cases presented in the previous section. This thesis identifies three roles, as
shown on Figure 2.1: 1) the platform owner who owns the shared devices, 2)
the network owner who manages the network to which the devices connect,
and 3) the application owner who wants to use the devices and network to
perform some kind of function. Note that a party can combine two or even all
three of these roles. This thesis though attempts to clearly separate rights and
responsibilities to get greater clarity on the studied environment.
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Figure 2.1: Overview of the three roles present in the NES ecosystem.

2.2.1 Platform Owner (PO)

The platform owner is the owner of the embedded nodes. He acquires these
nodes because he wants to monitor or augment certain systems. However, once
he has instrumented these systems, he wants to share the nodes with others,
because this will increase the return on investment of the nodes, or allows the
platform owner to offer additional services to the users. Take for example the
logistics use case, where the logistics provider provides cargo monitoring to
the cargo owner, and potentially can use the localisation data provided by the
transport providers.

To share, the platform owner must be ensured of the continued safe and secure
operation of his sensor nodes. The platform owner must be able to limit the
access that users of the nodes have. For example in the logistics case, transport
providers should be able to see the status of the lock of the container, but
should not be able to open it. Additionally, the platform owner must be able to
monitor the usage of his nodes, to prevent misuse, or to charge the usage. Take
for example in the smart office case, where users of a coffee machine get their
usage visualised, and potentially have to pay for using the coffee machine.
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2.2.2 Network Owner (NO)

The network owner is the owner and manager of a network infrastructure. This
infrastructure enables authenticated nodes to connect to the Internet, and
communicate with other nodes present in the network, similar to current office
WiFi environments. Take, for example, the logistics use case, where containers
arrive in a harbour. The nodes in the containers prefer to transfer their data
through cheap harbour WiFi, instead of through expensive GPRS connections.
The network owner can also provide an overview of the nodes which are present
in his network, and the services they offer.

The network owner must be assured that only trusted nodes can join the network.
For constrained nodes, this can pose a problem, since quite often these nodes
travel autonomously, and lack peripherals that are needed to enter a password,
as is often done with WiFi.

2.2.3 Application Owner (AO)

The application owner is the user of the embedded nodes. They want to use
embedded services provided by nodes in their environment of interest. Often
the application owner does not own the nodes which he wants to use. Consider
for example the smart office use case, where the office workers want to be able
to set the preferred temperature and lighting conditions in their environment,
while the infrastructure is owned by the employer.

By using shared services, the application owner does not have to invest in
costly infrastructure himself, or can get information from environments that are
often not available to him. For example in the logistics use case, the transport
provider wants data from the inside of the container to ensure the quality of
transport. However often he has no access to the inside of the container. The
Transport Provider can gain this data though by using the shared nodes of the
logistics provider.

2.3 Sensor Network Application Lifecycle

Based on the observations made in the smart office and smart logistics use case,
this thesis proposes a slightly extended lifecycle based on the classic create,
deploy, run, remove lifecycle [78], as shown on Figure 2.2. The create phase
is divided in the policy declaration phase, the application creation phase, the
network setup and application instantiation phase. The removal phase is divided
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Figure 2.2: Overview of the lifecycle of a typical Networked Embedded System
application.

in the application removal phase, and the application charge-back phase. This
section explains each phase, and describes the responsibilities and requirements
each role has for each phase.

The policy declaration phase entails the formal declaration of policies by
all three roles: the platform owner, the network owner, and the application
owner. In this phase, all roles need to be able to specify their policies in a way
that: 1) is easy for the users, 2) allows for all requirements to be expressed, 3)
can be aggregated and reasoned on in the back-end, and 4) can be enforced on
shared embedded devices.

When applied to the use cases, the different visitors of buildings must specify
that they trust the nodes provided by the building. In the logistics use case, the
logistics providers must specify that they trust the different transport providers,
and cargo owners to access the data from their containers.

The application creation phase produces an application which can be
deployed onto a shared embedded network. In this simplified model, it is the
duty of the application owner to acquire this application. The application owner
can do this by either creating the application himself, or buying the application
from a third party. In order to reduce effort and reduce cost, the application
owner requires that applications can be reused and are not network or node
specific.

In the domotics case, most consumers will likely download their embedded
applications from platforms similar to the current app stores. These applications
would then be instantiated on the user’s local environment, and process data
from the ubiquitous data sources. Building owners and logistics providers and
transporters can potentially buy applications that will likely be customised for
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the particular environment, as having generic systems will not be optimal, or
sometimes even feasible to deploy.

In the network setup phase, the devices of the platform owner join the
network of a network owner. The network owner then provides the nodes with
Internet connectivity. In this phase, the platform owner requires that his nodes
can only join networks that belong to trusted network owners. The network
owner also requires that only nodes of trusted platform owners can join the
network. The platform owner and network owner may also need to negotiate
on the cost associated with using the network infrastructure, and the Quality
of Service offered. This phase assumes that all devices that join the network
can communicate with each other. While currently, significant research is being
done on alternate MAC, physical and routing protocols, it is clear that in order
to enable these shared and interconnected use cases, these devices need to be
able to communicate with each other. It is thus necessary for clear standards
to emerge, which will be adopted by either all systems, or certain isolated
communities.

In the use cases, clearly the building operators, transport providers and harbour
owners must set up their local network by installing the necessary gateways
and setting up Internet connections. Without these systems, it would not be
possible to create a shared embedded network. These parties can then offer
their network to visitors of their site, just as they are likely currently offering a
WiF1i network to visitors.

In the application instantiation phase, the application owner instantiates
the application that he wants to deploy on the shared embedded network. The
application owner uses the application he previously acquired, and instantiates it
by either adding certain requirements for the application, or assigning behaviour
manually to certain nodes or locations.

Take for example a localisation application in a harbour. The harbour owner
wants to monitor and locate all containers currently present in his harbour.
To do this he buys a generic localisation application, and instantiates it to
automatically deploy on all nodes that enter the harbour network. He also
sets certain parameters, such as fixed localisation beacons, and sampling rate.
Additionally he must be able to set certain non-functional requirements, such
as the level of security required for all communication.

In the domotics use case, the end-user might want to have an application that
automatically regulates the HVAC and lights whenever he is near to his preferred
setting. To do so, he will have to instantiate the application, and modify it with
the for example which temperature, air quality and lighting the user prefers.

So in this phase the application owner requires that he can easily instantiate
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applications onto the embedded networks, and add some additional non
functional concerns. Additionally the application owner needs to be able
to retrieve network and node data, such as which nodes are capable of offering
which services, and which services he is allowed to use.

During the application enactment phase, the application owner enacts
the application he instantiated in the previous phase. This thesis operates
under the assumption that new application functionality must be deployed onto
generic nodes, allowing for example a temperature controller to aggregate data
from multiple sources and send commands to a thermostat. In order to do so,
the application owner needs to deploy certain code or configurations into the
embedded network. Since many environments are quite heterogeneous in terms
of hardware and available services, it is most often the case that only a limited
subset of nodes will receive a certain configuration [89, 51].

Take for example the smart office example. If the building security officer is
interested in whether or not the doors and windows are locked, he does not need
information from all the light, temperature and electronics nodes in the building.
This assumptions is a bit different from much of the related work on embedded
network deployments, which often assumes full homogeneous networks that all
need to operate using the same image.

So during this phase, behaviour needs to be deployed onto sensor nodes, either
by deploying configuration policies or binary code. This deployment can
be delegated to the platform owner. However, this thesis proposes to allow
application owners to deploy their own behaviour. This enables application
owners to configure nodes even when potentially no Internet is available, reduces
the load on the platform owners, and is the most generic case. Naturally both the
application owner and platform owner want to be ensured that the deployment
happens securely. The application owner wants that his application is deployed
unchanged, while the platform owner needs the continued safe operation and
integrity of his nodes.

The use cases clearly show that at certain times users will want to deploy
certain configurations or additional code onto the network to establish some
desired functionality. In the domotics use case, the visitor wants to deploy
some behaviour on the lighting system, that receives some information from
lighting sensors, and then automatically adapts the current lighting level. In
the logistics use case, the harbour customs might deploy a piece of code that
calculates the container’s current location based on several beacons.

Once all functionality is deployed and running, the application runtime
phase start. The application communicates over the network, and potentially
interacts with Internet based services, or other local services either of the
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application owner, or of other parties. In the use cases, the runtime phase is
the phase where the application behaviour is running. In the domotics case,
the user would get his environment preferences automatically enacted wherever
he goes. In the logistics case, the embedded applications gathers the location
of all tracked containers in the harbour. During this phase the application
owner requires that he can modify his application, that data is sent securely
across the network based on platform owner and application owner data security
policies and the platform owner requires that he can monitor the actions the
applications and application owner do, and that he can limit those actions.

Firstly, the application owner must be able to modify his application during
runtime. This can either be fine grained adjustments, such as changing the
heating setting in a smart office environment, or coarse grained adjustments,
such as when a new node enters the harbour network, and needs new code
deployed.

Secondly, the data sent across the network must be secured depending on data
security policies by the application owner and platform owner. Since embedded
network applications potentially produce delicate data, it is vital that the
different parties can enforce data security policies. This means that the data
must either be sent encrypted, or authenticated over the network. However,
adding security measures incurs a cost on the resources of the nodes. As such,
the platform owners or application owners might decide to not secure certain
kinds of non-sensitive data to reduce the burden on the node.

Finally, the platform owner must be able to monitor and control the access of
both users and applications to his node system for at least two reasons. The
first reason is that the platform owner must be able to ensure that applications
or users cannot, accidentally or wilfully, cause harm to or excessive strain on
the system. By monitoring their behaviour, excessive use can be identified
or prevented. Second, in future we might start to look at these networked
embedded systems as a shared sensing infrastructure, much like the current cloud
infrastructure provides a shared computing infrastructure. Just as currently
users of the cloud are billed based on their usage of computing resources, users
might be billed in this embedded mist environment based on their usage of
sensing or computing resources. Thus the operations of the user must be logged
to allow a detailed calculation of incurred cost.

When the application owner wants to end the application, the application
removal phase starts. During this phase, all functionality deployed by the
application owner is removed from the used nodes, and the node usage is charged
back to the application owner. In this phase, both the application owner and
platform owner require that this clean-up happens securely, completely and
does not interfere with others. The application owner should not be able to
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remove functionality that is used by others. On the other side, all functionality
that is no longer used should be removed completely in order to free all reserved
resources. Once all application parts have been deleted, final monitoring data
is collected, and the actual usage can be charged to the application owner.

In the domotics use case, when a user leaves a building, the user specific
application which modifies the building’s systems based on user preferences
can be removed, to free up resources. It is unlikely that building operators
will charge users for using the HVAC and lighting system, but this technology
would at least make it possible. In the logistics scenario, the harbour customs
can provide a localisation service for the logistics provider, letting him know
where his cargo is at all times. When the node then leaves the harbour, all
functionality and configuration should again be removed from the node, to free
up valuable node resources.

2.4 Problem Statement

This section specifies which specific problems this thesis tackles, and the
approach taken. The goal of this thesis is to raise the abstraction level of
the configuration and management of applications running on shared systems
and identify and implement the necessary software solutions to enable sharing
on resource constrained embedded nodes, as shown on Figure 2.3. Hence, this
thesis is divided into two parts: 1) A management infrastructure that provides
abstractions to model applications and owner requirements, and 2) a security
middleware that provides a software layer to secure the multi-party interactions
and enforce the previously created policies. The remainder of this section define
these two problems more clearly.

2.4.1 Security Management Abstractions

The security management abstractions aims to allow the different roles to
easily express their security requirements in a policy oriented fashion, to
distribute these policies, and set up networks and deploy applications so they
are compatible with the expressed policies. This section identifies for each role
what they need to express.



24 CONTEXT

Secure Networked
Embedded Systems

Y \ 4

Security Management
Policy Abstractions

Secure Node Systems

Platform Owner 'P‘ Secure Network Initialisation
Abstractions

Application Owner -P{ Secure Application Deployment

Abstractions

Network Owner
Abstractions ->‘ Secure Application Communication

.,‘ Secure Application Management ‘

->{ Secure Service Usage

Figure 2.3: Overview of the problems tackled in this thesis. To create secure
networked embedded systems, two components are needed: users must have
abstractions to declare their policies, and these policies must be enforced by
secure node systems during the lifecycle of the application. This thesis will look
at the required abstractions for each role, and at the node security systems to
enforce these policies for those data flows that are impacted by sharing.

Network Owner

The network owner must specify which platform owners are allowed to use his
network, and what he requires in compensation for using his network. The
network owner can either specify each party that he allows to use his network,
however this solution would be very un-scalable. The trust relationships would
likely be created through third party trust providers, who ensure that all
approved parties are trustworthy. This thesis identifies two main costs: 1)
charging money for using the network, and 2) requiring certain sensor data
and/or processing services to be made available to the network owner.

Platform Owner

The platform owner must express the policies regarding the networks which his
nodes are allowed to connect to, the services that users are allowed to use on



PROBLEM STATEMENT 25

his nodes, and the security requirements for data produced by and commands
sent to his nodes.

The platform owner first must express the policies with regards to the network
owners. As a platform owner, it would be very un-scalable to manually list all
trusted network owners, so likely here too a third party trust provider will be
used. The platform owner must also specify the money he is willing to spend in
order to use the network, and which node services he is willing to provide to the
network owner. If the network owner is trusted, and the price of the network
owner is below the willingness to pay, the platform owner can allow his nodes
to use the network.

Second, the platform owner must also express his policies with regards to the
application owners. The application owners want to use node services to create
an application which uses local sensing or actuation services. Again first the
platform owner must be able to trust the application owners using his node.
Again the most scalable solution will be the usage of third party trust providers
to set up the trust relationships. However, certain platform owners (such as
private persons) likely will only want to open up their platforms to a very
limited number of people such as friends and family. In such cases, the platform
owner must have the ability to manually enter the trusted parties. The platform
owner must also specify which nodes and which services of those nodes are
available for the application owners, with which limits, and at which cost. These
requirements must be taken into account at the time of the application owners
deployment planning, and must be monitored and enforced during runtime.

Next, the platform owner can also potentially specify certain data level security
concerns. For example certain platform owners will offer location services
to application owners. However, the platform owner might want to ensure
that all location data produced by his nodes is kept confidential and only
sent over the network encrypted. The platform owner must be able to specify
such requirements, they must be taken into account during the application
instantiation phase, and enforced during the runtime.

Last, the platform owner must model the current node environment, and keep
a log of the current node usage by the different application owners. In order for
application owners to decide whether or not to use a node, they must be able
to see which resources this node offers. Platform owners thus must model and
provide this information. Second, once the application owner decides to use or
deploy some functionality on the node, the application owners usage must be
stored to ensure no excessive resources can be used. The actual node usage of
the application owner should be logged in order to allow charge-back.



26 CONTEXT

Application Owner

The application owner must be able to express which platform owners and
network owners he trusts, which resources his application uses, which cost he is
willing to pay, and what security requirements he has with regards to the data.

First the application owner must specify whose nodes he is willing to use. The
application owner only wants to use nodes of parties he trusts sufficiently so
he knows his application is not threatened by using those nodes. Again likely
application owners will use third party trust providers, or parties he knows to
be trustworthy. Many use cases involve the application owner to deploy an
application on nodes locally, so likely in a single network. Thus there must also
be trust between the application owner and network owner, so the application
owner can request trusted nodes from the network owner. In such cases the
network owner can act as trust provider between the application owner and the
platform owner.

Second the application owner must specify which resources his application uses.
This is necessary in order to allow automated identification of suitable platform
owners and nodes, plan the deployment, and create a cost estimate of the
resource usage. The application owner can then in advance get an estimate of
the cost of running his applications, and be certain the necessary resources are
available. The platform owners of the nodes on which the applications run can
reserve the required resources in order to prevent resource contentions.

Lastly, the application owners must specify their application data security
requirements. In a distributed embedded application, data will be transmitted
continuously over the air. There are potentially many different types of data
being communicated, such as for example temperature readings, or location
beacons. Since security incurs a cost, the application owner could prefer to not
secure certain types of data to reduce the load on the nodes and the incurred
cost. The application owner policies must then be merged with the relevant
platform owner policies in order to create policies adhering to both preferences.

2.4.2 Secure Node System

The second problem this thesis tackles is the creation of a secure node system.
This system must be able to offer the necessary security as required by the
different parties during the entire lifecycle of the shared NES application. In
order to create such a system, this thesis looked at the different data flows which
involve the node system which need to be secured, an approach recommended
by many parties a.o. the SANS institute [9]. From these data flows this thesis
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isolated five data flows that involved multiple roles, and as such would likely
have to be updated when creating a secure node system, capable of supporting
shared NES applications. The remainder of this section identifies the security
requirements for the secure node system based on these different data flows,
and based on the requirements of the different roles as listed previously.

Network Initialisation

The first data flow is the network initialisation. This data flow starts when
a new node enters the network of an network owner. The node must set up
communication with the gateway, in order to join the network. Both the node
and the network owner must be ensured of each others trustworthiness. This
trust must be established, after which the necessary key material can be deployed
on the node.

Once trust is established and the network owner key material is deployed, the
node is part of the network. Likely additional networking options need to be
set, such as channel details, routing options and other network configuration
parameters. However, this thesis considers routing, intrusion detection and
network management out of scope for two reasons: 1) the data flows of these
interactions are not significantly altered by introducing it in a multi-party
environment, and 2) there is abundant related work available that provides
solutions for these issues.

Application Deployment

During the lifetime of a node, it will need to receive code updates. These
code updates can either be the platform owner that wants to update his
core functionality, or an application owner that wants to deploy or change
functionality on the node. The platform owner requires that only trusted
and authorised parties can deploy code updates. It should be possible for
the platform owner to require that code can only be deployed after being
reviewed. Once approved, the code must be deployed unchanged. Additionally
the platform owner must be able to specify resource restrictions on the deployed
code.

The application owner also requires that his code is deployed without alterations,
to ensure that a networked attacker cannot alter his code to gain control over
the node. Some application owners might also require their code to remain
confidential, and thus require the code deployment to be encrypted.
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Application Management

Once the nodes are placed in the environment, entered in the network, and
got the necessary new applications installed, the nodes needs to be managed.
The application owner needs to be able to change application settings of his
personal applications. The platform owner on the other hand needs to be
able to control the node system and manage the resource restrictions on the
installed applications. Management typically happens by sending management
command messages to the node system, which processes these messages and
returns a reply. Both the application owner and the platform owner require
that these commands are authenticated and authorised, in order to ensure
node and application integrity. Additionally for management functionality, the
platform owner wants a secure-by-default approach to ensure all management
communication always adheres to a high standard of security.

Application Communication

In distributed embedded applications, the different components need to be
able to communication with each other in order to aggregate and process data.
The application owner and platform owner will have security requirements for
the transmission of this data depending on the sensitivity of the data. The
secure node system must be able to enforce those data security policies. The
system must support multiple different levels of security, since depending on
the applications the users might want no security, only authentication, or full
confidentiality enforced. Additionally the system must be able to support per
data type policies and per interaction policies: depending on the sensitivity
of the data, the level of security can be reduced to reduce resource overhead.
Additionally, certain nodes might be involved in multiple applications, each of
which might have different security requirements.

For example a harbour owner has a localisation application for his harbor. He
requires that all localisation data is exchanged using at least an authenticated
protocol. The container owner of a certain group of nodes however requires that
location data is sent confidential on an end-to-end basis. The node system must
support such different policies to support the full range of NES applications.

Application Service Usage

Applications running on embedded nodes or users interacting with these nodes
will use node services, such as file system, processing and sensors. The platform
owner requires that this service usage is restricted to approved users and
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applications only, and that the usage is monitored. The platform owner must
be able to limit which application owners and which applications have access to
which services and with which limitations. These restrictions must be deployed
onto the node, ensuring that an application component can only use a limited
amount of node services. Lastly, the actual usage of the applications and
users must be logged and aggregated at the platform owner to ensure that the
platform owner can intervene in case of excessive node usage, and the platform
owner is able to bill the application owners based on actual node usage.

2.5 Requirements

This section specifies the requirements of the security framework. First it looks
at the different kinds of attackers that are potentially present in an embedded
network. Second this section looks at the non function requirements of the
security framework.

2.5.1 Attacker Model

The security framework must be able to handle multiple different types of
attacks. This section identifies four main types of attackers: 1) outside attackers,
2) network attackers, 3) physical attackers, and 4) insider attackers. This
section specifies for each of these attackers their goals, means and constraints.
Additionally for each attacker this section details what the node middleware
should be able to prevent or mitigate.

Outside Attacker

The outside attacker is a classic attacker according to the Dolev-Yao model [30].
He can intercept, manipulate, duplicate and create messages, but he cannot
break any cryptographic primitives or protocols. The goal of the outside attacker
can be either to gain information gathered by the network, or to enact some
kind of control over the network. The information on the network can either be
data produced by the embedded nodes, or data about the nodes themselves,
such as identification information or capabilities. Gain control over the network
can also take different forms. He can change application level parameters such a
temperature setting. Alternatively he can influence the network by attempting
to corrupt nodes or influence the network by using for example a Denial of
Service attack. The node security middleware must prevent outside attackers
from being able to manipulate the sensor node systems, to prevent him from
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gaining any control over or information from the sensor nodes. This thesis
however does not consider network level attacks, and does not aim to mitigate
against them. Additionally a node cannot prevent an outside attacker to deny
communication, however he should not be able to enact any other influence on
the nodes.

Network Attacker

The network attacker is an attacker that controls embedded nodes which are
a valid part of the wireless network. As such, he has all the capabilities of an
outside attacker, and because the network attacker has permission and access to
the network has some additional capabilities. He can use this access to perform
additional attacks, such as interfere with routing. For example in a wormhole
attack, the network attacker inserts himself in between the communication of
different embedded nodes to be able to potentially read any communication
that is not end-to-end encrypted, or to perform traffic analysis. His goals are
similar to the outside attacker in that he wants to gain information on the
network, or some kind of control over the network by manipulating messages.

Physical Attacker

The physical attacker is an attacker who can gain physical access to a system,
and probe the memory and code. This allows a physical attacker to retrieve all
key material stored in the attacked node, and perform arbitrary modifications,
since current generation sensor nodes are not capable of resisting these kinds of
physical attacks. Recently state-of-the-art has proposed solutions to prevent
the probing of memory through tamper proof hardware [59], prevent the leaking
of sensitive key data through trusted platform modules or physically unclonable
functions (PUFs) [75], and detecting changes in the software through attestation
[14]. The goal of the physical attacker is to penetrate the network using the
credentials gained from one or several compromised nodes. As the network
attacker, he wants to get information from the applications running in network,
or exert some control over those applications. While it is impossible for node
software to prevent these kinds of attacks, the node software should be able
to mitigate the consequences of a node compromise on the other embedded
nodes. The middleware must be able to recover any application functionality
once a node disclosure has been detected, and must prevent physical attackers
to gain a significant amount of control over other nodes using the disclosed key
material.
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Inside Attacker

The inside attacker is an attacker who has valid access and credentials to the
embedded node, but has certain access limitations and restrictions. He wants to
gain more influence on the embedded node and perform operations that should
not be available to him (elevation of privilege), or use resources without the
system being able to monitor the usage (monitor bypass). The node middleware
must prevent the elevation of privilege attack, and must prevent inside attackers
from being able to bypass the monitoring system. Additionally the monitoring
system should be able to detect any unauthorised access of authenticated users,
in order to potentially detect elevation of privilege attacks.

2.5.2 Non Functional Requirements

This section specifies the non functional requirements of a secure embedded
network framework. These requirements flow from the observations made in
the use cases: that the software and systems are continuously evolving and very
heterogeneous, that users want to express their policies transparently of the
underlying infrastructure, and that those policies are enforced transparently
from the applications, and that security system is flexible with regards to
communication pattern and security level.

o Evolvability of infrastructure: new sensor nodes continuously join the
network or running embedded network application, existing nodes move
away, or break down. The system must be able to handle the continuous
churn of nodes.

o Evolvability of software: new applications can be installed on the
embedded network, existing applications can be updated and changed due
to changed requirements, and obsolete applications can be deleted.

o Heterogeneity of infrastructure: the framework must support nodes with
a with a wide variety of capabilities and available hardware.

o Transparency of heterogeneity: security policies and application require-
ments should be expressed without having to be concerned about the
exact platform on which the actual code will be running or which other
software is potentially running on the platforms.

o Transparency of security: applications developers should not be concerned
about the security requirements. Security requirements must be expressed
and enforced transparently for the applications.

o Flexibility of communication: embedded applications potentially have
many communication patterns, such as one-to-one, many-to-one, one-to-
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many, or many-to-many. all communication patterns need to be supported
by the communication framework.

o Flexibility of security: enforcing security incurs a cost. The application
deployer should be able to chose the level of security, and the associated
cost.

2.6 Summary

This chapter provided the context of this thesis. It first proposed two use
cases, which were derived from collaborations with local industry and academia:
the smart office use case, and the smart logistics use case. These use cases
clearly show that networked embedded systems are multi-party environments,
where embedded nodes from different parties work together to create a smarter
environment. In such environments, security is naturally a key concern.
Additionally these use cases show that there will be a high degree of software
and hardware heterogeneity, and mobility, which is often overlooked in current
related work.

Second this chapter identified three unique roles in this NES ecosystem based
on the presented use cases. The platform owner owns devices which can be
constrained and mobile. In order to gain maximum functionality from these
nodes, he want to share these nodes with other parties. The application owner
wants to use these shared devices to easily set up certain functionality. For
example in case of the smart office, users want to interact with the HVAC or
lighting system. Finally, since many of these devices are mobile, they require a
network in order to communicate with each other and with the Internet. The
network owner provides this network to the platform owners and application
owners in order for the devices to be connected and usable.

Next this chapter proposed an extended lifecycle, in order to identify the
responsibilities and requirements of these roles during the entire application
cycle. The seven phases are: 1) the policy declaration phase, where the different
parties declare their security requirements, 2) the application creation phase,
where the application owner either creates or acquires the application to deploy,
3) the network setup phase, where the devices of the platform owners connect to
the network of the network owner, 4) the application instantiate phase, where
the application owner instantiates his application based on the environment in
which he wants to operate the application, 5) the application enactment phase,
during which the application owner deploys all necessary application components
and configurations on the network, 6) the application runtime phase during
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which the desired functionality actually runs, and 7) the application removal
phase where the application owner removes all installed code and configurations.

Then this chapter identified the main problems in order to realize this lifecycle
in a secure fashion: 1) the different roles must be able so specify their security
requirements, and 2) the embedded nodes must be able to enforce this security
policies and operate securely during the entire application lifecycle. It then listed
the requirements for security abstractions for each role, and identified the five
main data flows which are significantly impacted by the evolution towards shared
networked embedded systems: network initialisation, application deployment,
application management, application communication, and application service
usage. For each of these flows the function of flow is explained, and the
requirements of the applicable roles are detailed.

Finally this chapter identified the requirements of an environment that realizes
the proposed lifecycle. It proposed an attacker model which identifies 4 different
attackers: 1) an outside attacker who can only listen to and modify network
messages, 2) a networked attacker who has some valid access to nodes in the
network, 3) a physical attacker who can manually probe embedded devices
and extract their secrets, and 4) an inside attacker who is authorised to use
some limited services of the system. Next it listed a set of non-functional
requirements which are briefly summarized as the evolvability and heterogeneity
of infrastructure and software, transparency of heterogeneity and security, and
flexibility with regards to application communication pattern and security
requirements.






Chapter 3

Related Work

This chapter looks at the current state-of-the-art on management abstractions
and security solutions for networked embedded systems specifically, and
distributed systems in general. It evaluates these solutions to tackle the problems
identified in Section 2.4: the need for security management abstractions for the
different roles, and the need for a secure embedded node system suitable for a
multi-party environment.

3.1 Management Abstractions

First this chapter looks at the currently available systems, languages and
abstractions that exist, which potentially allow the different roles to express
their security requirements in a standardised fashion. Since in order to model
the security of the system, you also need to model the system itself, this section
then looks at the different abstractions which are currently available to model
networked embedded systems.

3.1.1 Security Management Abstractions

This section looks at security management abstractions. As stated in the
lifecycle, during the policy declaration phase, the platform owner must express
which application owners are allowed to use which resources, to which limits,
and at which costs. To do this, a language together with a set of domain
specific abstractions is necessary to express the different requirements. These
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abstractions must be formally expressed in a policy document, in order to allow
automated reasoning and deployment. These abstractions must then be able
to be automatically parsed and enforced in all relevant systems and embedded
nodes.

Many languages and frameworks offer the ability to encode different kinds of
security policies in current distributed systems, such as XACML [39], SAML
[11] or Ponder [26]. However, none of these languages currently offer domain
specific abstractions for NES, but rather offer a language in which virtually
any kind of policy and abstraction can be encoded. It is then up to a domain
specific framework to provide the abstractions, parse these specifications and
actually enact them. There is a limited amount of work done that aims to model
the embedded environment, but it does not fit with the proposed application
lifecycle. The remainder of this section will look at the different policy languages,
and previously proposed abstraction models.

The eXtensible Access Control Markup Language (XACML [39]) and the
Security Assertion Markup Language (SAML [11]) are two well known policy
encoding languages based on XML. XACML offers a language to describe
access control requirements. SAML is an XML-based, open-standard data
format for exchanging authentication and authorisation data between parties, in
particular, between an identity provider and a service provider. However there
are some shortcomings of these standards for usage on embedded systems: 1) it
lacks the infrastructure to easily express and enforce such rules in constrained
networked embedded systems, 2) the parsing and execution of such rules is
resource-intensive, and 3) writing policies in XACML is a cumbersome effort
without adequate support. XACML and SAML have been proposed to be used
in embedded networks [37], but they consider a beagle bone to be a resource
constrained node. Since a beagle bone has a 32-bit 720Mhz processor, 256 MB
RAM and 4GB of ROM, this thesis would classify it as a resource rich node.

Ponder is a generic security policy specification language [26] for distributed
systems. It allows system administrators to specify security policies that can be
mapped on various access control mechanisms, such as firewalls, data bases, and
potentially embedded nodes. Ponder supports policies expressing requirements
with regards to user registration, user access control, and resource monitoring
and enforcement. It allows expressing policies in terms of roles and groups
with large organisations, or in federated organisation. Ponder is declarative,
strongly-typed and object-oriented, making it flexible, extensible and adaptable
to a wide range of management requirements, including networked embedded
systems. While it offers a good potential language, it is an extensible general
purpose language. As such, almost any security policy can be expressed in
it. It does not offer the specific abstractions needed to model the security
requirements, but rather offers a language which can be used to model them.
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There is some related work that proposes abstraction models for expressing
application level security requirements [19] for networked embedded systems.
These models solve certain requirements such as access control or network
security monitoring policies, but don’t aim to create a full security solution,
and use resource heavy certificate based approaches for enforcing the model. To
the best of our knowledge there is no holistic security policy abstraction model
which allows different roles in the embedded network lifecycle to express their
security requirements and policies, which are then deployed and enforced in a
resource constrained environment.

3.1.2 Application and System Abstractions

The application owner must be able to build and instantiate applications,
during the application creation and application instantiation phase. To build
an application, the owner must create an implementation which will execute
the desired behaviour, and model this behaviour using some kind of modelling
abstractions and language in order to easily abstract, manage and secure the
desired systems. These modelling abstractions must allow the application
owner to functionally model: 1) the generic application components, 2) how
the different parts of the application interact with each other, 3) how the
different component can be parametrised, 4) the instantiated deployment
requirement, and 5) which resources these different components use based
on the parameterisation. The generic model must show which components
can be deployed on which kind of nodes, and which node resources are needed
to deploy the component. This is necessary to enable reasoning over the
deployment, and to ensure that the different nodes support the requirements.

Currently, there is no widely used standard method for modelling networked
embedded systems and expressing the related security and management
requirements. This lack of standard application models has potentially led
to the fact that there are almost no NES security policies abstractions available.
There are currently some modelling languages and frameworks, but these
languages typically either only model the data produced by the embedded
nodes, such as SensorML [20], or describe fairly static embedded systems, such
as AADL [56]. There are many language which allow for the description of
any kind of software application on an architectural level, of which UML is
currently one of the most popular. There also exist generic architectural models
for component based architecture, of which SCA [16] is one of the best known.
However, while they provide a good starting point to describe and model the
architecture, none of these architectures and modelling languages currently
provide the abstractions necessary for application owners to describe all their
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requirements. The remainder of this section will detail the previously mentioned
technologies.

Most related work for modelling embedded networks looks at modelling the
data produced by the sensors. SensorML [20] is a typical example of a data
modelling language that specifies models and XML encodings to annotate data
and sensors. This way it provides a framework which allows to express the
geometric, dynamic and observational context of sensor systems. And while it
succeeds at annotating the produced data, it does not model node resources
such as ROM, RAM, or processing, nor does it model the node system. This
thus prevents resource usage requirements to be expressed. Potentially the
data modelling abstractions can be used to express security policies using the
modelled data types, however no infrastructure is currently available which
supports and enforces such policies.

The Architecture Analysis and Design Language (AADL [56]) defines a language
for describing both the software architecture and the execution platform of
embedded real time systems. It provides modelling abstractions to express the
resource requirements of components, and the provided resources of embedded
systems, and allows resource validation. However it targets single-owner, single-
application systems, and thus it does not allow to express usage limitations,
nor cost annotations. It also has no support to express communication security
requirements for distributed applications, but rather expects the application
running on top of the platform to handle this.

The Unified Modeling Language (UML [41]) is one of the most widely used
architectural modelling languages, and allows to easily model and visualise the
design of any system. It can be used to model virtually any system, and is
often used to model embedded systems, as it is widely known. However, it
only provides a visual model for expressing architectures and applications, with
currently no default language encoding to allow it to be more easily exchanged
between systems. Second, it is a generic model, and as such does not provide
abstractions specific for embedded systems. While it can be helpful to visualise
the embedded application model, it is not suited as a tool for formally encoding
and annotating embedded applications.

The Service Component Architecture Framework (SCA [16]) offers a set of
abstractions to describe component-based application compositions. It provides
abstractions for provided and required service interfaces, offered by components,
and how these services need to be connected. It also provides a set of rules
on how to encode these abstractions into XML. This provides the basis
for expressing applications, application level security policies, and system
requirements. However, currently it does not provide abstractions to model the
underlying node services required by the components.



SECURE NODE SYSTEMS 39

The SCA framework has been applied to embedded networks, for example by
Remora [107]. Remora combines XML-based SCA component descriptions with
an implementation. The description declares the component services, references,
produced and consumed events, and properties, but still lacks the underlying
node resource requirements. QARI [49] is another example that adapts the SCA
framework for NES. However, QARI focuses on allowing the application owners
to specify higher level application requirements, so the application owners do
not have to concern themselves with identifying which functionality has to
be deployed on which node. It has limited support for modelling the sensors
available, but has no support for modelling security requirements.

3.2 Secure Node Systems

This section looks at the related work that aims to secure the 5 data flows, which
in Section 2.4 have been identified as the key data flows which are impacted by
enabling sharing in the networked embedded system. These five data flows are:

1. Secure network initialisation: how can a new embedded node securely join
an existing network.

2. Secure application deployment: how can a user securely deploy new
embedded code on a shared platform.

3. Secure application communication: how can two distributed application
components securely communicate with each other.

4. Secure application management: how can a user manage the application
components on a node.

5. Secure service usage: how can the system monitor the behaviour of the
users and application components.

3.2.1 Secure Network Initialisation

In the Network Setup phase, the embedded nodes must connect together and to
the gateway to set up a secure network. The nodes need to be authenticated with
the gateway, and network key material needs to be deployed on the embedded
nodes, in order to allow authenticated or encrypted network layer messages to
be sent. Many protocols have been proposed that aim to efficiently distribute
and deploy keys onto embedded nodes, after which secure communication can
be set up. This section first discusses the related work on key distribution
and key agreement in embedded networks, then it looks at the field of Vehicle
Area Networks (VANETS), because VANETS have to deal with an inherent
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high mobility and connectivity for which several solutions have already been
proposed.

WSN key deployment protocols can roughly be divided in two types: (1)
symmetric key deployment protocols and (2) asymmetric key deployment
protocols.

Symmetric Key Protocols

Symmetric key deployment protocols currently are the preferred protocols in
embedded networks. They have the advantage of incurring limited overhead
in both communication overhead and code and execution overhead. Hence, it
is currently considered more suitable for embedded networks. Camptepe et
al. [10] provide a survey of current key distribution protocols. At this time,
there are two general categories of symmetric key protocols: (1) protocols with
pre-shared keys with the gateway and (2) protocols with a pre-distributed key
ring.

The first category of symmetric key protocol are the protocols where every
node shares a symmetric key with the gateway. The gateway acts as the Key
Distribution Center in this scheme and can securely deploy a group and network
keys to each of the nodes. If two or more nodes want to securely communicate,
they ask the gateway to generate a secret key for them and deploy it to these
nodes. Examples of such a system are LEAP [125] and PAKA [113]. It is clear
that this system is fairly scalable, secure and light weight. However, this system
is not mobile. It is assumed that every node has a key pre-shared with the
gateway. Since this thesis assumes that nodes travel between multiple networks,
they will not always share a key with the gateway.

The second category is the network-only category of key deployment. In this
case, there is no central trust entity that is able to deploy new keys or key
material. Every node has a pre-deployed key ring or some pre-deployed key
material [34] which is used to generate new keys. When two or more embedded
nodes want to communicate with each other, they compare the key material
on their key ring and use the shared key material to generate a shared secret.
These systems can be divided into two sub categories, the probabilistic and
the deterministic protocols. The probabilistic protocols have no guarantee that
they have shared key material with a node nearby. If no key is shared, a trusted
third party is searched which can mediate between them. The deterministic
protocols guarantee that each node can securely create a key with each other
node. However, in order to guarantee this, the network size must be fairly
limited in order for each node to have the necessary key material. It is clear
that these are light weight protocols. However, this system is not very scalable.
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To reliably share a key with each node in each container, the key ring would
have to be quite large. If the node only shares a key ring with other local nodes,
this system would not be mobile, since new nodes would have no way of securely
receiving the key ring.

Asymmetric Key Protocols

The second type of key deployment protocols are the asymmetric key
deployment protocols. It was assumed that asymmetric keys require too much
communication overhead and processing cost to use in embedded networks.
Recently though, Elliptic Curve Cryptography has lowered the code and
communication overhead required for asymmetric cryptography [2], making it
a potentially viable alternative for embedded networks. Additionally, through
the use of specialized encryption chips, the energy cost of encryption can be
significantly lowered [106, 105]. Other related work is also looking at optimising
existing algorithms such as RSA either by optimising hardware [50] or software
[36]. However using asymmetric cryptography in resource constrained networks
does still pose some challenges.

To achieve mobility and to securely agree keys, the embedded nodes have to
verify the gateway’s certificate and the gateway must be able to verify the
nodes’ certificates. Assuming many different Certification Authorities certify
the gateways, the overhead on the node would still be quite significant. These
certificates also have to be kept consistent with Certificate Revocation Lists.
These additional requirements to secure the key agreement protocol cause a
significant communication overhead, in addition to the significant amount of
processing overhead, which should be avoided in embedded systems. So while
this solution might offer an advantage in mobility and scalability, the code and
communications overhead are still significant.

WiFi networks [55] are likely currently the most frequently deployed wireless
networks in the world. WiFi networks can use multiple different ways to
authenticate users. However, most protocols require the user to enter a pre-
shared password in the device that wants to connect to the network. This
password is then transformed into a secret element which is used to authenticate
different parties with each other either using elliptic curve cryptography, or
finite field cryptography. Once users are authenticated, messages are encrypted,
typically using the AES algorithm. While allowing for easy network setup, it
does require significant resources to generate all key material, and requires a
pre-shared password secret to be deployed on the nodes, making it potentially
too resource intensive for resource constrained embedded nodes. To be specific,
one Elliptic Curve Diffie-Hellman key generation operation on a Tmote Sky
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[80] takes ca 4 seconds according to Liu et al [66]. To compare, a single AES
encryption operation of a 16B block takes ca 1.9 ms when performed in software
on the same Tmote Sky platform and ca 449 us when performed in hardware by
the CC2420 radio chip, according to Healy et al [47].

VANET Key Protocols

VANETSs are ad-hoc networks of vehicles and roadside infrastructure. This
unique field of wireless networks poses a great deal of challenges, among which
is high mobility. Since many critical applications will require Vehicle To
Vehicle (V2V) communication, communication between vehicles must be secure.
Securing these vehicle networks has recently caught the attention of several
researchers. New and innovative key management schemes have been proposed
to meet these challenges.

Most research in VANET security proposes that each vehicle has two certificates:
a permanent, global certificate and a temporary, local certificate, for example
the TACK protocol [104]. The global Certification Authority is the vehicle
registration authority of the country where the vehicle is registered. This CA
certifies an asymmetric key pair to each vehicle it registers. However, this
certificate cannot be used in a local setting due to privacy constraints. So,
in order to be able to securely communicate with other local cars, the local
authority provides a service where each vehicle can request a local certificate,
using its global certificate. The vehicles can then use this local certificate to set
up secure communications with other local vehicles.

It is clear that this solution meets the mobility requirement. Keys are deployed
securely and in an ad-hoc fashion. However, it requires a lot of asymmetric key
management and communication between the vehicles, the local and the global
Certification Authority. The required communication and processing overhead
makes this protocol unsuited for use in networked embedded systems.

Summary

To summarize, current research in secure embedded network initialisation
lacks mobility, while current mobile security (VANET) research is potentially
too resource-intensive to be used in resource constrained embedded networks,
due to the extensive usage of asymmetric cryptography. Additionally, the
pervasive presence of the Internet remains unused in almost all current network
initialisation protocols.
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3.2.2 Secure Application Deployment

During the application enactment phase, the application owner wants to deploy
new code functionality onto the resource constrained devices. This process
must happen securely, to ensure the integrity of the platform. Only components
that have been approved by the platform owner should be able to be deployed.
Additionally, the platform owner must be able to enforce policies with regards to
which node services are available to the new code, and add some usage limitations.
As evolution is often considered a vital feature in many systems, code deployment
is a part of many embedded operating systems such as ContikiOS [31] or TinyOS
[48], or standard operating systems such as Linux or Android. The remainder
of this section first looks at secure deployment protocols for embedded systems,
second it looks at some current main-stream operating systems.

Much related work in secure embedded code deployment secures the TinyOS
code dissemination protocol Deluge [52], such as Sluice [65] and Seluge [54],
which propose a series of hash chains or hash trees where the start of the
chain/tree is signed by the basestation certificate. Extensions of this work have
been proposed, namely Seluge-ImageMan [67], which mitigates the problem
of rebooting to an invalid image, and by Tan et al. [108] who propose to
encrypt the update blocks. The recently proposed SDRP [46] identifies that it
is possible that multiple different users could potentially perform deployment of
code images, but uses asymmetric encryption for authentication, and does not
consider limiting code capabilities based on token or user permissions.

Secure code deployment is an integral part of many current main stream
operating systems such as Android, or container systems such as OSGi [84]. In
Android and other smart phone environments, users can download so-called
apps from an app store. These apps are cryptographically signed by the app
store, to ensure integrity of the application. These apps are sometimes verified
by the owners of the app store, however this is not always done. These apps
also contain a list of required services. Applications can only use the services
listed in this required services list. The users who own the platform, typically
cannot decide to limit usage of certain services. The decision to use an app is all
or nothing, either you allow all listed service usage without limitation, or don’t
install it. While the typical use case of Android is a user installing something
on his own system, the OSGi component framework [84] allows users to deploy
new code components onto remote platforms, but the provided security is fairly
similar. Components are cryptographically signed, and can only use those
services that are listed in the component’s manifest file.

Linux is another example of a main stream operating system that enables
deployment of new code in the form of packages. A clear evolution has also
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been seen in the way it manages permissions. Initially, processes could only
be started as root (all permissions), or non root (limited permissions based on
thread, user, and group permissions). This evolved to a system where processes
could be started with a list of capabilities which would express what the process
could do. However, in the current Debian Package Manager, capabilities are not
enforced on a per packet basis, but rather on a per thread basis. It is thus up to
the user or calling program to assign permissions to a thread. However, recently,
the Docker component platform enabled a new way to package applications for
Linux. Docker allows each application to run much more isolated in its own
container, with possibility of per container capabilities. Linux thus has many
tools at its disposal to provide secure code deployment. However, all these
systems typically use asymmetric cryptography to ensure validity of code.

To summarize, most embedded network code deployment protocols don’t take
into account that many embedded networks are multi-user environments. They
fail to allow multiple users with multiple different access rights to deploy and
manage code. Recently some deployment protocols look at the multi-user aspect,
but often use expensive asymmetric encryption, or neglect the need to enforce
resource usage limitations.

3.2.3 Secure Application Communication

During the application runtime, messages must flow securely over the network.
Depending on the type of data the application components are producing,
application owners and platform owners will want to enforce different kinds of
security policies, such as enforcing integrity, authenticity, and confidentiality.
Additionally the platform owner will want end-to-end security, to ensure that
only parties that are involved in the communication stream can produce or read
confidential messages.

The state-of-the-art has provided many solutions to enable secure communi-
cations in networked embedded systems [18, 98]. The current related work
can generally be subdivided into developing new and more efficient algorithms
such as Noekeon [23, 53], creating new protocols specifically designed for NES,
or altering existing well known protocols for NES usage. The remainder of
this section first looks at new protocols designed for NES, and then at current
common protocols, which are being adapted.

Currently popular protocols for securing embedded networks are Zigbee, LEAP,
and TinySec. Zigbee [35] has different types of keys for different usage. Zigbee
differentiates between 1) node master keys, which are unique per node and
are used to set up other keys, 2) link keys which secure the communication
links between multiple nodes, and 3) network keys which secure network wide
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communication. However, Zigbee assumes that the master keys are pre-installed
reducing mobility and evolution. Additionally Zighbee does not mention multi-
user or multi-party abstractions. At network setup, the node is authorised by
the Trust Center (TC) using the master key. Once authorised, network and link
keys can be established.

LEAP [125] identifies 5 different types of keys depending on usage: 1) basestation
keys, 2) pairwise node keys, 3) cluster keys, 4) group keys, and 5) master keys.
At deployment each node receives the network master key. This key is then
used to set up the other keys. Once the setup time is passed, all nodes delete
the master key. This prevents new potentially malicious nodes from joining,
but also makes network evolution very difficult.

TinySec [58] offers flexible security by offering two modes of security: an
authentication only mode, and an authenticated encryption mode, allowing
the network owner to decide which mode to use. It however does not offer a
key management protocol, but can be used with any protocol available. It is
also impossible to create different channels based on application level security
requirements. Thus while offering secure communication, none of these protocols
offer networking evolution and management, nor take into account multi-party
ecosystems with heterogeneous security requirements.

So in many systems, you can only set a general communication security
policy, without being able to distinguish between different data flows [125],[58].
However, from a functional point of view, application owners might need different
security policies depending on the data type. For example the application
owner could only require authenticity on environmental data, while requiring
confidentiality for identifiable information. Current related work however does
not offer such content dependant security policies. Some related work does offer
some level of flexible security policies, such as the previously discussed TinySec,
or Zigbee. In most cases however it does so on a network or link level, without
any knowledge of the data that is flowing over it, or being able to adapt based
on it.

One class of related work that offers E2E data security based on application
type is Attribute Based Encryption protocols, such as for example FDAC [122].
Data items are encrypted using the relevant attributes associated with that
data. Then only parties that have the necessary access structure, in the form
of private keys, can access the data. This enables a limited amount of flexible
security, at a significant cost due to the usages of elliptic curve functions.

Two common protocols for securing data communication on the Internet are
TLS/SSL and IPSec. Transport Layer Security [28] (TLS) and its predecessor,
Secure Sockets Layer (SSL), are standardized cryptographic protocols that aim
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to secure client server communication over the Internet. It operates at the
presentation layer (layer 6) of the OSI stack, and as such is typically reserved
for End-To-End client-server communication. TLS/SSL requires significant
amount of asymmetric cryptography in order to operate, making it very resource
intensive for embedded networks. DTLS [97] is similar to TLS, but optimised
for datagram communication, which is currently considered the most common
form of communication in embedded networks. DTLS has been proposed for
embedded networks, and some research is looking in how to optimise DTLS for
resource constrained networks [62].

IPSec [60] is another commonly used network security protocol. It operates
on the network layer (layer 3) of the OSI stack, and allows for much more
flexibility in which endpoints it secures. It can create secure links between
multiple networks, or between a host and a network, or between hosts. It offers
flexible security: the network administrators can decide between encrypting
and /or authenticating all traffic between endpoints on an IP level, by specifying
so-called security associations. Additionally network administrators can specify
which application traffic must travel over which security association. While
this protocol can meet the functional requirements of having flexible security
based on the semantics of data transmitted, it requires a significant amount of
features to be implemented in order to be standard compliant, causing significant
overhead for resource constrained embedded nodes. Research has proposed
simplifications to the protocol to make it more suitable for resource constrained
environments, but has not yet seen main-stream adoption [95].

3.2.4 Secure Application Management

During the application enactment phase, and the application runtime phase,
application owners need to be able to manage their applications, and platform
owners need to be able to manage their platforms. Since there are multiple
different users and components on an embedded node, it is crucial to isolate
the different users from each other and enforce limitations on their capabilities.
The current research in access management can again be divided into the
symmetric key approaches and the asymmetric key approaches. The remainder
of this section first looks at some common symmetric key approaches, next at
some asymmetric key approaches, and lastly at some access control frameworks
currently used in large scale enterprise networks.

The first subset are the symmetric key approaches, such as sSAQF [119] and
SpartanRPC [15]. sAQF adds user authentication codes to ensure that only
authenticated users can use node services. It assumes a single user of the
network who has a large key pool, who installs a unique subset of this key pool
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on each node. To authenticate a message, the user calculates a 1 bit MAC with
each key, and concatenates all these MACs into a single large MAC. The user
can then broadcast this message to the network, and each node can verify the
message by verifying parts of the MAC using its own key pool. This ensures that
a breach of any single node does not allow the attacker to send authenticated
messages. However the system does not mention how it actually enforces access
control.

SpartanRPC [15] secures RPC service usage. To use a service on a node the
user must have the secure capability token, which is basically a symmetric
key. When using the service, the user must add a MAC signed with that key.
While it offers resource constrained access control, it is burdensome to apply
fine grained authorisation decisions due to the requirements of many keys, and
the disclosure of one user’s keys requires a rekeying of all the capabilities to
which he had access. Additionally, the security measure must be added at a
language/interface level, breaking the transparency requirement.

Alternatively there have been many proposals using asymmetric cryptography
approaches. One subset proposes to use boom filters to verify signatures
[96]. Other related work proposes Authenticated Querying, where messages
are signed with a certificates issued from a single network CA [7], or ring
signature authentication [45]. While the asymmetric key schemes offer
multi-user authentication, they are often too heavyweight for efficient use
in constrained networked embedded systems. Most schemes also do not offer a
clear management infrastructure allowing evolution of access rights, or neglect
authorisation altogether.

An often used access control system for user authentication in back-end
systems is Kerberos [81]. In Kerberos, a user who wants to use a service
must first authenticate himself with the Authentication Server. The way this
authentication happens is very extensible, but can take the form of a simple
username-password combination, credentials or other authentication methods.
If authenticated, the Authentication Server returns a Ticket Granting Ticket
(TGT). Using this TGT, the user can then send a request to the Ticket Granting
Service (TGS), requesting access to a specific service. The TGS then returns a
client-service token, and the client-service key. The user can then authenticate
himself to the service using the client service token, and encrypt his ensuing
communication with the client-service key. While this approach offers a lot of
potential, it does pose significant overhead when deployed in larger organisations.
For example, the default token size in Windows 7 is 12000 bytes, which for
some organisations is even not enough to encode everything.
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3.2.5 Secure Service Usage

During the application runtime phase, multiple applications of different owners
are concurrently operating on embedded nodes. To ensure that no single
application or user uses too many of the node’s limited available resources,
either accidentally or intentionally, it is necessary to monitor these applications
and users, and in case of violation, enforce resource restrictions. Additionally,
the owners of the nodes often want to log the resource usage of users and
applications, in order to bill the different users for their actual service usage.

The state-of-the-art with regards to application service usage monitoring
and enforcement can be divided in two main categories [17]: 1) active node
monitoring, where the embedded system monitors itself, and 2) passive node
monitoring, where a secondary system monitors the network. The currently
available solutions however have significant drawbacks in the proposed multi-
party ecosystem, and seldom offer resource limitation policy enforcement.

A number of active monitoring solutions for distributed networks is currently
available. A prototypical solution is the Simple Network Management Protocol
[13]. This is the current standard solution for many kinds of networks. It
allows a user to request information such as monitoring data from networked
devices. The cost of this approach however is significant, since it is not optimised
for constrained devices. A solution that is targeted to embedded devices is
Sympathy [94]. This system is mainly used for debugging and allows fine-grained
collection of different metrics such as next hops, neighbours, uptime, etc. While
it offers many tools to debug a system during testing, it does not offer any
infrastructure to perform fine-grained monitoring and enforcement of application
services.

Passive monitoring has often been proposed for networked embedded systems,
since this reduces the burden on the nodes which perform the actual application
functionality, and can be deployed as and when needed. Most approaches
operate by having a secondary network of nodes in the environment, which
monitor all traffic, interpret messages and relay them back to a central server
which does the processing. Current solutions exist which either use an Ethernet
infrastructure [64] or Bluetooth [6]. While these approaches can indeed monitor
embedded networks without any node overhead, they do require the deployment
of a costly and redundant secondary network, cannot and should not be able
to decrypt end-to-end encrypted messages, cannot detect transmission issues,
cannot monitor the service usage of the application components, and have issues
with node mobility. For these reasons this thesis considers passive monitoring
to be unsuited for the targeted functionality.
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3.3 Summary

Related work has proposed some partial solution for modelling stakeholder
security requirements, and application level security policies. Much related
work exists on creating different secure node subsystems, such as secure
network initialisation, secure application deployment, or secure application
communication. Yet currently, no comprehensive embedded node security
framework has been proposed offering 1) a set of abstractions to express and a
framework to enforce application owner, platform owner, and network owner
security requirements, and 2) a secure node system that offers secure network
initialisation, code deployment, node management, application communication,
and application service usage. Neither has it been shown that such a secure
node system, supporting shared usage, can be created on top of the class of
resource constrained embedded platforms.






Chapter 4

Architecture

This chapter provides an architectural overview of the distributed security
infrastructure. The security infrastructure consists of 1) the end-user tool, 2)
the application owner server, 3) the platform owner server, 4) the network owner
gateway, and 5) the embedded node, as shown in Figure 4.1. The rationale
behind this, is that each role has a server which stores the data model for
that role, and executes the necessary continuous processes. These servers are
managed by the end-user, and manage, monitor, and receive data from the
embedded nodes. This modularisation allows a party to instantiate the servers
for those roles that it wants to support. Next, this section lists the structure
and responsibilities of each of these systems. Finally, this section details the
required security modules on the embedded node to secure node communication,
and provides an example scenario detailing how these modules interact based
on the smart logistics use case.

4.1 End-User Tool

The end-users must be able to detail their requirements and functionality for
the different roles that the end-user wants to take on. For this purpose, an
end-user tool was developed. The tool is comprised of three sub modules:
1) the application owner module, 2) the platform owner module, and 3) the
network owner module. Each module can potentially be isolated in its own
application, however, to ensure the client only has to install one application
onto his system, the end-user tool bundles the functionality of all three modules.
In this architecture, the tool is a single stand-alone application, but it would be
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Figure 4.2:

“ServerMgt | compCreate | appCreate | appAssign | noinfo | eventinfo | cmd | secPolicy | remUserProfile | IclUserProfile

edit
userName
applicationName
instanceName
applicationTargetstate
applicationTargetNetwork
verificationinterval
ensureversion

InstanceDescriptor

freeController

freeController

active

1

3600

true

[ 2
O | add
3| componentname
assignmentName
—| assignedstate
nodeMac
nodeld
nodelp
nodeType

deleteonNetworkLeave
deleteonAppTimeout
assignment

nr

edit ] [

find node

add

oK cancel

ComponentAssignment

587306491
undefined

false
false

value

remove move

edit ] [ add
import existing deployment
import new application
reload application
clear all

remove [ move
export deploy descriptor
update component implementation
clear deploy descriptor
view app info

load from server

save to server

update app to server

delete from server

verify

] [
] [
] [
] [
] [
] [
] [
] [

verify

Screenshot of the current implementation of the end-user tool.

possible that the end-user can just browse to a server, and perform the required
actions in a web based client. In that case, each module would then be the
website that the user retrieves from the relevant server. This section will now
detail the features that each module must support, based on the requirements
listed in Chapter 2. Figure 4.2 shows a screenshot of the current implementation
of the end-user tool.

The application owner module must allow users to easily create, deploy, and
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remove applications. This consists of the following duties, listed in the order of
the proposed application lifecycle:

1. Specify which platform owners and network owners are trusted to use the
required resources, and specify the necessary security policies.

2. Create, import and export reusable components and applications.

Get node information from trusted network and platform owners.

Plan and verify the application deployment and select on which nodes

the application should run. The module must assist the user during this

process, automating node selection based on user requirements.

Store the deployment plan on the application owner server.

View the current application state.

Change the deployment plan based on updated requirements.

Remove the application.

=

© N>

The platform owner module must allow users to manage the platforms they
own. This consists of the following duties:

1. Maintain a node repository which for each node describes which services
the node provides, the installed keys and other security information.

2. Specify which application owners are allowed to use which services, at
which cost, and with which limitations.

3. Specify which network owners are trusted.

The network owner module must allow users to manage the networks they
operate. The user must be able to:

1. View current available nodes in the network together with owner.

2. Set cost, requirements, and security level of the network.

3. Specify which platform owners have access to the network.

4. Specify which application owners have access to the node repository.

The end -user tool must assist the user in expressing his security requirements
based on domain specific abstractions. Next the tool must encode these
specifications in a machine-readable format, such as JSON or XML, and store
them on the relevant owner server for storage, processing and enforcement.

4.2 Application Owner Server

The application owner server consist of 1) the application manager which
manages the applications which are operated by the application owner, 2) the
policy repository, which stores the application owner’s policies, preferences and
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Figure 4.3: Overview of the Application Owner Server.

application templates, and 3) the data repository, which stores the application
data provided by the embedded nodes, as shown on Figure 4.3.

The application manager is responsible for managing the applications the
application owner wants to deploy. This consist of four duties: 1) verifying
that deployments are feasible and committing the application usage of the
deployment to the relevant platform owners, 2) deploying the necessary code,
configuration and parameters on the required nodes, 3) continuously verifying
that the application is still in the desired state, and 4) cleaning up applications
when the application owner does not need them anymore. To deploy an
application, the application manager will first request the necessary permissions
and access rights from the platform owner server. When cleared, it proceeds
with deploying the application. When a problem is detected, either because
the embedded network changes (e.g. a node reset) or the application owner
changed the requirements, the application owner server will take the necessary
reconfiguration actions to reestablish the desired functionality. If the server is
unable to reach the desired state, it must notify the application owner. When
the application owner wants to delete an application, it notifies the application
owner server. The application owner server then removes all relevant code and
configurations, and notifies the relevant platform owners that the application
is deleted. The platform owner can then gather the relevant monitoring data,
either from database, or recent data from the nodes, and provide the application
owner with a final bill for his usage. The application owner module then reports
this figure back to the application owner, who can pay the cost.

The policy repository stores the general security and trust policies of the
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Figure 4.4: Overview of the Platform Owner Server.

application owner. These policies are taken into account when verifying
applications, and contacting platform and network owners. Second the
data repository must also store the components and generic applications
the application owner can potentially use. The application owner can then
instantiate these applications, and deploy these components when he wants to
establish certain application functionality.

Lastly, the application owner server must contain an application data repository.
One of the goals of embedded applications is typically to gather and process
data. The data storage acts as the data end-point, where the application owner’s
embedded application components can send their data to. The data storage can
then process this data, notifying the application manager in case of potential
management issues, or notifying the application owner in case of application
issues (such as for example a fire alarm). The data storage also provides a data
retrieval service where the application owner can retrieve the data logs and
perform additional processing.

4.3 Platform Owner Server

The platform owner server consists of 1) a policy repository, which stores the
platform owner’s policies with regards to node, network and application usage,
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2) a node usage service, which provides a service for application owners to
request node information, commit their node usage, and consult costs, and 3)
a network connect service, where network owners can report that nodes have
arrived in their network, as shown in Figure 4.4.

The policy repository contains the platform owner’s policies with regards to
nodes, application owners, and network owners. It contains the descriptions
of the nodes, and the current state of the nodes, which consists of the current
location of the node, the currently deployed applications and configurations
present on the node, and the currently available and used resources. The
platform owner’s application owner policies dictate which nodes and resources
application owners can use. Finally the platform owner’s network owner policies
dictate which network owners the platform owner trusts sufficiently in order to
use the network owner’s network.

The node usage service stores the current node usage of the application owners,
and provides the application owner a service to request and commit node usage.
When an application owner requests node information, this service must return
the embedded nodes which are available to that application owner, the currently
available resources, the resource limitations and the associated costs. The
service must also allow application owners to commit and update their node
usage, remove old deployments, and consult the current or total accumulated
cost.

Finally the network connect service provides the network owners a service to
update mobile node locations and instantiate trust relationship between nodes
and networks. This service is used when a new node enters the network of the
network owner. This service enables the network owners to report the new
location and IP address of a given node and can be used to set up a trust
relationship between the platform owner, the network owner, and the mobile
node, by exchanging key material, policies and tokens in order for the nodes to
securely join the network of the network owner.

4.4 Network Owner Gateway

The network owner gateway consists of 1) a policy repository which stores the
network and security policies of the network owner, 2) a network join service
where new nodes can join the network, and 3) a local node repository where
application owners can consult which nodes are in the network, as shown in
Figure 4.5.

First, the policy repository stores the network owner’s policies on 1) network
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Figure 4.5: Overview of the Network Owner Server.

settings such as which network algorithm is used, on which channel, which time
slots etc., 2) network security policies such as the MAC layer security level,
algorithm, and re-keying frequency, 3) user policies such as which platform
owners or third party trust providers the network owner trusts to use its network,
and which application owners are allowed to use the node repository, and 4)
some network meta-information, such as which locations and zones are present
in the network.

Second the network join service is the point of contact when a new node enters
the network. When the node joins, it first contacts the network join service,
and transmits the owner’s identity. The network gateway must then verify that
the party is trusted. Next it must set up a secure connection with the node,
and deploy the necessary network settings and security policies. This happens
through the platform owner server, which is then also notified that the node has
migrated to a new location. Once the security and network setup is done, the
new node can communicate over the network, and potentially to the Internet if
the gateway provides an Internet connection.

Last, the local node repository provides an inventory of the currently present
nodes and their owners. This enables application owners who want to deploy
an application locally on the network of the network owners, to query which
nodes are available, and who they need to contact for more information. The
network owner can potentially filter the available nodes based on the publicly
available services, or known trust relationships.

When application owners want to deploy applications on the network of the
network owner, the application owners need to be trusted by the different
platform owners in the network. In this case, the network owner can act as
a third party trust provider. The platform owners can allow all application
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Figure 4.6: Overview of the Basic Node Architecture.

owners that the network owner trusts, to deploy applications on those nodes
while they are in the network of the network owner.

4.5 Embedded Node

The embedded node is responsible for gathering sensor data, performing local
actuation and computation, communicating the results with other embedded
nodes, sending application information back to the application owner, and
sending application monitoring information back to the platform owner. In
order to be able to handle evolving requirements, such as changes in the
environment, application owners and platform owners must be able to deploy
new functionality onto the node, and manage and change existing functionality.
Additionally they must do so adhering to the security policies provided by both
the application owner and platform owner. The LooCI component architecture
provides the functional support, but currently has no security provisions. This
thesis will take the LooCI architecture, and add the necessary security systems
to enable secure operations. The remainder of this section first details the
LooCTI [51] non-secured node software architecture, next this section proposes 7
additional modules to be added to the node software architecture to enable the
secure operation of the embedded node platform.
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4.5.1 LooCl Node Architecture

The basic node architecture must enable evolvable applications to perform
sensing, actuation, and computation, and communicate the results with other
embedded node systems, or back-end infrastructure. The architecture must
enable evolability of applications and settings. As such, this thesis chose to
build upon the LooCI architecture, which provides a parameterizable component
model which communicates over a distributed event bus, as application model,
because it allows the easy encapsulation of functionality, is easy to reason
over, and allows clear modelling of both required resources and communication
channels. These components perform the sensing and actuation by using
Operating System services which allow reading or setting of digital or analog
signals. These components can then process the data, and communicate the
data over a distributed event bus. The distributed event bus has policies which
specify how an event should be distributed i.e. to which nodes and components
the event should be sent.

The LooCI component middleware supports both course grained and fine grained
evolution. Course grained evolution is achieved by adding and removing code
binaries on the node. This allows entirely new functionality to be deployed
on the node. Fine grained evolution is achieved by either reparameterizing
the components, which changes the functional behaviour of the component, or
changing the distribution policies in the event bus, which changes the way data
is communicated.

The components of the middleware are shown on Figure 4.6: 1) an OS
networking layer which provides basic networking and routing functionality,
2) a deployment module that allows new code to be deployed, 3) a message
distribution module that emulates a distributed event bus by distributing events
to the correct component or node based on event semantics and stored policies,
4) an application layer which contains multiple application components, and
5) a service layer which provides OS and middleware services. Application
components are responsible for interpreting messages they receive and then call
the necessary services to gather information or enact change depending on the
event. The middleware services are responsible for managing the application
components and the message distributions policies. The OS services offer sensing,
actuation, timing, memory access and other services to the components.

This thesis assumes that all nodes can communicate with each other using a
standard physical, data link and networking layer, such as IEEE 802.15.4 and
IPv6/6lowpan. While currently there is still significant research being done in
optimising these layers, there is a clear need for common standards to emerge
in order to enable the advanced sharing and collaborative scenarios this thesis
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Figure 4.7: Overview of the Secure Node Architecture.

proposes. The OS networking layer is also responsible for joining networks and
exchanging MAC layer messages.

While this thesis looks specifically at the LooCI middleware, the basic
architecture can be extended towards other component based node systems.
A good other example is a component based CoAP or HTTP server which
allows GET, PUT, POST and DELETE commands. A typical example for
resource-constrained embedded networks is the Californium CoAP Framework
[63], which can be considered the low resource alternative of an Apache Tomcat
server. When the server receives a message, from the OS networking service,
it sends it to the message distribution module. This module then looks at
the PATH of the message, and potentially at the command, and delegates the
event to the correct component for event handling, which is called the local
endpoint in Californium terminology. The application component then looks at
the PATH, command, and message content, determines the required operation,
performs the requested actions, and returns a reply. Californium supports the
deployment of new code binaries, which can then register themselves with the
message distribution component for a certain PATH and command.
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4.5.2 Securing the Node Architecture

The secure node architecture must enable the basic node architecture to perform
its duties, and augment this system with security. This thesis specifically focusses
on securing the basic node system in a shared environment. As such, this thesis
has identified five data flows which must be revisited with regards to security
at 2.4.2: 1) network initialisation, 2) application deployment, 3) application
management, 4) application communication, and 5) service usage. To secure
these five data flows, this thesis proposes to augment the basic node middleware
architecture with the following seven middleware modules, which each contribute
to securing one or more of the data flows, as shown on Figure 4.7:

Secure network module: secures the network initialisation data flow,
enables secure joining, and management of wireless network.

Communication interception module: authenticates and encrypts the
application and management messages based on installed policies.

Service interception layer: provides authorisation and monitoring of the
application and management services.

Security data store module: stores credentials, access policies and usage
policies for the different users, applications and services.

Secure deployment module: secures the application deployment data flow
to allow multiple different parties to deploy application components.

Monitoring and enforcement module: registers the usage of the differ-
ent application components and node users, and potentially limits them.

Security management module: allows administrators to add and remove
users, parties, roles, and security policies.

The rationale behind these modules are 1) to add secure communication layers
on top of the current communication layers, 2) change the deployment protocol
with a secure version, and 3) add an authorisation and audit framework based
on the guidelines in RFC 2904: AAA Authorisation framework [115]. The
remainder of this section details for each of these modules their roles and
responsibilities, how they contribute to securing which data flow, and how they
interact with each other.

Secure Network Module

The secure network module secures the network initialisation data flow, and
further behaves as a secure networking layer on top of the normal networking
layer. This is similar to the way WiFi [55] initialises a secure network and
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provides a secure network layer for the layers and applications above. The
module secures network level messages and ensure that outsiders can not read
any messages in network. While technically this module can provide secure
routing and other secure networking services, this thesis considers them out
of scope. Ample related work exists that proposes solutions for these issues,
and the data flows required for these services are not significantly impacted by
sharing.

The main duty of this module is to join the available networks in a secure
fashion. The module will detect when there are new networks in range, and
register the node with the network owner gateway. The network owner can
then negotiate with the platform owner or with the node to set up a secure
relationship and deploy the necessary network settings onto the node. Once the
network is set up and the security key material is deployed, the node can be
considered part of the network, and the secure network module can provide a
secure network layer to the other modules.

Communication Interception Module

The communication interception module provides end-to-end secure communi-
cation for both the application communication data flow, and the management
communication data flow. This can be considered similar to the way TLS
[28] provides end-to-end security for application level protocols such as HTTP
on top of a TCP network. However, in this case, the module provides policy
driven end-to-end security. To gain a clear understanding of the duties of this
module, the communication interception module is divided into two sub-modules,
the application communication module, and the management communication
module. They are however encapsulated in a common wrapper that identifies
which type of event arrives at the communication interception module based on
event meta-data, and then delegates it to the correct sub-module. Both also
use the same cryptographic services to encrypt and decrypt events.

The application communication module secure the application events. It does
so based on the policies set by the application owner or platform owner. The
module distinguishes between four different policy levels: 1) not secured, 2)
integrity protected, 3) authenticity protected, and 4) confidential. The module
must be able to apply the necessary policies to outgoing traffic, doing the
necessary cryptographic operations, and be able to require certain incoming
communication to have a certain level of security, depending on the type of the
data. The module must enable new policies to be added for both incoming and
outgoing traffic, change keys, and remove outdated policies.
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The management communication module secures the management communi-
cation. This communication must always be authenticated and authorised,
to prevent anyone from accidentally or intentionally turning off management
security. The module must be able to verify that a message is actually sent by a
user. All incoming and outgoing messages must be encrypted and authenticity
protected, to ensure that inspection information cannot be disclosed, nor that
messages can be altered in transit. The management communication module
ensures that all management messages sent up to the message distribution
module are authentic, which is necessary for the Service Interception Layer to
enforce authentication policies.

Service Interception Layer:

The service interception layer is the Policy Enforcement Point: it enforces that
only an authorised entity can access services, and as such provides security
for the application runtime data flow, and the application management data
flow. However, depending on the flow which is secured, and the service which is
protected, the service interception layer will have to provide different operations,
and a different type of proxy is inserted, based on the type of service. For
application services, a service proxy is inserted, for management services, a
manager proxy is inserted.

The service proxy monitors and limits the service usage of application
components. These are components that provide application functionality
to the application owner. The service proxy ensures that only components
that are allowed to access the service, are able to do so, that the service
usage is within policy limitations, and that the usage is reported. When a
component requests using a service, the service proxy contacts the monitoring
and enforcement module. The monitoring module consults the platform owner
policies and previous usage. If the component is allowed to use the service, and
ample limit is available, the node usage is allowed. When the service returns,
the proxy logs the resource usage with the monitoring module.

The manager proxy authorises, monitors and limits the service usage of users
accessing node or middleware management services. The manager proxy ensures
that only authorised users can access management services, and that the usage is
logged and within limits. It does so similarly to the service proxy: when a request
is executed by a management component, the manager proxy checks on behalf
of which user the management event is executed. The user’s authorisation is
validated, and the monitoring module is consulted to ensure that ample resources
are available. If allowed, the request proceeds. When the request returns, the
resource usage is sent back to the monitoring module. This module depends on
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the Communication Interception Module to ensure only authenticated message
arrive at the management components.

Security Data Store

The security data store is the Policy Information Point of the authorisation
framework: it is responsible for storing the information and policies with regards
to authentication, authorisation and audit. This is comprised of: 1) the necessary
data for authenticating and authorising users, such as their IDs, their access
rights, and their key material, 2) the monitoring data of users, 3) the access
rights of the different application components, and 4) the monitoring information
of the different application components. This information is provided by the
service interception layer, which provides user and application monitoring data,
the secure deployment module, which provides application limitation policies,
and the security management module, which can manage the installed users
and application policies. The data in the security data store is used to decrypt
and verify messages in the communication interception module, and is used to
perform access checks in the service interception layer.

Note that the security data store is not a large database of text based XML
policies, but rather a small data store of binary policies and compressed
information stored in the RAM of the embedded node.

Secure Deployment Module

The secure deployment module ensures that only approved code can be deployed
onto the sensor node. This module basically replaces the non secure deployment
module by adding security to the deployment protocol. The secure deployment
module also provides the initial limitation policies of newly installed applications
components to the security data store. This includes which services are allowed
to be used by the application component, and any potential service limitations.

The secure deployment module operates based on a token system. Any party
that wants to deploy an application component, must first prove that it is
allowed to use the deployment service, by sending a deployment token. This
deployment token must contain the identity of the owner of the codebase, the
allowed services, any service limitations, a time limitation of the token, a time
limitation of the deployment and proof that the deployment of the code is
approved by the platform owner. The token deployment system allows for
secure offline deployment. The application owner must be able request the
permission to deploy beforehand, and then later use the token offline.
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Monitoring and Enforcement Module

The monitoring and enforcement module is the Policy Decision Point of the
authorisation architecture [115]: it provides the central decision module where
monitoring data is gathered, and service limitation decisions are made. It
ensures that no component is able to use excessive amounts of memory or CPU,
nor able to read sensor resources too many times, causing too much energy
usage. The module offers two services: a service monitoring service, and a
policy enforcement service.

The service monitor receives information from the service interception layer
about which applications and which users are using which services. This service
then stores this to ensure it is available for the policy decision service. This
information is also sent to the platform owner in order to enable charge-back and
provide node usage visibility. The data acquisition part must be customizable
based on the platform owner requirements. Some platform owners might require
that all resources are monitored, at a slight cost to additional storage and
computation resources. Other platform owners might require that only a small
subset of resources are monitored, or none at all, to maximally preserve the
resources available. It should also be possible to specify aggregation policies, so
only aggregated data is maintained.

The policy enforcement services decides whether a new request to use resources
is allowed. When the service receives a request from the interception layer
whether or not to allow a certain call, it must consult its policies and runtime
information: it retrieves the relevant policies from the security data store, checks
that a component or user is permitted the resource. If permitted, the engine
checks that the user or component has not yet used too many of that particular
resource by querying the stored monitoring data. If there is still sufficient buffer
for the request to happen, the request is permitted.

Security Management Module

Finally the security management module is the Policy Administration Point:
it is responsible for managing and inspecting the different security modules.
The management module allows users to 1) add, edit and remove users and
permissions on the platform, 2) inspect and edit the service limitations of both
users and components, 3) inspect the current usage of applications and users,
and 4) add, edit or remove communication policies with regards to different
application level data flows. The security management module is thus basically
a service that enables authorised users to query and modify the data and policies
contained in the security data store.
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4.6 Example Scenario

To clarify how the different modules interact with each other, this section
presents a simple yet typical embedded network scenario, inspired by the
previously discussed smart logistics use case. In this scenario, the harbour
customs authorities want to monitor the location of all containers. To do
this the harbor customs will deploy a location calculation service on all smart
containers present and use radio triangulation to calculate the current location
based on static beacons.

This scenario showcases multiple parties sharing a common infrastructure. The
harbour customs want to deploy an application on a shared network, which
makes them the application owner. The harbour owner provides a network for
all the containers, which makes him the network owner. Finally the logistics
providers who own the containers will provide the actual platform, which makes
them the platform owners.

When looking at the larger picture however, the scenario becomes more complex.
The logistics provider has applications of his own running on his sensor nodes,
and potentially also wants to use services of other containers around his
containers, making him also an application owner. The harbour owner will also
have some static embedded nodes installed to monitor the harbour, making him
also a network owner and platform owner. The customs officers can then use
these static nodes of the harbour to provide the necessary beacons, as shown on
Figure 4.8. The harbour owner might then too want to monitor the state of the
containers, so he too installs an application on the shared platform. However,
to provide a clear example, the remainder of this section only looks at the
simplified and isolated container localisation scenario. The remainder of this
section goes through the different stages of the lifecycle as identified in Section
2.3 and identifies how the different security modules identified in the previous
section interact with each other.

4.6.1 Policy Declaration

The first stage is the policy declaration phase. In this phase the different
parties (harbour customs, harbour owner, and logistics providers) must specify
which parties they trust. The harbour customs (application owner) specifies
which logistics providers (platform owners) he trusts, and that he trusts the
harbour authority (network owner). The harbour authority must specify a trust
relationship with the harbour customs, and the different logistics providers, and
must specify to which extend the logistics providers can use his network. Finally
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Figure 4.8: Overview of the harbour scenario.

the logistics providers must model his nodes, and their available resources, and
specify that the harbour customs is allowed to use the services of his nodes.

After a user enters these specifications in the end-user tool, he saves them
on the respective server (network owner gateway, platform owner server or
application owner server). Naturally the connection will be secured: for these
interactions, standard Internet security protocols such as TLS or IPSec for secure
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communication and Kerberos or Shibboleth for authentication and authorisation

can be used. Once the policies are stored on the server, the other parties can
retrieve the policies, and the policies can be checked when other parties ask

permission to use certain node or network resources.
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Figure 4.9: Example Localisation Application.

4.6.2 Application Creation / Acquisition

Second, the harbour customs must either create or purchase the localisation
application. This localisation application will be comprised of different
components which will communicate with each other. This case proposes
a simplified localisation application which is comprised of the following
components, as shown on Figure 4.9: 1) a beacon components, located at
multiple fixed locations in the harbour, which send out timed and localised
beacons signals, 2) a localisation component which is deployed on the asset to
localize that listens for beacons, calculates the locations, and publishes it, and
3) a location storage component that is subscribed to all localisation events,
and stores them for further processing.

Each of these components must be able to be deployed on multiple different types
platforms, and must specify which exact resources and services are required
for execution. Due to the potential heterogeneity in the different parts of the
network it is necessary that either generic components are available that can
be deployed on multiple platforms (e.g. a java environment), or in case of
embedded devices, a specific component must be available for most common
platforms. Especially the localisation component will likely be deployed on
many different platforms, and as such could likely be required to interact with
multiple underlying platforms. Second, each component must also specify
which resources and services are required from the underlying platform. This is
necessary in order to ensure that the harbour customs can reserve the necessary
resources from the different platform owners, and that it can plan in advance
on which nodes it can or cannot deploy the application.

4.6.3 Network Setup

Next the network must be set up. At the initialisation of the network, the
harbour authority will make a central gateway available, where new nodes will
be able to connect to in order to get Internet access. When a new container
enters the harbour, the embedded nodes can start the network setup, as shown
on Figure 4.10. Each node will contact the gateway, notifying it that it is
present, which node it is, and who its owner is. The gateway will then verify
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that the owner of the node is trusted, based on previously entered policies. If
trusted, the gateway will contact the logistics provider notifying that the node
has arrived. The logistics provider verifies that the gateway is of a trusted party,
and provides the party with a token or credentials that the gateway is trusted.

Next the gateway can use these credentials or this token to contact the secure
network initialisation module and deploy the network key and other network
settings onto the embedded node. Once done, the node is considered part of
the network, and is added to the network owner’s node repository. The network
owner then also notifies the harbour customs that a new container node has
arrived.

4.6.4 Application Instantiation

The harbour customs server is notified that a new node has entered, and
reconfigures his localisation application with the new node. The server contacts
the logistics provider’s platform owner server to request which services are
available for the localisation application. The logistics provider server and
harbour customs server mutually authenticate each other and negotiate policy
and security requirements based on previously entered policies. For example the
logistics provider requires that all location data of his nodes must be encrypted,
while customs would satisfy for authentication only. This negotiation ends when
the harbour customs and logistics provider agree on the component deployment
and security context (location is encrypted, beacons authenticated). Once
agreement is made, the harbour customs receives a token from the logistics
provider which he can use to contact the secure deployment module and deploys
the localisation component on the embedded node.
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Figure 4.11: Component deployment data flow.

4.6.5 Application Enactment

The harbour customs sends the security token to the container node’s secure
deployment module, and deploys his code binary as shown on Figure 4.11.
The node verifies that the deployment request is authorised by checking the
deployment token. After the node received the component, the node verifies
that the component is authentic and authorised. Once the component is verified,
the node install the component in its runtime environment. Next the customs
officer is installed as a user of the platform, so he can manage his application
component. The harbour customs then sets up the necessary configurations,
such as the current beacons, the subscription for the node location messages
and security channel information: key material to authenticate beacon location
messages and to encrypt the node location messages as shown on Figure 4.12.
Once this is done, the harbour customs starts the application. To enact all
these management operations, the harbour customs contacts the node using
his credentials and manages the node using reconfiguration requests. All these
requests are encrypted, authenticated and authorised.

4.6.6 Application Runtime

The final phase is the Application Runtime phase. During this phase the
distributed application components communicate securely with each other. The
system monitors the components’ resource usage, and the users’ platform usage,
and if necessary the harbour customs can reconfigure the components to react
to changing requirements.

Application communication Once the component is running, it will receive
messages from beacons, and send messages to the harbour customs. Each
beacon message is authenticated by the application communication interceptor
when coming from the secure network layer as shown on Figure 4.13. The
interceptor drops all non-valid beacon messages. After interception the beacon
message is dispatched to the application component. This component then
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Figure 4.13: Application communication data flow.

periodically calculates its location, and sends out the node’s location using
a node location message. This message is then sent to the harbour customs.
The application communication interceptor again intercepts this message and

encrypts it, enforcing the outgoing application security policy.

Application monitoring The monitoring frameworks monitors and limits the
memory and processor usage of the component, based on deployed resource
limit policies, as agreed upon in the contract. The monitor component tracks
node service usage by using the service interception proxies as shown on Figure

4.14 and ensures that the allowed limits are not surpassed.
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4.6.7 Application Removal

Once the container leaves the harbour, the logistics provider or customs removes
the component and all associated policies. This frees up the used resources
for other future applications. All removal and clean-up commands are again
authenticated and authorised.

Once all components have been cleaned up, and final node usage data has been
acquired, the logistics provider can potentially charge the harbour customs for
the node usage. However, since the harbour customs can offer the localisation
service to the logistics provider, the logistics provider might not require any
payment.

4.7 Summary

To summarize, this section presented the architecture of the SecLooCI secure
embedded network framework. It first listed the responsibilities of the five
major entities in the architecture:

1. the End-user Tool provides users with an environment where they can
express their application and security requirements.

2. the Application Owner Server stores the application and deployment
specifications, monitors the applications, and collects produced application
data.

3. the Platform Owner Server stores and enforces platform owner policies
and current node usage, and provides a node information service for
application owners and network setup service for network owners.

4. the Network Gateway stores and enforces network owner policies,
provides a network setup service for new nodes, and a node repository for
the application owners.
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5.

the Embedded Node executes the requested application behaviour, in
a secure fashion.

Next this chapter proposed a set of middleware modules that ensure the security
of the lifecycle of the embedded applications. These modules are:

1.

the secure network module securely adds the nodes to new networks
and provides a secure network layer.

the communication interception module ensures that all messages
that need to be secured, be it encrypted or authenticated, are done so
based on the installed policies.

the service interception layer intercepts all component requests to
either management or system services, ensures that the application or
user is authorised to do so, and queries the monitoring and enforcement
module to verify usage limitations.

the security data store stores all necessary security policies in a compact
binary format, in addition to the current user and application monitoring
data.

the secure deployment module enables users to securely deploy new
code components onto the node.

the monitoring and enforcement module gathers and aggregates all
monitoring information, and based on stored policies and logged usage,
decides whether requested usage is permitted.

the security management module enables administrators to view and
manage current security policies, user policies, and current usage.

Finally this section presented an example scenario showing how the different
parts of the global architecture, and the node software architecture interact
with each other during the previously presented embedded application lifecycle.






Chapter 5

Security Management
Abstractions

This chapter details the security management abstractions. These abstractions
are used by the different roles to express their policies and requirement. This
chapter first looks at which abstractions are necessary for each role, in order to
create a secure environment. Then it provides an evaluation of these abstractions.
This chapter concludes with a discussion of the abstractions, to show that these
abstractions meet the requirements of all roles.

These security management abstractions are data abstractions which specify the
minimal set of necessary information the different roles must specify in order
for the security framework to operate, and thus provide a simplified interface
to the users. As such, they can be considered a data model of the information
required to be expressed by the different roles. These abstractions represent
just the set of data that must be expressed, typically strings or integer values,
and can be encoded in any machine readable policy or data modelling language
such as XML or JSON. This contribution has been published at the 1st ACM
Workshop on Middleware for Context-Aware Applications in the IoT [72].

5.1 Platform Owner Model

The platform owner is the party that owns the nodes. As identified previously,
the platform owner must specify which application owners and network owners
he trusts, which resources he shares with which application owners, and at what
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cost. This section lists the data model in which the platform owner can express
the necessary policies and information in order to support the requirements.
These abstraction are created and edited using the platform owner module
of the end-user tool. Once complete, the platform owner sends them to his
platform owner server, where they are stored, processed, and enforced whenever
necessary.

The model consists of three parts: 1) the node model which describes the
capabilities, limitations, and current state of the different nodes owned by the
platform owner, 2) the application owner model which describes the permissions
and policies regarding different application owners, their current deployed
applications and their node usage, and 3) the network owner model which
describes the trusted network owners.

The first part of the platform owner model is the node model. This model
describes both the static and dynamic aspects of the nodes, as shown on Figure
5.1. The static information of the model contains an identification for each
node, which can be a unique ID and/or MAC. Second it specifies the node
type and which resources are available on the node. The type of node indicates
which runtime environment the node supports. This could be for example
an AVR node running ContikiOS, or a Tmote Sky node running TinyOS, or
an OSGi node. This is necessary, since code often needs to be compiled for
a specific platform. Resources represent the infrastructure of the embedded
node, which is available to the embedded applications. Typical examples are
file system, processing, networking, and sensors. Each of these resources can
have associated parameters. These are for example how much of the file system
a component is allowed to use, and how frequent a component can read from
or write to the file system. Each parameter can have unique limits, and can
have a certain cost, depending on the billing model of the platform owner. The
cost can be zero, to model a parameter which application owners can use for
free within limits. Resources can also be annotated with additional meta-data,
which allows extensions to be added.

The dynamic information of the model contains the current IP and location
of the node, and the current resource usage of each node. The current IP
and location of the node must be updated each time the node migrates. This
can be done during the network initialisation data flow, when the network
owner contacts the platform owner to set up the node trust relationship. The
last part of the model is the current resource usage, which details for each
node how much of the limited resources are currently being used. This must
be updated when the application owner requests to deploy a new application
during the application deployment, and when the application owner removes
old applications.
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Figure 5.1: Platform owner abstraction: node model.

The second part of the model is the application owner model, as shown on
Figure 5.2. This model describes which nodes and services are available for the
different application owners, and stores the current deployments, together with
the history of the resource usage. Platform owners can assign nodes to users on
a per node, per type of node, per location or per node group basis. Additionally
this can be assigned to groups of application owners to reduce the overhead on
assigning permissions. Each application owner’s current deployments are also
stored. This includes which components are deployed or requested on which
nodes, and which resources are reserved for these components.

To simplify the application owner model, we propose user profiles. A user
profile is a default collection of limits, permissions and costs. These can be
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Figure 5.2: Platform owner abstraction: application owner model.

specified once, and then assigned to multiple different application owners. We
also propose the following default profiles: 1) an admin profile which has access
to all sensor and actuation services without limits, 2) an actuator usage profile,
which has access to sensor and actuators, with predefined limits, and 3) a sensor
usage profile, which has limited access to all sensors, but not actuators.

The last part of the platform owner model are the network owner abstractions.
These abstractions allow the platform owner to specify the default policies
regarding interacting with network owners, and list all network owners which
are trusted enough so the platform owner is willing use their network, as
shown on Figure 5.3. Policies can be added which specify the permissions of
network owners to use certain additional node resources. The platform owner
can also specify that he by default trusts all potential network owners, except
those specifically blacklisted. Finally the network owner specification must also
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Figure 5.3: Platform owner abstraction: network owner model.

express what the maximum cost is to use the network.

5.2 Application Owner Model

The application owner model specifies all necessary abstractions required for
the application owner. The parts that the application owner must specify are
1) which platform owners are trusted, 2) the generic application compositions
and 3) the instance specific application deployments.

The platform owner model expresses which platform owners are trusted enough
to use in application deployments. This can again be specific platform owners, or
the application owner can specify that it trusts certain groups of platform owners,
or trusts all platform owners which are trusted by a third party trust provider.
Second, the application owner must specify generic application requirements.
These requirements are for example different security requirements for different
event types.

Applications are the functionality that gets deployed on the embedded node and
performs the actual desired behaviour. This thesis wants to establish reusable
applications which can run on multiple heterogeneous platforms and be easily
annotated with security requirements. As such, this thesis proposes to extend
the Service Component Architecture [16]. The extended model is comprised
of three parts, as shown on Figure 5.4: 1) the component specification which
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Figure 5.4: Application owner abstraction: application specification model.

specifies generic components, and as extension to SCA provides the necessary
implementations for specific platforms, 2) the application specification, which
groups the different components, and specifies how the different components
are connected, and 3) the deployment specification, which specifies which
components are deployed on which platforms and specifies security requirements,
which is also an addition to SCA.

The component specification specifies a generic component interface. The
generic component interface expresses: 1) the required and provided interfaces
of the components, specifying which events it will send, and which events it can
receive, and 2) the properties of the component, which are the values which
allow modification of the behaviour of the component.

In order to deploy a component on an actual platform, it needs to have a
code implementation. This is specified by the implementation specification.
The implementation specification links to code binary that can be deployed
on the embedded node. Further the implementation specification details on
which platform the code can be deployed, and which resources are required.
The implementation specification expresses which resources are used, since
the required resources can be very dependent on the platform on which the
implementation can be deployed. The required resources can be parametrised
based on the parameters stated in the component specification. A single generic
component can potentially have multiple implementations for the same platform.
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Figure 5.5: Application owner abstraction: deployment specification model.

During deployment, the deployment framework can optimise which component
implementation to deploy based on the available resources.

The application specification declares the bindings between the different
component interfaces. Non functional concerns can be added. The application
specification can also declare global properties, which links multiple component
properties. When such an application property is set, this application property
is set automatically on all linked components.

Lastly, the deployment specification details the actual deployment. It assigns
different components to different nodes, and can annotate each deployment with
the assignment specific parameters, as shown on Figure 5.5. The application
owner can also specify application properties if available, or specify his own global
properties. Second it can optionally detail which components are connected,
based on the bindings specified in the application specification. Lastly the
deployment specification contains the deployment security specification. This
deployment security specification details which events should be secured with
which level of security. More specifically, for each event type or binding, the
specification must list whether to send it using no security, authenticity verified
or encrypted. The security policies must match the event security policies of
the different platform owners which are part of the deployment, and the generic
event security policies of the application owner.
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Figure 5.6: Network owner abstraction: network model.

5.3 Network Owner Model

The network owner model 1) specifies network policies and data, 2) models the
current nodes in the network, 3) details which parties are allowed to use the
network, and 4) which parties are allowed to use the repository. Figure 5.6
shows an overview of the network owner abstractions.

The network policies specify generic policies with regards to the network. This
can be general security requirements such as the required security for the
networking layer, and the re-keying interval. The network owner can also
specify the different zones and locations present at the network owner’s location.

The network repository contains a list of all nodes which are currently in the
network. Additionally for each node, the current location can be stored, together
with the available resources which can be used by application owners, and the
owner of the node. This enables application owners to easily query the network
owner for nodes suitable for their deployment.

Lastly the network owner must specify which platform owners are trusted to
use the network, and which application owners are trusted to use the repository.
The network owner can add additional policies regarding to platform owners
specifying the cost to use the network. The network owner must be able to
specify platform owner specific rates if necessary. The network owners can also
specify access rules for the repository to certain application owners, for example
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just allow it to query nodes of certain platform owners, or in certain zones.

The network owner can delegate the trust management to third party trust
providers. The network owner would then trust a trust provider, who in his
turn trusts a number of parties. The network owner would then trust these
parties to use his services. Note that the network owner can potentially also act
as a trust provider between application owners who want to use the services of
nodes in the network owner’s network, and the platform owners who own the
nodes in the network.

5.4 Evaluation and Discussion

This section evaluates the proposed models. To evaluate the models, we propose
a typical smart logistics scenario where a logistics provider wants to ensure
the cold chain by monitoring average temperature of refrigerated containers.
First this section details the smart logistics scenario. Next this section looks at
the user effort required to model a simple temperature monitoring application.
Third it looks at the verbosity of the models. Then, the section looks at the
time it takes to validate deployments. Finally this section discusses how the
architecture meets the requirements.

5.4.1 VLogistics Scenario

To evaluate the model, we use a logistics scenario, which was developed in
the context of the COMACOD industrial research project [114] and which
builds on top of our previously discussed smart logistics use case (see Section
2.1.2). In this scenario, a logistic provider wants to monitor the temperature
of his refrigerated container, while it is being transported by the transport
provider, for example by truck. To do this, the logistics provider instruments
his refrigerated containers with resource constrained embedded nodes, such as
an AVR Zigduino node, running the Contiki embedded operating system [31]
and the LooCI component middleware [51]. For more details on the choice
of this platform, we refer to Section 6.1.1. The container is linked to a truck,
with an on-board-unit which runs LooCI on OSGi [84] on top of the Linux OS,
such as for example the one shown on Figure 5.7. This on-board-unit receives
the temperature measurements, aggregates them, and periodically relays these
readings over an Internet connection to the data sink of the logistics provider.

We use LooClI because it offers runtime deployment and easy adaptability, which
is necessary to enable these complex dynamic use cases. The underlying LooCI



84 SECURITY MANAGEMENT ABSTRACTIONS

Figure 5.7: Example of an on-board-unit installed in trucks.

platform should run the node security middleware as presented in the next
chapter, and the detailed overhead of the security middleware is discussed in
Section 6.7. Most of the model however does not necessarily depend on the
underlying platform, and as such can operate independently.

The application thus consists of three components: 1) a temperature sensing
component that runs on the embedded Zigduino node, 2) a temperature
aggregation component that runs on the on-board-unit running OSGi on top
of Linux, and 3) a sensor sink, which we assume also runs an OSGi platform
for simplicity. However, during periods that the container is not connected
to a truck, the aggregator component must run on an embedded node, which
potentially is equipped with its own Internet connection.

5.4.2 User Effort

As first evaluation, we quantify how much these abstractions aid users in
managing their constrained embedded network. To do so, we calculate the
number of actions a user has to take to deploy, change, secure and remove the
previously described temperature application. We first implement the scenario
using the LooCI management console which is currently the default way to
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Table 5.1: User effort to enact the system. Case one is a limited deployment of
3 assignments, case two is a larger deployment with 201 assignments.

LooCI | Tool | Reduction
NrAssignments 1 6 6 0%
NrActions enact 1 28 10 64%
Time to enact 1 (s) 160 45 71.9%
NrAssignments 2 501 501 0%
NrActions enact 2 2403 | 505 79.6%
Time to enact 2 (s) (est) || 14000 | 4000 71.4%

interact with nodes running the LooCI component middleware. We compare
these readings to the work needed when using the end-user tool. Results are
shown in table 5.1. We evaluate two cases: case one is a deployment of 4
temperature sensor components, an aggregator component, and a data sink
component. Case two is a scaled up version of case one with 400 sensors, 100
aggregators, and 1 data sinks, which represents the scenario presented, but then
for an entire fleet of refrigerated containers. We deployed this onto the AVR
Zigduino sensor nodes, OSGi on-board-unit and back-end server.

Using the LooCI console, enacting case one requires 6 deploy, 6 instantiate, 6
activate, and 10 connect actions, totalling 28 actions, which takes a user ca.
160s. These actions are command line, so the user must ensure the correctness
of each command. To enact this case using the tool requires: import application
info, retrieve network info, 6 assign actions, one verification, and one deploy
action. This results in 10 actions (64%) and takes ca 45s. To enact case two
using the console requires 501 deploy, 501 instantiate, 501 activate, and 900 wire
actions, totalling 2403 actions, taking an estimated 14 000 seconds. To enact
case two using the manager requires again two import actions, two actions to
verify and deploy, and 501 assignment actions, totalling at 505 actions, which is
only 20% of the default LooCI case. This takes an estimate of 4000 seconds.

We identify three change scenarios: 1) change a property of an existing
deployment, for example because new regulations require higher sampling rate,
2) relocate the sink, for example because of a server upgrade, and 3) remove the
system, for example to upgrade all applications. Results are shown in table 5.2.
For classic LooClI, each property that has to be changed, requires one command.
To set a property using the manager requires 2 actions (change property and
commit). To change the sampling property of all 400 sensors requires 400
actions in the console case, but only 2 actions in the tool. The second evolution
is to move a component from one node to another. To relocate the sink in
the simple case requires 6 commands in the console, and only 2 actions in the
tool. To relocate the sink in the second case requires 303 commands using the



86 SECURITY MANAGEMENT ABSTRACTIONS

Table 5.2: User effort to change the system.

LooCI | Tool | Reduction
NrActions change property 1 6 2 66.7%
NrActions change assignment 1 6 2 66.7%
NrActions secure 1 20 4 80%
NrActions remove 1 6 1 83.3%
NrActions change property 2 400 2 99.5%
NrActions change assignment 2 303 2 99.3%
NrActions secure 2 2500 4 99.8%
NrActions remove 2 201 1 99.5%

console, while still only 2 commands in the tool.

To secure a deployment using the console, the user must manually add the
necessary encryption and decryption policies and key material on each relevant
node. In the console, the user has to manually enter the key, which is hard to
repeat for the user. The exact commands the user has to perform is to add an
encryption channel and an outgoing encryption policy on the outgoing node,
and add a channel and an incoming encryption policy on the receiving node.
This has to be repeated for each binding between components. This results in
20 actions in the first small case, and 2500 actions in the second larger case.
Using the management abstractions, the user just has to select the preferred
level of security for each data type. Since there are 2 types of bindings present
in the example, the user just selects for each event the correct level of security,
which results in 4 actions.

To remove a deployment using the console, the user must manually remove each
component, requiring 6 actions in the first case, and 501 actions in the second.
The owner also does not necessarily know who has deployed which component,
and which components are currently in use, causing potential issues. The tool
maintains a list of assignments which enables traceability, and removing the
entire deployment in a single action.

5.4.3 Modeling Language Evaluation

This section evaluates the size of the abstractions of the temperature application,
as presented in Section 5.1. Evaluated encodings are: component description,
application description (Fig. 5.4), and owner description (Fig. 5.2). The
encodings are evaluated based on the size. While this evaluation is not an ideal
evaluation criteria, it does allow for some simple comparisons, and indicates
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Table 5.3: Overview of the sizes of different descriptors.

Size
Implementation description Contiki 1332B
Implementation description Java 2327B
Component description 7.0kB
Application description 10.4kB

Deployment description (201 assign) || 116.7kB
Security description (2 event types) 301B
Network description 3500 nodes 22.5MB

how much is needed to store and transmit the different descriptors. Table 5.3
gives an overview of the sizes of the different descriptors.

A component description for the aggregator component is comprised of: 2
implementations (OSGi + Contiki), 1 interface, 1 property, and 4 resources
(ROM, CPU, RAM, sensor) requires 6 952 B. Each implementation increases this
with 2000 to 3000 B, depending on binary size. An application description for
a temperature monitoring applications consists of 3 components: a temperature
sensor, aggregator, and storage component. Both the sensor and aggregator
have two implementations. The total application requires 10412 B.

For an evaluation of the deployment description, we modelled the previous
application of 201 component assignments, each with 1 property assignment,
and 2 global application assignments. This produced a deployment description
of 116,7kB. The associated security description which specified the security for
the temperature and the aggregated temperature data flow, was 301 B.

Discussions with H.Essers, a logistics service provider in Flanders, provided a
realistic application context. All these nodes have limited processing, memory
and energy resources. The total node list, containing 3500 nodes (1200 trucks
and 2300 trailers) with on average 7 resources (file service, data reception,
production, processing, and 3 actuators / sensors), has a size of 22.5 MB.

This evaluation shows that scaling is manageable even for a large number of
nodes and different implementations.

5.4.4 \Verification Evaluation

This section briefly evaluates the time required to verify deployments on a Dell
Latitude E6500 (Intel Core2 P9500 2.53 GHz, 4 GB RAM). The verification
of 3 assignments takes on average 0.6 ms, and of 1000 assignments, 252.15
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ms. Since the time required to verify is about equal to timePerAssignment x
numberAssignment x avgNrResourcesPerNode x avgNrParamsPerResource,
the time to verify scales linearly with the number of assignments.

5.4.5 Discussion

This section discusses how the requirements introduced in Section 2.4.1 are met
based on the proposed abstractions, user tool and the presented evaluation.

Platform owner requirements: The platform owner can express his
embedded node limitations and usage restrictions using the platform owner
model (5.1). This is needed for example in the scenario, where the logistics
provider needs to be able to limit the capabilities and available resources of both
the transport provider, and cargo owner. These limitations and restrictions
are then deployed as binary policies onto the embedded node. The SecL.ooCI
middleware then enforces these policies on a node local level. The next chapter
will show that the necessary security middleware can be deployed even in very
resource constrained embedded networks.

Reusable application The application modelling language enables developers
to create reusable applications, through the assembly of component functionality,
as shown in Section 5.2. Very often, application owners will need to deploy
the same application on multiple different systems. Take for example the
logistics provider who wants to deploy the temperature tracking application
on all his nodes. The application owner models enable the application owners
to instantiate these applications repeatedly onto an embedded network, and
parametrize the system as needed. The size of these applications is small enough,
so they are fast to exchange between users or store in application repositories
as seen in Section 5.4.3.

Scalable By distributing data across all parties, the solution becomes quite
scalable, and prevents a single point of failure. For example in the smart logistics
scenario, there will potentially be millions of containers producing data. By
inherently distributing the architecture over the different parties, the solutions
becomes inherently more scalable. Additionally, if for some reason one party or
system fails, the other systems can continue to operate. If all information was
centralised, a fault in that server would effectively make the embedded network
unusable. Currently, if one platform owner fails, the nodes of other platform
owners remain available. If one application owner fails, the applications can still
keep on running, and the applications of other application owners can continue
to operate and be monitored.

User assistance The tool can assist the during the entire application lifecycle.
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During the policy declaration phase, the tool allows users to easily encode their
policies. During the application instantiation phase, the tool allows the user to
select the preferred node from a list of only possible nodes. The tool further
offers a list of possible values for the user to select from wherever possible, so
the user can only select valid items. If impossible to offer a list, the user just
has to fill in the string or number value in a textbox. A user will never have
to write an entire XML specification himself, but the tool generates this based
on user input. The tool evaluation (5.4.2) shows that for sizable embedded
networks, the effort for deploying, securing, changing and removing applications
is reduced significantly. The tool also validates the assignments, ensuring that
the user does not use too many resources of any node or platform owner, and
calculates estimated total cost.

Previously it was often up to the user of the network to keep track of all installed
hardware, while now the system can keep track. Ideally this approach can
be extended to a system where the user only needs to declare his top level
monitoring requirements, which are then automatically mapped to a suitable
deployment. The current node models and application models provide parts of
the necessary information to perform such mapping, but we currently consider
this out of scope of this thesis.

Node Type Transparency By separating implementation from component
description, users assign functionality to nodes, without having to manage
implementations. Component developers can provide multiple implementations
for the same platform, so the tool can decide which implementation to deploy
based on available resources. Research on when to make such trade-offs is
future work. The scenario for example shows that the aggregator might need
to run on the on-board-unit of the transport provider, or on a node in a
container, depending on the current state of the network. These platforms
are not necessarily the same. However the application owner wants this to be
handled transparently.

Reliability of Application By specifying the target deployment, the system
can autonomously verify that the application is in the desired state, increasing
reliability of the application. The system can verify periodically, or can monitor
the output of the sensing application, ensuring that all components send data
with their assigned sampling frequency. The prototype shows that when a node
resets, the system is restored in the correct state after the verification period
expires. This can include redeploying code or resetting properties. However, the
more frequently you verify your application, the more communication overhead
you create. In embedded systems, it can occasionally happen that nodes reset,
either by environmental conditions, or bugs in the software. Being able to
quickly return to an operational state with minimal user effort, greatly reduces
the burden on the application owner.
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Evolvability of Application Real world deployments often see periodic
changes in the requirements or the context of an application deployment. For
example in a logistics scenario, the truck carrying the container will change
fairly often. Additionally, depending on the cargo, the logistics provider might
need to change the sampling rate, or temperature alarm boundaries, which also
happens fairly frequently. By having a declarative model associated with the
additional security and functional requirements, the system can be quickly and
securely adapted to meet these changing requirements.

5.5 Summary

This chapter detailed the security and application management abstractions.
These abstractions are used by the different roles to express their policies and
requirement:

o The platform owner abstractions allow the platform owners to express: 1)
the resources and state of his embedded nodes, 2) the policies and current
usage of the application owners, and 3) the trusted network owners, and
network policies.

e The application owner abstraction allow the application owners to express:
1) their generic components, 2) the implementations which realise the
components on the nodes, 3) the applications which consists of multiple
components connected together, 4) the deployments which specify which
component is deployed on which node, with which parameters and
security requirements, and 5) the general security and trust policies
of the application owner.

e The network owner abstractions allow the network owners to express: 1)
the policies and cost with regards to using the network, 2) the nodes
currently in their network, 3) the trusted platform owners, and 4) the
trusted application owners.

Finally, this chapter provided an evaluation of the provided abstractions, and
concluded with a discussion of the abstractions, to show that these abstractions
meet the requirements of all roles.



Chapter 6

Security Middleware

This chapter describes the implementation of the different systems of the
SecLooCI node security framework that implements the different architectural
modules as discussed in the previous chapters. First this chapter looks at
the underlying embedded node platform on which the different systems are
implemented, and lists the assumptions which were made during the design and
implementation of the different prototype systems. Next this chapter presents
an implementation for a secure subsystem running on these embedded nodes for
each of the five data flows. For each subsystem, the implementation is evaluated
in terms of memory overhead, processing overhead and communication overhead.
The node framework architecture and validation have been published in the Ad
Hoc Networks journal [70].

6.1 Underlying Platform and Assumptions

In order to create the framework, we made certain assumptions. Firstly, the
framework assumes that embedded nodes always start in the care of the platform
owner. When the platform owner has the embedded nodes, he can securely
deploy initial key material. These keys are used later to establish confidentiality
and authenticity for different kinds of communication, so it is crucial that this
deployment happens securely. This initial key material consists of one or more
long term secret symmetric keys.

We made the choice of only using symmetric key encryption in the development
of the security middleware. This significantly reduces the amount of memory and
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processing needed for protocols and key material compared to asymmetric key
cryptography. This will reduce the overhead of the different systems, to ensure
that the produced systems are as light weight as possible. More capable nodes
such as embedded PC’s or smart phones can support asymmetric key encryption.
This enables adaptations of the proposed protocols and implementations, with
different security guaranties. However, the goal of this thesis is to create an
infrastructure that enables sharing of resource constrained embedded nodes,
hence we chose the protocols with the lowest overhead.

The nodes use TCP [91] and UDP [90] as networking protocols on top of IPv6
6LoWPAN based wireless sensor networks, with a 802.15.4 MAC [79] layer.
We chose this setup because first it allows clients, servers and nodes to easily
communicate with each other across the globe, without having to be aware of
the specific embedded network settings. Second, most programmers, developers
and network administrators have decent knowledge of these standards. By
using standard systems, these parties can leverage on existing knowledge to
tackle any potential problems. Further we assume that nodes receive a global
IPv6 address from network owners, potentially using the IPv6 Stateless Address
Autoconfiguration [111]. This then allows any party to communicate with the
embedded nodes. This network setup is not necessary for the infrastructure to
operate: other protocols can be used, yet these protocols would require seamless
integration with the Internet and must provide easy global connectivity.

Lastly the system provides secure node operation, communication and
management. Current node systems offer little to no memory protection. Thus,
when code is deployed onto these embedded nodes, it likely will have access to all
memory of the embedded node. This thesis assumes that either countermeasures
are present on the embedded node to prevent code from performing malicious
actions, or the code is validated pre-deployment. These countermeasures can
be present either in hardware or software. The hardware countermeasures
would prevent over the air components from accessing prohibited memory,
while software countermeasure would be for example code verification or code
modification techniques. The code verification can be done during the planning
phase: when the application owner requests permission to deploy certain code
components, the platform owner can request that the application owner presents
the binary and associated code. This code can then be manually or automatically
verified to ensure platform integrity.

6.1.1 Underlying Platform

The SecLooClI framework secures the LooCI middleware [51], which operates on
top of the Contiki OS [31]. LooClI is a component-based middleware comprised
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Figure 6.1: Overview of the LooCI component middleware.

of an execution environment, a component model and an event-based binding
model. The LooCI middleware currently supports the following platforms:
Contiki on AVR Ravens and Zigduino’s, SunSPOT sensor nodes, Android smart
phones, and OSGi java environments. The LooCI middleware is comprised of
the following parts as shown on Figure 6.1: 1) The LooCI networking layer,
2) the LooCI event manager, 3) the LooCI component runtime, 4) the LooCI
management component, and 5) the LooCI code deployment module.

LooCT uses events as the sole mechanism to communicate between components.
A LooCT event is comprised of: (1) sender address and source component as
part of the UDP header, (2) extension headers, (3) event type, and (4) event
payload. LooCI components are code binaries, which are deployed over the air
at runtime using the LooCI code deployment module. The binaries are then
instantiated into running components. Components are only allowed to interact
with other components through the usage of LooCI events flowing over the
distributed LooCI event bus. The components can communicate either locally
with other components on the same node, or remotely with other components
across the network. Each component can subscribe to typed events or publish
typed events himself. Components themselves are oblivious however to the exact
senders or receivers of those events. This loose coupling promotes component
reuse in different distributed contexts, since there are no hard wired connections
between components.

The event manager implements the distributed event bus. It keeps wiring tables,
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Table 6.1: LooCI and Contiki memory usage.

ROM (B) % | RAM (B) %
Contiki operating system 42 688 32.6% 9 712 59.3%
LooCI middleware 24 942 19.0% 2 644 16.1%
Total unsecured platform 69 630 51.6% 12 356 75.4%
Available on AVR Zigduino 131 072 100.0% 16 384 100.0%

dictating which events of which types from which components have to be sent
where, either locally to another component or remotely to another node. If it is
sent across the network, the event manager transfers the event to the LooCI
networking layer. The networking layer translates outgoing events to UDP
messages, and incoming UDP messages to LooCI events. Reconfiguration and
inspection of the event manager is done by the LooCI reconfiguration manager.
All reconfiguration and introspection of the LooCI middleware is done using
LooCI management events with the exception of deployment of new applications,
which uses an optimised deployment protocol.

For prototyping we use the Zigduino microcontroller platform. This platform
is arduino-compatible and is equipped with an Atmegal28RFA1 [5] 8-bit
microcontroller running at 16 Mhz and 802.15.4 integrated radio. It has 128 KB
of flash memory, 16 KB of RAM memory, and 4 KB of EEPROM. This device
can be considered a prototypical current microcontroller. Additionally it is
supported by both the LooCI component middleware, and the Contiki Operating
System, making it a suitable choice of platform.

The overhead of Contiki OS and LooClI is small, yet significant for resource
constrained environments. Contiki OS requires 42 688 B of ROM and 9712 B of
RAM memory to operate. This includes the ulP stack for networking and other
libraries for memory and sensor management. The LooCI middleware requires
another 24942 B of ROM and 2644 B of RAM on top of the Contiki OS. An
overview of the overhead is shown in table 6.1.

For encryption support, the prototype uses the AVR crypto-lib [1], which
offers software implementations of most popular encryption, authentication
and integrity algorithms such as AES, SHA, and CMAC. The cryptographic
algorithm overhead is listed with each protocol, but these algorithms are reused
across multiple protocols. To get a full detailed overview of the overhead, please
refer to table 6.7 at the end of this chapter.

The test setup used for each subsystem is a single hop network where the
overhead is calculated for a single node. All overhead is measured on a prototype
implementation running on a Zigduino sensor node. We chose this setup for



SECURE NETWORK INITIALISATION 95

ms|

1: hello:M,ComplP, TS {msg}sk
B ——

6: reply

Node entering new Relaying node
network with MAC M |
2: relay hello

5: relay reply
|

4: reply: M {TS,GK}sk ((g))
—_—
-
3: {hello,GK}ss.
Gateway
Back-end server @

ComplP

Figure 6.2: Secure network setup key exchange protocol.

the following reasons:

Many current industrial, real world and research setups only use single
hop networks with very little mesh network, because the ease of setup
and maintenance.

The evaluation setup allows for a clear and easily reproducible test setup.

The goal of the security middleware is to enable sharing on a per node
basis, with users interacting only with a single node at a time. The
middleware does not contain any network wide operations. We thus
believe the best evaluation is to evaluate the middleware overhead on a
per node basis, instead of on a network-wide basis.

There are currently no standard mesh network test setups. Any results
from any arbitrary test setup thus would have very limited to no
comparison value to other experiments. Additionally most large scale
networking results are simulations, which would be hard to compare with
a real world implementation.

Some recent research has shown that single hop networking can be more
energy efficient compared to multi-hop networking, and is definitely easier
to set up and maintain.

6.2 Secure Network Initialisation

The secure network initialisation system MASY secures the network initialisation
data flow on the node. On the node it is implemented by the secure network
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module. Figure 6.2 shows the secure initialisation data flow in detail. This work
has been published at the 2010 IEEE International Conference on Wireless and
Mobile Computing, Networking and Communications (WiMob 2010 [73]).

The basic protocol operates as follows: 1) when a node detects that it has entered
a new sensor network, it sends out a hello message containing the identity of its
platform owner in the form of an IPv4 address, the node’s identifier (his MAC
address) and the timestamp. The hello message is authenticated using the long
term node secret key. This is sent as one message to reduce network overhead.
2) When the network owner receives this message, it looks up whether the
platform owner is known and trusted. If so, it relays the hello message to the
platform owner over a secure connection, with the notification that the node is
now in the network of the network owner. 3) The platform owner validates the
message authentication code based on the identity and timestamp fields. If the
token is valid, the platform owner requests the network key from the network
owner, encodes it in a token containing the identification and new timestamp,
and sends it back to the network owner. 4) The relaying node then sends the
token to the new node, which decrypts and validates the token.

This protocol ensures that only nodes that are owned by platform owners which
the network owner trust, can join the network. This is enforced since if the
network owner does not know or trust the platform owner, he can decide to not
continue with the protocol, effectively locking the node out of the network. The
protocol also ensures that nodes can only join networks of those network owners
that the platform owner trusts. When the network owner contacts the platform
owner, he must authenticate himself. If the platform owner then does not known
or trust the network owner, the platform owner can decide not to create a join
token, which effectively prevents the node from joining the network. While it is
often desired that this trust exists between network owner and platform owner
before joining, it is possible that both parties have a trust by default policy, so
that even if they do not know each other before the node enters the network,
they still allow the node to join the network.

The described process is optimised for resource constrained embedded devices,
and as such a number of trade-offs have been made: 1) encoding the platform
owner identity as an IPv4 address, 2) the identity of the node and platform
owner is broadcast over the network, and 3) the current protocol does not allow
the network owner to change the node settings. These issues can be mitigated
by: 1) allow other owner identifiers, 2) add anonymization to the platform owner
and node identifiers, and 3) instead of deploying the network key, allow the
network owner to manage the embedded node. The protocol does not implement
the proposed changes due to lack of time, and because most changes require
significant additional infrastructure and resources, with little actual gain. The
next paragraphs will detail the logic on why each trade-off was made, and more
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details on potential fixes.

The first trade-off is the IPv4 owner identifier. For the network initialisation
protocol to operate, the platform owner must have a unique identifier which
enables the network owner to contact him. Currently the protocol uses the
IPv4 address of the platform owner’s back-end server, since it offers an easy,
globally unique identifier which can be immediately used by the protocol, and
is efficient to encode. The downside is that it is hard for companies to change
IP addresses. Additionally the address of the server is fixed, limiting potential
cloud migrations etc. Possible alternatives are using an IPv6 address, using
a DNS system, or using a DNS alike central lookup repository, however each
of these has advantages and drawbacks. The IPv6 address allows for larger
address space, but suffers also from limited migration possibilities. The DNS
approach allows for more dynamism, however probably requires larger identifiers,
or requires the setup of a new alternate identifier ecosystem.

The second trade-off is the lack of privacy of the node and owner identification.
The current protocol uses static node identification and owner identification,
which are broadcast unencrypted. This allows passive listeners to potentially
track nodes, and the actions of certain owners. To mitigate this, we propose two
countermeasures. The first countermeasure is changing the node identifier
(its MAC address) at any new network initialisation process. By using
cryptographic key chains, the platform owner can still validate the node ID,
without broadcasting a known ID. However, the network owner still needs to be
able to identify the owner of the node. To mitigate this threat, we propose to
use anonymization techniques for the platform owner by using a secure proxy.
The platform owner ID would be an anonymised ID that a trusted third party
can resolve to the actual owner. The trusted third party can negotiate between
network owner and platform owner, potentially without disclosing the platform
owner identity.

The third and last trade-off is the inability of the network owner to directly
deploy and change network settings. Currently, the protocol deploys a network
key onto the node, to enable access to the network with minimal setup. However,
the network owner might need to deploy additional network settings, such as
routing settings, or network channels. Under the current protocol, the network
owner would have to go through the platform owner repeatedly, or has to
be added as a user to the node. To enable immediate access to the node,
the protocol could additionally deploy a network owner user to the network,
including a user key and user limitations. This would add the network owner
as a user of the node. The network owner could then access the network
management services of the node, changing the network key, and other network
settings. In the current implementation, we decided not to add this, since it
would require additional overhead to set up the network.
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Figure 6.3: Packet format of the MASY Hello message. Signature is signed,
and group key is encrypted with the node unique key, only known to the sensor
node and Platform Owner.

This remainder of this section evaluates the communication, memory, and
processing overhead of the secure network component. This section evaluates
the setup of the secure key material, assuming other policy deployment actions
can be done after the key material has been deployed. The results are compared
to TinySec [58] as reference for an efficient WSN secure network layer. TinySec
is a link layer security architecture designed specifically for resource constrained
environments. It offers a secure network layer, but has no functionality for
network initialisation. However, since almost all embedded systems security
protocols operate under the assumption of pre-shared keys, we chose to compare
to TinySec.

Communication overhead: Two types of messages are transmitted across the
network: Hello messages, which are 32 bytes and Reply messages, which are 44
bytes. The exact format of these messages is shown in Figure 6.3. These figures
ignore MAC/IP layer overhead. During communication, all messages can be
encrypted, authenticated or integrity checked, depending on the network policy.
The communication overhead for these cryptographic primitives is limited to
the additional MAC. The current implementation uses an 8 B MAC to ensure
message integrity. TinySec does not offer any clear registration functionality.
TinySec also uses an 8 B MAC during normal communication, equalling the
communication overhead during operations.

Memory overhead: The total ROM overhead of the component is 5690 B
and consists of: (a) the component implementation (946 B), and (b) overhead
for AES encryption algorithm (4746 B). The total RAM overhead of the secure
network component is 218 B and consists of the encryption context and message
buffers. TinySec has a ROM overhead of 7148 B and RAM overhead of 728 B,
which is comparable to the secure network component.

Processing overhead: The secure network component operates at hello packet
creation, reply packet reception, and when a message is sent to or received from
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Figure 6.4: Overview of the Sasha Secure application deployment protocol.

the network. The creation of a hello packet requires the encryption of 16 B of
data, requiring one AES operation. This takes a total time of approximately
1.6 ms using an AES software implementation. Receiving the network reply
also only requires the decryption and authentication of 16 B of data, again
taking approximately 1.6 ms. Encrypting and decrypting network packages also
requires about 1.6 ms per 16 B block. To give a comparison, sending a plain
UDP packet also requires ca 2ms on the AVR Zigduino. TinySec uses two
different block ciphers to process messages. Encrypting a 16 B message using
RC5 requires 1.04 ms, while SkipJack requires 1.52 ms.

6.3 Secure Application Deployment

The secure deployment system secures the application deployment data flow
as explained in Section 4.5.2. It listens to the network for user connections.
When a user or server connects to it, he first must send a small token containing
the application hash, the resource usage limits and the owner information. If
the token is valid, the secure deployment component listens for the component
code, installs it, and deploys the usage limitation policies listed in the token.
If the token is invalid, the connection is closed. This section first details the
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secure application deployment framework operation, and next it evaluates the
communication, memory, and processing overhead of the secure deployment
component and compares it to the Sluice secure deployment protocol [65]. This
work has been published at the 2011 IEEE 8th International Conference on
Mobile Adhoc and Sensor Systems (MASS 2011 [74]).

The secure application deployment framework operates in two phases: 1) the
application planning phase, and 2) the application deployment phase. During
the application planning phase, the application owner must retrieve information
on the nodes he wants to use, plan his deployment, and commit it to his server.
Next the application owner server commits the necessary resource usage to the
platform owner server, retrieves the required tokens, and performs the actual
code deployment, using the permission token obtained previously, as shown on
Figure 6.4. The next paragraphs explain the two phases in more detail.

To start, the application owner must first retrieve information on the nodes
he wants to deploy on. To do so, he can first query the network owner’s node
repository and learn which nodes are near his object of interest, together with
which platform owners own said nodes. Once the application owner knows which
nodes are available, he can contact all platform owners who have potentially
interesting nodes, and request which nodes he is allowed to use, the node details,
and the node resources and limitations. Once the application owner has all the
node details, he can decide on which nodes he wants to deploy his distributed
application. He assigns his application behaviour to the different nodes, validates
it, and commits the application deployment plan to his application owner server.
This then starts the application deployment phase.

At the start of the application deployment phase, the application owner server
will commit the node usage of the components to be deployed to the relevant
platform owners. It also requests the necessary tokens to deploy the application
components, thus requesting permission to use the embedded node of the
platform owner. This request contains the component specification, together
with the max parameters with which he wants to use the component and the
maximum amount of required resources to operate the component. The platform
owner can then ensure the required resources are available, and provision them
to ensure no resource conflicts occur. Optionally the platform owner can request
the actual code binary of the component, and perform code validation. This
would ensure that the deployed code likely would not exploit the embedded
node. The platform owner then creates a token which encodes the permission
to deploy the code.

The token is comprised of the hash of the code of the component, the length of
the component, and limits on ROM, RAM, network and CPU usage. The hash
ensures that the code deployed matches the code approved by the platform owner.
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This is necessary to prevent code alterations by either the application owner or
a potential networked attacker. The resource limits ensure that the component
can only use a limited amount of network resources. The token timeout and
tokenld ensure that tokens are not valid indefinably. Lastly, the component
timeout allows the platform owner to specify that certain components are only
allowed to be deployed for a fixed amount of time. The token can contain an
optional MAC to ensure the integrity of the token, and a secret key to allow
the application owner to encrypt the binary.

The token is sent back to the application owner server. Then the application
owner server can either immediately use the token, or delay using it until the
token times out. Allowing a long timeout allows the application owner server to
deploy components in networks that are not immediately needed, for example
as back-up to certain components, or to buffer the token for later usage, when
the node is perhaps not connected to the Internet. For example in a large
freighter, it might be necessary to deploy components while at sea. By having
tokens ready, the shipper can deploy components at sea, without needing to
communicate with a back-end.

When the application owner server then wants to deploy the component, the
server first sends the token to the embedded node. The node receives the token,
decrypts it and validates the tokenld and timestamp to ensure the token is
valid. Currently no MAC is appended to the token, to reduce the net overhead.
An additional 8-16 byte MAC can be added to ensure no token tampering
and further ensure token validity. If the token is invalid, the node aborts the
connection.

If the token is valid, the node continues listening to the channel. The application
owner server then sends the component code, which can optionally be encrypted.
If encrypted, the node decrypts the component by using the key which must
be provided in the token. During the deployment, the node ensures that the
server only sends the committed amount of bytes. When all the expected bytes
have arrived, the node calculates a cryptographic hash. If the hash matches,
the component is installed in the runtime, and the application owner server is
notified of a successful deployment. If the hash does not match, or any other
errors occur, the application owner server is notified of the issue at hand. The
server can then either contact the application owner for further instructions,
retry later, or try other back-up solutions.

When the code is installed, the correct resource restriction policies are deployed
in the resource monitoring framework. The token is stored to ensure that tokens
cannot be used multiple times. Finally, the secure deployment system stores
whether the component has to be deleted at a certain time in the future, or
when an other event occurs. These tokens are then checked every few hours to
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Figure 6.5: Overview of the secure deployment token. The key is optional and
used if the application owner required confidential deployment. Token overhead
is thus either minimally 56 or 72 bytes. The token is transmitted encrypted
using AES128 and the long term node key. The token can be extended with
additional binary resource restriction policies.

verify that all components are still valid.

The next paragraphs evaluate the secure deployment system on communication
overhead, memory overhead, and processing overhead. These figures are then
compared to the Sluice secure deployment protocol [65]. Sluice secures the
TinyOS code deployment protocol deluge by adding a hash chain to the protocol,
and signing the first packet with an ECC signature. This evaluation shows
that the overhead of the SaSHA secure deployment system is comparable in
overhead with regards to communication overhead, and performs better than
Sluice with regards to memory and processing overhead due to using symmetric
encryption as opposed to asymmetric encryption.

Communication overhead: The only communication overhead of the secure
deployment system is the additional token, which is sent before the actual
deployment. The total size of this token is 56 B to 78 B. Figure 6.5 shows the
exact format of the token. The deployment secret key is optional. The token
is encrypted and optionally authentication using AES128-CCM with an 8 B
MAC, using the nodes long term secret key. This is the only mandatory network
overhead. Since a typical component has a size of 1000 B to 2000 B, it entails a

communication overhead of 2 to 5 percent. Sluice uses a similarly sized token
of 44 B.

Memory overhead: The secure deployment component has a ROM overhead
of 8.1kB and a RAM overhead of 504 B. Table 6.2 contains a more detailed
memory overhead analysis. To compare, Sluice has a ROM overhead of 9kB
and RAM overhead of 2000 B. The larger RAM overhead of Sluice is due to the
larger buffer size.

Processing overhead: The delay to deployment by the added security consists
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Table 6.2: Secure application deployment memory overhead.

ROM (kB) RAM(B)
AES crypto lib 4.2 Crypto buffer 240
SHA-2 crypto lib 1.8 Token and key buffer 184
Deployment component 2.3 Deployment buffer 80
Total ROM 8.1 Total RAM 504
Sluice ROM 9 Sluice RAM 2000

of the transmission and validation of the application token and validation of the
component. Since most application components are more than thousand bytes
large, the additional delay for sending a token remains limited to a few percent.

The time overhead of the computation on the node is estimated in the hundreds
of milliseconds. Decrypting one 64 B block takes 8 ms, hashing 6.5ms. A small
component update of 1 kB would for example take 1024 /64*(8+6.5) ms = 232 ms.
Sluice uses the Elliptic Curve Digital Cryptography Signature algorithm, an
asymmetric key algorithm. Due to this, the verification of a token takes 30
to 35 seconds, due to ECC operations, which is significantly longer than the
proposed system.

The platform owner server, which manages and grants the tokens and the
application owner server which requests the tokens and deploys the applications
are both implemented in Java.

6.4 Secure Application Management

The secure application management system allows for the secure management
of the embedded node by authenticating and authorising management requests.
The protocol requires a separation of any management service into two
subcomponents: the marshaller component and the service component. The
marshaller interprets incoming service requests, accesses the service, and
serializes the reply. The service contains the actual data and logic to perform
the requests. This division is common in RPC architectures such as CORBA
and RMI. The system consists of: a communication interceptor module, a
service interception layer, a user data store, and a user management service
[71]. This section first describes how to secure application management system
authenticates users. Second it describes how the system authorises users.
Figure 6.6 shows an overview of how the system authenticates and authorises a
request. Third it describes the user management subsystem. And lastly, this
section describes the implementation details and a short evaluation of the secure
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Figure 6.6: Overview of the authentication and authorisation of a service access
request.

application management system. This work has been published at the 10th
European Conference on Wireless Sensor Networks (EWSN 2013 [71]).

6.4.1 Authentication

The system uses a simple authentication mechanism. Each user is identified
by the embedded node using a node specific numeric identifier. The user
authenticates and secures his commands using a symmetric encryption algorithm
in Counter with Cipher block chaining-MAC (CCM) mode. This provides the
nodes with proof of authenticity and integrity of the payload using a Message
Authentication Code (MAC). The system is agnostic to the actual cryptographic
protocol used. The actual implementation of the protocol uses AES128 due to
security, resource requirements and standardisation considerations. The userIld
and MAC are added to the message as headers. An authenticated timestamp is
optionally added to ensure message freshness.

When a node receives a service request, it is intercepted by the communication
interceptor module before being delivered to the marshaller. The communication
interceptor module retrieves the userld and MAC from the message headers. It
retrieves user information from the user database (Policy Information Point:
PIP using XACML terminology [39]). If the userld is known, the communication
interceptor module decrypts and verifies the payload. If validation fails, either
because of incorrect MAC or unknown userld, the message is dropped. On
success, the request is delivered to the marshaller. When the marshaller
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sends a reply, it must reattach the userld. The communication interceptor
module intercepts this reply, encrypts the payload, and attaches a message
authentication code.

6.4.2 Authorisation

To authorise a user, an authorisation proxy is inserted between the marshaller,
and the service execution component. This proxy offers the same interface
as the service execution component, thus can be inserted transparently with
minimal effort. The proxy acts as the Policy Enforcement Point (PEP) and
Policy Decision Point (PDP). It uses role based access control to authorise a
user. The system uses hard coded role requirements for each service. This
choice was made to reduce the overhead of evaluating policy decisions, at the
cost of flexibility. The proxy retrieves the user’s current roles from the user
database on the node, and verifies whether the user’s role is sufficient.

The system currently differentiates between two types of roles: node roles and
party roles. A node role defines the access permission that the user has across
the entire node. This allows the platform owner to compactly declare that a user
can view or reconfigure any configuration or service on the node or to perform
certain node-wide reconfigurations. A party role specifies the role that the user
has with that party and is only relevant for applications and configurations
owned by that party. A user of a node can thus have one node-wide role, and
one role with each party currently present on the node.

The system currently distinguishes 5 different access roles, listed in hierarchical
order: 1) no access: no access to any service, 2) viewer: viewing information
and configuration, 3) user: modifying existing configurations, 4) manager:
creating and removing configuration, and 5) administrator: user management.
Currently a higher roles also assumes all access rights of the lower roles. The
number of roles and allocation of access rights is a generic framework. Roles
and rights can easily be modified to adhere to domain specific requirements.

When a user deploys a piece of code, or instantiates a component, the action
must be attributed to a party. Either the user’s default party is used, or the
user specifies on behalf of which party he performs the creation operation. Of
course the user needs the necessary service permission in order to create new
configurations. Further service requests regarding the added application will
require that the requesting user has the necessary role to either that party, or
node-wide.

The authorisation proxy also allows for monitoring the behaviour of users of
the system. Monitoring node users allows for 1) detecting potential intrusion
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Logistics Provider (LP) | Transport Provider (TP) | Customs Officer
Lock app : LP node admin party viewer party user
Location app : TP node admin party admin party viewer

Table 6.3: Overview of the permissions of the different users with the different

parties and their applications.

attempts, and 2) logging of embedded node usage caused by the different users,
allowing charge-back of node usage to the users. If monitoring is required, the
proxy reports the user’s node usage to the monitoring and enforcement system.
This system can then store the node usage data. This also allows for policies
limiting the amount of requests a user can send.

An example from logistics is show on table 6.3: the logistics provider provides
the node in the container with a lock application. The logistics provider user
has administrator rights to the node and thus each service present on the node,
allowing him to open, close and manage the lock. A customs officer has party
user permissions to services of the logistics provider. The officer is allowed to
use the lock service, which includes opening and closing the lock, and viewing
the lock status. The customs officer however is not allowed to manage which
other parties have access. The transport provider user finally has only party
viewer permission. He can only view current lock status.

Suppose the customs officer installs a localisation component on the node,
which queries the truck and broadcasts it to all users registered on the node.
The customs user is party administrator, and can administer which parties
are allowed to view the location feed, as agreed upon in the contract that the
customs and logistics provider need to have signed beforehand. The logistics
provider user is a node administrator, so he can also administer who can view
the feed on the node, such as cargo owners or transport providers. The transport
provider party is allowed to use services offered by the logistics provider, but
only has view rights to applications offered by customs.

While the current security middleware only offers access control based on party
roles, a small addition to the system would allow additional attribute based
security, enabling parties only rights to certain allowed ranges of applications,
even while having node viewer permissions. However, we decided not to
implement such a system, to reduce the overhead.
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6.4.3 User Management Service

User management is done by the user management service, making it the Policy
Administration Point (PAP). The provided methods are: adding and removing
users, adding and removing permissions, and updating key material.

The user management service provides two ways to add users, by command or
by token. A service method allows users to add new users by command if he
has the necessary permission. To add a user by token, the user requests the
platform owner server to generate a token on his behalf. The platform owner
then validates that the user is affiliated with the party for which he requests
permission. If the user is affiliated with a party which is permitted the usage of
the node, for example because that party has a component installed on that
node, the platform owner server generates a user ID for that user with that
specific node, and a specific user key. The platform owner then stores this key
and userlID, provides them to the user, and encrypts them in a user token. This
user token is then provided to the user for when he needs to access the node.

This user token contains the following parameters: userld, partyld, node role,
party role, key material, timestamp and timeout. The timestamp and timeout
of the token ensure that a token will only be valid for a limited amount of time,
allowing node recovery. This time is configurable, allowing for tokens with a
longer validity. These tokens can be requested ahead of time, and deployed in
disconnected networks. The generated token is encrypted with the node’s secret
key, shared only between the platform owner and the node. The node does not
need to contact back-end infrastructure to ensure token validity. Once a user is
added by command or token, the user only needs his userld and key to query
node services.

Other provided services of the user management service include a user revocation
service, a role management service, and a key management service. The user
revocation service allows users with a node administrator role to remove any user
on the node. Party administrators are allowed to delete users belonging to their
party. The role management service allows users with a party administrator
role to add and remove roles of that party from other users. This allows parties
to manage access rights of users to their own services. The key management
service allows users to refresh keys. However this does not ensure forward key
secrecy. If a user’s key is breached, the attacker can intercept the re-keying
message and retrieve the new key. If this is detected, the user has to be removed.
The user can be reinstalled by a node administrator or by using a new token.

If a user needs to manage multiple nodes, the same symmetric key can be used
to allow group reconfiguration. The user then must request the platform owner
to use the same key as his user key. This reduces the amount of messages the
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Figure 6.7: Packet format of a SecLooCI management communication message.
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Figure 6.8: Overview of the Application Management protocol. Colored
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authorisation framework (yellow), and user management (green).

user has to send to perform reconfiguration, but at the cost of security. In case
of a node breach, the user’s key would be revealed and could then be used to
access all other nodes on which the user used the same key.

6.4.4 Implementation Details

This subsection details the specific implementation details of the prototype
and evaluates the communication, memory, and processing overhead of the
secure application management framework. This approach is compared to
a symmetric key approach (TinySec [58]) and an asymmetric key approach
(Authenticated Querying (AQ) by Beneson et Al [7]). TinySec is a prototypical
example of a security network layer for embedded systems. It offers both
encrypted or authenticated communication based on symmetric key algorithms.
Authenticated Querying on the other hand is a typical example of a certificate
based approach to sending authenticated messages, and operates using Elliptic
Curve Cryptography.

To identify users, the system uses a 2 B numeric userID. A 2B userld provides
a sufficient number of users while ensuring limited overhead. This compact
user identification can be node or network unique. Each authenticated message
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is encrypted using AES128-CCM and has an 8 B MAC in the secure payload
header to verify message authenticity and integrity. At service call, the service
interception layer intercepts the call and verifies the user is allowed to access
the service based on the roles of the calling user.

The current security middleware implements a hierarchical role based access
control scheme. 4 roles are defined: viewer, user, manager, and admin,
each with increasing powers of viewing application state, and modifying and
deleting applications. A viewer can only see data, users can subscribe to
existing data producing components, managers can adapt the settings of these
components, and admins can influence the lifecycle (pausing, removing and
starting components). These roles allow for a simple, clear and compact
description of the required role for each functionality. However, the framework
allows service creators to adapt the system and implement their own access
control scheme.

In order to authorise an event, an addition was made to the LooCI middleware:
when an event is dispatched to a marshaller, the dispatching user is recorded
by the authorisation middleware. When a marshaller calls any proxy protected
service execution component, the authorisation proxy intercepts the call and
verifies that the requesting user has sufficient permissions to access the requested
service. If the user is authorised, the proxy calls the management service
execution component. If not, an error code is returned to the reconfiguration
manager. When the marshaller sends out a reply, the middleware attaches the
userld.

The user management service is implemented as a LooCI component, and is
comprised of a marshaller, which interprets received messages, and a SEC,
which does the actual user management and contains the user data and access
policies. The service execution component thus performs both the functions of
PIP and PAP in order to reduce implementation size.

Communication overhead: The secure application management framework
requires additional security information to be added to each management
message. This overhead is 14 B and is detailed in Figure 6.7. The payload of the
messages is currently not padded to ensure the minimal size of reconfiguration
messages. TinySec has a message overhead of 8 B, AQ has a message overhead
of 20 B, both are comparable to the proposed system.

To register a user, it is possible to deploy a user token to the user management
system. This requires the transmission of a token over the network containing
the following fields : userld, partyld, nodeRole, partyRole, user-Key, timestamp,
timeOut, user-timeout, and MAC. This token has a total message size of 40 B
and is encrypted with the node’s long term secret key. Installing the user by
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Table 6.4: Secure application management memory overhead.

ROM (B) RAM(B)
AES-CCM crypto lib 4746 User information store 238
Communication interceptor 407 Encryption buffer 200
Event encryption support 1150
Permission module 1158
Service Interception 3296
Security management component 1393
Total ROM 12150 Total RAM 438
TinySec ROM 7148 TinySec RAM 728

token is one option to allow new users to be added. Alternatively a service
request can be called which has similar communication overhead, since the same
data has to be transmitted. To compare, AQ has a user registration token size
of 114 B due to ECC signature. TinySec does not mention any user registration
token.

Memory overhead: The ROM overhead of the application management
component is 12.15kB, and the RAM overhead is 438 B. Table 6.4 contains a
detailed overview of the overhead. To compare, TinySec has a ROM overhead
of 7148 B and RAM overhead of 728 B, AQ has a significantly larger ROM and
RAM overhead of respectively 45500 B and 2 000 B.

Processing overhead: The secure application management framework
operates at three point in the call chain: at message reception, at service
call, and at message transmission. The overhead of message transmission
and reception are almost identical and composed of retrieving the user’s key
information from the user data store, and then either encrypting or decrypting
the message. The authentication of a message comprises of (a) retrieving the
userld from the request message, (b) retrieving the user information from the
user data store, and (c) decrypting and verifying the authenticity of the message.
This takes ca 3.2 ms for a 32B management request (mostly decryption).
Encryption of reply messages takes a similar time, since the main overhead is
the encryption of the request. The authorisation of a message is much faster. It
comprises of (a) a proxy interception of a service message, (b) retrieving user
access rights, and (c) matching access rights with the current request. This
requires only tens of nanoseconds. TinySec has a message processing overhead
of only 1.04ms or 1.52ms, due to the usage of different encryption algorithms
(RC5/SkipJack), and different hardware.

A user can register himself with the system using a token. This message is not
intercepted by the Communication Interceptor to allow anyone to send such
a token. However, the service itself verifies the integrity and validity of the
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token by decrypting and authenticating the token. Since the token size is about
40 B, it takes about 4.5 ms to decrypt and verify the token. To compare, AQ
requires 440 000 ms to validate the user registration token due to the usage of
asymmetric cryptography, and requiring a certificate chain. TinySec does not
allow for user registration.

6.5 Secure Application Communication

The secure application communication framework ensures that the application
communication of the different application components is transmitted securely.
In the LooCI Component middleware, communication happens using seman-
tically typed events. The framework allows users to specify encryption and
decryption policies based on these event semantics.

The framework distinguishes between encryption contexts, outgoing policies
and incoming policies. Encryption contexts identify a security context which
entails algorithm type, algorithm identification, key material and length of
MAC. Outgoing policies dictate which events should be transmitted on which
channel based on event type, source component and destination. Incoming
policies dictate which level of security is required for certain events, and which
events are allowed to pass, based on source node, source component, event type
and context. The secure application communication framework operates at the
transmission and reception of an event. An overview of the decision logic can
be found in Figure 6.10.

When a message is dispatched from the event bus down, it is checked against the
outgoing policies. If the event matches an outgoing policy, the associated channel
is retrieved and the event is processed according to the channel parameters. If
an event matches multiple policies, only the first matching policy is considered,
which is the policy which has been on the node the longest. The system does not
use multiple different encryption contexts. This decision is made, because in the
LooClI framework, an event is sent once for each subscription. The framework
assumes that each subscription can only be transmitted on a single channel.
This prevents the need for duplication logic in the framework. Overlapping
policies can be detected based on the source, destination and event type of the
channel.

When an event comes up from the network stack, the encryption context is
checked against present encryption context. If the identified encryption context
is present, the matching security primitive is performed. Once the verification
is completed, the event is matched against the incoming policies. The incoming
policies dictate the minimal level of security that is required for an event to pass.
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Figure 6.9: Packet format of a SecL.ooCI application communication message.
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Figure 6.10: Flowchart of the decision tree of policy interpretation at sending
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If the level of security provided for the event, matches the required security
level, the event is submitted to the event bus. Additionally, it is possible to
dictate a blocking policy that blocks all events, unless another policy explicitly
allows it. This allows for example a platform owner to block all event types by
default, unless a policy exists that explicitly allows it.

This remainder of this section evaluates the communication, memory, and
processing overhead of the secure application communication component, and
compares it with TinySec [58]. TinySec provides a link layer security architecture
for networked embedded systems. It offers both confidential or authenticated
communication, similar to the application communication framework. However,
the choice can only be made at a network level, as opposed to the policy based
approach of the SecLooCI framework.

Communication overhead: The security middleware implements 3 types of
security policies: integrity, authenticity and confidentiality. Each message is
identified by (a) a security information header, containing the channelld (2 B),
and (b) a security payload, containing the hash or MAC payload, as shown in
Figure 6.9. The size of the security payload depends on the exact policy installed.
The middleware allows for a flexible choice of security and supports multiple
lengths of security messages. For integrity and authenticity a security payload
of 4, 8, 16 and 32 B is supported, if supported by the underlying algorithm, for
confidentiality a MAC size of 0, 4, 8 and 16 B is supported.
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Table 6.5: Secure application communication memory overhead.

ROM (B) RAM(B)

Communication interceptor 1627 Storage buffer overhead 21
Security management component 1529 Overhead per channel 31
AES with CCM 4 746 Overhead per inc pol 7
AES-CMAC 1018 Overhead per out pol 7
SHA256 1 980

Total ROM 10 900 Total RAM (2 ch, 1 in, 1 out) 97
TinySec ROM 7148 TinySec RAM 728

The total message overhead is 4, 10, 14, 22 or 38 B depending on the security
payload size, and thus the level of security. The application owner can choose
his level of security depending on the security requirements of the application,
the available resources of the embedded node and the preferences of the platform
owners involved in the deployment. TinySec has a fixed MAC overhead of 8 B.

Memory overhead: The prototype has a total ROM overhead of 10900 B
and a RAM overhead of 97 B assuming 2 channels, 1 incoming and 1 outgoing
policy. Transmission buffers and encryption buffers are not included in this,
and depend on specific transmissions and encryption protocols. Table 6.5 shows
the overhead figures in more detail. Note that 7744 B of the implementation
overhead is taken up by cryptographic algorithms, which are reused in other
parts of the security middleware. TinySec has a ROM overhead of 7148 B and
RAM overhead of 728 B.

Processing overhead: Processing a 32 B message takes: to encrypt / decrypt
the message using AES: 3.1 ms, to authenticate or verify a message using AES-
CMAC : 2.6 ms, to verify message integrity using SHA1 : 13.6 ms. While this
processing overhead is significant, it is still only a few milliseconds of processing
overhead. In most use cases this is a tolerable overhead. TinySec has a message
processing overhead of only 1.04ms or 1.52ms, due to the usage of different
encryption algorithms (RC5/SkipJack).

6.6 Monitoring and Enforcement

The monitoring and enforcement component FAMoS [69] monitors node usage
by different components and users and allows policy enforcement.

The monitoring and enforcement framework operates by instrumenting the
functions required to use the network, memory and sensors. It defines multiple
different hooks to be able to monitor performance on different levels of the
network, including the MAC and IP layer as shown on figure 6.11. Each
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Figure 6.11: Overview of the monitoring and enforcement component.

hook has a 16 bit numeric id that uniquely identifies this hook. Additionally
the monitoring module receives data from the Communication Interception
Module (timings of interception overhead), the LooCI event bus (events
received and transmitted), the service interception layer (user accesses), and
the application layer (CPU overhead of application components). These hooks
call the monitoring component when requests or data passes through them. In
addition, users can define their own hooks and extend the hook ids to add their
own logging calls. This work has been published at the 12th International IFIP
Conference on Distributed Applications and Interoperable Systems (DAIS 2012
[69]).

The monitoring and enforcement module on the node is comprised of 4 blocks:
the core, the profile, the policy and the flush component. The core block
maintains the buckets, which are basically resource counters that keep track
of the resource usages. It contains two types of buckets: basic buckets and
extended buckets. Basic buckets, which store the throughput and count of a
single hook, and extended buckets, which allow additional meta data to be
appended to the bucket, such as for example the TCP port number, the user
identifier, or component identifier. On a fixed schedule the monitor flush block
flushes all buckets in the core back to the platform owner, which causes the
core to clear all the buckets inside it.

The monitor core must support two operations: request usage permissions, and
report usage. Certain hooks only implement the reporting functionality, others
also implement the request permission functionality.

When a hook reports a node usage update, it sends it to the core. The core then
contacts the profile component. The profile component receives the hookld,
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any potential call context, and can retrieve the current environment context.
Based on this data, the profile component then decides which buckets need to
be incremented, by which amount. The identifiers of the relevant buckets are
then returned to the core block, which updates those buckets.

Next the core block notifies the policy block with the identifiers that need to be
updated. The policy block contains resource limitation policies which dictate
which identifiers need to be rate limited, and operates according to a leaky
bucket algorithm. For each policy, the policy block keeps a private bucket that
does not get flushed. If an updated identifier matches a bucket, the current
available limit in that bucket is decreased by the relevant amount. Every minute
however, the policy block adds a small amount again to the buckets, to a certain
limit, based on the relevant policy.

Next when a service interceptor or an other component needs to verify if a
resource usage policy prevents the usage, it contacts the core block. The core
block again contacts the profile block, which translates the request to a set of
identifiers which need to have a limit available. The core block then contacts
the policy block to check if there are policies installed for the relevant identifiers,
and if so, whether or not capacity is available.

This division is done for the following reasons: by isolating the profile block
from the storage and flushing block, it is possible to transparently change the
profile and the policy block from the storage and flushing. This allows for
over the air deployable profiles to be installed with minimal overhead, since
storage and flushing are shared capabilities. By having the policies depend on
the profile block, the policies can be installed in a very compact form. Each
policy just implements a single leaky bucket, so a new policy can be expressed
by expressing which bucket id needs to be limited, what the max limit of the
bucket is, and the amount by which that bucket gets refilled every minute.

During node installation time, a platform owner can decide which profile to
install on his node, and thus creates an image with the necessary hooks and
profile block. Unnecessary hooks can be removed during compilation to reduce
unneeded overhead. However any over the air deployed profile can then only
access data from those hooks that are installed. The monitoring and enforcement
component can potentially operate independent from the other proposed pillars.
However, by using the additional security pillars, the monitoring traffic benefits
from the additional security features presented, such as secure deployment and
secure end-to-end communication.

If no over the air profile changes are likely to be needed, and no policies need
to be enforce, the overhead of calculating the bucket identifier, storing those
identifiers and flushing the buckets together with identifiers can be a significant
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overhead. To reduce that overhead, a simple monitoring module can then
replace the extended module. This simple monitoring module would then
have to implement its own storage and transmitting functionality, with custom
functionality on the receiver side to parse the binary message. While this
significantly reduces both storage and network overhead, it does also reduce
evolvability of both monitoring profiles and enforcement policies.

This section evaluates the communication, memory, and processing overhead
of the full monitoring and enforcement module implementation on an AVR
Zigduino and compares it to the Sympathy network debugger [94]. Sympathy is
an active monitoring solution embedded systems. It is mainly used for debugging
systems, and allows getting fine grained information about the network stack.
It however does not provide service, user or application monitoring.

Communication overhead: The communication usage can be divided into
two parts: (a) the overhead to send a monitoring flush packet, and (b) the
overhead to install a usage limitation policy. The overhead to send a monitoring
flush packet depends on the flush interval. A flush packet has a minimal size
of 8 B. Each bucket that contains data extends this packet size with 6 B. On
top of this is the network overhead, which can be 30 B to 40 B of IP and MAC
headers. Deploying a usage limitation policy has a communication overhead
of 8 B per policy. Sympathy does not explicitly mention monitoring packet
size or overhead. Assuming 4 B per timestamp and 2B per counter, Sympathy
has a monitoring message size of 20 B, which is comparable to the proposed
component.

Memory overhead: The basic framework without policy enforcement requires
3290 B of ROM and 216 B of RAM. The policy enforcement framework requires
another 2140 B of ROM and 221 B of RAM. This is for a minimal monitoring
policy. More complex policies will require more ROM and RAM due to the
larger amount of monitoring logic, and amount of buckets to monitor. Sympathy
has an overhead of 47B of RAM and 1 558 B of ROM. This lower overhead is
due to the fact that Sympathy has fixed monitoring which cannot be updated
or changed, and can not enforce policies, so the monitoring and enforcement
component has a slightly higher overhead for some additional features.

Processing overhead: The processing overhead of the prototype is minimally
57ns. This can run up to 200 ns or more depending on the complexity of the
monitoring and enforcement policies. The default case of sending a packet over
the network takes on average 1260 ns network processing, and 2228 ns to actually
transmit the message, totalling at 3488 ns. 200ns is only a 5.8% additional
overhead. Sympathy does not mention any processing overhead, but due to the
static and simple monitoring policy of Sympathy, this paper assumes it can be
compared to a very simple monitoring policy, requiring 50 ns.
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Figure 6.12: Overview of the Secure Node Architecture.
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This section provides an overview the integrated security framework and proofs
the feasibility of rolling out the security framework on resource constrained nodes
by providing a static evaluation of the integrated prototype of the architecture.
The SecLooCI node security framework adds 7 additional modules over the
standard LooCI middleware, in accordance with the general security architecture

and as show in Figure 6.12 :

The secure network module secures the network initialisation,
which is transparent to the upper and lower layers, and allows the creation
of an embedded node registry at the gateway.

The communication interceptor module performs all the authen-
tication and encryption for both application and management
communication.

The secure deployment module secures the application deploy-
ment.

The security management component offers security management
services such as user installation, channel and policy management for
the application security, and policy management for the monitoring and
enforcement component.
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e The service interception layer provides the interception points
necessary to enable authorisation of management communication
and monitoring of application service usage.

e The monitoring and enforcement module monitors the network and
the application service usage, and potentially also the different users
of the network.

e The security data store contains the necessary user and policy
information needed for the application and management message security
protocols to operate.

These seven modules are implemented and integrated on the Zigduino running
the Contiki OS and the LooCI Component Middleware. Table 6.6 shows
an overview of the overhead of the SecLooCI middleware compared to the
unsecured LooCI and Contiki. Table 6.7 shows the ROM and RAM overhead of
the different components of the middleware. The total additional overhead for
the security middleware including cryptographic primitives is 27 372 B of ROM
and 1 525 B of RAM memory. This is a significant amount of memory for these
memory constrained devices. However, the security features which are offered
by this middleware are necessary for the next generation of sensor network
applications, and the implementation of the middleware shows that it is feasible
to implement the required features on the targeted memory constrained devices,
with a significant yet acceptable overhead.

Note that 28.3% of ROM and 9.3% of RAM is due to cryptographic primitives. A
current trend is to implement these algorithms in hardware, to reduce processing
cost and memory overhead. This would significantly reduce the overhead of the
framework.

This integrated prototype shows that the SecLooCI node security framework is
small enough to be deployed on currently available constrained embedded nodes.
While it does consume a significant amount of memory, it is clear that currently
available constrained devices offer sufficient memory to support these systems
and to build applications on top of the security middleware. Additionally,
thanks to the LooCI and SecLooCI middleware, the application components
need to only focus on the application functionality, while message distribution
and security are handled on the middleware level. This reduces the size and
complexity of these components, partially reducing the burden on developers,
and on devices to support evolvability.
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Table 6.6: SecLooClI framework memory overhead. The overhead of the security
suite is comparable to the overhead of the non-secure middleware, but clearly
still within the possibilities of a low power sensor node.

ROM (B) % | RAM (B) %o
Contiki operating system 42 688 32.6% 9 712 59.3%
LooCT middleware 24 942 19.0% 2 644 16.1%
SecLooCl security framework 27 372 20.9% 1525 9.3%
Total binary 95 002 72.5% 13 881 84.7%
Total available on AVR Zigduino 131 072 100.0% 16 384 100.0%

Table 6.7: Detailed SecLooCI framework memory overhead. A significant
amount of ROM and RAM is used for the encryption algorithms. Hardware
implementations could reduce this overhead.

ROM (B) % | RAM (B) %
Secure network module 946 3.5% 218 14.3%
Communication interceptor module 2 034 7.4% 129 8.5%
Secure deployment module 512 1.9% 20 1.3%
Security management component 2780 10.2% 295 19.3%
Service interception layer 3 296 12.0% 8 0.5%
Security data store 1 558 5.7% 238 15.6%
Monitoring module 3 290 12.0% 216 14.2%
Policy enforcement module 2 140 7.8% 221 14.5%
Middleware tools 3072 11.2% 38 2.5%
Encryption algorithms 7744 28.3% 142 9.3%
Total SecLooCI usage 27 372 100.0% 1525 100.0%

6.8 Summary

This chapter presented the SecLLooCI shared embedded node security framework.
It started by presenting the underlying platform, explaining the test setup,
and listing the assumptions required to create the node framework. Next it
presented the five different security subsystems which each secure one of the
five previously identified target data flows:

e The secure network initialisation subsystem secures the network setup by
allowing nodes owned by multiple different platform owners, to securely
join the network of the trusted network owners.

e The secure application deployment subsystem allows application owners
to securely deploy new application components on the nodes of trusted
platform owners.
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e The secure application management subsystem allows any node user to
securely manage either the application, middleware or operating system
of the node.

e The secure application communication subsystem provides policy driven
security for all embedded application communication based on event
semantics.

e The monitoring and enforcement subsystem continuously monitors users
and applications on the node and enforces usage policies.

This chapter concluded with an overview of the integrated prototype, which
shows that current generation networked embedded devices can support the
entire stack of Contiki Operating System, LooCI middleware and SecLooCI
security framework. This shows that current state-of-the-art devices have the
capabilities to support shared usage of the networked embedded systems.



Chapter 7

Case Studies

This chapter presents two case studies where we apply the SecLooCI
infrastructure and SecLooCI node security middleware to secure two scenarios
based on the uses cases presented in Section 2.1. First this chapter presents a case
study inspired by the smart logistics use case, based on the life cycle presented
previously. The scenario goes through the lifecycle, details the SecLooCI
infrastructure operations, and identifies the various overheads. Second this
chapter presents a real world deployment cases study based on the smart office
use case.

7.1 Smart Logistics Scenario

This section presents an virtual integrated scenario, provides an overview of
the overhead of the integrated prototype, and performs an applied evaluation
of this comprehensive framework using the smart logistics scenario proposed
in Section 4.6. It shows the steps in a typical lifecycle, which systems interact
with each other, and the associated overhead.

7.1.1 Test Scenario and Measurements

This section implements the end-to-end scenario developed in the context of the
ICON COMACOD and ICON STADIUM project, as presented in Section 4.6,
where a harbour customs wants to deploy a simple localisation application on
the containers that arrive in the harbour. The sample monitoring application is

121
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Figure 7.1: Example Localisation Application.

shown on Figure 7.1. This scenario is prototypical for a single hop network, which
we use as our default test environment as discussed in Section 6.1. The time
overhead and message size of each node interaction is listed in this scenario. Only
node interactions are listed, excluding back-end to back-end communication,
since only node interactions influence node lifetime. The memory overhead of
the different components, which is mostly static, can be found in the previous
section. For each interaction the total cost is listed. For an in depth view
of all the different costs, please refer to table 7.1. The test setup consists of
two embedded nodes and a gateway in a one hop network. The scenario does
not consider multi-hop networking. Network and MAC layer overhead is not
considered.

Network setup The first step in the network setup is the beacon that is sent
across the network. This beacon has a size of 8 B containing the MAC address
of the gateway. Once received, the embedded node generates the node token of
32 B, and transmits it. This takes ca 4 ms, mostly encryption. The NO receives
and processes the token, contacts the PO, receives a network token of ca 44 B,
and transmits it back to the embedded node which takes on average ca 100 ms,
of which the embedded node requires another 6 ms to decrypt, validate and
process the reply. Most of this time the embedded node is waiting for a reply
to his key request. The total cost is 32 B sent, 52 B received, taking ca 100 ms,
of which 10 ms is spent computing by the embedded node.

Application deployment The next embedded node interaction is the customs
officer who wants to deploy a new application component. In this case, the
customs officer deploys a localisation component, which listens to beacon events,
does some very simple distance estimation in 2 dimensions based on the delay
of the event and beacon location, and publishes its location every 60s if it has
received a beacon. A prototype component has a size of 2121 B. To deploy the
component, the customs officer first sends the application token, with a size of
56 B, and then sends the component. The embedded node only sends a success
byte and the component identifier, totalling 2 B. This process takes about 12.3s.
Only about 8 ms were spent decrypting and validating the token, and 215 ms
performing the hashing. This totals at 2177 B received, 2B sent, taking ca
12.3s, of which 223 ms spent on crypto operations, and ca 10s spent writing to
flash memory. The remaining time is communication overhead.
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Application management The next interaction is the management of the
users and embedded applications. The necessary operations are: deployment
of the user token by the Customs Officer, entering the five beacon locations
in the application, entering the necessary subscriptions, adding the security
policies (incoming channel and policy, outgoing channel and policy, and
monitoring policy), and activating the component. The policies use an 8 B
MAC for encryption and authentication. Each of these interactions is a service
call by the customs officer to the management component. A total of 14
configuration requests are needed. The prototype performed this configuration
in an automated way, taking about 3.45 seconds for end-to-end management
operations. Fach request requires an overhead of 14 B for security headers, and
6 of the 14 messages are security management messages. The total cost is 587 B
sent, 573 B received, and only takes ca 48.3 ms of on-node processing.

Application communication At this point, the application is running and
communicating over secured channels. To secure the messages, we require
authenticity of the beacon messages, and confidentiality of the location
messages. So when a beacon message enters the node, it is intercepted by
the communication interceptor, the incoming channel is retrieved, and the MAC
is validated. This takes about 1.3 ms. The incoming beacon message has a 16B
MAC, 7B security metadata, 4 B of LooCI overhead, and 9 B of functional data,
totalling at 36 B. Then the message is sent up to the LooCI Event Manager,
which delivers it to the localisation component. The localisation component
calculates its current position based on available information, and broadcasts
it. The broadcast is logged by the monitoring component, which takes a few
nanoseconds. The event manager receives the event and routes it to the network.
The communication interceptor intercepts it, checks outgoing policies, finds the
confidentiality policy, and encrypts it, which takes again about 1.6 ms. The
largest part of this overhead is encryption. The total process from receiving a
radio beacon from the network, to sending the node location only takes about
3.9ms. The send overhead is the cost for encrypting and authenticating the
event, requiring 19 B. The message itself is 9 B. Hence, the total cost is 32 B
sent, 36 B received, taking ca 3.9 ms. Assuming one message per minute, this
becomes a daily total cost of 46 080 B sent, 51 840 B received, and 5616 ms spent
processing.

Application removal Once the node travels on, the customs will need to
remove all components and policies related to the localisation application. To
do this, he has to: 1) remove the codebase, which also removes the previously
installed application component and any relevant wiring policies, 2) remove
the inbound security channel, which also removes the relevant inbound security
policy, 3) remove the outbound security channel, which also removes the
outbound security policy, and 4) remove the customs officer user on the node.



124 CASE STUDIES

Table 7.1: Overview of the SecLooCI framework overhead. Daily overhead
calculated assuming one incoming and outgoing message per minute. Table
shows that processing overhead is comparable to one day of operation.
Transmission overhead is equal to about 19 days of operation.

LooCI % | SecLooCI % | Crypto % | Total
Network setup sent(B) 0 0.0% 16 50.0% 16 50% 32
Network setup received(B) 0 0.0% 36 50.0% 16 50% 52
Network setup processing(ms) 0 0.0% 0 0% 12 100 % 12
Deploy sent(B) 2 100% 0 0.0% 0 0.0% 2
Deploy received(B) 2121 97.4% 16 0.7% 40 1.8% | 2177
Deploy processing(ms) 10 000 97.8% 0 0% 223 2.2 % | 10 223
Mgt sent(B) 172 7993% | 308 BLe% | 110 10.1% | R8T
Mgt received(B) 164  28.6% 297 51.8% 112 19.5% 573
Mgt processing(ms) 42 0.86% 0.28 0.58% | 47.6 98.5% | 48.3
Total sent(B) 174 28.0% 319 51.4% 128 20.6% 621
Total received(B) 2285  81.5% 349 12.5% 168 6.0% | 2802
Total processing(ms) 10 000 97.2% 0 0% 291 2.8% | 10 291
App comm sent per message(B) 9 28.1% 4 12.5% 19 59.4% 32
App comm rec per message(B) 9 25% 4 11.1% 23 63.9% 36
Time to process a message(ms) 1 25.7% 0 0.0% 2.9 74.3% 3.9
App comm sent per day(B) 12960 28.1% 5 760 12.5% | 11520 34.8% | 46 080
App comm rec per day(B) 12 960 25% 5 760 11.1% | 11520 34.8% | 51 840
Daily message processing(ms) 1440 25.7% 0 0.0% | 4176 74.3% | 5616

This is thus a total of 4 configuration requests, which can again be done in an
automated way. Each request again is secured requiring 14 B, and 3 of the 4
messages are security management messages. The total cost is 75 B sent, 80 B
received, taking ca 0,6s.

7.1.2 Summary

The integrated prototype shows that the overhead of the SecLooCI security
node framework is small enough to still fit on micro-controller level devices. The
prototype overview showed that the overhead of the static system is significant,
but comparable to other security solutions proposed by related work. The
previous section has shown that the prototype communication overhead from
security at the setup time is fairly limited, and exists mostly of necessary security
meta-data. The deployment of a single application component, together with
all the relevant security policies requires the transmission of the same number
of bytes as would be sent during ca a single day of operation. This thus leads us
to the conclusion that the current generation of embedded nodes can support
secure node mobility, and secure software evolution.
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7.2 Smart Office Deployment

This section discusses the DistriNet Smart Office deployment, and its results,
which is an implementation of the smart office use case as presented in Section
2.1.1. First it details the different applications running in the smart environment.
Next it lists the different security requirements of the applications. Third
this section reports on the communication overhead as monitored by the
monitoring system. Last, this section discusses a few observations made during
the construction and evaluation of the smart office deployment.

The security and management of the lab is done using the SecLooCl
infrastructure. All applications and security requirements are modeled using
the end-user tool. The application owner server stores these descriptions, and
is continuously monitoring that the deployment remains in a valid state. Every
hour, each application is verified to ensure that all components are deployed,
parameters set correctly, and that the security policies are correctly installed
on the nodes.

7.2.1 Applications

This section introduces the setup and the applications in the DistriNet smart
office deployment. The smart office consists of the smart office server, which
provide data storage and processing (a standard pc), the gateway node which
offers access to the embedded network (a Raspberry Pi), and 8 sensor nodes
providing sensing and actuation (AVR Zigduino’s). This smart office evaluation
focuses on 3 applications: 1) an environment monitoring application, 2) a
motion detection application, and 3) a window monitoring application. These
applications were inspired by the ITEA DiY Smart Experiences project, and
were made in consultation with the office administrators. The remainder of this
section details these three applications.

The first application is a simple environment monitoring application. One sensor
node is deployed in the environment with two sensors, one which monitors the
current humidity and temperature and another which monitors the pressure
in the room. Two applications poll the sensors, and send the readings to the
gateway, which stores it on the web server, as shown in Figure 7.2a. The first
applications measures the temperature and humidity of the room using the
SHT15 sensor. The second application measures the atmospheric pressure in
the room using the BMP180 sensor. The applications sample the environment
every 5 minutes. This data is then sent to the gateway, and stored on the
server. The server then allows for long term monitoring, and can potentially
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Figure 7.2: Overview of the applications of the DistriNet smart office
deployment.

warn building administrators when the temperature becomes too high or too
low.

The second application is a motion detection application, as shown in Figure
7.2b. 5 sensor nodes, distributed across the smart office, are equipped with
passive infrared motion sensors. The nodes send a change in detected motion
immediately to the server. Additionally every 5 minutes, the current motion
state is reported. On the server, this data is aggregated to a single data feed,
which reports whether or not the lab is currently in use. This allows to provide
long term reports on the daily usage of the smart office.

The final application is a window and light monitoring application. Each window
is equipped with an ADC switch sensor, which detects when the window is open
or closed. All the lights have a light sensor which detects when the lights are
on or off. The ADC sensor is measured every 10 seconds. When a change is
detected, this is sent towards the gateway, which then reports it to the server
as shown in Figure 7.2c. Additionally the current state is reported every 5
minutes. On the server, the window and light state is logged. Additionally,
when a window is open or the lights are on past a certain time each day, an
e-mail is sent to the building administrator, who can then go and close the
window or turn off the lights.
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7.2.2 Security Requirements

This section goes over each application, and identifies the minimal security
requirements for each application. For the security requirements, we will
apply a basic premise that all data and commands which trigger actions either
by actuators in the environment, or by notifications in the back-end, must
be protected minimally with authenticity protection. All messages which
can be used to identify persons in the lab must be kept confidential. The
remainder of this section will go through the applications, and identify the
security requirements for each message.

The environmental monitoring application has minimal security requirements.
There is no actuation coupled with the environmental monitoring, and is
currently only to provide an indication of the current office environment. As
such, the security requirements of this data are minimal, so we use this data as
a baseline set of applications with no security policies installed.

The motion application is clearly a more security sensitive application. It can
potentially be used to detect illegal presence in the room, and as such should
have at least authenticity protection, to ensure that an illegal visitor cannot
spoof the motion messages in an attempt to hide his presence. Since motion
data cannot be used to identify persons, the policy only requires us to send it
authenticated, but in order to test all security policies, we apply a full data
encryption policy to this application.

Finally, the window and light monitoring application can trigger emails in the
back-end that notify the building administrator of a potential security threat, or
unnecessary energy usage. As such the policy requires the data to be protected
using authenticity protection.

7.2.3 Evaluation Goal

The goal of the evaluation of the smart office deployment is to evaluate the
runtime overhead of the SecLooClI infrastructure on the embedded network
infrastructure. As such this evaluation will only look at the following three data
flows: 1) application communication, 2) application management, and 3) service
usage. The network initialisation data flow and application deployment data
flow are omitted, since they only happen in a very brief window at the start of
the deployment. This evaluation will only look at the stable state. Each of the
three observed data flows will be evaluated based on communication overhead,
and processing overhead. Memory overhead of the platform is omitted since
this already discussed in Chapter 6.
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The secure application communication overhead is observed in two ways: the first
aspect is the additional communication overhead due to security associations
and security headers that need to be added for MACs and security information.
The additional processing time measured is the time it takes to evaluate the
security policies, and perform encryption, if necessary.

The secure application management overhead is observed as follows: 1) the
network overhead due to data sent and received, 2) the processing overhead
due to encrypting, decrypting and authorising the management events, 3) the
processing overhead due to authorisation, and 4) the overhead of actually
querying the necessary runtime information.

The monitored application service usage is observed as follows: 1) the
communication overhead of sending the monitoring data to the back-end server,
2) the processing overhead for aggregating and sending the monitoring messages,
and 3) the cost of calling the monitoring framework.

So to conclude, the smart office will evaluate the following three data flows in a
continuously running live environment: 1) the application communication data
flow, 2) the application management data flow, and 3) the service usage data
flow. For each of these data flows, the applicable communication and processing
overhead is observed.

7.2.4 Metrics

This section presents a list of observations made during the operation of the
smart office deployment. It presents mainly the processing overhead of the
applications. In addition it also list the communication overhead and memory
overhead of the applications. The figures shown are the average hourly overhead
of the different systems.

The hardware used for the evaluation is the AVR Zigduino [4], running Contiki
2.7 and LooCI v2, with the SecLooCI node security middleware. For authenticity,
the system uses AES128-CMAC with 16 bytes MAC. For confidentiality, the
setup uses AES128-CCM with an 8 byte MAC. Both algorithms are implemented
in software. The CPU time is measured by the monitoring system, which measure
the system ticks for performing certain operation. Fach system tick is 64 usec,
so this is about the maximum accuracy of the measurements. The readings
are taken during several days, and then the hourly average of these readings is
shown in the different tables.

This section first looks at the application overhead, and then the security
overhead for these applications. Table 7.2 shows for each application the
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amount of events sent per hour, the average size per event, the LooCI overhead,
the security overhead, the number of CPU ticks the component used, the amount
of RAM the component required, and the number of CPU ticks the application
security component used to provide the required level of encryption.

The table shows several interesting observations. A first non-security related
observation is that the temperature and humidity component consumes a lot
of CPU, both compared to other components or compared to any security
overhead. This is because the component which produces temperature and
humidity communicates with the sensor using a custom serial protocol, which
is similar to I12C. However, it is sufficiently different so that the nodes’ 12C
support cannot be used. The pressure component uses the I12C interface to the
sensor, and as such requires significantly less processing. When compared with
the window and the motion component: the window component uses active
polling every 10 seconds to read the current value of the ADC. This is a fast
process, but still takes some processing time. The motion component lastly
operates based on a callback interface, and only gets warned when motion is
detected.

Next this section looks at the overhead of the application communication security
system. First, when looking at the communication overhead of application
communication security system, we can see that authenticity requires some
extra overhead: 16 bytes for the MAC, and another 7 bytes for various headers
etc. Confidentiality requires slightly less overhead, since we use only an 8B
MAC. However, the overhead is only 4 B lower because to ensure confidentiality
the 4 B LooCI header is also encrypted.

Second, this section looks at the processing overhead of the application
communication module. The setup shows that even for no security, a small
amount of time is spent in the application communication module, about 58
microseconds an hour. This is likely due to some validation and policy checking
statements, which then show that no security is needed. Ensuring authenticity
requires ca 15.9 milliseconds an hour, or 1.33ms per message. To ensure
confidentiality requires about 19.1 milliseconds per hour, or ca 1.59 ms per
message. The difference between authenticity and confidentiality is not large,
due to the selected algorithms. AES128-CMAC also encrypts every block, but
does not write the encrypted text back, which likely saves a few milliseconds.
Using different algorithms can change these figures significantly.

For the second security evaluation, this section looks at the hourly overhead of
the application manager. This shows the overhead of managing the applications
and the properties. The monitoring system observes the introspection of the
entire system, so we cannot attribute introspection to a single application.
We have set up four different nodes with a different application setup to
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Table 7.2: Hourly application usage.

Application name Temp + Humid | Pressure ‘Window Motion
Security requirement No sec No sec | Authenticity | Confidentiality
Used Ram (B) 26 24 38 43

Nr events sent hourly 24 12 12 14,3
Average packet size (B) 6 6 6 6
Average LooCI overhead (B) 4 4 4 4
Average Security overhead(B) 0 0 23 19

CPU time component (ms) 3773 151.3 63.5 4.07
CPU time security (ms) 0.060 0.030 15.76 22.2
CPU time security per msg (ms) 0.0025 0.0025 1.31 1.55

manage: node 1: two non-secure components (temperature-humidity and
pressure component), node 2: 1 component with confidentiality (motion), node 3:
3 components of the same application which requires authenticity (window), node
4: 2 different application components, one requiring confidentiality (motion),
and one requiring authenticity (light).

Table 7.3 shows the average hourly usage of the management component
infrastructure. Note that the system validates the entire deployment every hour,
so this shows the average overhead of a single cycle of application validations
on the node. The tables show that the introspection requires a significant
number of messages in all cases. The number of hourly messages of validation
surpasses the number of functional messages. The average size of the messages
is also slightly bigger, due to often requiring more content in introspection or
reconfiguration. The time that the management component operates however
is fairly similar the time the functional components operate.

Table 7.3 also shows that the time to encrypt the messages is similar to the time
it took the confidentiality policies to be enforced at ca 1.71 ms per message. The
slightly higher average time is likely because certain management messages are
longer than a single block, requiring a second crypto block operation. Depending
on the amount of long messages, the average time will be a bit longer. The
second observation is that the average proxy overhead is only about 2 percent
of the average cryptography overhead, showing that cryptography is definitely
the largest burden. Hence this shows that a larger authorisation part, with
multi-user support, can be added to these constrained embedded nodes with
minimal additional processing overhead.

Thirdly we look at the monitoring overhead of the monitoring and enforcement
system. Table 7.4 shows for each node the amount of components present on
that node, the amount of logging messages sent per node, the average monitoring
event size, and the average CPU time for the monitoring component. First, to
explain the high number of components: each node has 4 default components:
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Table 7.3: Hourly management usage.

Node node 1 | node 2 | node 3 node 4
Nr Components 2 1 3 2
Nr Applications 2 1 1 2
Security requirement no sec conf auth | conf-auth
Nr events received 18 14 28.2 25
Average received event size (B) 7 9.3 7.1 9,7
Nr events sent 18 14 28.2 25
Average sent event size (B) 11.5 9.9 9.3 9.88
Average LooCI overhead per msg (B) 9 9 9 9
Average Security overhead (B) 19 19 19 19
CPU management component (ms) 5.96 4.61 9.09 8.35
CPU management component per rec msg (ms) 0.331 0.330 0.323 0.334
CPU authentication (ms) 62.4 47.6 95.4 85.93
CPU authentication per msg (ms) 1.73 1,70 1.69 1,72
CPU authorisation (ms) 0.651 0.448 | 0.795 0.757
CPU authorisation per rec msg (ms) 0.0361 | 0.0321 | 0.0282 | 0.0303

one middleware management component, one security management component,
one OS monitoring component, and one application monitoring component.
Next to those components, each node has the application components installed
as described previously. The table shows that the average event size is linearly
related to the amount of components installed on the node. Each component
requires an additional 13.5 bytes per message on average. The second observation
is that the processing time of the monitoring component is fairly low compared
to the crypto components, and lower than most application components. Note
that we did not add any application security policies on the logging data, to
keep the readings of the security framework purely focused on the application
functionality.

When looking at the time required for the acquisition of the data, we observe
that this is currently less than the time required to perform the reporting. Note
that the time of data acquisition depends on the frequency of the monitored
subject, so in this case the execution and publication occurrences of application
components, while the average CPU for sending depends mostly on the frequency
of reporting. However, these figures show that the monitoring infrastructure
adds about 13 ticks of execution overhead per application component per hour.
When compared to most application components, this is less than 10 percent of
the application execution time. This does not include sending and receiving
data though.

Finally we would like to frame the figures from the previous experiments with
some general figures from the node middleware with regards to the network
system, the event bus and the memory usage as shown in table 7.5. The first
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Table 7.4: Monitoring overhead per hour.

node Node 1 | Node 2 | Node 3 | Node 4
Nr Components on node 6 ) 7 6
Nr monitor events 4 4 4 4
Nr total events 76 46.25 96.3 82.8
Average mon event size (ms) 110.5 97 124 110.5
CPU data acquisition (ms) 1.89 0.539 2.47 1.98
CPU acquisition per event 0.0248 | 0.0116 | 0.0256 | 0.0239
CPU data publication (ms) 2.90 2.84 3.14 3.04

thing to point out is the very large receiving overhead. Currently the node uses
active listening, and this clearly shows in the amount of receiving overhead. It
is about 1000 times more compared to almost any other processing overhead.
The second observation is that the CPU time spent sending is about 2 times
the amount of time spent encrypting the various messages. So again this puts
the overhead due to security into perspective.

Next we look at the time spent using the sensors. The current middleware
monitors reading of ADC, using the I12C module of the Zigduino, and setting
and getting of binary pins. The sensing time spent on node 1 is due to the
pressure sensor, which uses the 12C module. This clearly shows the efficiency of
the module compared to the manual serial implementation of the temperature
and humidity component. Node 2 is a motion detection node, and uses almost
no sensor time. Node 3 is the window sensing node, and while it samples the
binary pin fairly frequently, polling a pin incurs virtually no overhead. Finally
node 4 has a motion sampling and light sampling component. The sensor time
incurred is therefore likely alone from the light sampling component, which uses
the ADC converter on the node. Reading from ADC thus clearly requires some
more time compared to reading a digital pin.

Finally we look at the LooCI communication overhead. The overhead of the
event bus, which allows policy based event routing across the network based on
event semantics and producer, is only about 2 percent of the actual time spent
sending the events across the network. This shows that policy based routing
is definitely viable energy wise. A related observation is that in the current
system most of the event sending is clearly done by the LooCI networking bus.
However, there is also a bit of transmission time of which we currently do not
know the origin. It is suspected that this is IPv6 routing traffic, but this is not
verified.

To summarize these observation, the smart office deployment shows with regards
to security that: 1) the application communication security enforcement requires
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Table 7.5: Operating system overhead.

Node Node 1 | Node 2 | Node 3 | Node 4
Hourly events sent 58 32.3 68.2 57.8
hourly events received 18 14.0 28,2 25
CPU sending (ms) 236.5 190.4 294.1 263.0
CPU receiving (ms) 67385 | 63409 | 105449 | 87490
CPU sensing (ms) 7.19 0 0 69.1
unused RAM (B) 4974 5269 5101 5222
never used RAM (B) 3979 4326 4095 4217
CPU LooClI event bus (ms) 3.95 2.19 4.18 4.53
CPU LooCI network layer (ms) 206.6 141.2 277.3 237.4

a significant amount of additional bytes to be sent, but since the packet sizes are
small, it causes no packet fragmentation, so the actual impact is likely low, 2)
the application communication security system requires processing time which
is in many cases about the same time as the components require to process data.
It is about a tenth of the time compared to the time spent sending, and even
much less compared to the time spent receiving. 3) the application management
subsystem which is used to verify the system every hour (so one 12th frequency)
consumes more processing time due the large number of messages sent, and
the fact that both sent and received messages require encryption operations.
Hence the overhead of the continuous validation is significant. It also showed
that the overhead of the authorisation module is only about 1 percent of the
cryptography operations, so clearly multi-user interactions are feasible in these
constrained embedded system, and 4) the total monitoring system in most
cases uses less processing time than the applications, and sends less messages,
but on average much larger messages, and 5) a fully operational system with
the Contiki OS, LooCI and SecLooCI middleware still has ca 4K of unused
RAM, which is about 25 percent of the total available RAM. This shows that
the SecLooClI secure node middleware is able to operate on these constrained
embedded nodes, while still providing sufficient memory for applications.

Note that the sampling frequency, monitoring frequency and application
validation frequency are variable, and in this case chosen to produce a sufficient
amount of certainty and visibility of the system. As such, most of these readings
should be interpreted relatively to the sampling frequency. So by significantly
lowering the validation frequency of the applications, the absolute overhead of
the management system would be significantly lowered.

Also a few non security related observations: 1) active listening takes orders
of magnitude more processing time compared to anything else, 2) custom
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12C implementations require significantly more energy compared to using 12C
hardware support, and 3) reading ADC values also requires significant processing
time, but less compared to custom 12C interfaces.

7.2.5 Observations

During the construction and operation of this smart office environment, we
made two general observations which might prove interesting for related work:
1) while powered nodes do no tend to fail often, there are occurrences that
cause nodes to reboot, and 2) to easily deploy embedded systems, nodes must
run multiple applications.

All nodes in the smart office environment are connected to the power grid. This
provides them with long term power, and causes them to almost never reboot.
However, during one occurrence, the power of half the lab was accidentally shut
down. This event was quickly detected by the application owner server, since
suddenly a large number of nodes was no longer responding to requests. The
application owner was notified, and took action to attempt to solve the issue.
Eventually the issue turned out to be a fuse which was automatically turned
off. This issue was easily fixed, and the application owner server automatically
reinstalled the necessary components. While a minor issue, this event showed
two things: 1) nodes will reboot on unforeseen times, and 2) by having a
monitoring and management infrastructure, these events are noticed faster due
to automated reporting, and fixed easier by automatic state reenactment.

The second observation is related to the application running on the nodes. To
easily set up an office deployment, you want to quickly put a few nodes on
certain places, and instrument them with the necessary sensors. In many cases,
the nodes were instrumented with multiple pieces of hardware, and thus running
multiple pieces of software to support that hardware. For example one node
was involved in both the temperature monitoring and the motion detection
application. An other node was involved in the motion and light monitoring
application. The motion and temperature monitoring applications are nice
examples of applications that can use multiple nodes, and instead of having to
set up individual nodes for each of these applications, reusing nodes allows for
quicker and easier setup.
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7.3 Summary

This chapter has presented the evaluation of the SecLooCI infrastructure and
SecLooClI node security framework. First it presented a virtual test scenario
based on the smart logistics use case which went through the lifecycle, presented
how the SecLooClI infrastructure operates, and identified the overhead of the
different phases of the application deployment and operation. This showed that
the overhead of secure dynamic course grained evolution of embedded networks
is similar to about one day of application execution.

Second, this chapter provided an in-depth evaluation of a real world smart
office deployment. Several embedded applications have been deployed in a
smart office testbed, to monitor environment variables such as temperature,
humidity, window state, and lights. This deployment showed that the SecL.ooCI
node middleware does pose some overhead, but that it is in the same order of
magnitude as the execution time of certain applications. It also showed that
most of the processing time of a node is spent receiving, and only a fraction
actually doing other activities such as security. Finally it showed that active
verification of embedded systems by frequently inspecting the current state is
quite costly, but active monitoring of running applications only has a limited
overhead compared to most application functionality.






Chapter 8

Discussion

This chapter discusses the proposed SecLooClI security infrastructure for Shared
Networked Embedded Systems. First this section goes over the functional and
non-functional requirements and details that all requirements have been met.
Next this chapter discusses how the architecture prevents the different attacks.
Finally this chapter discusses the trust requirements, privacy impact, energy
impact, features and trade-offs of the security infrastructure, and the framework
approach to designing the infrastructure.

8.1 Non Functional Requirements Discussion

This section looks at how the non functional requirements, as presented in
Section 2.5.2 have been fulfilled.

8.1.1 Evolvability of Infrastructure

The SecLooCI infrastructure handles the evolvability of the underlying
infrastructure during the different stages: it handles the joining of new
nodes, changing connected hardware of nodes, and the disappearance of nodes,
depending on the requirements and exact scenario.

Node joining is handled by the Secure Network Initialisation data flow. When a
new node joins the network, it must contact the network gateway. The network
owner can then negotiate policies with the platform owner and allow the node
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to security join the network, as discussed in Section 6.2. Once this is done, the
network owner can add the new node to its node repository, and potentially
inform interested clients that a new node has joined.

The infrastructure also handles adding new hardware, be it adding nodes to the
system, or hardware to nodes. Adding nodes to the system simply requires the
platform owner to add a description of the nodes, together with the initially
installed hardware to the platform owner server. Potentially node vendors can
even provide a specification document, which the platform owner simply has to
import in his server. Adding new hardware requires the platform owner to add
the necessary resources and parameters of that hardware to the node model.
Again this can potentially be automated by the vendors providing the necessary
specs, which can be automatically loaded in the end-user tool, and deployed on
the platform owner server.

The disappearance of nodes can also be handled by the infrastructure. During the
application monitoring, the application owner server can notice that a node that
it expects to be present is no longer available. Depending on the requirements
of the user, the application owner server can then notify the application owner
to update the application, or it can automatically select another node to deploy
the necessary functionality based on application requirements. Currently only
the notification is available in the SecLooCI infrastructure, but related work
[49] has shown that it is possible to adapt deployment based on high level
application requirements.

8.1.2 Evolvability of Software

The SecLooClI infrastructure supports the evolvability of software both in the
back-end and on the node middleware, for both creating and securely deploying
new applications, or securely modifying and removing existing applications.

The end-user tool enables users to easily create new application deployments
based on pre-existing generic application models, and to create their own
new applications. It allows them to easily add security requirements to their
applications based on the semantics of the data transmitted, and to set the
functional parameters of their applications, such as limits or sampling frequency.
These specifications are then sent to the application owner server, which
automatically rolls out these applications on to the relevant embedded nodes.
By using the secure application deployment system, it can securely deploy new
application components when required on these embedded nodes.

The end-user tool also provides users with an easy way to change their security
or functional requirements by simply downloading the current deployment
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specification, altering the required parameters, and commit the new specification
back to the application owner server. The application owner server will then
automatically attempt to change the underlying system to achieve the new
desired state, and it will automatically clean up any policies or settings
that are no longer necessary. The application owner server can securely
enact these changed requirements on the embedded nodes using the Secure
Application Management System. Additionally when removing the application,
the application owner server can again use the Secure Application Management
system to clean up all obsolete components, configurations and policies.

8.1.3 Heterogeneity of Infrastructure

The SecLooCl infrastructure is able to support nodes with a wide variety of
sensing and actuation capabilities, or node types. The platform owner node
model allows the platform owners to encode any resource that is available.
The tool provides a subset of standard available resources, but the model is
not restricted to only using these resources. platform owners can append any
resource they feel is necessary.

The node model can similarly support multiple different node types. The
current model provides a limited list of available node types. However, again
the platform owner can add any new node type that he wants. However for both
the node types and available resources, care must be taken that the provided
resources as modeled by the platform owner, match the required resources as
modeled in the application by the application owner. This could potentially be
solved by a global repository of node types, sensing and actuation resources.
This has however currently not been implemented.

The end-user tool aids the application owner to deploy components easily on
such heterogeneous infrastructure. Based on the available implementations,
required resources of those implementations, the available nodes and the provided
resources of those nodes, the tool can filter out all nodes which are unable to
support a certain application. This allows the tool to filter the potentially large
set of available nodes so the application owner can select the preferred nodes
from a list of only suitable nodes.

8.1.4 Transparency of Heterogeneity

The SecLooCI infrastructure handles the heterogeneity of performance by
providing the same modelling abstractions for describing both resource
constrained nodes as well as resource rich nodes. Modelling and assigning
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similar behaviour is identical for resource constrained nodes and resource rich
nodes.

By using the same modelling abstractions, the user uses the same set of
abstractions to declare that two resource constrained nodes are exchanging
data, or two resource rich nodes, or a resource constrained node is sending data
to a resource rich node. The user does not have to be aware of the difference
between the nodes, nor does he have to use multiple different abstractions to
interact with different types of nodes.

The SecLooCl infrastructure also provides users with a single set of security
abstractions to model the security requirements, which is independent of the
underlying platforms. Users do not have to distinguish between which platform
is running underneath, or which type of communication pattern is used by the
application. Rather the user can express their security requirements based on
the semantic type of the data that is being transmitted.

8.1.5 Transparency of Security

The SecLooCI framework handles the security transparently for the application
on multiple different levels. First, the end-user tool encodes the security
requirements in a unique security policy document, that exists next to the
actual application deployment model.

The node security middleware also handles the security transparently for
the actual application implementation on the node itself. As long as the
implementations of the application behaviour follows the best practices of
of the application middleware, such as clearly and uniquely encoding the
semantic type of the data transmitted, and using the monitored proxy services
for accessing node OS services, the middleware can transparently secure the
messages transmitted using the Secure Application Communication System, and
transparently monitor the service usage of the application using the Application
Monitoring System.

8.1.6 Flexibility of Communication

Applications can have multiple different modes of communication, such as
one-to-one, one-to-many, and opportunistic communication. The SecLooCI
infrastructure allows all these communication patterns. The application owner
can encode which type of communication should be used in his application using
the Application Modelling abstractions. Additionally the application owner
must then specify the security policy based on the type of data. These policies
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are then automatically parsed and enacted by the application owner server and
installed as policies in the Secure Application Communication system on the
embedded nodes.

The Secure Application Communication system on the nodes has a very flexible
security mechanism. Based on outgoing encryption policies, the data transmitted
by the node is sent if necessary over a secure channel which either provides
authenticated or confidential transmission. Incoming encrypted data is then
checked based on the channel identification, and the necessary decryption and
validation is performed. Additionally incoming security policies can ensure that
for certain types of data, certain security guarantees are met. Using the flexible
security policies provides the users with a very flexible model able to secure
most if not all communication patterns.

8.1.7 Flexibility of Security

Since security incurs a cost, it should be possible to decide which kind of data
must be protected with which kind of security protocol. This is provided by
the application security policy modelling abstractions, and enforced by the
application communication security middleware.

The application security policy model allows users to declare which types of
data should be secured with which level of security. For example users can
declare that environment monitoring data does not have to be secured, motion
detection data must be authenticated, and personally identifiable data must
be encrypted. This can be done on a per application, and a per user level. So
different users can decide for themselves how their application communication
should be secured. To provide simple abstractions, users can only decide between
no security, authenticity, or confidentiality on this level.

The policies encoded in the application security policies are then enforced by
the SecLooCI node security middleware. The node security middleware also
supports even more fine-grained configuration of the level of security, by allowing
the increase or decrease of the length of the MACs. This potentially reduces the
amount of communication overhead, however the amount of processing overhead
remains the same, since in most proposed algorithms, sending a smaller MAC
still requires the calculation of the full length MAC, but the long MAC is just
truncated to the first bytes.

The node security framework also supports multiple different algorithms. This
could allow certain users to use lighter authentication or encryption algorithms,
or experiment with newer version which reduce the overhead on the embedded
node. These algorithms can be deployed as necessary on the sensor nodes, which
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would enable algorithm negotiation and ad-hoc deployment. However, to keep
the user abstractions simple, the length of the MAC and the algorithm selection
are made by default by the SecLooCI server infrastructure.

8.2 Security Discussion

This section presents the security analysis by identifying the possible attacks and
possible mitigation options of the four different types of attackers as presented
in Section 2.5.1: the outside attacker (OA), the Network Attacker (NA), the
physical attacker (PA), and the insider attacker (IA). To identify the possible
attacks, we apply the STRIDE threat model [112] to these attacker and assign
the different threats to the relevant actors. This approach is an industry
standard proposed by Microsoft, and recommended by OWASP [86], and the
Open Web Access Security, a consortium to promote the security of the web,
with members such as HP, IBM, and Oracle. OWASP recommends the STRIDE
model because it works well for addressing the unique challenges facing web
application security and is simple to learn and adopt by designers, developers,
code reviewers and quality assurance.

The list of threats we have identified is: spoofing identity (OA + NA + PA),
tampering with data (OA + NA + PA), repudiation (IA), information disclosure
(OA + NA + PA + IA), denial of service (OA + NA), and elevation of privilege
(TIA). The remainder of this sections discusses each of the types of attackers,
explains how they pose a threat to the system, and how the SecLooCI security
infrastructure is able to mitigate the risk.

8.2.1 Outside Attacker

The outside attacker is an attacker who is not part of the network, and who
can listen to the network, intercept messages, and change messages, but not
break cryptographic protocols, according to the Dolev Yao model [30]. He
can potentially 1) spoof the identity of users, 2) tamper with application or
management data, 3) disclose information, and 4) perform denial of service
attacks. The SecLooCI middleware prevents the first three attacks, and offers
potential mitigation against the fourth attack.

The secure management system, and the secure application communication
system prevent network attackers from spoofing the identity of nodes and
users. All management communication is encrypted using a symmetric key
cryptography protocol, where the secret key is only known to the nodes and
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users. Since the model dictates that a NA cannot break encryption algorithms,
the NA cannot perform identity spoofing. The secure network layer provides full
network authenticity and encryption protection, which prevents the NA from
tampering with all application or management data. The secure network layer
also prevents any data disclosure for parties outside of the network. Finally the
SecLooCl infrastructure cannot prevent denial of service attacks.

SecLooCI does have tools that can potentially detect such attacks when they
occur. For example the application owner server validates that nodes can be
reached, and that messages can be received. The application owner server is a
final endpoint of data, and can validate that data is coming in when expected.
Additionally the platform owner server should receive monitoring data from
his nodes. When either of these mechanisms fail, the relevant parties can
investigate what is interfering with their communication, and take action. From
a node point of view, the monitoring and enforcement system can detect when
a significant amount of invalid messages arrive. In such cases, it can go into an
energy saving mode by for example turning the network stack off for some time.

8.2.2 Network Attacker

The network attacker is an attacker who is part of the network of the network
owner, but who has no permissions on the node system, nor to access any data
produced by the node. As such he can perform all the attacks the OA can, and
has extra capabilities to do so. As the outside attacker he can: 1) spoof the
identity of users, 2) tamper with application and management data, 3) disclose
information, and 4) perform denial of service attacks.

As with the outside attackers, the secure management system prevent the
NA from spoofing users. Since all management operations are authenticated
and encrypted end-to-end and the network attacker does not receive these
credentials, he cannot perform such attacks. He also cannot tamper nor disclose
this management data.

A network attacker however can tamper with application data if the application
owner does not require end-to-end security for his application data, and disclose
application information if the application owner has not required an end-to-end
confidentiality for his data. In such cases, the application owner permits other
members in the network to read the data, and in case of no security policy, even
to potentially modify or spoof the data. This is a choice the application owner
has to make. However, if the application owner has high security requirements
for certain types of data, the SecLooClI infrastructure allows him to specify
these policies, and enforces them by applying an additional layer of end-to-end
encryption.
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Finally the network attacker can also perform Denial of Service attacks, and can
do these more efficiently, and can perform other attacks, such as the sinkhole
attack. In this kind of attack, a node will fake being the best next hop for all
nodes, and when routes are established, not forward the traffic, denying service
to the nodes. Again, the SecLooClI infrastructure has no countermeasures for
such attacks, but as with the OA, it has the necessary tools for detection. We
also consider routing security out of scope for this thesis, and refer to related
work where ample countermeasures have been proposed for this and other
attacks.

8.2.3 Physical Attacker

The physical attacker can physically probe a node, and as such retrieve all node
credentials and key material that is contained within the node. When such a
PA performs a successful probe, all network and application security keys will
be available for the PA. He can thus perform the following attacks: 1) spoofing
identity, 2) tampering with data, and 3) disclose information.

The physical attacker can try to spoof the identity of the owner of the node
based on the owner key of the node. However, the SecLooCI node middleware
requires that each node has a unique secret key shared with the platform owner.
As such the PA cannot spoof the identity of the owner. Any user key that
is present on the node is also disclosed to the PA. The SecL.ooCI middleware
prefers that each user key is unique, however it does not strictly require it,
because by allowing a single user key to be installed on multiple nodes, the user
could perhaps perform group management commands, which save significant
resources. When a single user key is used on multiple nodes, this can be disclosed
and all other nodes are temporarily vulnerable. However, when the attack is
detected, the platform owners can use their owner key to remove compromised
users, and install new keys.

The physical attacker can tamper with and disclose information of those data
streams in which the disclosed node participated. Since the disclosed node was a
valid participant in the node communication, he needed to be able to create and
read traffic, and as such when disclosed the attacker can do the same. However
the Application Communication system only discloses keys to those parties
that need it, so not all data streams in the network are affected. While the
SecLooClI infrastructure currently does not attempt to detect these breaches,
it can recover from this disclosure. Again the platform owner or application
owner of the other affected nodes can use their unique user keys to update the
cryptographic material on the nodes, and exclude the disclosed node. Since the
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PA cannot read the rekeying messages, the new keys are not disclosed and the
system can be returned to a safe state.

8.2.4 Internal Attacker

The inside attacker is a network owner or application owner who is trusted by
the platform owner of the attacked node. As such the IA has valid credentials
to contact the node, and perform certain management operations on the node.
This enables him to do the following attacks: 1) repudiation, and 2) elevation
of privilege.

The secure application management system ensure non-repudiation since the TA
cannot deny performing an operation. Each user receives unique keys for the
nodes of the platform owner. As such, the key is only known to the platform
owner, the node and the IA. When performing an operation, the IA cannot deny
having requested that operation to the platform owner. The secure application
management system also prevents elevation of privilege. The management
system has an access control list which specifies which users are allowed which
operations. As such, the IA can only perform those operations which he is
allowed to perform.

8.2.5 Other Threats

Recent revelations have shown that governments and other organisation have
the capabilities to and actively engage in spying on the communications of
virtually everyone on earth, actively attack network providers and add spyware
into the hardware that is invisible for the software running on top. These actors
form an attacker that has almost unlimited resources and unknown capabilities.
However, we can look at these attackers based on the previous attacker model.

When these attackers target the hardware, we can assume that they have full
control of the hardware, and thus basically act as a physical attacker. We stated
previously that the software framework can do very little to prevent this kind
of attacks, but if it can be detected, the framework can potentially mitigate the
attack and remove the broken nodes from use.

When these attackers target the network, we can assume they have full control
of the network, but still can not break cryptographic primitives, similar to
the network attacker. As such, the framework can offer certain protection
against these kinds of attacks: they cannot spoof users, nor can they perform
management actions on the platform. Users can also still send confidential
data over the network, which can not be read by these attackers. The network
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attacker can however still see when communication takes places, and potentially
with whom the devices are communicating. However solving these issues is
beyond the scope of this thesis.

8.2.6 Summary

The SecLooClI security infrastructure prevents many possible attacks from
outside, network, physical and inside attackers. While most of the attacks are
prevented by the security middleware, the framework cannot prevent certain
kinds of attacks such as network based attacks and physical attacks. However,
the SecLooClI infrastructure does provide the necessary tools to potentially
detect and mitigate these attacks.

8.3 General Discussion

This section provides a general discussion of the SecLooClI infrastructure for the
secure sharing of embedded networks. First it looks at the trust requirements
of the infrastructure, and identifies the different ways trust can be required and
transferred in the system. Second it discusses the privacy implications of the
framework. Next it considers the energy consumption of the framework. Then,
it looks at the current limitations of the infrastructure, and lists some of the
trade-offs made in the construction of the prototype. Last it discusses why the
system fits the definition of a framework.

8.3.1 Trust Requirements

The SecLooClI infrastructure enables multiple different parties to securely
cooperate in embedded networks. As such, the primary requirement to cooperate
is that the different parties trust each other enough so they are willing to
cooperate. Currently, the system assumes that network owners, application
owners and platform owners will only offer their services to parties they trust,
and only use services from parties they trust.

Currently the prototype requires that each network owner, platform owner
and application owner explicitly lists those parties with whom it is willing to
collaborate, and is able to retrieve valid certificates for those parties. However,
this is mostly an implementation issue. In a mature environment, trust will
likely be established by third party trust providers, which will likely also operate
as certificate authorities. Each party must then register with one or more of
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these trust providers, and trust the trust provider to only permit trustworthy
parties. This significantly reduces the burden of establishing trust relationships,
and opens up the system for ubiquitous usage in a very scalable way. These third
parties could also act as payment aggregator, paying platform owners for all
associated usage, and billing application owners for said usage. Parties still can
chose which services to share with which parties or groups, and distinguish in
offered services between different trust providers. The SecLooClI infrastructure
currently already allows parties to differentiate available resources based on
groups.

At the moment the system requires an explicit trust relations to exist between
the parties, however this is optional. For example, a network owner might be
willing to offer his network to all users, but with severe limitations, or a platform
owner might be willing to open up certain nodes to everyone, since they provide
very limited value to him. In such cases no trust relation would be required.
This is currently not implemented, but could potentially be a part of a mature
system. However when dealing with critical systems, the parties involved will
want strong security guarantees. For example in the smart logistics scenario, it
is critical that only certain users are allowed to access for example the current
container manifest, or the container lock service.

8.3.2 Privacy

Privacy has gained a lot of attention in recent years. While the definition of
privacy is difficult and many people define it differently, this thesis will take
the definition provided by Westin et al. [120]: ”the right of the individual
to decide what information about himself should be communicated to others
and under what circumstances”. With the arrival of more pervasive means to
track individuals, it is clear that in the context of networked embedded systems,
privacy is a valid concern. While the provided framework does not provide full
privacy, it can aid in attaining more privacy.

The framework allows owners of the platforms to decide which resources, and
which data they share with whom. As such, the framework is able to restrict
access to information resources only to trusted parties. It also allows users
to specify which data must be communicated confidential. This ensures that
no other parties in the network can read potentially identifiable data, such as
location data or personal identification codes, during transmission.

However, the framework only provides a small piece of privacy puzzle. There are
still many issues. The first issue is that all devices are currently identifiable when
they are present in a network, due to their unique and persistent MAC address.
This allows attackers to potentially track devices, and the users or goods they
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are attached too. Second, due to the strong dependency on interaction with
a cloud infrastructure, each device must know the identity of the owner, and
transmits this identity when connecting to a new network, which can be a
privacy problem. These problems can be mitigated: the first problem can
partially be mitigated by MAC address cycling, where on joining a new gateway,
or after a certain time frame, the node changes its MAC address [42]. The
second problem can be partially mitigated by using anonymous connections
such as TOR anonymous services [29], or allowing a trusted third party to
manage the nodes of multiple parties, which potentially brings its own privacy
problems.

Next to these issues, there are several others. One of the main issues is the
question of privacy when the devices of other people are monitoring the behaviour
of and potentially identifying other users. While this is a valid privacy question,
answering such questions could potentially fill another dissertation. As such
this and other privacy questions are considered out of scope.

8.3.3 Energy

In wireless battery powered embedded environments, energy is a crucial concern.
As such the cost of encrypting and monitoring the system should be carefully
considered. The remainder of this section discuses first why we did not do in
depth energy measurements, and second discusses the energy concerns of the
different security operations based on the smart office usage case: 1) encryption
overhead, 2) authorisation, 3) application validation, and 4) node application
monitoring.

First, during this thesis, there were no in depth energy measurements done of the
SecLooCI middleware for the following reasons. First, any energy measurement
is very dependent on the used hardware system, so even small differences of
a node’s hardware composition might have a large influences on the energy
consumed per action. Second, doing energy measurements is typically done
using a special energy measurement setup, which often suffers from limited
visibility of what actually occurs on the node, and is very labor intensive to
achieve significant depth of results. Third, in order to create a reasonable and
insightful study, significant work has to be done to create baseline measurements
of the non-secure middleware, to frame the results. And last, monitoring results
have shown in related work to fairly accurately reflect energy usage, and has the
advantages of being able to be done in a real-world setting, and offering much
more detail in the results [32]. As such this thesis only performed a resource
requirements evaluation based on the monitored smart office deployment, instead
of probing the system in an energy measurement setup.
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The smart office deployment currently already shows that adding security
policies requires some additional processing and network overhead, but that this
overhead is significantly lower compared to the total time the system is listening
to the network. This matches with findings of De Meulenaer et al. [27], who
found that of all the processing done on a embedded network, only ca 5% of
time is spent doing security operations compared to network operations, at least
when using symmetric cryptography. Our findings corroborate that. Special
note should be made that currently, all encryption protocols are executed in
software. By changing them to hardware, the overhead of encryption can be
significantly reduced.

Second the smart office deployment shows that the authorisation overhead of
the secure management system is much smaller compared to the time spent
performing the encryption and decryption, only about 1%. The authorisation
overhead can be considered one of the main differentiaters between a single user
and a multi-user system. In a single user system, the main user still needs to
ensure security, and encrypt all management requests. The difference is that
the user is by default authorised to all functions. Showing that the current
authorisation system can be implementated with minimal runtime, and thus
energy overhead, greatly supports the hypothesis that these devices can be
shared.

Third, the smart office deployment clearly shows that active validation of
applications requires a large amount of resources. The current smart office
deployment validates each hour that all configurations and applications are
still running as required. This involves sending a large amount of introspection
commands. Due to the high frequency of validation, the overhead of these
commands is in most cases higher than the time spent on the application
itself. This shows that active validation is likely not ideal for energy constrained
environments, and other means of validating deployments should be investigated,
such as outcome monitoring.

Finally, the smart office deployment shows that the overhead of monitoring the
node is small compared to the even the functional behaviour. Currently node
monitoring data is sent to the platform owner every 30 minutes, in the form
of 2 messages: one for node monitoring, and one for application monitoring.
Applications currently trigger every 5 min. This means that 2 messages are sent
for every 6 of an application. However, sharing nodes significantly increases
this number. For example the window node monitors 3 windows, and as such
sends 18 messages every 30 min, which means the monitoring only incurs a 10
% overhead in sending. Naturally in more energy constrained environments, the
monitoring frequency can be reduced signficantly to reduce overhead.
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8.3.4 Limitations and Trade-offs

The creation of the SecLooClI infrastructure, the SecLooCI node middleware
architecture and prototype were significantly constrained due to our goal of
implementing and designing the system for constrained embedded nodes. During
the creation of the prototype, the biggest constraint experienced was no doubt
the memory limitations of both RAM and ROM.

All security elements, from userld, to permissions, party information, security
policies etc. all require some amount, of memory. The Zigduino sensor node has
only 128 KB of ROM memory, and a mere 16 KB of RAM memory, which is
very low to current standards. The current implementation still has about 4 Kb
of unused RAM with a limited amount of users and policies installed. However,
this causes the node to only be able to support about 20 concurrent users and
parties per node, with about a dozen components, each having a few resource
consumption policies. The ROM memory is equally an issue. Currently only
about 36Kb of the 128Kb is available, which is 28 percent of the available space.

These limitations did have a significant impact on the design decisions of the
SecLooCI node middleware. The two largest design decisions made were the
choice not to use asymmetric cryptography for these nodes, and the choice of
having a hard coded role based access control infrastructure.

To support the resource constrained hardware, we decided not to use
asymmetric cryptography. Most current generation asymmetric cryptography
implementations both require a significant amount of memory for storing the
credentials, require a significant amount of time to validate and create signatures,
and still require the necessary infrastructure to update and change certificates.
For example RSA signatures require 128 bytes for the certificate at least, and
128 bytes for the signature. ECC requires less transmission and has smaller
certificates for the same security level, namely about 20 bytes. However, to
perform asymmetric cryptography still takes a significant amount of time. An
optimised ECC algorithm [77] still requires 55 seconds to verify signatures,
which is a significant energy drain on nodes. While solely using symmetric key
cryptography sacrifices forward security if the key is broken, as analysed by
O’Hanlon et al [83], it does reduce the overhead on the node and network.

The second trade-off is the way the current prototype implements permissions.
Currently each service verifies that the user has a certain role, either as a global
user, or as a user of the party offering the service. These requirements are hard
coded in the offered services, and cannot be changed. This allows for efficient
storage and low runtime overhead, but reduces the access control policy options.

Note that none of these limitations are fundamental to the architecture, but
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rather are trade-offs made to implement the architecture on the target resource
constrained embedded devices. The architecture could potentially be scaled
upwards in favor of more expressive policies and more flexibility on the node,
and perhaps easier management of node security credentials using asymmetric
cryptography. However the current prototype shows that the target resource
constrained devices can offer the necessary services to enable secure shared
usage.

8.3.5 Security Framework

This dissertation presented a software security framework. We decided to build
a framework, because it provides an flexible system which expert users can
extend, but still offers a secure and complete environment for end-users to
use. Because the framework decides how to handle network or client request,
users don’t have to burden themselves with specifying and implementing this
behaviour. The users of the framework can modify how these operations are
handled by adding policies, or other user specified code, but the framework
dictates the standard way of handling the data flow.

The framework also provides a set of clear user extension points, where users
of the framework can add their own customized code or policies, while still
operating withing the security framework. Clear examples of this approach are
1) the secure application management system, where users can add access control
rules, policies and roles to suit their specific use case, 2) the secure application
communication system, where users can add new cryptographic algorithms or
protocols to secure their data within the flow of the framework, 3) the monitoring
and enforcement system, where users can add additional interception points and
monitoring limitations to monitor arbitrary functionality, and 4) the meta-data
provided with the resource and parameter modelling abstractions, which offer
key value pair descriptors to arbitrary extend the given functionality.

The framework also offers a level of flexibility. Users can optionally chose to
add or remove systems from the larger infrastructure, either omitting them to
reduce size and overhead, or decide to change the implementation to optimize to
a specific application. The security framework provides a clear set of interfaces,
and an architectural overview which has to be adhered to, but specific subsystems
can be reimplemented, allowing for greater customisation.

This approach also provides a level of crypto-agility: the secure application
communication system allows users to deploy their own crypto algorithms,
replacing the previously installed algorithms. Currently this approach is only
implemented in the secure application communication system, because here
we see there could be more value in changing cryptographic algorithms. In
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future, it could also prove to be necessary to change the used cryptographic
algorithms in the other security protocols. While possible, this would require a
small addition to the protocols or management infrastructure to take the used
protocol into account. The decision to not support algorithm evolution was
made to maximally reduce overhead of the protocols. Since almost no other
embedded security protocols provide this feature, adding it would prove an
additional overhead, making comparison harder. The framework does have
the big advantage that the secure application deployment system allows the
deployment of new code modules, making future code evolution already possible.

8.4 Summary

This section provided a discussion of the SecLooClI secure shared embedded
network infrastructure. Section 8.1 showed that the requirements as identified
in Section 2.5.2 are met. Section 8.2 went over the four kinds of attackers
identified in Section 2.5.1: the outside attacker, the network attacker, the
physical attacker, and the inside attacker. It showed that the current SecLooCI
infrastructure prevents many attacks by these different kinds of attackers, and
that for those attacks that it cannot prevent, it does have the necessary tools
and infrastructure to detect the attack, and to mitigate its effects. Finally
Section 8.3 provided a general discussion about the architecture with regards
to the trust requirements of the infrastructure, the privacy implications, the
energy consumption, the current trade-offs and limitations of the system, and
the rationale behind building a framework.



Chapter 9

Conclusion

This chapter presents the conclusions. First it presents a global summary of
this thesis and emphasizes the contributions. Second it formulates the most
important lessons learned during the thesis. Third it identifies two avenues of
future work, and finally it provides an outlook for network embedded systems
in general, and security in particular.

9.1 Summary and Contributions

The goal of this thesis is to enable the secure sharing of constrained networked
embedded systems. The need for such a system comes from the observation
that embedded networks have evolved and still are evolving towards multi-
party, multi-application and dynamic environments. Most use cases first and
foremost show that multiple parties are interested in the data produced within
the network, and that often, the network consists of multiple devices owned by
multiple different parties. These networks typically are not used for a single
application, but rather run multiple applications that gather data and offer
actuation for multiple different parties. Lastly, there is a large amount of
dynamism in these networks both in hardware and software: new devices and
applications are continuously joining the network, existing applications are
updated, and old applications and nodes are removed from the network. To
ensure the continuous operation of these shared networks, it is crucial that the
necessary security infrastructure is present. This need is even more pressing
considering the pervasive nature of the nodes in the ecosystem, the sensitivity
of the data measured, and the impact of the actuators on the environment.

153



154 CONCLUSION

To gain a clear understanding of the problem, Chapter 2 first listed two
prototypical use cases: 1) the smart office use case where a building operator
wants to monitor the offices, and offer smart services to the users of the office
space, and 2) the smart logistics use case, where logistics providers instrument
their containers to gain greater visibility of the transport chain, and offer this
data and node services to different actors in the logistics ecosystem. Next, from
these two use cases, Chapter 2 identified the three different roles a party can
take on in these embedded networks: 1) the Platform Owner, who owns the
embedded nodes, and wants to share their node services with other parties,
2) the Network Owner, who provides a wireless network for migrating nodes
of the platform owner, and 3) the Application Owner, who wants to use the
node services of other parties to reduce the necessary investment of getting
data. Then, based on the use cases and the role model, Chapter 2 provided an
overview of a prototypical embedded network application lifecycle. Finally, it
identified the two main issues to currently enable this work: 1) the different
parties need to be able to declare their policies and applications, and 2) these
policies must be enforced at a node local layer by a node security infrastructure.

Chapter 3 provided an overview of the current state-of-the-art solutions for
1) abstractions for expressing the security and application requirements of
the different parties as identified in Chapter 2, and 2) current solutions for
providing the necessary node security systems during the entire lifecycle of
the embedded application. The survey showed that currently little work exist
that adequately provides the necessary abstractions to model the applications,
combined with the semantic data flows, and underlying systems. The lack
of such models also prevents expressing the necessary security policies, which
either need to secure the data flows based on data semantics, or to restrict usage
of the underlying system. Second, an overview of the current related work with
regards to embedded network security solutions showed that there are currently
many security subsystems, that provide some limited security for a certain
limited part of the lifecycle. However, most solutions focus on only very specific
security problems, and those solutions targeting very constrained environment
only consider single party environments, and most solutions targeting multi-user
environments require resource rich environments. Especially, currently no one
has proposed a single comprehensive node security framework, able to run on
resource constrained devices, and that support shared environments.

Chapter 4 provided the top level architecture of the SecLooCI secure embedded
network infrastructure. It proposed the 5 top level architectural elements in
the shared embedded ecosystem: 1) the end-user tool, which offers an interface
for users to create and model their embedded applications, and to express their
security requirements for their node infrastructure, and their application data,
2) the application owner server, which manages and monitors active applications
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and stores long term security policies and data, 3) the platform owner server,
which provides information about and permissions for node usage, and monitors
the platform owners’ sensor nodes, 4) the network owner gateway, which stores
network owner security policies, and offers nodes an entry point to join the
network, and access the Internet, and 5) the embedded node, which offers
shared services for different parties in the network to enact their application
functionality. Second, Chapter 4 also provided an overview of a basic non-secure
node architecture, and the security modules required to provide the necessary
security infrastructure.

Chapter 5 presented the first contribution of this thesis: a
set of security management abstractions that allow the different
stakeholders to express their security requirements, and a set of
supporting abstractions which model the system and applications. The
abstractions for the platform owner are: 1) the node abstractions, which specify
for each node the present and available resources, and the limits and cost of
using those resources, 2) the application owner abstractions, which encode the
different application owners or groups the platform owner trusts, which nodes
and resources he allows them to use, and with which specific limits and cost,
and 3) the network owner abstractions, which describe which network owners
the platform owner trusts, and which network cost requirements the platform
owner has for networking. Second, the chapter presented the abstractions for
the application owner which are: 1) an application specification model which
describes the required resources and the semantics of the data produced and
consumed of each application, and 2) a deployment specification model, which
instantiates an application into a specific deployment, with an associated set of
data security requirements. Finally, Chapter 5 presented the network owner
abstractions, which express which nodes are currently present in the network,
which zones are present in the network, and which parties are allowed to use
the network, at which cost and with which zone permissions.

Chapter 6 presented the second contribution of this thesis: a holistic
node security middleware for resource constrained embedded nodes,
which provides security for the full lifecycle for a networked embedded application
in a shared embedded network. The SecLooCI node security middleware is
comprised of the following subsystems: 1) the secure network setup system,
which allows embedded nodes to securely set up a shared embedded network,
2) the secure application deployment system, which allows multiple different
parties to securely deploy new application functionality on the shared embedded
nodes, 3) the secure application management system, which allows different
users to manage their applications, their security policies and inspect the
underlying node platform, 4) the secure application communication system,
which provides policy driven secure application communication, based on the
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application semantics and the security requirements of the different parties, and
5) the monitoring and enforcement system, which monitors the node usage of the
different applications and users. These systems were integrated and evaluated
in a single prototype, which showed that current generation embedded nodes
can support the necessary security systems to enable secure sharing.

Chapter 7 evaluated and validated the SecLooClI security infrastructure based on
two scenarios derived from the two use cases presented in Chapter 2: the smart
logistics scenario, and the smart office scenario. The smart logistics test scenario
provided a virtual evaluation scenario which showcased the entire embedded
application lifecycle and provided an overview of the overhead of the SecL.ooCI
security node middleware. It provided a theoretical evaluation which lists for
each relevant step in the embedded lifecycle how the SecLooCI architecture
operates, and what the network and node overhead is. Second, the smart office
scenario provided an evaluation based on a real world deployment. It looked
at the overhead incurred by the security middleware during the runtime phase,
more specifically at the overhead of the secure management system, the secure
application communication system, and the monitoring system. These figures
showed that for this small testbed, the incurred overhead is significant, but
manageable, again showing the validity of the proposed approach.

Finally Chapter 8 provided an in-depth discussion of the security middleware.
First it went over all the non-functional requirements as proposed in Chapter 3,
and detailed how the SecLooClI infrastructure met all the requirements. Second
it provided a security analysis of the SecLooClI infrastructure: it applied a threat
model to the embedded network environment based on the four main potential
adversaries. The threat model identified how the SecLooClI infrastructure
prevented most of the possible attacks, and if unable to prevent an attack, how
it could be used to detect and mitigate the attack. Finally Chapter 8 provided
a general discussion of the SecLooClI infrastructure, where it looked at the trust
requirements of the environment, privacy concerns of the environment, the energy
requirement of the security middleware, the most important restrictions and
trade-offs made in the architecture, and rationale behind building a framework.

9.2 Lessons Learned

The first important lesson learned is that building a flexible policy driven security
environment, in the form of the end-user tool and the security abstractions,
depends in the first place on a good model of the underlying environment.
Without having a clear model of the applications, the resources they require, the
nodes, the resources they provide, and the data that is produced, it becomes very
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difficult to express any policy which aims at securing data based on semantics,
or to restrict and/or predict the application usage. When starting to work on
the security policy part of this thesis, we looked at the possible application
modelling techniques for embedded applications, and found they were few, and
seldom used. When looking at potential related work in modelling application
security or secure node management, we found virtually no work done, which
may be explained by lack of application models. As such, in this thesis we
extended a standard application model (SCA [16]) to support the necessary
application abstraction we needed, and built our security abstractions from
there.

The second lesson learned is that in order to roll out a secure system, you
need more than a chain of implementations of single secure subsystems. Many
embedded systems focus solely on a single problem, such as security, and often
during a very specific point in the lifecycle, such as application communication
security. However, what this thesis taught me, was that in order to roll out a
fairly secure deployment, one can not just append different security systems,
one needs an integrated security middleware, with the necessary abstractions
to actually manage the middleware. For example, to enable an application
owner to enforce that his location data sent confidentially depends on a chain
of systems: it depends on the network being initialised, having keys initialised,
having the application modeled so the system knows where location data is
transmitted and received, on having the systems in place to enforce the security
policy and finally on having the abstractions to express the policy. Targeting
a full holistic view of the system and its security requirements enabled us to
create a full, usable and streamlined security infrastructure which was able to
be rolled out in a real world deployment.

The third lesson learned is the importance of software evolution, and decent
support for such evolution on these tiny embedded devices, both during
development, and operation. During development, a developer often wants to
test his components to ensure they work well. Often, to perform end-to-end
tests, one needs to be able to deploy these components onto a running system.
An environment where a developer can easily update deployed code to fix issues
greatly speeds up the development process. Also during operation, evolution is
crucial for both functional and security concerns. The testbed has shown, that
often unforeseen circumstances require small changes in the running systems.
Software evolution allows users to easily roll out these small updates. Also from
a security perspective, evolution is crucial. If events in the past year should have
taught us anything, it is that there are bugs in every system which threaten the
security of that system. Easy software evolution is essential to quickly mitigate
potential risks due to faulty software.

The fourth and final lesson learned in this thesis is the value of a continuously
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running prototype, coupled with a strong monitoring solutions. The smart
office testbed provided us with a test environment with real functional concerns:
people wanted to have monitoring data about the environment, and wanted
to be able to use the coffee machine at any time. This required the system
to operate continuously without interruptions. A permanent operating system
requires a lot more stability of the system, compared to the often used prototype
solutions. This led to a lot of fixes in all layers of the software, which led to
a more stable systems. To identify such issues, the monitoring system was a
great help. By clearly identifying the relative workload of different parts of
the system, and by continuously being able to monitor memory, processing
and communication, problems can be very quickly identified. The second way
in which the testbed deployment aided the research was that it forced us to
use the modelling solutions we developed, in a system that comes as close to
a production system as it gets in research. This allowed us to iterate on the
solutions and abstractions offered, and led us to clearly validate the importance
of the modelling approaches to ensure the continuous stable environment.

9.3 Future Work

This research proposed an infrastructure to enable the secured sharing of
embedded networks. This work presented a set of security abstractions which
the different parties can use during the lifecycle of the embedded application, and
a sensor network security middleware which is able to enforce these abstractions.
However, while this work is a significant step forward with regards to securing
shared embedded networks, there are still areas outside of the core focus of
this work, which are required to create end-user friendly, fully secure, shareable
embedded networks, namely: 1) improvements can be made to the underlying
node hardware and operating system to ensure the safe, isolated and secure
collaboration of the different parts of these embedded networks, and 2) further
work should be done with regards to raising the abstraction level of the
management of these embedded networks to enable non-specialist to easily
set up secure embedded networks. This section will now detail these two
avenues of related work.

9.3.1 Secure Underlying Environment

This thesis proposed a node security middleware that aims to allow the sharing
of embedded networks at a node level. The current middleware allows those
applications to be securely deployed, to communicate securely, and to securely
manage those applications. However, what the node middleware cannot enforce,
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is the secure and isolated execution of these applications while using these
shared platforms, nor the secure communication with the peripherals.

Future work should look at how these embedded applications can execute
securely and isolated from each other. Ideally they would operate similarly as
current cloud based virtual machines, where the actions of one virtual machine
can have virtually no influence on the operation of another virtual machine.
However, current generation of embedded devices offer little to none of the
memory protection, and safe multi-threading that current generation CPUs
offer. Without such protection, it will be near impossible to enforce resource
restrictions and processing limitations, or event that the deployed code cannot
alter other parts of the system. Related work, partially done within DistriNet,
has provided some solutions that potentially provides this isolation, such as
Sancus [82] and Fides [103]. However currently it is still unclear how these
systems can be used to build large secure evolvable software environments and
truly apply these systems in real world deployments.

A second avenue of future work is to look at how to securely connect different
peripherals with the embedded nodes. For many security applications, it is
vital that the entire application flow from for example identification through
RFID card or biometric scanner, to the unlocking of a door with smart lock,
is entirely secure, and cannot be intercepted by attackers. This would ensure
that any data received from a sensor is authentic, and would ensure that only
authentic commands to an actuator would be executed.

9.3.2 End-user Support

To truly unlock the vast opportunities that shared embedded networks offer, they
must become as ubiquitous as currently the computer or the smart phone. The
average end-user needs to be able to deploy and manage such embedded networks,
with little to no specialised knowledge of the underlying system and middleware.
However, to get there, there still needs to be significant improvements in many
different areas of embedded networks: 1) the deployment and setup needs to
be made easier, 2) the creation and deployment of applications must be as
intuitive as downloading an app for the smart phone while ensuring security,
and 3) security and trust must be easily and intuitively set up, with strong
default settings with regards to data and communication security.

Currently the deployment of embedded networks requires a great deal of
knowledge of many different subareas of embedded networks. To create a
real deployment, the deployer must go through an entire cycle of steps. In
short he must currently: 1) select a suitable embedded node, 2) download
and deploy a custom operating system for that node, 3) choose sensor and
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actuator hardware to enact the desired functionality, adapt the hardware to be
able to perform the functionality, and connect to the embedded node, which
often involves soldering, 4) write custom code for both the embedded node and
back-end application server to adequately enact the functionality, 5) set up a
wireless network and 6) hopefully add some security protocols to the code for
communication or storage. Clearly this is outside the skill set of the average
consumer, who wants to buy the networked device as is, or perhaps as a system
that can be easily set up and connected, and then with minimal effort place
it in the environment, and view the desired monitoring data securely on his
pc. Within DistriNet we have partially tried to tackle these issues, such as
the LooCI middleware environment on top of Contiki [51], which provides a
ready to use operating system, networking stack and application interface, and
the micro plug and play solution that allows users to easily attach plug and
play hardware to sensors [121]. While these are vital steps towards ease of use,
more work still needs to be done to streamline the deployment for non-expert
end-users.

This also leads to the second issue, which is the creation and deployment of
embedded software applications. As stated previously, currently it is often the
application deployer who has to write his application from scratch. However,
this is clearly not transferable to end-users. End-users should be able to
download an application from some kind of application store, and enact it on
his personal environment. The presented application and component modelling
abstractions potentially provide the necessary tools for developers to create
such generic applications, which can be deployed on any compatible system.
However, in order for this approach to gain widespread traction, a much larger
ecosystem must emerge where application developers can easily write and share
embedded application, and application users can easily download and deploy
said applications in a secure local environment.

This brings us to the last need for end-user support, which is most closely
related to the thesis: currently the different parties must encode their security
requirements and trust relationships using a simple tool. However, while the
architecture can scale to large organisations or ecosystems, the provided interface
will not. Users must easily be able to specify who they trust, and to what
extent, and with which resources. Additionally they should somehow either be
able to specify which resources and data they consider critical and confidential,
and which data they are willing to share with whom. As long as end-users
cannot easily and dependably dictate the conditions with which they share, it
is unlikely that many shared environments will be deployed in the world.
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9.4 Qutlook

Shared networked embedded systems have the opportunity to impact our daily
lives, similar to what computers, the Internet and smart phones have done
over the past decades. It is a vision where people are continuously interacting
wirelessly with many networked devices in the environment, that these systems
would offer the necessary services to sense and enact the desired behaviour on
the environment. In this mist of devices, we would be continuously monitoring
our surroundings, and changing it to suit our needs better: an environment-as-a-
service, similar to the current platform-as-a-service or infrastructure-as-a-service.
However, before we get there we see many challenges: 1) how to deploy such
systems and networks, 2) how to develop for such systems, 3) how to handle the
data, how to 4) manage these systems, and 5) lastly, and perhaps most vitally,
how do we secure such systems.

The deployment and setup of these networks is still very much uncertain.
Currently significant research is still being done on how to optimally set up the
low level network protocols, in a way which is often incompatible with every
other current network protocol. In order for these shared networked embedded
systems to become a reality, standards must emerge which would enable these
devices not only to communicate packets with each other, but also allow them
to exchange the full richness of information and services provided by these
networked embedded systems

With regards to developing for networked embedded systems, there are currently
still many possible solutions on how to develop for these systems, and deploy
applications on these systems: will we use HT'TP or CoAP [100] services, will we
use component models, will we use agents or other software paradigms. Currently
no standard has evolved but many proposals have been made, which shows the
complexity of developing for and interacting with these systems. Additionally,
in order to fully unlock the embedded ecosystem, it is not sufficiently to just be
able to easily develop for these systems, an entire application ecosystem must
emerge similar to the current app stores, where users can just download their
smart application, which attempts to enable the desired embedded functionality.

Third, we can see that these networked embedded systems will send us a vast
amount of continuous data streams, which need to processed in real time or at
least as soon as possible, and decisions need to be made on how to adapt the
system to our needs. There is still vast amounts of work to be done in this field,
going from activity recognition, to environment discovery, to intent and context
determination.

Fourth, the amount of networked embedded devices will not number in the
thousands, nor millions, but there will be billions or even trillions of connected
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devices. This means that every person on earth has hundreds to thousands of
nodes under his or her personal control. There is first the obvious the physical
management question of who places which node, and who cleans up which node,
but second, also the question of how we can keep logical control or even how
we interact with these systems. A large question is still how a simple end-user
will actually interact with these systems, and how the user can actually imprint
his desires to be enacted in the environment. While currently no standard
interaction paradigms have emerged, I believe augmenting reality based on
visual discovery of nodes in the environment is a promising avenue worth further
study.

And lastly, and perhaps most importantly, a large question is still how we will
ensure that these systems are and remain secure during their entire lifetime.
These networked embedded systems will produce vast amounts of sensitive data
which need to be communicated, stored and processed, making security a crucial
enabler to ensure trust in the system, and create industry and social acceptance.
This dissertation proposed a framework that would enable users to express trust
relationships, model applications, restrict resource usage, and express security
requirements on different kinds of data, and it presented a security middleware
to enforce these policies. While this dissertation is a step towards the goal of
secure shared embedded systems, work remains to be done to ensure that all
end-users can easily set up networked embedded system environments, safe
from attackers, where they can securely share data and services with trusted
collaborators, friends, and family.
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