

RIVAS Training Workshop: "Reducing railway induced ground vibration by interventions on the transmission path", Berlin, 23 May 2013

Mitigation of vibration by sheet pile walls Results of numerical simulations

A. Dijckmans, G. Lombaert, and G. Degrande KU Leuven Department of Civil Engineering

A. Ekblad and A. Smekal Trafikverket

- Numerical analysis
 - Two-and-a-half dimensional methodology
 - Sheet pile wall model
 - Output
- Results for homogeneous halfspace
- Results for Furet test site
- Conclusions

- Sheet pile wall: VL 603-K profiles
 - Depth of 12 m with every fourth pile extended to 18 m

Mass	$m_w = 113.5 {\rm kg/m^2}$	
Sectional area	$A_w = 144.8 {\rm cm}^2 / {\rm m}$	
Moment of inertia	$I_w = 18900 {\rm cm}^4 / {\rm m}$	
Width	$t_w = 0.310\mathrm{m}$	

- Sheet pile wall: VL 603-K profiles
 - Depth of 12 m with every fourth pile extended to 18 m

Mass	$m_w = 113.5 \mathrm{kg/m^2}$
Sectional area	$A_w = 144.8 \mathrm{cm}^2 / \mathrm{m}$
Moment of inertia	$I_w = 18900 {\rm cm}^4 / {\rm m}$
Width	$t_w = 0.310\mathrm{m}$

• 2.5D methodology

- Longitudinally invariant geometry
 - \bullet Two models: depth $12\,m$ and $18\,m$
 - Profiling

- Equivalent plate model
 - Bending stiffness along the profiles B_z is much larger than bending stiffness perpendicular to the profiles B_y
 - Equivalent orthotropic plate with same mass, axial stiffness and bending stiffness in both directions as the sheet pile wall

• Output

- The presence of the track is disregarded
- Transfer mobilities and insertion loss values at several distances for
 - a vertical harmonic point force
 - a 'line' load consisting of 36 incoherent point forces (representing an IC train)

- Numerical analysis
 - Two-and-a-half dimensional methodology
 - Sheet pile wall model
 - Output
- Results for homogeneous halfspace
- Results for Furet test site
- Conclusions

• Dynamic soil characteristics (Horstwalde)

Layer	h	$C_{ m s}$	$C_{\rm p}$	eta_s	β_p	ρ	ν
	[m]	[m/s]	[m/s]	[-]	[-]	$[\mathrm{kg/m^3}]$	[-]
1	∞	250	1470	0.025	0.025	1945	0.485

• Transfer functions and fundamental Rayleigh wave at 10 Hz

• Vertical displacement and corresponding IL

• Vertical displacement and corresponding IL

KU LEUVEN

 \bullet Vertical insertion loss for the $12\,m$ deep sheet pile wall

- Influence of orthotropic behaviour
 - Comparison with isotropic plate model

	$ar{E}_z$ [Pa]	$ar{E}_y$ [Pa]	<i>ν</i> [-]	$ar{ ho}$ [kg/m 3]
Orthotropic wall	7.68×10^9	2.47×10^6	0.0	286.6
Isotropic wall	6.99×10^9	6.99×10^9	0.3	286.6

- Influence of orthotropic behaviour
 - Comparison with isotropic plate model

	$ar{E}_z$ [Pa]	$ar{E}_y$ [Pa]	<i>ν</i> [-]	$ar{ ho}$ [kg/m 3]
Orthotropic wall	7.68×10^9	2.47×10^6	0.0	286.6
Isotropic wall	6.99×10^9	6.99×10^9	0.3	286.6

– Vertical insertion loss at $25\,\mathrm{Hz}$ for a point load

• Influence of orthotropic behaviour

- Vertical insertion loss for a point load

• Influence of orthotropic behaviour

- Vertical insertion loss for a line load

- Numerical analysis
 - Two-and-a-half dimensional methodology
 - Sheet pile wall model
 - Output
- Results for homogeneous halfspace
- Results for Furet test site
- Conclusions

Furet test site

• Dynamic soil characteristics

Layer	h	$C_{\mathbf{s}}$	$C_{\mathbf{p}}$	eta	ρ	ν
	[m]	[m/s]	[m/s]	[-]	$[kg/m^3]$	[-]
1	2	154	375	0.025	1800	0.40
2	10	119	290	0.025	1850	0.40
3	∞	200	490	0.025	1710	0.40

• Transfer functions and fundamental Rayleigh wave at 10 Hz

KU LEUVEN

• Vertical insertion loss for the orthotropic sheet pile wall

Furet test site

reference

depth $12\,\mathrm{m}$

depth $18\,\mathrm{m}$

Furet test site

Vertical insertion loss for a point load

18

Vertical insertion loss for a line load

Furet test site

- Numerical analysis
 - Two-and-a-half dimensional methodology
 - Sheet pile wall model
 - Output
- Results for homogeneous halfspace
- Results for Furet test site
- Conclusions

Conclusions

- Numerical analysis
 - Sheet pile wall acts as a stiff wave barrier
 - Only effective if the depth of the sheet pile wall is sufficiently large compared to the Rayleigh wavelength
 - Reduction at higher frequencies due to axial stiffness and vertical bending stiffness, longitudinal bending stiffness too low to affect vibration transmission
 - Important to take into account the orthotropic behaviour: isotropic model overestimates the insertion loss for a train passage
- Measurements at Furet test site
 - Train passages
 - RSMV (stationary excitation)

Thank you for your attention

Visit our website www.rivas-project.eu

