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Abstract

Automatic speech recognition (ASR) systems aim to map speech signals onto
phonetic content, text, semantics and paralinguistics. This is achieved by
learning some reference models for each acoustic unit in the speech feature
space and comparing these models with the unknown test segments. Most ASR,
systems summarize the training data in an — often statistical — acoustic model
such that multiple hypotheses can be evaluated on the test data and be compared
such that the best hypothesis can be selected in a search procedure. By contrast,
in template or exemplar based approaches, the test data is compared against
labeled speech segments, i.e. the model is the training data.

The performance of the ASR systems is hindered by the background noise,
i.e. the undesired signals that are also captured during the recording of the
test speech signal. Therefore, a significant amount of research effort has been
devoted to increase the noise robustness of the conventional ASR systems. The
techniques proposed for improved noise robustness devise similar strategies
such as using noise-immune speech features, enhancing the noisy signal or
features prior to the recognition phase or noise compensated models to reduce
the mismatch between the training and testing conditions. A class of noise
robustness techniques that is particularly relevant to this thesis uses unlabeled
speech and noise exemplars to linearly decompose noisy speech segments of
fixed duration into a speech and noise component in order to enhance their
representations.

In this work, we combine both template approaches described above: both the
recognition and the noise reduction are based on the same exemplars. This
results in a novel noise robust ASR scheme that uses speech and noise exemplars
to model noisy speech. The exemplars are associated with a single speech unit
similar to the traditional template matching ASR systems. The fundamental
noise modeling problem of the template matching has been remedied by adopting
a sparse representation formulation in which the exemplars are linearly combined
to approximate noisy speech segments.
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The proposed framework has been applied to the small vocabulary task of
the 24 CHiME Challenge and to the AURORA-2 database. The results on
these small vocabulary ASR tasks have demonstrated the feasibility of the
proposed technique. Moreover, the proposed scheme has been enriched in
other aspects such as an accurate noise dictionary design procedure, data
selection experiments for reduced computational complexity, embedding time
warping to match feature sequences of different durations and a more flexible
divergence metric for improved noise robustness. Finally, a single-channel speech
enhancement system is proposed based on the same model and the recognition
performance is evaluated using the enhancement system in the front-end of a
conventional ASR system with Gaussian mixture models.
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Chapter 1

Introduction

1.1 Automatic Speech Recognition

Contemporary automatic speech recognition (ASR) research applies various
statistical and data-driven pattern recognition approaches to speech signals
with an eventual goal of a viable human-machine communication. Since the
early attempts in 1950s to build an ASR system that can recognize a small
number of words, e.g. digits, numerous approaches have been developed to
achieve this task. Thanks to the enormous increase in computational power in
recent years, it is feasible to incorporate many of these approaches in devices
used on a daily basis such as mobile phones, tablets and computers. However,
the accuracy and reliability of these systems are still much lower compared to
the human speech recognition performance, creating the expectation that the
current state of the art can be improved. Therefore, ASR remains to be a very
progressive and active research field aiming to close the gap between the speech
understanding by humans and computers.

The fundamental architecture of a generic ASR system is shown in Figure 1.1.
The main blocks of an automatic speech recognizer are
¢ a feature extractor

e a resource repository containing an acoustic model, a language model and
other resources such as a lexicon containing the phonetic information of
the target language

o search space generator and decoder
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Figure 1.1: Fundamental architecture of an ASR system

Before detailing each block, we discuss how each block given in the figure
interacts with the others. In a real-time ASR system, the unknown speech
signals are recorded by an acoustic-to-electric transducer at a fixed sampling
rate, e.g. 8k samples per second for telephony speech or 44.1k samples per
second for sources such as an audio CD. This time-domain signal is processed
by the feature extractor in blocks to be able to represent acoustic signals as a
sequence of feature vectors that can be modeled with probability distribution
functions such as Gaussian mixture models (GMM) or by a neural network
(NN). These feature vector sequences can also be matched with reference feature
vectors, i.e. templates or exemplars, with a known label to identify the label
of the unknown speech segments. These statistical and data-driven models for
interpreting the unknown speech segments are called the acoustic models and
they are obtained by learning a sub-model for every speech unit that is expected
to appear in the target speech. The most common choices of a speech unit are
words for the recognition tasks with small vocabulary and phones for the tasks
with large vocabulary.

Based on the acoustic model, the recognizer creates a search space consisting of
the most probable phone/word strings (hypotheses) throughout the time. For
large vocabulary recognition tasks, the recognizer also takes a language model
into consideration during the search process in order to reduce the likelihood
of the strings that are very unlikely to appear in the target language. The
decoding algorithm identifies the single most likely hypothesis in the search
space in an efficient way. Alternatively, it can create a lattice as a compact
representation of the set of most likely hypotheses. In the following sections, we
briefly describe these blocks with a focus on the feature extraction and acoustic
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modeling which are relevant in the scope of this thesis. More information about
the language models and decoding blocks can be found in [82].

1.1.1 Feature extraction

The speech samples recorded by a microphone are processed by a pre-emphasis
filter to amplify the higher frequencies against the attenuation due to the lip
radiation. The pre-emphasized signal is segmented into overlapping frames
mostly containing a fixed number of speech samples. A typical frame duration
and a shift between two frames vary between 25-30 ms and 5-10 ms respectively.
Then, windowing is applied to each frame aiming to remove the spurious effects at
the frame boundaries and the windowed signal is transformed into the frequency
domain by applying the short-time Fourier transform (STFT). The magnitude
of the complex STFT coeflicients is referred to as the full-resolution spectral
representation of the input speech, also called a spectrogram. The final speech
features are extracted based on the spectrogram and it is common practice
to employ several dimension reduction and decorrelation steps to remove the
redundancy in the STFT features. These latter steps can also aim to project
the STFT features to another feature space where the different acoustic units
can be better discriminated.

In the scope of this thesis, the STFT coefficients are processed through
filterbanks with an overlapping triangular-shaped frequency response to reduce
the feature dimension and remove some of the speaker-dependent information
such as pitch. This step is also motivated by the frequency dispersion performed
by the basilar membrane in the human ear. The weighted sum of the STFT
coefficients using the triangular filterbanks mimics the limited spatial resolution
of the tonotopical coding by the basilar membrane. When the position and width
of the filterbanks adhere to the mel frequency scale, the resulting features are
called mel-scaled spectral features. It is also common to compress the magnitude
range of mel-scaled spectral features by taking the logarithm and applying the
discrete cosine transform (DCT) to decorrelate the features, resulting in the well-
known mel-frequency cepstral coefficients (MFCC) [27]. Additionally, cepstral
mean normalization (CMN) [7] is often applied to remove the effect of linear
filtering (with a short impulse response). The first- and second-order time
differences (often called derivatives) are concatenated to capture the inter-frame
variations. Instead of the DCT, discriminatively trained transformations are also
applied on the spectrogram, providing improved recognition performance. One
example is the mutual information discriminant analysis (MIDA) [31] training
which learns a transformation based on the mutual information criterion to
discover an optimal feature subspace using the training data.
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The extracted speech features O = [0, 0,, ..., oT] are used in the acoustic model
training and testing, i.e. recognizing unknown utterances by comparing them
with the learned models of each speech unit. The choice of the speech features
highly depends on the adopted acoustic modeling scheme. The techniques
with non-negativity and additivity requirements commonly use the mel-scaled
spectral features, while others benefit from the improved recognition accuracy

of the discriminatively trained features.

1.1.2 Acoustic modeling

The definition of the acoustic modeling becomes evident when the Bayesian
formulation of the speech recognition task is considered. An ASR system assigns
the probability P(W|O), i.e. all possible word sequences W = [w,,w,, ..., w, ]
given the speech features O representing the target speech signal. The word
sequence W with the highest probability is the recognizer output,

A

W = argmax P(W]O) (1.1)
W

The probability P(W|O) can be decomposed into two parts applying the Bayes’
rule as below,

A P(O|W)P(W)
W = _ 1.2
argvrvnax P(0) (1.2)
P(0O) can be omitted as it does not depend on W. This results in
W = arg max P(O|W)P(W) (1.3)
W

which formally defines the knowledge sources that are used in the ASR systems.
P(O|W) is the likelihood of the observed feature sequence O given the word
sequence W. This probability is associated with the acoustic model. The
acoustic model captures the information about the acoustic component of the
speech signal aiming to classify different acoustic units accurately. Specifically,
acoustic models include the reference representations of the speech units that
are expected to be observed in a recognition task and they are used to assign a
probability of an observed feature sequence being a phone/word sequence. We
assume that the recognizer performs word recognition throughout this thesis.
These words are described as a sequence of the speech units, e.g. phones, in a
previously defined lexicon and each speech unit has an acoustic model based on
the techniques/models described below.

P(W) is the prior probability of the word sequence W and this probability is
provided by the language model which is trained on a large written corpus of
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the target language. Hence, the language model only depends on the target
language unlike the acoustic model.

The main challenges of acoustic modeling are intra- and inter-speaker variability
and adverse environmental conditions. The undesired signals that lower the
intelligibility of the target speech signal are called the background noise. The
recognition accuracy of the ASR systems reduces considerably when an acoustic
model trained on noise-free or clean speech is used for recognizing speech signals
degraded with background noise. This is due to the mismatch between the
training and testing conditions. This mismatch has worse consequences in case
of non-stationary noise and numerous approaches have been proposed to cure
this problem in the literature. More details about these techniques are given in
Section 1.2.

The following sections briefly summarize the most prominent statistical and
data-driven models that have been used for acoustic modeling in the past. One
of the oldest pattern recognition approaches that has been applied to the ASR
problem is based on template or exemplar matching. Template matching is
performed by measuring the similarity between the test frame sequences and
the labeled training frame sequences. For this purpose, the dynamic time
warping (DTW) algorithm has been adopted to increase the robustness against
duration variation between the training and test utterances. In the earlier
years of ASR, the computational load required to perform this comparison for a
large vocabulary was a formidable task considering the available computational
power. This limitation of exemplar matching shifted the interest more towards
statistical approaches with compact representations. The hidden Markov models
(HMM) with GMMs became the standard acoustic modeling tools for three
decades due to their generalization capabilities and the development of efficient
training and recognition algorithms.

Sparse representations (SR) of speech is another influential data-driven
recognition approach which performs acoustic modeling based on fixed-length
training frame sequences with frame-level labels. SR-based techniques have
contributed to the noise robustness of automatic speech recognizers providing
large improvements in the recognition accuracy under noisy conditions. Finally,
the early interest in adopting artificial neural networks (ANN) in ASR systems
became computationally feasible only in the last decade and ANNs with
multiple layers, namely deep neural networks (DNN), are recently receiving
great attention and replacing the GMMs in HMM-based recognition systems as
they provide the best recognition results on large vocabulary ASR tasks as well
as in many other pattern recognition tasks.
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HMM

GMM

Figure 1.2: HMM models with GMM-based emission probabilities

Statistical acoustic models

1) GMM-HMM: The speech feature stream can be considered as a sequence
of the instantaneous spectral representations of speech evolving through time.
Figure 1.2 demonstrates how speech features can be generated using a left-to-
right HMM with a continuous emission (output) distribution. The generation of
various time series such as speech features can be modeled with an HMM which
comprises sub-HMM models for every speech unit. These sub-HMMs learn a
frame level representation of the target speech unit in two layers. The first layer
is a first-order Markov chain containing several hidden states Q = qq, q1, ..., q7-
This Markov chain is specified with a initial state probability distribution
®,=P(qo = ¢) and a transition matrix A;; = P(g41 = j|¢; = 7). The first-order
Markovian assumption implies that the probability P(q¢|qi—1,¢i—2,--,q1) =
P(q¢|gi—1), i-e. being in state ¢; at time ¢ depends only on the previous state
q:—1.- There are two types of transitions available in the left-to-right HMM
structure given in Figure 1.2. The first type is a self-loop in which the transition
starts and ends at the same state. The self-loop probabilities are given on the
main diagonal of the transition matrix A. This type of transition aims to handle
the temporal variation in speech, e.g. for slower utterances more self-loops are
picked and vice versa. The second type of transition is moving to the next state
which mostly implies a more drastic spectral variation between the current and
next frame compared to a self-loop.

The second layer is a discrete or continuous emission probability distribution,
each belonging to a state ¢;, to assign the emission probability b;(o;), i.e.
the probability of the observed frame o; being generated at state ¢;. In case
of a discrete density HMM (DDHMM), the observed frame sequences are
clustered and quantized so that each frame is marked with the cluster index.
Conventionally, continuous density HMMs (CDHMMs) are used with an emission
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probability distribution in the form of a GMM which can be expressed as

K
P;(0) :Zwik-/\/(();l"ikaaik) (1.4)
k=1

where N (Oj; p, o) is a multivariate Gaussian distribution with a mean vector p
and a covariance matrix o. The indices 7 and k mark the state and the Gaussian
distribution (mixture component) index and w;, is the contribution of the k™
Gaussian to the emission probability of the state ¢g;. K is the total number of
Gaussian distributions used in the GMM. For the sake of completeness, the
expression of a G-variate Gaussian distribution N'(O; u, o) with a diagonal o,
which is often used in ASR systems to reduce the computational complexity, is
given below.

N(O;u,a)zlexp<—z(o-"_“g)2>. (1.5)

2m) 11, o7 203,

Training an HMM for ASR requires labeled training data so that the emission
probability distributions for each speech unit can be trained accurately by
applying an HMM parameter estimation technique such as the expectation
maximization (EM) algorithm.

Applying the EM algorithm, the transition matrix A, the initial state
probabilities 7 and the emission probability distributions b; are learned. We
refer the reader to [133] for further details of the HMM training procedure.
Once the HMMs representing each speech unit are trained, it is possible to
compute the probability of following a particular state sequence Q given an
observed speech feature sequence O, P(Q|O).

A

Q = argmax P(Q|O) (1.6)
Q

2) DNN-HMM: Recent efforts have demonstrated that replacing GMMs with
DNNs in an HMM system yields large improvements in the recognition accuracy
[74,188]. The idea of combining NN with HMM dates back to 1980s [165].
However, limitations on the computational power and the amount of data
available for training the neural networks postponed the emergence of NN-
HMM systems until the 2010s. This breakthrough was further helped by
efficient pretraining algorithms [75] that avoid local extrema when estimating
the network weights. Currently, context-dependent (CD)-DNN-HMM ASR
systems [26], as depicted in Figure 1.3, are considered to be the state-of-the-art
and they are becoming the conventional back-end for multi-stream recognition
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Figure 1.3: HMM models with DNN-based emission probabilities

systems. These systems are based on a traditional multilayer perceptron with
an input layer, several hidden layers and an output layer.

We briefly summarize the mathematical background of CD-DNN-HMM systems
starting with a single neuron structure and extending it to the complete DNN
architecture. A single artificial neuron, which is the basic element of the
DNN structure, gets N input values v = [vg,v1,...,un]| with weights w =
[wo, w1, ...,wn] and a bias value b, processes all input values to obtain the
summation z and returns y as the output of a non-linear function f(z),

y=f(z) = f(wlv +b) (1.7)

To extend the model from a single artificial neuron to a layer of M neurons,
the weight vector w is converted into a weight matrix

wp,0 Wo,1  ccc Wo,N

wio0 W11t WL N
W = . . ) . . (1.8)

wpr,0 WM, ot WMN
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For a DNN with L hidden layers, the output of the (I — 1) layer with M;
neurons is the input of the {*" layer with M, neurons which is formulated as

vi = f(Wivi1 +by) (1.9)

where the dimensions of v;, Wy, v;_; and by are (M; x 1), (M; x M;_1),
(M;—1 x 1) and (M; x 1) respectively. My is the number of neurons in the input
layer which is equal to the dimension of the speech features. The non-linear
activation function f maps an M;_; vector to an M;_; vector and the most
popular choices for f are the sigmoid function, hyperbolic tangent function
and rectified linear units. The output layer has to be handled more carefully
depending on the application. Assuming that the L + 1" layer is the output
layer, the activation function applied at the output layer is the softmax function
in order to get output values in the range [0, 1] for the HMM state posterior
probabilities,
L
Vi1 = P(gilo) = (1.10)

My 1

m
e’L

m=1

where My is equal to the number of HMM states.

The training of DNN-HMM systems is summarized in [26, 188] and achieved
in three main stages. Firstly, a GMM-HMM setup is trained to obtain the
structure of the DNN-HMM model, initial HMM transition probabilities and
training labels of the DNNs. Then, the pretraining algorithm is applied to
obtain a robust initialization for the DNN model. Finally, the back-propagation
algorithm [69] is applied to train the DNN that will be used as the emission
distribution of the HMM states. However, this procedure is not standardized
yet, as alternative training techniques for DNN-HMM recognition systems are
still intensively researched [35,140,148,190,191].

Data-driven acoustic models

1) Ezemplar Matching: Exemplar or template matching is a rather straight-
forward and intuitive approach to tackle any pattern recognition problem in
which the unknown feature vectors are compared with some reference patterns
of every available class. These reference patterns are often called templates or
exemplars in the literature. The acoustic model in an exemplar matching-based
system contains a large collection of exemplars from each speech unit and this
collection is expected to handle any kind of variation in the speech signals.
Applying time warping, the exemplar matching scores become more robust to
temporal variations. Therefore, it is common practice in these systems to apply
DTW with certain conditions to be able to find the optimal match between two
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Figure 1.4: Hlustration of Exemplar-based Sparse Representations of Speech

sequences of different duration. In [145], the authors define a warping function
to restrict the unrealistic mappings between the time indices of the sequences by
proposing an adjustment window. Hence, the warping is performed only within
a window limiting the amount of stalling and skipping frames. More conditions
were also set to define the behavior at the first and last frames and to avoid
moving backwards in time. The recognition is performed by calculating the
acoustic scores between the test utterance and exemplars taking these conditions
into account. In the final phase, the decoder searches for the optimal exemplar
sequence with the minimum reconstruction error.

This approach had to be abandoned in the early days of ASR, as the
computational and memory requirements were too large for the computers used
some decades ago. The computational bottleneck is the acoustic score calculation
between every exemplar and the sub-segments of the target utterance and the
search for the best matching exemplar sequence in a huge network of possible
hypotheses. Thanks to the enormous leap in the computational power and
development of fast exemplar matching algorithms, exemplar matching-based
ASR techniques became popular again recently [2,29]. However, application
of the exemplar matching on large vocabulary recognition tasks is still very
computationally demanding even using the most efficient exemplar selection
and matching techniques on powerful processors with multiple cores.

2) Sparse Representations: Another exemplar-based recognition scheme, namely
sparse representations, uses fixed-length training frame sequences with frame-
level labels which are also called atoms to linearly approximate test utterances
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as a linear combination of a few atoms as shown in Figure 1.4. The atoms
are organized in a dictionary and noise robust recognition can be achieved
by including atoms that contain background noise only. Hence, the SR-based
system actually performs source separation on the noisy speech features by
finding a few speech and noise atoms that can explain the speech and noise
component in the noisy mixture. A weighted sum of these exemplars is obtained
by solving a convex optimization problem with a cost function including the
reconstruction error and a sparsity inducing term to avoid overfitting. The non-
negative exemplar weights or activations are found by applying a multiplicative
update rule that minimizes the cost function.

The mathematical formulation of the exemplar-based sparse representations of
speech is as follows. Mel-scaled magnitude spectral features representing speech
and noise exemplars of size D x L, where D is the number of mel bands and L
is the number of frames, are extracted from the training data. Each speech and
noise exemplar is reshaped into a vector and stacked in the column of the speech
dictionary S and noise dictionary N respectively. To be able to model noisy
speech, the speech and noise dictionaries are concatenated to form the combined
dictionary A =[S N] of size D - L x N where N is the number of total speech
and noise exemplars. Fixed-length segments of L frames are also extracted
from a noisy utterance of T frames by applying a sliding window approach [50]
and the noisy segments are reshaped into a vector to form observation matrix
Y = [yhy? .y Lyt of size (D - L) x (T — L+ 1). An observation
vector y! is expressed as a linear combination of the exemplars in the combined
dictionary,

N
yl~ Zanxn = Ax. (1.11)
n=1

Here, x is the N-dimensional non-negative exemplar weight vector. The
exemplar weights are obtained by minimizing the cost function

N
d(y', Ax) + Zmnx\n (1.12)
n=1

where A is the N-dimensional non-negative vector. The first term of the cost
function is the reconstruction error between the observation vector and its
approximation. The second term enforces sparsity by penalizing the nonzero
elements of the exemplar weight vector x. The amount of sparsity can be
adjusted by assigning different values to the elements of A. The most commonly
used divergence measure used in this context is the generalized Kullback-Leibler
divergence (KLD) as it provided impressive source separation, enhancement
and noise robust recognition performance on speech signals. The generalized
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KLD is defined as

K
d(y.¥) :Zyklog% = Yk + G- (1.13)
k=1

The aforementioned cost function is minimized by iteratively applying the
multiplicative update rule

x + x0 (AT (y; @ (Ax))) @ (AT1 + A) (1.14)

with ® and @ denoting element-wise multiplication and division respectively. 1
is a (D - I)-dimensional vector with all elements equal to unity.

The recognition can be achieved after obtaining the exemplar weights by
adopting several different techniques at the back-end. The first technique,
sparse classification, infers state likelihood estimates for an HMM system and
performs a modified Viterbi decoding to find the most likely state sequence.
The feature enhancement approach reconstructs the speech component using
the speech exemplars and their weights and recognizes the enhanced features
using the conventional GMM-HMM recognizer trained either on original or
enhanced training data. The latter acoustic models are referred to as the
retrained acoustic models. Finally, sparse imputation has been proposed to
estimate the reliable time-frequency cells from the reconstructed speech and
noise components. The recognition is performed only based on the reliable
regions of the spectral features.

1.1.3 Language modeling

The language model assigns a probability to word sequences, P(W), based
on their likelihood to appear in the target language. By using a language
model, the speech recognizer also imposes the linguistic information during the
search space creation and decoding. This results in a recognition output that
is found not only based on the acoustic information, but also the grammar
of the target language. There are plenty of deterministic and probabilistic
language models proposed in the literature [82]. The deterministic language
models such as context-free grammars are mostly used for small vocabulary
recognition tasks. For large vocabulary continuous speech recognition (LVCSR),
the probabilistic language models are adopted, most commonly in the form of an
N-gram model. These models are trained on very large written corpora of the
target language to infer the some statistics of the target language. According to
these statistics, they assign a probability to every possible word based on the
context information. In other words, these models aim to predict the following
word based on the context, i.e. the preceding words.
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For a word sequence W = [w
given as

1> Wy, -, Wy |, the probability of observing W is

L
P(W) = HP(wl\wl,wQ, ey Wi—1). (1.15)
1=1
An N-gram model concentrates only on the previous N-1 words. Due to this

assumption, P(W) is rewritten using a limited context compared to Equation

1.15,
L

P(W) ~ [ P(wilwi-ni1,wi-nya, o wia). (1.16)
=1

In real world applications, N is typically set to N < 3 to limit the complexity.
The maximum likelihood estimation of the N-gram probabilities is obtained
simply by normalizing the occurrence counts of each context appearing in the
written corpus,

Cnt(wl7N+17 wl*N+27 ey, Wp—1, wl)
Cnt(Wi— N1, Wi—N425 s Wi—1)

P(w|wi— N1, Wi— N2, ooy Wi—1) =

(1.17)
However, the probabilities obtained for many contexts are either equal to zero
or unreliable due to lack of occurrences in the corpus. Several back-off and
smoothing techniques have been proposed to cope with these problems [18,93,99].

1.1.4 Decoding

The decoding of the speech signal involves finding the most likely word sequence
considering all the available resources. Various search techniques have been
proposed to find the recognition output in an efficient manner, e.g. in [8,82,102,
124,131]. One popular way of implementing this kind of search is to combine
the scores of different models by representing each resource in the form of a
finite state transducer (FST) and combining these FSTs to find the ultimate
network of possible hypotheses that are allowed by all these resources [66,120].
Some pruning can also be applied to keep the network of possible hypotheses
at a tractable level. The composed FST is searched for the word sequence W
that has the highest combined score which is formulated in Equation 1.3. The
most likely state sequence Q that best explains the observed feature sequence
O can be found by applying the Viterbi algorithm [43,177] and the speech units
associated with the most likely states yield the recognizer output.

For exemplar matching systems, the search problem can be visualized as a three-
dimensional grid search over grid points (x,y, z) which are defined by the time
frame index x of the observation, time frame index y of the exemplars and the
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(a) clean (b) noisy

Figure 1.5: Comparison of clean and noise speech features

associated speech unit (class) index z [128]. The exemplar sequence yielding the
minimum reconstruction error is obtained by applying dynamic programming
and the labels of exemplars in this sequence constitute the recognition output.

1.2 Noise Robustness in ASR systems

ASR systems, which are trained under quiet conditions and perform well under
similar conditions, provide worse performance when recognizing the target
utterances corrupted by background noise. This mismatch between the training
and testing conditions has a serious impact on the recognition accuracy due
to the severe variations in the spectrotemporal structure of the target speech.
As a result, the acoustic models trained on the speech features obtained under
noise-free conditions cannot model the noisy speech features. The difference
between the mel-scaled magnitude spectral features of clean and noisy speech is
clearly visible in Figure 1.5. The most detrimental effect is due to the fact that
noise power spreads over the spectrogram blurring the formant structure and
power distribution among frequencies that are intrinsic to clean speech signals.

Based on how it corrupts the clean speech signal in time domain, the background
noise can be classified as additive or convolutional noise. Robustness against
both kinds of background noise is investigated in this thesis. A special case of
convolutional noise, where the room impulse response is much larger than the
frame length, is referred to as reverberation which is defined as the persistence
of the speech signal in an enclosed acoustic space due to the echoes reflecting
from the boundaries. A reverberated speech signal is modeled as the convolution
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of the clean speech signal with the room impulse response modeling the decay
in the acoustic energy.

The severity of the background noise is commonly quantified by the ratio of
the speech signal power and background noise power on a logarithmic scale.
This measure is called the signal-to-noise ratio (SNR) and the recognition
performance of the proposed recognition scheme will be provided at several
SNR values throughout the thesis.

In the rest of the section, the literature on noise robust automatic speech
recognition techniques will be revised and the novel approach that is described
in this thesis will be introduced. Due to the extensive amount of research efforts
in this field, we are only able to touch upon the most prominent noise robustness
techniques in the next section. A more elaborate treatment is available in a
recently published review paper on noise robust ASR systems [107]. The
approaches proposed for improved noise robustness of the ASR systems can
be classified into five main categories which are listed and briefly summarized
below.

e Multicondition training: In this approach, acoustic model training is
not only performed on clean speech data, but also on some noisy samples so
that the acoustic models can handle similar noisy testing conditions [109].
In this manner, the mismatch between the training and testing conditions
is aimed to be reduced. This method is quite effective under similar
training and testing conditions with a drawback of a high computational
cost. It is highly sensitive to the differences in the training and testing
noise conditions which results in a limited discriminative power of the
multicondition trained acoustic models even in case of large multicondition
training data. Moreover, dynamic noise modeling is not a feasible task in
this scenario as it implies the retraining of the acoustic models.

e Robust Speech Features: These approaches focus on noise robust
speech feature extraction schemes that reduce the adverse effects of the
noise on the recognition performance without modifying the acoustic
models. Some of these feature extraction schemes are based on the human
auditory system which is known to be quite robust against environmental
noise. Others normalize various statistical properties for improved noise
robustness. Several robust speech processing techniques including MFCC,
perceptual linear prediction (PLP) coefficients, relative spectra (RASTA)
and modulation spectrogram (MS) features are described in [12,41,67, 68,
71,72,87,96,98,168,180].

e Feature or Speech Enhancement: The recognition performance of
the ASR systems can be considerably improved by (partly) removing
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the background noise either in the signal or the feature domain. For
this purpose, any speech enhancement technique can be adopted in the
front-end and the enhanced signal/features can be recognized using the
acoustic models trained on clean speech. Moreover, retraining the acoustic
models is also common practice to compensate for the artifacts introduced
by the denoising in the front-end, hence, better modeling of the enhanced
speech. Some examples of feature and speech enhancement-based noise
robust ASR systems are described in [6,32,54,73,81,104,110,121,122,156].

Model Compensation: In the scope of model compensation approaches,
the acoustic models are modified or extended to incorporate information
about the noise sources degrading the target speech signal. Techniques
such as maximum a posteriori (MAP), maximum likelihood linear
regression (MLLR) and their variants can be used to adapt to new noise
or environment [45,47,103,146,150]. In addition to these techniques, some
other well-known approaches, namely parallel model combination, HMM
decomposition, joint compensation of additive and convolutive distortions
have been effective in noise modeling despite their high computational
requirements [46,60,171].

Missing Data Theory and Uncertainty Techniques: Missing data
techniques estimate a time-frequency mask identifying the reliable and
unreliable regions of the spectrogram evaluating the SNR values per time-
frequency cell and perform recognition only based on the reliable regions
in which the speech component dominates the background noise. There
are several techniques proposed for processing the unreliable cells such
as marginalization which simply integrates out the unreliable data and
imputation which estimates the missing parts based on a probabilistic
model conditioned on the reliable parts.

Compared to the binary labeling of the missing data techniques, soft
and continuous weighting of the frequency-time cells has been adopted in
uncertainty decoding approaches. These approaches aim to integrate the
uncertainty model learned in the front-end into the decoding performed
by the back-end. Several examples of these techniques can be found
in [24,25,39,83,100,108,136,137,155,170]

1.3 Objectives

The main objective of this thesis is to investigate the feasibility of obtaining a

noise robust exemplar matching (N-REM) system by combining the two data-
driven acoustic modeling approaches described in Section 1.1.2. This can be
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achieved by replacing the labeled exemplars of the traditional approach with the
exemplars of the sparse representations. This will create an exemplar matching
technique that is intrinsically noise robust. The first exemplar technique,
exemplar matching, performs traditional pattern matching based on a score
that expresses resemblance of incoming speech and exemplars. The second
technique, sparse representations, will model the speech as well as the noise as
a linear combination of exemplars. Hence, both speech and noise are modeled
as exemplars which would not be the case if we were to compensate the speech
exemplars with traditional noise robustness techniques such as parallel model
compensation [46].

There are some important differences between the two exemplar-based
approaches. A first difference is that exemplar matching uses dynamic time
warping to accommodate temporal differences between incoming speech and the
exemplars, while the sparse representations framework does not support time
warping. Still, we attempt to apply the exemplar-based noise modeling of the
sparse representations approach with a compositional model to the traditional
exemplar matching. This is performed by linearly combining the exemplars
associated with the same speech unit and of the same length. In this new
model, noise modeling can be explicitly achieved by including noise exemplars
together with the speech exemplars. A first goal is to evaluate if the sparse
representation formulation which combines exemplars of multiple length can
work without DTW. As an alternative, we aim to develop an extension of the
sparse compositional model which allows time warping in the proposed N-REM
framework.

A second important difference between the two exemplar-based systems is
the dissimilarity measure they use to select the best matching exemplars.
Traditionally, exemplar matching uses the Euclidean distance or Mahalanobis
distance on log-compressed features such as cepstra. The sparse compositional
framework mostly uses the generalized Kullback-Leibler divergence on magnitude
spectra. A second goal is to investigate which dissimilarity measure to use
in the combined framework. For this purpose, we investigate a more flexible
divergence family for comparing the noisy speech features with exemplars to
find out the impact of the used metric on the recognition accuracy.

A third objective is to investigate several exemplar selection criteria to construct
compact speech dictionaries for reduced computational requirements. A fourth
objective is to develop an effective and efficient way of designing noise dictionaries
for improved noise robustness rather than rudimentary techniques such as
random noise exemplar extraction. Finally, the speech enhancement performance
of the proposed scheme is explored and the results are compared with other
exemplar-based approaches.
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To be able to observe how well the proposed framework performs under different
noise conditions, we use two popular small vocabulary databases, namely the
AURORA-2 and the small vocabulary track of the second CHIME Challenge.
The AURORA-2 database contains additive noise of different types to assess the
recognition performance for matched and mismatched training-testing conditions.
The other database contains a more challenging noise type with less stationary
characteristics combined with a mild degree of reverberation.

1.4 Thesis Overview

This section gives a short overview of the chapters contained in this thesis
which introduces a novel noise robust automatic speech recognition scheme by
introducing noise modeling capabilities to exemplar matching-based acoustic
modeling. This is achieved by combining exemplar-based sparse representations
and exemplar matching. More specifically, exemplars associated with speech
units that are used in exemplar matching-based acoustic modeling are used in
a conventional exemplar-based sparse representations formulation. As a result
of the multiple-length exemplars, the proposed recognizer uses multiple speech
dictionaries, each containing exemplars associated with the same speech unit
and of the same duration.

The inherent noise modeling problem of exemplar matching-based techniques
originates due to the intractable task of evaluating all possible alignments of
speech and noise exemplars to be able to perform source separation. In other
words, it is not possible to discover the speech and noise components of a noisy
mixture by comparing with individual speech and noise exemplars due to the
enormous number of possible alignments. In our approach, we remedy this
problem by approximating noisy speech features as a linear combination of
speech and noise exemplars of all available exemplar lengths. This additivity is
a reasonable approximation if signals are represented as mel-scaled magnitude
spectral features. The decoding is performed based on the reconstruction errors
of each dictionary similar to the traditional exemplar matching.

The initial investigation of the proposed exemplar matching system focuses on
clean speech recognition by only using speech exemplars and comparing the test
segments and exemplars of the same length. These experiments will establish
the basics of the proposed exemplar matching using a sparse representation
model. Then, we further investigate a model that can accommodate time
warping in the new proposed setting and evaluate the clean speech performance
of the system with time warping. Finally, various exemplar selection criteria
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have been proposed for the undercomplete speech dictionaries and the decrease
in the recognition accuracy with increasing pruning rate will be explored.

The noise robust exemplar matching concept will be introduced after clean speech
experiments with a focus on the adaptive noise exemplar extraction technique.
This adaptive noise modeling approach considerably increases the recognition
performance of the proposed approach especially under severe noise conditions.
In addition to this technique, we look into the recognition performance by
adopting a more flexible divergence family, namely alpha-beta (AB) divergence,
in place of the conventional generalized Kullback Leibler divergence. Having
two parameters, the AB divergence provides improved robustness against the
background noise.

In the last part of thesis, the speech enhancement performance of the proposed
framework will be investigated by comparing the noise suppression performance
with other baseline enhancement systems. In addition to these experiments, the
novel speech enhancement system is employed in the front-end of a conventional
GMM-HMM recognition system to evaluate the impact of the front-end denoising
on the recognition performance. A general discussion, a list of the original
contributions and directions for future research conclude this thesis. A brief
summary of each chapter is provided below.

e Chapter 2: The procedure to combine exemplar matching and exemplar-
based sparse representation approaches is described in this chapter. The
recognition performance of the combined system is compared with a simple
exemplar matching recognizer which uses discriminatively trained features
and classifies the test segments as the label of the closest exemplar with
respect to the Euclidean distance.

This chapter is adapted from: Emre Yilmaz, Dirk Van Compernolle and
Hugo Van hamme, “Combining Exemplar-based Matching and Exemplar-
based Sparse Representations of Speech”, In Symposium on Machine
Learning in Speech and Language Processing (MLSLP), Portland, USA,
September 2012.

e Chapter 3: This chapter describes a new sparse representation model
that allows time warping as an extension to the combined system. Even
though the new model with time warping has an increased computational
complexity, the initial results have shown the feasibility of the approach.

This chapter is adapted from: Emre Yilmaz, Jort F. Gemmeke and
Hugo Van hamme, “Embedding Time Warping in Exemplar-based Sparse
Representations of Speech”, In Proc. IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), pages 8076-8080,
Vancouver, Canada, May 2013.
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e Chapter 4: Numerous speech exemplar selection criteria have been

proposed and the pruned dictionaries are used for clean speech recognition
to assess the quality of the chosen exemplars in terms of the recognition
performance. The results have shown that up to 70% of the exemplars
can be discarded without a significant loss in the recognition accuracy.

This chapter is adapted from: Emre Yilmaz, Jort F. Gemmeke and Hugo
Van hamme, “ Fxemplar Selection Techniques for Sparse Representations
of Speech Using Multiple Dictionaries”, In 21st European Signal Processing
Conference (EUSIPCO), pages 1-5, Marrakesh, Morocco, Sept. 2013.

Chapter 5: Noise robustness of the proposed model with an adaptive
noise dictionary design technique is thoroughly investigated on two popular
databases. The results demonstrate the effectiveness of the noise robust
exemplar matching framework on small vocabulary ASR tasks.

This chapter is adapted from: Emre Yilmaz, Jort F. Gemmeke and
Hugo Van hamme, “Noise Robust Exemplar Matching Using Sparse
Representations of Speech”, IEEE/ACM Transactions on Audio, Speech,
and Language Processing, volume 22, No. 8, pages 1306-1319, Aug. 2014.

Chapter 6: The adaptive noise modeling scheme has been investigated
in detail by looking for the optimal design parameters to find a trade-off
between the computational complexity and the noise robustness. Using
the optimal parameters boosts the recognition performance without a
noticeable increase in the computational burden.

This chapter is adapted from: Emre Yilmaz, Jort F. Gemmeke and
Hugo Van hamme, “Adaptive Noise Dictionary Design for Noise Robust
Exemplar Matching of Speech”, Submitted to EUSIPCO 2015.

Chapter 7: The alpha-beta divergence has been used to learn the noisy
speech approximation and calculate the reconstruction errors used at the
back-end. Adjusting the parameters yields improved noise robustness and
an elaborate discussion is given on the divergence parameter choice.

This chapter is adapted from: Emre Yilmaz, Jort F. Gemmeke and
Hugo Van hamme, “Noise Robust Exemplar Matching with Alpha-Beta
Divergence”, Submitted to Speech Communication, 2015.

Chapter 8: The speech dictionary design issue is revisited taking the
novel divergence measure into account. The best performing criterion of
the previous work and a novel k-medoids technique using the alpha-beta
divergence is compared with random selection and a baseline exemplar
technique performing well for previous sparse representations techniques.
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This chapter is adapted from: Emre Yilmaz, Jort F. Gemmeke and
Hugo Van hamme, “Data Selection for Noise Robust Exemplar Matching”,
Submitted to INTERSPEECH 2015.

e Chapter 9: The noise robust exemplar matching framework is used as a
single-channel speech enhancement technique and the enhancement quality
is compared with other speech enhancement techniques. The proposed
enhancement system provides superior performance with respect to several
quality metrics.

This chapter is adapted from: Emre Yilmaz, Deepak Baby and Hugo Van
hamme, “Noise Robust Exemplar Matching with Coupled Dictionaries for
Single-Channel Speech Enhancement”, Submitted to EUSIPCO 2015.

e Chapter 10: The final chapter discusses the application of the
novel single-channel speech enhancement technique to automatic speech
recognition. In practice, the enhancement system is used at the front-
end to reduce the amount of degradation due to the background noise.
The recognition results of this speech enhancement-based technique are
compared with other state-of-the-art noise robust systems.

This chapter is adapted from: Emre Yilmaz, Deepak Baby and
Hugo Van hamme, “Noise Robust Ezemplar Matching for Speech
Enhancement: Applications to Automatic Speech Recognition”, Submitted
to INTERSPEECH 2015.

e Chapter 11: This chapter concludes the thesis by listing the original
contributions and directions for future research.






Chapter 2

Combining Exemplar
Matching and Sparse
Representations

In this chapter, we compare two different frameworks for exemplar-based speech
recognition and propose a combined system that approximates the input speech
as a linear combination of exemplars of variable length. This approach allows us
not only to use multiple length exemplars, each representing a certain speech unit,
but also to jointly approximate input speech segments using several exemplars.
While such an approach is able to model noisy speech, it also enforces a feature
representation in which additivity of the effect of signal sources holds. This
is observed to limit the recognition accuracy compared to e.g. discriminatively
trained representations. We investigate the system performance starting from a
baseline single-neighbor exemplar matching system using discriminative features
to the proposed combined system to identify the main reasons of recognition
errors. Fuven though the proposed approach has a lower recognition accuracy
than the baseline, it significantly outperforms the intermediate systems using
comparable features.

This chapter is adapted from: Emre Yilmaz, Dirk Van Compernolle and Hugo
Van hamme, “Combining Fxemplar-based Matching and Exemplar-based Sparse
Representations of Speech”, In Symposium on Machine Learning in Speech and
Language Processing (MLSLP), Portland, USA, September 2012.
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2.1 Introduction

Exemplar-based (or template-based) speech recognition recently regained
popularity due to the significant increase in computational power and
development of fast template matching and search algorithms [30]. Several
hybrid recognition systems combining this approach with hidden Markov models
(HMMs) are also proposed [1,9]. Exemplars are labeled speech segments such
as phones or syllables, possibly of different length, that have occurred in the
training data and they are matched with the input speech segments using
dynamic time warping (DTW). We refer to this approach as exzemplar matching.
This approach allows to use any choice of frame-synchronous feature vector to
represent the input speech and the exemplars. For instance, in [30], motivated
by a better recognition accuracy, a mutual information based discriminant
analysis (MIDA [31]) is applied to log-spectral data.

One can simply classify the segment as the label of the closest exemplar, or by
a voting scheme on the set of K nearest neighbors [30,57]. Applying exemplar
matching under noisy conditions creates mismatch problems similar to what is
experienced with HMMs. One can resort to feature compensation methods to
increase the robustness to noise [59]. Model compensation techniques would
require all exemplars to be modified, which is a formidable task in the case of
non-stationary noise. Since the search problem in exemplar-based recognition is
a lot more involved than in HMM-based recognition, the equivalent of factorial
models is also not a trivial path to walk. Finally, multi-condition training, i.e.
storing noisy exemplars, will increase the number of exemplars dramatically.
Furthermore, noisy exemplars can only capture a certain instance of speech and
noise resulting in a limited noise modeling especially in case of non-stationary
noise.

More recently, exemplar-based sparse representations have been used successfully
for clean [48,142] and noisy [49, 84, 162] speech recognition. This technique
models input speech segments as a sparse linear combination of fixed-length
exemplars. These exemplars are represented in the linear magnitude spectral
domain to ensure additivity. By combining speech and noise exemplars linearly,
it explicitly models the noisy speech. Because exemplars are combined linearly,
they need to be of the same length, unlike in exemplar matching, and cannot
model our choice of speech segments (phones, syllables, ...). The exemplars
can therefore not serve directly as an acoustic model, so sparse representations
have been used for speech enhancement, a model of state likelihoods (sparse
classification) or to generate a mask in a missing data recognition framework.

In this chapter, we elaborate on the differences between the DTW and sparse
representation exemplar techniques and propose a procedure to combine them.
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This results in a basic exemplar matching recognizer having the advantage of
using long exemplars of variable length in a sparse representation formulation.
The main motivation is to establish a new framework that allows noise modeling
for exemplar matching based recognition systems. This task involves both
the selection of the appropriate representation domain of speech and the
distance/divergence measure used for comparing the input speech segments
with exemplars. Most exemplar matching techniques make use of state-of-the-
art features with high discriminative power among the classes to lower the
recognition errors [30,57]. However, as additivity and non-negativity properties
are required for linearly combining exemplars, mel-scaled magnitude and power
spectra can be used to represent speech in the proposed approach. The Euclidean
distance used in exemplar matching has to be replaced by e.g. the generalized
Kullback-Leibler divergence. This study focuses on the price that needs to
be paid in terms of the accuracy on clean data for these modifications. An
analysis of the resulting noise robustness is the topic of other work currently
under review.

The rest of the chapter is organized as follows. Section 2.2 explains exemplar
matching based recognition, exemplar-based sparse representations of speech
and the combined system. The experimental setup is discussed in Section 2.3.
Section 2.4 presents the results. The conclusions are discussed in Section 2.5.

2.2 Exemplar-based recognition systems

2.2.1 Exemplar-matching

This technique compares the input speech segments with labeled exemplars, each
representing a certain class. The exemplars are collected from a large corpus
that is segmented in terms of the desired classes. The segments will have variable
lengths, so the natural duration distribution of each class in the training corpus
is preserved. Input speech and exemplars are represented using state-of-the-art
speech features in order to maximize recognition accuracy. Recognition then
consists of finding the sequence of exemplars that best matches the input subject
to lexical and grammatical segment concatenation constraints. The quality of a
match is measured by a metric (e.g. Euclidean distance) that expresses how
well the exemplars reconstruct the data. Additional constraints are imposed.
Each exemplar is tagged with meta-information such as speaker characteristics
(e.g. gender, age) or prosodic information (e.g. speaking rate, position in the
sentence). This information is used during decoding to penalize inconsistent
exemplar sequences (e.g. mixed gender) with various concatenation costs. In
the present work, only two types of concatenation costs are considered, namely
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exemplar startup costs and gender costs. Exemplar startup costs penalize
longer exemplar sequences and control the insertion/deletion rate. Gender costs
penalize mixed gender exemplar sequences, a constraint which has been shown
to improve the recognition accuracy [30]. Finally, in earlier exemplar matching
work, strict matches across the time dimension were relaxed using DTW. In this
work, time warping is not applied for three reasons. Firstly, it would complicate
the distance calculation. Secondly, in noisy conditions, too much freedom in
time warping may lead to unrealistic warping, so duration constraints are more
important than in clean conditions. The same effect has been observed in HMM
systems [101]. Thirdly, in the combined system described in Section 2.2.3, the
linear combination of exemplars with different internal time warping will relax
the requirement for strict matching along the time axis.

2.2.2 Sparse Combinations of Exemplars

The exemplar-based sparse representations approach models the input speech
as a linear combination of several speech exemplars [48]. The input speech and
exemplars are represented in the linear mel-scaled spectral domain in order to
ensure additivity of exemplars. In this framework, exemplars are fixed-length
speech segments randomly extracted from the training corpus and may be
associated with more than one class. Labeling is performed probabilistically
using a conventional HMM-based recognizer either at the word or state level.

Exemplars consisting of L frames are reshaped as a single column vector and
collected in a single dictionary S of dimensionality DL x N where D is the
number of frequency bands and N is the number of available exemplars. A
reshaped input speech vector y, of length L is expressed as a linear combination
of the exemplars with non-negative weights:

N
YL & Z TnSm = Sx s.t. T >0 (2.1)

where x is an N-dimensional sparse weight vector. Sparsity of the weight vector
implies that the input speech is approximated by a small number of exemplars.
The exemplar weights are obtained by minimizing the cost function,

N
d(yr,Sx) + Z T, s.t. Tm >0 (2.2)

m=1

where A is an N-dimensional vector. The first term is the divergence between
the input speech vector and its approximation. A regularization term is added
in order to limit the /1-norm of the weight vector. Here, A controls how sparse
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the resulting vector x is. The generalized Kullback-Leibler divergence (KLD) is
used for d:

K
-~ Yk .
d(y,9) =Y yrlog = — y + G (2.3)
k=1 Yk
which is commonly used in source separation problems and shown to produce

better results than Euclidean distance when used with linear mel-scaled spectra
[174].

The regularized convex optimization problem can be solved using various
methods including LASSO and non-negative sparse coding (NSC). For NSC,
the multiplicative update rule to minimize the cost function (2.2) is derived
in [50] and found as

x « x0 (ST(yL @ (Sx))) @ (ST1 + A) (2.4)

with ® and @ denoting element-wise multiplication and division respectively. 1
is a D L-dimensional vector with all elements equal to one. Applying this update
rule iteratively, the weight vector becomes sparse and the reconstruction error
between the input speech vector and its approximation decreases monotonically.

In order to decode the input speech, a window of length L is slid over the
input speech with a constant frame shift and the weight vector for each window
is obtained. Then, using a label matrix containing the word or state based
labels for each exemplar, the HMM likelihood scores are calculated. Finally, a
modified Viterbi algorithm is applied to find the most likely class sequence.

2.2.3 Combined System

The combined system aims to benefit from the advantages of the two frameworks
explained in the previous sections. It is an exemplar matching approach in the
sense that it explains the input as the sequence of classes leading to a minimal
reconstruction error, each class being represented by exemplars of variable
length. The reconstruction error is however measured by the sparse combination
model in the linear spectral domain, which has the advantage of easily modeling
noisy speech by adding noise exemplars. The exemplars are thus organized in
multiple dictionaries S.;: one for each class ¢ and each length [ as shown in
Figure 2.1. Each dictionary is of dimensionality DI x N,; where N, is the
number of available exemplars of length [ and class c. Using separate dictionaries
for different classes is expected to provide better classification than using a
single dictionary as every input segment is guaranteed to be approximated by a
combination of exemplars belonging to the same class only.
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Figure 2.1: Exemplars are organized in multiple dictionaries S.; for each class
c and each length .

For any class ¢, a reshaped input speech vector y; of length [ is expressed as a
linear combination of the exemplars with non-negative weights:

N,
Yy~ Z TSy = SciXel s.t. e >0 (2.5)

m=1

where X is an N, ;-dimensional sparse weight vector. The class and length
dependent weight vectors are obtained by applying the multiplicative update
rule in Equation (2.4) for each dictionary. The reconstruction error between a
class ¢ and an input speech segment of length [ can be calculated using Equation
(2.3). It satisfies the conditions to apply dynamic programming, hence the class
sequence that best matches the input speech can be simply found.

The input speech is decoded similar to the exemplar matching based recognizer.
Every input frame sequence of each available exemplar length is approximated
as a linear combination of exemplars by iteratively applying the update formula.
For each class and exemplar length, the approximation is performed separately
using the dictionaries. After a certain number of iterations, the reconstruction
error is calculated using Equation (2.3). As every dictionary contains exemplars
with known labels, the entire input utterance is searched to find the class
sequence yielding the minimum reconstruction error.
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A known problem of sparse representation approaches working on magnitude
spectra is that the silence exemplars are not recognized [50]. This is due to
the fact that silence is well-approximated by combining speech exemplars with
small weights, so all classes will score equally well. To overcome this problem,
reconstruction errors for the class representing silence have to be compensated.
This is achieved by reducing the reconstruction errors corresponding to silence
dictionaries by a compensation factor CF depending on the voice activity value
assigned to the middle frame of the corresponding input speech segment and
the reconstruction error itself,

CF =C- d(yl7 Ssil’lxsiu) . VAD (26)

where C' is a scale factor and V AD is the voice activity estimate (0 for speech, 1
for silence). The V AD value can either be obtained from an autonomous module
implementing a preferred method from the vast literature on the topic, or it can
be estimated using the exemplar weights x. ;. In this work, an energy-based
VAD is used. It should be noted that including the reconstruction error itself
in Equation (2.6) compensates for length differences.

2.3 Experimental Setup

2.3.1 Data, Preprocessing and Features

We have conducted recognition experiments on the 4 clean test sets of the
AURORA-2 database [77]. To reduce simulation time, we subsampled each
test set by a factor of 4, bringing the total number of utterances to 1001. For
feature extraction, a 17 channel Mel-scaled filter bank with triangular magnitude
response is computed from a spectral analysis with a window length of 32 ms
and a frame shift of 10 ms. The first channel is centered at 200 Hz and the last
at 3030 Hz. Channel normalization of the magnitude spectrum is achieved by
transforming it to the log-domain, applying mean normalization and moving
back to the linear domain. The exemplar matching baseline uses MIDA features,
i.e. a discriminatively trained linear transform of the mean-normalized log-power
spectra and its first and second order differences (a total of 3 x 17 = 51 features)
resulting in 32-dimensional feature vectors.

2.3.2 Exemplar Matching

The exemplars used in both the exemplar matching and in the combined system
are half-digits which are extracted from the clean training set and segmented
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by a conventional HMM-based system. As argued before, the design strives
for long units. Full digits turned out to be too long for matching without
DTW resulting in a high error rate. With half-digits the exemplars seemed
to generalize sufficiently to unseen data resulting in an acceptable baseline
(see below). This results in 49,354 exemplars belonging to 22 half-digit classes
and 14,418 silence exemplars (in total 63,772 exemplars). The minimum and
maximum exemplar lengths are 5 and 30 frames respectively. Exemplars longer
than 30 frames are omitted to limit the number of dictionaries that are to be
used in the further steps of the experiment.

Speech segments are classified as their single closest neighboring exemplar (1-
NN). The exemplar startup and gender costs are tuned manually for maximal
recognition accuracy.

2.3.3 Combined System

In the combined system, there are in total 508 dictionaries containing the
same speech exemplars as in the exemplar matching baseline. However, only
1300 silence exemplars (50 exemplars for each length) are used since silence
exemplars do not contribute much as discussed in Section 2.2.3. The system
ends up using 50,654 exemplars in total. In the combined system, the l5-norm
of each dictionary column is set to unity, i.e. the energy of each exemplar is
normalized. The same normalization is applied to the reshaped input speech
vectors. The reconstruction error shows enough discrimination among classes
after 50 iterations. All elements of A are set to 2. The scale factor C is set to
0.5. The combined system only uses exemplar startup cost which is, like for the
exemplar matching system, tuned for maximal accuracy.

2.3.4 Reconstruction Error Metrics

The log-compressed features that are used in the exemplar matching baseline
and the first intermediate system are compared using the Euclidean distance.
All the other intermediate systems and the final system use the generalized
KLD to calculate the reconstruction error.

2.4 Results and Discussion

In this section, we migrate the 1-NN exemplar matching system in several steps
towards the final combined design. The steps dealing with feature representation
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Table 2.1: Word error rates for the 1-NN exemplar matching based recognizer
in percentages

] Features | Dimension | Dis./Div. Measure | WER (%) |
MIDA 32 Eucl. 1.11
MN-+logPowSpec 17 Eucl. 3.36
MN-+PowSpec 17 KLD 10.10
MN-+MagSpec 17 KLD 4.41
PowSpec 17 KLD 10.34
MagSpec 17 KLD 4.36

Table 2.2: Word error rates for the proposed system in percentages

| Features | Dimension | Dis./Div. Measure | WER (%) |
PowSpec 17 KLD 7.70
MagSpec 17 KLD 2.98
lo-N+PowSpec 17 KLD 5.14
lo-N+MagSpec 17 KLD 2.16

and distance metric in a single nearest neighbor exemplar matching context are
summarized in Table 2.1.

Based on prior design experience, we start from a design using MIDA features,
channel (mean) normalization and Euclidean distance resulting in a word error
rate (WER) of 1.11%. Since the sparse representation approach does not use
linear transforms or derivatives, we remove this first, resulting in 3.36% WER.
The second and the third lines compare the recognition accuracies obtained
using mean normalized log-compressed power spectra and mean normalized
linear power spectra in conjunction with the Euclidean distance and generalized
KLD respectively. It can be concluded that log-compression combined with
the Euclidean distance performs much better. The results in the middle and
lower panels of Table 2.1 show that the generalized KLD couples much better
with linear magnitude spectra and mean normalization is not effective both for
magnitude and power spectra in this task.

The upper panel of Table 2.2 presents the WER obtained with the combined
system using power and magnitude spectra. Compared to the lower panel of
Table 2.1, there is a significant improvement on recognition accuracies in both
magnitude and power spectra due to sparse combination approach. Finally,
the lo-norm of the exemplars is set to unity as described in Section 2.3.3
which boosts the recognition accuracy. Even though the best result obtained
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with the proposed approach is still behind the baseline system, it significantly
outperforms all the other intermediate systems with comparable features.

2.5 Conclusions

We discussed two different exemplar-based recognition schemes, namely exemplar
matching and exemplar-based sparse representations, and proposed a combined
system that uses multiple length exemplars to jointly approximate the input
speech. Such a design can benefit from the noise model provided by the sparse
representations approach while it can decode unseen speech directly in terms of
exemplar identities using a reconstruction error metric. Exemplars are organized
in separate dictionaries which are expected to provide better classification
than using a single dictionary as every input segment is approximated by a
combination of exemplars belonging to the same class only. The additivity and
non-negativity requirement limits the representation domain to magnitude or
power spectra. This apparently leads to lower recognition accuracy compared
to discriminatively trained speech features. Moreover, the Euclidean distance,
which is widely used in exemplar matching based systems, has to be replaced
by the generalized KLD.



Chapter 3

Embedding Time Warping

This chapter describes a new sparse representation model for speech that allows
time warping as an extension to a recently proposed sparse representations-based
speech recognition system. This recognition system uses exemplars to model
the acoustics which are labeled speech occurrences of different length extracted
from the training data. Exemplars are organized in multiple dictionaries on
the basis of their class and length. Input speech segments are approxrimated as
a sparse linear combination of the exemplars using these dictionaries and a
reconstruction error-based decoding is adopted in order to find the best matching
class sequence. With the current sparse representation model using a dictionary
and a weight vector to approximate an input speech segment, it is not possible
to compare input speech segments with exemplars of different lengths. The goal
of this work is to introduce a novel sparse representation model which allows
time warping using a third matriz which linearly combines consecutive frames
in order to shrink or expand the approrimation. The results have shown the
feasibility of the proposed sparse representation model.

This chapter is adapted from: Emre Yilmaz, Jort F. Gemmeke and Hugo Van
hamme, “Embedding Time Warping in Exemplar-based Sparse Representations
of Speech”, In Proc. IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), pages 8076-8080, Vancouver, Canada, May 2013.
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3.1 Introduction

Automatic speech recognition has been dominated by statistical acoustic
modeling tools, e.g. Hidden Markov models, for several decades. The success
of recently proposed speech recognition systems based on exemplar matching
attracted considerable interest in exemplar-based acoustic modeling as a viable
alternative [143]. These techniques use real speech data, either called exemplars
or templates, to recognize unseen speech. Exemplars are labeled speech segments
such as phones, syllables or words, possibly of different length, that are extracted
from the training data. Each exemplar is tagged with meta-information including
speaker, environmental characteristics and prosodic information. Inconsistent
exemplar sequences, e.g. mixed gender exemplar sequences, can be penalized
based on the tagged meta-information during recognition. An input speech
segment can be classified by evaluating the labels of the closest exemplars
obtained using a distance metric.

Although exemplars provide better duration and trajectory modeling compared
to Hidden Markov Models, they are poorer in terms of generalizability. To
cope with this shortcoming, large amounts of data are required to handle the
acoustic variation among different utterances [30]. Furthermore, the acoustic
distance between the input speech segments and exemplars is found using the
dynamic time warping algorithm (DTW). DTW is a well-known algorithm used
for matching frame sequences of different lengths in various applications such as
speech recognition [2,29,145], image recognition [56], audio classification [132]
and data mining [14].

An alternative exemplar-based recognition technique is called exemplar-based
sparse representations (SR) in which the spectrogram of input speech segments
is modeled as a sparse linear combination of exemplars of the same length.
SR-based techniques have been successfully used for speech enhancement [54],
feature extraction [142] and clean [48] and noisy [50,84,162] speech recognition.
We have recently proposed an SR-based speech recognition system which uses
exemplars of different length organized in separate dictionaries on the basis of
their class and length [187]. Compared to a system using fixed-length exemplars
stored in a single dictionary, using separate dictionaries for each class provides
better classification as input speech segments are approximated as a linear
combination of exemplars belonging to the same class only. We have also shown
that this system performs reasonably well under noisy conditions in [181].

According to our knowledge, previous SR-based speech recognition systems
do not embody a time warping mechanism that allows the comparison of the
different-length segments. This chapter proposes a novel sparse representation
model of speech that embeds time warping in the previous model consisting of a
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dictionary and a weight vector. Time warping is achieved by means of a sparsely
structured warping matrix that learns weights to linearly combine corresponding
frequency bands in consecutive frames. The design of the warping matrix has
to be handled carefully as too much flexibility in time warping may lead to
unrealistic warping. Therefore, only a few successive frames should be combined
to approximate an input speech frame. Moreover, sparsity regularization is
imposed on the warping matrix to obtain linear combinations often dominated by
a single frequency band. This constraint results in approximations that are close
to one of the actual frequency bands rather than random linear combinations.

The proposed system differs from classical DTW in several aspects. One main
difference is that the proposed model performs a frequency band-level warping
by learning distinct weights for each frequency band in a frame, whereas classical
DTW provides a frame-level mapping between the time axes. The proposed
warping scheme is expected to be more robust against spectral asynchronies,
i.e. channel effects in the form of frequency-dependent delays, as it is able to
compensate temporal jitters depending on the number of linearly combined
successive frames, e.g. when two successive frames are linearly combined, a
spectral asynchrony with temporal jitter of a frame shift (typically 10 ms) can
be handled. In this sense, the proposed recognizer better models human hearing
which is not sensitive to spectral asynchronies up to 40 ms [3].

The rest of the chapter is organized as follows. The proposed sparse
representation model allowing time warping is given in Section 3.2. Section 3.3
explains the experimental setup and implementation details. In Section 3.4, we
present the recognition results and a discussion on the proposed model and its
relations with classical DTW is given. The conclusions and thoughts for future
work are discussed in Section 3.5.

3.2 Sparse Representation Model of Speech with
Time Warping

3.2.1 Previous Model

In the sparse representation model described in [187], the input segments
are modeled as a linear combination of the exemplars that are stored in the
dictionaries. Each exemplar represents a certain speech unit and the duration
of each speech unit in the training data is preserved resulting in exemplars of
different lengths. Exemplars spanning [, frames are reshaped into a single vector
with Fl. time-frequency cells where F' is the number of frequency bands in a
frame. These reshaped exemplars are stored in the columns of the dictionary
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S¢,i.: one for each speech unit ¢ and each length [.. Each dictionary is of
dimensionality Fl. x N.;, where N, is the number of available exemplars of
class ¢ and length ..

The baseline model approximates a reshaped input speech vector y;, of length
Fl; as a linear combination of the reshaped exemplars of length Fl. with
non-negative weights for each class c:

Nei,

v, & Z Se1.Ter, = Sci.Xel, stooxly >0 (3.1)

where I; = [, and x.;, is an N, -dimensional sparse weight vector. Sparsity
of the weight matrix implies that the input speech is approximated by a small
number of exemplars. The exemplar weights are obtained by minimizing the
cost function,

Ne,
d(yi,,Sei.Xen,) + A Z . s.t. rey >0 (3.2)
m=1

where A is a scalar that controls how sparse the resulting vector x.;, is. The first
term is the divergence between the input speech vector and its approximation.
The second term is a regularization term which penalizes the [;-norm of the
weight vector to produce a sparse solution. The generalized Kullback-Leibler
divergence (KLD) is used for d:

K
N Y N
d(y.9) = Z Yk log @f — Yk + Uk (3.3)
k=1

The regularized convex optimization problem can be solved using various meth-
ods including non-negative sparse coding (NSC). For NSC, the multiplicative
update rule to minimize the cost function (3.2) is derived in [50] and is given by

Xel, < Xet, © (ST, (Y1, @ (Seu.%en.))) @ (ST, 1+ A) (3.4)

with ® and @ denoting element-wise multiplication and division respectively. 1
is a Fl.-dimensional vector with all elements equal to unity.

3.2.2 Proposed Model

To be able to generalize the approximation in Equation (3.1) to input speech
segments of length [; for I; # l., we introduce a sparse warping matrix D., ;.
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of dimensionality Fl; x Fl.. For the sake of conciseness, we use D, S, x and
N to represent D, 1., Sc., Xc, 1, and N, respectively. This warping matrix
linearly combines the successive frames to shrink or expand the approximation
¥1. = Sx. Thus, a reshaped input speech vector y;, can be approximated as a
linear combination of the time-frequency cells belonging to successive frames in
31, for l; # I,

Fi.
yi, = Zdnyﬁ = Dyle (3.5)
n=1

where d” is the n'" column of the warping matrix D. Combining Equation

(3.1) and (3.5), the complete model can be written as

Fl. N
yi, = Z Z d"s™™Mz™ =DSx  s.t. 2™, dV™ > 0. (3.6)

n=1m=1

The new cost function is comprised of three components,

N Fl; Fl.
d(y;,,DSx)+A Y a™+8Y Y d"™ st a™d"™ >0 (3.7)
m=1 n=1m=1

where  is a scalar which controls how sparse the resulting warping matrix is.
In this cost function, there is a second regularization term which penalizes the
l1-norm of the rows of the warping matrix to induce sparsity. It should be noted
that the structural sparsity of the warping matrix limits the freedom in time
warping by allowing only a few consecutive frames with nonzero weights, whereas
the regularized sparsity implies that the linear approximation is dominated by
a single time-frequency cell obtaining a much larger weight compared to the
others. To minimize the cost function in Equation (3.7), the multiplicative
update rules given below are applied iteratively,

x + x0 ((DS)"(y;, 2 DSx)) @ (DS)"1, + A) (3.8)

D + Do ((yi, @ DSx)(Sx)") @ (1p(Sx)" + 5) (3.9)

with ® and @ denoting element-wise multiplication and division respectively.
1, is a Fl.-dimensional vector and 1p is a F'l;-dimensional vector with all
elements equal to unity. After each iteration, the rows of the warping matrix D
are normalized to unity in order to avoid extremely small or large values in D
and x. Applying these update rules iteratively, D and x become sparser and
the reconstruction error between the input speech vector and its approximation
decreases monotonically. A reconstruction error-based decoding is applied to
find the best matching class sequence using dynamic programming. A known
problem of sparse representation approaches working on magnitude spectra is
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that the silence exemplars are not recognized [50]. This is due to the fact that
silence is well-approximated by combining speech exemplars with small weights,
so all classes will score equally well. To overcome this problem, reconstruction
errors for the class representing silence have to be compensated. The details of
the reconstruction error-based decoding and silence dictionary scoring can be
found in [187].

3.2.3 Designing the Warping Matrix

A warping function is defined as a mapping between the time axes of two
different patterns (exemplars and input speech segments in this case) [145].
Such a function is expected to capture the spectral similarities between two
frame sequences with different durations. To prevent unnatural mappings,
some conditions are imposed on the warping function. The warping matrix
discussed in Section 3.2.2 should be properly designed so that it also satisfies
these warping function conditions, namely monotonicity, continuity, boundary,
adjustment window and slope constraint conditions, which are defined in [145].
Monotonicity and continuity conditions prohibit warping backwards and limit
the number of skipped or stalled frames for two consecutive input speech frames.
Boundary condition implies matching the first and last frame with the first and
last input speech frame respectively. The adjustment window constraint and
slope constraint conditions aim to confine the warping path by preventing too
many successive skips or stalls.

A warping matrix D of dimensionality Fl; x Fl. linearly combines the
corresponding time-frequency cells belonging to consecutive frames in §;, to
approximate F'l; input time-frequency cells. Considering the aforementioned
conditions, the initial D matrix is composed of identity submatrices I of
dimensionality F'x F' on the diagonal and either sub- or superdiagonal depending
on the sign of I; — l.. For the case of [; =, + 1,

r 00 --- 00
I 10 --- 00
0o 1rrI .--- 020
D=|: : - 1 (3.10)
0 0 0 I 0
0 0 O I 1
0 0 0 0 I
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and I; = I, — 1,
T 0 0 0 0 0 0]
01 10 00 0
00 I I 00 0
D=1: @ 00 (3.11)
0000 - T 00
0000 - I 10
0000 -~ 0 0 I

The design can be generalized to any [; and [, once the warping matrix satisfies
the warping conditions.

3.3 Experimental Setup

3.3.1 Database

The exemplars used in experiments are speech segments extracted from the
clean training set of AURORA-2 database [77] which contains 8440 utterances
with one to seven digits in American English. There are 4 clean test sets, each
containing 1001 utterances and recognition experiments are performed on these
test sets.

3.3.2 Baseline System

Exemplars and input speech segments are represented in root-compressed (with
magnitude power = 0.66) mel-scaled magnitude spectra. A 17 channel mel-scaled
filter bank with triangular magnitude response is computed from a spectral
analysis with a frame length of 32 ms and a frame shift of 10 ms. The first
channel is centered at 200 Hz and the last is at 3030 Hz.

The training data is segmented into the exemplars representing half-digits
by a conventional HMM-based recognizer. The system uses 508 dictionaries
belonging to 23 different classes. The minimum and maximum exemplar lengths
are 5 and 30 frames respectively. Exemplars longer than 30 frames are removed
to limit the number of dictionaries. The baseline system uses 10,362 exemplars
in total including 260 silence exemplars. A is set to 2. The ls-norm of each
dictionary column and reshaped input speech vectors are normalized to unity.
The reconstruction error shows enough discrimination among different classes
after 50 iterations. Further details about the baseline system can be found
in [187].
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Table 3.1: Average word error rates obtained on four clean test sets (SR: Sparse
representations, TW: Time warping)

y | WER (%) |
SR (baseline) 1.91
SR+ TW 1.78
SR + TW + Sparsity (5 = 10) 1.66
SR + TW + Sparsity (5 = 20) 1.64
SR + TW + Sparsity (5 = 100) 1.66

3.3.3 Implementation Details

The proposed system is implemented in MATLAB and GPUs are used to
accelerate the evaluation of Equation (3.8) and (3.9). We have not made the
effort yet to design a dedicated implementation exploiting the sparse structure
of the warping matrix D, i.e. in our current implementation the zero entries in
D are reestimated as well. Avoiding this is expected to reduce the simulation
times significantly, but requires a significant software engineering effort on a
GPU, which has not been performed to date.

3.4 Results and Discussion

This section presents the preliminary recognition results obtained using the
proposed sparse representation model with time warping. The experiments put
more focus on the impact of sparsity regularization imposed on the warping
matrix rather than the relative performance of different warping matrix designs.
The recognition is performed by approximating input speech segments of length
l; by linearly combining the exemplars of length I, = [;,l; &+ 1 using the warping
matrices discussed in Section 3.2.3. These warping matrices linearly combine
time-frequency cells belonging to two successive frames to approximate input
speech frames except for the first and last input speech frames.

The baseline system uses the sparse representation model described in [187]. The
WER obtained with the baseline system is 1.91% which is given in the first row of
Table 3.1. The average simulation time for the baseline system is approximately
3 seconds/utterance. The proposed model with 3 = 0 performs better than
the baseline with a WER of 1.78% given in the second row. This improvement
comes with a great increase in the average simulation time mostly due to the
higher number of matrix multiplications in the multiplicative update rules given
in Equation (3.8) and (3.9). Recognition of each utterance using the proposed
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model takes 45 seconds on average. After setting § to several nonzero values,
B = 10,20 and 100 in this case, the WER further reduces to 1.64% for 8 = 20.
This result shows the positive impact of imposing sparsity regularization on the
warping matrix combined with the structural sparsity. This is due to the fact
that one of the two time-frequency cells in the consecutive frames gets a much
higher weight than the other resulting in a realistic approximation of the input
time-frequency cell. Furthermore, it is evident that the recognition accuracy
does not vary significantly for different 8 values. The results discussed above
prove the feasibility of the proposed model providing 14% relative improvement
in the WER with time warping limited to a single frame.

The time warping technique we have proposed is different from classical DTW
in several aspects. The main difference is that the proposed time warping
scheme learns distinct weights for each time-frequency cell whereas classical
DTW provides a frame-level mapping between the time axes. One way of
adopting a frame-level mapping in the proposed framework is to tie the time-
frequency cell weights which belong to the same frame, a constraint for which new
multiplicative update formulae have been derived and which will be evaluated
in our future work.

Another difference is that classical DTW applies dynamic programming to
obtain a warping path through the time axes of the different-length segments.
In our case, the complete warping path is learned by fitting a product of matrices
to the data. Finally, the conditions on the warping function are imposed more
explicitly in classical DTW compared to the proposed approach. The only
way to impose these conditions in the proposed scheme is the careful design of
the warping matrix. Even with a carefully designed warping matrix, it is not
possible to implement some slope constraints such as the Itakura constraint [88].

3.5 Conclusions and Future Work

In this chapter, we have introduced a novel sparse representation model for
speech signals which allows time warping. This model approximates input
speech segments as a product of three matrices, i.e. a sparsely structured
warping matrix that linearly combines the time-frequency cells of consecutive
frames, a dictionary containing exemplars that are extracted from training data
and a weight vector storing the exemplar weights. The design of the warping
matrix is of great importance to obtain realistic warping paths. Two warping
matrices are introduced for matching two frame sequences with a single frame
difference.
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Applying this model to recognize digit sequences, we analyze the impact of
inducing sparsity in the warping matrix by penalizing the [;-norm of the rows
of the warping matrix. The results have shown that the proposed sparse
representation model allowing time warping provides 7% relative improvement
in the WER compared to a baseline system which compares input speech
segments and exemplars of the same length only. Moreover, the existence
of sparsity regularization improves the recognition further yielding a total
relative improvement of 14%. These improvements come with a cost of higher
computational complexity increasing the average recognition time by a factor
of 15, though this number should be interpreted with care given the current
sub-optimal implementation.



Chapter 4

Speech Exemplar Selection
Techniques from Multiple
Dictionaries

This chapter describes and analyzes several exemplar selection techniques to
reduce the number of exemplars that are used in a recently proposed sparse
representations-based speech recognition system. Ezxemplars are labeled acoustic
realizations of different durations which are extracted from the training data.
For practical reasons, they are organized in multiple undercomplete dictionaries,
each containing exemplars of a certain speech unit. Using these dictionaries, the
input speech segments are modeled as a sparse linear combination of exemplars.
The improved recognition accuracy with respect to a system using fized-length
ezemplars in a single dictionary comes with a heavy computational burden.
Due to this fact, we investigate the performance of various exemplar selection
techniques that reduce the number of exemplars according to different criteria
and discuss the links between the salience of the exemplars and the data geometry.
The pruned dictionaries using only 30% of the exemplars have been shown to
achieve comparable recognition accuracies to what can be obtained with the
complete dictionaries.

This chapter is adapted from: Emre Yilmaz, Jort F. Gemmeke and Hugo Van
hamme, “Ezemplar Selection Techniques for Sparse Representations of Speech
Using Multiple Dictionaries”, In 21st European Signal Processing Conference
(EUSIPCO), pages 1-5, Marrakesh, Morocco, Sept. 2013.

43
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4.1 Introduction

The success of recently proposed speech recognition systems based on template
matching attracted considerable interest in exemplar-based acoustic modeling
as a viable alternative to its statistical counterparts [30,143]. Exemplars are
labeled speech segments such as phones, syllables or words, possibly of different
length, that are extracted from the training data. Fach exemplar is tagged with
meta-information including speaker and environmental characteristics. An input
speech segment can simply be classified by evaluating the labels of the spatially
closest exemplars. Inconsistent exemplar sequences, e.g. sequences with different
gender exemplars, can be penalized based on the tagged meta-information.

Although exemplars provide better duration and trajectory modeling compared
to the Hidden Markov Models, large amounts of data are required to handle
the acoustic variation among different utterances [30]. In order to reduce high
memory and computational power requirements, several exemplar selection
algorithms are proposed in [149,158]. The main goal of these techniques is to
remove less informative exemplars that are hardly used or whose presence result
in inaccurate recognition and to achieve comparable recognition accuracies using
only a portion of the exemplars.

Another framework in exemplar-based techniques, namely exemplar-based sparse
representations (SR), models the spectrogram of input speech segments as
a sparse linear combination of exemplars rather than comparing with each
individual exemplar. SR-based techniques have been successfully used for speech
enhancement [54], feature extraction [142] and clean [48] and noisy [49,84,162]
speech recognition. In these approaches, fixed-size exemplars are stored in the
columns of an overcomplete dictionary which has much higher number of columns
(exemplars) than rows (time-frequency cells). We have recently proposed an
SR-based speech recognition system which uses exemplars of different length
organized in separate dictionaries and which approximates the input speech
as a linear combination of the exemplars in each dictionary [187]. Most of
these dictionaries are undercomplete having less exemplars than the number of
time-frequency cells. We have also shown that this system performs reasonably
well under noisy conditions in [181].

Reducing the dimensions of large datasets stored in overcomplete dictionaries has
been investigated in different fields and several matrix decompositions such as
the singular value decomposition (SVD), rank revealing QR decomposition, CUR
matrix decomposition, interpolative decomposition (ID) have been used to obtain
a low-rank matrix approximation of the complete data matrix [64]. Though the
SVD is known to provide the best rank-k approximation, interpretation of the
principal components is difficult in data analysis [115]. Therefore, several CUR
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matrix decompositions have been proposed in which a matrix is decomposed
as a product of three matrices C, U, R and the matrices C and R consist of
a subset of the actual columns and rows respectively [38,44,61]. Moreover,
a probabilistic ID technique which automatically handles the model selection
is introduced and applied to a polyphonic music transcription task using an
overcomplete dictionary containing exemplars of different musical notes in [4].

The exemplar selection techniques proposed in this chapter differ from previous
work as the dictionaries, which only contain exemplars of the same length and
label, are undercomplete due to insufficient training data. Compared to the
overcomplete dictionaries with a large number of data points, the redundancy
in undercomplete dictionaries is quite limited. Therefore, removing a few highly
relevant data points may already result in significant decreases in the recognition
accuracy. The use of real exemplars tagged with meta-information is another
requirement which prevents applying the SVD or any clustering technique. To
the best of our knowledge, there is no prior work on selecting the most salient
columns of an undercomplete dictionary. In this chapter, we propose various
techniques for selecting the most informative columns of the undercomplete
dictionaries and analyze the selection problem elaborating on the geometrical
structure of the data.

The rest of the chapter is organized as follows. A brief description of the sparse
representations-based speech recognition system is given in Section 2. The
proposed exemplar selection techniques are discussed in Section 3. Section
4 explains the experimental setup and implementation details. In Section 5,
we present the recognition results and a general discussion on the proposed
techniques is given. The conclusions and thoughts for future work are discussed
in Section 6.

4.2 System Description

The recognition system that is described in [187] uses a sparse linear combination
of the exemplars to model the input speech segments. Each exemplar is
associated with a certain speech unit and the duration of each speech unit in
the training data is preserved yielding exemplars of different lengths.

Exemplars spanning [ frames are reshaped into a single vector and stored in
the columns of the dictionary S.;: one for each speech unit ¢ and each length
. Each dictionary is of dimensionality DI x N.; where D is the number of
frequency bands in a frame and N, ; is the number of available exemplars of
length [ and class ¢. For any class ¢, a reshaped input speech vector y; of length
Dl is expressed as a linear combination of the exemplars with non-negative
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weights:

Nc,l

vy~ Z T Sey = SeiXel s.t. x>0 (4.1)
m=1

where xc 1 is an IV ;-dimensional sparse weight vector. Sparsity of the weight

matrix implies that the input speech is approximated by a small number of

exemplars. The exemplar weights are obtained by minimizing the cost function,

Ne,
d(yi, Seixer) + A Z Sy s.t. rey >0 (4.2)

m=1

where A is a scalar which controls how sparse the resulting vector x is. The
first term is the divergence measure between the input speech vector and its
approximation. The second term is a regularization term which penalizes the
l1-norm of the weight vector to produce a sparse solution. The generalized
Kullback-Leibler divergence (KLD) is used for d:

K
~ Yk N
d(y,9) =Y yxlog 5o Ut (4.3)
k=1

The regularized convex optimization problem can be solved using various meth-
ods including non-negative sparse coding (NSC). For NSC, the multiplicative
update rule to minimize the cost function (4.2) is derived in [50] and is given by

Xe,l — Xe,l O] (SZl(yl %) (Sc,lxc,l))) %) (SZ:ll + A) (44)

with ® and @ denoting element-wise multiplication and division respectively. 1
is a DI-dimensional vector with all elements equal to unity. Applying this update
rule iteratively, the weight vector becomes sparser and the reconstruction error
between the input speech vector and its approximation decreases monotonically.

The first term of Equation (4.2) expresses the reconstruction error between
a speech segment of length [ and a class ¢. Every speech segment of each
available exemplar length is approximated as a linear combination of exemplars.
This is achieved by applying the sliding window [50] to the input utterance
for each available exemplar length and iteratively applying equation (4.4)
using the dictionaries of the corresponding length. After a fixed number of
iterations, the reconstruction error is calculated. As the label of each dictionary
is known, decoding is performed by finding the class sequence that minimizes
the reconstruction error using dynamic programming.
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4.3 Exemplar Selection Techniques

The computational bottleneck of the system described above is the evaluation
of Equation (4.4). The computational complexity per iteration is linearly
proportional to the number of exemplars and it can be reduced by removing
the less informative and redundant exemplars that are either not used or result
in misclassifications. The baseline column selection technique is the randomized
column selection algorithm which is proposed as a part of the CUR matrix
decomposition in [115]. This algorithm randomly selects a subset of the columns
of a data matrix with respect to the probability distribution computed as
the normalized statistical leverage scores. Preferably selecting high-statistical
leverage columns will, with high probability, lead to a reduced dictionary which
approximates the original one almost as well as an SVD-based rank reduction
scheme [115].

In this section, we propose several exemplar selection techniques that reduce
the number of exemplars stored in the dictionaries discussed in Section 4.2.
These techniques are classified into three categories, namely reconstruction
error-based, distance-based and activation-based according to their exemplar
selection criteria.

4.3.1 Reconstruction error-based techniques

The system described in Section 4.2 approximates input segments as a linear
combination of exemplars. Since the approximation quality is measured using
the divergence measure in Equation (4.3), the approximation of an exemplar
either using other exemplars in the same-class dictionary or the ones in different-
class dictionaries of the same length provides useful information about its
salience.

Collinearity reduction (CR)

Exemplars that are well approximated by the other exemplars from the same-
class dictionary contain less information compared to the ones with higher
reconstruction errors. Therefore, the collinearity reduction technique removes
the exemplars that are well approximated as a linear combination of the other
exemplars in the same-class dictionary with non-negative weights. This idea
is applied iteratively by removing the exemplar that is approximated with the
minimum reconstruction error at each iteration until the minimum number of
exemplars requirement in a dictionary is met.
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Discriminative dictionaries (DD)

Dictionary elements of a particular class that are well approximated by a
dictionary of another class are likely to cause confusion during recognition.
Indeed, any data that is close to these elements may be explained as belonging
to the wrong class. The discriminative dictionaries technique iteratively removes
the exemplars having the smallest ratio between the reconstruction errors that
are obtained using the dictionary containing the exemplars of the other classes
and the same-class dictionary.

4.3.2 Distance-based techniques

Distance-based techniques perform exemplar selection considering the spatial
closeness of the exemplars which provides information about the data geometry.
The symmetric KLD is used as a distance metric which is defined as

doaaly §) = (d(y.9) +d(9,)) (4.5

where d is defined in Equation (4.3).

Removing exemplars with the smallest/largest average distance (SAD/LAD)

Removing the same-class exemplars that either lie in the densely or sparsely
populated regions in the feature space has been investigated. This technique
retains the exemplars having either the smallest or the largest average distance
to the other exemplars stored in the same-class dictionary.

Pruning the closest exemplars (CE)

The second distance-based technique aims to reduce the number of exemplars by
discarding one of the exemplars that lie close to each other. At each iteration,
the two closest exemplars are found and only one of them is retained in the
dictionary.
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4.3.3 Activation-based technique
Active exemplars (AE)

A single activation-based technique is proposed which infers the salience of
an exemplar by evaluating the average weight it gets on a recognition task.
The exemplar weights in the described system are obtained by applying the
multiplicative update rule in Equation (4.4). Obviously, the exemplars often
having higher weights are more decisive in the recognition. Thus, less active
exemplars are rarely used and they can be removed from the dictionary without
a significant loss in the recognition accuracy. The training data is used to
quantify how active each exemplar is.

4.4 Experimental Setup

4.4.1 Database

The exemplars used in experiments are speech segments extracted from the
clean training set of AURORA-2 database [77] which contains 8440 utterances
with one to seven digits in American English. The performance of the proposed
exemplar selection techniques is evaluated on the clean test sets of the same
database. There are 4 clean test sets, each containing 1001 utterances and
recognition experiments are performed on these test sets using the pruned
dictionaries.

4.4.2 Baseline System

Exemplars and input speech segments are represented in root-compressed (with
magnitude power = 0.66) mel-scaled magnitude spectra with 17 frequency bands.
The frame length is 32 ms and the frame shift is 10 ms. The training data is
segmented into the exemplars representing half-digits by a conventional HMM-
based recognizer. The system uses 508 dictionaries belonging to 23 different
classes. The largest number of exemplars in a dictionary is 283. The minimum
and maximum exemplar lengths are 5 and 30 frames respectively. Exemplars
longer than 30 frames are removed to limit the number of dictionaries. The
baseline system uses 50,654 exemplars in total including 1300 silence exemplars.
The ls-norm of each dictionary column and reshaped input speech vectors are
normalized to unity. Further details about the baseline system can be found
in [187].
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Table 4.1: Average word error rates obtained on four clean test sets using the
complete and pruned dictionaries. The first row provides the result obtained
using the complete dictionaries.

lRemoved exemplars (%) [ # of exemplars[ CR [ AE [SAD[ CE [ DD [LAD [ CUR‘

0 50654 1.68|1.68 | 1.68 | 1.68 |1.68| 1.68 | 1.68
10 45968 1.66 | 1.67 | 1.67 | 1.72|2.05| 2.30 | 1.67
20 40858 1.7311.69|1.69 | 1.76 |4.43| 2.71 | 1.57
30 35793 1.79]1.76 | 1.69 | 1.78 |2.73| 3.10 | 1.51
40 30687 1.75]11.73 1 1.69 | 1.81 |2.99| 3.62 | 1.73
50 25531 1.76 | 1.75 | 1.69 |1.78 |3.41| 4.15 | 1.97
60 20533 1.76 | 1.77 |1.79] 1.92 | 3.86 | 4.51 | 2.01
70 15468 1.79(1.84|2.08 | 2.01 (4.29| 4.90 | 2.10
80 10362 1.9112.30|2.19 | 2.14 |5.27| 5.92 | 2.50
90 5293 2.28 14.66 | 3.80 | 2.58 |6.87| 6.77 | 3.18

4.4.3 Implementation of the Proposed Techniques

All of the proposed techniques are applied before the recognition experiments
to create the pruned dictionaries. Reconstruction error and activation-based
techniques require the evaluation of the multiplicative update rule given in
Equation (4.4) in order to obtain the exemplar weights. The CR and DD
techniques are applied iteratively discarding a single exemplar at each step. The
AE technique, on the other hand, stores the average weight each exemplar gets
during the approximation of the speech segments from the training data and the
exemplar selection is performed by preserving the required number of exemplars
with the highest average weight value. Distance-based techniques use a square
and symmetric distance matrix to identify the spatial closeness of the exemplars.
The CE technique iteratively reduces the number of exemplars while the DP and
SP techniques are applied in a single step. The recognition accuracies presented
in the following section are obtained by reducing the number of exemplars in
each dictionary by 10% at each step until only 10% of the exemplars remain in
each dictionary.

4.5 Results and Discussion

In this section, we present the word error rates (WER) that are obtained on the
clean test set of AURORA-2 using the dictionaries pruned with the techniques
discussed in Section 4.3. These results are compared with the recognition
accuracies obtained with the complete dictionaries and the dictionaries that are
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Figure 4.1: Nlustration of the convex hulls formed by the same class exemplars
in two dimensions.

pruned with the randomized column selection algorithm of the CUR matrix
decomposition. The recognition experiments on clean data provide information
about both the performance of the proposed exemplar selection techniques and
the size of the smallest dictionaries that sufficiently represent clean speech as a
design parameter. It is worth mentioning that basic HMM/GMM systems
provide higher recognition accuracies (about a percent) on the clean test
set compared to the baseline recognizer using the complete dictionaries [77].
However, unlike this framework, it is not easy to account for background noise
in HMMs [181].

Table 4.1 presents the WER results. The baseline system with the complete
dictionaries has a WER of 1.68%. For each technique, the smallest dictionary
size in which the WER has increased less than 10% (i.e. 1.68% * 1.1 = 1.85%)
over the baseline is given in bold. The dictionaries pruned with collinearity
reduction (CR) and active exemplars (AE) provide results lying in this error
bound using 30% of the exemplars. Removing the exemplars with the smallest
average distance (SAD) and pruning the closest exemplars (CE) performs
slightly worse than the CR and AE staying in the bound using 40% and 50%
of the exemplars respectively. The CUR decomposition gives similar WERs
using more than 50% of the exemplars. The simulation times of the final system
using 30% of the exemplars are reduced by a factor of 3, varying from 2.8 to 4
seconds depending on the utterance duration.
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Table 4.2: Average word error rates obtained on four clean test sets using the
DD and LAD techniques for outlier removal.

| Removed exemplars (%) | # of exemplars [ DD | LAD |

0 50654 1.68 | 1.68
1 50568 1.76 | 1.72
2 50045 1.83 | 1.82
3 49544 1.85 | 1.95
4 49018 1.85 | 2.06

The hypothetically appealing idea of obtaining more discriminative dictionaries
(DD) and removing the exemplars with the largest average distance (LAD) do
not work for the intended task. Even after removing 10% of the exemplars, the
WER exceeds 2%. The results obtained with these techniques imply that the
spatial position of a data point provides some clues about how informative it is
in the recognition. Due to the non-negativity of the data, each dictionary forms
a convex hull that lies in the positive orthant. There are a few exemplars that
lie on or next to the boundaries whereas the center is densely populated. A two
dimensional illustration of the ideal (perfectly separable) case with three different
classes is given in Figure 4.1. Considering the exemplar selection criteria of the
LAD, it is apparent that it mainly discards exemplars that are further away
from the densely populated region in the convex hulls. Similarly, the DD aims to
reduce the confusions between the dictionaries and these confusions are mostly
due to the exemplar lying on the boundaries in each convex hull. Removing
these exemplars results in narrower convex hulls spanned by each dictionary
which provides a less accurate description of the cone. On the other hand, other
techniques retaining the exemplars lying on the boundaries and preserving the
convex hull formed by each dictionary performs significantly better than the
DD and LAD. It should be noted that most active exemplars typically lie on
the convex hull boundaries which are rather decisive in the recognition.

Although the importance of the exemplars lying on the boundaries for the
recognition accuracy has been shown, it can still be claimed that some of these
exemplars can be outliers resulting in misclassifications. A discussion on the
misclassifications due to the outliers in a convex hull can be found in [141]. To
analyze the impact of the outliers on the recognition accuracy, we further apply
the DD and LAD to remove a few percent of the exemplars. From the results in
Table 4.2, it is not evident that these techniques work for outlier removal either.
This can be either due to the non-existence of outliers in most dictionaries or
their negligible impact on the recognition accuracy.
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4.6 Conclusions and Future Work

In this chapter, we have proposed several exemplar selection techniques for
undercomplete dictionaries and analyzed which exemplars these techniques tend
to select considering the geometrical structure formed by the data points in
the feature space. Techniques based on the collinearity reduction (CR) and
selecting the active exemplars (AE) provided the best results by achieving
recognition accuracies that are in the 10% error bound of the baseline results
using only 30% of the exemplars. The distance-based techniques, namely
removing exemplars with the smallest average distance (SAD) and pruning the
closest exemplars (CE), perform slightly worse than the CR and AE. All of these
techniques outperform the CUR decomposition which has been successfully
used for reducing the size of overcomplete dictionaries.

Discriminative dictionaries (DD) and removing the exemplars with the largest
average distance (LAD) provide inferior results revealing the connection between
the spatial position of an exemplar and its salience in the recognition. The DD
and LAD mostly discard exemplars lying on the boundaries of the convex hulls
resulting in a less accurate description of the cone. On the other hand, the
SAD and CE explicitly remove the exemplars lying in the densely populated
region of the convex hulls without deforming the boundaries and provide much
better results than the DD and LAD. Hence, it can be concluded that the
exemplars lying on the boundaries of the convex hulls are highly informative
and discarding these exemplars results in high recognition accuracy loss.



Chapter 5

Noise Robust Exemplar
Matching (N-REM) for ASR

Performing automatic speech recognition using exemplars (templates) holds the
promise to provide a better duration and coarticulation modeling compared to
conventional approaches such as hidden Markov models (HMM). Exemplars are
spectrographic representations of speech segments extracted from the training
data, each associated with a speech unit, e.g. phones, syllables, half-words
or words, and preserve the complete spectro-temporal content of the speech.
Conventional exemplar-matching approaches to automatic speech recognition
systems, such as those based on dynamic time warping, have typically focused
on evaluation in clean conditions. In this chapter, we propose a novel noise
robust exemplar matching framework for automatic speech recognition. This
recognizer approximates noisy speech segments as a weighted sum of speech
and noise exemplars and performs recognition by comparing the reconstruction
errors of different classes with respect to a divergence measure. We evaluate
the system performance in keyword recognition on the small vocabulary track of
the 2" CHiME Challenge and connected digit recognition on the AURORA-2
database. The results show that the proposed system achieves comparable results
with state-of-the-art noise robust recognition systems.

This chapter is adapted from: Emre Yilmaz, Jort F. Gemmeke and Hugo Van
hamme, “Noise Robust Exemplar Matching Using Sparse Representations of
Speech”, IEEE/ACM Transactions on Audio, Speech, and Language Processing,
volume 22, No. 8, pages 1306-1319, Aug. 2014.
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5.1 Introduction

Using segments of speech that are extracted from training data (exemplars) for
automatic speech recognition (ASR) has seen renewed interest on account of the
huge increase in computational power and fast template matching algorithms [30,
34,143]. Rather than learning acoustic models which are based on distributions
(e.g. hidden Markov models (HMM)) or latent variables (e.g. deep neural
networks), exemplar-based acoustic modeling uses the data itself to explain
unseen speech. Well-known issues of the former parametric acoustic models
such as inaccurate duration modeling, limited coarticulation modeling and
overgeneralization may be circumvented in exemplar-based acoustic modeling
since the long-range spectro-temporal dynamics of speech can be preserved.

Prior work on ASR systems employing exemplar matching, i.e. classifying
an observed speech segment using the label(s) of the closest exemplar(s),
investigates the recognition performance under clean conditions. In this chapter
we focus on the noise robustness of the exemplar matching approach, and propose
a novel exemplar-matching framework, dubbed noise robust exemplar matching
(N-REM), that allows noise modeling. The proposed approach does not rely
on preprocessing (e.g. feature/model compensation) or on postprocessing (e.g.
uncertainty decoding). Instead, recognition works by approximating the spectral
representations of noisy speech segments as a superposition of speech and noise
exemplars and performing reconstruction error-based decoding by applying
dynamic programming.

Exemplars are labeled speech segments associated with a single speech unit such
as phones, syllables, half-words or words that have occurred in the training data.
Every speech unit has a distinct duration distribution resulting in exemplars
spanning multiple lengths. They are typically compared with the observed
speech segments using dynamic time warping (DTW) [29,135,144], and an input
speech segment can be classified as the label of either the closest exemplar or
by performing a majority voting on the set of K nearest neighbors [36,57,160].
Several hybrid recognition systems which combine this approach with statistical
models have also been proposed [1,9,28,55,157].

Applying exemplar matching under noisy conditions creates training-test set
mismatch problems similar to what is experienced with conventional ASR
systems [176]. As for those systems, feature compensation methods can be
applied to increase the noise robustness without modifying the recognizer.
Model compensation techniques would require all exemplars to be modified
during decoding, which is a formidable task in the case of non-stationary noise.
Since the search problem in exemplar-based recognition is a lot more involved
than in conventional ASR systems based on HMMs, the equivalent of factorial
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models does also seem infeasible. Finally, multi-condition training, i.e. storing
noisy exemplars, will increase the number of exemplars that need to be stored
dramatically. Furthermore, noisy exemplars would only capture a single instance
of speech and noise resulting in a limited noise modeling capacity especially in
case of non-stationary noise.

Recently, speech processing based on sparse representations (SR), has been
successfully used for speech enhancement [54], feature extraction [142] and
clean [48] and noisy [49,84,162] speech recognition. In this approach, observed
speech spectra are modeled as a sparse linear combination of atoms describing
parts of spectra, organized in an overcomplete dictionary. By containing speech
and noise atoms in a single dictionary, noise robustness is achieved by modeling
noisy speech explicitly as a superposition of both speech and noise atoms.
In [48,49,54,84], these speech and noise atoms consisted of exemplars, as it
allowed for accurate modeling of temporal context. Unlike their use in exemplar-
matching ASR systems, these fixed-length exemplars are randomly extracted
and do not model a specific choice of speech units.

The main contribution of this work is a new exemplar matching recognition
framework that allows noise modeling. Based on preliminary research reported
in [181,183,187], N-REM uses an SR-based exemplar matching approach with
exemplars of multiple length corresponding to speech units. The exemplars are
organized in separate dictionaries based on the length and class (associated
speech unit), and are used to approximate noisy speech segments as a linear
combination of the exemplars in each of these dictionaries. Non-negative sparse
coding (NSC) is applied to determine the weights of the linear combination [49].
The recognizer adopts a reconstruction error-based back-end, i.e. the recognition
is performed by comparing the quality of the match for different classes quantified
by a distance/divergence measure and choosing the class sequence that minimizes
the total reconstruction error.

The development of the novel framework also involves a dedicated design of the
dictionaries that takes computational limitations into account. In previous work,
we have proposed several dictionary design techniques for speech dictionaries,
focused at either reducing the dictionary sizes for overpopulated dictionaries
[182], or at increasing the number of exemplars available to improve the acoustic
modeling of underpopulated dictionaries [183]. In this work, we propose a novel
adaptive noise dictionary design technique. This technique adaptively selects a
small number of noise exemplars that are expected to model the actual noise
conditions.

The rest of the chapter is organized as follows. The proposed exemplar-matching
framework scheme is described in Section 5.2. The design techniques that are
applied to the dictionaries are described in Section 5.3. The evaluation setup is
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described in Section 5.4. The recognition results on the small vocabulary track
of the 2°¢ CHiME Challenge and the AURORA-2 database are presented and
discussed in Section 5.5. A general discussion on the recognition performance
and some future directions are given in Section 5.6. Section 5.7 concludes the
chapter.

5.2 Sparse Representation Model of Speech with
Exemplars of Multiple Length

5.2.1 Modeling noisy speech

N-REM models noisy speech segments as a sparse linear combination of speech
and noise exemplars of various lengths that are stored in multiple dictionaries.
The overview of the recognizer is given in Figure 5.1. Compared to a system using
fixed-length exemplars stored in a single dictionary, using separate dictionaries
for each class results in noisy speech segments being approximated as a linear
combination of exemplars belonging to the same class only. From the geometrical
interpretation of NSC-based source separation, it is known that the farther the
convex hull of the basis vectors belonging to different sources (speech and noise
in this case) are, the better the separation is [37]. Hence, the use of separate
dictionaries for each speech unit provides a more precise representation in the
high-dimensional feature space.

Training frame sequences representing various speech units (speech exemplars)
are extracted based on the state-level alignments obtained using a conventional
HMM-based recognizer. Speech exemplars, each comprised of D mel frequency
bands and spanning [ frames, are reshaped into a single vector and stored in the
columns of a speech dictionary S.;: one for each class c and each length [. Each
dictionary is of dimensionality DI x N.; where N.; is the number of available
speech exemplars of class ¢ and length [. Similarly, a single noise dictionary
N; for each length [ is formed by reshaping the noise exemplars. Each speech
dictionary is concatenated with the noise dictionary of the same length to form
a combined dictionary A.; = [S.; N;] of dimensionality DI x M, ; where M.,
is the total number of available speech and noise exemplars.

An observed noisy (and/or reverberated) speech segment of length 7' frames
is also reshaped into vectors by applying a sliding window approach [50]
with window length of [ frames and stored in an observation matrix Y; =
yi,y?.., yl(T_l+1)] of dimensionality DI x (T'— 1+ 1). Due to multiple-length
exemplars, the window length [ is varied between the minimum exemplar length

Imin and maximum exemplar length [,y yielding observation matrices Y; for
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Figure 5.1: The Recognizer Overview. Speech exemplars are extracted from
the training data using the segmentation information. They are organized in
dictionaries based on their length and class (associated speech unit). Noise
dictionaries are concatenated to the speech dictionaries forming the combined
dictionaries. Non-negative sparse coding (NSC) is applied to approximate
noisy test utterances using the combined dictionaries. After a fixed number of
iterations, the reconstruction errors are calculated and a single-stage dynamic
programming algorithm is applied to find the class sequence with the minimum
reconstruction error as the dictionary labels are known.

Imin <1 < lnax. For every class ¢, each observation vector y; is expressed as a
linear combination of the exemplars that are stored in the dictionaries of the
same length:

Mc,l

vy~ Z rohal; = AciXe s.t. ze >0 (5.1)
m=1

where x.; is an M. ;-dimensional non-negative weight vector. The sparse

solutions of x.; yield more realistic approximations of the observed segments

without overfitting and have been shown to provide better recognition results

[80,174].
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The combined dictionaries consisting of speech and noise exemplars are presumed
to model all acoustic variability in the observed signal due to pronunciation
variation, background noise and so forth. This model can also cope with
reverberation by storing reverberated speech exemplars rather than clean speech
exemplars.

5.2.2 Obtaining the exemplar weights

The non-negative exemplar weights x.; are obtained by minimizing the cost
function,

Mc‘l
d(yr, Acixe) + Z v Am s.t. x>0 (5.2)
m=1

where A is an M, ;-dimensional vector. The first term is the divergence
between the observation vector and its approximation. The second term is a
regularization term which penalizes the [;-norm of the weight vector to produce
a sparse solution. A contains non-negative values and controls how sparse the
resulting vector x is. Defining A as a vector, the amount of sparsity enforced
on different types of exemplars can be adjusted. Moreover, A values can be
chosen depending on the SNR level for improved recognition performance.

The regularized optimization problem with the cost function in Equation (5.2)
can be solved with various techniques including least absolute shrinkage and
selection operator (LASSO) [163], approximate Bayesian compressive sensing
[17], elastic net [192] and non-negative sparse coding (NSC) [79]. In this work,
NSC is applied to obtain the exemplar weights that minimizes the cost function.

The approximation highly depends on the congruence of the representation of the
speech and the divergence measure in Equation (5.2). Particularly, depending
on the distribution of the speech and noise sources in the high-dimensional
feature space, an appropriate divergence/distance measure has to be chosen in
the sense that it weights the reconstruction error in each component (mel band)
in a desired way.

The generalized Kullback-Leibler divergence (KLD) has been found to provide
better results when used in conjunction with magnitude spectral features
compared to the Euclidean distance in source separation, SR-based noise robust
speech recognition and polyphonic music transcription [138,151,152,162,174].
Hence, we investigate the recognition performance of the proposed system using
the generalized KLD for d. The generalized KLD is defined as

K
d(y,9) =Y yxlog Z*: — Yk + Ok (5.3)
k=1
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For NSC, we apply the relaxation and non-linear projection techniques proposed
in [21] for faster convergence to the multiplicative update rule derived in [50] to
minimize the cost function. The final multiplicative update rule is given by

X ¢ (Xeq © (AL (y1 @ (Acixcy))) @ (A1 + A)) ) fited (5.4)

with ®, @ and -] denoting element-wise multiplication, element-wise division
and element-wise exponentiation respectively. w is a value between (0,2) and
a is a very small positive number [21]. 1 is a DI-dimensional vector with all
elements equal to unity. Applying this update rule iteratively, the weight vector
becomes sparse and the reconstruction error between the noisy speech vector
and its approximation decreases monotonically.

5.2.3 Decoding

All observation matrices Y for Iy, < | < lnax are approximated using
the combined dictionaries A.; of the corresponding length by applying the
multiplicative update rule in Equation (5.4). To quantify the quality of the
match, we use the reconstruction error between the noisy speech segments
and their approximations. The first term of Equation (5.2) expresses the
reconstruction error between a noisy speech segment of length [ and its
approximation.

The multiplicative update rule is applied iteratively until the reconstruction
error provides enough discrimination between different classes. The number of
iterations that satisfies this criterion has been investigated in pilot experiments.
After a fixed number of iterations for all dictionaries, the reconstruction errors
between the observation matrix Y; and its approximations A ;x.; are calculated
for Imin < I < lmax. As the label of each dictionary is known, decoding is
performed by applying a single-stage dynamic programming algorithm [128]
to find the class sequence that minimizes the reconstruction error taking the
grammar into account.

This kind of search problem can be visualized as a three-dimensional grid search
over grid points (x, y, z) which are defined by the time frames x of a noisy speech
segment, time frames y of its approximation and the dictionary number z [128].
Focusing on the noise robustness, noisy speech segments are only matched with
the dictionaries of the same duration, i.e. no time warping is performed, within
the scope of this study.
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5.2.4 Dictionary normalization

The rows of the combined dictionaries (mel frequency bands) are scaled with
the weights obtained as the squared sum of the mel frequency bands of training
frame sequences to avoid the reconstruction error being dominated by a few
bands only. The columns of the combined dictionaries (exemplars) are also
l,-normalized which has been shown to improve the recognition results in [187].
The same column normalization is applied to the observation matrices Y;.

The column normalization of the observation matrices replaces the exemplar
start-up cost which is commonly used in exemplar matching-based systems in
order to limit the number of exemplars that are used to explain the observed
segments. Without the column normalization (or the exemplar start-up cost),
the recognizer has the tendency to explain the observed segments using the
shortest exemplars yielding unrealistic recognition results as they fit the data
better due to the higher degree of freedom. [,-normalization of the observation
matrices scales the reconstruction errors by a factor that increases with the
exemplar length, hence, the value of p can be tuned to balance the number of
insertions and deletions. The proposed system applying [,-normalization to
the observation matrices has provided better recognition accuracies in the pilot
experiments compared to adopting an exemplar start-up cost.

5.2.5 Compensating the silence scores

A known problem of sparse representation approaches working on magnitude
spectra is that silences are hard to recognize: perfect silence is modeled with
zero weights of all exemplars [50]. In a practical noisy mixture, silence is
well-approximated by combining speech and noise exemplars with small weights,
so all classes will score equally well. To overcome this problem, reconstruction
errors of the dictionaries representing silence have to be compensated. For
this purpose, we use a single overcomplete dictionary containing speech and
noise exemplars to approximate the noisy speech and perform voice activity
detection (VAD), i.e. predicting whether a noisy speech segment contains speech.
Choosing an exemplar length L, containing abundant samples from each class,
we form a single dictionary by concatenating all speech exemplars from different
classes plus noise exemplars that are extracted from the noise-only training
sequences. After obtaining the exemplar weights for every noisy segment of
length L., we reconstruct the speech components to detect the frames where
speech activity exists. The schematic illustration of the single dictionary setup
is given in Figure 5.2.
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Figure 5.2: VAD, SNR estimation and Active Noise Exemplar Selection (ANES)
- A single dictionary setup is proposed for VAD, SNR estimation and ANES.
The speech weights are used to reconstruct the speech component providing
information about the frames containing speech. SNR level is estimated as the
ratio of the total speech weights to the total speech and noise weights in order to
limit the estimation range to [0,1]. Finally, noise weights belonging to the noise
exemplars that are extracted from the same noise sequence are accumulated to
identify which noise sequences are able to model the actual noise conditions.
Noise exemplars that are used in the recognition are extracted from the most
active noise sequences.

The range of the reconstruction error values obtained for each class is SNR
dependent. For high SNRs, speech exemplars get higher weights yielding a
higher range in the reconstruction errors among different-class dictionaries of
the same length. On the contrary, for low SNRs, the noise exemplars get higher
weights resulting in very close reconstruction errors. To avoid overcompensation
of the reconstruction errors at lower SNRs, we propose an SNR-dependent
compensation factor. The SNR level is estimated as the ratio of the total speech
weights to the total speech and noise weights. The details of the VAD and SNR
estimation are given in Appendix A.1.
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5.3 Dictionary Design

5.3.1 Motivation

Although exemplar-based modeling is known to provide better duration and
trajectory modeling compared to the statistical models, a large amount of data is
required to handle the acoustic variation among different utterances [30]. In order
to reduce the high memory and computational power required for data handling,
several exemplar selection algorithms are proposed for exemplar matching
systems in [149,158]. The main goal of these techniques is to remove less
informative exemplars that are hardly used or whose presence result in inaccurate
recognition and achieve comparable recognition accuracies using only a fraction
of the exemplars. Moreover, several techniques have also been proposed to reduce
the number of atoms organized in an overcomplete dictionary [53,64,86,115].

As the speech exemplars are associated with a single speech unit, their length
distribution is class-dependent which results in unevenly populated speech
dictionaries. Speech dictionary design mainly involves increasing the number
of exemplars in underpopulated speech dictionaries to avoid poor acoustic
modeling or reducing the number of exemplars in highly populated dictionaries
without a significant loss in the recognition accuracy. On the other hand, noise
exemplars are extracted from noise-only training sequences for any arbitrary
length. As a result, while there are a vast number of noise exemplars for every
exemplar length, only the ones that match the actual noise conditions will be
beneficial during recognition. Thus, noise dictionary design mainly focuses on
accurate modeling of the background noise using the smallest possible number
of noise exemplars.

Previously, we have described various speech exemplar selection techniques to
limit the number of exemplars organized in undercomplete dictionaries [182].
The recognition experiments performed on clean speech have shown that using
only 30% of the speech exemplars does not result in a significant loss in the
recognition accuracy. Moreover, for the dictionaries that contain only a few
speech exemplars, we apply prewarping to increase the number of exemplars by
manipulating the same-class exemplars of different lengths [183].

In this section, we focus on the noise dictionary design and present the techniques
that are used in the proposed framework. These dictionary design techniques are
applied either to improve the acoustic modeling capabilities of the dictionaries
and/or to reduce the dictionary sizes for less computational power and memory
requirements.
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5.3.2 Noise Dictionary Design
Active noise exemplar selection (ANES)

Previous experiments have shown that noise modeling using the same noise
dictionaries for every noisy utterance provides very poor estimation of the
noise source [181]. Using smaller noise dictionaries due to the computational
restrictions results in inferior performance compared to the previous SR-based
recognizers especially at lower SNR levels.

In this section, we introduce a design procedure for adaptive noise dictionaries
which uses the noise weights that are provided by the single dictionary setup
described in Section 5.2.5. This technique aims to select a small number of noise
exemplars that can accurately model the actual noise conditions. An equal
number of exemplars is extracted from numerous noise-only training sequences
and stacked in a single noise dictionary. Before performing the recognition,
the noisy utterance is approximated using the single dictionary containing
these noise exemplars as shown in Figure 5.2. In order to identify which noise-
only training sequences can accurately model the actual noise conditions, all
weights belonging to the noise exemplars extracted from each noise-only training
sequence are accumulated. With the same motivation as discussed in [182],
noise exemplars used for the recognition are extracted from the most active
noise-only training sequences, i.e. the ones with the highest weights.

Acquiring noise exemplars on the fly

Another technique that has been proposed for improved noise modeling in
SR-based recognition systems is called noise sniffing [53]. This technique
acquires noise exemplars on the fly from the immediate neighborhood of the
target utterance. The extracted noise exemplars are added to the combined
dictionaries and used for the recognition. In case of limited noise context, a
small number of frames from the beginning and end of the target utterance are
extracted and contained in combined dictionaries. Shifted copies of these frame
sequences are also included to provide some degree of shift-invariance [52]. The
VAD information extracted from the setup in Figure 5.2 is used to detect the
speech onset and offset points.

SNR-dependent noise modeling

To find a compromise between the accuracy of the noise modeling and
computational complexity, the amount of the noise exemplars in the combined
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dictionaries is adjusted depending on the estimated SNR level. At lower SNRs,
a larger number of noise-only training sequences are used for noise exemplar
extraction. Consequently, computational complexity of the recognizer is reduced
at high SNRs without loss of recognition accuracy while preserving the noise
modeling capabilities at lower SNRs. Moreover, SNR-dependent noise modeling
provides gains in the recognition accuracy of clean speech, as the dictionaries
contain only a few noise exemplars during the recognition of clean speech.

5.4 Experimental Setup

5.4.1 Databases
CHIME-2

The small vocabulary track of the 24 CHiME Challenge [172] addresses the
problem of recognizing commands in a noisy living room. The clean utterances
in the CHIME-2 data are taken from the GRID corpus [23] which contains
utterances from 34 speakers reading 6-word sequences of the form command-
color-preposition-letter-digit-adverb. There are 25 different letters, 10 different
digits and 4 different alternatives for each of the other classes. Even though
there is no silence between the words, leading silences of variable duration occur
occasionally. The recognition accuracy of a system is calculated based on the
correctly recognized letter and digit keywords.

The clean utterances are convolved with binaural room impulse responses with
speaker head movement effects which are recorded in a living room. Then, the
resulting reverberated utterances are mixed with binaural recordings of genuine
room noise recorded in the same living room at SNR levels of 9, 6, 3, 0 ,-3 and
-6 dB. The training set contains 500 utterances per speaker (17,000 utterances
in total) with clean, reverberated and noisy versions. Noisy utterances are
provided both in isolated or embedded form. Embedded recordings contain
5 seconds of background noise before and after the target utterance. The
development and test sets contain 600 utterances from all speakers at each
SNR level (3600 utterances in total for each set) both in isolated and embedded
form. The immediate noise context of the target utterances is available in
the embedded recordings. The development set also contains 600 noise-free
reverberated utterances. All data has a sampling frequency of 16 kHz.
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AURORA-2

The recognition performance of N-REM is further evaluated on the test set A
and B of the AURORA-2 corpus [77]. The training material of AURORA-2
consists of a clean and a multi-condition training set, each containing 8440
utterances. The multi-condition training set was constructed by mixing the
clean utterances with noise at SNR levels of 20, 15, 10 and 5 dB.

Test set A consists of 4 clean and 24 noisy datasets with four noise types (subway,
babble, car and exhibition) at six SNR levels, 20, 15, 10, 5, 0 and -5 dB. The
noise types of this test set match the multi-condition training set. Test set B
has the same number of test sets with four different noise types (restaurant,
street, airport, station) at the same SNR levels. Each subset contains 1001
utterances with one to seven digits 0-9 or oh. To reduce the simulation times,
we subsampled the test sets by a factor of 4 (250 utterances per test set, 1000
utterances per SNR). All parameters are tuned on a different subset with 100
utterances from each test set. All data has a sampling frequency of 8 kHz.

5.4.2 Dictionary Creation and Implementation Details

The recognition system is implemented in MATLAB and GPUs are used to
accelerate the evaluation of Equation (5.4). Two versions of N-REM have been
investigated depending on the recognition tasks. The first version, which does
not include the single dictionary setup, has been investigated on the CHIME-2
data as the silences between the words are assumed to be negligible. The

second version including the single dictionary setup has been applied on the
AURORA-2 task.

CHIME-2

The exemplars and noisy speech segments are represented as mel-scaled
magnitude spectral features extracted with a 26 channel mel-scaled filter bank
(D = 26). The frame length is 25 ms and the frame shift is 10 ms. The binaural
data is averaged in the spectral domain to obtain 26-dimensional feature vectors.

The exemplars are extracted from the reverberated utterances in the training
set according to the state-based segmentations obtained using the acoustic
models in the toolkit provided with the database. Exemplars belonging to
each speaker are organized in separate dictionary sets for speaker-dependent
modeling yielding 34 different dictionary sets. Based on the availability of the
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Figure 5.3: Number of speech exemplars for each speaker in the CHIME-2 Data

exemplars, the minimum and maximum exemplar lengths are 4 and 45 frames
respectively.

After preliminary experiments, exemplars representing words turned out to
provide poor acoustic modeling resulting in a high error rate. Half-word
exemplars seemed to generalize sufficiently to unseen data. Half-word exemplars
are extracted by cutting the word exemplars at the HMM state yielding the
minimum average length difference between the two halves. Dictionary sizes
vary with different classes and speakers. Prewarping [183] is applied to boost
the modeling capabilities of the underpopulated speech dictionaries (especially
for the ones belonging to letters due to the high number of alternatives and
hence the small number of exemplars per class) and it is limited to a single
frame. The number of exemplars in each dictionary after prewarping is limited
to 50. The number of speech exemplars for each speaker after prewarping is
shown in Figure 5.3.

The silences between the words are assumed to be negligible, hence, dictionaries
representing a silence class are not used. This comes with several advantages
as the silence compensation discussed in Section 5.2.5 is not a requirement.
However, the isolated utterances in the training, development and test sets
occasionally contain leading silence of variable duration. To overcome the
mismatches in silence duration during the decoding, the number of frames
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belonging to the first HMM state of the first word in the reverberated training
data is limited to 10 frames while extracting the exemplars. Furthermore, during
recognition, the decoding is repeated 5 times each time omitting 5 frames from
the beginning. The class sequence yielding the minimum reconstruction error
per frame is then chosen to be the recognition output.

The noise dictionaries used in the experiments contain 400 noise exemplars that
are acquired on the fly (cf. Section 5.3.2) from the immediate neighborhood
of the target utterance in both directions until the frames belonging to other
target utterances.

This recognizer uses SNR-independent A values in Equation (5.4). Elements
of A in Equation (5.4) are tuned for the highest recognition accuracy on
the development data and set to 1.75 and 3 for speech and noise exemplars
respectively. The multiplicative update rule is iterated 25 times to obtain the
exemplar weights. w and « are set to 1.75 and 0.008 respectively. The columns
of the combined dictionaries and observation matrices are ls-normalized.

AURORA-2

The recognition experiments performed on AURORA-2 data are organized
in two parts. In the first part, the performance of the ANES technique
has been evaluated on both test sets at the SNRs of -5, 0 and 5 dB. The
recognition accuracies obtained using adaptive dictionaries are compared to
the ones obtained using the fixed noise dictionaries [181]. In the second part,
the recognition performance of N-REM with the adaptive noise dictionaries is
compared to the other state-of-the-art recognizers.

The speech exemplars are extracted from the clean training set of AURORA-
2 database [77] which contains 8440 utterances with one to seven digits in
American English. Acoustic feature vectors are represented in mel-scaled
magnitude spectra with 23 frequency bands. The speech exemplars representing
half-digits are segmented by a conventional HMM-based system. There are in
total 52,305 speech exemplars excluding 990 silence exemplars. The minimum
and maximum exemplar lengths are 8 and 40 frames respectively. The number
of speech exemplars extracted for each length and class is shown in Figure 5.4.
Exemplars longer than 40 frames are omitted to limit the number of dictionaries.

In the first part of the experiments, the oracle VAD, a single SNR estimate
and A value for speech and noise exemplars are used at each SNR level, in
order to control the impact of irrelevant parameters on the recognition accuracy.
For this purpose, VAD is obtained by applying an external energy-based VAD
detector to the clean versions of the noisy utterances and SNR estimates are set
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Figure 5.4: Exemplar length distribution in the AURORA-2 database (The
classes are half-digits, e.g. ‘6FH’ stands for the first half of digit ‘5. ‘O’, ‘Z’ and
‘SIL’ stands for ‘oh’, ‘zero’ and ‘silence’ respectively. The bar on right gives the
range of the counts.)

to 0.05, 0.15 and 0.25 for SNRs of -5, 0 and 5 dB respectively. The A values for
speech exemplars are set to 0.5, 1 and 2 for SNRs of -5, 0 and 5 dB respectively.
The A values for noise exemplars are set to half of the speech values.

The fixed dictionaries are extracted from 16 longest noise-only training sequences
(1 sequence from each set) with jumps of 4 frames. The noise-only training
sequences are obtained by removing speech from the noisy utterances in the
multi-condition training set. As a result, the fixed dictionaries contain between
547-589 noise exemplars depending on the frame length.

Adaptive dictionaries are created based on the noise weights that are obtained
using the single dictionary setup. The single dictionary contains noise exemplars
that are extracted from either 160 or 800 longest noise-only training sequences
(10 or 50 sequences from each set). From each noise-only training sequence,
10 noise exemplars are extracted with equal jumps resulting in 1600 or 8000
noise exemplars. The single dictionary also contains 2200 speech exemplars (100
exemplars from each class excluding silence). It uses speech and noise exemplars
containing 15 frames. First and last 20 frames of the target utterances are
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assumed not to contain speech and 150 noise exemplars with 15 frames (5
exemplars and 70 shifted copies from each end) are extracted as described in
Section 5.3.2 and concatenated to the single dictionary. The speech and noise
weights are obtained after 300 iterations. Elements of A in Equation (5.4) are
set to 2 and 1.75 for speech and noise exemplars respectively.

For both fixed and adaptive dictionaries, noise sniffing is also performed at
the recognition phase. The way noise sniffing is performed is slightly different
than in the single dictionary setup. Based on the VAD, the speech onset and
offset frames are detected and the number of sniffed frames is increased if these
points are beyond 20 frames. For each exemplar length [, first [ frames and
I — 1 shifted copies are added to the combined dictionaries. Sniffed frame
sequences are linearly interpolated for the exemplar lengths that are larger than
the number of sniffed frames. After concatenating the different speech and
noise dictionaries, the system ends up containing 675 dictionaries of 23 different
classes (half-digits plus silence). The combined dictionaries and observation
matrices are l3-normalized to balance the deletions and insertions for all SNR
levels. The multiplicative update rule is iterated 100 times for convergence of
all frame lengths with w = 1.75 and a = 0.008.

In the second part of the experiments, we compare the recognition performances
of N-REM using the single dictionary containing noise exemplars from 800
noisy-only training sequences with other recognizers. The details given in the
initial part are the same, except that the single dictionary setup is also used
for the VAD, SNR estimation. SNR-dependent noise modeling is performed
to reduce the computational load for higher SNR levels (cf. Section 5.3.2).
The details of the SNR-dependent ANES technique are given in Appendix A.2.
Recognition is performed after obtaining the adaptive noise dictionaries, VAD
and SNR estimate. A values in Equation (5.4) are SNR-dependent with a ratio
of 0.3 between noise and speech exemplars. A for speech exemplars are set to a
scalar multiple ¢ of the SNRes; which is defined in Appendix A.1. ¢ is set to
8. Maximum values of A for speech and noise exemplars are set to 8 and 2.4
respectively.

5.4.3 Evaluation Metrics

We have opted for the metrics which have been traditionally used for the
evaluation of the databases described in Section 5.4.1 for comparability with the
previous literature. The keyword recognition accuracy (RA) is used to evaluate
the system performance on the CHIME-2 data. The word error rate (WER)
has been used to quantify the recognition accuracy for the AURORA-2 digit
recognition task.
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5.5 Results and Discussion

The recognition performance of N-REM is compared with a standard GMM
recognizer and two noise robust SR-based recognition techniques using fixed-
length exemplars in a single overcomplete dictionary, namely sparse classification
(SC) and feature enhancement (FE) [50].

For CHIME-2 data, the GMM recognizer uses speaker-dependent acoustic
models trained on noisy data. These results are obtained using the HTK
recognition toolkit and the details are available at the 2" CHIME Challenge
website!. The details of the FE and SC recognition systems such as feature
extraction schemes and dictionary sizes are described in [51]. The FE recognition
system refers to the baseline NMF system trained on the reverberated data
in [51].

The GMM and other SR-based recognizers applied on AURORA-2 database
are detailed in [52]. The SC and FE recognizers achieve among the best known
results on AURORA-2, especially at lower SNRs, performing significantly
better than for instance the ETSI advanced front-end (AFE) which has been
considered as a reference for the AURORA-2 database [78]. The GMM and FE
recognition systems are trained on the multi-condition training set. The FE
and SC recognition systems use fixed-length exemplars containing 30 frames.
We have performed recognition experiments on the same subset containing 1000
utterances from each SNR to obtain comparable recognition results.

CHIME-2 Recognition Experiments

The keyword recognition accuracies obtained on the development and test sets
of the CHIME-2 data are given in Figure 5.5. The recognition performances on
the development and test sets are similar for all systems. The SC recognizer
performs better especially at lower SNRs compared to the other recognizers
providing recognition accuracies of 76.5% and 81.3% at -6 and -3 dB on the
test set respectively. N-REM yields recognition accuracies of 69.3% and 76.4%
at the same SNR levels which is slightly higher than 68.0% and 75.9% of the
FE recognizer.

At higher SNRs, N-REM provides comparable results with the SC recognizer.
The recognition accuracies obtained with N-REM at 6 and 9 dB are 91.9% and
93.5% compared to 92.7% and 93.2% of the SC recognizer. The FE recognizer
performs slightly worse than these recognizers with recognition accuracies of

Ihttp://spandh.dcs.shef.ac.uk/chime_challenge/chime2013/chime2_taskl.html
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Figure 5.5: CHIME-2 Recognition Results - The recognition results obtained
using N-REM and the other recognizers (GMM, FE, SC) are given for SNR,
levels from -6 to 9 dB on both the development and test set.

90.7% and 92.0% at same SNR levels. The GMM recognizer trained on the
noisy data provides substantially worse results at all SNR levels.

From these results, it can be concluded that N-REM provides a sufficient level
of noise robustness using only a small set of noise exemplars on condition that
they accurately capture the spectro-temporal properties of the non-stationary
noise corrupting the target utterance. Compared to the other SR-based systems,
a much lower number of iterations is required for the reconstruction error to
provide enough discrimination between classes thanks to the competition among
the compact class-dependent dictionaries.

Separation accuracy of speech and noise sources highly depends on the exemplar
length. In [50], it has been shown that using longer exemplar sizes provides
better separation of speech and noise. Even though the proposed approach comes
with flexibility of using multiple length exemplars, the duration distribution of
the classes in the training data has an impact on the separation performance.
For instance, the exemplars representing half-letters mostly contain 4-10 frames
which makes the recognition less robust to noise compared to the SC and FE
techniques using fixed-length exemplars of 20 frames at lower SNRs.

Finally, N-REM suffers from the lack of training data compared to the other
recognition systems using GMMs or fixed-length exemplars, as the exemplars
belonging to each class are distributed among dictionaries of multiple lengths
resulting in underpopulated dictionaries.
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Noise Dictionary Design with ANES

SNR Level = -54B

SNR Level = 0dB SNR Level = 5dB

Word Error Rate (%)

Word Error Rate (%)
Word Error Rate (%)

Fixed (16 seas) ‘Adaplive (160 seqs) _ Adaplive (800 seqs)

Fixed (16 seas) ‘Adaplive (160 seqs)  Adaptive (800 seqs)

(a) Test Set A

Fixed (16 seqs) ‘Adapive (160 seqs)  Adaptive (800 seqs)

SNR Level = -54B SNR Level =0 dB. SNR Level = 5dB

I Restaurant

Word Error Rate (%)
Word Error Rate (%)

Fixed (16 seqs) Adapiive (160 seqs)  Adaptive (800 seqs)

Fixed (16 seqs) ‘Adaptive (160 seqs)

(b) Test Set B

‘Adaptive (800 seqs) Fixed (16 seqs) Adaptive (160 seqs)  Adapiive (800 seqs)

Figure 5.6: Comparison of the recognition results using fixed and adaptive
noise dictionaries on AURORA-2. The upper half of the figure presents the
recognition results performed on test set A at SNR levels -5, 0 and 5 dB. On the
left, the results obtained with the fixed noise dictionaries are provided. In the
middle and right, the results yielded by adaptive dictionaries using either 160
or 800 noise-only training sequences are given. In each graph, results obtained
on each noise type are given separately and the fifth bar of each experiment is
the mean of all noise types. The lower half presents the results obtained on test
set B at the same SNR levels.

We have performed recognition experiments on the test set A and B of
the AURORA-2 database to compare the performance of the adaptive noise
dictionaries obtained using the ANES technique compared to the use of fixed
noise dictionaries. The recognition results are given in Figure 5.6. The upper
half of the figure presents the results on test set A at -5, 0 and 5 dB. The lower
half presents the results on test set B at the same SNR levels. Results obtained
on each noise type are given separately and the fifth bar of each experiment is
the mean of all noise types.

In the case of matched noise, using adaptive dictionaries provides large
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improvements at all SNR levels. The proposed recognizer with ANES that
selects noise exemplars from 160 noise-only training sequences yields a word
error rate (WER) of 24.1% compared to the 47.1% of the fixed dictionaries.
Increasing the number of noise-only training sequences from 160 to 800 provides
an absolute improvement of 6.2% reducing the WER, to 17.9%. The largest
improvement is obtained in case of babble noise with a decrease in the WER
from 38.5% to 20.0%.

Using 800 training sequences in the final recognizer seems to be a reasonable
choice as the WERs on different noise types tend to converge. At 0 dB and 5
dB, similar improvements are obtained with WERs of 21.2% and 9.3% using
the fixed dictionaries compared to 8.7% and 5.5% using the ANES technique
with 800 training sequences respectively.

The results on test set B have shown that the ANES technique yields marginal
improvements in the case of mismatch noise. At -5 dB, the adaptive dictionaries
with 160 training sequences provide a WER of 55.7% compared to 57.5% of the
fixed dictionaries with an absolute improvement of 1.8%. At 0 dB and 5 dB,
the WERs are reduced from 23.8% and 8.8% to 23.1% and 8.0% respectively.
Increasing the number of training sequences does not improve the performance
further.

Considering these results, the proposed way of noise modeling was found
to be very effective on matched noise yielding significant improvements in
the recognition at lower SNRs. However, the improvement obtained on the
mismatched noise is limited as the ANES technique cannot find noise-only
training sequences that can accurately model the noise.

AURORA-2 Recognition Experiments

Finally, we compare the performance of the N-REM recognizer using adaptive
noise dictionaries with the aforementioned recognizers. The WERs obtained on
the test set A and B of the AURORA-2 database are given in Figure 5.7. The
results on test set A are given on the left side of the figure. N-REM performs
better at -5 dB and 0 dB with WERs of 19.1% and 9.2% compared to 30.4%
and 10.7% of the FE and 35.2% and 13.8% of the SC recognition systems
respectively. This demonstrates the effectiveness of the ANES technique on the
matching noise scenarios. At these SNR levels, the GMM recognizer performs
considerably worse than the SR-based methods.

At higher SNRs, the performance of FE and GMM recognizers is better than
N-REM and SC, thanks to the GMM-based back-end used in conjunction with
MFCC features. N-REM performs slightly better than SC with WERs of
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Figure 5.7: AURORA-2 Recognition Results - The recognition results obtained
using N-REM and the other recognizers (GMM, FE, SC) are given for SNR
levels from -5 to 20 dB on the same subset of test set A and B containing 1000
utterances per SNR level. The average WERs for the SNR levels between 20
and 0 dB are given on the rightmost bar of each figure.

4.9% and 5.6% at 10 dB, 3.6% and 4.8% at 15 dB, and 2.4% and 4.5% at 20
dB respectively. The WER provided by N-REM on the clean speech is 1.7%
compared to 0.7% of the GMM, 0.5 of the FE and 3.6% of the SC recognizer.

On the right side of the same figure, the WERs on test set B are presented.
N-REM performs slightly worse than the other SR-based recognizers with WERs
of 55.0% and 24.3% at -5 and 0 dB. These results are worse than the results
provided by the SC with WERs of 52.4% and 23.5% and FE with the WERs of
52.6% and 20.5% for the same SNRs respectively. GMM performs worse than
the SR-based recognizers. At higher SNRs, the results follow a similar trend as
the results on test set A.

5.6 General Discussion

5.6.1 Speech Recognition Performance

The main goal of this work was to propose a novel exemplar-based speech
recognition framework, N-REM. Unlike conventional exemplar matching
approaches, it is noise robust by explicitly modeling noise and unlike the
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recently proposed exemplar-based noise robustness techniques it builds on, its
exemplars model speech units rather than arbitrary fixed-length exemplars.

While the results show that the proposed framework is quite noise robust,
evaluations on the clean speech of AURORA-2 do show that N-REM does not
perform as well as a GMM/HMM-based systems. While N-REM does perform
better than SC, the other purely exemplar-based recognizer in our comparisons,
it is hampered by the same constraints as SC: the necessity of working with a
feature representation for which speech and noise are (approximately) additive.
Combination of the generalized KLD and the mel-scaled magnitude spectral
features are not as discriminative as the complex GMM distributions that are
used in conjunction with MFCC features.

At lower SNRs, the proposed framework performs reasonably well - at SNRs
10 to 0 dB, N-REM performs comparably to the SC and FE systems on both
CHIME-2 and AURORA-2 data. At even lower SNRs, N-REM outperforms FE
on CHIME-2 and both FE and SC on test set A of AURORA-2. It performs
comparably to SC and FE on test set B of AURORA-2. In fact, to the best of
our knowledge, the WER . of 19.1% obtained by N-REM at -5 dB is the best
result ever reported on test set A of AURORA-2.

The exemplar-based techniques FE, SC and N-REM have in common that
there is a performance gap between matched and mismatched noise cases. As
such, the use of exemplars is most applicable in scenarios where the expected
noise types can be predicted (and thus stored in the noise dictionary), or when
matching exemplars can be readily obtained from the environment, a scenario
which is mimicked in CHIME-2 data. For N-REM, this gap is larger than for
SC and FE since N-REM uses smaller noise dictionaries. This results in a lower
probability of having a suitable noise exemplar in the combined dictionaries
with a similar spectral content with the unseen noise types.

At the same time, the SNR-dependent noise modeling and the proposed noise
dictionary design technique ANES are very effective at picking matching noise
exemplars from training material, especially for traditionally difficult noise types
such as babble noise. Depending on the memory and computational limitations,
the size of the noise repository can be easily increased to have better coverage
of multiple noise types, and thus improve the performance.

5.6.2 Computational Effort

The computational bottleneck of the proposed framework is the multiplicative
update rule given in Equation 5.4. In practice, the simulation of the proposed
technique has benefited substantially from the use of GPUs. All recognition
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experiments have been performed using an NVIDIA Tesla C2070 GPU. To
quantify the simulation times for each task, we have timed the recognition
processes in MATLAB for each utterance and averaged the simulation time per
utterance over each test set. On the CHIME-2 data, the average recognition
time is obtained by averaging the recognition time over 600 test utterances. For
these utterances, the mean duration is 1.8 seconds and the average recognition
time is 26.1 seconds with a standard deviation of 2.7 seconds.

The SNR-dependent noise dictionaries yield different simulation times at each
SNR level in AURORA-2 database. At -5 dB, the recognizer uses the highest
number of noise exemplars, hence, the longest simulation times are expected at
this SNR level. After averaging over a set containing 250 utterances with a mean
duration of 1.7 seconds, the average recognition time is found to be 42.5 seconds
with a standard deviation of 15.2 seconds. For higher SNRs, the SNR-dependent
noise modeling has reduced the simulation times as the combined dictionaries
contain less noise exemplars. On clean speech, the average recognition time
reduces to 22.5 seconds with a standard deviation of 8.2 seconds. These average
recognition times also include the time required for the single dictionary setup,
which varies between 3-5 seconds depending on the utterance length.

5.7 Conclusion

In this chapter, we have introduced a novel recognition framework (N-REM)
which performs noise robust speech recognition using multiple-length exemplars
associated with a single speech unit. For each length, these speech exemplars
are organized in separate speech dictionaries and they are concatenated with
a noise dictionary forming the combined dictionaries that can model speech
and noise mixtures. Using the combined dictionaries, noisy speech segments
are approximated as a linear combination of the exemplars. The decoding is
performed based on the quality of the match quantified by the reconstruction
error between the noisy speech segments and their approximations.

Several design techniques are applied to noise dictionaries to have effective noise
modeling with a small amount of noise exemplars. Firstly, we have introduced
the active noise exemplar selection (ANES) technique which extracts noise
exemplars from the training noise-only sequences that get high weights obtained
using the single dictionary. Noise sniffing is applied to extract exemplars from
the immediate noise context of the target utterance. Finally, SNR-dependent
noise modeling is adopted in order to find a compromise between the noise
modeling accuracy and computational restrictions.
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We have performed several recognition experiments on the small vocabulary
track of the 2" CHiME Challenge and AURORA-2 database to investigate
the noise robustness of the proposed framework. Initially, we have compared
the performance of the adaptive noise dictionaries obtained using the ANES
technique with the use of fixed noise dictionaries. The recognition results
have shown that N-REM using adaptive noise dictionaries yields substantially
higher recognition accuracies at lower SNRs. Moreover, we have compared the
recognition performance of N-REM using the adaptive noise dictionaries with
the other GMM and SR-based recognizers. N-REM using all aforementioned
noise dictionary design techniques provides a higher degree of noise robustness
in case of matched noise on the AURORA-2 database achieving WERs of
19.1% and 9.2% at SNR levels of -5 and 0 dB respectively. At higher SNRs,
FE and GMM recognizers perform better than N-REM and SC thanks to the
GMM/HMM back-end with MFCC features.



Chapter 6

Noise Dictionary Design for
N-REM

This chapter investigates an adaptive noise dictionary design approach to achieve
an effective and computationally feasible noise modeling for the noise robust
exemplar matching (N-REM) framework. N-REM approzimates noisy speech
segments as a linear combination of multiple length exemplars in a sparse
representation (SR) formulation. Compared to the previous SR techniques with
a single overcomplete dictionary, N-REM uses smaller dictionaries containing
considerably fewer noise exemplars. Hence, the noise exemplars have to be
selected with care to accurately model the spectrotemporal content of the actual
noise conditions. For this purpose, in a previous work, we introduced a noise
exemplar selection stage before performing recognition which extracts noise
exemplars from a few noise-only training sequences chosen for each target noisy
utterance. In this work, we explore the impact of the several design parameters on
the recognition accuracy by evaluating the system performance on the CHIME-2
and AURORA-2 databases.

This chapter is adapted from: Emre Yilmaz, Jort F. Gemmeke and Hugo
Van hamme, “Adaptive Noise Dictionary Design for Noise Robust Exemplar
Matching of Speech”, Submitted to EUSIPCO 2015.
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6.1 Introduction

Using exemplars in a sparse representation (SR) formulation to model noisy
speech has provided major improvements in the automatic speech recognition
(ASR) performance compared to conventional approaches such as hidden Markov
models (HMM) under adverse conditions [143]. Previously, we have proposed an
ASR system that performs noise robust exemplar matching (N-REM) [184] using
exemplars of multiple lengths, each associated with a single speech unit such as
phones, syllables, half-words or words similar to [29]. Exemplars of different
length are organized in separate dictionaries based on the associated speech unit
(class) and length unlike the previous SR-based systems [50,92,138] using a single
dictionary with fixed-length exemplars. Using separate dictionaries for each
class provides better classification as input speech segments are approximated
as a linear combination of exemplars belonging to the same class only [181].

The N-REM dictionaries are substantially less populated compared to a single
overcomplete dictionary, as the speech exemplars are associated with a single
speech unit and their length distribution is class-dependent which results in
unevenly populated speech dictionaries. Unlike the speech exemplars, noise
exemplars are extracted from noise-only training sequences for any arbitrary
length. As a result, while there are a large number of available noise exemplars
for each exemplar length, only the ones that match the actual test noise
conditions will be essential for accurate recognition. Thus, noise dictionary
design mainly focuses on accurate modeling of the background noise using the
smallest possible number of noise exemplars. Previous experiments have shown
that rudimentary noise modeling approaches, e.g. using fized noise dictionaries,
provide very poor estimation of the noise source [181]. Using much smaller
noise dictionaries due to computational restrictions compared to the previous
SR-based recognizers with fixed-length exemplars results in inferior performance
especially at lower SNR levels. For this reason, we have proposed an adaptive
noise exemplar selection technique which chooses the best matching noise-only
training sequences from a noise repository using a selection dictionary and
extracts the noise exemplars that are used during the recognition from these
sequences [184]. In this chapter, we further explore the impact of several design
parameters, e.g. size of the noise repository and the amount of selected noise
exemplars, on the recognition performance to reach a compromise between the
noise robustness of the recognizer and the computational complexity.
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6.2 Noise robust exemplar matching

Training frame sequences representing various noise-free speech units (speech
exemplars), each comprised of D mel bands and spanning ! frames, are extracted
from the alignments obtained with an HMM-based recognizer and reshaped
into a single vector and stored in the columns of a speech dictionary S.;: one
for each class ¢ and each length [. Similarly, a single noise dictionary N; for
each length [ is formed by reshaping noise exemplars. Each speech dictionary is
concatenated with the noise dictionary of the same length to form a combined
dictionary A.; = [S.;N;] of dimensionality (D - 1) x M., where M., is the
total number of speech and noise exemplars.

An observed noisy speech segment of length T frames is also reshaped into vectors
by applying a sliding window approach [50] with window length of [ frames
and stored in an observation matrix Y; = [yll, yl2..., yl(T_lH)] of dimensionality
(D-1) x (T —=141) for lpmin <1 < lpax where i, and ly.x are the smallest and
largest speech exemplar lengths respectively. For every class ¢, each observation
vector y; is expressed as a linear combination of the exemplars that are stored
in the dictionaries of the same length, y; ~ A ;x.; for x?}l > 0 where x.; is
an M, ;-dimensional non-negative weight vector. The exemplar weights are
obtained by minimizing the cost function d(y;, A¢Xc1) + Efyvl[;ll zy Ay, for
", > 0 where A is an M, ;-dimensional vector which contains non-negative
values and controls how sparse the resulting vector x is. The generalized
Kullback-Leibler divergence (KLD) is used for d which is commonly used in
source separation problems and shown to produce better results than Euclidean
distance when used in conjunction with mel-scaled spectral features [174]. The

generalized KLD is defined as d(y,§) = Zszl yi log z—z — Yk + k-

The regularized optimization problem with the aforementioned cost function
is solved with non-negative sparse coding (NSC) [79]. For NSC, we apply the
multiplicative update rule given in [184] to obtain the exemplar weights. In
practice, all observation matrices Y; for I < I < lnhax are approximated
using the combined dictionaries A.; of the corresponding length by applying
the multiplicative update rule. After a fixed number of iterations, the
reconstruction errors between each observation matrix Y; and its approximation
are calculated. As the label of each dictionary is known, decoding is performed
by applying dynamic programming to find the class sequence that minimizes
the reconstruction error.
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6.3 Selection Dictionary Design

The accuracy of the noise modeling depends on the congruence of the
spectrotemporal content of the noise exemplars and actual noise conditions
contaminating the target utterance. Therefore, for each noisy utterance, a
few noise-only training sequences that are able to model the background
noise are selected on the fly and the noise exemplars in N; are extracted
from these sequences. The selection is performed by applying NSC using a
selection dictionary A} = [Sz Nz] containing speech exemplars from all
classes and noise exemplars from different noise-only training sequences. The
superscript * marks the dictionaries used in the noise exemplar selection. The
speech dictionary S7  is obtained by concatenating an equal number of speech
exemplars of the same length from each class. The length Ls can be set to any
exemplar length containing abundant speech exemplars from each class.

For the noise dictionary N7 , a noise repository of F' noise-only training
sequences is created and G noise exemplars are extracted from each noise-only
training sequence with an equal frame shift. In total, N7 contains F'- G noise
exemplars. Once the selection dictionary A7 is formed, the observation matrix
Y, of length Lg is approximated as a linear combination of the exemplars
in the selection dictionary Y, ~ A} xp, for x,, > 0. By accumulating the
weights of all noise exemplars extracted from the same training sequence, a total
weight for each training sequence is obtained. Evidently, the training sequences
having higher weights are expected to model the spectrotemporal properties of
the background noise [182]. Hence, the noise dictionaries N for lin <1 < lax
that are used during the recognition contain noise exemplars extracted from X
training sequences with the highest weights.

Noise sniffing [53] is also applied for acquiring noise exemplars on the fly from
the immediate neighborhood of the target utterance. The extracted noise
exemplars are contained in the noise dictionaries, i.e., N7 as a part of the
selection dictionary. Shifted copies of these frame sequences are also included
to provide some degree of shift-invariance [52].

6.4 Experimental setup

6.4.1 Databases

The training material of AURORA-2 [77] consists of a clean and a multi-condition
training set, each containing 8440 utterances. The multi-condition training set
was constructed by mixing the clean utterances with noise at SNR levels of 20,
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15, 10 and 5 dB. Test set A and B consist of 4 clean and 24 noisy datasets at
six SNR levels between -5 and 20 dB. The noise types of test set A match the
multi-condition training set. Each subset contains 1001 utterances with one to
seven digits 0-9 or oh. To reduce the simulation times, we subsampled the test
sets by a factor of 4 (1000 utterances per SNR).

The small vocabulary track of the 24 CHIME Challenge [172] addresses the
problem of recognizing commands in a noisy and reverberant living room. The
clean utterances contain utterances from 34 speakers reading 6-word sequences of
the form command-color-preposition-letter-digit-adverb. There are 25 different
letters, 10 different digits and 4 different alternatives for each of the other
classes. The recognition accuracy of a system is calculated based on the
correctly recognized letter and digit keywords.

6.4.2 Exemplar extraction and implementation details

The speech exemplars are extracted from the clean training set of AURORA-
2 data. Acoustic feature vectors are represented in mel-scaled magnitude
spectra with 23 mel bands. The speech exemplars representing half-digits are
segmented by a conventional HMM-based system. There are in total 52,305
speech exemplars excluding 990 silence exemplars. The minimum and maximum
exemplar lengths are 8 and 40 frames respectively. Exemplars longer than 40
frames are omitted to limit the number of dictionaries. The noise-only training
sequences are obtained by removing speech from the noisy utterances in the
multi-condition training set. The fized noise dictionaries are extracted from the
16 longest noise-only training sequences with shifts of 4 frames. Consequently,
the fixed dictionaries contain between 547-589 noise exemplars depending on
the exemplar length. The selection dictionary contains noise exemplars that are
extracted from the longest noise-only training sequences. The amount of noise
exemplars in the selection dictionaries depends on the chosen F and G value.
The selection dictionary also contains 2200 speech exemplars. It uses speech
and noise exemplars containing 15 frames. For AURORA-2, an SNR-dependent
X value is used as it provides an improved recognition accuracy and reduced
computational load at higher SNR levels by using less noise exemplars. The
number of noise exemplars extracted from each sequence varies between 77 and
170. The further details of the SNR-dependent noise modeling is given in [184].
The word error rate is used to quantify the recognition accuracy on AURORA-2
data.

The exemplars and noisy speech segments of CHIME-2 data are represented as
mel-scaled magnitude spectral features extracted with a 26 channel mel-scaled
filter bank (D = 26). The frame length is 25 ms and the frame shift is 10 ms.
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The binaural data is averaged in the spectral domain to obtain 26-dimensional
feature vectors. Half-word exemplars belonging to each speaker are organized
in separate dictionary sets for speaker-dependent modeling yielding 34 different
dictionary sets. Based on the availability of the exemplars, the minimum and
maximum exemplar lengths are 4 and 40 frames respectively. The baseline
system performs recognition using noise dictionaries containing 400 sniffed
noise exemplars. Each embedded utterance in the development and test set is
segmented into noise-only sequences by removing all target utterances. G=>5
noise exemplars of 25 frames are extracted from each noise-only sequence and
stored in the single noise dictionary. The single noise dictionary size varies
depending on the number of available noise-only sequences for each embedded
recording. The adaptive noise modeling only evaluates the noise-only sequences
that are extracted from the embedded recording which contains the target
utterance. The number of noise exemplars extracted from each sequence varies
between 95 and 195. The single speech dictionary contains 2354 full-word
exemplars (maximum 50 exemplars from 51 classes) of 25 frames. The full-word
exemplars are used in the single speech dictionary, as there is no exemplar
length L, containing a vast number of samples from each half-word class. The
keyword recognition accuracy is used to evaluate the system performance on
the CHIME-2 data.

6.5 Results and discussion

The recognition experiments performed on AURORA-2 data investigate the
influence of the selection dictionary size, i.e. the noise repository size F' and the
number of exemplars extracted from each training sequence in the repository
G, on the recognition performance. Choosing an SNR-dependent X best
matching training sequences for the recognition is kept in the AURORA-2
experiments [184]. For CHIME-2 data, the selection dictionary is extracted
from the noise-only segments of each embedded sequence which results in a
fixed value of F. Hence, the CHIME-2 experiments investigate different settings
of forming the noise dictionaries using the adaptive noise modeling approach
and/or noise sniffing by varying the value of X. For this purpose, we compare
the baseline recognizer using only sniffed exemplars with novel systems adopting
adaptive noise modeling with and without the sniffed exemplars.

The performance of the adaptive noise modeling has been evaluated on both
test sets of AURORA-2 data at the SNRs of -5, 0 and 5 dB and the results
are presented in Table 6.1. The best results of the proposed setup are given in
bold. The details of the other recognition systems can be found in [52]. In these
recognition experiments, we compare the word error rates (WER) obtained
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Table 6.1: Word error rates in percentages obtained on test set A and B of the

AURORA-2 data

(a) Test set A

[SNR(dB) \ -5 \ 0 5
NREM (Fized) 47.1 21.2 9.3
GMM/HMM 60.8 24.3 7.3

SC 35.2 13.8 7.4

FE 30.4 10.7 3.3
NREM (Adpt.) [G=5 G=10 G=15[G=5 G=10 G=15[G=5 G=10 G=15
F = 160 252 24.1 235 [11.0 10.8 105 | 6.2 58 6.1
F = 320 232 21.2 21098 95 95 [59 59 56
F = 480 21.6 20.3 200 [10.1 94 98 [58 56 5.5
F = 640 202 185 184 (9.1 92 94 [58 56 5.6
F = 800 199 179 180 [ 95 87 93 |58 56 56
F = 1200 19.0 175 17.2|93 84 89 [5.6 5.5 5.3

(b) Test set B

[SNR(dB) \ -5 \ 0 5
NREM (Fized) 57.5 23.8 8.8
GMM/HMM 64.0 25.9 7.4

SC 52.4 23.5 11.0

FE 52.6 20.5 5.7
NREM (Adpt.) [G=5 G=10 G=15[G=5 G=10 G=15[G=5 G=10 G=15
F = 160 57.1 55.8 56.1 [23.5 23.1 234 |82 8.0 8.2
F =320 55.6 56.2 55.9 (234 23.1 235 |82 84 88
F = 480 55.8 56.2 55.7 [22.8 234 231 |86 83 84
F = 640 55.2 56.4 55.7 228 23.1 23.0 |82 83 87
F = 800 56.0 55.7 55.8 [22.8 233 22.7[7.9 83 86
F = 1200 55.4 56.1 56.6 [22.1 23.9 232 |84 86 87

using adaptive and fized noise dictionaries. The experiments with adaptive
dictionaries are performed by varying F' between 160 to 1200 and G between 5 to
15 exemplars per sequence. The results are given at the lower panel of Table 6.1a
and 6.1b. In Table 6.1a, the recognition results obtained on test set A are shown.
The baseline system using fixed dictionaries provides WERs of 47.1%, 21.2%
and 9.3% at SNR level of -5, 0 and 5 dB respectively. The proposed adaptive
noise modeling scheme with F'=160 and G=5 training sequences reduces the
WERs dramatically to 25.2%, 10.9% and 6.2% at the same SNR levels. For
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G=10, the WER reduces to 24.1% at -5 dB. G=10 is a reasonable choice as
increasing G further brings no significant improvement. At SNR levels of 0 and
5 dB, G has a less noticeable impact on the recognition accuracy. Increasing
F provides further improvements on the recognition accuracy with WERs of
20.3%, 17.9% and 17.5% for F equal to 480, 800 and 1200 at SNR of -5 dB.
The recognition results follow a similar trend at SNRs of 0 and 5 dB. The lower
panel of Table 6.1b presents the recognition results for test set B. The baseline
system using fixed dictionaries provides WERs of 57.5%, 23.8% and 8.8% at
SNR level of -5, 0 and 5 dB respectively. For the mismatched noise case, the
selection technique still provides some improvement for any G and F' which is
explained by the increased spectral diversity of the available noise exemplars.
Unlike the matched case, increasing G or F' does not have a considerable impact
on the recognition accuracy.

The recognition accuracies provided by the baseline and the proposed systems
on the development and test set of CHIME-2 data are presented in Table 6.2a
and Table 6.2b. The results on development and test sets follow a similar
pattern, thus, we focus only on the test set results. The baseline system using
400 sniffed exemplars provides 69.3%, 76.8% and 84.5% at SNRs of -6, -3 and 0
dB. The recognition system using only adaptive dictionaries with X =3 provides
comparable results with 69.8%, 76.5% and 83.9% at the same SNR levels. The
mixed dictionaries obtained by combining 200 sniffed exemplars (SE) with
adaptive noise dictionaries having X=2 provide the best performance. This
system provides 71.2%, 78.9% and 85.3% at SNRs of -6, -3 and 0 dB with an
absolute improvement of 1.9%, 2.1% and 0.8% respectively. Another setup
that gives promising results is the one using noise dictionaries with 300 SE and
X=1. All setups using adaptive noise modeling provide comparable results at
higher SNRs. The recognition results with higher X values are not reported
as increasing X does not improve the results with an increased computational
burden.

From these results, it can be concluded that the preliminary noise sequence
selection technique benefits from the larger noise repository with a rather coarse
sampling of the noise-only sequences in the repository. For AURORA-2 data,
setting G=10 exemplars per sequence captures the within noise-only sequence
variation well enough and larger G values do not improve the recognition
accuracy. Finally, depending on the available memory, the noise repository size
F can be increased further to have better coverage of the variation in background
noise and hence improved performance. The experiments on CHIME-2 data
show that combining sniffed exemplars with the exemplars extracted from the
selected sequences provides superior noise modeling compared to only sniffing
similar amounts of noise exemplars. Furthermore, it has been shown that the
best recognition performance at lower SNR levels is achieved using 350-450
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mixed noise exemplars per dictionary. Increasing the amount of noise exemplars
further does not bring any improvement. This upper bound on the recognition
performance is explained by the poor speech modeling provided by the speech
dictionaries due to the limited amount of training data.

6.6 Conclusion

This chapter investigates the impact of several parameters of an exemplar-based
adaptive noise modeling technique on the recognition accuracy. A non-negative
sparse coding-based noise exemplar selection technique is described in the
previous work that selects noise exemplars on-the-fly to be able to model the
spectrotemporal content of the actual noise conditions. Using the optimal
parameters, the final system with adaptive noise modeling uses less noise
exemplars compared to the system using fixed dictionaries and provides better
recognition accuracy on the AURORA-2 data. Moreover, the experiments
on CHIME-2 data show that the mixed dictionaries containing sniffed and
adaptively selected noise exemplars outperform the baseline using sniffed
exemplars only. Overall, the proposed approach appears to be an effective
noise dictionary design scheme that can be incorporated in exemplar-based ASR
approaches.



88 NOISE DICTIONARY DESIGN FOR N-REM

Table 6.2: Recognition accuracies in percentages obtained on development and
test set the CHIME-2 data - SE: Sniffed Exemplars

(a) Development Set
SNR(dB) | 6 | 3 [ o[ 3] 6 | 9 |
NREM (400SE) | 69.4 | 76.4 | 85.0 | 90.1 | 92.9 | 93.3
GMM/HMM 49.3 | 58.6 | 67.5 | 75.0 | 78.8 | 82.9

SC 75.5 | 81.4 | 875 | 89.9 | 92.4 | 92.3
FE 68.0 | 72.2 | 80.9 | 86.7 | 89.0 | 90.5
NREM (Adpt.) | -6 -3 0 3 6 9

X =1 64.8 | 71.3 | 80.6 | 86.8 | 90.9 | 92.4
X =2 66.0 | 73.6 | 82.0 | 89.1 | 92.1 | 93.2
X =3 69.1 | 76.3 | 84.6 | 89.3 | 92.3 | 93.5

X=1+100SE | 68.3 | 76.4 | 83.6 | 90.2 | 92.3 | 92.9
X =2+ 100SE | 67.0 | 73.9 | 83.0 | 90.7 | 92.3 | 934
X=3+100SE | 67.1 | 746 | 83.7 | 904 | 925 | 93.3
X =1+ 200SE | 65.7 | 73.9 | 83.6 | 90.3 | 924 | 93.3
X =2+ 200SE | 70.6 | 78.0 | 84.7 | 90.4 | 92.6 | 93.8
X=1+300SE | 71.3 | 77.8 | 85.1 | 90.3 | 92.8 | 93.6

(b) Test set
SNR(dB) | 3] o[ 3 ] 6 | 9 |
NREM (400SE) | 69.3 | 76.8 [ 84.5 [ 88.8 | 91.9 | 93.5
GMM/HMM 49.7 [ 57.9 [ 678 | 73.7 | 80.8 [ 82.7

1
(=2}

SC 76.5 | 81.3 | 88.9 | 90.5 | 92.7 | 93.2
FE 67.2 | 75.9 | 8L.1 | 86.4 | 90.7 | 92.0
NREM (Adpt.) | -6 | -3 0 3 6 9

X =1 655 | 72.2 | 80.8 | 86.4 | 89.8 | 93.1
X =2 68.4 | 75.3 | 83.6 | 87.8 | 90.3 | 92.8
X=3 69.8 | 76.5 | 83.9 | 87.8 | 90.5 | 92.7

X=1+100SE | 69.5 | 749 | 85.3 | 88.7 | 919 | 93.3
X =2+ 100SE | 68.0 | 75.3 | 84.5 | 87.7 | 91.8 | 92.7
X =3+ 100SE | 67.7 | 75.3 | 84.0 | 87.5 | 91.0 | 92.6
X =14 200SE | 67.2 | 749 | 85.3 | 87.0 | 924 | 93.2
X=2+200SE | 71.2 | 78.9 | 85.3 | 88.7 | 919 | 928
X =14+ 300SE | 70.6 | 77.4 | 85.3 | 88.8 | 92.6 | 93.4




Chapter 7

Alpha-Beta Divergence for
N-REM

The noise robust exemplar matching (N-REM) framework performs automatic
speech recognition wusing exemplars, which are the labeled spectrographic
representations of speech segments extracted from training data. By incorporating
a sparse representations formulation, this technique remedies the inherent noise
modeling problem of conventional exemplar matching-based automatic speech
recognition systems. In this framework, noisy speech segments are approximated
as a sparse linear combination of the exemplars of multiple lengths, each
associated with a single speech unit such as words, half-words or phones. On
account of the reconstruction error-based back end, the recognition accuracy
highly depends on the congruence of the speech features and the divergence
metric used to compare the speech segments with exemplars. In this work, we
replace the conventional Kullback-Leibler divergence (KLD) with a generalized
divergence family called the Alpha-Beta divergence with two parameters, o and
B, in conjunction with mel-scaled magnitude spectral features. The proposed
recognizer traverses the («,f) plane depending on the amount of contamination
to provide better separation of speech and noise sources. Moreover, we apply
our recently proposed active noise exemplar selection (ANES) technique in a
more realistic scenario where the target utterances are degraded by genuine room
noise. Recognition experiments on the small vocabulary track of the 2"* CHiME
Challenge and the AURORA-2 database have shown that the novel recognizer
with the AB divergence and ANES outperforms the baseline system using the
generalized KLD with tuned sparsity, especially at lower SNR levels.

This chapter is adapted from: Emre Yilmaz, Jort F. Gemmeke and Hugo

89
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Van hamme, “Noise Robust Exemplar Matching with Alpha-Beta Divergence”,
Submitted to Speech Communication, 2015.

7.1 Introduction

Data-driven automatic speech recognition (ASR) techniques [1,29, 36,70, 143,
159,161] became popular in the last decade as a viable alternative after the long
dominance of statistical acoustic modeling in the form of the Gaussian mixture
models (GMM) in hidden Markov models (HMM) [15]. Templates or exemplars
are labeled speech segments of multiple lengths extracted from training data,
each associated with a certain speech unit such as phones, syllables or words.
As they preserve the complete duration and trajectory information, exemplars
are more immune to the inherent spectrotemporal variation of speech and its
deteriorating effect on the ASR [13] compared to the conventional GMM /HMM-
or deep neural networks (DNN)-based recognition systems. Moreover, it has
been shown that using reasonably large exemplar sets overcomes the well-known
generalization problem of the previous exemplar-based approaches [30,149,158].

Exemplar matching-based recognition can be performed by evaluating the
similarity of the exemplars with the segments from the input speech with
respect to a distance/divergence metric by applying dynamic time warping
[30,129,144]. In these applications, speech is represented using discriminatively
trained features to ensure that the used distance/divergence metric mostly yields
lower scores for the matching class compared to the other classes, resulting in
increased recognition accuracies. The input speech segments can be simply
classified as the label of the closest exemplar, or by a voting scheme on the set
of K nearest neighbors [57].

Exemplar-based sparse representations (SR) is an alternative data-driven ASR
approach in which the spectrogram of input speech segments is modeled as
a sparse linear combination of exemplars. SR-based techniques have been
successfully used for speech enhancement [54], feature extraction [142] and
speech recognition [50,92,162]. These approaches model the acoustics using
same-length exemplars labeled on the frame level and stored in a single
overcomplete dictionary. The exemplar weights are obtained by solving a
regularized convex optimization problem with a cost function consisting of
the approximation quality with respect to a divergence and a term to induce
sparse linear combinations using only a few exemplars. The choice of the
divergence depends on the used speech features (how speech and noise sources
are distributed in the high-dimensional feature space) to obtain reasonable sparse
linear combinations. The non-negativity requirement of the SR formulation
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prevents the use of discriminatively trained features in this framework. The
generalized Kullback-Leibler divergence (KLD) with the mel scaled magnitude
spectral features has been successfully used in various applications in source
separation, SR-based noise robust speech recognition and polyphonic music
transcription [138,151,152,162,174]. King et al. investigated the optimal
parameter of the beta divergence as a cost function for non-negative matrix
factorization-based speech separation and music interpolation in [97].

This chapter focuses on the divergence used by a recently proposed exemplar
matching-based recognition approach, dubbed noise robust exemplar matching
(N-REM) [184], which performs conventional exemplar matching in a SR
formulation to be able to model noisy speech. Similar to the exemplar matching
approaches, N-REM uses exemplars associated with a single speech unit such as
phones, syllables, half-words or words. These exemplars are organized in separate
dictionaries based on their duration (frame length) and class (associated speech
unit). By applying a sliding window approach, the noisy speech segments are
jointly approximated as a linear combination of the speech and noise exemplars
using each dictionary. The recognizer adopts a reconstruction error based
back-end, i.e. the recognition is performed by comparing the approximation
quality for different classes quantified by a divergence measure and choosing
the class sequence that minimizes the total reconstruction error.

The divergence plays an essential role in the recognition performance of N-REM
on account of the reconstruction error based backend. The optimal divergence
is expected to weight the individual reconstruction errors of each time-frequency
cells in a way that the most informative cells contribute the most to the total
reconstruction error. In this work, we use the Alpha-Beta (AB) divergence [20]
in place of the generalized KLD to quantify the approximation error. The AB
divergence is a family of divergences with two parameters, namely « and . For
different values of these parameters, the AB divergence connects various well-
known distance/divergence measures such as the Euclidean distance, Hellinger
distance, Itakura-Saito divergence and generalized KLD. The higher degree
of freedom offered by the AB divergence has been shown to enable better
robustness against noise and outliers [20]. The initial ASR results at lower SNR
levels are presented in [185] and it has been shown that using AB divergence
with an appropriate («,3) pair provides better recognition than the generalized
KLD with tuned sparsity.

The main contribution of this chapter is a novel noise robust recognizer which
traverses the («,3) plane based on the estimated SNR level to perform the most
accurate separation of speech and noise sources. The recognition performance of
the proposed recognizer is investigated on the small vocabulary track of the 274
CHIiME Challenge (CHIME-2) and the AURORA-2 database. Secondly, an in-
depth discussion on the impact of the divergence parameters on the recognition
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performance is provided by comparing the behaviour of the generalized KLD
and AB divergence for several («,f) pairs. Finally, we apply the adaptive
noise modeling technique, active noise exemplar selection (ANES) [184], on the
CHIME-2 data to investigate the recognition performance in case of genuine
room noise. The rest of the chapter is organized as follows. The N-REM
using the AB divergence is described in Section 7.2. Section 7.3 discusses
the evaluation setup and implementation details. Section 7.4 presents the
recognition results and a discussion about the results is given in Section 7.5.
Section 7.6 provides a general discussion and the concluding remarks.

7.2 Noise Robust Exemplar Matching

N-REM models noisy speech segments as a sparse linear combination of speech
and noise exemplars of various lengths that are stored in multiple dictionaries.
The overview of the recognizer is given in Figure 7.1. Compared to a system using
fixed-length exemplars stored in a single dictionary, using separate dictionaries
for each class results in noisy speech segments being approximated as a linear
combination of exemplars belonging to the same class only. From the geometrical
interpretation of SR-based source separation, it is known that the farther the
convex hull of the basis vectors belonging to different sources (speech and noise
in this case) are, the better the separation is [37]. Hence, the use of separate
dictionaries for each speech unit provides a more precise representation in the
high-dimensional feature space.

7.2.1 Model Description

Training frame sequences representing various speech units (speech exemplars)
are extracted based on the state-level alignments obtained using a conventional
HMM-based recognizer. Speech exemplars, each comprised of D mel frequency
bands and spanning [ frames, are reshaped into a single vector and stored in the
columns of a speech dictionary S.;: one for each class ¢ and each frame length
l. Each dictionary is of dimensionality DI x N.; where N.; is the number of
available speech exemplars of class ¢ and frame length [. Similarly, a noise
dictionary N; for each frame length [ is formed by reshaping the noise exemplars.
Each speech dictionary is concatenated with the noise dictionary of the same
length to form a combined dictionary A.; = [S.,; N;] of dimensionality DI x M.,
where M, is the total number of available speech and noise exemplars.

An observed noisy (and/or reverberated) speech segment of frame length T
frames is also reshaped into vectors by applying a sliding window approach [50]
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Figure 7.1: The Recognizer Overview. The single dictionary is used for the VAD,
SNR estimation and active noise exemplar selection (ANES). Noise exemplars
that are used in the recognition are selected based on the single dictionary.
Speech exemplars are extracted from the training data using the segmentation
information. They are organized in dictionaries based on their length and
class. Noise dictionaries are concatenated to the speech dictionaries forming
the combined dictionaries. Non-negative sparse coding (NSC) is applied to
approximate noisy test utterances using the combined dictionaries. After a fixed
number of iterations, the reconstruction errors are calculated and a dynamic
programming algorithm is applied to find the class sequence with the minimum
reconstruction error.

with window length of [ frames and stored in an observation matrix Y; =
yi,vi.., y§T71+1)] of dimensionality DI x (T — 1+ 1). Due to multiple-length
exemplars, the window length [ is varied between the minimum exemplar length
Imin and maximum exemplar length [, .5 yielding observation matrices Y; for
Imin <1 < lhax. For every class ¢, each observation vector y; is expressed as a
linear combination of the exemplars that are stored in the dictionaries of the

same length:

yim Y alali =Agxe, st aly >0 (7.1)

where x.; is an M, ;-dimensional non-negative weight vector. The sparse
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solutions of x.; yield a more realistic approximation of the observed segments
without overfitting and have been shown to provide better recognition results
[80,174]. The combined dictionaries consisting of speech and noise exemplars
are presumed to model all acoustic variability in the observed signal due to
pronunciation variation, background noise and so forth. This model can also
model reverberation by storing reverberated speech exemplars rather than clean
speech exemplars.

7.2.2 Finding Exemplar Weights

The exemplar weights x.; are obtained by minimizing the cost function
consisting of a single term which quantifies the approximation error d(y;, A¢ xc,1)
for non-negative exemplar weights. Unlike the baseline recognizer and the
other SR-based approaches, the new cost function does not enforce sparsity
on the exemplar weights. The impact of the missing sparsity inducing term
is investigated in Section 7.4.1 by visualizing the sparseness of the obtained
exemplar weights that are obtained by only minimizing the approximation error.
This optimization problem can be solved with the non-negative sparse coding
(NSC) [79].

The value of the approximation error is highly dependent on the divergence
measure d and the representation of speech and noise sources. Particularly, the
adopted divergence measure is expected to provide more reliable reconstruction
errors by emphasizing the reliable and informative time-frequency bins which
are dominated by the desired source (speech in this case). Prior work has
shown that the mel-scaled spectral features provide better source separation
when used in conjunction with the generalized KLD compared to the Euclidean
distance [174].

Recently, the AB divergence has been proposed and its application as a
cost function for non-negative matrix factorization has been investigated [20].
Motivated by its capabilities to weight and scale the individual ratios of the
noisy speech and its approximation, yf / ygl where §.; = A; X.,, we investigate
the recognition performance of the proposed system using the AB divergence
for d. The influence of different («,/3) values on this ratio is detailed in [20].
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where 7 = a+ 3. The two parameters of the AB divergence can be automatically
adjusted based on the amount of contamination in the target utterance as the
recognition performance for different noise levels depends on the emphasized
(reliable) time-frequency bins. For the NSC solution, we apply the relaxation
and non-linear projection techniques proposed in [21] for faster convergence to
the multiplicative update rule derived in [20] to minimize the approximation
error. The multiplicative update rule which minimizes the approximation error
using the AB divergence for o # 0 is given by

Xt ¢ (X1 © (AL Zen) @ (AL (Acxey) D)) 1/al) B0 (7.3)

where Z.; = yi[a] ® (Acylqu)'w*l] and [] denotes element-wise exponentiation.
w is a value between (0,2) and 6 is a very small positive number [21]. 1 is a
Dl-dimensional vector with all elements equal to unity.

7.2.3 Decoding

All observation matrices Y; for lnin < I < lnax are approximated using
the combined dictionaries A.; of the corresponding length by applying the
multiplicative update rule in Equation (7.3). To quantify the approximation
quality, we use the reconstruction error between the noisy speech segments and
their approximations. The multiplicative update rule is applied iteratively until
the reconstruction error provides enough discrimination between different classes.
The number of iterations that satisfies this criterion has been investigated in
pilot experiments. After a fixed number of iterations for all dictionaries, the
reconstruction errors between the observation matrix Y; and its approximations
A, x.,; are calculated for lnin <1 < lyax. As the label of each dictionary is
known, decoding is performed by applying a single-stage dynamic programming
algorithm [128] to find the class sequence that minimizes the reconstruction
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error (taking the grammar into account if necessary). This search problem is
visualized as a three-dimensional grid search over grid points (z,y, z) which are
defined by the time frames = of a noisy speech segment, time frames y of its
approximation and the dictionary number z [128]. Noisy speech segments are
only matched with the dictionaries of the same duration, i.e. no time warping
is performed.

7.2.4 Preprocessing of Noisy Speech

Before the recognition phase, the noisy speech is approximated using a single
overcomplete dictionary to gather some information about the target utterance
such as the voice activity detection (VAD), signal-to-noise ratio (SNR) estimation
and noise characteristics. This single dictionary is formed by choosing an
exemplar length L, containing a vast number of samples from each class. The
single speech dictionary S7 contains speech exemplars of all classes with
the same length. The single noise dictionary N7 . has noise exemplars that
are extracted from the noise-only training sequences. The preprocessing step
performs non-negative sparse coding using the single (combined) dictionary
Aj =[S} Nj |

L Y., =~ A} xz, s.t. xr, > 0. (7.4)

where Y, is the observation matrix having a window length of Ls frames. As
the proposed recognizer uses an SNR-dependent («, 8) pair, the generalized
KLD is used as a reference for obtaining the weights of exemplars in the single
dictionary. The multiplicative update rule for finding the exemplar weights xr,,
can be found in [184].

The information provided by the exemplar weights xr,, are used for multiple
purposes. Firstly, a known problem of SR approaches working on magnitude
spectra is that the silence exemplars are hard to recognize: perfect silence
is modeled with zero weights of all exemplars [50]. In a practical noisy
mixture, it is well-approximated by combining speech and noise exemplars
with small weights, thus all classes will score equally well. To overcome this
problem, the reconstruction errors belonging to the silence dictionaries have to
be compensated for the noisy speech segments which do not contain speech. For
this purpose, the recognizer embodies the preprocessing step to perform VAD
for predicting whether a noisy speech segment contains speech and to estimate
the SNR level for adjusting the amount of compensation. An indicator of the
SNR level, SNR;,q, is calculated as the ratio of total speech weights and total
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speech and noise weights is used in order to limit the range to [0, 1],
SNRjpq = 2=tm=l (7.5)

x7 . 1s the sparse weight vector corresponding to w'™ of W noisy segments
of length L,. J is the number of speech exemplars and M is number of all
exemplars. The details of the silence compensation can be found in [184].

The preprocessing step also provides useful information about the spectrotempo-
ral content and the level of the background noise. The former information is used
for extracting a small set of noise exemplars that are able to model the actual
noise conditions by applying the adaptive noise exemplar selection (ANES)
technique. The level of the background noise is quantified by the estimated
SNR level and the number of noise exemplars that are used in the recognition
phase is chosen based on this estimated SNR value. In practice, the recognizer
uses more noise exemplars for lower SNR levels and less or no exemplars for
higher SNR levels. This way of noise modeling has been shown to both reduce
the computational complexity and improve the recognition accuracies at higher
SNRs. The adaptive and SNR-dependent noise modeling approach is detailed
in [184] and summarized in Section 7.2.5.

Finally, the proposed recognizer chooses the divergence parameters (a, f3)
according to the estimated SNR value to provide better separation and
improve the recognition performance. The path providing the best recognition
performance on the («, 8) plane is determined in advance on development data
and the divergence parameters are chosen on this predetermined path based on
the estimated SNR level.

7.2.5 Speech and Noise Dictionaries

Several dictionary design techniques have been applied for effective speech and
noise modeling using the exemplars. As the speech exemplars are associated
with a single speech unit, their length distribution is class-dependent which
results in unevenly populated speech dictionaries. Speech dictionary design
mainly involves increasing the number of exemplars in underpopulated speech
dictionaries to avoid poor acoustic modeling. Prewarping [183] is applied to
increase the number of the exemplars by removing a small number of frames,
excluding the very first and last frame, from an exemplar of length [ to obtain
shorter exemplars of length Iy < .
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Noise exemplars are extracted from noise-only training sequences for arbitrary
length. While there are a vast number of noise exemplars for every exemplar
length, only the ones that match the actual noise conditions will be useful during
the recognition. As a result, noise dictionary design mainly focuses on accurate
modeling of the background noise using the smallest possible number of noise
exemplars. ANES is an adaptive way of noise modeling that accurately picks a
small number of noise exemplars that can model the actual noise conditions.
Large performance gains have been reported compared to fixed noise modeling,
i.e. using the same set of noise exemplars for all test utterances, especially
at lower SNRs [184]. Adaptive noise dictionaries are obtained based on the
noise weights that are provided by the single dictionary setup described in
Section 7.2.4. This technique aims to select a small number of noise exemplars
that can accurately model the actual noise conditions. An equal number of
exemplars is extracted from a large number of noise-only training sequences and
stacked in a single noise dictionary. In order to identify which noise-only training
sequences can accurately model the actual noise conditions, all weights belonging
to the noise exemplars extracted from each noise-only training sequence are
accumulated. With the same motivation as discussed in [182], noise exemplars
used for the recognition are extracted from the most active noise-only training
sequences, i.e. the sequences with the highest weights. For the details of the
ANES technique, we refer the reader to [184].

Another technique that has been proposed for improved noise modeling in
SR-based recognition systems is called noise sniffing [53]. This technique
acquires noise exemplars on the fly from the immediate neighborhood of the
target utterance. The extracted noise exemplars are added to the combined
dictionaries and used for the recognition. In case of limited noise context, a
small number of frames from the beginning and end of the target utterance are
extracted and contained in combined dictionaries. Shifted copies of these frame
sequences are also included to provide some degree of shift-invariance [52]. The
VAD information is used to detect the speech onset and offset points.

SNR-dependent noise modeling approach finds a compromise between the
accuracy of the noise modeling and computational complexity by adjusting
the amount of the noise exemplars in the combined dictionaries depending
on the estimated SNR level. At lower SNRs, a larger number of noise-only
training sequences are used for noise exemplar extraction. Consequently,
computational complexity of the recognizer is reduced at high SNRs without
loss of recognition accuracy while preserving the noise modeling capabilities
at lower SNRs. Moreover, SNR-dependent noise modeling provides gains in
the recognition accuracy of clean speech, as the dictionaries contain only a few
noise exemplars during the recognition of clean speech.
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7.3 Experimental Setup

7.3.1 Databases
AURORA-2

The recognition performance of N-REM is further evaluated on the test set A
and B of the AURORA-2 corpus [77]. The training material of AURORA-2
consists of a clean and a multi-condition training set, each containing 8440
utterances with one to seven digits in American English. The multi-condition
training set was constructed by mixing the clean utterances with noise at SNR
levels of 20, 15, 10 and 5 dB.

Test set A consists of 4 clean and 24 noisy datasets with four noise types (subway,
babble, car and exhibition) at six SNR levels, 20, 15, 10, 5, 0 and -5 dB. The
noise types of this test set match the multi-condition training set. Test set B
has the same number of test sets with four different noise types (restaurant,
street, airport, station) at the same SNR levels. Each subset contains 1001
utterances. To reduce the simulation times, we subsampled the test sets by a
factor of 4 (250 utterances per test set, 1000 utterances per SNR). A different
subset with 100 utterances from each test set is used for development purposes.
All data has a sampling frequency of 8 kHz.

CHIME-2

The small vocabulary track of the 2°¢ CHiME Challenge [172] addresses the
problem of recognizing commands in a noisy living room. The clean utterances
in the CHIME-2 data are taken from the GRID corpus [23] which contains
utterances from 34 speakers reading 6-word sequences of the form command-
color-preposition-letter-digit-adverb. There are 25 different letters, 10 different
digits and 4 different alternatives for each of the other classes. Even though
there is no silence between the words, leading silences of variable duration exist
occasionally. The recognition accuracy of a system is calculated based on the
correctly recognized letter and digit keywords.

The clean utterances are convolved with binaural room impulse responses with
speaker head movement effects which are recorded in a living room. Then, the
resulting reverberated utterances are mixed with binaural recordings of genuine
room noise recorded in the same living room at SNR levels of 9, 6, 3, 0 ,-3 and -6
dB. The training set contains 500 utterances per speaker (17,000 utterances in
total) with clean, reverberated and noisy versions. Noisy utterances are provided
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both in isolated or embedded form. Embedded recordings contain 5 seconds
of background noise before and after the target utterance. The development
and test sets contain 600 utterances from all speakers at each SNR level (3600
utterances in total for each set) both in isolated and embedded from. The
immediate noise context of the target utterances are available in 164 embedded
recordings in the development set and 176 embedded recordings in the test set.
All data has a sampling frequency of 16 kHz.

7.3.2 Dictionary Creation and Implementation Details
AURORA-2

The speech exemplars are extracted from the clean training set. Acoustic feature
vectors are represented in mel-scaled magnitude spectra with 23 frequency
bands. The speech exemplars representing half-digits are segmented by a
conventional HMM-based system. The recognizer uses in total 52295 speech
exemplars excluding 990 silence exemplars. The number of noise exemplars varies
depending on the duration of the noise-only sequences that are selected by ANES.
On average, the recognizer uses 11355 and 1044 noise exemplars/utterance in
total at SNR level of -5 dB and clean speech respectively. The minimum and
maximum exemplar lengths are 8 and 40 frames respectively. Exemplars longer
than 40 frames are omitted to limit the number of dictionaries.

The single noise dictionary contains noise exemplars that are extracted from 800
longest noise-only training sequences (50 sequences from each multicondition
training set). From each noise-only training sequence, 10 noise exemplars are
extracted with equal frame shifts resulting in 8000 noise exemplars. The single
speech dictionary contains 2200 speech exemplars (100 exemplars from each
class excluding silence). The speech and noise exemplars contain 15 frames.
The first and last 20 frames of the target utterances are assumed not to contain
speech and 150 noise exemplars with 15 frames (5 exemplars and 70 shifted
copies from each end) are extracted as described in [184] and concatenated to
the single dictionary. The speech and noise exemplar weights are obtained after
300 iterations.

In the recognition phase, noise dictionaries are created by performing noise
sniffing and active noise exemplar selection. The details of the noise dictionary
creation are given in [184]. The recognizer uses in total 675 dictionaries of
23 different classes (half-digits plus silence). The combined dictionaries and
observation matrices are lo-normalized for all SNR levels. The multiplicative
update rule is iterated 100 times for convergence of all frame lengths with
w = 1.75 and # = 0.008. The divergence parameters («, 3) providing the best
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Figure 7.2: The line segments on the AB plane used for the recognition of the
AURORA-2 and CHIME-2 databases - The a+£=0.5 line is also visualized
which provided the best results for noisy conditions on both databases

performance at the lowest and highest SNR are investigated on the development
data. The pilot experiments on the development data have shown that the best
results are obtained on the line @ = 1 for the AURORA-2 database. The AB
divergence with (1, —0.5) and (1,0.25) provided the best recognition accuracies
at SNR level of -5 dB and on clean speech. The line segments used during the
recognition of both databases are illustrated in Figure 7.2 on the AB plane. A
suboptimal estimation of the 8 value is performed in the interval of [—0.5,0.25]
as a linear function of the SNR;,q value,

B = max(min(2 - SNR;,q — 0.55),0.25), —0.5). (7.6)

CHIME-2

The exemplars and noisy speech segments are represented as mel-scaled
magnitude spectral features extracted with a 26 channel mel-scaled filter bank
(D = 26). The frame length is 25 ms and the frame shift is 10 ms. The binaural
data is averaged in the spectral domain to obtain 26-dimensional feature vectors.
The exemplars are extracted from the reverberated utterances in the training
set according to the state-based segmentations obtained using the acoustic
models in the toolkit provided with the database. Exemplars belonging to
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each speaker are organized in separate dictionary sets for speaker-dependent
modeling yielding 34 different dictionary sets. Based on the availability of the
exemplars, the minimum and maximum exemplar lengths are 4 and 40 frames
respectively.

Half-word exemplars seemed to generalize sufficiently to unseen data. Half-
word exemplars are extracted by cutting the word exemplars at the HMM
state yielding the minimum average length difference between the two halves.
Dictionary sizes vary with different classes and speakers. Prewarping is applied
to boost the modeling capabilities of the underpopulated speech dictionaries
(especially for the ones belonging to letters due to the high number of alternatives
and hence the small number of exemplars per class) and it is limited to a single
frame. The number of exemplars in each dictionary after prewarping is limited
to 50. Further exemplar extraction details can be found in [184].

The noise dictionaries used for the recognition contain 200 noise exemplars that
are acquired on the fly from the immediate neighborhood of the target utterance
in both directions until the frames belonging to other target utterances. In
addition to these sniffed noise exemplars, 200-300 noise exemplars are extracted
from the most active 2 noise-only sequences selected by ANES. These noise
exemplars are extracted with jumps of 3 frames yielding a different number
of noise exemplars depending on the length of the noise-only sequence. Each
embedded utterance is segmented into noise-only sequences by removing all
target utterances. 5 noise exemplars of 25 frames are extracted from each noise-
only sequence and stored in the single noise dictionary. The size of the single
noise dictionary varies depending on the number of available noise-only sequences
for each embedded recording. ANES only evaluates the noise-only sequences that
are extracted from the embedded recording which contains the target utterance.
The single speech dictionary contains 2354 full-word exemplars (maximum 50
exemplars from 51 classes) of 25 frames. The full-word exemplars are used in
the single speech dictionary, as there is no exemplar length L containing a
vast number of samples from each half-word class. The multiplicative update
rule is iterated 25 times to obtain the exemplar weights. w and 6 are set
to 1.75 and 0.008 respectively. The columns of the combined dictionaries
and observation matrices are ly-normalized. To investigate the impact of the
divergence parameters, we have performed recognition experiments on the lowest
and highest SNR levels of the development data. The best results at -6 dB and
9 dB are obtained using AB divergence with (—3.5,4) and (—0.5, 1) respectively.
Considering the results reported in [185], the divergence parameters are chosen
on the line o+ 8 = 0.5 in the interval of ([—3.5, —0.5], [4, 1]) as a linear function
of the SNR;,q value,

a = max(min(7.5 - SNRinq — 5.75), —0.5), —3.5), (7.7)
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B = max(min(7.5 - SNRjnq + 6.25),4), 1). (7.8)

7.3.3 Evaluation Metrics

We have opted for the metrics which have been traditionally used for the
evaluation of the databases described in Section 7.3.1 for comparability with
the previous literature. The word error rate has been used to quantify the
recognition accuracy for the AURORA-2 digit recognition task. The keyword
recognition accuracy is used to evaluate the system performance on the CHIME-2
data.

7.4 Results and Discussion

In this section, we firstly investigate the impact of the missing sparsity inducing
term in the cost function by visualizing how sparse the exemplar weights for a
few noisy utterances from test set A of the AURORA-2 database and report the
recognition accuracies on the same dataset. Then, we compare the recognition
performance of N-REM using the generalized KLD with induced sparsity with
and without the adaptive noise modeling technique ANES on the CHIME-2
data. Finally, the recognition accuracies provided by N-REM using the AB
divergence on the CHIME-2 data are presented. The recognition accuracies
on both databases are compared with the baseline N-REM recognizer which
uses the generalized KLD with tuned sparsity and some other comparable
recognition schemes such as exemplar-based sparse representations approaches
and a multicondition-trained HMM recognizer.

7.4.1 AURORA-2
Sparseness of AB Divergence

The induced sparsity has been a requirement for previous SR approaches using
an overcomplete dictionary to select only a few exemplars with non-zero weights
among thousands. Consequently, a realistic linear approximation of noisy speech
segments are obtained without overfitting. On the other hand, N-REM uses
dictionaries that contain a lot less exemplars than the ones used by the previous
SR approaches and we investigate whether the inherent sparsity imposed due to
the non-negativity constraint is enough for realistic approximations. In Figure
7.3, the largest exemplar weights obtained for 400 test utterances at -5 dB using
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Figure 7.3: The comparison of exemplar weights obtained using the generalized
KLD with tuned sparsity and the AB divergence - The weights are obtained
using the 400 utterances used for development purposes at -5 dB in test set A
of AURORA-2

the AB divergence are averaged and compared with the ones obtained using the
generalized KLLD with tuned sparsity on the same utterances. The sparseness
of the exemplar weights is further visualized in Figure 7.4 by randomly picking
two single-digit utterances at the same SNR level corrupted with subway and
exhibition hall noise. For each noisy speech segment, the exemplars with the 5
largest weights are listed to observe how fast the weights are decaying for the
dictionaries yielding the smallest reconstruction error. The visualized linear
approximations have provided the minimum reconstruction error for each half-
word. The divergence parameters are estimated based on the SNR;,q value.
From this figure, it can be concluded that the linear combinations yielded by
the multiplicative update rule given in Equation (7.3) are sparse enough to
realistically estimate noisy segments due to the limited amount of exemplars
in the dictionaries and the relaxation and non-linear projection techniques
resulting in faster convergence.

Recognition Results

The recognition performance of N-REM using the AB divergence is compared
with the baseline N-REM using the generalized KLD with tuned sparsity [184],
a standard HMM recognizer [50] and two noise robust SR-based recognition
techniques using fixed-length exemplars in a single overcomplete dictionary,
namely sparse classification (SC) and feature enhancement (FE) [50]. The
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Figure 7.4: Tllustration of the sparsity the exemplar weights provided by N-REM
dictionaries using the AB divergence - The mel-scaled spectral patches given
in the first column are the noisy mixtures extracted from noisy utterances
MHM_ 4A and FIW_ OB with subway and exhibition hall noise at an SNR
level of -5 dB respectively. The following columns list the exemplars with the
highest weights that are used to approximate the noisy segments in the first
column. The label of each exemplar is given for each exemplar (‘FH’: first-half,
‘SH’: second-half)

SR-based recognition techniques achieve among the best known results on
AURORA-2, especially at lower SNRs, performing significantly better than for
instance the ETST advanced front-end (AFE) which has been considered as a
reference for the AURORA-2 database [78]. The HMM and FE recognition
systems are trained on the multi-condition training set. The overcomplete
dictionary used by SC and FE recognizers contain 10000 speech and 5000
noise exemplars with exemplar length of 30 frames. The exemplar weights are
obtained after 600 iterations. We have performed recognition experiments on the
same subset containing 1000 utterances from each SNR to obtain comparable
recognition results.

The word error rates (WER) obtained on the test set A and B are given in
Table 7.1. The upper panel presents the WER results provided by the baseline
and proposed recognizers. The baseline N-REM provides WERs of 19.1% and
9.2% at SNR levels of -5 dB and 0 dB. The proposed system performs better
than the baseline with WERs of 14.9% and 8.5% at the same SNR levels with
an absolute improvement of 4.3% and 0.7%. These WERs are substantially
lower than 35.2% and 13.8% of the SC recognizer and 30.4% and 10.7% of the
FE recognizer.
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Table 7.1: Word error rates in percentages obtained on test set A and B of the
AURORA-2 database

(a) Test set A

SNR/(dB) clean -5 0 5 10 15 20 0-20
N-REM (SP-KLD,ANES) 1.7 191 92 59 49 3.6 24 5.2
N-REM (AB,ANES) 1.8 14.9 8.5 5.8 4.7 3.5 2.3 5.0
HMM 0.7 608 243 73 29 13 08 7.3
SC 3.7 352 138 74 56 48 45 7.2
FE 0.5 304 107 33 1.5 1.1 0.7 3.5

(b) Test set B

SNR(dB) clean -5 0 5 10 15 20 0-20
N-REM (SP-KLD,ANES) 1.7 55.0 24.3 10.1 55 35 27 9.2
N-REM (AB,ANES) 1.8 53.5 245 104 4.9 3.1 2.5 9.0
HMM 0.7 640 259 74 26 12 09 7.6
SC 3.7 524 235 11.0 59 2.7 45 99
FE 0.5 526 205 57 21 1.2 05 6.0

At the higher SNR levels, using the AB divergence does not have a considerable
impact on the performance. The average WER between 0 dB and 20 dB slightly
decreases from 5.2% to 5.0%. N-REM performs better than SC and HMM at 5
dB with a WER of 5.8% compared to 7.3% of HMM and 7.4% of SC. The best
results at 5 dB and 10 dB are provided by the FE recognizer with WERs of
3.3% and 1.5%. At 15 dB and 20 dB, there is a performance gap between the
N-REM and SC recognizers and the HMM and FE recognizers which benefit
from the enhanced discriminative power of complex GMMs used in conjunction
with MFCC features. N-REM performs better than SC with a WER of 3.5% at
15 dB and 2.3% at 20 dB compared to 4.8% and 4.5% of SC. The recognition
performance on test set B is given in the lower panel of Table 7.1. In general,
using the AB divergence does not have a noticeable influence in the case of
mismatched noise.

7.4.2 CHIME-2

For the CHIME-2 data, the HMM recognizer uses speaker-dependent acoustic
models trained on noisy data. These results are obtained using the HTK
recognition toolkit and the details are available at the 2" CHIME Challenge
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Table 7.2: Keyword recognition accuracies in percentages obtained on the
development and test set of the CHIME-2 database

(a) Development Set

SNR(dB) -6 -3 0 3 6 9 Avg
N-REM (SP-KLD) 69.4 764 85.0 90.1 92.9 93.3 84.5
N-REM (SP-KLD,ANES) 704 779 848 904 926 93.8 85.0
N-REM (AB,ANES) 75.4 78.8 86.3 90.5 91.2 92.7 85.8
HMM 49.3 587 67.5 751 788 82.9 68.7
FE 68.0 722 80.9 86.7 89.0 90.5 81.2
HMM-FE 69.1 736 81.5 873 894 90.3 81.9
SC 75.5 814 875 899 924 923 86.5
(b) Test set
SNR(dB) -6 -3 0 3 6 9 Avg
N-REM (SP-KLD) 69.3 76.8 84.5 88.8 91.9 93.5 84.1
N-REM (SP-KLD,ANES) 71.0 789 853 887 91.9 928 848
N-REM (AB,ANES) 73.9 79.7 86.1 88.0 909 92.6 85.2
HMM 49.7 579 67.8 T73.7 80.8 82.7 68.8
FE 67.2 759 81.1 86.4 90.7 92.0 82.2
HMM-FE 67.0 770 &81.8 87.0 91.2 924 R82.7
SC 76.5 81.3 88.9 90.5 927 932 872

website!. The details of the SC, FE and HMM-FE recognition systems such as
feature extraction schemes and dictionary sizes are described in [51]. The FE
recognizer refers to the baseline NMF system trained on the reverberated data
and HMM-regularized FE (HMM-FE) recognizer refers to the proposed system
in [51]. The overcomplete dictionary used by SC, FE and HMM-FE recognizers
contain 5000 speech and 5000 noise exemplars with exemplar length of 20 frames.
The N-REM baseline without ANES uses 400 sniffed noise exemplars only which
are extracted from the immediate context of the target utterances [184].

The keyword recognition accuracies (RA) obtained on the development and
test sets of the CHIME-2 data are given in Table 7.2. The upper panel of each
table presents the results provided by the baseline with and without ANES
and the novel N-REM recognizer using the AB divergence with ANES. The
lower panels list the results yielded by the comparable recognition systems. The
highest performance gains are obtained at the lower SNR levels both for the

Thttp://spandh.dcs.shef.ac.uk/chime_challenge/chime2013/chime2_taskl.html
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development and test set. The RAs obtained on the test set using the baseline
without ANES are 69.3% at -6 dB, 76.8% at 0 dB and 84.5% at 3 dB. The
second row of the upper panel presents the results provided by the baseline with
ANES. The adaptive noise modeling technique improves the noise modeling
capabilities providing recognition accuracies of 71.0%, 78.9% and 85.3% at
the same SNR levels. Using the AB divergence with ANES, the recognition
performance of the proposed setup further increases with RAs of 73.9% at -6
dB, 79.7% at 0 dB and 86.1% at 3 dB. The total absolute improvements at
SNR levels of -6 dB, -3 dB and 0 dB are 4.6%, 2.9% and 1.6% respectively.

The RA of the proposed recognizer does not outperform the baseline setup at
SNR levels of 6 dB and 9 dB. The mean RA increases from 84.5% to 85.8% on
the development set and from 84.1% to 85.2% on the test set. The SC recognizer
provides comparable performance with N-REM on the development set and
slightly better performance on the test set with a RA of 76.5% at -6 dB, 88.9%
at 0 dB and 93.2 at 9dB. The mean RA of the SC recognizer is 86.5% on the
development set and 87.2 on the test set which is the best among all systems.
The performance of FE and HMM-FE recognizers are similar to each other on
both sets for all SNR levels and lower than the SC and N-REM recognizers.

7.5 Discussion

The results presented at the lower SNRs of test set A of AURORA-2 and
both the test and development set of CHIME-2 demonstrate the improved
noise robustness of N-REM using the AB divergence. The WER of 14.9% at
the SNR level of -5 dB is the best published recognition performance to the
best of our knowledge. The proposed recognizer picking an appropriate (¢, )
value depending on the estimated SNR level performs an accurate speech and
noise separation even at the lowest SNR levels. We discuss the reason for the
performance gain by visualizing the behavior (regime) of the AB divergence
for several («, ) pairs and comparing them with the ones belonging to the
generalized KLD.

Before elaborating on this issue, we revisit some system properties that have
been mentioned in the earlier parts of the chapter which are relevant to the
discussion. Firstly, N-REM uses l>-normalized dictionaries where each individual
time-frequency cell lies in the range of [0, 1]. The observation matrices are la-
normalized similarly to the dictionaries and all values in the observation matrices
are also in the range of [0, 1]. Secondly, the genuine room noise contaminating
the CHIME-2 data has different statistical characteristics compared to the noise
types in the test set A of AURORA-2 data. The former noise type has been
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Figure 7.5: Comparison of the divergence value d(X|Y) between the AB
divergence and generalized KLD for three observation time-frequency cell
values X = [0.001,0.01,0.1] and varying approximation values in the range of
0.0001 < Y < 1. The green curves show the histogram of occurrence of the
actual data values X on the respective data sets.

observed to be less stationary and more spectrotemporally diverse due to the
various noise sources in the recording environment such as two adults, two
children, TV, kitchen and laundry appliances, foot steps, toys, traffic, birds and
so forth [19]. We can hence expect that the noise dictionaries for CHIME-2
provide a poorer match to the actual noise spectra compared to the case of
AURORA-2. Moreover, the genuine room noise recordings contain reverberation
as the recording environments have a Tgg = 0.3 seconds.

Taking this information into account, we discuss the reasons of the performance
gain by comparing the weighting and scaling behaviors of the generalized KLD
and AB divergence with divergence parameters that provided the best results
at the lowest and highest SNR level of both databases in Figure 7.5. The upper
figures show the behavior of the AB divergence with (1,0.25) and (1,—0.5)
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providing lower WERs on the clean test set and the test set at SNR level of
-5 dB of AURORA-2 data respectively. We plot the divergence value for three
different values of a time-frequency cell from an observation vector (denoted by
X in the figure) with varying approximation values (denoted by Y in the figure).
However, the recognition framework is invariant to scaling of the divergence,
since scaling will not change the ranking of the recognition hypotheses. To
avoid false interpretation of the divergence plots, we can therefore scale each
AB divergence plot. We choose the scaling factor such that the local behavior of
the AB divergence is the same as the local behavior of the KLD at a reference
data value (X) of 0.01, i.e. KLD and AB divergence have the same curvature at
the reference point. We choose a reference point of 0.01 because the probability
density is high for all data sets considered. This can be verified from the
distribution of real time-frequency cell values after the ly-normalization as
depicted in Figure 7.5. It is worth pointing out that the density plot belonging
to the clean speech of AURORA-2 is obtained only from the segments that
contain speech, i.e. silence frames are discarded.

Firstly, we observe that the AB divergence with (1,0.25) provides good accuracy
for the clean test set of AURORA-2 data. From Figure 7.5a, it is clearly seen
that the AB divergence downweights the smaller cells which contain little or no
energy and puts more emphasis on the large cells, i.e. the spectral peaks. The
very high SNR observed in the clean AURORA-2 data is reflected in the (green)
density plot, where we observe a substantial fraction of the data with energy
over 40 dB below the spectral peaks. To approximate such small spectral values
accurately with a linear combination of atoms should not matter. Hence, there
is no harm to reduce the penalty of underestimations of small values (red and
blue curves below Y=0.01 in Figure 7.5a).

The noise robustness of N-REM depends on how well the noise exemplars
model the actual noise conditions and how accurate the divergence weights
the approximation error of time-frequency cells that define the characteristics
of the noise source. This is vital for accurate separation of speech and noise.
The best performance at SNR level of -5 dB of AURORA-2 data is obtained
using the divergence parameters (1,—0.5). The divergence with (1,—0.5) is
equally far from the generalized KLD (AB divergence with parameters (1,0))
and the Itakura-Saito distance (AB divergence with parameters (1, —1)) on the
« = 1 line which is equal to the Beta divergence as a special case of the AB
divergence. In this regard, it is a compromise between the generalized KLD
and the Itakura-Saito distance which has been shown to be effective on source
separation tasks using audio power spectrograms [42].

The behavior of the AB divergence with (1,—0.5) is given in Figure 7.5b. From
this figure, it can be seen that the divergence upweights the approximation
errors of small time-frequency cells (e.g. X=0.001 in the figure), compared to
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the generalized KLD. Looking at the data distribution (green), we see that
this has no relevance, as actual data points in this order of magnitude are
hardly observed. Medium (X=0.01) to large (X=0.1) data values should now be
realized exactly during the approximation and both over and underestimation
are penalized. Since the noise dictionaries are highly accurate in these tests,
this is indeed a very good strategy to obtain an accurate signal decomposition
in terms of speech and noise. Eventually, a few noise exemplars that resemble
the actual noise component are selected from the noise dictionary providing an
accurate separation and thus a high recognition performance.

This result matches up with the recognition results presented in [185] where a
grid search on the AB plane has been performed to find the most appropriate
divergence parameters at the lower SNRs of CHIME-2 data. The best recognition
results are obtained on the oo + 5 = 0.5 line which passes through the (1, —0.5)
point. In case of CHIME-2 data, the recognition performance also benefits from
using smaller « values on the a+ 8 = 0.5 line. The lower figures in Figure 7.5
show the behavior of the AB divergence with (—0.5,1) and (—3.5,4) providing
best results on the test set at SNR level of 9 dB and -6 dB respectively. On
CHIME-2 data, we observe that the optimal divergence choice downweights
underestimations for small data values (dashed blue and red curves in the lower
panes of Figure 7.5) compared to the AB divergence with (1, —0.5) (dashed
blue and red curves in Figure 7.5b). At the lower SNR (Figure 7.5d), this is
even the case for the largest of spectral values (black curves). This is in line
with missing data techniques for speech recognition [24], which constrain the
clean speech model to be less than the observed noisy speech for time-frequency
cells dominated by noise, while the clean speech model should be equal to the
noisy observations for time-frequency cells dominated by speech. Since the noise
dictionary is not expected to be very accurate for CHIME-2 data, while speech
dictionaries are, the noise data is best explained with the speech exemplars, and
a divergence metric reflecting the missing data approach is a sensible choice.
At higher SNR (Figure 7.5¢), the small time-frequency cells are most likely
dominated by noise, so underestimation by the speech model should not be
penalized. Large spectral values are most likely reliable and missing data theory
then says that the speech prediction should match the noisy observation, which
is indeed expressed by the black curve in Figure 7.5c. At low SNRs, large
spectral values are often also dominated by noise and it is hence helpful to
also allow not to penalize underestimation of large spectral values as well as
expressed by the black dashed curve in Figure 7.5d.

After the discussion on the recognition performance in the matched noise
scenario, we discuss the results obtained on the test set B of AURORA-2 data
which contains mismatched noise types, i.e. noise types that are not available
in the training data. Despite exemplar-based modeling being quite effective
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in the case of matched noise, there is a performance gap between matched
and mismatched noise scenarios for all exemplar-based techniques. The use
of exemplars is most applicable in scenarios where the expected noise types
can be predicted or when some noise exemplars can be readily obtained from
the environment as in the CHIME-2 data. For N-REM, this gap is larger than
for SC and FE since N-REM dictionaries contain smaller noise dictionaries.
This results in a lower probability of having a suitable noise exemplar in the
combined dictionaries with a similar spectral content with the unseen noise

types.

Lastly, the performance of the adaptive noise modeling technique ANES has
been investigated in a more realistic scenario in which noisy utterances are
contaminated with genuine room noise. The results presented in Table 7.2 show
that ANES combined with noise sniffing can model the genuine room noise
more accurately compared to noise sniffing only. These results demonstrate the
effective noise modeling of ANES achieved by picking a small number of noise
exemplars which have similar characteristics to the actual noise contaminating
the target utterance.

7.6 General Discussion and Concluding Remarks

In this chapter, we have aimed to improve the noise robustness of our noise
robust exemplar matching approach by adopting the AB divergence which has
a higher degree of freedom with two parameters compared to the generalized
KLD. Various well-known distance/divergence measures such as the Euclidean
distance, generalized Kullback-Leibler divergence, Itakura-Saito divergence and
Hellinger distance are special cases of the AB divergence for different (a, )
values. By adjusting these parameters on the development data, the divergence
is tailored for the representation of speech and noise for the best separation of
the noisy mixtures. Applying the multiplicative update rules proposed for this
new divergence in [20], the noisy utterances are modeled as a linear combination
of exemplars that are organized in multiple dictionaries based on their duration
and class. The presented recognition results have confirmed the improved noise
robustness of the AB divergence compared to the conventional generalized KLD.
After presenting the results, we have provided insight into the choice for the
(ar, B) pairs along the oo + 8 = 0.5 line depending on the parameters such as
SNR and quality of the noise dictionaries.



Chapter 8

Speech Dictionary Design for
N-REM using the
AB-divergence

Ezxemplar-based acoustic modeling is based on labeled training segments that
are compared with the unseen test utterances with respect to a dissimilarity
measure. Using a larger number of accurately labeled exemplars provides better
generalization thus improved recognition performance which comes with increased
computation and memory requirements. We have recently developed a noise
robust exemplar matching-based automatic speech recognition system which uses
a large number of undercomplete dictionaries containing speech exemplars of
the same length and label to recognize noisy speech. In this work, we investigate
several speech exemplar selection techniques proposed for undercomplete speech
dictionaries to find a trade-off between the recognition accuracy and the acoustic
model size in terms of the amount of speech exemplars used for recognition.
The exemplar selection criterion has be to chosen carefully as the amount
of redundancy in these dictionaries is very limited compared to overcomplete
dictionaries containing plenty of exemplars. The recognition accuracies obtained
on the small vocabulary track of the 2"¢ CHiME Challenge and the AURORA-2
database using the complete and pruned dictionaries are compared to investigate
the performance of each selection criterion.

This chapter is adapted from: Emre Yilmaz, Jort F. Gemmeke and Hugo Van
hamme, “Data Selection for Noise Robust Exemplar Matching”, Submitted to
INTERSPEECH 2015.
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8.1 Introduction

Exemplar-based speech recognition systems [29, 36,57, 70, 143, 159, 161] use
labeled segments from training data to identify unseen speech. These approaches
resemble the first attempts to solve the automatic speech recognition (ASR)
problem performing dynamic time warping [134,144,178]. The recognition can
be performed by comparing these labeled segments with the segments from
the test utterances with respect to a dissimilarity measure. Though exemplars
provide the most natural duration and trajectory modeling when compared to
its statistical counterparts, e.g. hidden Markov models (HMM) or deep neural
networks (DNN), large amounts of data are required to handle the acoustic
variation among different utterances.

In order to reduce high memory and computational power requirements, several
exemplar selection algorithms are proposed in [149,158]. The main goal of these
techniques is to remove less informative exemplars, e.g. duplicates or rarely used
ones, or whose presence result in inaccurate recognition and achieve comparable
recognition accuracies using only a portion of the exemplars. Statistical acoustic
model training also benefits from data selection as the training times are reduced
significantly and sometimes the recognition performance is improved due to the
reduced noise and redundancy in the training data [63,91,125,179].

Using exemplars in a sparse representation (SR) formulation provides signifi-
cantly improved noise robustness and exemplar-based sparse representations
have been successfully used for feature extraction, speech enhancement and
noise robust speech recognition tasks [50,84,142,162]. These approaches model
the acoustics using fixed length exemplars which are labeled at frame level
and stored in the columns of a single overcomplete dictionary. Noisy speech
segments are jointly approximated as a sparse linear combination of speech and
noise exemplars with exemplar weights obtained by solving a regularized convex
optimization problem.

Reducing the dimensions of large datasets stored in a single overcomplete
dictionary has been investigated in different fields and several matrix
decompositions such as the singular value decomposition (SVD), rank revealing
QR decomposition, CUR matrix decomposition, interpolative decomposition
(ID) have been used to obtain a low-rank matrix approximation of the complete
data matrix [64]. Although the SVD is known to provide the best rank-
k approximation, interpretation of the principal components is difficult in
data analysis [115]. Therefore, several CUR matrix decompositions have been
proposed in which a matrix is decomposed as a product of three matrices C, U,
R and the matrices C and R consist of a subset of the actual columns and rows
respectively [38,44,61]. Several computationally efficient exemplar selection
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techniques are introduced and applied to polyphonic music transcription task
using an overcomplete dictionary containing exemplars of different musical notes
in [5]. [85] discusses various ways of reducing the speech and noise dictionaries
for an exemplar-based sparse representations approach applied to a noise robust
ASR task.

In this chapter, we focus on the noise robust exemplar matching (N-REM)
framework [184] which is an exemplar matching recognition system with
noise modeling capabilities. In this framework, the recognizer uses different
length exemplars organized in separate dictionaries based on their duration
and label (the associated speech unit) [184]. The input speech segments
are approximated in a sparse representations formulation, i.e. as a linear
combination of the exemplars in each dictionary. Compared to a system
using fixed-length exemplars stored in a single dictionary, using separate
dictionaries for each class provides better classification as input speech segments
are approximated as a combination of exemplars belonging to the same class
only. Moreover, each exemplar is associated with a single speech unit and the
natural duration distribution of each speech unit in the training data is preserved
yielding exemplars of different lengths. This recognizer adopts a reconstruction
error based back-end, i.e. the recognition is performed by comparing the
approximation quality for different classes quantified by a divergence measure
and choosing the class sequence that minimizes the total reconstruction error.
In [186], we have proposed to use the alpha-beta divergence [20] in place of
the generalized Kullback-Leibler divergence which has been shown to be more
robust against background noise.

The exemplar selection techniques discussed in this chapter differ from previous
work as the dictionaries store a lot less exemplars due to the use of multiple
dictionaries for each exemplar length and label. Compared to the overcomplete
dictionaries with a large number of data points, the redundancy in the
undercomplete dictionaries used by N-REM is quite limited. Therefore, removing
a few informative data points may already result in significant decreases in the
recognition accuracy. We have presented the initial findings of our efforts to select
a subset of speech exemplars in [182] and reported some promising recognition
results on a clean digit recognition task. In this work, we extend the investigation
of the proposed exemplar selection technique with the best performance, namely
collinearity reduction, on all available SNR levels of the small vocabulary track
of the 2"4 CHiME Challenge and the AURORA-2 database. Moreover, in
addition to this technique, we propose a symmetric AB-divergence-based k-
medoids algorithm for exemplar selection from undercomplete dictionaries. The
AB-divergence is chosen as a dissimilarity measure to be consistent with the
recognition setup.



116 SPEECH DICTIONARY DESIGN FOR N-REM USING THE AB-DIVERGENCE

8.2 Noise Robust Exemplar Matching

Training frame sequences representing various speech units (speech exemplars)
are extracted based on the state-level alignments obtained using a conventional
HMM-based recognizer. Speech exemplars, each comprised of D mel frequency
bands and spanning [ frames, are reshaped into a single vector and stored in the
columns of a speech dictionary S.;: one for each class ¢ and each frame length
l. Each dictionary is of dimensionality DI x N.; where N.; is the number of
available speech exemplars of class ¢ and frame length [. Similarly, a noise
dictionary N; for each frame length [ is formed by reshaping the noise exemplars.
Each speech dictionary is concatenated with the noise dictionary of the same
length to form a combined dictionary A.; = [S.; N;] of dimensionality DI x M.,
where M, is the total number of available speech and noise exemplars.

An observed noisy (and/or reverberated) speech segment of frame length T'
frames is also reshaped into vectors by applying a sliding window approach [50]
with window length of [ frames and stored in an observation matrix Y; =
yi,y?.., yl(T_l+1)] of dimensionality DI x (T'— 1+ 1). Due to multiple-length
exemplars, the window length [ is varied between the minimum exemplar length
Imin and maximum exemplar length [,y yielding observation matrices Y; for
Imin <1 < lnax- For every class ¢, each observation vector y; is expressed as a
linear combination of the exemplars that are stored in the dictionaries of the
same length: y; ~ an\fczll xZLlaZ'fl = A x.; for ', > 0. Here, x.; is an M, -
dimensional non-negative weight vector. The combined dictionaries consisting
of speech and noise exemplars are presumed to model all acoustic variability in
the observed signal due to pronunciation variation, background noise and so
forth. This model can also model reverberation by storing reverberated speech
exemplars rather than clean speech exemplars.

The exemplar weights x.; are obtained by minimizing the cost function
consisting of a single term which quantifies the approximation error d(y;, A¢ Xc.1)
for non-negative exemplar weights. This optimization problem can be solved
with non-negative sparse coding (NSC) [79]. The value of approximation error
is highly dependent on the divergence measure d and the representation of
speech and noise sources. Motivated by its capabilities to weight and scale
the individual ratios of the noisy speech and its approximation, y}' /ygl where

Veir = Acxc, the AB divergence is used for d. The AB divergence dfféﬂ) (v,9)
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where 7 = a+ 3. The two parameters of the AB divergence can be automatically
adjusted based on the amount of contamination in the target utterance as the
recognition performance for different noise levels depends on the emphasized
(reliable) time-frequency bins. For the NSC solution, we apply the multiplicative
update rule minimizing the approximation error d(y;, A¢,;X.,;) using the AB
divergence for a # 0 which is given in [186].

All observation matrices Y; for lnin < I < lnhax are approximated using
the combined dictionaries A.; of the corresponding length by applying the
multiplicative update rule. To quantify the approximation quality, we use the
reconstruction error between the noisy speech segments and their approximations.
The multiplicative update rule is applied iteratively until the reconstruction
error provides enough discrimination between different classes. The number of
iterations that satisfies this criterion has been investigated in pilot experiments.
After a fixed number of iterations for all dictionaries, the reconstruction errors
between the observation matrix Y; and its approximations A ;x.; are calculated
for lmin < I < lpax- As the label of each dictionary is known, decoding is
performed by applying dynamic programming [128] to find the class sequence
that minimizes the reconstruction error (taking the grammar into account if
necessary).

8.3 Exemplar Selection Techniques

The N-REM recognition scheme benefits from discarding redundant speech
exemplars due to two main reasons. First, the computational load mainly due
to the iterative evaluation of the multiplicative update rule reduces proportional
to the dictionary sizes. Furthermore, the memory required to store the pruned
dictionaries is much less than storing the complete dictionaries. For this purpose,
we investigate the impact of two exemplar selection methods, namely collinearity
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reduction and k-medoids with symmetric AB divergence, on the recognition
accuracy in both clean and noisy conditions.

8.3.1 Collinearity Reduction (CR)

The CR selection technique discards exemplars that are well approximated by
the other exemplars of the same length and class (i.e. other exemplars in the
same dictionary). The exemplars with larger reconstruction errors are expected
to contribute more when approximating unseen noisy segments compared to the
ones with smaller reconstruction errors. Therefore, the CR technique compares
the reconstruction errors for all exemplars in a dictionary by approximating each
exemplar as a linear combination of the other exemplars in the same dictionary
with non-negative weights. This idea is applied iteratively by removing the
exemplar that is approximated with the minimum reconstruction error at each
iteration until the minimum number of exemplars requirement in a dictionary
is met.

8.3.2 K-medoids with AB Divergence (KMED)

The KMED selection technique is based on the well-known k-medoids technique,
PAM [94], using a symmetric version of the AB divergence as a novel dissimilarity
measure. The symmetric version of the AB divergence given in Equation (8.1) is
obtained as % [d(a P )(y ¥)+ d(a o )( )] The higher computational complexity
of the PAM technique mentloned in [65] is not valid in this scenario as the number
of speech exemplars in each dictionary is mostly on the order of magnitude one
and two. This selection technique is applied to every dictionary to obtain a
certain number of medoids that are expected to represent the convex hull formed
by the complete dictionary accurately enough. The divergence parameters are
chosen based on the recognition performance of the speech dictionaries on clean
speech and the ones providing the best clean speech recognition performance
are used during the exemplar selection.

8.4 Experimental Setup

8.4.1 Databases

The training material of AURORA-2 [77] consists of a clean and a multi-condition
training set, each containing 8440 utterances. The multi-condition training set
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was constructed by mixing the clean utterances with noise at SNR levels of 20,
15, 10 and 5 dB. Test set A and B consist of 4 clean and 24 noisy datasets at
six SNR levels between -5 and 20 dB. The noise types of test set A match the
multi-condition training set. Each subset contains 1001 utterances with one to
seven digits 0-9 or oh. To reduce the simulation times, we subsampled the test
sets by a factor of 4 (1000 utterances per SNR).

The small vocabulary track of the 24 CHIME Challenge [172] addresses the
problem of recognizing commands in a noisy and reverberant living room. The
clean utterances contain utterances from 34 speakers reading 6-word sequences of
the form command-color-preposition-letter-digit-adverb. There are 25 different
letters, 10 different digits and 4 different alternatives for each of the other
classes. The recognition accuracy of a system is calculated based on the
correctly recognized letter and digit keywords.

8.4.2 Dictionary Creation and Implementation Details

The speech exemplars of AURORA-2 data are extracted from the clean training
set. Acoustic feature vectors are represented in mel-scaled magnitude spectra
with 23 frequency bands. The speech exemplars representing half-digits are
segmented by a conventional HMM-based system. The complete dictionary
contains in total 52,295 speech exemplars excluding 990 silence exemplars. The
number of noise exemplars varies depending on the duration of the noise-only
sequences that are selected by ANES. On average, the recognizer with the
pruned dictionaries containing 20% of the exemplars in each dictionary uses
11,355 and 1,044 noise exemplars/utterance in total at SNR level of -5 dB and
clean speech respectively. The divergence parameters (a,3) for the KMED
selection technique are set to 1 and 0.25 respectively. The minimum and
maximum exemplar lengths are 8 and 40 frames respectively. Exemplars longer
than 40 frames are omitted to limit the number of dictionaries. The recognizer
uses 675 dictionaries in total. In the recognition phase, noise dictionaries are
created by performing noise sniffing and active noise exemplar selection [184].
The combined dictionaries and observation matrices are l>-normalized for all
SNR levels. The multiplicative update rule is iterated 100 times for convergence
of all frame lengths. The further details are given in [186]. The word error rate
(WER) has been used to quantify the recognition accuracy for the AURORA-2
digit recognition task.

The exemplars and noisy speech segments from CHIME-2 data are represented
as mel-scaled magnitude spectral features extracted with a 26 channel mel-scaled
filter bank (D = 26). The frame length is 25 ms and the frame shift is 10 ms.
The binaural data is averaged in the spectral domain to obtain 26-dimensional
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feature vectors. The exemplars are extracted from the reverberated utterances
in the training set according to the state-based segmentations obtained using the
acoustic models in the toolkit provided with the database. Exemplars belonging
to each speaker are organized in separate dictionary sets for speaker-dependent
modeling yielding 34 different dictionary sets. Based on the availability of the
exemplars, the minimum and maximum exemplar lengths are 4 and 40 frames
respectively. Half-word exemplars seemed to generalize sufficiently to unseen
data for the recognition task. Dictionary sizes vary with different classes and
speakers. The divergence parameters (a,() for the KMED selection technique
are set to 1 and 0 respectively. Prewarping [183] is applied to boost the modeling
capabilities of the underpopulated speech dictionaries (especially for the ones
belonging to letters due to the high number of alternatives and hence the small
number of exemplars per class) and it is limited to a single frame. The number
of exemplars in each dictionary after prewarping is limited to 50. The noise
modeling is detailed in [186]. The multiplicative update rule is iterated 25 times
to obtain the exemplar weights. The columns of the combined dictionaries
and observation matrices are ly-normalized. The further details are given
in [186]. The keyword recognition accuracy (RA) is used to evaluate the system
performance on the CHIME-2 data.

8.5 Results and Discussion

The exemplar selection techniques described in Section 8.3 are applied to the
speech dictionaries obtained from AURORA-2 and CHIME-2 data and the
recognition performance of the recognizers using only 20% of the exemplars
per dictionary are presented in Table 8.1 and 8.2. The results obtained using
conventional multi-condition trained GMM/HMM and other exemplar-based
sparse representation systems, namely sparse classification (SC) and feature
enhancement (FE), are also provided for comparison. The details of these
systems are available in [50]. The baseline results obtained with the complete
dictionaries and the best results provided by the pruned dictionaries are given
in bold.

A pruning rate of 80%, i.e. using 20% of the exemplars in a dictionary, is chosen
based on the initial results presented in [182]. This choice aims to compare the
amount of degradation in the recognition accuracy when pruning goes further
than the safe pruning rate of 70% which is defined as the largest pruning
rate without significant recognition accuracy loss [182]. We compare the CR
and KMED techniques with the CUR decomposition which is a randomized
column selection algorithm proposed as a part of the CUR matrix decomposition
in [115]. This algorithm randomly selects a subset of the columns of a data
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Table 8.1: Word error rates in % obtained on test set A and B of AURORA-2
using 20% of exemplars in each dictionary
(a) Test set A
[SNR(dB) [[clean || -5 0 5 10 15 20 0-20]
[N-REM || 1.8 [[14.9 85 58 4.7 35 2.3 5.0 |

CR 2.8 198 10.8 80 6.3 4.7 3.5 6.7
KMED 3.0 [|[186 109 7.9 64 50 41 6.9
CUR 4.1 202 126 90 74 56 45 7.8
RND 4.1 204 125 90 7.2 55 45 1738
GMM 0.7 60.8 243 73 29 13 08 7.3
SC 3.7 352 138 74 56 48 45 7.2
FE 0.5 304 10.v 33 15 1.1 0.7 3.5

(b) Test set B
[SNR(dB) [[clean | -5 0 5 10 15 20 0-20 |
[N-REM ][ 1.8 [[53.5 24.5 104 4.9 3.1 2.5 9.0 |

CR 2.8 56.7 275 125 7.0 4.7 3.5 11.0
KMED 3.0 58.5 25.9 11.7 6.9 50 46 10.8
CUR 4.1 57.6 264 13.0 74 5.7 51 11.5
RND 4.1 56.1 269 128 7.2 56 43 114
GMM 0.7 640 259 74 26 12 09 76
SC 3.7 524 235 11.0 59 27 45 99
FE 0.5 52.6 205 5.7 21 12 05 6.0

matrix with respect to the probability distribution computed as the normalized
statistical leverage scores. The CUR decomposition has been successfully
applied in selecting a very small number of exemplars from an overcomplete
dictionary without a significant recognition accuracy loss. We further provide
the recognition accuracies obtained using the randomly pruned dictionaries
(RND).

The WERs obtained on the clean test set of AURORA-2 are presented in
the middle panel of Table 8.1a and 8.1b. The N-REM performance using the
complete dictionaries is given in the first row of the tables. The clean speech
performance of CR is the best among the results obtained with the pruned
dictionaries with a WER of 2.8% compared to 1.8% yielded by the complete
dictionaries. KMED also provides a comparable result with a WER of 3.0%.
These results are consistent with the clean speech recognition results of CR
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Table 8.2: Keyword recognition accuracies in % obtained on the dev. and test
set of CHIME-2 using 20% of exemplars in each dictionary

(a) Development Set
’ SNR(dB) -6 -3 0 3 6 9 Avg ‘
N-REM 75.4 78.8 86.3 90.5 91.2 92.7 85.8 ‘

CR 715 777 83.6 90.0 90.6 923 84.3
KMED 73.0 77.8 84.7 90.3 91.3 924 84.9
CUR 69.3 76.3 823 879 89.7 919 829
RND 704 76.1 81.8 88.8 89.2 915 83.0
GMM 493 58.7 675 751 788 829 68.7
FE 68.0 722 809 86.7 89.0 90.5 81.2
HMM-FE 69.1 73.6 815 87.3 894 90.3 819
SC 75.5 814 87.5 899 924 923 86.5

(b) Test set
SNR(B) -6 -3 0 3 6 9 Avg |
[N-REM 739 79.7 86.1 88.0 90.9 92.6 85.2 |

CR 72.1 T78.7 84.9 87.1 90.6 91.8 84.2
KMED 71.8 779 838 869 894 91.6 83.6
CUR 70.1 774 829 8.5 8.7 904 825
RND 70.6 773 829 86.0 886 90.5 82.7
HMM 49.7 579 678 73.7 80.8 827 68.8
FE 67.2 759 81.1 864 90.7 92.0 82.2
HMM-FE 670 77.0 81.8 870 91.2 924 827
SC 76.5 81.3 889 90.5 927 932 872

presented in [182]. Dictionaries pruned with the other techniques yield worse
performance.

The results on the noisy sets of test set A are given in the rightmost panel
of Table 8.1a. These results further demonstrate the effectiveness of CR and
KMED in the noisy scenarios. N-REM with complete dictionaries has a WER of
5.0% on average. CR and KMED provide a WER of 6.7% and 6.9% respectively.
CUR performs as poor as RND on this exemplar selection task yielding a WER,
of 7.8%. The results on test set B, which are presented in Figure 8.1b, show a
similar trend and the best results in the mismatched noise case are obtained
using the dictionaries pruned by CR at high SNR levels and by KMED at low
SNR levels. At -5 dB of test set B, RND provides the best results which is
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explained by the minor impact of the speech dictionaries on the recognition
accuracy due to very poor noise modeling. CR and KMED perform better than
CUR and RND on average similar to the matched noise case.

The RAs obtained on the development and test sets of CHIME-2 data are shown
in Table 8.2. On the development set, KMED and CR yield an average RA of
84.9% and 84.3% compared to 85.8% of the N-REM baseline. CUR and RND
have a comparable RA of 82.9% and 83.0% respectively. On the test set, CR
provides an average RA of 84.2% which is slightly better than 83.6% of KMED.
These results are higher than 82.5% of CUR and 82.7% of RND.

From these results, it can be concluded that the CR and KMED techniques
achieve effective exemplar selection from undercomplete dictionaries by reducing
the dictionary sizes significantly without a significant loss in the recognition
performance, especially at higher SNR levels. Based on the geometrical
interpretation of this exemplar selection task as explained in [182], these
techniques pick the exemplars that preserve the convex hulls formed by the
speech dictionaries in the positive orthant. As a result, the dictionaries pruned
by CR and KMED have a more precise description of each speech unit in the
high-dimensional feature space compared to the other techniques and the noisy
mixtures can still be separated accurately by picking a low number of noise
and speech exemplars with much less computational and memory requirements
compared to the complete dictionaries.

8.6 Conclusion

This chapter investigates the performance of several exemplar selection
approaches proposed for picking the most informative exemplars from
undercomplete dictionaries which are used in the noise robust exemplar matching
framework. We first apply the collinearity reduction approach, which has shown
superior performance on clean speech in previous work, to noisy speech to explore
how robust the pruned dictionaries against background noise. Furthermore,
we investigate the performance of a k-medoids exemplar selection approach
which uses a novel dissimilarity measure, namely the symmetric alpha-beta
divergence, in accordance with the recognizer. The dictionaries pruned by both
techniques have performed considerably better than random pruning and the
column selection of the CUR decomposition which has provided impressive
results on overcomplete dictionaries.






Chapter 9

Speech Enhancement Using
N-REM

In this chapter, we propose a single-channel speech enhancement system based
on the noise robust exemplar matching (N-REM) framework using coupled
dictionaries. N-REM approximates noisy speech segments as a sparse linear
combination of speech and noise exemplars that are stored in multiple dictionaries
based on their length and associated speech unit. The dictionaries providing
the best approximation of the noisy miztures are used to estimate the speech
component. We further employ a coupled dictionary approach that performs
the approximation in the lower dimensional mel domain to benefit from the
reduced computational load and better generalization, and the enhancement in the
short-time Fourier transform (STFT) domain for higher spectral resolution. The
proposed enhancement system is shown to have superior performance compared to
the exemplar-based sparse representations approach using fized-length exemplars
in a single overcomplete dictionary.

This chapter is adapted from: Emre Yilmaz, Deepak Baby and Hugo Van hamme,
“Noise Robust Exemplar Matching with Coupled Dictionaries for Single-Channel
Speech Enhancement”, Submitted to EUSIPCO 2015.
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0.1 Introduction

Single-channel speech enhancement approaches aim to reduce the amount of
background noise in speech signals recorded by a microphone and improve the
speech intelligibility and quality. These techniques can also be used in the front
end of other speech processing tasks such as automatic speech recognition (ASR)
to alleviate the degradation due to the background noise. Denoising of monaural
speech data is still a rather challenging problem even after the intensive research
over several decades [112]. Numerous statistical and data-driven approaches
have been proposed to tackle the problem [62,89,116,117,119,151,154,174]
(and references therein).

This chapter presents a novel exemplar-based speech enhancement approach,
dubbed noise robust exemplar matching (N-REM), which performs denoising
using the actual occurrences of speech and noise extracted from training data.
Unlike previous exemplar-based sparse representations (SR) of speech using fixed-
length exemplars in a single overcomplete dictionary [12,50,84,92,118,153,162],
the proposed approach uses exemplars of multiple lengths, each associated with
a single speech unit such as phones, syllables, half-words or words [29,36,57].
These exemplars are organized in multiple dictionaries based on the their length
and class (associated speech unit). Using separate dictionaries for different
speech units is motivated by the geometrical interpretation of SR-based source
separation. It is known that the larger the distance between the convex hull
of the basis vectors belonging to speech and noise sources are, the better the
separation is [37]. Hence, the use of separate dictionaries for each speech unit
provides a more precise representation in the high-dimensional feature space.

Previously, the N-REM framework has been shown to perform reasonably
well on small vocabulary ASR tasks [184]. This chapter describes the initial
efforts towards an N-REM based speech enhancement approach. In addition,
we incorporate a coupled dictionaries approach [12] which uses a front-end
dictionary containing lower dimensional features to obtain the decomposition,
and a back-end dictionary containing the full-resolution spectral representations
to reconstruct the speech and noise sources. In this way, the proposed approach
benefits from the advantages of the lower dimensional features like better
generalization and lower computational complexity during the decomposition
and higher spectral resolution during the reconstruction of the speech component.
For a reliable reconstruction, the mapping between the corresponding exemplars
in both the dictionaries should be one-to-one which is realized by extracting
the corresponding exemplars of the coupled dictionaries jointly from the same
piece of training data.
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9.2 Noise Robust Exemplar Matching

9.2.1 Exemplar extraction and dictionary creation

Training frame sequences associated with a single speech unit (speech exemplars)
are extracted based on the state-level alignments obtained using a conventional
HMM-based recognizer. Every speech exemplar is represented both in the
full-resolution spectral domain (henceforth STFT exemplars) with K frequency
bins and lower dimensional mel domain (henceforth mel exemplars) with D
mel frequency bands. For the transformation between these domains, we use a
STFEFT-to-mel matrix, C, of dimensionality D x K which contains the vectorized
magnitude response of D mel bands in its rows.

Mel speech exemplars, each comprised of D mel frequency bands and spanning
[ frames, are reshaped into a single vector and stored in the columns of a mel
speech dictionary S%: one for each class ¢ and each length [. Each dictionary
is of dimensionality DI x R.; where R.; is the number of available mel speech
exemplars of class ¢ and length [. Similarly, a mel noise dictionary N for each
length [ is formed by reshaping the noise exemplars. Each mel speech dictionary
is concatenated with the mel noise dictionary of the same length to form a
combined mel dictionary A = [S}) N "] of dimensionality DI x P.; where
P, is the total number of available speech and noise exemplars. The same
procedure is followed using the STFT speech and noise exemplars to obtain the
combined STFT dictionaries AL, = [SE, N[] of dimensionality K1 x P..

C!

9.2.2 Decomposition of noisy speech

The decomposition of noisy mixtures into speech and noise components is
performed only in the mel domain. Every observed noisy speech segment of
length T frames is also reshaped into vectors by applying a sliding window
approach [50] with window length of [ frames and stored in an observation
matrix Y; = [yll,yf...,yl(T_Hl)] of dimensionality DI x (T —1+ 1). Due to
multiple-length exemplars, the window length [ is varied between the minimum
exemplar length [,,;;, and maximum exemplar length [, yielding observation
matrices Y, for lnin <1 < lnhax- For every class ¢, each observation vector y;
is expressed as a linear combination of the exemplars that are stored in the

dictionaries of the same length:

PC‘I,
~ p M,p _ M P
v~ E Teoa = A X s.t. 2, >0 (9.1)
p=1
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where x.; is an P, ;-dimensional non-negative weight vector. The sparse
solutions of x.; yield a more realistic approximation of the observed segments
without overfitting and have been shown to provide better recognition results
[80,174].

The combined dictionaries consisting of speech and noise exemplars are presumed
to model all acoustic variability in the observed signal due to pronunciation
variation, background noise and so forth. This model can also cope with
reverberation by storing reverberated speech exemplars rather than clean speech
exemplars.

9.2.3 Obtaining the exemplar weights

The non-negative exemplar weights x.; are obtained by minimizing the cost
function,

d(yi, AYixc.) chlA st. 2l >0 (9.2)

where A is an Pc’l—dimensional vector. The first term is the divergence
between the observation vector and its approximation. The second term is a
regularization term which penalizes the [;-norm of the weight vector to produce
a sparse solution. A contains non-negative values and controls how sparse the
resulting vector x is. Defining A as a vector, the amount of sparsity enforced
on different types of exemplars can be adjusted. In this work, the regularized
optimization problem with the cost function in Equation (9.2) is solved by
applying non-negative sparse coding (NSC) [79]. The generalized KLD is used
for d which is commonly used in source separation problems and shown to
produce better results than Euclidean distance when used in conjunction with
mel-scaled spectral features [174],

K
~ Y N
dly,y) = Zyk log 17: — Yk + Y. (9.3)
k=1

All observation matrices Y; for [,y < I < lhax are approximated using the
combined mel dictionaries A} of the corresponding length by applying the
multiplicative update rule given in [184]. To quantify the approximation quality,
we use the reconstruction error between the noisy speech segments and their
approximations. After a fixed number of iterations for all dictionaries, the
reconstruction errors between the observation matrix Y; and its approximations
A%XCJ are calculated for Iy, < I < lpax- As the label of each dictionary
is Rnown, decoding is performed by applying dynamic programming to find
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the class sequence that minimizes the reconstruction error to find the best
approximation of the target utterance.

9.2.4 Speech enhancement

After finding the best matching dictionaries, the denoising is performed in two
ways, either reconstructing the speech and noise components in mel or STFT
domain. The former approach provides the frame-wise mel speech and noise
estimates, §é‘/[l and ﬁ%, that are obtained after removing the windowing effect
by adding the components belonging to overlapping windows from the estimates
SM X7, and N; M X 1 respectively. Here, X7, refers to the exemplar weights
of the bpeech exemplars and X, refers to the exemplar weights of the noise
exemplars. The frame-level Wiener-like filter is then obtained as in [12],

W =C"sl @ (CT(3Y, + k) (9.4)

Since C contains triangular shaped filter-banks, this extrapolation is the same
as the piece-wise linear interpolation between D points (mel bands) spread
across the 1 to K frequency bins. The resulting filters always fall in the D-
dimensional subspace defined by the columns of CT which cannot account for
all the added noise content along the K dimensional DFT space. The enhanced
speech obtained after applying this filter on the noisy DFT thus will result in a
sub-optimal noise suppression.

The coupled dictionary approach remedies this problem by using the STFT
speech and noise dictionaries to obtain the the frame-wise speech and noise
estimates §% ey and 7 AL, from the estimates SF’ (X2, and NFX 1 respectively. The
resulting Wiener hke filter can be written as

Wea =350 85, +4ak). (9.5)

The complex spectrogram of the enhanced signal is obtained by combining the
enhanced magnitude spectrogram with the phase information obtained from
the noisy speech. The speech signal in the time domain is obtained using the
overlap-add method.

9.3 Experimental Setup

The enhancement performance of N-REM is evaluated on the test set A and B
of the AURORA-2 corpus [77]. The training material of AURORA-2 consists
of a clean and a multi-condition training set, each containing 8440 utterances
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with one to seven digits in American English. The multi-condition training set
was constructed by mixing the clean utterances with noise at SNR levels of
20, 15, 10 and 5 dB. Test set A consists of 4 clean and 24 noisy datasets with
four noise types (subway, babble, car and exhibition) at six SNR levels, 20, 15,
10, 5, 0 and -5 dB. The noise types of this test set match the multi-condition
training set. Test set B has the same number of test sets with four different
noise types (restaurant, street, airport, station) at the same SNR levels. Each
subset contains 1001 utterances. To reduce the simulation times, we subsampled
the test sets by a factor of 4 (250 utterances per test set, 1000 utterances per
SNR). A different subset with 100 utterances from each test set is used for
development purposes. All data has a sampling frequency of 8 kHz.

The speech exemplars are extracted from the clean training set. Acoustic
feature vectors are represented in the full-resolution STFT domain with K =129
bins and mel-scaled magnitude spectra with 23 frequency bands. The speech
exemplars representing half-digits are segmented by a conventional HMM-based
system. The recognizer uses in total 53285 speech exemplars distributed to
675 dictionaries of 23 different classes (half-digits plus silence). The number of
noise exemplars varies depending on the duration of the noise-only sequences
that are selected in the preprocessing step and the estimated SNR level of
the target utterance. On average, the recognizer uses 11355 and 6621 noise
exemplars/utterance in total at SNR level of -5 dB and 20 dB respectively. The
minimum and maximum exemplar lengths are 8 and 40 frames respectively.
Exemplars longer than 40 frames are omitted to limit the number of dictionaries.
The noise dictionaries are created by performing active noise exemplar selection
and noise sniffing [184]. The combined dictionaries and observation matrices
are ls-normalized for all SNR levels. The multiplicative update rule is iterated
100 times for convergence.

The performance of the proposed setup is compared with several baseline speech
enhancement systems such as the optimally-modified log-spectral amplitude
(OM-LSA) estimator combined with improved minima controlled recursive
averaging technique described in [22] and several exemplar-based SR systems
described in [12] which use a single overcomplete dictionary containing either
fixed length full resolution spectral features (SPEC) or mel-scaled spectral
features (MEL). Moreover, the SR-based system adopting the coupled dictionary
approach (MELCP) is also considered. The dictionary used by SPEC, MEL
and MELCP contains 10000 speech and 10000 noise exemplars. Further details
about these systems can be found in [12]. Two evaluation metrics have been
used for the performance evaluation. Firstly, the signal-to-distortion ratio (SDR)
improvements (ASDR) are calculated using the BSS Evaluation Toolkit [173].
Then, the perceptual evaluation of speech quality (PESQ) [139] improvements
(APESQ) are also presented to compare the perceptual speech quality of the
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proposed system with the baselines.

0.4 Results

The ASDR and APESQ values obtained on both test sets of AURORA-2 data
are presented in Figure 9.1. Figure 9.1a illustrates the ASDR provided on the
test set A. The N-REM setup performing the enhancement in mel domain as
shown in Equation (9.4) provides ASDRs of 10.1 dB, 9.2 dB and 7.9 dB at SNR
levels of -5, 0 and 5 dB respectively. The comparable MEL system yields 8.3
dB, 8.4 dB and 7.3 dB at the same SNR levels.

N-REMCP which performs the enhancement in the STFT domain as shown
in Equation (9.5), achieves better enhancement than N-REM providing 11.2
dB, 10.2 dB, 8.6dB at SNRs of -5, 0 and 5 dB with an absolute improvement of
1.1 dB, 1.0 dB and 0.7dB. For the same SNRs, the baseline MELCP system
provides 10.5 dB, 9.5 dB and 8.1 dB. Both N-REM setups outperform their
SR-based counterparts with a considerable margin.

At SNR levels of 10 dB and 15 dB, all systems except OM-LSA provide
comparable results with ASDRs values between 6.0-6.7 dB at SNR of 10 dB
and 4.5-4.8 dB at SNR of 15 dB. The SPEC system outperforms the others
with a ASDR of 3.3 dB at SNR of 20 dB. OM-LSA provides the worst results
at all SNR levels.

The ASDR results obtained on test set B, which are shown in Figure 9.1b,
clearly demonstrate the improved enhancement provided by N-REM systems
especially at lower SNR levels. N-REM provides ASDRs of 5.5 dB, 6.8 dB and
6.2 dB at SNRs of -5, 0 and 5 dB. These results are significantly higher than 1.8
dB, 4.8 dB and 4.9 dB of the MEL system. The N-REMCP system outperforms
MELCP with an absolute improvement of 2.4 dB, 1.5 dB and 1.2 dB at the
same SNRs respectively. N-REM based systems still perform better than the
baselines at SNR of 10 dB, while they are slightly worse than MEL and MELCP
at 20 dB. At this SNR level, OM-LSA provides the best results with a ASDR
of 1.6 dB. SPEC is the worst performing system at all SNR levels of test set B.

We further compare the APESQ values to evaluate the perceptual quality of
the enhancement systems. The APESQ values obtained on test set A are shown
in Figure 9.1c. On test set A at SNR -5 dB, SPEC has the highest APESQ
of 0.70 followed by MELCP and N-REMCP with a APESQ of 0.59 and 0.57
respectively. At 0dB, MELCP performs the best with 0.75, while N-REMCP
and SPEC yield 0.72 and 0.69 respectively. N-REMCP has the highest APESQ
at all SNR levels higher than 0 dB. The performance gap between the N-REM
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based systems and baselines increases at higher SNR levels. The improved
perceptual quality of N-REM and N-REMCP is also apparent from the better
APESQ results on test set B at all SNR levels which is shown in Figure 9.1d.

From these results, it can be concluded that the N-REM based systems in general
perform better speech enhancement than the baseline systems on account of the
separate speech dictionaries which result in more accurate representations of
acoustic units in the high-dimensional feature space. Two prominent advantages
of these systems are the superior ASDR performance under the mismatched
noise scenario and overall improvement in the perceptual speech quality. A final
comment about the presented results is that the coupled dictionary approach
highly improves the enhancement quality also in the N-REM based speech
enhancement especially at the lower SNR levels.

9.5 Conclusion

This chapter presents a novel single-channel speech enhancement system that
performs noise robust exemplar matching to separate speech and noise sources
using exemplars, each associated with a certain speech unit. These exemplars are
organized in separate dictionaries based on the associated speech unit and length
and unseen noisy mixtures are approximated as a sparse linear combination of
the speech and noise exemplars in each dictionary.

We further adopt the coupled dictionary approach which performs the
approximation in the lower dimensional mel domain and the enhancement in
the full-resolution STFT domain. The ASDR and APESQ results demonstrate
the improved speech enhancement achieved by the proposed system.
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Figure 9.1: SDR and PESQ improvements on test set A and B of AURORA-2
data






Chapter 10

Applications of N-REM based
Speech Enhancement to ASR

We present a novel automatic speech recognition (ASR) scheme which uses
the recently proposed moise robust exemplar matching framework for speech
enhancement in the front-end. The proposed system employs a GMM-HMM
back-end to recognize the enhanced speech signals unlike the prior work focusing
on template matching only. Speech enhancement is achieved using multiple
dictionaries containing speech exemplars representing a single speech unit and
several noise exemplars of the same length. These combined dictionaries are used
to approzimate the noisy segments and the speech component is obtained as a
linear combination of the speech exemplars in the combined dictionaries yielding
the minimum total reconstruction error. The performance of the proposed system
is evaluated on the small vocabulary track of the 2" CHiME Challenge and
the AURORA-2 database and the results have shown the effectiveness of the
proposed approach in improving the noise robustness of a conventional ASR
system.

This chapter is adapted from: Emre Yilmaz, Deepak Baby and Hugo Van hamme,
“Noise Robust Exemplar Matching for Speech Enhancement: Applications to
Automatic Speech Recognition”, Submitted to INTERSPEECH 2015.
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10.1 Introduction

Speech enhancement techniques, aiming to suppress the background noise
degrading the speech signals recorded by a microphone, are often combined with
automatic speech recognition (ASR) systems for improved noise robustness [100,
107,176]. These techniques reduce the mismatch between the statistical acoustic
models, e.g. hidden Markov models (HMM), trained under noise-free conditions
and the target speech by preprocessing the noisy speech and/or features to
enhance the noise corrupted spectrotemporal structure and recover the speech
component as accurately as possible. Numerous enhancement techniques have
been combined with Gaussian mixture model (GMM)-HMM [16, 33,40, 76,111,
114,167,189] and deep neural network (DNN)-HMM [10,105,113,126,147] ASR
systems and reported to provide considerable improvements in the recognition
accuracy.

This chapter presents a novel noise robust ASR system which incorporates an
exemplar-based speech enhancement approach, dubbed noise robust exemplar
matching (N-REM), for denoising the target utterance using the actual
occurrences of speech and noise extracted from training data. Unlike previous
exemplar-based speech enhancement systems using fixed-length exemplars in
a single overcomplete dictionary [11,54,118,153], the proposed approach uses
exemplars of multiple lengths, each associated with a single speech unit such as
phones, syllables, half-words or words [29,36,57]. These exemplars are organized
in multiple dictionaries based on the their length and class (associated speech
unit). Using separate dictionaries for different speech units is motivated by the
geometrical interpretation of SR-based source separation. It is known that the
larger the distance between the convex hull of the basis vectors belonging to
speech and noise sources are, the better the separation is [37]. Hence, the use of
separate dictionaries for each speech unit provides a more precise representation
in the high-dimensional feature space.

Previously, the N-REM framework has been successfully applied on small
vocabulary ASR tasks [184,186]. In previous work, the recognizer performs
exemplar matching using the mel-scaled spectral representations of the exemplars
and noisy speech and relies on a reconstruction error-based back-end to find the
most likely hypothesis. However, in the proposed work, N-REM enhances the
noisy speech and the enhanced speech represented in the mel frequency cepstral
coefficient (MFCC) domain is recognized using a conventional GMM-HMM
back-end. This system is expected to remedy the poor recognition accuracy
at higher SNR levels thanks to the better discrimination of GMMs trained on
MFCC features rather than the suboptimal divergence metric used for exemplar
matching. Moreover, on account of the more precise representations of the speech
units, the proposed front-end is expected to provide better enhancement and
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recognition than the FE approach [50,52] which is an alternative exemplar-based
sparse representations approach performing enhancement using fixed-length
exemplars in a single overcomplete dictionary. We have performed experiments
on both the AURORA-2 database and the small vocabulary track of the 24
CHIiME Challenge to investigate the performance of the proposed approach
under different noise and training conditions and compare the performance with
other noise robust recognition systems.

10.2 Noise Robust Exemplar Matching

Training frame sequences representing various speech units (speech exemplars)
are extracted based on the state-level alignments obtained using an HMM-based
recognizer. Speech exemplars, each comprised of D mel frequency bands and
spanning [ frames, are reshaped into a single vector and stored in the columns of
a speech dictionary S.;: one for each class ¢ and each length [. Each dictionary
is of dimensionality DI x N.; where N.; is the number of available speech
exemplars of class ¢ and length [. Similarly, a single noise dictionary N; for each
length [ is formed by reshaping the noise exemplars. Each speech dictionary is
concatenated with the noise dictionary of the same length to form a combined
dictionary A.; = [S.; N;] of dimensionality DI x M. ; where M, is the total
number of available speech and noise exemplars.

Every noisy speech segment of frame length T is also reshaped into vectors
by applying a sliding window approach [50] with window length of I frames
and stored in an observation matrix Y; = [y}, y7..., yl(Tle)] of dimensionality
Dix (T —1+1). Due to multiple-length exemplars, the window length [ is varied
between the minimum exemplar length [/,,;;, and maximum exemplar length l;,«
yielding observation matrices Y; for lnin < [ < lhax. For every class ¢, each
observation vector y; is expressed as a linear combination of the exemplars that
are stored in the dictionaries of the same length: y; ~ fo;ll Al = Acixc
for ", > 0 where x., is an M, ;-dimensional non-negative weight vector. The
sparse solutions of x.; yield more realistic approximation of the observed
segments without overfitting and have been shown to provide better recognition
results [80,174]. The combined dictionaries consisting of speech and noise
exemplars are presumed to model all acoustic variability in the observed signal
due to pronunciation variation, background noise and so forth. This model can
also cope with reverberation by storing reverberated speech exemplars rather
than clean speech exemplars.

The non-negative exemplar weights x.; are obtained by minimizing the cost
function, d(y;, Acixc1) + Zi\n/lzll Ay, for x> 0 where A is an M, -

c,l
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dimensional vector. The first term is the divergence between the observation
vector and its approximation. The second term is a regularization term which
penalizes the [1-norm of the weight vector to produce a sparse solution. A
contains non-negative values and controls how sparse the resulting vector x is.
Defining A as a vector, the amount of sparsity enforced on different types of
exemplars can be adjusted. In this work, the regularized optimization problem
with the aforementioned cost function is solved by applying non-negative sparse
coding (NSC) [79]. The generalized KLD is used for d which is commonly used in
source separation problems and shown to produce better results than Euclidean
distance when used in conjunction with mel-scaled spectral features [174],

A K N
Ay, 9) = >"y—1 yrlog 2= — yi, + Gk

All observation matrices Y; for iy < I < lhax are approximated using the
combined dictionaries A.; of the same length by applying the multiplicative
update rule given in [184]. To quantify the approximation quality, we use the
reconstruction error between the noisy speech segments and their approximations.
After a fixed number of iterations for all dictionaries, the reconstruction errors
between the observation matrix Y; and its approximations A ;x.; are calculated
for lpin < I < lpax- As the label of each dictionary is known, decoding is
performed by applying dynamic programming to find the class sequence that
minimizes the reconstruction error to find the best approximation of the target
utterance.

After finding the best approximation, the denoising is performed by reconstruct-
ing the frame-wise speech and noise estimates, 3.; and 7., that are obtained
after removing the windowing effect by adding the components belonging to
overlapping windows from the estimates S ;X oy and Ny X7 respectively. Here,
X2 refers to the exemplar weights of the speech exemplars and X7 refers
to the exemplar weights of the noise exemplars. The frame-level Wiener-like
filter is then obtained as in [11], W = CT4.; @ (CT (8. + ;1)) where C is
the short-time Fourier transform (STFT)-to-mel matrix containing triangular
shaped filter-banks.

10.3 Experimental Setup

10.3.1 Databases

AURORA-2: The training material of AURORA-2 [77] database consists of a
clean and a multi-condition training set, each containing 8440 utterances. The
multi-condition training set was constructed by mixing the clean utterances
with noise at SNR levels of 20, 15, 10 and 5 dB. Test set A and B consists of 4
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clean and 24 noisy datasets at six SNR levels between -5 and 20 dB. The noise
types of test set A match the multi-condition training set. Each subset contains
1001 utterances with one to seven digits 0-9 or oh. We use the complete test
sets to be able to compare the results with other systems.

CHIME-2: The small vocabulary track of the 2°¢ CHiME Challenge [172]
addresses the problem of recognizing commands in a noisy and reverberant
living room. The clean utterances contain utterances from 34 speakers reading
6-word sequences of the form command-color-preposition-letter-digit-adverb.
There are 25 different letters, 10 different digits and 4 different alternatives for
each of the other classes. The recognition accuracy of a system is calculated
based on the correctly recognized letter and digit keywords.

10.3.2 Dictionary Creation and Implementation Details

AURORA-2: The speech exemplars are extracted from the clean training set.
Acoustic feature vectors used during speech enhancement are represented in
mel-scaled magnitude spectra with 23 frequency bands. There are in total
52,305 speech exemplars representing half-digits. The minimum and maximum
exemplar lengths are 8 and 40 frames respectively. Exemplars longer than 40
frames are omitted to limit the number of dictionaries. The recognizer uses in
total 675 dictionaries of 23 different classes (half-digits plus silence). The noise
dictionaries are created by performing active noise exemplar selection and noise
sniffing which are detailed in [184]. The combined dictionaries and observation
matrices are [3-normalized for all SNR levels. The multiplicative update rule is
iterated 100 times for convergence of all frame lengths. Further details can be
found in [184].

The enhanced speech is input to a GMM-HMM recognizer employing an HMM
topology with 16 states describing each digit and 3 states for silence leading
to a total of 179 states. The GMM model is trained on MFCC with 13 static
features along with their delta and delta-delta time differences resulting in a
39 dimensional feature space. The emission probabilities of each HMM state is
modeled using a GMM of 32 Gaussians with diagonal covariance. For the Viterbi
decoder, an HMM topology where all the words have the same word entrance
penalties was used. We trained acoustic models on the clean and multicondition
training set. To evaluate the impact of retraining on the recognition accuracy, we
further train an acoustic model on the enhanced waveforms of the multicondition
training set.

CHIME-2: The N-REM system for speech enhancement uses exemplars and
noisy speech segments that are represented as mel-scaled magnitude spectral
features extracted with a 26 channel mel-scaled filter bank (D = 26). The frame
length is 25 ms and the frame shift is 10 ms. The binaural data is averaged in
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the spectral domain to obtain 26-dimensional feature vectors. The exemplars
are extracted from the reverberated utterances in the training set according to
the state-based segmentations obtained using the acoustic models in the toolkit
provided with the database. Exemplars belonging to each speaker are organized
in separate dictionary sets for speaker-dependent modeling yielding 34 different
dictionary sets. Based on the availability of the exemplars, the minimum and
maximum exemplar lengths are 4 and 45 frames respectively.

Half-word exemplars seemed to generalize sufficiently to unseen data. Dictionary
sizes vary with different classes and speakers. Prewarping [183] is applied to
boost the modeling capabilities of the underpopulated speech dictionaries. The
number of exemplars in each dictionary after prewarping is limited to 50. The
noise dictionaries used for the recognition phase contain 200 noise exemplars that
are acquired on the fly from the immediate neighborhood of the target utterance
in both directions until the frames belonging to other target utterances. In
addition to these sniffed noise exemplars, 200-300 noise exemplars are extracted
from the most active 2 noise-only sequences selected by adaptive noise exemplar
selection technique [184]. The multiplicative update rule is iterated 25 times to
obtain the exemplar weights. The columns of the combined dictionaries and
observation matrices are ls-normalized. Further details can be found in [184].

The enhanced speech is recognized using the baseline HMM structure provided
by the challenge organizers at the back-end [172]. The provided acoustic models
use 4-10 state word-level HMMs and the emission probabilities of each HMM
state is modeled using a GMM of 7 Gaussians. The speech features are standard
39-dimensional MFCCs applied with cepstral mean normalization. We first use
the default acoustic models trained on clean, reverberated and noisy training
utterances. Similar to the AURORA-2 experiments, we also retrain a new
acoustic model using the enhanced isolated noisy training utterances.

10.3.3 Evaluation Metrics

We have opted for the metrics which have been traditionally used for the
evaluation of the databases described in Section 10.3.1 for comparability with
the previous literature. The word error rate (WER) has been used to quantify
the recognition accuracy for the AURORA-2 digit recognition task. The keyword
recognition accuracy (RA) is used to evaluate the system performance on the
CHIME-2 data.
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Table 10.1: Word error rates in % obtained on test set A and B of AURORA-2
data

(a) Test set A
[SNR(dB) 5 0 5 10 15 20 0-20 clean]
[N-REM 20.1 10.0 6.3 4.6 3.5 27 54 1.8 |

N-REM-SE (clean) 24.4 10.1 53 34 2.1 14 44 0.3
N-REM-SE (multi) 17.9 8.2 4.5 2.8 1.9 1.0 3.6 0.8
N-REM-SE (retrain) 19.5 8.6 4.7 3.2 1.9 1.0 39 0.5

(b) Test set B
|SNR(dB) -5 0 5 10 15 20 0-20 clean]
IN-REM 56.9 25.6 104 5.7 38 32 9.7 18]

N-REM-SE (clean) 56.3 24.1 9.5 4.2 23 1.3 83 0.3
N-REM-SE (multi) 55.0 23.9 8.9 3.9 1.9 1.2 8.0 0.8
N-REM-SE (retrain) 55.7 24.1 9.3 4.1 2.1 1.2 82 0.5

10.4 Results

We perform recognition experiments using the proposed system (N-REM-SE) on
test set A and B of AURORA-2 and development and test sets of CHIME-2 data.
For both datasets, we first compare the performance of N-REM-SE with the
exemplar matching version (N-REM) [184] using the same combined dictionaries
and divergence measure. Then, the proposed system is compared with other
noise robust ASR systems to evaluate the overall performance of N-REM-SE.

10.4.1 AURORA-2 Results

Table 10.1 and 10.2 presents the results obtained on AURORA-2 data. The
clean speech recognition performance of all systems is given in the last column of
Table 10.1a and Table 10.1b. The exemplar matching system provides a WER
of 1.8% on clean speech which is higher than any setup with a GMM-HMM
back-end. N-REM-SE trained on clean and multicondition data has a WER
of 0.3 and 0.8 on clean speech respectively. As expected, the GMM-HMM
back-end considerably improves the clean speech recognition performance.

N-REM provides WERs of 20.1%, 10.0% and 6.3% at SNR levels of -5 dB , 0
dB and 5 dB. N-REM-SE trained on clean speech performs surprisingly well
with WERs of 24.4%, 10.1% and 5.3% at the same SNR levels. Training the
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Table 10.2: Comparison of NREM-SE with other recognition systems on
AURORA-2 data

Technique test set A test set B

-5 0-20 -5 0-20
GMM-HMM [52] 772 169 | 77.1 159
AFE [78] 56.5 7.7 | 57.7 8.2
NAT [90] 57.7 6.3 | 581 6.3
SC [52] 35,7 7.2 | 498 93
FE [52] 304 36 | 50.8 6.1
SC+FE [52] 25.6 3.1 | 43.7 5.0
ESSEM-MCM [166] - 4.4 - 4.7
RBM-DNN [106] - 4.5 - 5.1
MASK-RBM-DNN [105] - 3.8 - 5.0
MS-CD [12] 211 2.4 | 624 75
FE+MS-CD [12] 206 2.4 | 542 6.1
N-REM [184] 20.1 54 | 569 9.7
N-REM-SE 179 36 | 55.0 8.0

acoustic models of N-REM-SE on multicondition data improves the results
by an absolute improvements of 6.5%, 1.9% and 1.0% respectively. Unlike
the other exemplar-based approaches which use a single fixed noise dictionary,
retraining the acoustic models on the enhanced training data does not bring any
improvement in case of N-REM-SE. This is due to the adaptive noise modeling
adopted in N-REM-SE which selects a different set of noise exemplars for each
noisy utterance on the fly. Consequently, retraining does not help the back-end
to cope with the artifacts introduced by speech enhancement in this scenario.
The models trained on multicondition data yield better or similar recognition
performance at all SNR levels.

Using a GMM-HMM back-end reduces the WER in general at higher SNR levels
similar to the clean speech performance. Compared to the WERs of 4.6%, 3.5%
and 2.7% provided by N-REM at SNRs of 10 dB, 15 dB and 20 dB respectively,
N-REM-SE trained on multicondition data has WERs of 2.8%, 1.9% and 1.0%
at the same SNRs. Moreover, this system has an average WER (0-20) of 3.6%
compared to the 5.4% of N-REM. Multicondition trained N-REM-SE also shows
superior performance at all SNR levels of test set B compared to N-REM and
other N-REM-SE variants. This system provides an average WER of 8.0%
compared to the 9.7% of N-REM and 8.3% of retrained N-REM-SE.

Table 10.2 lists the recognition results of some other noise robust ASR, systems
data with state-of-the-art performance on AURORA-2 data. This list is by
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no means exhaustive and it only includes the recognition results published
on the complete test sets for a fair comparison. From these results, it
can be concluded that the recognition systems using exemplar-based speech
enhancement approaches, e.g. FE variants and N-REM-SE, provide impressive
performance in matched noise scenarios. Other exemplar-based systems which
do not rely on a statistical model at the back-end, e.g. SC and N-REM, mainly
suffer from low recognition accuracies at higher SNR levels resulting in worse
average WER results. On the other hand, the ESSEM-MCM and RBM-DNN
methods perform almost equally well under matched and mismatched noise
conditions.

The hybrid SC4+FE system appears to be a nice compromise with a remarkable
-5 dB performance and one of the lowest average WERs on both test sets.
Compared to this system and other exemplar-based systems, the gap between
the matched and mismatched noise is larger for the proposed system due to
the smaller amount of noise exemplars in the class- and length-dependent
dictionaries. This results in poor generalization against unseen noise types. In
the case of matched noise, N-REM-SE has a better -5 dB performance, which
is actually the best among all systems, and a comparable average WER on test
set A.

10.4.2 CHIME-2 Results

Table 10.3 and 10.4 presents the results obtained on CHIME-2 data. We
first focus on Table 10.3 presenting the recognition accuracies obtained on the
development and test sets to compare the performance of the exemplar matching-
based system and the proposed recognizer. The results on both sets follow a
similar trend; hence the results on the test set are discussed only. N-REM
provides RAs of 71.0%, 78.9% and 85.3% at -6 dB, -3 dB and 0 dB. N-REM-SE
trained on reverberated data has RAs of 69.8%, 76.8% and 84.3% at the same
SNR levels. These results are slightly worse than the exemplar matching system.
Retraining the acoustic models does not improve the recognition performance
similar to the results obtained on AURORA-2 data. The proposed setup with
the acoustic models trained on clean and noisy speech provides inferior results.

The overall performance of N-REM is also mildly better with an average RA
(Avg) of 84.8% compared to the proposed recognizer trained on the reverberated
data with 83.4%. The CHIME-2 results favor the exemplar matching system over
N-REM-SE unlike the AURORA-2 experiments. The same observation holds for
the single dictionary counterparts, FE and SC [50], considering the recognition
results reported in [184]. We discuss the differences between AURORA-2 and
CHIME-2 databases to get more insight for the reduced performance of the
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Table 10.3: Keyword recognition accuracies in % obtained on the development
and test set of CHIME-2 data

(a) Development Set

[SNR(dB) 6 3 0 3 6 9 Aug]
[N-REM 70.4 77.9 84.8 90.4 92.6 93.8 85.0]
N-REM-SE (clean) 21.1 234 27.9 305 344 349 287
N-REM-SE (reverb) 67.3 74.7 81.7 88.2 89.8 91.5 82.2
N-REM-SE (noisy) 60.8 68.8 74.3 78.1 81.8 83.2 745
N-REM-SE (retrain) 69.4 75.9 82.8 87.4 88.6 91.7 82.6
(b) Test set
| SNR(dB) 6 -3 0 3 6 9 Au|
[N-REM 71.0 78.9 85.3 88.7 91.9 92.8 84.8]
N-REM-SE (clean) 19.9 22.8 26.8 29.7 342 38.1 286
N-REM-SE (reverb) 69.8 76.8 84.3 87.3 90.3 91.6 83.4
N-REM-SE (noisy) 60.3 69.1 74.8 78.0 81.4 82.8 744
N-REM-SE (retrain) 70.3 76.4 84.5 86.7 89.3 90.6 83.0

Table 10.4: Comparison of NREM-SE with other recognition systems on CHIME-
2 data

Technique Baseline AM Retrained AM
Dev Avg \ Test Avg \ Dev Avg \ Test Avg
GMM [172] 68.7 68.8 - -
SCSS [123] 76.0 T - -
FE [51] 81.2 82.2 - -
HAMM-FE [51] | 81.9 82.7 - -
BSE [127] 818 82.0 81.5 832
FASST [164] | 82.9 84.2 84.7 85.7
N-REM-SE 82.2 83.4 82.6 83.0

exemplar-based front-end denoising systems (N-REM-SE and FE) on CHIME-
2 compared to the other systems (N-REM and SC) which do not rely on a
statistical model at the back-end. Firstly, the variations in both speech and noise
components in the noisy mixtures are more significant in CHIME-2 compared
to AURORA-2. The former is due to the smearing effect of reverberation
degrading the spectrotemporal content of the speech exemplars and the latter
is an outcome of the highly non-stationary room noise. Secondly, there are
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only few exemplars available in the training data, especially for letters, to
obtain accurate representations of each speech unit in the high-dimensional
feature space. Hence, the speech enhancement quality provided by the combined
dictionaries with increased variation is less effective in compensating for the
mismatch between the target speech and the acoustic models trained on neither
reverberated nor noisy speech. Under such a scenario, adopting a GMM-HMM
back-end is less favorable compared to the N-REM and SC systems which either
rely on the reconstruction error or estimate state likelihoods directly from the
exemplar weights at the back end respectively.

To be able to evaluate the enhancement performance of the N-REM front-end,
we present some results obtained using other speech or feature enhancement-
based recognition systems in Table 10.4. The recognition results of the best
performing GMM-HMM baseline trained reverberated data is also provided as
a reference. The best performing FASST system does not only benefit from
spectral enhancement, but also from spatial enhancement using spatial full-
rank covariance matrices [164]. All other systems benefiting only from either
spectral or spatial enhancement and using the standard acoustic models provided
as a part of the CHIME-2 challenge perform moderately compared to the
more sophisticated approaches with some speaker and environment adaptation
techniques. N-REM-SE provides a reasonable performance outperforming the
other exemplar-based sparse representation systems, FE and HMM-FE, which
use exemplars of fixed length in a single overcomplete dictionary for feature
enhancement.

10.5 Conclusion

This chapter presents a novel noise robust ASR system using a single-channel
speech enhancement setup that performs noise robust exemplar matching to
separate speech and noise sources in the front-end. The exemplars used in
this technique are associated with a certain speech unit and organized in
separate dictionaries based on the associated speech unit and length. The
noisy mixtures are approximated as a sparse linear combination of the speech
and noise exemplars in each dictionary. The proposed system has provided
comparable performance with the other state-of-the-art ASR systems on two
popular small vocabulary recognition tasks, AURORA-2 and CHIME-2.






Chapter 11

Conclusion

This chapter concludes the thesis by providing a review of the original
contributions and several directions for future research.

11.1 Original Contributions

This work focuses on establishing a noise modeling scheme for traditional
exemplar matching-based automatic speech recognition (ASR) systems. This
novel noise robust ASR framework is the main contribution of this thesis.
Furthermore, the attempts to improve the speech and noise modeling capabilities
and reduce the computational burden yield novel data selection techniques that
can also be used in other applications. The list of all original contributions is
given below.

» Noise robust exemplar matching (N-REM) framework: The idea
of organizing exemplars of different lengths in multiple dictionaries and
approximate noisy speech as a linear combination of these exemplars
for noise robust automatic speech recognition is the main contribution
of this thesis to the ASR literature. The initial efforts are explained
in Chapter 2 and the first complete system is the topic of Chapter
5.  The investigation of the alpha-beta divergence in place of the
generalized Kullback-Leibler divergence is another important novelty
bringing improved noise robustness. The details of this work are given in
Chapter 7.

147
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e Time warping for N-REM: The traditional exemplar matching
greatly benefits from dynamic time warping (DTW) as DTW allows
the comparison of segments of different frame length. Motivated by this
fact, we have also proposed a time warping technique for the N-REM
framework and investigated the influence on clean speech recognition in
Chapter 3. Despite the promising results, the proposed time warping
technique is not adopted in the latter steps due to large computational
complexity.

e Data selection for N-REM: Data selection from the N-REM
dictionaries is also addressed in this thesis. The exemplar selection
experiments aim to find out the optimal acoustic model size in terms of
the number of speech exemplars used for recognition. Several exemplar
selection criteria for the N-REM dictionaries are introduced in Chapter
4 and 8. The former techniques use the generalized Kullback-Leibler
divergence as a dissimilarity measure, while the latter adopts the alpha-
beta divergence in accordance with the recognizer.

o Adaptive noise modeling for N-REM: The recognition performance
of the proposed technique heavily depends on the use of noise exemplars
that can accurately capture the characteristics of the actual noise signal
corrupting the target speech. For this reason, the noise exemplars are
extracted on the fly based on the information obtained in a preprocessing
stage and a unique noise dictionary is used for each utterance. The details
of this adaptive noise modeling approach is given in Chapter 6.

e N-REM-based Speech Enhancement: The novel recognition architec-
ture is applied for denoising the speech signals and the results are presented
in terms of the traditional speech enhancement measures in Chapter 9.
Finally, this enhancement system is integrated into a conventional GMM-
HMM speech recognizer to reduce the amount of the background noise in
the front-end. The recognition results are presented in Chapter 10.

11.2 Directions for Future Research

This section discusses the possible extensions to the described framework
for more widespread use, improved recognition performance and reduced
computational complexity.

e« Hybrid acoustic modeling combined with statistical models: The
performance of the N-REM system, which only relies on the reconstruction
error at the back-end, can be improved by adopting other statistical
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acoustic models in parallel. In such a setting, the acoustic scores obtained
from both streams can be combined to benefit from the noise robustness
of exemplar-based acoustic modeling and better discrimination of the
statistical models such as complex GMM distributions in conjunction with
MFCC features or DNNs. One possible future direction is to develop
a robust way of combining the acoustic scores that are obtained using
different models, such as the reconstruction errors of exemplar matching
and the likelihoods of the GMMs or “pseudo-likelihoods” of the DNNs.
This joint approach is shown to be effective, e.g. in [1,29,55].

o Efficient algorithms to obtain the exemplar weights: The
computational bottleneck of N-REM is the multiplicative update rule
that is applied iteratively to learn the exemplar weights. There are
several algorithms for computationally efficient estimation of the exemplar
weights such as [58,95,169,175]. Adopting such an efficient exemplar
weight learning technique will reduce the computational burden and make
it viable to model a larger number of acoustic units, such as context-
dependent phones rather than half-words.

o Extention to large vocabulary tasks: The presented work is a first
step toward a noise robust exemplar matching framework which can
handle medium-large vocabulary speech. Its main advantage is that
the exemplars model speech units, which should scale better than the
long, fixed-length exemplars employed in other exemplar-based sparse
representations systems. In this thesis, the speech exemplars have been
chosen to represent half-words. Considering the dimensionality and
computational restrictions, the same framework using exemplars associated
with more general subword units such as phones, syllables could be applied
to a medium- or large-vocabulary task. Only the current decoding scheme
would need to be redesigned in a way that it will incorporate a language
model combined with the acoustic costs, but for this it could largely rely
on existing exemplar matching frameworks [30].

e Further investigation of the time warping: Even though the
feasibility of the proposed time warping model has been shown, there are
still more open questions such as the different warping matrix designs
and their effects on the recognition accuracy, a detailed analysis of the
effect of different sparsity factors on the recognition accuracy, tying the
weights of the time-frequency cells belonging to the same frame to obtain
a frame-level time warping and designing a dedicated implementation of
the proposed model which is expected to reduce the simulation times.
Furthermore, the proposed time warping technique is not applied under
noisy scenarios and its impact on the recognition accuracy is still unknown.
This aspect has to be further investigated after tackling the computational
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restrictions due to the increased number of exemplar weights that has to
be learned.

Automatic discovery of the divergence parameters: Another
future work is to develop a procedure to yield the optimal parameters
of the alpha-beta divergence in terms of the recognition performance.
As reported in Chapter 7, the N-REM recognizer using the alpha-beta
divergence provided considerable improvements in the recognition accuracy
especially at the lower SNR levels. However, the divergence parameters
(a, ) are tuned manually on development data which requires a time-
consuming search over the (a,3) plane. The proposed recognizer will
also benefit from estimating the divergence parameters without any
prior investigation, as the divergence parameters providing the best
performance depend highly on the characteristics of noisy mixtures [20].
An asymmetric clustering algorithm using the AB divergence has been
recently proposed which estimates the divergence parameters based on the
within-cluster variances [130]. A systematic and computationally efficient
way of estimating the divergence parameters from the training data would
reduce the computational burden due to the initial search for suitable
values.
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Appendix A

A.1 Silence Compensation

Silence compensation is performed by applying non-negative sparse coding using
a single dictionary A} = containing speech exemplars from all classes and noise
exemplars from different noise-only training sequences as illustrated in Figure
5.2.

Yo, ~ A} xz, s.t. xr, > 0. (A.1)

The SNR level is estimated as the ratio of total speech weights and total speech
and noise weights in order to limit the estimation range to [0,1]

J

W w,m
PRI

s

SNReg = U2t - F. (A.2)

w,m
wX=:1 m2=:1 st

xy_ is the sparse weight vector corresponding to w' of W noisy segments
of length L. J is the number of speech exemplars and M is number of all
exemplars excluding the sniffed noise exemplars. In order to balance the bias
in case of mismatched noise, SNRg; value is scaled by a constant, F', which
is calculated as the ratio of the total weight obtained by the most active 10%
of the noise-only training sequences to the total weights. In case of matched
noise, F' is very close to 1 as the actual noise component is approximated as a
superposition of noise exemplars from a few training sequences only. On the
other hand, approximation of the mismatched noise requires a larger number of
training sequences resulting in a smaller F'.
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After obtaining the weights by applying the multiplicative update rule in
Equation (5.4), the reconstruction of the speech is obtained by linearly combining
the speech exemplars only. A frame-level estimation of the speech activity (FSA)
is obtained by summing over the frequency bins of the reconstructed speech,
normalizing the values to the [0,1] range over the complete utterance and
inverting such that 1 denotes the silence and 0 denotes the maximum observed
speech activity. Then, in order to obtain steeper transitions between speech
and silence regions, we calculate the speech activity value (VAD) by applying a
shifted and scaled logistic function [50] to the FSA values
1

VAD =17 exp(cy - FSA — B) (4.3)

with the parameters ¢; and 3. ¢; is a scalar and set to 10. 3 is an SNR-dependent
value which is calculated as

_ 1 —exp(cr - Q)
~ exp(er - €) — exp(cr) (A.4)
C = min(SNRest - C2, CS)) (AB)

where ¢y and c3 are set to 1.5 and 0.55 respectively. Thresholding is applied to
the VAD values to obtain a binary decision for each frame

1 if VAD>VADyp,

VAD, = i
0 if VAD<VADy,,.

VADyqy, is set to 0.95. The reconstruction errors corresponding to the silence

dictionaries are scaled by a value CF which depends on the VADy, value assigned

to the middle frame of the corresponding noisy segment and the SNR estimate,

CF =1 — min(max(SNReg; - 6, ¢),v) - VADy (A.6)

where 0 is a scale factor, ¢ and - are lower and upper limits. They are set to
0.75, 0.1 and 0.55 respectively.

A.2 SNR-dependent ANES

The single dictionary, which is illustrated in Figure 5.2, contains noise exemplars
extracted from 800 noise-only training sequences (10 exemplars from each
sequence). Once the most active training sequences are found, i.e. the noise
sequences obtaining the highest weights, noise dictionaries that are used in the
recognition phase are extracted from the IV,,,, most active training sequences
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with hops of 3 frames (between 77-170 exemplars from each sequence). The
value of Ny.x depends on the SNR level and it is chosen according to the
SNRest parameter (cf. Appendix A.1):

if SNRes <0.35
if SNRest>0.35 and SNRes: <0.5
if SNRest>0.5 and SNRes <0.65
if SNR st >0.65.

Nmax =

O = NN W

The combined dictionaries of all classes and lengths contain the noise exemplars
that are extracted from these Np.x training sequences. The combined
dictionaries contain only a few or no noise exemplars during the recognition of
high SNR levels.
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