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Abstract 30 

In order to evaluate the sustainability and efficiency of soil carbon sequestration measures and 31 

the impact of different management and environmental factors, information on soil organic 32 

matter (SOM) stability and mean residence time (MRT) is required. However, this 33 

information on SOM stability and MRT is expensive to determine via radiocarbon dating, 34 

precluding a wide spread use of stability measurements in soil science. In this paper, we test 35 

an alternative method, first developed by Conen et al. (2008) for undisturbed Alpine grassland 36 

systems, using C and N stable isotope ratios in more frequently disturbed agricultural soils. 37 

Since  only information on carbon and nitrogen concentrations and their stable isotope ratios 38 

is required, it is possible to estimate the SOM stability at greatly reduced costs compared to 39 

radiocarbon dating. Using four different experimental sites located in various climates and 40 

soil types, this research proved the effectiveness of using the C/N ratio and δ15N signature to 41 

determine the stability of mOM (mineral associated organic matter) relative to POM 42 

(particulate organic matter) in an intensively managed agro-ecological setting. Combining this 43 

approach with δ13C measurements allowed discriminating between different management 44 

(grassland vs cropland) and land use (till vs no till) systems. With increasing depth the 45 

stability of mOM relative to POM increases, but less so under tillage compared to no-till 46 

practises. Applying this approach to investigate SOM stability in different soil aggregate 47 

fractions, it corroborates the aggregate hierarchy theory as proposed by Six et al. (2004) and 48 

Segoli et al. (2013). The organic matter in the occluded micro-aggregate and silt & clay 49 

fractions is less degraded than the SOM in the free micro-aggregate and silt & clay fractions. 50 

The stable isotope approach can be particularly useful for soils with a history of burning and 51 

thus containing old charcoal particles, preventing the use of 14C to determine the SOM 52 

stability.  53 

  54 



1. Introduction 55 

Soils play a major role in the global carbon (C) cycle. The terrestrial soil organic carbon 56 

(SOC) pool contains about two and a half times more organic C than the vegetation and about 57 

twice as much C as is present in the atmosphere (Batjes, 1998). Down to a depth of 1 m the 58 

soil is estimated to contain 1500 Pg C (Batjes, 1996). Despite their low C concentrations, 59 

subsoil horizons are estimated to contain half of this C pool (Schmidt et al., 2011). Over the 60 

last 150 years cultivation and disturbance of agricultural soils have caused a net loss of 61 

between 40 and 90 Pg C globally (Lal and Bruce, 1999; Lal, 2004). These losses can be 62 

replenished by restoring degraded soils, converting marginal agricultural soils to restorative 63 

land use and adopting recommended management practices (Lal, 2004). Replenishing these C 64 

stocks has multiple benefits, for example increasing soil health and sequestering atmospheric 65 

CO2. Considering agricultural land alone, approximately 5.5-6.0 Gt CO2 eq. could potentially 66 

be stored each year, which amounts to approximately one sixth of global annual CO2 67 

emissions. (Olivier et al., 2012; Smith et al., 2008). 68 

However, in order to evaluate the sustainability and efficiency of soil carbon sequestration 69 

measures and the impact of different management and environmental factors, information on 70 

soil organic matter (SOM) stability and mean residence time (MRT) is required. Since SOM 71 

stabilization is a combination of short- and long-term processes, any disturbance of these 72 

processes may result in the decomposition of young and old SOM alike (Lal et al., 2012; 73 

Schmidt et al., 2011). Agricultural soils can thus turn from a carbon sink into a carbon source 74 

very rapidly. A clear example is the conversion of tropical peat soils into agricultural land 75 

causing a massive CO2 release due to profile drainage and subsequent oxidation of the 76 

stabilized SOM (Hooijer et al., 2010). In various parts of Western Europe knowledge of SOM 77 

stability is also needed for a different reason. SOM decomposition entails a release of mineral 78 

nitrogen and excess nitrogen can leach to surface- and groundwater causing eutrophication. 79 



While historically, nitrogen release from SOM has been mastered adequately by empirical 80 

models, the more recent trends in (i) higher amendments of organic sources of nutrients like 81 

composts and (ii) changes in soil tillage techniques seem to have changed the distribution of 82 

SOM among fractions of different stability, possibly leading to a changed nitrogen release. 83 

Radiocarbon dating is one of the only tools useable to study SOM dynamics on decadal to 84 

millennial timescales. The SOM 14C content provides information on the time since C was 85 

fixed from the atmosphere and as such on SOM stability and MRT (Trumbore, 2009). 86 

However, this method is expensive, precluding a wide spread use of stability measurements in 87 

soil science. Conen et al. (2008) developed an alternative model to estimate the SOM stability 88 

of an Alpine, permanent grassland at steady state conditions. This model is based on the 89 

isotopic fractionation of the heavy stable isotope of nitrogen (15N) during decomposition, 90 

which goes hand in hand with a decreasing C:N ratio during organic matter degradation. Due 91 

to the decreasing C:N ratio during litter decomposition and SOM formation as described in 92 

Figure 1, excess mineral N is released by soil micro-organisms. Isotopic fractionation during 93 

this nitrogen dissimilation and export process results in the preferential loss of the lighter 14N 94 

from the SOM, leading to a highly 15N enriched and stable SOM fraction (Coyle et al., 2009; 95 

Dijkstra et al., 2008). Since  only information on carbon and nitrogen concentrations and their 96 

stable isotope ratios is required, it is possible to estimate the SOM stability at greatly reduced 97 

costs compared to radiocarbon dating. To date this model has only been tested under non-98 

agricultural, undisturbed conditions. In this paper the validity of the above concepts will be 99 

tested in more frequently disturbed agricultural soils. 100 

Insert Figure 1 101 

Alternatively – in specific cases like C3/C4 vegetation changes - the 13C content of SOM can 102 

be used to gain information on stability and MRT. A shift in cover crops from C3 to C4 plants 103 



changes the δ13C signal of the inputs, which can then be traced in the SOM to calculate the 104 

MRT (Balesdent and Balabane, 1992; Balesdent and Mariotti, 1987; Collins et al., 1999). 105 

Unfortunately this C3-C4 shift is not always present at the site of interest. However, the 13C 106 

content of organic matter also increases upon microbial degradation, without cropping 107 

changes and is most visible with increasing depth (Rumpel and Kögel-Knabner, 2011). As 108 

both C and N isotope ratios are influenced by microbial degradation, integrating the δ13C 109 

signature into the model could increase the accuracy of the SOC stability estimation. To our 110 

knowledge no attempt has been made yet to combine carbon and nitrogen stable isotope ratios 111 

as a proxy for SOM stability. 112 

Moreover the simple two pool model used by Conen et al. (2008) only yields limited 113 

information on the nature of the stabilization mechanisms involved. While SOM stability and 114 

protection are governed by the interaction of biochemical recalcitrance, adhesion to soil 115 

mineral particles and physical protection from degradation through particle aggregation, no 116 

general consensus exists on fractionation methods for estimating SOM stability (Jandl et al., 117 

2013; Six et al., 2002b). Thus, in order to obtain a more detailed picture of the protection 118 

mechanisms involved in SOM stabilization five SOM pools with varying degrees of physical 119 

and (bio)chemical protection were isolated based on the fractionation scheme developed by 120 

Six et al. (2002a). The principles for determining SOM stability outlined above were applied 121 

to these fractions to gain better understanding of SOM stability and its link with aggregate 122 

formation. 123 

To summarize, this study has three main goals. We will test the hypothesis that the C:N ratio 124 

and δ15N signature can be used as a proxy for SOM stability in a disturbed agricultural setting. 125 

To achieve this the procedure and model described by Conen et al. (2008) will be followed. 126 

Secondly, it is tested if the δ13C depth profile of the study sites can enhance the performance 127 

of the model and provide additional information on the degree of SOM stabilization. Thirdly, 128 



the application of the C:N ratio and 15N isotope model is linked to a more elaborate soil 129 

fractionation scheme based on Six et al. (2002). This will yield a better understanding of SOM 130 

dynamics and soil aggregate formation under different management practices. These 131 

hypotheses were tested on four long-term field experiments, established on soils poor and rich 132 

in soil organic matter in Austria and Belgium. 133 

2. Materials and Methods 134 

2.1. Site description 135 

Soil samples were taken from four long term agricultural fields on two locations in Austria 136 

and two in Belgium. The sites were selected for their diverse management, climatic and soil 137 

characteristics and because a detailed cultivation history was available. The climatic and soil 138 

characteristics of these four experimental sites can be found in Table 1.  139 

Insert Table 1 140 

In Austria we selected a site in Gross-Enzersdorf and one in Grabenegg, both in the region of 141 

Lower Austria. On the former site a tillage experiment with crop rotation including winter 142 

wheat, sugar beet and corn started in 1997. This experiment includes five treatments: a 143 

conservation tillage, two conventional tillage and two mulching treatments. The plots measure 144 

40m by 24m. Strips of permanent grassland were established in between these treatments as a 145 

buffer. For this study, samples were taken from the conservation tillage treatment (strictly no-146 

till) and conventional tillage treatment (plough depth of 25 to 30cm) and samples from the 147 

permanent grass alleys served as a baseline control. 148 

The Grabenegg site has been continuously used for crop production until permanent grassland 149 

was established in 1997. After 15 years, in 2012, the grassland was tilled and reconverted to 150 



cropland. Immediately after tilling samples were taken on nine contours along the slope of the 151 

field to a depth of 1m.  152 

In Belgium two sites were selected, in Boutersem and in Gembloux, both in the Belgian loam 153 

belt. On the former site a long term vegetable, fruit and garden (VFG) compost application 154 

trial was set up in 1997 with a five year crop rotation cycle, including potatoes, sugar beet, 155 

winter wheat and carrots. The five treatments sampled for this experiment are: an unfertilized 156 

control, a mineral fertilized control, a three-yearly application of VFG-compost comprising of 157 

45 tons per hectare and two yearly applications of VFG compost comprising of 15 and 45 tons 158 

per hectare. The experiment was laid out in a randomized block design in 4 replicates and 159 

with plots of 10 by 10.5m (Tits et al., 2012). The compost contained 14.4 ± 3.8 % carbon and 160 

1.4 ± 0.3 % nitrogen. The average δ
13C value was -28.7 and the δ15N value 8.1. 161 

Since 1959 the Centre de Recherche Agronomique de Gembloux conducts a long term 162 

agricultural trial on the evolution of SOC stocks on a site in Gembloux. This site has a 163 

rotation consisting of sugar beet followed by two or three years of cereals. The plots measure 164 

10 by 24m and are laid out in a randomized block design (Van Wesemael et al., 2004). 165 

Samples were taken in four replicates on a mineral fertilized control (crop residues exported), 166 

a treatment with application of stable manure every four years (crop residues exported) and 167 

two treatments were crop residues were incorporated in the soil, one with and without green 168 

manure.  169 

2.2. Sampling procedure 170 

Both Belgian trials were sampled in February 2012. In each of four replicates of all sampled 171 

treatments eight soil cores were taken 2m apart, from 0-30cm depth and mixed to form a 172 

composite sample. The samples were dried at 45°C, crushed and sieved to < 2mm or < 8 mm, 173 

depending on the subsequent fractionation scheme. In November 2011 samples were taken in 174 



Gross-Enzersdorf and in March 2012 in Grabenegg. In each of three replicates of all sampled 175 

treatments 12 soil cores were taken up to 1m depth, spaced over the plots. A composite 176 

sample was formed for each of the three replicates for eight depth layers: 0-5, 5-10, 10-15, 15-177 

20, 20-40, 40-60, 60-80 and 80-100 cm. All samples were dried at 40°C, crushed and sieved 178 

to < 2 mm. 179 

2.3. SOC fractionation 180 

A particulate organic matter fraction (POM) larger than 63µm (Austrian samples) and 53µm 181 

(Belgian samples) and lighter than 1.8 g cm-3 was obtained by a combination of ultrasonic 182 

dispersion with an energy of 22 J cm-3, wet sieving and density separation according to the 183 

procedure described by Zimmermann et al. (2007) and Conen et al. (2008). This was done for 184 

three depths, 0-5cm, 10-15cm and 40-60cm for the Austrian soils and on the 0-30cm soil layer 185 

for the Belgian soils. The mOM fraction was calculated as the difference between the bulk 186 

soil weight and the POM. This procedure leads to the inclusion of the labile dissolved organic 187 

carbon (DOC) in the calculated mOM fraction. But based on drying-rewetting experiments 188 

conducted by Merckx et al. (2001) it was calculated that this DOC only constitutes 0.1% of 189 

the mOM fraction carbon and as such has no significant influence on the results. 190 

An alternative fractionation scheme, based on Six et al. (2002a), was also used on the Belgian 191 

soils. It distinguishes five SOM pools with varying degrees of physical and (bio)chemical 192 

protection as illustrated in Figure 2. Subsequently, 8 mm sieved soil is passed over a 250µm 193 

and 53µm sieve, yielding a macro-aggregate fraction (M) larger than 250µm, a free micro-194 

aggregate fraction (m) between 250 and 53µm and a free silt & clay faction (s+c) smaller than 195 

53µm. Afterwards the M fraction is passed through the micro-aggregate isolator, a devise that 196 

breaks the macro-aggregates using small glass beads. The occluded silt & clay faction (s+c 197 

M) and occluded micro-aggregate fraction (mM) are washed through a 250 µm mesh by a 198 

constant water stream, the POM (larger than 250µm) fraction is left on top. The mM and s+c 199 



M fractions are subsequently separated by a 53µm sieve. The procedure is described in detail 200 

by Six et al. (2002a). 201 

Insert Figure 2 202 

2.4. Isotopic analysis 203 

Carbon and nitrogen content and their respective stable isotope ratios were analyzed for the 204 

POM fraction and bulk soil with an elemental analyzer (Flash 2000, Thermo Scientific, 205 

Massachusetts, USA) coupled with a mass spectrometer (Isoprime GV Instruments, 206 

Manchester, UK). The samples from the Gross-Enzersdorf soil were fumigated to remove 207 

carbonates, all other soils were free of carbonates. For the protected mineral associated 208 

organic matter fraction (mOM), carbon and nitrogen content were calculated as the difference 209 

between the bulk soil and the POM. The samples of the fractionation scheme based on Six et 210 

al. (2002a) (m, mM, s+c, s+cM, POM and bulk soil) were also analyzed with an elemental 211 

analyzer (Flash 2000, Thermo Scientific, Massachusetts, USA) coupled with a mass 212 

spectrometer (Isoprime GV Instruments, Manchester, UK). 213 

2.5. Data analysis and calculations 214 

To calculate the relative stability of the SOC, the following three equations (1, 2 and 3) 215 

developed by Conen et al. (2008) were used. In these equations δm and δp are the δ15N value 216 

for the mOM and POM respectively, ε [‰] is the enrichment factor, rm and rp are the C:N 217 

ratio’s and Cm and Cp the carbon masses for the mOM and POM fraction respectively. ƒN and 218 

ƒC are the fractions of nitrogen and carbon lost during degradation. And η is the relative SOM 219 

stability. 220 
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The statistical package R 3.0.1 (R core team, 2013) was used for all data analysis. To 224 

determine significant effects and interactions, ANOVA was applied. Duncan’s new multiple 225 

range test was used to test equality of treatment averages. Averages followed by the same 226 

letter do not significantly differ from each other with a certainty of more than 95%.  227 

The multivariate analysis was done in JMP Pro 11.0.0, SAS Institute Inc., Cary, NC. Principle 228 

components analysis was used to calculate principal components and score coefficients. 229 

   230 



3. Results 231 

3.1. C:N ratio and δ15N in POM and mOM 232 

In the following Figure 3 the C:N ratio and δ15N signature of the isolated SOC fractions are 233 

displayed for all four research sites. For all four sites our first hypothesis is confirmed, the 234 

pattern of the C:N ratio and δ15N signature closely resembles the predicted theoretical pattern 235 

from Figure 1.  236 

In Figure 3a the average results for all nine sampled contours, at three depths, of the site in 237 

Grabenegg can be seen. At all three depths the POM has a higher C:N ratio and a lower δ15N 238 

signature compared to the mOM fraction. The POM isolated from the soil layer between 40 239 

and 60 cm deep has the highest C:N ratio of all the fractions, the POM from the two top soil 240 

layers does not have a significantly different signature. The variation of both parameters is 241 

also by far the highest in the deep soil POM.  242 

Insert Figure 3 243 

In Gross-Enzersdorf (Figure 3b) the same pattern for the POM and mOM fraction can be 244 

observed as in Grabenegg. The POM in both top soil layers has a lower C:N ratio compared to 245 

the deep soil layer. The δ15N signature of the POM shows a significant interaction between 246 

treatment and depth. For the conventional tillage treatment it decreases with depth, for both 247 

other treatments it increases. The largest variations for both parameters can be found in the 248 

grass alley treatment, for all depths. Overall the POM from deep soil layer displays the 249 

highest variability and the C:N ratio is considerably higher compared to the two top soil 250 

layers.  251 

 Figures 3c and 3d display the results for both Belgian soils. The same pattern of the fractions 252 

as seen in both Austrian soils emerges. For the site in Boutersem (Figure 3c) a significantly 253 

higher δ15N signature and a lower C:N ratio is observed in both fractions from the compost 254 



application treatments as compared to the control. The mulch and control treatment of the site 255 

in Gembloux (Figure 3d) show no significant difference in δ
15N signature or C:N ratio. 256 

In Table 2 the carbon concentration (in mg/g dry soil) of both isolated fractions, POM and 257 

mOM is summarized for all four experimental sites. In both Austrian sites the C concentration 258 

declines significantly with depth, the lowest concentrations are found in the 40-60 cm layers. 259 

For all sites and treatments, except for 45 tons compost ha-1y-1 in Boutersem, most of the 260 

carbon can be found in the mOM fractions. In Gross-Enzersdorf only the top layer POM 261 

reveals significant treatment effects, the carbon concentration is the highest in the alley 262 

treatment, followed by the conservation tillage and conventional tillage treatments. The same 263 

significant pattern can be seen in the mOM fractions for all depths. For the Boutersem site the 264 

only significant treatment effect can be found in the POM fraction, whereas in Gembloux only 265 

the carbon concentration in the mOM fraction shows an influence of the treatment.  266 

Insert Table 2 267 

3.2. SOM Relative stability 268 

Using the data shown in Figure 3 and Table 2, the relative stability of the SOC was calculated 269 

according to equations 1, 2 and 3, based on Conen et al. (2008). For the enrichment factor ε 270 

the value of −2.0‰ was used, derived from literature (Conen et al., 2008; Robinson, 2001). 271 

The results are shown in Table 3. For the treatment factor no significant effect could be found 272 

in any of the sites, but some trends can be seen and are discussed in the next section. In the 273 

case of the Gross-Enzersdorf and Grabenegg sites, there is a significant depth effect, the 274 

relative SOM stability always increases deeper into the profile.  275 

Insert Table 3 276 



3.3. Relative stability and δ13C 277 

To obtain additional information about the stability of the SOC a δ
13C depth profile was 278 

constructed for Grabenegg (data not show) and Gross-Enzersdorf (Figure 4). The δ13C 279 

signature becomes more positive with increasing depth in all treatments, but the values and 280 

overall slopes differ significantly (p=0.0009 and slope is 0.0103 for conventional tillage, 281 

0.0028 for conservation tillage and 0.0147 for grass alley). In both arable treatments the δ13C 282 

signature only increases below the 20cm layer, whereas in the alley treatment it starts 283 

increasing immediately. Below 20cm the δ13C signature under conventional tillage (slope 284 

0.0148) increases significantly (p=0.0034) faster compared to both other treatments (slope 285 

alley 0.00944 and conservation 0.00614) . 286 

Insert figure 4 287 

To investigate the correlation of  δ13C with the other parameters and the SOM stability, a 288 

principal component (PC) analysis was performed on the data of both Austrian soils.  A total 289 

of 16 parameters and 4 ratios were considered in the analysis. As a result, three independent 290 

and uncorrelated components, defined as linear combinations of the initial variables, were 291 

calculated. Table 4 shows the loadings matrix of the final three selected components. The 292 

higher the loading value the more variation of the variable is explained by the PC. The PC 1 is 293 

composed of depth, POM [N], POM [C], bulk soil [C], bulk soil [N], mOM [N], mOM [C], 294 

POM C:N ratio, η and the mOM/POM C:N ratio. PC 2 is composed of POM δ
13C, bulk soil 295 

δ
13C, mOM δ13C and δ15N, mOM/POM δ13C, mOM C:N ratio and bulk C:N ratio. PC 3 is 296 

composed of all δ15N variables. The three components together explain almost 80% of total 297 

variance.  298 

Insert table 4 299 



3.4. Relative stability and aggregate formation 300 

The soil samples from both Belgian sites were further analyzed following the fractionation 301 

scheme in Figure 2. For three Boutersem treatments i.e. the unfertilized control, mineral 302 

fertilized control and 45t ha-1y-1 compost application and for three Gembloux treatments, 303 

control and mulch with and without green manure, the C/N ratio and δ
15N signature for five 304 

SOC fractions are displayed in Figure 5.  305 

Insert Figure 5 306 

In Figure 5a, the POM fraction of the compost application treatment has a lower C/N ratio and 307 

higher δ15N signature compared to the control. This is also the case for the δ15N signature of 308 

the two micro-aggregate and silt & clay fractions. The occluded fractions of both treatments 309 

have a lower δ15N signature compared to the free fractions. The silt & clay fractions also 310 

always have a higher δ15N signature compared to the associated micro-aggregate fractions.  311 

In Figure 5b the pattern is slightly different. Here the POM fractions do not have the lowest 312 

δ
15N signature. The other fractions follow the same pattern as in Figure 5a. 313 

4. Discussion 314 

4.1. SOM relative stability 315 

On all four research sites our primary hypothesis could be confirmed. Figure 3 shows that the 316 

C:N ratio and δ15N signature can be used as a proxy for SOM degradation and stabilization in 317 

much more disturbed agricultural systems compared to the Alpine grasslands as researched by 318 

Conen et al. (2008). The sites described in this study are all long term agricultural sites with 319 

different management, tillage and fertilization practices.  320 

Secondly it is observed that the 15N signal of mineral fertilizer has no influence on this model, 321 

as no significant difference could be found in δ
15N signature of any fraction between the 322 



unfertilized control and the mineral fertilized treatment even though the applied calcium 323 

ammonium nitrate had a δ15N signal of -0.40 (Boutersem, Figure 5a).  This indicates it is 324 

possible to use the model developed by Conen et al. (2008) even in  situations where mineral 325 

fertilizer is used. 326 

Three main effects on SOM relative stability can be distinguished in this study: the influence 327 

of biomass input, tillage and depth. Looking at the relative stability no significant 328 

management effect could be found, but some clear trends can be seen. With increasing 329 

organic matter addition the stability of mOM relative to POM tends to decrease, as seen on 330 

the sites of Boutersem and Gembloux, although on the Boutersem site this effect can be 331 

partially due to the higher δ15N value of the added compost (attributed to microbial 332 

degradation during the composting process). (Table 3).  333 

In the case of the Gross-Enzersdorf experiment, the results are slightly more complex. The 334 

grass alley treatment, where biomass returns can be thought larger compared to both 335 

agricultural treatments (Vleeshouwers and Verhagen, 2002), has a slightly lower relative 336 

stability in the upper soil layer and an intermediate relative stability in the deeper layers, 337 

compared to both arable treatments (till and no till). For the alley and no-till treatments a clear 338 

and significant η increase is observed with increasing depth, whereas for the tillage treatment 339 

no clear increase is observed between 5 and 15 cm layers and a smaller increase is observed in 340 

the deepest soil layer. This difference can be attributed to the mixing of both top soil layers in 341 

the latter through ploughing.  342 

Overall a significant increase in relative stability is observed from the top to deeper soil 343 

layers, also on the Grabenegg site. In the deeper soil layers, there is much less SOC (POM as 344 

well as mOM) as seen in Table 2 and it exhibits a larger variation in C:N ratio and  δ15N 345 

signature compared to the top soil, especially for the POM fraction. This is probably due to a 346 



more unequal horizontal distribution of the OM in the deep soil caused by preferential flow 347 

paths, plant routing behavior and bioturbation, as indicated by Rumpel and Kögel-Knabner 348 

(2011). The ratio of POM over mOM carbon is also much lower and this lack of fresh OM in 349 

the subsoil leads to nutrient and energy limitations and combined with suboptimal 350 

environmental conditions inhibits further microbial degradation, leading to a higher relative 351 

stability of the OM (Fontaine et al., 2007; Rumpel and Kögel-Knabner, 2011; Schmidt et al., 352 

2011). 353 

4.2. δ
13C as additional indicator of stability 354 

As can be seen in Figure 4, the δ13C signature under conventional tillage increases 355 

significantly faster below the 20cm zone, compared to both other treatments. This might be 356 

due to a hard plough pan situated at a depth of around 30cm which inhibits the supply of fresh 357 

OM (mainly root material) to the deeper soil layers. This is consistent with the observed lower 358 

carbon concentration in the 40-60cm layer in Table 2.  359 

For both Austrian sites the bulk δ13C signature is correlated with the relative stability η 360 

displayed in Figure 6. The correlation is best for the Gross-Enzersdorf grass alley treatment 361 

(R²=0.70) and the Grabenegg site (R²=0.74). Except for the conservation tillage treatment, 362 

δ
13C signature is always positively correlated with SOM relative stability. To further 363 

investigate the correlation of  δ13C with the other measured parameters and the SOM stability, 364 

a principal component analysis was performed on the data of both Austrian soils. The results 365 

can be seen in Table 4. Figure 7 shows the scores of the Austrian samples for the first two 366 

principal components, defined as a depth parameter and a land use parameter. Multiple 367 

clusters can be seen. The first cluster (I) contains all samples from the deepest soil layer (40-368 

60cm). The other two clusters group the samples from the top soil layers. Cluster II contains 369 

the 10-15cm and the tilled 0-5cm samples. Cluster III contains the untilled 0-5 cm soil layer 370 

samples (Gross Enzersdorf no till and grass alley). On top of this we find a separation 371 



between the long term agricultural plots (top half) and those from the long term grassland 372 

plots (bottom half).  373 

Insert Figure 6 and Figure 7  374 

Combining the carbon and nitrogen concentrations and respective stable isotope ratios of the 375 

soil POM and mOM fractions offers an opportunity to distinguish SOM of different depths, 376 

management systems and land use systems, all of which have an impact on SOM stability. In 377 

Figure 7 the relative SOM stability increases from the bottom right to the top left as suggested 378 

by rotated factor pattern (Table 4) and confirmed by Figure 8. In this biplot the loadings of the 379 

factors used in the principle components analysis are displayed on top of the scores of the first 380 

two principle components. The arrow for η indicates it increases from the bottom right to the 381 

top left. This was not possible on the basis of the model by Conen et al. (2008) since they did 382 

not use δ13C signature changes. This emphasizes the value of also using the δ13C signature 383 

changes in a new mechanistic model based on that of Conen et al. (2008).   384 

Insert Figure 8 385 

4.3. Relative stability and Aggregate formation 386 

Since it is known that SOM stability and protection are governed by the interaction of 387 

biochemical recalcitrance, adhesion to soil mineral particles and physical protection through 388 

particle aggregation, an alternative and more detailed fractionation scheme (Figure 2) was 389 

applied on both Belgian soils (Six et al., 2004, 2002b). The model developed by Conen et al. 390 

(2008) could not be applied on these fractions but the C:N ratio and δ
15N signature alone also 391 

supplied information on stability. Figure 5 demonstrated that the degree of microbial 392 

degradation increases in the following order: POM < occluded micro-aggregates < occluded 393 

silt & clay < free micro-aggregates < free silt & clay. This corroborates the aggregate 394 

formation theory as described by Six et al. (2004) and Segoli et al. (2013) where the fresh 395 



residue is converted to POM and serves as the core of newly formed macro-aggregates. Inside 396 

of these macro-aggregates the POM is further degraded and occluded micro-aggregates are 397 

formed. Part of the organic matter is bound to the mineral soil particles (silt & clay fraction) 398 

and part is incorporated in the newly formed micro-aggregates. After a while the macro-399 

aggregates can disintegrate and the micro-aggregates and silt & clay particles are freed. This 400 

implies that the younger and intermediate SOM will be located in the POM and occluded 401 

fractions and the older in the free fractions, exactly as is determined using the C:N ratio and 402 

δ
15N signature. 403 

Furthermore a clear influence of the different treatments on the C:N ratio and δ15N signature 404 

can be seen on both sites. The long term application of compost, already partially degraded 405 

with an average C:N ratio of 8.5 and δ
15N of 8.1, pushes the signal of all isolated fractions to 406 

the bottom right of the graph. This indicates that the compost residue has been incorporated in 407 

all isolated fractions, over the course of 15 years.  408 

4.4. Conclusions 409 

Using four different experimental sites located in various climates and soil types, this research 410 

proved the effectiveness of using the C/N ratio and δ
15N signature to determine the stability of 411 

mOM relative to POM  in an intensively managed agro-ecological setting. Combining this 412 

approach with δ13C measurements allowed discriminating between different management 413 

(grassland vs cropland) and land use (till vs no till) systems. With increasing depth the 414 

stability of mOM relative to POM increases, but less so under tillage compared to no-till 415 

practices. Compost addition has a negative effect on the relative stability, probably because 416 

the compost added is already partially degraded during the composting process and mainly 417 

ends up in the POM fraction. Thus the difference with the mOM is smaller. Applying this 418 

approach to investigate SOM stability in different soil aggregate fractions, it corroborates the 419 

aggregate hierarchy theory as proposed by Six et al. (2004) and Segoli et al. (2013). The 420 



organic matter in the occluded micro-aggregate and silt & clay fractions is less stable than the 421 

SOM in the free micro-aggregate and silt & clay fractions. Hence, the model developed by 422 

Conen et al. (2008) has been proven valid for use in more intensively managed agricultural 423 

systems and could in the future be supplemented with a δ
13C component. It can be particularly 424 

useful for soils with a history of burning and thus containing old charcoal particles, preventing 425 

the use of 14C to determine the SOM stability. Although further validation with radiocarbon 426 

dating on other soils and management systems and under different climates is needed, this 427 

stable isotope based approach can become a useful tool in future SOM stability research. 428 
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Table 1: Site characteristics for all four long term experimental fields used in this study. 

Site 
Austria  Belgium 

Gross-Enzersdorf Grabenegg  Boutersem Gembloux 

Annual rainfall 554 mm 686 mm  760 mm 828 mm 

Average temp. 9.8°C 8.4°C  11°C 9.8°C 

Min. monthly temp. -2.9°C -2.8°C  -1.5°C -0.4°C 

Max. monthly temp. 26.0°C 24.9°C  20.6 °C 22.1°C 

Climate humid continental (Dfb)  temperate oceanic (Cfb) 

Soil type Chernozem Luvisol  Cambisol Luvisol 

pH (CaCl2) 7.5 6.7  6.4 6.2 

Parent material loess loess  
sandy-loam 

colluvium 
loess 
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Table 2: Carbon concentration (mg/g dry soil) for SOC fractions from the Grabenegg, Gross-

Enzersdorf, Boutersem and Gembloux experimental sites. Treatment means ± standard 

deviations and F-test p-values are presented.   

   [C] (mg/g dry soil) 

   POM  mOM 

   0-5 cm 10-15 cm 40-60 cm  0-5 cm 10-15 cm 40-60 cm 

Gross- 

Enzersdorf 

Till  0.87 ± 0.07 0.87 ± 0.19 0.08 ± 0.06  18.11± 2.25 17.59 ± 2.3 6.54 ± 4.2 

No till  2.46 ± 1.04 0.48 ± 0.1 0.11 ± 0.01  22.63± 1.0 19.62± 1.27 11.53 ± 0.87 

 Alley  3.32 ± 0.17 0.75 ± 0.06 0.1 ± 0.05  24.6 ± 0.5 18.05± 1.3 10.23± 4.64 

 F test Treatment 8.98e-10    1.03e-08   

  Depth 0.0009    0.0064   

  Interaction <0.001    ns   

          

Grabenegg Average  0.92 ± 0.22 1.2 ± 0.17 0.09 ± 0.04  12.3 ± 1.28 13.38 ± 1.19 4.31 ± 0.87 

 F test Depth <0.001    <0.001   

          

   0-30 cm    0-30 cm   

Gembloux Control  0.54 ± 0.25    7.01 ± 0.21   

 Mulch  0.68 ± 0.2    7.54 ± 0.08   

 F test Treatment ns    0.015   

          

Boutersem Control  1.08 ± 0.43    6.53 ± 0.7   

 15 tons compost ha-1y-1 2.49 ± 0.96    9.49 ± 0.6   

 45 tons compost ha-1y-1 10 ± 3.75    7 ± 4.14   

 F test Treatment 0.006    ns   
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Table 3: The relative stability (η) of SOC from the Grabenegg, Gross-Enzersdorf, Boutersem 

and Gembloux experimental sites. Treatment means ± standard deviations are presented, 

values followed by different letters differ significantly from each other. 

 η (relative SOM stability)  

   0-5 cm 10-15 cm 40-60 cm  

Gross- 

Enzersdorf 

Till  129 ± 4 170 ± 53 494 ± 146  

No till  106 ± 69 291 ± 100 1012 ± 473  

 Alley  91 ± 23 230 ± 65 877 ± 397  

 F test Treatment ns    

  Depth <0.001    

  Interaction ns    

       

Grabenegg Average  71 ± 15 54 ± 17 358 ± 114  

 F test Depth <0.001    

       

   0-30 cm    

Gembloux Control  129 ± 101    

 Mulch  62 ± 36    

 F test Treatment ns    

       

Boutersem Control  28 ± 23    

 15 tons compost ha-1y-1 12 ± 7    

 45 tons compost ha-1y-1 2 ± 1    

 F test Treatment ns    
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Table 4: Rotated PC pattern for SOC properties of experimental sites in Gross-Enzersdorf 

and Grabenegg (n=42). 

Variable PC 1 

(depth) 

PC 2 

(land use) 

PC 3 

(management) 

Depth -0.909834 0.114756 -0.004413 

POM δ
15

N -0.151646 0.047273 0.940396 

POM [N] (mg/g dry soil) 0.828650 -0.067620 -0.326552 

POM δ
13

C 0.007247 0.923791 0.027986 

POM [C] (mg/g dry soil) 0.833253 -0.064116 -0.328283 

Bulk soil δ
13

C -0.278611 0.896773 0.127468 

Bulk soil [C] (%) 0.916629 0.304858 -0.069433 

Bulk soil δ
15

N 0.107283 0.574371 0.641633 

Bulk soil [N] (%) 0.943493 0.188811 -0.063915 

mOM δ
15

N 0.132226 0.700676 0.584560 

mOM [N] (mg/g dry soil) 0.933666 0.209823 -0.049806 

mOM  δ
13

C -0.263436 0.897183 0.132093 

mOM [C] (mg/g dry soil) 0.897338 0.350654 -0.027946 

POM C:N ratio -0.791120 0.193491 -0.058365 

mOM C:N ratio 0.172641 0.795952 -0.105743 

Bulk soil C:N ratio 0.288676 0.759473 -0.157078 

η -0.725259 0.368492 -0.132792 

mOM/POM δ
13

C 0.362719 0.604648 -0.117529 

mOM/POM δ
15

N 0.123048 0.253007 -0.770772 

mOM/POM C:N ratio 0.802927 0.226895 0.027806 

Explained variance (%) 39.4 27.3 12.8 
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Figure 1: Theoretical evolution of C/N ratio and δ
15

N signature for the particulate organic 

matter (POM) and mineral-associated organic matter (mOM) fraction as described by the 

model. fN: fraction of N lost, fC: fraction of C lost, ε: fractionation coefficient (Conen et al., 

2008). 

 

Figure 2: Fractionation scheme based on Six et al. (2002) dividing the SOM in an 

unprotected particulate organic matter fraction (POM), two physically protected fractions (m 

and mM) and two physically and (bio)chemically protected fractions (s+c and s+c M). 

 

Color: Figure 3: C/N ratio and δ
15

N signature for SOC fractions from the experimental sites 

in Grabenegg (a), Gross-Enzersdorf (b), Boutersem (c) and Gembloux (d). The POM fraction 

(open symbols) and mOM fraction (filled symbols) are displayed for four depths (a, b): 0-5cm 

(□), 10-15cm (Δ), 40-60cm (○) and (c, d): 0-30cm (◊). The error bars indicate the standard 

deviation. The colors represent various treatments: (b) conventional tillage (black), 

conservation tillage (red) and grass alleys (green). (c) Control (black), 15t ha
-1

y
-1

 VFG 

compost (green) and 45t ha
-1

y
-1

 VFG compost (red). (d) Control treatment (black) and mulch 

treatment (red). 

Gray: Figure 3: C/N ratio and δ
15

N signature for SOC fractions from the experimental sites 

in Grabenegg (a), Gross-Enzersdorf (b), Boutersem (c) and Gembloux (d). The POM fraction 

(open symbols) and mOM fraction (filled symbols) are displayed for four depths (a, b): 0-5cm 

(□), 10-15cm (Δ), 40-60cm (○) and (c, d): 0-30cm (◊). The error bars indicate the standard 

deviation. The colors represent various treatments: (b) conventional tillage (black), 

conservation tillage (dark-gray) and grass alleys (light-gray). (c) Control (black), 15t ha
-1

y
-1
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VFG compost (light-gray) and 45t ha
-1

y
-1

 VFG compost (dark-gray). (d) Control treatment 

(black) and mulch treatment (dark-gray). 

 

Figure 4: The evolution of the SOC δ
13

C signature over a depth profile of 1m for three 

treatments in the Gross-Enzersdorf experimental site. The error bars indicate the standard 

deviation.  

Color: Figure 5: C/N ratio and δ
15

N signature for 5 SOC fractions, isolated according to Six 

et al. (2002), from the experimental site in Boutersem (a) an Gembloux (b). The POM 

fraction (○), free micro-aggregates (□), occluded micro-aggregates (■), free silt & clay (Δ) 

and occluded silt & clay (▲) fractions are displayed for a depth of 0-30cm. a) Boutersem: the 

colors represent three treatments: unfertilized control (black), mineral fertilized control 

(green) and 45t ha
-1

y
-1

 VFG compost (red). b) Gembloux: the colors represent three 

treatments: control (black), mulch (red) and mulch with green manure (green). The error bars 

indicate the standard deviation. 

Gray: Figure 5: C/N ratio and δ
15

N signature for 5 SOC fractions, isolated according to Six 

et al. (2002), from the experimental site in Boutersem (a) an Gembloux (b). The POM 

fraction (○), free micro-aggregates (□), occluded micro-aggregates (■), free silt & clay (Δ) 

and occluded silt & clay (▲) fractions are displayed for a depth of 0-30cm. a) Boutersem: the 

colors represent three treatments: unfertilized control (black), mineral fertilized control (light-

gray) and 45t ha
-1

y
-1

 VFG compost (dark-gray). b) Gembloux: the colors represent three 

treatments: control (black), mulch (dark-gray) and mulch with green manure (light-gray). The 

error bars indicate the standard deviation. 

 



Color: Figure 6: Bulk soil δ
13

C signature to relative stability for the Austrian samples. 

Regression lines with confidence intervals, equations and R² values are displayed for each 

treatment. The colors represent various treatments: conventional tillage (Gross-Enzersdorf, 

black), conservation tillage (Gross-Enzersdorf, red), grass alleys (Gross-Enzersdorf, green), 

ploughed grassland Grabenegg (blue). 

Gray: Figure 6: Bulk soil δ
13

C signature to relative stability for the Austrian samples. 

Regression lines with confidence intervals, equations and R² values are displayed for each 

treatment. The colors represent various treatments: conventional tillage (Gross-Enzersdorf, 

black), conservation tillage (Gross-Enzersdorf, dark-gray), grass alleys (Gross-Enzersdorf, 

light-gray), ploughed grassland Grabenegg (empty symbols). 

 

Color: Figure 7: Score plot for component 1 (depth) and component 2 (land use). The scores 

of the Gross-Enzersdorf and Grabenegg samples are displayed for three depths: 0-5cm (□), 

10-15cm (Δ) and 40-60cm (○). The colors represent various treatments: conventional tillage 

(Gross-Enzersdorf, black), conservation tillage (Gross-Enzersdorf, red), grass alleys (Gross-

Enzersdorf, green), ploughed grassland Grabenegg (blue). 

Gray: Figure 7: Score plot for component 1 (depth) and component 2 (land use). The scores 

of the Gross-Enzersdorf and Grabenegg samples are displayed for three depths: 0-5cm (□), 

10-15cm (Δ) and 40-60cm (○). The colors represent various treatments: conventional tillage 

(Gross-Enzersdorf, black), conservation tillage (Gross-Enzersdorf, dark-gray), grass alleys 

(Gross-Enzersdorf, light-gray), ploughed grassland Grabenegg (empty symbols). 

 



Color: Figure 8: Biplot for component 1 (depth) and component 2 (land use). The scores of 

the Gross-Enzersdorf and Grabenegg samples are displayed for three depths: 0-5cm (□), 10-

15cm (Δ) and 40-60cm (○). The colors represent various treatments: conventional tillage 

(Gross-Enzersdorf, black), conservation tillage (Gross-Enzersdorf, red), grass alleys (Gross-

Enzersdorf, green), ploughed grassland Grabenegg (blue). The factor loadings are represented 

by the red vectors. 

Gray: Figure 8: Biplot for component 1 (depth) and component 2 (land use). The scores of 

the Gross-Enzersdorf and Grabenegg samples are displayed for three depths: 0-5cm (□), 10-

15cm (Δ) and 40-60cm (○). The colors represent various treatments: conventional tillage 

(Gross-Enzersdorf, black), conservation tillage (Gross-Enzersdorf, dark-gray), grass alleys 

(Gross-Enzersdorf, light-gray), ploughed grassland Grabenegg (empty symbols). The factor 

loadings are represented by the red vectors. 

 




