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Abstract—This work presents a new method to quantify the
flexibility of automatic demand response, combined with real
time pricing, applied to residential electricity demand using price
elasticities. A stochastic bottom-up model of flexible electricity
demand in 2050 is presented. Three types of flexible devices are
implemented: electric heating, electric vehicles and wet appli-
ances. Each house schedules its flexible demand w.r.t. a varying
price signal, in order to minimize its electricity cost. Own- and
cross-price elasticities are obtained through a regression analysis.
Via a Monte Carlo approach-based method, the elasticities are
scaled up to a country level. The results show that the electric
energy demand will double and that, when combining automatic
demand response with real time pricing, power peaks in demand
could be incurred that are 5 to 8 times greater than today.
The elasticity matrices show that for Belgium most flexibility
is available in winter and least in summer.

Index Terms—Energy consumption, Load modeling, Power
system economics, Power system modeling

I. INTRODUCTION

In order to limit the global temperature rise to an average of
2°C, the leaders of the European Union and the G8 announced
to reduce greenhouse gas emissions to at least 80% below
1990 levels by 2050 [1]. The European Commission translated
this objective into several roadmaps, including one by the DG
Energy [2], implying near carbon neutrality for the power
sector in 2050. Several major stakeholders in the energy sector
have issued studies with the goal of establishing scenarios
for reaching this low-carbon energy system by 2050 [1], [3].
In the outcome of these studies, a significant share of the
electricity production in 2050 comes from renewables, ranging
between 40% and 100%. Their variable output and limited
predictability result in a need for back-up generation capacity
and balancing services [4], [5].

Active participation of the demand side through the use of
Demand Response (DR) programs can provide part of this
operational flexibility. Several DR programs exist, a good
overview is given in [6]. Many economists believe that real
time pricing (RTP) is one of the most direct and efficient DR
mechanism and should be the focus of policy makers [7].

Different modelling approaches exist to represent this flexi-
bility in energy system models. However, they all suffer from
some drawbacks. Some approaches represent the flexibility
very coarse as a given percentage of the energy demand that

can be shifted [1], [8], [9]. Others lose valuable temporal
information [10] or only consider one type of flexible de-
vice [11]-[14]. Still others are more economically oriented,
representing flexibility by price elasticities. They do not take
into account the technical characteristics of different flexible
devices [15], [16].

A major challenge for the system operator is to integrate
this flexibility ex-ante in the market. To do so, the available
flexibility must first be quantified. A new method is presented
to quantify the flexibility of automatic demand response com-
bined with real time pricing applied to residential electricity
demand using price elasticities. To include the technical char-
acteristics of the flexible devices, the model uses a bottom-up
approach. A carbon-neutral scenario is assumed with a high
degree of electrification, reflecting a possible state of affairs
for 2050. All residential customers are assumed to participate
in an RTP program. The model is applied to the Belgian
residential electricity demand as extrapolated for 2050.

The remainder of this paper is organized as follows. First,
Section II discusses the models of the flexible devices taken
into account and explains the optimization problem. Section
III describes the applied regressions in order to come to
the elasticity matrices. To find the average values of these
elasticity matrices, a Monte Carlo simulation is performed,
which is explained in Section IV. The results of this Monte
Carlo simulation are presented and discussed in Section V,
followed by the conclusion in Section VI.

II. DEMAND MODEL

The residential electricity demand of a household can be di-
vided in two different types: non-flexible demand and flexible
demand, which can be shifted in time. Non-flexible demand
and occupancy profiles are modelled based upon [17] and
scaled to 2050 according to [9]. Three types of flexible devices
are considered in this paper. The models of these devices
and the corresponding data and assumptions will be briefly
explained in the sections below.

A. Flexible Devices

Flexible devices can be sudivided into discrete devices and
continuous devices. Discrete devices must run a complete pre-
defined cycle once started and cannot be interrupted. Discrete



devices implemented in this paper are 3 types of wet appli-
ances. Continuous devices are not restricted in their load cycle.
They can be interrupted as much as desired and can draw
a varying power. They will react to the comfort constraints
imposed by the users. Continuous devices implemented in this
paper are electric heating and electric vehicles (EVs).

1) Wet Appliances: Wet appliances include washing ma-
chines, dishwashers and tumble dryers. Important character-
istics of these devices are penetration rates, load cycles, start
and stop times and number of cycles per week. All these data
for Belgium are taken from the Smart A project [18]. This data
contains a set of 5 000 load cycles for every type of device.
According to the penetration rate, a household may or may
not possess a certain type of device.

2) Heat Pump & Auxiliary Heaters: Each residence is
equipped with an air coupled heat pump (HP) that can deliver
both space heating (SH) and domestic hot water (DHW). To
ensure that the temperature constraints set by the inhabitants
can always be met, the HP is backed up with two auxiliary
electric heaters AUX1 and AUX2. The building model and the
DHW model are both based on [19].

a) Space Heating: The building model consists of one zone,
heated by a floor heating system and is represented by an
RC model based on [20]. Since this is a linear approach,
the thermal behaviour of the building can be described by
a linear state space model. The temperature in the houses is
influenced by the incoming solar radiation and the ambient
temperature. These data are obtained from Meteonorm [21].
The temperature can be adjusted by the use of the heat pump
or the auxiliary heaters. Three types of newly built buildings
are considered: two types of single family houses and one type
of multi family house from [20] and [22].

b) Domestic Hot Water: The DHW is supplied by and stored
in a hot water storage tank. The thermal power that needs to
be supplied to the hot water tank at each moment depends on
the water extracted from the tank. It is assumed that the first
two inhabitants use 50 liter per person per day and each next
inhabitant consumes an extra 30 liter per day. Per person 2 to
3 tapping moments per day are assumed and the probability
of DHW consumption over a day is based on [23]. The water
in the tank can only be heated by the heat pump and AUXI.

3) Electric Vehicles: Based on [24] and [25], it is assumed
that 71.4% of the households posses an EV. The EVs’ charging
moments depend on their driving behaviour. Data of such
behaviour is based on [26] and includes 100 different driving
patterns for each day. Important parameters include moments
when the EV is at home, when it is driving and when it needs
a certain amount of energy to drive a certain distance.

B. Optimization Problem

All devices are grouped into a house according to their
penetration rate. A house receives an RTP time series and a
central optimizer schedules the flexible devices with the aim of
minimizing the electricity cost. Because of the discrete nature
of the wet appliances, this results in a mixed-integer linear
problem. The constraints of this optimization problem are:

1) Wet Appliances: The load cycle of wet appliances can be
shifted between the start and stop times imposed by the user.

2) Space Heating & Domestic Hot Water: The temperature
must always lie between 16°C and 22°C when occupants
are absent and between 20°C and 23°C when the house is
occupied. The thermal power is limited by the maximum
equipment ratings for the different heaters.

3) Electric Vehicles: The state of charge of the battery has to
be at least 20%. Vehicle-to-grid is not included. The maximum
charging power is limited by the household connection.

4) Connection constraint: The total electric power that can
be drawn by a dwelling is limited to 9.2 kVA as this is
currently the standard for the average household in Flanders.

5) Cyclic constraints: The optimization problem has a finite
time horizon. Start and end conditions have to be imposed.
Therefore, extra cyclical constraints are imposed which ensure
e.g. that all the energy consumed by the EVs and stored in its
batteries is also charged within the considered time period.

C. Flexible Devices

Several parameters in the model of a house are stochastically
defined (see Table I). The number of occupants per household
is based on the population structure of Belgium [27]. To
represent the penetration rates and the number of occupants
per household in a realistic way, multiple houses are created.
Following [28], they are grouped together in neighborhoods of
70 houses. The energy consumption of such a neighborhood
is optimized in the same way as described in Section II-B.

TABLE I
STOCHASTIC ELEMENTS IN THE MODEL
Number of inhabitants EV

House Penetration

Occupancy Energy needed
Non flexible loads Time to charge
Wet appliances | Oeeupaney DHW | Hot water demand
Load cycle SH | Type of house
Start & stop times PV | Penetration & size

III. REGRESSION ANALYSIS

An optimization as performed in Section II leads to a certain
electricity demand ¢ given a price p for each time step. These
optimizations are repeated for different price signals and lead
to multiple (p,q) points. Given these points, a regression
can be performed that yields coefficients that express the
relationship between price p and demand ¢ at each moment. In
this paper, a linear relationship is proposed and the coefficients
of the regression are assembled in a so called elasticity matrix
enxnN-. This matrix represents the relationship between a
change in electricity price Ap and a change in demand Ag,
relative to a certain reference point (pres, Gres):

enxN - Ap = Aq (D
with
€11 - €N
enxn =1 + : (2
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and
Ap _ D — DPref (38.)
Pref
Aq _ q — Qref (3b)
Qref

the relative differences in electricity consumption and price,
w.r.t. a reference point on an hourly basis. In this matrix, the
own-price and cross-price elasticity are defined as:

€ - Ap; = Ag;, €ij - Ap; = Ag; €]

with Ap; = (pi —Pref,i)/Prey,i the relative difference in price
w.r.t. a reference price and Aq; = (¢ — Grefi)/dref,i the
relative difference in electricity consumption w.r.t. a corre-
sponding reference electricity consumption. These elasticities
define a linear relationship between the deviation of a price at
a certain hour j from a reference price and the deviation of
the associated electricity consumption at the hour 4.

The time horizon N of prices that influence the electricity
use is taken to be 24 as the typical cycle of residential
electricity use repeats itself every 24 hours. Later it will be
proven that this horizon is sufficient. Special attention has to
be paid to the cyclical constraints set in Section II.

A. Data Processing

The price vectors p used in the optimizations are obtained
from Belpex prices of 2012 and 2013 [29]. These prices are
rescaled in order to all have the same mean value of 1. In order
to not let them influence the regression, extreme situations or
outliers — price vectors with a price more than 3 times the stan-
dard deviation of the mean value for that hour — are removed
from the sample set. As the optimizations are computationally
intensive, a compromise between computational time and the
quality of the regression has been made. Only n = 350 price
samples are retained.

B. Least Square Estimate

To obtain the linear price elasticities, a linear regression
is performed that relates a vector Ap of size N (24 in the
case of one day) to a vector Ag, also of size N. These are
in fact NV independent regressions for each Ag;,i = 1,...., N
if we assume that each element Ag; only depends on Ap.
Hence, N multiple linear regressions are performed using the
least squares estimate technique. This means finding a vector
€ = (6“7 €i2, ~'~7€iN) such that:

AgF = Ap® + err? 5)

with err? the error on the linear model for time step i and
sample k. If we define:

err; = (err},...,err?) i=1,..,.N (6)

Aqi = (Aq2-17 7Aq7) = 17 ’N (7)
and 1 n
pr - D1

Ap= | : D = (At Ap) ®)
1 n

we have a linear multiple regression from Ap to Aq;, which
can be completely summarized as:

Aqi=€¢Ap+err; i=1,..N ©)

An unbiased estimator €; would be the least square estimator
éii

& = (ApTAp) 'ApTAg; (10)

However, since the prices are defined relative to the mean
price, the matrix Ap has only NV — 1 independent rows. The
classical least squares estimation cannot be applied to matrices
less than full row rank N [30]. This problem can be overcome
by using the Moore-Penrose pseudo inverse:

ApT =VvstuT an

with Ap = USV'T the singular value decomposition of Ap.
The estimator €; is then:

& = ApTAq; (12)

IV. MONTE CARLO SIMULATION
A. Methodology

The Monte Carlo technique is essentially a methodology
that uses sample means to estimate population means [31].
Consider the function z(z), which depends on a stochastic
variable  with a with a probability density function (PDF)
f(x). According to the Monte Carlo method, its population
mean, or expected value can be approximated by the sample

mean of z:
1 I
2= — E z(x;
Nm — ( Z)

where x; are IV, randomly sampled values of the variable x
according to its PDF f(x). It can be shown that limy, o, Z =
(z). The standard error (%) of the estimate of (z) can be
approximated by [32]:

(13)

s(2) 22— 32

N,

(14)

with Z as in (13), s(z) the sample standard deviation and 22 =
(1/Np) Zf\iml z(z;)%. This standard error converges to zero
with a rate ~ \/(1/N,).

A Monte Carlo simulation can be seen as a stochastic
simulation of a model with a source of randomness. The result
of a simulation is then a value z(x;), which is used in (13) to
estimate the population mean (z).

B. Application

The model for flexible residential demand (see Section II)
contains numerous stochastic elements, listed in Table I. This
means that each generated neighborhood is different, and thus
also the corresponding elasticity matrix for a neighborhood.
The whole process can be thought of as a simulation with
stochastic variables x. To be able to make conclusions for a
whole region consisting of a lot of different neighborhoods, the
average behaviour of these neighborhoods has to be known.



This can be found by applying a Monte Carlo simulation on
the model. The results from the simulation — the reference
electricity use gr.y and the elasticity matrix €y — are then
the dependent values z(x).

By performing the same simulation for different neigh-
bourhoods, one can obtain different samples z(xz;) of these
values. Applying equation (13) on the samples gives a Monte
Carlo estimate of the real average value. In order to obtain
a good estimate, a sufficient amount of neighborhoods has to
be created. However, performing the regression on a neigh-
borhood in itself is already very computationally expensive,
so again a compromise has to be made. If around NV,,, = 100
simulations are performed then the standard error of the mean
o(Z) ~ s(2)/1/(100) = 0.10 - 5(2) is brought down to 10%
of its standard deviation.

V. RESULTS

The Monte Carlo method is applied to 100 neighborhoods
for an average day of each season, both for weekdays and
weekend days.

A. Reference Scenario

As stated in Section III, the elasticities are defined w.r.t. a
certain reference point (pref, gres). The reference price profile
Drey 18 taken to be an average of all daily Belpex [29] prices
of 2012 and 2013 (see Figure 1).
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Fig. 1. Reference price profile
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Fig. 2. Reference residential electricity consumption scaled up to the country
level of Belgium for a weekday in summer, spring, autumn and winter

The corresponding average electricity consumption is found
by applying the Monte Carlo method to the electricity con-
sumption of 100 neighborhoods, when they receive the price
signal p,..r. Since this is an estimate of the average over all
possible neighborhoods, these results can be scaled up to the
country level of Belgium.

1) Average Annual Electricity Consumption: The average
annual electricity consumption of a household is more than
twice that of a current average Belgian household (9 128
kWh/year vs. 4 387 kWh/year). This can be explained by the
extensive electrification assumed in the model: all heating is
electric and 71.4% of the households possess an EV (see Table
1D).

2) Reference Electricity Consumption Profile: Starting from
the reference price profile, the model calculates a reference
electricity consumption profile (see Figure 2). In this profile
the peak power demand is found to increase by a factor 5 to
8 compared to today. The combination of automatic demand
response and a RTP scheme leads to significant load syncing
in the cheapest hours.

However, it must be noted here that it is not the goal of this
model to predict the shape of the residential electricity con-
sumption profile, but only to quantify the available flexibility.
The reference electricity consumption profile will merely be
the starting point for any changes in demand triggered by a
difference between the actual price and the reference price
profile. The magnitude of these changes will depend on the
price differences and the relevant price elasticities. An example
is given in Section V-B.

Thus, the reference electricity consumption profile shown
here will not be the final electricity consumption profile. In
practice, the reference price profile, the reference electricity
consumption profile and the price elasticities that come out of
this model will be used in e.g. an investment planning model
or a unit commitment model. In such models a feedback on the
price is included, which will limit the actual power peaks, as
these would cause a significant upward price correction. These
peaks, therefore, must not happen, but give an indication of
the power that can be shifted if desired. Note that at present
grid constraints are not considered. These would limit the
maximum achievable power shift. Further research is needed
to study the influence of these constraints.

TABLE I
ANNUAL AVERAGE RESIDENTIAL ELECTRICITY CONSUMPTION FOR A
HOUSEHOLD SUBJECT TO THE REFERENCE PRICE PROFILE

Type of demand  Electricity consumption (kWh/yr)

Non-flexible 3091
Electric heating 3 587
Electric vehicle 2 146
Wet appliances 304
Total 9 128




B. Price Elasticities

In order to get an estimate of the average elasticity matrix,
the Monte Carlo method is applied to the elasticity matrices
of the 100 neighborhoods. Figure 3 shows a heat map of the
resulting average elasticity matrices for an average weekday
in all four seasons.

The calculated price elasticities are quite large, meaning that
a small change in price invokes a large change in demand.
Automatic demand response combined with an RTP scheme
appears to be very sensitive to price changes. This is something
that should be taken into account when such a strategy would
be adopted to control the flexibility of residential demand.
Especially when used to e.g. perform a day-ahead planning
of demand, power adjustments could be much larger than
intended if insufficient real-time feedback is provided.

The largest elasticities, in absolute terms, are found in
winter. This is the result of the increased level of operation
of the heat pumps and electric heaters, which are therefore
capable of providing more flexibility. This shows both the
importance of thermal loads for the flexibility of residential
demand and the strong influence of weather conditions on the
calculated price elasticities. In warmer climates, where less
heating is needed in winter, but air conditioning represents a
significant load in summer, most flexbility might actually be
available in summer.
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Fig. 3. Monte Carlo estimates of the mean price elasticity matrices for a
weekday in summer, spring, autumn and winter

1) Own Elasticities: The diagonal values, or the own elastic-
ities, are negative, meaning that a price increase in hour ¢ will
result in a demand decrease in that same hour ¢. The largest
values are found at hour 7, 8 and hour 16. However, since
these values are determined relative to the reference electricity

consumption @y .¢,;, these hours do not necessarily coincide
with the hours where most flexibility is available in absolute
terms. Figure 4 shows the absolute shift in electricity demand
gi — Grey,; for a relative decrease in the electricity price Ap;
of 1% at every hour 7 w.r.t. the reference price profile. The
greatest shifts in demand occur in the early morning around
hour 5 and in the afternoon around hour 17. The flexibility
available in the early morning comes from the charging of the
EVs and the heating of the households before breakfast. The
flexibility in the afternoon comes from the possible anticipated
heating of the households for when the residents return home.

Little difference is observed between weekdays and week-
end days. Finally, when temperatures and solar irradiance
decrease, flexibility increases, confirming the aforementioned
influence of the weather conditions.
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Fig. 4. Absolute shift in electricity consumption with a price decrease of
Ap; = —1% at every hour i for all seasons, on weekdays and weekend
days, scaled up to the Belgian level

2) Cross Elasticities: The off-diagonal values, or cross
elasticities, are almost all positive. They allow to determine
how electricity consumption is shifted over time. An example
is presented in Figure 5 for a price decrease of 30% in hours 7
and 15. The electricity consumption in those hours is seen to
increase, whereas it decreases in the adjacent hours. Looking at
the elasticity matrices in Figure 3, the furthest shift in demand
that is observed is 7 hours. In general, electricity consumption
can be displaced between the early morning and the first hours
of the night and between the evening and the end of the
afternoon.
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Fig. 5. New electricity consumption with a price change of -30% at hour
7, and at hour 15, starting from the reference electricity consumption of an
average winter weekday, scaled up to the Belgian level



VI. CONCLUSION

This paper presented a method to quantify the flexibil-
ity of automatic demand response combined with real time
pricing applied to residential electricity demand using price
elasticities. The reference price profile, the reference electricity
consumption profile and the price elasticities that come out of
the model can be used in e.g. an investment planning model
or a unit commitment model to represent the flexibility of
residential electricity demand.

This method is applied to an extensively electrified sce-
nario in 2050 in Belgium. The average annual residential
electricity consumption is found to double compared to current
consumption levels. The results show that, when neglecting
grid constraints, power peaks in demand can be incurred that
are 5 to 8 times larger than the peaks observed today. The
calculated price elasticities are quite large, indicating that
automatic demand response combined with an RTP scheme
is very sensitive to price changes. Furthermore, the resulting
price elasticities are strongly influenced by weather conditions.
For the Belgian case a higher amount of flexibility is available
in winter than in summer due to increased operation of the
heat pumps. In warmer climates, where e.g. the use of air
conditioning in summer is significant and there is less need
for heating in winter, this trend may be inversed.

Future work will include studying the influence of grid
constraints on the available flexibility and the integration of
the price elasticities in an investment model to evaluate the
impact of the flexibility of residential demand on the optimal
generation portfolio.
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