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Abstract

This paper presents a heuristic approach to optimize staffing and scheduling at an aircraft
maintenance company. The goal is to build robust aircraft maintenance personnel rosters
that can achieve a certain service level while minimizing the total labour costs. Robust
personnel rosters are rosters that can handle delays associated with stochastic flight ar-
rival times. To deal with this stochasticity, a model enhancement algorithm is proposed
that iteratively adjusts a mixed integer linear programming (MILP) model to a stochastic
environment based on simulation results. We illustrate the performance of the algorithm
with a computational experiment based on real life data of a large aircraft maintenance
company located at Brussels Airport in Belgium. The obtained results are compared to
deterministic optimization and straightforward optimization. Experiments demonstrate
that our model can ensure a certain desired service level with an acceptable increase in
labour costs when stochasticity is introduced in the aircraft arrival times.
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1. Introduction

To ensure safety in aviation, aircraft should be maintained regularly and carefully.
Constructing a good workforce schedule is therefore essential to make sure that all air-
craft will be maintained thoroughly in time. In the aviation industry, different forms
of maintenance exist. We distinguish A-, B-, C- and D-checks, line maintenance, hangar
maintenance, scheduled and unscheduled maintenance, etc. (Van den Bergh et al., 2013b).
In this paper we focus on the line maintenance which includes pre-flight inspections, transit
checks, daily checks (visual inspection of the aircraft, fluid level checks, general security
checks, emergency equipment checks and cleanliness of the flight deck checks), weekly
checks and on-call assistance (Beliën et al., 2012).

Scheduling aircraft maintenance personnel at an aircraft maintenance company entails
some special problems. First, the workforce scheduling problem is heavily constrained
by labour union agreements. Second, the management of the company must decide itself
when exactly the maintenance should take place between the arrival and departure of the
aircraft. Hence, the timing of the workload is an extra decision in the scheduling problem.
Third, aircraft do not always fly on schedule and sometimes arrive with a delay. When
the workforce scheduling does not anticipate delays in arrival time, the scheduled capacity
may be insufficient to maintain all aircraft in time.

This paper focuses on this latter problem and presents a technique to obtain robust
aircraft maintenance personnel rosters that minimize the total labour costs. Because
aircraft arrive with stochastic delays, we define the stochastic robustness of these rosters
as their ability to ensure a certain service level; i.e., to ensure that on average at least a
certain percentage of the flights can be maintained before their scheduled time of departure
(STD). To obtain this stochastic robustness, we propose a model enhancement (ME)
heuristic that iteratively enhances a mixed integer linear programming (MILP) model by
adding constraints based on information resulting from simulation experiments.

We illustrate our model using real life data from Sabena Technics, a large aircraft
maintenance company located at Brussels Airport in Belgium.

2. Literature review

The first part of this literature review situates this paper within the existing litera-
ture on aircraft maintenance scheduling, while the second part reviews the literature on
stochastic optimization.

The problem under study concerns a workforce scheduling problem for line maintenance
personnel. For an overview of the literature on general workforce scheduling, we refer to
Van den Bergh et al. (2013a), while a literature overview of aircraft maintenance operations
can be found in Van den Bergh et al. (2013b). Many of the studied aircraft maintenance
optimization problems concern maintenance routing optimization (see, e.g., (Talluri, 1998;
Sarac et al., 2006; Liang et al., 2010; Sriram and Haghani, 2003)), which addresses the
problem of finding optimal sequences of flights for a particular aircraft such that it can
be parked in a maintenance station after a certain number of days of flying without
maintenance. This problem is often solved for one airline company.
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We assume, however, that the maintenance routing problem is already solved and the
routes are given for several airline companies. Given a set of flights that arrive and de-
part at a certain airport, we try to optimize the maintenance workforce schedule at the
associated maintenance station. The approach is tested on a line maintenance environ-
ment, excluding other types of maintenance, such as light and heavy maintenance. The
latter include more demanding maintenance checks and are typically subject to a higher
variability in workload, whereas the former is limited to routine maintenance of which the
required workload can quite well be predicted beforehand. Other papers that study line
maintenance problems in comparable settings to this paper include (Beliën et al., 2012),
(Beliën et al., 2013), (Van den Bergh et al., 2013c), (Yan et al., 2004) and (Papakostas
et al., 2010).

In contrast with (Quan et al., 2007) who present a multi-objective model that si-
multaneously minimizes the maintenance capacity and the makespan of completing all
maintenance jobs, our model involves a single objective (minimizing maintenance person-
nel costs) while the other objective (minimizing the number of late flight departs due to
late maintenance) is modeled through a service level constraint. The problem studied in
(Safaei et al., 2011) and (Safaei et al., 2010) also requires a certain number of aircraft
to be available (on time) for the next fly programs, and, hence studies a similar service
level constraint. An important difference is, however, the context of a military aircraft
fleet, which involves a much smaller number of aircraft (< 10) compared to our study
incorporating the commercial aircraft fleet of different airline companies.

The model presented in this paper aims at developing a robust maintenance capacity
schedule taking into account uncertainty in the flight arrivals and, hence, in the timing of
the workload. This is a major distinction with the problem studied in (Yan et al., 2004),
which is closely related to our work, except for the assumption of deterministic flight
arrivals. Other papers that study aircraft maintenance scheduling assuming uncertainty
in the timing of the workload include (Duffuaa and Andijani, 1999), (Mattila et al., 2008),
(Petersen et al., 2012) and (Muchiri, 2009). The papers of (Safaei et al., 2011) and
(Safaei et al., 2010) assume deterministic flight arrivals, but stochastic workloads (and
thus stochastic maintenance durations or repair times).

Robust optimization methods are used when the uncertain parameters are assumed
to take values from a certain range (Bertsimas & Sim, 2004). These methods differ from
stochastic optimization methods where the uncertain parameters follow a certain prob-
ability distribution. In this paper, we are concerned with stochastic optimization as we
assume that the delays in aircraft arrival times follow a certain distribution.

Several techniques have already been proposed in the literature to cope with the prob-
lems of stochastic optimization. However, no single best solution method exists. When
the problem becomes very complex, simulation is often used in combination with opti-
mization (Fu, 2002). When it comes to handling stochastic elements, regular optimization
methods have some major shortcomings. Simulation on the other hand fails to implement
the decision element and only evaluates a solution in a stochastic environment. Hence,
combining both methods may lead to a powerful approach (Fagerholt et al., 2010). Com-
plex simulation-optimization couplings have been described in the literature in order to
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make a solution more robust and applicable in a real life (stochastic) environment.
In simulation-optimization couplings, different solutions are evaluated with simulation

and the search is usually guided through different solutions to obtain a good (or the best)
feasible result. Chen et al. (2011) distinguish between three different subcategories of sim-
ulation optimization. Total enumeration always leads to the global optimum by evaluating
all possible solutions with simulation. The second subcategory is the gradient approach.
This approach imitates gradient methods in deterministic optimization methods to carry
out a guided local search. Those approaches are also called model based approaches.
The third subcategory are gradient-free approaches. Chen et al. (2011) refer to these
as the metaheuristic approaches. The second and third subcategory can be described as
guided search methods. They do not enumerate all possible solutions, and hence, do not
necessarily lead to the global optimum.

In this paper, we use a technique called “model enhancement”. The term model en-
hancement (ME) was used by Bachelet et al. (2007) to indicate a different way of combining
simulation and optimization. It can be seen as a decomposition method like Benders’ de-
composition as it enhances an optimization model based on simulation results by adding
constraints (Benders, 1962). While most optimization-simulation couplings focus on im-
proving the objective function evaluated from simulation (like the simulation optimization
approach), ME still focuses on optimizing the theoretical objective function. It tries to
improve the solution provided by a mathematical model by the use of simulation (Bachelet
et al., 2007). In their paper, Bachelet et al. (2007) only consider a deterministic problem.
They assume that in practice, several modeling simplifications are needed to construct
the mathematical optimization model to solve a real life problem. The resulting model
therefore fails to give a correct representation of reality. Simulation is used to enhance the
mathematical model and to improve the realism and applicability of the solution. In our
research, we follow a similar approach, but we consider a stochastic problem. We start
with a model that neglects stochasticity and use simulation to enhance the deterministic
model to produce robust solutions.

3. Problem definition

At many aircraft maintenance companies, the demand for maintenance is seasonal
and changes only twice a year. Furthermore, each week, the same set of flights have
to be maintained. Table 1 gives a typical example of the demand faced by an aircraft
maintenance company.

Table 1: Example of the demand for aircraft maintenance

Flight Company STA STD Workload (man-hours)

1 BA Monday 22:05 Tuesday 07:15 4
... ... ... ... ...
111 AA Thursday 07:30 Thursday 10:40 4.25
... ... ... ... ...
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Since the timing of the workload is a decision variable in most cases, only the scheduled
time of arrival (STA) and the scheduled time of departure (STD) of each aircraft are given.
Next to the time interval during which the maintenance should take place, the estimated
workload in man-hours is given. Given such a recurring workload for each flight during
one week, the maintenance company has to find the optimal workforce configuration in
terms of the lowest total labour costs. Such a workforce configuration defines when and
how many employees should be scheduled on each day during an entire week.

Figure 1 shows a graphical representation of the deterministic problem where all flights
arrive in time (i.e., at their STA). In this case, the problem is to minimize the costs of
the workforce schedule such that the available capacity (represented by the dashed line)
matches the required workload as well as possible in order to maintain all flights in time. In
our particular case, we are looking for an optimal shift schedule, but to keep the problem as
generic as possible, the model presented in Section 4.2 only looks at the resulting capacity.

Figure 1: Deterministic problem: all flights arrive in time
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To make sure that we can maintain all flights in time, the workforce scheduling model
allocates the available capacity to the different flights according to a certain allocation
rule. The idea behind this allocation rule is that the flight that leaves first, is maintained
first. This is shown in Figure 2.

Figure 2: Capacity allocation
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As flight 1 leaves first, capacity is first allocated to flight 1, then to flight 2 and finally
to flight 3. Hence, we see that there is only just enough capacity available to maintain
flights 1 and 2 before their STD. This perfect match between capacity and demand is
of course an optimal situation in the deterministic problem where flights arrive at their
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STA. However, in reality, aircraft do not always fly on schedule and sometimes arrive with
a delay. Unexpected delays can disarrange the maintenance planning which can lead to
a delay in the flight’s departure time when capacity buffers are absent or too small. Of
course, an aircraft maintenance company wants to ensure that 100% of the flights can
be maintained in time when all flights would arrive in time (i.e., according to the STA
of each aircraft). However, because flights arrive with stochastic delays in reality, the
company only allows for at most a certain average percentage of the flights (depending
on the desired service level) to be maintained after their STD. We refer to this stochastic
constraint as the service level constraint in the optimization problem.

When flights arrive with stochastic delays, the deterministic problem from Figure 1
becomes a stochastic problem in which we also have to make sure that we can meet the
service level. Figure 3 shows the stochastic problem where flights arrive with stochastic
delays, represented by the probability distributions. In the example in Figures 1 and
Figure 2, the capacity made available by the first 2 day shifts is only just enough to
maintain flights 1 and 2 in time. Therefore, when flight 2 would arrive with a delay, this
flight cannot be maintained in time anymore. Furthermore, when flight 1 arrives with a
large delay, it will need some of the capacity originally assigned to flight 2, which means
that also in this case, flight 2 cannot be maintained in time anymore. Hence, while the
deterministic result in Figure 1 entails very low labour costs, the very close match between
capacity and demand renders the solution very fragile when flights can arrive with a delay.

Figure 3: Stochastic problem: flights arrive with stochastic delays
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In order to keep the number of flights that cannot be completely maintained before
their STD under a certain threshold (i.e., to satisfy the service level constraint), the de-
terministic solution must be made more robust. To obtain this stochastic robustness, we
propose an iterative procedure combining simulation and optimization called model en-
hancement (ME). Figure 3 summarizes the three phases of the ME algorithm (simulation,
enhancement and optimization). A simulation model is used to simulate the allocation of
capacity to flights in a stochastic environment over several weeks and to identify flights
that can often not be maintained in time. Hence, the simulation model gives us an idea of
where to add extra capacity in order to reduce the average number of flights that cannot be
maintained in time. To increase the capacity during these time periods, certain constraints

6



are added to the workforce scheduling optimization model. After solving the enhanced
optimization model, a new shift schedule is obtained. The resulting available capacity in
Figure 3 (the dashed line) shows that the second day shift from Figure 1 is now replaced
by a night shift. While this night shift is more expensive than the previous day shift, it
will provide capacity for flight 2 in case of a delay. These three steps represent one ME
iteration and are repeated until a stopping criterion is met. Figure 3 also shows a typical
graph of the resulting costs and service levels over multiple enhancement iterations. As
the number of flights with late maintenance decreases, the costs usually go up and vice
versa.

As shown in Figure 3, the model enhancement heuristic can be decoupled from the
problem formulation as its primary objective is only to identify problematic time periods
and to use an optimization model to increase capacity during these periods. Hence, the
application of the proposed model enhancement procedure is not only limited to this
specific problem setting.

4. Methodology

4.1. Model Enhancement

To solve the stochastic problem outlined above, we propose a model enhancement
(ME) heuristic. ME combines simulation and optimization in order to incorporate the
stochastic service level constraint by iteratively enhancing a deterministic optimization
model. Figure 4 shows the three consecutive phases that are repeated in the enhancement
algorithm. One loop through phases I to III is referred to as one enhancement iteration.
The enhancement iterations are indexed by index δ ranging from 0 to ∆. The value of ∆
is arbitrarily chosen to limit the computation time. The next sections discuss the three
phases of the ME algorithm.

Figure 4: Model enhancement algorithm
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4.2. Phase III: Optimization

The core of the ME algorithm is the mixed integer linear programming (MILP) model
that finds the optimal workforce configuration. The obtained solution provides the opti-
mal capacity that must be available at each time period in order to maintain all aircraft in
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time with minimum labour costs. These MILP models of phase III are indexed as MILP δ,
with δ ranging from 0 to ∆. The following model describes the MILP formulation of the
general maintenance scheduling model. In Section 5.1, the general objective function (1)
and the general constraints (2) and (5) are elaborated to represent a real-life problem.
We first list the parameters and sets, along with their associated indices:

d ∈ {1, 2, ..., 7} : days in the week
p ∈ P : time periods in one week
f ∈ F : flights to be serviced
p ∈ Pf : time periods during which flight f can be serviced. I.e.; Pf =

{p|STAf ≤ p ≤ STDf} with STAf (STDf ) the scheduled time
of arrival (departure) of flight f

Lf : the workload (in man-hours) of flight f

The decision variables are:

qδp ≥ 0: the available capacity on period p when solving the MILP model in enhance-
ment iteration δ

gδfp ≥ 0: the number of workers assigned to maintain flight f during time period p
when solving the MILP model in enhancement iteration δ

X: set of different workforce scheduling variables. These can be for example
decision variables that define the timing and scheduling of shifts, team sizes,
etc.

The optimization model can be formulated as follows:

Minimize :

Cost function k(X) (1)

Subject to :

qδp = Capacity function κ(X), ∀p ∈ P (2)

qδp ≥
∑
f∈F

gδfp, ∀p ∈ P (3)

∑
p∈Pf

gδfp = Lf ∗
|P |

24 ∗ 7
, ∀f ∈ F (4)

Other specific workforce scheduling constraints (5)

gδfp ≥ 0, ∀f ∈ F ∀p ∈ P (6)

qδp ≥ 0, ∀p ∈ P (7)

The objective function (1) describes the total labour costs faced by the company result-
ing from the decisions for the workforce variables in X. These can be decisions regarding
the scheduling of different types of shifts, e.g., night and day shift, the timing of those
shifts, the team sizes in each shift, etc. Based on those decisions, a capacity function
is used to calculate the available capacity qδp for each time period p in constraint (2).
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Constraints (3) and (4) ensure that the assigned work for each flight (and therefore the
available capacity) is sufficient to at least cover the demand for maintenance. This is

referred to as the coverage constraint. In Constraint (4), Lf ∗ |P |24∗7 is a conversion factor
to match the units of Lf and

∑
p∈Pf g

δ
fp. Real-life staffing and scheduling problems are

however not only constrained by satisfying the demand for maintenance services while
minimizing the costs. Therefore, constraint (5) adds other, specific workforce scheduling
constraints, such as constraints on average working times, working in the weekend, break
times, shift succession constraints, etc.

During the first enhancement iteration (δ = 0), we define the first MILP model as
MILP 0. Model MILP 0 contains the original objective function and all original con-
straints. It can be seen as the deterministic MILP model as it assumes that all aircraft
exactly arrive at their scheduled time of arrival.

Definition of MILP 0 (when δ = 0):

Optimize :

Objective function (1)

Subject to :

Constraints (2) to (7)

To account for the stochastic service level constraint that limits the number of flights that
can leave with a delay, extra constraints will be added to the MILP model described above.
During the next enhancement iterations (δ = 1 to ∆), the MILP δ model is also defined
by the original objective function (1), but the model has different constraints:

Definition of MILP δ (with δ = 1 to ∆):

Optimize :

Objective function (1)

Subject to :

Constraints (2) and (3)∑
p∈Pf

gδfp ≥ Lf ∗
|P |

24 ∗ 7
, ∀f ∈ F (8)

∑
p∈P δf

gδfp ≥ Lδf ∗
|P |

24 ∗ 7
+

∑
p∈P δf

gδ−1
fp , ∀f ∈ F δ (9)

Constraints (5) to (7)
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with parameters:

gδ−1
fp ≥ 0: the number of workers assigned to maintain flight f during time period p

according to the results of the MILPδ−1 model.

Lδf : This is the parameter used to increase the capacity requirements in the MILPδ

model. It is the extra needed maintenance work (in man-hours) for flight f
to ensure that it leaves without a delay.

and sets:

f ∈ F δ : set of flights for which the extra required maintenance work Lδf must be added
during enhancement iteration δ.

p ∈ P δf : set of all time periods p during which the extra required maintenance work
Lδf can be scheduled for flight f during enhancement iteration δ.

In MILP δ, constraint (4) is replaced by constraints (8) and (9). Instead of the equal
sign in constraint (4), constraint (8) uses the greater or equal sign. This means that the
assigned work

∑
p∈Pf g

δ
fp for a certain flight can exceed the standard required maintenance

work for that flight. Hence, this allows to assign extra work to a flight to build a capacity
buffer to avoid delays in departure time.

Parameter Lδf and sets F δ and P δf result from the simulation model and are defined
by the enhancement function (see Section 4.4.2). Constraint (9) tries to avoid delays in
departure time for all flights in the set F δ. The sum

∑
p∈P δf

gδfp captures the assigned work

to flight f in the time interval P δf during enhancement iteration δ. The sum
∑

p∈P δf
gδ−1
fp

represents the assigned work to flight f in the time interval P δf during the previous en-

hancement iteration. Parameter Lδf is the extra needed maintenance work (in man-hours)
for flight f to ensure that this flight leaves without a delay. Hence, when according to
the simulation, flight f could not be maintained in time, the assigned work

∑
p∈P δf

gδ−1
fp to

flight f during the previous enhancement iteration was apparently insufficient to maintain
this flight in time. Therefore, the extra work Lδf must be added during this enhancement
iteration to make this flight leave in time.

The information about P δf , F δ and Lδf will be made available after applying the en-
hancement function in phase II.

4.3. Phase I: Simulation

The first step in each enhancement iteration is to run a simulation model to evaluate the
MILP solution in a stochastic environment (with delays). The simulation model simulates
the assignment of workers to aircraft to perform the required maintenance during several
weeks. The simulation model is initialized with the available capacity qδ−1

p resulting from
solving the MILP model during the previous enhancement iteration. The simulation model
then allocates on each time period a certain number of maintenance workers to grounded
aircraft (i.e., to aircraft that can be maintained during that time period) according to a
specific allocation rule. Because of possible delays, some flights will only be completely
maintained after their STD.
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Because of stochastic delays in arrival times, it is not always possible to maintain all
flights in time (i.e., before the aircraft’s STD). When this is the case, the remaining re-
quired maintenance is finished as soon as possible. At the end of each simulated week ω,
all flights that left with a delay are saved in the subset Φω. The maintenance work that
has not yet been done at the STD of flight f is saved as λf,ω. The time window in which
that flight could be maintained according to the simulation model is saved as Πf,ω.
We define the results from the simulation as follows:

Ω: the set of all weeks ω included in the simulation experiment.
Φω ∀ω ∈ Ω: the subset of all flights f that left with a delay during simulated week ω.
Φ: the set of all flights f that left with a delay over all simulated weeks.

ϕ =
∑
ω∈Ω |Φω |
|Ω| : the average number of flights per week that leave with a delay. This

is also called the average number of flights with late maintenance.
λf,ω: the work that has not yet been done at the STD of flight f with late

maintenance in simulated week ω.
Ωf : the set of weeks ω in which flight f left with a delay.

λf =

∑
ω∈Ωf

λf,ω

|Ωf | : the average work that has not yet been done at the STD of flight f .
This is the extra needed work in order to maintain flight f in time.

Πf,ω: the set of all time periods p between the simulated arrival time and
the STD of flight f with late maintenance in week ω.

Πf : the set of all time periods p between the average simulated arrival
time (over all weeks in Ωf ) and the STD of flight f .

4.4. Phase II: Enhancement

Based on the simulation results, the MILP model will be enhanced to produce a more
robust workforce configuration. Recall that this is a workforce configuration that can
achieve a desired service level under stochastic delays in flight arrival times. Constraint
(10) formally describes the service level constraint.

ϕ ≤ Allowed average number of delayed flights according to the service level (10)

This constraint implies that the average number of flights per week that leave with a
delay (also called the average number of flights with late maintenance) must be smaller
than or equal to the number that is allowed by the company. When the service level is for
example 97%, at most 3% of all weekly flights (on average) can leave with a delay. Figure
5 shows the different steps of phase II.

Figure 5: Phase II: The enhancement procedure
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4.4.1. Choose most promising delayed flights

At the start of phase II, it is checked whether the service level constraint (10) is satisfied.
When this constraint is not satisfied, we force the MILP model to increase the available
capacity with a certain amount in a certain time interval for certain flights. Hence, the
first step is to choose a promising set of flights for which the required maintenance work
will be increased. This should be a set of flights that regularly leave with a delay. We
first sort the flights in the set Φ based on the number of times that the flight leaves with
a delay (i.e., by decreasing value of |Ωf |). To create the set of promising flights, the first
η flights are selected from the sorted set Φ according to Equation (11). These selected
flights are saved in the set Φ′ such that |Φ′| = η. This set contains “promising” flights
because allocating more work to a flight of set Φ′ offers the best chance to decrease the
value of ϕ.

η = dϕ−Allowed average number of delayed flightse (11)

4.4.2. Apply enhancement function

After the set Φ′ has been composed, we have to decide how much extra work each flight
in Φ′ should receive in what time interval in order to maintain that flight completely be-
fore its STD. These decisions are made by the enhancement function h which represents
the adjustments to the MILP model at each enhancement iteration. In this section, we
propose a simple and intuitive formulation of function h which yielded good test results.
Bachelet et al. (2007) also showed that good results can be obtained with a very simple
enhancement function.

Recall that we defined the results of phase II as follows:
F δ: the set of flights for which the required maintenance work will be increased in the

MILP model of enhancement iteration δ.
Lδf : the extra required maintenance work that will be added to flight f in the MILP

model of enhancement iteration δ.
P δf : the set of all time periods p during which the extra required maintenance work can

be scheduled for flight f during enhancement iteration δ.

Definition of h for δ = 1:
During the first enhancement iteration (i.e., the first loop through the three phases in
Figure 4), phase II is executed for the first time. Therefore, there were no previous en-
hancements to the MILP model and the enhancement function h maps the simulation
results of phase I as follows:

h : Φ′ 7→ F δ by F δ = Φ′ (12)

h : λf 7→ Lδf by Lδf = λf (13)

h : Πf 7→ P δf by P δf = Πf (14)
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Expressions (12) to (14) show that during the first enhancement iteration, the en-
hancement function h maps the simulation information Φ′, λf and Πf directly to F δ, Lδf
and P δf respectively. Sets F δ, Lδf and P δf will be used to build the extra constraints that
will be added to the MILP model in phase III.

Definition of h for δ = 2 to ∆:
During each enhancement iteration, the information resulting from the current iteration
is saved such that it can be used in the next iteration.

We define:

F δ−1: the set of flights for which the required maintenance work was increased during
the previous enhancement iteration.

Lδ−1
f : the extra required maintenance work that was added to flight f during the pre-

vious enhancement iteration.

P δ−1
f : the set of all time periods p during which the extra required maintenance work

could be scheduled for flight f during the previous enhancement iteration.

During each new enhancement iteration, the enhancement function h makes use of this
previous information to map the current simulation results as follows:

h : Φ′, F δ−1 7→ F δ by F δ = Φ′ ∪ F δ−1 (15)

h : λf , L
δ−1
f 7→ Lδf by Lδf =


λf + Lδ−1

f ∀f ∈ (Φ′ ∩ F δ−1)

Lδ−1
f ∀f ∈ (F δ−1\Φ′)

λf ∀f ∈ (Φ′\F δ−1)

(16)

h : Πf , P
δ−1
f 7→ P δf by P δf =


P δ

Avg

f ∀f ∈ (Φ′ ∩ F δ−1)

P δ−1
f ∀f ∈ (F δ−1\Φ′)

Πf ∀f ∈ (Φ′\F δ−1)

(17)

with:

αf : first element in P δ−1
f

= previous average arrival time of flight f
βf : first element in Πf

= current average arrival time of flight f

P δ
Avg

f = [
αf+βf

2 , ..., STDf ]

Expressions (15) to (17) formally define the idea that previous and current information
about the same flights can be merged. Expression (15) shows that the set F δ−1 is updated
with the current promising delayed flights Φ′ to constitute the set F δ.

Expression (16) shows how function h maps λf and Lδ−1
f to Lδf . We distinguish three

cases. In the first case (i.e., f ∈ (Φ′ ∩ F δ−1)), a promising delayed flight f (in Φ′)
already exists in P δ−1

f . This means that the extra capacity assigned to this flight during
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previous enhancement iterations was apparently not sufficient to maintain this flight in
time. Therefore, the extra required maintenance work (λf ) for that flight is added to
Lδ−1
f . In case two (i.e., f ∈ (F δ−1\Φ′)), flight f is in the set F δ−1 but not in the set

Φ′. In this case, the extra capacity assigned to this flight during previous enhancement
iterations was sufficient to maintain this flight in time and we don’t need to change the
required maintenance for this flight. Therefore, function h sets Lδf equal to Lδ−1

f . In the

third case (i.e., f ∈ (Φ′\F δ−1)), flight f is in the set Φ′ but not in the set F δ−1. In this
case, it is the first time that this flight enters the set of promising delayed flights. Because
there is no extra capacity previously assigned to this flight, Lδf is set equal to λf .

To define the set P δf , Expression (17) is used. Again, the same three cases as in

Expression (16) are distinguished. When flight f (in Φ′) already exists in P δ−1
f , the

arrival time of flight f in both sets is averaged. Expression P δ
Avg

f is then defined as the
set of all time periods between the average simulated arrival time and the scheduled time
of departure (cfr. supra). The reasoning behind case two and three of Expression (17) is
similar to the one behind case two and three of Expression (16).

4.4.3. Apply diversification strategy

Figure 4 shows that the ME procedure starts by finding a shift configuration that is optimal
for the deterministic MILP 0 model. After collecting the simulation results in phase I,
the enhancement procedure is applied in phase II as shown in Figure 5. When the service
level constraint is satisfied during the first enhancement iteration (i.e., δ = 1), the whole
enhancement procedure stops and the solution to the problem equals the solution to the
deterministic MILP 0 model. When the service level constraint is not satisfied during the
first enhancement iteration, the enhancement functions (12) to (14) are applied and the
procedure continues. When the service level constraint is not satisfied during the next
enhancement iterations (i.e., δ > 1), the enhancement functions (15) to (17) are applied.
When the service level constraint is satisfied during the next enhancement iterations, a
local optimum is reached. To escape this local optimum, a diversification strategy is
applied. To diversify the search, a different enhancement function is applied as long as
the service level constraint remains satisfied:

h : F δ−1 7→ F δ by F δ = F δ−1\F δ−1,Lδ−1
f ≤Ψ·Lf (18)

h : Lδ−1
f 7→ Lδf by Lδf = (1− Ξ) · Lδ−1

f ∀f ∈ F δ (19)

h : P δ−1
f 7→ P δf by P δf = P δ−1

f ∀f ∈ F δ (20)

with:

F δ−1,Lδ−1
f ≤Ψ·Lf : the set of the flights in F δ−1 that did not need more than Ψ% ex-

tra required maintenance work (Lδ−1
f ) compared to their scheduled

workload (Lf )
Ξ: percentage reduction in the extra required maintenance work
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Expressions (18) to (20) are used to diversify the search and to guide the search through
different possibilities. To achieve this, Function (19) reduces the value of Lδ−1

f by Ξ%

for all flights in F δ and, hence, reduces the impact of constraint (9) on the optimization
model. Function (18) even eliminates a flight from F δ−1 when it needs less than Ψ% extra
required maintenance work compared to its scheduled workload. This way, a flight will
leave the set F δ−1 after several iterations and different flights can enter the set. This al-
lows different possibilities to be explored, possibly leading to a better solution. The value
of the diversification parameters Ψ% and Ξ is determined based on empirical tests.

5. Results and discussion

5.1. Application to a real life problem

To test the performance of the algorithm, we applied the model enhancement pro-
cedure to a real-life problem at Sabena Technics, a large aircraft maintenance company
located at Brussels Airport in Belgium. The main goal is to build the cheapest workforce
configuration while satisfying the service level constraint.

At Sabena Technics, the maintenance personnel works in teams of a certain team size.
Each team can only work one shift per day or have a day off. There are four possible shift
types with overlapping working hours: morning (M), day (D), evening (E) and night (N)
shifts. This results in a certain sequence of shift types and days off assigned to a certain
team for a certain week. Furthermore, Sabena Technics organizes its workforce into two
cycles as shown in Figure 6. Each cycle has its own team size and its own start and end
times of each shift type. Because one cycle can contain multiple weeks (represented by
the rows in each table), a team is not always assigned to the same shift sequence as the
week before. Instead, a cyclic pattern is used in which the number of teams assigned to a
cycle equals the number of weeks (i.e., the number of rows) in the cycle. In Figure 6 there
are, for example, four teams in the second cycle. In the first week, the first team works
the shifts in the first row. But in the second week, the first team will work the shifts in
the second row of the cycle, the second team the shifts of the third row and so on.

Figure 6: Example of a workforce configuration consisting of two cycles

Team size: 3 Team size: 7

Morning: 05:30 - 15:00 Night: 22:30 - 08:00 Morning: 05:30 - 15:00 Night: 21:30 - 06:30

Evening: 12:45 - 22:15 Day: 07:00 - 16:30 Evening: 13:15 - 22:45 Day: 08:00 - 17:30

mo tu we th fr sa su mo tu we th fr sa su mo tu we th fr sa su

N N N N N D E E E D M D M

M M D N E M M M E E

M E E E E E

M E N N N M E

Team size: 2

Morning: 05:00 - 14:00 Night: 21:30 - 07:00

Evening: 12:45 - 21:45 Day: 07:00 - 17:00

Hence, constructing a workforce configuration implies that we have to decide on the
number of weeks (= the number of teams = the number of rows) in each cycle, the
assignment of shift types and days off to each day in each week, the start and end times
of every shift type in each cycle and the team size in each cycle.
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5.1.1. Optimization model (Phase III)

To solve the problem at Sabena Technics, we use a MILP model based on the model of
Beliën et al. (2013). Interested readers are referred to latter work for a more profound
elaboration of this MILP model and the solution technique. This MILP model has the
exact same structure as the model described in Section 4.2, but we now give a specific
description of the general cost function, capacity function and other workforce scheduling
constraints.

Decisions about the optimal team size are not made within the model, because this
would render the model non-linear. Instead, a heuristic enumeration algorithm is employed
to find the best team size for each cycle (see Beliën et al. (2013)). In this enumeration
heuristic, the MILP model is solved for a limited amount of time for each interesting team
size combination and the best result is saved.

As was mentioned in Section 5.1, we also need to decide on the assignment of shift
types and days off to each day in each week. However, incorporating the week decision
in the MILP model implies too many decision variables to solve the problem efficiently.
Therefore, we omit the assignment of shifts to different weeks and our scheduling decision
variable only captures the number of shifts of a certain type scheduled on each day of
the week. After solving the MILP model, the individual weeks can be reconstructed by
hand by distributing the shifts over the different weeks for each day. The shift succession
guaranteeing constraints in the MILP model make sure that a feasible workforce schedule
can be constructed at the end.

The MILP model can be found in Appendix 1. The objective function (21) of the
optimization model describes the total labour costs faced by the company. The available
capacity qδp in Constraint (22) is determined by the scheduled shifts in the left hand side
of the constraint. This constraint corresponds to Constraint (2) of the model described
in Section 4.2. The MILP model in Appendix 1 also includes Constraints (3), (4), (6)
and (7) from the general model in Section 4.2. The other constraints in the MILP model
described in Appendix 1 are other specific workforce scheduling constraints and correspond
to Constraint (5).

Constraints (23) and (24) are the weekend constraints. They ensure that at most a
certain fraction R of the weeks in a worker’s schedule contain a working weekend. To
comply with the constraint on the average working hours imposed by the labour union,
constraints (25) and (26) are inserted. They restrict the average number of working hours
per week per worker between 36 and 38 hours. Constraints (27) and (28) ensure that the
start and end times for a certain shift type are the same in each cycle. Constraint (29)
is inserted because Sabena Technics wants at least one team to be present at all times
as a basic capacity buffer. The shift succession constraints entail that a night shift can
only be followed by another night shift (or no shift) and an evening shift can only be
followed by another evening shift or a night shift (or no shift). There is no limitation to
shifts succeeding a morning or a day shift. Recall that we omit the assignment of shifts
to different weeks because of efficiency issues. Therefore, shift succession constraints are
not incorporated directly, but through so-called shift succession guaranteeing constraints
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(30 to 36). These constraints make sure that the succession constraints can be satisfied
during the manual assignment of shifts to weeks. For more information on this, we refer
the reader to Beliën et al. (2013). Finally, constraints (37) to (41) define the range of the
decision variables.

5.1.2. Simulation model (Phase I)

The goal of the simulation model is to simulate the performance of the workforce configu-
ration provided by the MILP model in a stochastic environment and to obtain the infor-
mation described in Section 4.3. To simulate a real (stochastic) environment, stochastic
delays are allocated to arriving aircraft. By analyzing real-life data from Sabena Technics,
we discovered that the delays in arrival times could be represented by four different prob-
ability distributions, which are then applied according to their respective probabilities.
Table 2 shows how we simulated the stochastic delays in aircraft arrival times during the
simulation experiment in phase I.

Table 2: Delay probability distributions

Rule Interval (in minutes) Probability Distribution (in minutes)

Early arrival [−60, 0] 45.81% -60.5 + 61 Beta(6.07,1.22)

Small delay [1, 15] 26.85% 0.5 + 15 Beta(0.89,1.22)

Medium delay [16, 270] 27.09% 16 + 254 Beta(0.53,3.49)

Large delay [271,+∞[ 0.25% 271 + 835 Beta(0.41,1.02)

Based on the simulated aircraft arrival times and the available capacity qδ−1
p resulting

from solving the MILP model during the previous enhancement iteration, the simulation
model allocates for each time period a certain number of maintenance workers to aircraft
that can be maintained during that time period. This is done according to a specific
allocation rule. Different allocation rules will have a different impact on the performance
of the workforce configuration (Van den Bergh et al., 2013c). We choose to apply the
first-leave-first-serve assignment rule in our ME procedure because of two reasons. First,
this rule avoids random preemption and results in a more realistic capacity assignment.
Second, assuming that all flights arrive on schedule, this assignment rule will make sure
that all flights can be maintained in time with the capacity determined by the MILP
model (i.e., qδ−1

p ). Therefore, the simulation evaluation of the workforce configuration
with this assignment rule will also lead to a relatively small average number of flights with
late maintenance compared to other rules. Algorithm 1 in Appendix 2 shows how the
simulation model allocates maintenance workers to aircraft according to this first-leave-
first-serve allocation rule.

17



Table 3: Comparison of the results of different approaches

MILP 0 (1’) MILP 0 (15’) SFO (+ 1) SFO (+ 2) SFO (+ 3) ME (ϕ ≤ 5) ME (ϕ ≤ 3) ME (ϕ ≤ 1)

Test Set Costs ϕ Costs ϕ Costs ϕ Costs ϕ Costs ϕ Costs ϕ Costs ϕ Costs ϕ

1 1 1 1 16066.5 5.42 15823.1 6.49 15980.0 4.56 17642.8 2.18 20530.1 1.48 15861.8 4.89 17493.4 2.80 24779.6 0.79

1 1 1 2 19354.8 6.04 19128.1 5.67 21901.7 3.04 24461.9 2.02 27397.2 1.44 19315.8 4.64 22388.9 2.85 28535.6 0.99

1 1 1 3 15545.1 6.18 15407.0 6.30 16878.1 4.39 18742.9 2.57 24887.7 1.09 16253.8 4.95 17822.5 2.52 23012.9 1.00

1 1 1 4 18024.0 6.56 17790.7 5.86 18294.0 2.84 19671.7 2.03 23800.5 1.01 17797.9 4.75 18187.1 2.79 26730.7 0.93

1 1 1 5 18038.4 6.75 17126.4 5.36 19589.9 3.16 24709.5 1.47 F F 17332.3 4.55 23563.5 2.70 27568.4 0.99

1 1 2 1 14425.4 4.63 13218.7 4.93 14072.2 3.89 16845.9 1.63 23136.4 0.89 - - 14493.7 2.84 18483.6 1.00

1 1 2 2 14213.5 3.87 12639.8 5.05 12692.2 3.56 15236.6 2.40 16890.8 1.77 - - 14443.9 2.73 19176.6 0.96

1 1 2 3 18578.5 5.91 18578.5 5.91 21168.0 3.67 24051.8 1.83 F F 18818.1 4.67 20535.8 2.64 26878.7 0.94

1 1 2 4 16421.8 4.71 16421.8 4.71 17757.9 2.73 22407.7 1.65 F F - - 17686.7 2.59 23676.5 0.95

1 1 2 5 15834.5 6.31 15834.5 6.31 16218.1 3.68 18380.2 1.78 20304.2 0.94 15899.6 4.83 17293.6 2.92 19882.4 0.97

1 2 1 1 13623.7 4.06 13578.4 4.14 14029.9 1.70 15162.1 1.08 16377.8 0.95 - - 13614.4 2.48 16348.1 0.97

1 2 1 2 16382.6 3.50 16329.2 3.72 18735.6 2.23 21532.5 1.29 F F - - 16912.4 2.78 21858.1 0.84

1 2 1 3 11029.2 3.49 11004.0 4.17 13337.7 2.02 13387.6 1.47 15711.6 0.91 - - 11112.5 2.87 15275.1 0.97

1 2 1 4 11624.8 3.75 11624.8 3.75 12961.8 2.13 14060.0 1.78 17941.3 0.68 - - 12383.3 2.82 16197.2 0.93

1 2 1 5 13855.3 3.40 13806.5 3.43 15295.2 2.09 18401.4 1.17 F F - - 14325.3 2.95 21871.0 0.76

1 2 2 1 10915.1 2.83 10057.4 3.10 10838.2 2.21 11962.4 1.95 15813.8 0.77 - - - - 14258.8 0.90

1 2 2 2 12117.4 1.53 11831.6 2.78 12753.6 1.26 13849.7 1.06 16511.4 0.40 - - - - 13820.4 0.77

1 2 2 3 13255.0 2.93 13179.1 2.92 15415.1 2.29 18798.6 1.27 F F - - - - 19273.3 0.85

1 2 2 4 10290.9 4.96 10203.9 5.79 11175.9 2.27 12273.2 1.51 13604.2 1.01 - - 11158.4 2.70 13248.5 0.92

1 2 2 5 10719.3 2.88 10719.3 2.88 11113.0 1.96 12269.7 1.13 13451.2 0.47 - - - - 13307.7 0.89

Average 14515.8 4.49 14215.1 4.66 15510.4 2.78 17692.4 1.66 19025.6 0.99 14507.7* 3.99* 15521.1* 2.71* 20209.2 0.92

MILP 0 (X ′) : MILP 0 model solved for X minute(s)
SFO (+ Y ) : Straightforward optimization model solved for 15 minutes based on a delay of Y quarter(s) for each flight
ME (ϕ ≤ Z) : Model enhancement algorithm ran for 15 minutes with the stochastic service level constraint: ϕ ≤ Z
ϕ : The average number of delayed flights according to the simulation
* : The average includes the corresponding (costs or ϕ) result of the MILP 0 (1’) model for each instance

indicated by “ - ”. Hence, when there are no ME results for a certain test set, the results of the MILP 0 (1’)
model are used to calculate the average.
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5.2. Test settings

5.2.1. Test sets

The ME algorithm has been applied for several settings to a test set containing 20 instances
created randomly based on real-life data dimensions from Sabena Technics. The entire set
can be divided into 4 groups of 5 instances. Each group has its own specific characteristics.
The results are shown in Table 3. All 20 instances (called 1 * * *) contain 100 flights
but are created using different workload distributions. The workload is the amount of
work that each flight requires. Half of the groups has flights with workloads drawn from a
uniform distribution between 0 and 10 hours (1 1 * *), while the other half has flights with
workloads drawn from an exponential distribution with an average of 3.5 hours (1 2 * *).
The last difference between the 4 groups is the way how the flight arrivals are chosen. Half
of the groups has flights with peak arrivals (1 * 1 *), while the other half has flights with
uniform arrivals (1 * 2 *). In the case of peak arrivals, more flights require maintenance
either in the morning or the afternoon, while the demand for maintenance is uniformly
distributed over the entire day in the case of uniform arrivals. Finally, 5 random instances
are generated (1 * * 1, 1 * * 2, 1 * * 3, 1 * * 4 and 1 * * 5) for each of the above cases
resulting in 2x2x5 = 20 instances.

Based on the flight information in each test set, a workforce configuration needs to be
constructed resulting in a weekly shifts schedule. The resolution of our scheduling decision
is fifteen minutes. Hence, |P | is set to (7 x 24 x 4 =) 672. This means that decisions have
to be made every fifteen minutes and the planning horizon (equal to one week) is divided
in 672 quarters of an hour.

We now discuss Table 3 which shows the results of the computational experiments.

5.2.2. MILP 0 results

Columns 2 to 5 of Table 3 present the results of the MILP 0 model (= the deterministic
MILP model as described in Appendix 1) where no delays are taken into account or
anticipated. Solving this MILP 0 model is also the first step in the enhancement algorithm.
Columns 2 and 4 show the resulting total labour costs from the MILP 0 model that was
solved with a time limit of one minute (1’) and fifteen minutes (15’) respectively. All MILP
models were solved using the IBM CPLEX optimizer. The third and fifth column show
the average number of delayed flights (= ϕ) that results from simulating the respective
workforce configuration found by the MILP 0 model. These two columns show how well
the results from the deterministic model perform in a stochastic environment.

5.2.3. SFO results

Columns 6 to 11 present the results of the Straightforward Optimization (SFO) technique.
SFO can be seen as a mathematical optimization technique that uses approximations or
even relaxations instead of stochastic variables. SFO uses the average delay time of a flight
to approximate stochastic delays. SFO is a very simple technique to anticipate stochastic
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delays and is therefore used as an alternative method to ME in our performance analysis.
In fact, the same MILP 0 (15’) model is used to obtain the results in columns 6, 8 and 10.
Hence, solving the SFO (+Y ) model is the same as solving the MILP model in Appendix
1 for 15 minutes of CPLEX computation time while adding a delay of Y quarters to the
STA of each flight. Columns 6, 8 and 10 show the results of adding a delay of 1, 2 and 3
quarters in order to anticipate average, large and very large stochastic delays respectively.
From Table 2 we calculated that the average delay time is 12 minutes. But since we are
working with time periods of 15 minutes, the average delay time is rounded to 15 minutes,
i.e., one quarter. Also note that we solve the SFO model with CPLEX for 15 minutes
because the ME algorithm will also be given 15 minutes of computation time. Columns
7, 9 and 11 of Table 3 show the average number of delayed flights (= ϕ) that results from
simulating the respective workforce configuration found by the SFO (+Y ) model. “ F ”
indicates that the respective model failed to find a single feasible solution in the allowed
time span. Hence, three quarters appears to be the maximum delay to which the SFO
MILP model is able to find a feasible solution in most cases.

5.2.4. ME results

The last six columns of Table 3 show the results of the ME algorithm for three different
service level constraints. In the first case (see columns 12 and 13), the service level
constraint allows for at most five flights on average to leave with a delay. The next two cases
allow for at most three flights and one flight respectively. For each of the test sets, only
fifteen ME iterations were performed (∆ = 15) as this seems to be a good trade-off between
computation time and solution quality in our case based on preliminary tests. During each
optimization phase, the optimization of the MILP model in the ME procedure is limited
to one minute, which, according to preliminary test, results in acceptable optimality gaps.
During the simulation phase, the results of each MILP model are used to set the capacity
at each period p ∈ P in the simulation model. In our case, we perform a simulation with
a length of 500 weeks, which takes just about a second to run. Simulation tests indicated
that a simulation length of 500 weeks already results in robust estimates for ϕ. Recall
from Section 4.3 that ϕ is the average of |Φω| over all simulated weeks ω. Statistical
analysis of the results indicated that |Φω| follows a Poisson distribution with average
ϕ. Hence, the variance of |Φω| equals ϕ. Based on the simulation results, the MILP
model is enhanced during the enhancement phase. When the service level constraint is
satisfied at the beginning of phase II, the diversification procedure is applied. During the
diversification, we set Ξ to 0.4 (= 40%) and Ψ to 0.25 (= 25%) to diversify the search.
The whole ME procedure is programmed in C++ using the IBM ILOG CPLEX API for
the optimization phase.

Because each MILP optimization is limited to one minute and the simulation time is
negligible, it takes about 15 minutes to apply the ME procedure (of fifteen iterations) on
each test set. In Table 3, “ - ” is used to indicate that the respective test set is not solved
with ME because the simulation evaluation of the MILP 0 (1’) solution already satisfies
the service level constraint that is specified on top of the column. Note that the simulation
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evaluation of the MILP 0 (1’) result is used for this purpose instead of the MILP 0 (15’)
result. This is because solving MILP models in the ME algorithm is also limited to only
one minute. Hence, when the simulation evaluation of the MILP 0 (1’) model already
satisfies the stochastic constraint, there is no need to enhance the model, and the ME
algorithm will not be executed.

5.3. Performance analysis

5.3.1. Ability to satisfy the service level constraint

The first performance measure that we consider is the ability of the ME algorithm to
satisfy a predefined service level constraint. To test this, three scenarios with a different
service level constraint are investigated. As can be seen in columns 13, 15 and 17 of Table
3, ME ensures the satisfaction of the service level constraint for each test instance for each
scenario, even if the allowed average number of flights with late maintenance is reduced
from 5 to 3 and even to 1. While ME ensures the satisfaction of the service level constraint
for each test instance, the simulation evaluation of the SFO solutions cannot be accurately
predicted in advance. Theoretically, ϕ should be zero for “SFO (+ 1)” because an average
delay of one quarter is expected for each flight (see Section 5.2.3) which is also accounted
for in the SFO (+ 1) MILP model. However, the results in column 7 of Table 3, prove
otherwise. As opposed to ME, SFO is clearly unable to provide extra capacity at the right
moments.

5.3.2. Ability to achieve lower costs compared to SFO

Until now, we showed that our ME approach can provide a robust solution to our problem
(i.e., a solution that satisfies the service level constraint). In this section we investigate the
cost of robustness as we expect the labour costs to rise when the service level is increased.
A higher service level requires a higher capacity buffer which entails higher costs. Since
our focus remains on minimizing the labour costs, this is our second performance measure.

Since solving each MILP model in the ME approach is limited to one minute, the
result of the MILP 0 (1’) model is the result of the initial ME iteration (i.e., for δ = 0).
Two situations can occur. Either, the MILP 0 (1’) model does not satisfy the service
level constraint and the enhancement procedure starts, or, the MILP 0 (1’) model does
satisfy the service level constraint. When the latter is the case, and MILP 0 is solved to
optimality after one minute, stopping the procedure as proposed in Section 4.4.3 would
be optimal. However, the MILP represents an extremely complex problem that cannot be
solved to optimality in a reasonable time limit. Therefore, MILP 0 (1’) and even MILP 0

(15’) will never result in an optimal solution to the problem. Improving a stochastic
feasible solution is left out of the focus of this paper and is a possible direction for future
research. Hence, the cases indicated by “ - ” in Table 3 are left out of our performance
analysis and we only consider the cases where MILP 0 (1’) does not satisfy the service
level constraint.

The ME approach sometimes results in lower costs compared to the MILP 0 (1’), even
when the average number of delayed flights is reduced to satisfy the service level. This can
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be observed by comparing the costs of ME (ϕ ≤ 5) with MILP 0 (1’) in columns 2 and
12 and the costs of ME (ϕ ≤ 3) with MILP 0 (1’) in columns 2 and 14. The first reason
for this counter-intuitive observation is that adding the extra constraints during the ME
approach facilitates the optimization procedure resulting in lower costs within the same
time limit. Second, the ME algorithm features a diversification strategy, which is in fact
a local search method. However, most of the instances follow our intuition and show that
the labour costs rise with increasing service level.

We now compare the ME results to the SFO results with respect to the increase in
labour costs. SFO can be used as a benchmark because it is the most simple approach,
and it should therefore be outperformed by the ME approach for the addition of the extra
complexity not to be in vain. We solved three SFO models based on delays ranging from
one quarter to three quarters. Since different delays result in different values for ϕ, the
SFO results can be used as a benchmark for different ME settings. Hence, when the result
of an SFO model satisfies the service level constraint (i.e.,“ϕ ≤ 5”, “ϕ ≤ 3” or “ϕ ≤ 1”
resp.), the respective ME algorithm should result in lower labour costs. Table 3 indeed
reveals that for all instances where the simulation evaluation of the SFO approach satisfies
the “ϕ ≤ 5”, the “ϕ ≤ 3” or the “ϕ ≤ 1” constraint, the respective ME approach always
outperforms the respective SFO approach in terms of labour costs.

5.3.3. Diversification to escape local optima

While solving the problem, our focus remains on minimizing the total labour costs. There-
fore, the ME algorithm will not terminate once a solution is found that satisfies the service
level constraint. Instead, a diversification procedure is used to escape from local optima
as elaborated in Section 4.4.3. Table 4 analyzes the performance of the diversification
technique. For each of the three ME scenarios (“ME (ϕ ≤ 5)”, “ME (ϕ ≤ 3)” and “ME
(ϕ ≤ 1)” resp.), the minimum, maximum and average percentage improvement resulting
from diversification is reported. This is the percentage difference between the costs of the
best ME solution (as reported in Table 3) and the costs of the first feasible solution found
during the ME procedure that satisfies the service level constraint.

Table 4: Percentage improvements obtained by diversification

% improvement by diversification over all test sets for three scenarios:

ME (ϕ ≤ 5) ME (ϕ ≤ 3) ME (ϕ ≤ 1)

Minimum 0.00% 0.00% 0.00%

Maximum 5.22% 23.47% 6.91%

Average 1.57% 8.22% 0.99%

In the first scenario (ME (ϕ ≤ 5)), we allow on average for at most five flights with
late maintenance instead of three or one. Therefore, it is relatively easy to satisfy the
service level constraint in this first scenario. Minor changes are required to the available
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capacity resulting from the MILP 0 (1’) model which means that the first solution that
satisfies the service level constraint will already be very good in terms of labour costs.
This renders the diversification strategy rather useless in this scenario, which results in a
relatively small average percentage improvement of 1.57% (see Table 4).

In the second scenario (ME (ϕ ≤ 3)), it becomes more difficult to satisfy the service
level constraint without a drastic increase in labour costs compared to the MILP 0 (1’)
model. Nevertheless, the ME algorithm still finds the first solution that satisfies the service
level constraint quite fast in this scenario. However, the resulting labour costs increase
significantly. Hence, the diversification strategy has more potential in this case and we
expect the average percentage improvement to increase. Table 4 shows that the average
percentage improvement has indeed increased from 1.57% to 8.22%. In the best case, the
diversification strategy even lowers the costs of the first feasible solution by 23.47%.

Figure 7: Demonstration of the power of ME to improve a feasible solution
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Satisfying the service level constraint becomes even more difficult in the third scenario
(ME (ϕ ≤ 1)). As expected, the labour costs of the first solution that satisfies the service
level constraint increase drastically in this case. Hence, the diversification strategy has
even more potential in this case and we again expect the average percentage improvement
to increase. However, the results in Table 4 prove otherwise. Because of the very strict
service level constraint (ϕ ≤ 1), the ME procedure spends much more time on finding a first
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feasible solution. Therefore, less time remains for the diversification strategy to improve
the initial feasible solution. This results in a very low average percentage improvement of
only 0.99%. But in the best case, the diversification strategy lowers the costs of the first
feasible solution by 6.91%.

Figure 7 demonstrates the ME procedure applied on one specific problem instance.
During the first three ME iterations in Figure 7, Equations (15) to (17) are used to find
the first feasible result (18718.9). Then, Equations (18) to (20) are applied to find a better
result that still satisfies the stochastic service level constraint. Figure 7 shows that the
ME approach is capable of finding three times a better feasible result with respect to the
labour costs (15732.2, 14960.0 and 14325.3 resp.) during the next iterations. Note that
for each of the feasible solutions the service level constraint (ϕ ≤ 3) is indeed satisfied
because ϕ ≤ 3.

6. Conclusion and future research

In this paper, we present a heuristic approach for building robust aircraft maintenance
personnel rosters. A model enhancement (ME) heuristic is constructed to optimize a
mixed integer linear programing (MILP) model with a stochastic service level constraint.
This constraint implies that only a certain average percentage of all weekly flights cannot
be maintained in time when aircraft arrive with stochastic delays. The three phases of
the ME algorithm are presented: a simulation model, an enhancement procedure and the
mixed integer linear programming model.

We successfully applied our model to a real life problem setting at Sabena Technics, a
large aircraft maintenance company located at Brussels Airport in Belgium. We illustrate
the performance of the ME algorithm with a computational experiment and compare the
results to deterministic optimization and straightforward optimization (SFO). We report
the results in terms of labour costs and the average number of flights with late maintenance
according to the simulation experiment. We tested the ME algorithm on 20 instances based
on real data and allowed the ME algorithm to run for 15 iterations on each instance.

Experiments first demonstrate that the ME approach always succeeds in finding a
feasible solution that satisfies a predefined stochastic service level constraint. Second, the
cost of robustness appears to be lower for the ME approach than for the SFO approach.
The cost of robustness is the increase in labour costs required to construct a capacity
buffer in order to satisfy the service level constraint. Third, experiments also prove the
power of the diversification strategy in the ME algorithm to guide the search to find better
solutions once the stochastic service level constraint has been satisfied.

Finally, we propose some interesting extensions to this paper for future research. First,
the stochastic model could be extended by uncertainty in capacity (i.e., absenteeism) and
uncertainty in the workload. Second, different allocation rules can be investigated to
improve the model. Certain flights can be made more important than other flights for
example. And finally, the diversification strategy can be improved. For example, a tabu
mechanism (such as in Tabu Search) or some other metaheuristic mechanism could be
implemented to guide the search to find better feasible solutions.
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7. Appendix 1: MILP model for Sabena Technics

Sets with their associated indices:

i, i′ ∈ I : feasible shifts
t ∈ T : shift types {M,D,E,N}
i ∈ It : feasible shifts of shift type t (Different start and end times are possible

for each shift type.)
c ∈ C : cycles in the schedule
d ∈ {1, 2, ..., 7} : days in the week
p ∈ P : time periods in one week
f ∈ F : flights to be serviced
p ∈ Pf : time periods during which flight f can be serviced. I.e.; Pf =

{p|STAf ≤ p ≤ STDf} with STAf (STDf ) the scheduled time of
arrival (departure) of flight f

Coefficients and right hand side constants:

kid : the total cost (for one worker) of shift i on day d
hi : the duration of shift i (in hours)
aidp : = 1 if period p is included in shift i on day d; = 0 otherwise
bidp : the fraction of workers available to work in shift period p when assigned shift i

on day d (< 1 during lunch hour)

Lf : the workload (in man-hours) of flight f
W l : the minimum number of weeks (= teams) in a cycle
W u : the maximum number of weeks (= teams) in a cycle
S : the minimum average number of working hours per week
U : the maximum average number of working hours per week
R : the maximum fraction of working weekends; i.e., weekends during which at least

one shift is scheduled. R = (number of working weekends)/(number of weeks in
the cycle)

Mc: the team size in cycle c
|P |: the number of time periods in a week

Decision variables:

qδp ≥ 0: the available capacity on period p when solving the MILP
model in enhancement iteration δ

nc ∈ {W l,W l + 1, ...,W u}: the number of weeks (= teams) in cycle c
xidc ∈ {0, 1, ...,W u}: the number of shifts i that is scheduled during day d in cycle

c
zic ∈ {0, 1}: = 1, if shift i is used in cycle c and 0 otherwise
gδfp ≥ 0: the number of workers assigned to maintain flight f during

time period p when solving the MILP model in enhancement
iteration δ
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e+
tdc ∈ {0, 1, ...,W

u} : the number of extra weeks needed in cycle c for day d caused
by shifts of type t (with t ∈ {E,N}) on the preceding day (in
order to satisfy the shift succession guaranteeing constraints)

e−Ndc ∈ {0, 1, ...,W
u} : the number of extra weeks needed in cycle c for day d caused

by E shifts that can be compensated by an excess in N shifts
on the preceding day (in order to satisfy the shift succession
guaranteeing constraints)

The optimization model can be formulated as follows:

Minimize :

Corresponds to Objective function (1)←−
∑
c∈C

∑
i∈I

7∑
d=1

kidMcxidc (21)

Subject to :

Corresponds to Constraint (2)←−
∑
i∈I

7∑
d=1

∑
c∈C

bidpMcxidc = qδp, ∀p ∈ P (22)

Constraints (3), (4), (6) and (7)

The following constraints correspond to Constraint (5):

nc ≥ d1/Re ∗
∑
i∈I

xi6c, ∀c ∈ C (23)

nc ≥ d1/Re ∗ (
∑
i∈I

xi7c + e+
N7c + e+

E7c), ∀c ∈ C (24)

∑
i∈I

7∑
d=1

hixidc ≥ Snc, ∀c ∈ C (25)

∑
i∈I

7∑
d=1

hixidc ≤ Unc, ∀c ∈ C (26)

xidc ≤W uzic, ∀i ∈ I ∀d = 1, ..., 7 ∀c ∈ C (27)∑
i∈It

zic ≤ 1, ∀t ∈ T ∀c ∈ C (28)

∑
i∈I

7∑
d=1

∑
c∈C

aidpxidc ≥ 1, ∀p ∈ P (29)

nc ≥
∑
i∈I

xidc + e+
Ndc + e+

Edc, ∀d ∈ {1, ..., 7} ∀c ∈ C (30)

e+
N(d+1)c ≥

∑
i∈IN

xidc −
∑
i∈IN

xi(d+1)c, ∀d ∈ {1, ..., 6} ∀c ∈ C (31)
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e+
E(d+1)c ≥

∑
i∈IE

xidc −
∑
i∈IE

xi(d+1)c − e−N(d+1)c, ∀d ∈ {1, ..., 6} ∀c ∈ C (32)

e−N(d+1)c ≤
∑
i∈IN

xi(d+1)c −
∑
i∈IN

xidc + e+
N(d+1)c, ∀d ∈ {1, ..., 6} ∀c ∈ C (33)

e+
N1c ≥

∑
i∈IN

xi7c −
∑
i∈IN

xi1c, ∀c ∈ C (34)

e+
E1c ≥

∑
i∈IE

xi7c −
∑
i∈IE

xi1c − e−N1c, ∀c ∈ C (35)

e−N1c ≤
∑
i∈IN

xi1c −
∑
i∈IN

xi7c + e+
N1c, ∀c ∈ C (36)

xidc ∈ {0, 1, ...,W u}, ∀i ∈ I ∀d = 1, ..., 7 ∀c ∈ C (37)

zic ∈ {0, 1}, ∀i ∈ I ∀c ∈ C (38)

nc ∈ {W l,W l + 1, ...,W u}, ∀c ∈ C (39)

e+
tdc ∈ {0, 1, ...,W

u}, ∀t ∈ {E,N} ∀d = 1, ..., 7 ∀c ∈ C (40)

e−Ndc ∈ {0, 1, ...,W
u}, ∀d = 1, ..., 7 ∀c ∈ C (41)

8. Appendix 2: Allocation rule pseudocode

Algorithm 1 Allocation rule algorithm: First-leave-first-serve
Sort all flights f ∈ F by increasing STD;

for all p ∈ P do

RemainingCapacityp = qδ−1
p ;

end for

for all p ∈ P do

for all f ∈ F do

if (Flight f is arrived and still needs maintenance) and (RemainingCapacityp > 0 ) then

if (Capacity still needed for flight f ≥ RemainingCapacityp) then

Capacity assigned to flight f = RemainingCapacityp;

else

Capacity assigned to flight f = Capacity still needed for flight f ;

end if

RemainingCapacityp = RemainingCapacityp - Capacity assigned to flight f ;

end if

end for

end for
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