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Take-home message: 
In adult and paediatric patients suffering from severe traumatic brain injury, an approximately exponential 
curve describes the relationship between intensity and duration of episodes of increased intracranial pressure 
(ICP) and worse clinical outcomes. In children, compared to adults, this occurs at lower ICP thresholds of 
shorter duration. 
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Abstract:  

 

Purpose:  

To assess the impact of the duration and intensity of episodes of increased intracranial pressure on 6-month 

neurological outcome in adult and paediatric traumatic brain injury.  

Methods:  

Analysis of prospectively collected minute-by-minute intracranial pressure and mean arterial blood pressure 

data of 261 adult and 99 paediatric traumatic brain injury patients from multiple European centres. The 

relationship of episodes of elevated intracranial pressure (defined as a pressure above a certain threshold 

during a certain time) with 6-month Glasgow Outcome Scale was visualized in a colour-coded plot.   

Results:  

The colour-coded plot illustrates the intuitive concept that episodes of higher intracranial pressure can only be 

tolerated for shorter durations: the curve that delineates the duration and intensity of those intracranial 

pressure episodes associated with worse outcome is an approximately exponential decay curve. In children, the 

curve resembles that of adults, but the delineation between episodes associated with worse outcome occurs at 

lower intracranial pressure thresholds. Intracranial pressures above 20 mmHg lasting longer than 37 minutes in 

adults, and longer than 8 minutes in children, are associated with worse outcomes. In a multivariate model, 

together with known baseline risk factors for outcome in severe traumatic brain injury, the cumulative 

intracranial pressure-time burden is independently associated with mortality. When cerebrovascular 

autoregulation, assessed with the low-frequency autoregulation index, is impaired, the ability to tolerate 

elevated intracranial pressures is reduced. When the cerebral perfusion pressure is below 50 mmHg, all 

intracranial pressure insults, regardless of duration are associated with worse outcome.  

 

Conclusions:  

The intracranial pressure-time burden associated with worse outcome is visualised in a colour-coded plot. In 

children, secondary injury occurs at lower intracranial pressure thresholds as compared to adults. Impaired 

cerebrovascular autoregulation reduces the ability to tolerate intracranial pressure insults.  Thus, 50 mmHg 

might be the lower acceptable threshold for cerebral perfusion pressure.  

Key words:  
Traumatic brain injury – Adults – Children - Intracranial pressure – Cerebral perfusion pressure – 

Cerebrovascular autoregulation 
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Introduction 

 

Traumatic brain injury (TBI) remains one of the most important health care problems worldwide [1], even when 

advancements in TBI management have led to improvements in outcome over the past decades [2-4]. 

Intracranial pressure (ICP) monitoring, first described in the 1950s [5], was introduced as a monitoring tool for 

severe TBI in the 1960s [6].
 
The most recent version of the Brain Trauma Foundation (BTF) guidelines 

recommends monitoring of ICP in every salvageable patient with severe TBI [7]. Although these guidelines 

acknowledge a lack of level I evidence, the recommended treatment threshold for ICP-lowering therapies is 20 

mmHg, based mainly on observational data [8-12].  An increased ICP is an independent risk factor for mortality 

[13,14], and the total burden of ICP derangements, calculated as the area under the ICP curve (measured over 

time) above 20 mmHg, is an independent predictor of worse outcome in adults [15,16] and children [17]. 

Paediatric guidelines on ICP/cerebral perfusion pressure (CPP) management [18] have largely followed those 

for adults. An observational study of 81 children with TBI demonstrated that the ICP threshold associated with 

worse outcomes is lower, and differs in 3 age bands [17].  

Aggressive ICP management is not free of risk [19]. In the Decompressive Craniectomy in Patients with Severe 

TBI (DECRA) trial [20], early decompressive craniectomy when ICP rose above 20 mmHg resulted in a higher 

proportion of patients with poor neurological outcome as compared to standard care; however, after 

correction of baseline group imbalance (pupil reactivity), the outcomes were not different in the two groups. 

The multicentre randomized controlled BEST-TRIP trial (Benchmark Evidence from South American Trials: 

Treatment of Intracranial Pressure) [21] could not demonstrate the superiority of a TBI management strategy 

with ICP monitoring and treatment at 20 mmHg, versus a purely clinical and radiological management strategy.  

Notwithstanding these results, ICP monitoring is still considered to provide important information to detect 

and prevent secondary injury after severe TBI [22-24]. The BEST-TRIP trial has fostered a renewed interest in 

the definition of secondary insults and therapeutic thresholds for ICP and CPP.  

The purpose of the present study is an exploratory analysis on prospective data from continuously monitored 

adult and paediatric TBI patients to assess the impact of duration and intensity of ICP insults, on 6 months 

neurological outcome. In addition, we will assess the impact of cerebrovascular autoregulation and CPP on the 

capacity to tolerate these insults.  This research has been presented before, in part, at the 2014 International 
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Symposium on Intensive Care and Emergency Medicine (ISICEM, Brussels) [25], and at the 2014 European 

Society of Intensive Care Medicine Congress (ESICM, Barcelona) [26].  

Materials and Methods 

 

Patients and data 

The adult cohort was comprised of 261 TBI patients, aged 16 years and older.  

 - From the European Union Brain-IT project [27,28], 166 patients admitted to 22 neuro-ICUs in 11 European 

countries between March 2003 and July 2005 were included. The Multi-Centre Research Ethics Committee for 

Scotland (MREC/02/0/9) granted the use of these data for scientific purposes on 14 February 2002.  

- Data of the remaining 95 adult patients were collected from the ICU of four centres: 38 patients from the San 

Gerardo Hospital Monza, Italy, between March 2010 and April 2013; 25 patients from the University Hospitals 

Leuven, Belgium, between September 2010 and September 2013; 20 patients from the University Hospital 

Edegem (Antwerp), Belgium, as part of the ‘Individualized targeted monitoring in neurocritical care’ (NEMO) 

project, between May 2010 and June 2013 [29]; and 12 patients from University Hospital Tübingen, Germany, 

between February and December 2009. All data referring to the identity of these patients were removed; 

ethical committee approval was obtained in all centres to use these data for analysis.  

The paediatric cohort consisted of 99 TBI patients, aged between 2 and 16 years.  

- 81 patients were part of a study on TBI in children, recruited during 62 non-consecutive months up to July 

2003, from two paediatric centres in Edinburgh and Newcastle, UK [17]. The study had local ethics committee 

and management approval in both centres and informed consent was obtained before enrolment.  

 - The remaining 18 paediatric patients were part of the Brain-IT database. 

Patients were managed according to BTF guidelines [30]. Data collection in both cohorts included baseline risk 

factors (age, gender, admission GCS, admission pupil reactivity), minute-by-minute ICP and mean arterial blood 

pressure (MAP) monitoring data, and Glasgow Outcome Score (GOS) at 6 months [Electronic Supplementary 

material (ESM) Table 1].  For the paediatric patients, a modified GOS was used, as described in the original 

paper [17]. Monitoring data in the NEMO database was recorded and stored every second; the median value of 
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each minute interval was taken to obtain a minute-by-minute value. In all data sets, minute-by-minute signals 

were reviewed independently by two clinicians in Leuven (GM, BDP), and artefacts that were obvious through 

visual inspection of the time series were removed and not used for further analysis (ESM Table 10).  

Visualization method: 

The univariate association between ICP insults and GOS at 6 months was done using the visualization method 

explained in Fig. 1. First, each time series of minute-by-minute ICP data was segmented into different episodes, 

called ‘ICP insults’. ICP insults were defined according to their intensity (I) and duration (D). Intensity thresholds 

from 10 to 40 mmHg on the X-axis and duration thresholds from 5 to 360 min on the Y-axis were considered. 

For every ICP insult, the Pearson correlation coefficient between GOS and the average number of these types 

of ICP insults per patient in each GOS category was computed. The correlation coefficient ranges from -1 to 1 

and measures the degree of linear dependency: a negative value indicates that the particular ICP insult occurs 

more frequently with lower GOS; a positive correlation indicates that the particular ICP insult is more frequent 

with higher GOS. A contour plot showing lines of equal correlation was derived from the grid and colour coded: 

correlations of -1 and +1 are shown in dark red and dark blue, respectively. The contour for zero correlation 

was highlighted in black, and defined as the ‘transition curve’, because it indicates the transition into the region 

of insult types that occur more frequently in patients with lower GOS.  

Role of cerebrovascular autoregulation: 

The low-frequency autoregulation index (LAx) is computed as a moving minute-by-minute correlation of 

previous values of ICP and MAP [31]. The LAx ranges in value from -1 to +1 and was calculated for every minute 

of the patients’ ICU stay. This allowed one to compute the average autoregulatory state during each ICP insult. 

An insult was classified as ‘active’ if its average LAx was negative or zero, and ‘passive’ if the average LAx was 

positive. The visualization method described above was repeated considering active and passive episodes 

separately.  

Role of CPP:  

The association between ICP insults and outcome was visualized for three different thresholds of CPP: 50, 60, 

and 70 mmHg.  
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Multivariate analysis:  

In order to assess the independent association of the cumulative dose of ICP insults with outcome, multivariate 

logistic regression models for 6-month mortality and unfavourable neurological outcome [defined as death, 

vegetative, or severely disabled (GOS 1-3)] were built, using as co-variates the percentage of total monitoring 

time each patient experienced one or more ICP insults associated with worse GOS (indicated on the graph as 

the red zone), together with the IMPACT model core variables [32,33] (age, admission motor GCS, pupils).   

All analyses were done in Matlab 2014b® (The MathWorks, Natick, MA, USA).  

Results 
The colour-coded plots visualizing the correlations between GOS at 6 months and the average number of 

different types of ICP insults are shown in Fig. 2. Two clear overall regions emerge: a predominantly blue zone, 

indicating types of ICP insults that occur more frequently in patients with higher GOS; and a predominantly red 

zone, indicating types of ICP insults that occur more frequently in patients with lower GOS. The transition curve 

between the blue and red zone is approximately exponential: for higher insult intensities, the transition occurs 

at shorter insult durations and, conversely, for lower insult intensities the transition occurs at longer insult 

durations. In adults, the duration above which ICP thresholds of 15, 20, 25, and 30 mmHg are associated with 

worse outcome, is 223, 37, 12, and 8 min, respectively. In children, at intensity thresholds of 15 and 20 mmHg, 

the respective transitions occur at shorter durations of 48 and 8 min. The transition curves of the two cohorts 

are shown together in Fig. 3.  

In a multivariate analysis, the percentage of total monitoring time spent by each patient in the red zone was an 

independent significant predictor of death, both in adults [OR 9·91 (95% CI 2·67–36·8); p <0·001] as in children 

[OR 178x10
3
 (95% CI 1·02–309x10

8
); p<0·050]. The percentage of monitoring time in the red zone was also a 

significant predictor of unfavourable outcome in adults [OR 3·97 (95% CI 1·30–12·1); p=0·014] (ESM Tables 2-5).  

The percentage of monitoring time in the red zone during the first day only was a significant independent 

predictor of mortality [OR 2·90 (95% CI 1·03-8·14); p=0·039], but not of 6-month unfavourable outcome ([OR 

1·80 (95% CI 0·78-4·18); p=0·16] in adults. In paediatric TBI patients, there was a trend towards significance for 

the percentage of monitoring time in the red zone during the first day only, for both mortality [OR 266x10
1
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(95% CI 0·564-126x10
5
); p=0·062] and unfavourable outcome [OR 5·82 (95% CI 0·861-39·4); p=0·065] (ESM 

Tables 6-9). 

Figure 4 shows the transition curves resulting from visualizations of active and passive autoregulation insults 

(the corresponding colour-coded plots are available in the ESM Fig. 1, the percentages of active and passive 

insults in each cohort in the ESM Table 10). In the adult as well as in the paediatric population, the transition 

curve for passive insults shifts towards the left, and the transition curve for active insults shifts towards the 

right, with respect to the ‘all insults’ curve. In adults, episodes above 20 mmHg when cerebrovascular 

autoregulation is active, had a duration of 233 minutes before they were associated with worse outcome, 

versus 19 minutes when autoregulation was passive. Duration thresholds derived from the active and passive 

transition curves for commonly used intensity thresholds can be found in the ESM Table 11.  

Finally, the association of ICP insults and outcome was plotted for three different levels of CPP.  In adults as 

well as in children, when CPP was below 50 mmHg, almost all ICP insults were associated with worse outcome, 

regardless of duration and intensity (Fig. 5). When CPP was above 50 mmHg, the transition curve shifted to the 

right as compared to the ‘all insults’ curve. At CPPs of 60 and 70 mmHg there was a further small rightward 

shift of the transition curve (Fig. 6).  

Discussion 

 

In this study, the univariate relationship between 6-month neurological outcome and insults of raised ICP is 

summarized in colour-coded plots. These plots do not represent the cumulative time/pressure dose per 

patient, but per type of insult, characterized by duration and intensity. The cumulative ICP burden per patient 

(defined as the percentage of time in the red zone) was assessed through multivariate analysis, and was 

independently associated with mortality at 6 months.  

The main finding is the emergence of clearly distinct insult intensity and duration thresholds that occur more 

frequently in patients with lower 6-month GOS, delineated by an approximately exponential transition curve. 

This supports the ‘dose of ICP’ concept, which has been proposed earlier as the proportion of hourly 

measurements above 20 mmHg [12], or the area under the curve of hourly values above 20 mmHg [15]. The 

present study builds further on this concept. First, the use of minute-by-minute monitoring data allows for a 
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more precise definition of the concept ‘dose’. Second, by considering all intensity thresholds above 10 mmHg, 

the ‘dose’ is not limited to the 20-mmHg threshold. The time pressure burden was identified for the whole 

range of ICP’s between 15-25 mmHg, which is the same range of ICPs that was identified in the early 

association studies [8-12]. It is striking that the exponential decay transition curve in adults (Fig. 2, left) 

approximates the vertical 15-mmHg line, which indicates that insults between 15 and 20 mmHg, if sustained for 

sufficiently long, can already lead to worse outcomes. Above 20 mmHg, the vast majority of insults are clearly 

deleterious with the exception of those lasting less than 37 min in adults. Above 25 mmHg, the association with 

worse GOS occurs within 12 min. An alternative explanation for the transition curves occurring at lower 

intensity values for longer durations could have been the presence of patients who underwent decompressive 

craniectomy: these patients were no longer able to reach high ICP values but nevertheless could have a poor 

neurological outcome; however, we do not believe that this was the case, because when this clinical group was 

excluded, visualization results remained unchanged. (ESM Fig. 3 and Tables 9–10). 

The transition curve for the paediatric cohort resembles that of adults, but the entire curve has shifted to the 

left (Fig. 3 and ESM Table 11): episodes of lower intensity and shorter duration than for adults are associated 

with worse outcomes. In children, the exponential decay transition curve approximates the vertical 10-mmHg 

line (Fig. 2, right), and above 20 mmHg, the association with worse GOS occurs within 8 minutes.  

Cerebrovascular pressure autoregulation is often impaired in severe TBI, and such impairment is independently 

associated with worse outcomes [31, 34-36]. The autoregulatory status has a major effect on the transition 

curves in both adults and children. When autoregulation is intact, the transition curve shifts to the right. 

Conversely, with impaired autoregulation, there is a dramatic shift to the left in the transition curves, 

suggesting a higher vulnerability to raised ICP (Fig. 4; ESM Table 11). This is in line with the findings from a 

recent retrospective study, where individualized ICP thresholds based on the autoregulatory status of the 

patient were more predictive for mortality than fixed thresholds of 20 and 25 mmHg [37]. 

At a CPP below 50 mmHg, the plots become almost uniformly red (Fig. 5). In other words, when CPP is critically 

low, ICP is no longer a univariate predictor for outcome. Caution is warranted when interpreting these data, 

because arterial blood pressure (ABP) was not always measured and zeroed at the same level: in some patients 

the right atrium level was used, in some the external auditory meatus, while in some patients this information 
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was not available. Therefore, the statements on the influence of CPP on the association between ICP and 

outcome are only very general, and cannot be used to recommend specific CPP thresholds. In adults, a trend 

can be observed such that ICP insults in the range 18-23 mmHg can have a longer duration (in the order of 

minutes) at higher CPPs. When ICP is above 25 mmHg, a higher CPP has no effect (Fig. 6, left). In children, the 

same effect can be observed, albeit at lower ICP values: ICP insults in the range 13-20 mmHg, but not above 20 

mmHg, can be tolerated for a slightly longer duration (Fig. 6, right).  

This study suffers from several limitations, in addition to the ones already mentioned above. First, the number 

of patients is relatively small. The creation of large high-resolution databases of good quality in TBI is 

challenging. Current and future initiatives to create joint databases
 
[38] will facilitate addressing basic research 

questions such as the relationship between physiological thresholds and outcome. Second, because of their 

longer total monitoring time, longer-staying patients might have been overrepresented, possibly introducing 

bias. However, when using daily averages of the number of insults, instead of the entire monitoring time, all 

visualization results remain unchanged. (ESM Fig. 2).  Third, the analysis has been done in treated cohorts of 

patients. In retrospect, it is not possible to unravel the individual contributions on clinical outcome of the 

intensity of secondary brain injury insults versus the possible benefit or harm of the medical interventions 

employed to manage them. Fourth, the patient data collection extended over 10 years, and the critical care 

management of TBI might have changed substantially over this period. We believe the results are robust over 

potential differences in management, because when plotting the graphs in different subgroups of patients 

from different time eras, the approximately exponential transition curve remained (data not shown). Fourth, 

only the obvious artefacts were removed, via visual inspection by two independent experts. Data was collected 

in a prospective way, and at the time of collection, attention was paid to avoid incorrect data entries as much 

as possible. However, this does not exclude that some less obvious artefacts might still have been wrongfully 

identified as an ICP insult, and used in the analysis. Automatic artefact removal algorithms were not used, 

because we wanted to retain as much of the granularity of the minute-by-minute data as possible, and because 

we presumed that the incidence of erroneous entries was low, in proportion to the large total amount of 

insults analysed (8181337 insults in adults, and 2586632 insults in children, ESM table 10). Fifth, the observed 

associations, visualized in a single clear image, do not imply a causative relationship between the insults and 

the outcome, and other unmeasured confounders might have played a role.  
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The present study is an attempt to add to the current knowledge in developing a new concept of ‘pressure and 

time burden’ for intracranial hypertension. The results indicate that the ICP threshold in TBI patients depends 

on insult duration, age, CPP, and the autoregulatory status. These findings need to be confirmed in other data 

sets. These data visualizations are not intended to issue a new direct recommendation on specific ICP 

thresholds: they are meant as exploratory tools. On the basis of our findings, perhaps an argument could be 

made that ICPs exceeding 25mmHg in adults, and 20 mmHg in children, are absolute emergencies which could 

potentially lead to secondary brain injury in a couple of minutes, and may thus be more appropriate clinical 

triggers to initiate aggressive therapy than the more commonly used value of 20mmHg. This might also explain 

why previous randomized controlled trials in TBI patients where a 20-mmHg static threshold was used [19-21] 

were destined to fail. In addition, ICPs in the 15- to 20-mmHg range in adults, or 10-15 mmHg in children, are 

not to be considered harmless. Additional information through clinical examination, multimodality monitoring, 

imaging, and assessment of autoregulation might be considered with pressures in that range, in order to 

estimate the risk for secondary brain injury and the need for aggressive ICP-lowering treatments [39].  

Conclusion 

 

An image can be worth a thousand words: the visualizations presented here summarize the complexity and 

dynamic aspect of secondary insults of raised ICP in TBI, showing that not all TBI patients are equal in their 

ability to cope with such injury.  
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Fig. 1 Visualization methodology. The average number of insults of ICP above an intensity threshold I (in 

mmHg), lasting for at least a duration threshold D (in minutes) is computed for each GOS category and the 

Pearson correlation is computed (a). The correlation between GOS and the average number of insults per GOS 

category is computed for all I and D combinations (b) and given a colour according to a predefined colour map 

ranging from -1 in dark red to +1 in dark blue (c).  
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Fig. 2 Visualization of correlation between GOS and average number of ICP insults per GOS category. Left adult 

cohort (n=261). Right paediatric cohort (n=99). Each colour-coded point in the graph refers to a number of 

episodes of ICP, defined by a certain ICP intensity threshold (X-axis), and a certain duration threshold (Y-axis). 

Such an episode is called an ICP insult. The univariate correlation of each type of ICP insult (characterized by ICP 

intensity and duration thresholds) with outcome is colour-coded according to the scale in Fig. 1c. Dark red 

episodes mean that such ICP insults, on average, are associated with worse outcome (lower GOS categories); 

dark blue episodes mean that such ICP insults, on average, are associated with better outcome (higher GOS 

categories). The contour of zero correlation is highlighted in black, and is called the transition curve.  
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Fig. 3 Comparison of transition curves in adult (black) and paediatric (purple) cohorts. Transition curves are the 

lines of zero correlation between ICP insults and outcome. Episodes above and to the right of this transition 

curve are associated with worse outcomes.  
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Fig. 4 Transition curve visualizations according to cerebrovascular autoregulatory status. The transition curves 

for all insults (irrespective of autoregulation) are drawn in blue, while the transition curves for autoregulation 

active insults are shown in green and for autoregulation passive insults in red. Left adult cohort (n=261). Right 

paediatric cohort (n=99). Transition curves are the lines of zero correlation between ICP insults and outcome. 

Episodes above and to the right of this transition curve are associated with worse outcomes.  
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Fig. 5 Visualization of correlation between GOS and average number of ICP insults per GOS category according 

to a cerebral perfusion pressure (CPP) threshold of 50 mmHg.  For an explanation of this colour-coded plot, 

refer to the legend of Fig, 1. Left panel CPP ≤  50 mmHg. Right panel CPP > 50 mmHg. Above adult cohort 

(n=261). Below paediatric cohort (n=99).  
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Fig. 6 Transition curves of ICP insults according to three different thresholds of cerebral perfusion pressure 

(CPP). For an explanation on transition curves, refer to the legend of Fig. 4. All insults irrespective of CPP 

(black); insults with CPP > 50 mmHg (red); with CPP > 60 mmHg (green) and with CPP > 70 mmHg (blue). Left 

panel adult cohort (n=261). Right panel paediatric cohort (n=99).  
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