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Preface

We do not stop playing because
we grow old, we grow old because
we stop playing.

Uncertain attribution.
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defence of my own ideas. That mustn’t have been nice to endure, sorry boss;
please keep writing nice recommendation letters for me!

My committee members: profs. Mads Dam, Bart Jacobs, Bart Preneel, Tamara
Rezk and Dirk Vandermeulen also deserve a big thanks. They read this
manuscript in great detail and grilled me for a long time to ensure I was
fit for the title. Extra thanks to the chair, prof. Vandermeulen, for not letting
the grilling last too long!

If I could have decided the order in which I had to write this chapter, I would
have started with them: the ladies of the department. One often underestimates
and under-appreciates the fine work that the people from the secretary (Liesbet
Degent, Anne-sophie Putseys, Esther Renson, Marleen Somers, Karen Spruyt)
and the ones from the project office (Katrien Janssen, Ghita Saevels, Annick
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Vandijk) do. They are amazing. These years would have been even more hellish
hadn’t it been for you.

Of course, my fellow Distrinetters have also made my stay at the department
very enjoyable. Luckily, I got quiet but funny office mates: Kristof, Nelson,
Jose, Gowri and Klaas. The lunch people were a late addition to my working
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Pieter, Jesper, Milica, Jan-tobias, Rula, Raoul, Mathy, Gitte and Fredric. The
football guys proved that CS people are more athletic than it sounds: Antoine,
Vladimir, Kristof, Dominique, Roel, Job, Jose, Jan, Gijs, Rinde, Alex, . . . and
the others. One day I’ll reveal you my secret for scoring all the goals for a
team in a match (and for being injured every other match). The atmosphere at
Distrinet was amazing due to the magnificent work of prof. Wouter Joosen, I
think all the social events, the DRADS and the staff meetings make this group
an extraordinary one. Keep up the good work, you’re doing an amazing job.
Concerning DRADS (the research group annual meeting), special ‘prost’ go to
Dominique, Jesper, Thomas, Klaas and Kristof (and to the people of Tongerlo).

Leuven was for me like a home for a number of additional reasons. The Blauwoc
volleyball team was great. Thanks to: Vincent, Jacek, Sebbe, Jakob, Linda,
Thomas, Kevin, Tibor, Martijn, Jeroen, Tom and Raf . . . and the others, you’ve
been a lot of fun! The physics friends have made many evening a very funny
one: Thomas, Marketa, Ivan, Gergely, Jasna, Hiwa, Manisha, Simone, Riccardo,
the nights we spent together were always great. I’m sure I forgot someone, in
that case, I’m sorry, I’ll get you a drink.

But of course, there is no home without family. During my doctorate I got
married to my wonderful wife Sara and we got our first-born son Simone! Sara’s
understanding of me makes my life so much easier, as does Simone’s amazing
sleeping skills. I’m looking forward to the second one! My family in Italy
(and London) also deserve a big thanks for the support of these years: thanks
mummy, babbo and lucazzo/Lucio as well as the grandparents!

Last but not least, my D&D groups and the C5 people. What is life without
roleplaying? Not much. So, thanks to Ben, Jo, Gergely and Jesper for the
Leuven sessions. Thanks to Dade, Salpa, Delo e Lucio for the Ravenna sessions.
May we never stop. Thanks to Mauri, Felian, Inqui, Ale, Simon, Mola sr., Pluto
and all the rest of the C5 gang, long live Confrontation!

This work has been made possible with the financial support of the Research
Foundation Flanders (FWO).

A final, big thanks goes to Deepak Garg and the PL and security group of
the Max Planck Institute for Software Systems in Saarbrücken for giving me a
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Abstract

Mature manhood: that means to
have rediscovered the seriousness
one had as a child at play.

Friedrich Nietzsche - Beyond
Good and Evil Part IV -

Aphorism 94

A compiler is a complex software artefact that, among other things, translates
programs written in a source-level language into programs written in a target-
level one. Source-level programming languages often provide programmers with
means to define and enforce security policies. However, this does not always hold
for target languages, so compilers do not always have the means to translate
secure source programs into secure target programs. When security policies
are not preserved by a compiler during the language translation, the generated
target-level code can be subject to malicious security-breaching attacks. When
security is preserved by a compiler, however, source-level security policies cannot
be violated in the generated target-level code. A compiler that preserves source-
level security policies in the target-level programs it generates is called a secure
compiler.

This thesis then presents a secure compiler from an object-oriented Java-
like language to untyped assembly code extended with protected module
architectures (PMA) – an isolation mechanism of modern processors. To
prove that compiler secure, it is proven to be fully abstract, so it preserves (and
reflects) the behaviour of the programs it compiles. Since the behaviour of
programs captures also the security policies of that program, a fully abstract
compiler is a secure one.

This thesis also studies the behaviour for untyped assembly code extended with
PMA in terms of trace semantics. Two such trace semantics are developed in
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iv ABSTRACT

this thesis and they are both proven to be as precise as contextual equivalence,
i.e., they are fully abstract. The use of the trace semantics is crucial in the proof
of full abstraction of the compiler, as it both dictates the proof strategy and it
simplifies the actual proofs.

Additionally, this thesis studies the security of compilers in a setting where
multiple isolation modules can be created at the assembly level. As the compiler
for a single PMA isolation module turns not to be secure in the multiple module
setting, that compiler is extended, so that it can be proven to be secure when
multiple isolation modules are considered.

The results of this thesis provide the foundations both for the development
of secure compilers for PMA-enhanced code and for reasoning about it. A
prototype implementation of the secure compiler exist, yet we expect future
development in secure compilers for assembly extended with PMA to build from
the contents of this thesis.



Beknopte samenvatting

As we say in Vlaanderen, I’ll do it
tussen de soep en de patatten.

prof. Frank Piessens.

Een compiler is een complex software-artefact dat onder andere programma’s
geschreven in een bronprogrammeertaal vertaalt naar programma’s in een
doeltaal. Bronprogrammeertalen voorzien dikwijls mogelijkheden voor
programmeurs om beveiligingsregels te definiëren en af te dwingen. Dit geldt
echter niet altijd voor doelprogrammeertalen, en bijgevolg kunnen compilers
veilige bronprogramma’s niet altijd vertalen naar veilige doelprogramma’s.
Wanneer de beveiligingsregels niet worden behouden door de compiler tijdens de
vertaling, kan de gegenereerde doelcode het doelwit worden van kwaadaardige
en beveiligingsovertredende aanvallen. Wanneer de beveiliging echter wel
behouden wordt door de compiler, kunnen de beveiligingsregels van de broncode
niet overtreden worden in de gegenereerde doelcode. Een compiler die de
beveiligingsregels van de broncode bewaart in de gegenereerde doelcode, heet
een veilige compiler.

Deze thesis presenteert een veilige compiler van een objectgeörienteerde Java-
achtige taal naar ongetypeerde assemblycode uitgebreid met beveiligde module-
architecturen (BMA) – een isolatiemechanisme dat voorkomt in moderne
processors. Om de veiligheid van deze compiler te bewijzen, wordt er bewezen dat
hij volledig abstract is, zodat hij het gedrag van de gecompileerde programma’s
bewaart (en reflecteert). Aangezien het gedrag van programma’s ook de
beveiligingsregels van dat programma omvat, is een volledig abstracte compiler
een veilige compiler. Deze thesis bestudeert ook het gedrag van ongetypeerde
assemblycode uitgebreid met BMA in termen van spoorsemantiek. Twee zulke
spoorsemantieken worden ontwikkeld in deze thesis en van beide wordt bewezen
dat ze even precies zijn als contextuele equivalentie, m.a.w. dat ze volledig
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abstract zijn. Het gebruik van spoorsemantiek is cruciaal in het bewijs van
de volledige abstractie van de compiler, aangezien het zowel de bewijsstrategie
dicteert als de bewijzen zelf vereenvoudigd.

Hiernaast bestudeert deze thesis de veiligheid van compilers in een omgeving
waar meerdere isolatiemodules op het assemblyniveau gecreëerd kunnen worden.
Aangezien de compiler voor een enkele BMA-isolatiemodule niet veilig blijkt te
zijn in een omgeving met meerdere modules, wordt deze compiler uitgebreid,
zodat hij veilig bewezen kan worden wanneer meerdere isolatiemodules in
overweging genomen worden.

De resultaten van deze thesis verstrekken de basis om zowel veilige compilers voor
BMA-versterkte code te ontwikkelen als om hierover te redeneren. Er bestaat
een prototype-implementatie van de veilige compiler, en bovendien verwachten
we dat toekomstige ontwikkelingen van veilige compilers voor assemblycode
uitgebreid met BMA verder bouwen op de inhoud van deze thesis.
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Chapter 1

Introduction

C’mon newcomer, follow me!

Barrett, FF VII

Software has become a crucial part of our everyday lives; we use it in our
entertainment systems, to manage our vehicles, to manage our finances and for so
much more. Software is written by programmers using high-level languages that
let them reason about their code due to a high degree of readability. High-level
languages provide, for example, explicit conditional constructs implementing
if-then-else choices, named modules and functions, so that programmers can tell
more easily what the program will do. However, when they are run, programs
are (possibly) compiled to assembly code. Writing assembly code is tedious and
error prone and it is a much obsolete and almost completely abandoned practice.
What happens in practice is that programmers write human-readable code
in some high-level language and then this code gets translated by a compiler
to low-level assembly code. Finally, the assembly code gets executed on the
processor.

The piece of software that does the translation between the program input by
the programmer (called the source program) and the program to execute on the
processor (called the target program) is called compiler [14,16]. A compiler is a
crucial piece of software for programmers: only a correct compiler can ensure
that the program will run according to what they have written.1 Since they are
so crucial, compilers have been subject to a vast body of research. Moreover, the
duties of a compiler have increased, from mere language translation to include

1Assuming they wrote what they had in mind, which is a non-trivial assumption.

1
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lexing, parsing, program analysis, code optimisation and so forth. However, for
the remainder of this thesis, we will consider compilers as just being language
translators; as we will see, this task alone contains several issues to be tackled.

The concern with language translation is that high-level source languages offer
security features to programmers in the form of type systems, module systems,
encapsulation primitives and so forth. Unfortunately, most target languages
do not offer the same security features as high-level source languages, and,
certainly, plain untyped assembly language such as that run in commodity
computers does not. That is (part of the) reason of some of the most severe
cyber-crimes of the last years, including the 2011 Sony PlayStation Network
outage2 where the data of 77 million accounts was compromised or the theft of
1 billion dollars suffered by banks in 2015 in over 30 countries.3 The concern
is that often, what the programmer believes to be a secure program may be
insecure once it is compiled. This difference in security abstractions is very
attractive for malicious programmers that want to attack and violate security
vulnerabilities of programs. This kind of programmer (which we refer to with
the term “attackers”) exploits bugs in the complex software that manage our
computers to steal data, perform robberies and all sorts of other crimes. Their
modus operandi is often to infect a computer with their own assembly code,
which then interacts with what the programmer believed to be secure code,
bypassing and violating its security policies.

The first problem considered in this thesis is the following: how can we ensure
that what is a secure high-level program is still secure when it is compiled
and it runs? To address this concern, a number of alternatives exist, for
example, software verification [37, 61], software monitoring [21, 57, 108] and
secure compilation [6, 19, 45, 94]. This thesis is concerned with the last one. So
the countermeasure to the aforementioned problem that we study in this text is
the adoption of a secure compilation scheme. We use the term “compilation
scheme” to indicate the guidelines explaining how a compiler is developed,
as opposed to the term “compiler” that indicates the tool that is developed.
Albeit relevant both from research and practice perspective, the aforementioned
different kinds of countermeasures are not considered in this thesis.

The second problem considered in this thesis comes from the ever increasing
compartmentalisation of software. A common software practice is to develop
programs in compartments: i.e., programs that rely on the functionality of
other programs for accomplishing the main service they are built for. These
compartments are called packages or modules in real-world programming
languages. For example, a shopping application may rely on a PDF viewing

2http://en.wikipedia.org/wiki/2011_PlayStation_Network_outage
3http://www.bbc.com/news/business-31482985

http://en.wikipedia.org/wiki/2011_PlayStation_Network_outage
http://www.bbc.com/news/business-31482985
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package to display invoices and on a printing package to print them. The
shopping application may be written by a programmer who is different from
the one who writes the PDF viewing package, who may be still different from
the one who writes the printing package. The complication that arises in this
setting is that these programmers can have a varying degree of trust among
each other. For example, the shopping application programmer may not trust
the PDF viewing package one while it trusts the printing package one. To
abstract from the notion of programmer, in the following we will use the term
principal to denote an entity that develops code.

The problem that arises now is: how can we securely compile the programs of
different principals, so that trust assumptions are not violated? The threats
that a compiler faces in this setting are more than the threats that arise when
a single software developer is considered, and this thesis presents them all. To
answer the question above, this thesis presents a secure compilation scheme from
a source language that models different software packages belonging to different
principals. Principals can specify the varying degree of trust between them.
The secure compilation scheme ensures that a malicious attacker operating at
the target level cannot violate the security assumptions of source-level code
(e.g., by impersonating one of the principals).

Since secure compilation schemes are the keystone of this thesis, let us now
informally explain why are they a correct solution for the presented problems.
A compilation scheme is secure if it produces target-level programs that
are as secure as their source-level counterparts. A secure program is one
that enjoys security properties that can be expressed by means of program
equivalence, including confidentiality, integrity and memory allocation properties
as Example 4 describes in Section 2.5.1.4 With a secure compilation scheme,
the security properties that a programmer defined in source programs cannot
be violated by attackers operating at the target language level. By choosing the
target language to be assembly code, a secure compilation scheme ensures that
the software running in a computer cannot be compromised by other software.5
The only way to attack software that is securely compiled to assembly code is
to gain physical access to the computer and then operate at hardware level, e.g.,
by taking cool dumps of the memory [56] or by probing it [53, 68, 121]. This
level of security is very high. For all companies that own and physically restrict
access to their machines (e.g., cloud service providers), a correctly-implemented
secure compilers is a crucial building block for achieving a secure business.

Commodity computers run untyped assembly languages, which offers very
little security guarantees for the compiler to build upon. To overcome this

4Other definitions of secure program exist, but this is the one used in this thesis, as clarified
by Definition 1 in Section 2.5.1.

5Assuming that the compiler is bug-free, which is a non trivial assumption.
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weakness, the secure compilation scheme developed in this thesis relies on an
emerging security architecture, which is called Protected Module Architecture
(PMA) [40, 80, 81, 82, 91, 112, 123]. PMA provides isolation facilities at the
level of assembly code (in certain implementations), which is a very powerful
security feature on its own. Informally, PMA partitions the memory into isolated
modules, each with its code and data that are only visible to the module itself
(PMA will be explained in more detail later on, in Section 2.1). Moreover, each
module defines special addresses that other code can jump to in order to allow
interoperation between modules. PMA is a very powerful security architecture,
and a legitimate question at this point would be: do we even need a secure
compiler once we have PMA? The answer to this question is “yes”, as this thesis
will demonstrate (Section 6.1 and Section 8.2). There are in fact several cases
where a naïve implementation of a compiler to PMA would produce insecure
code starting from a secure source program, and this thesis highlights them.

After pointing out such cases, this thesis describes how to implement a compiler
that is secure and unaffected by those security violations. This thesis provides a
proof that implementing a compiler according to the guidelines of the compilation
scheme is secure. Such a proof can be developed according to different theories,
which will be discussed in this thesis (Section 9.4).

To demonstrate that the compilation scheme devised in this thesis is secure,
we will prove it to be fully abstract [1]. Informally, a compilation scheme is
fully abstract when it translates indistinguishable source-level programs into
indistinguishable target-level programs. Two programs are indistinguishable
when their behaviour is the same no matter what program they interact with (in
Section 2.5 we will formulate this property with more formal precision). For the
remainder of this thesis, we will state that two programs are indistinguishable
if they are equivalent. For example, consider two instances P1 and P2 of the
same program (written in a language S) that contain two different values in the
same variable v. Denote their fully abstractly-compiled counterparts to a target
language T by JP1KST and JP2KST . If P1 and P2 are equivalent, then JP1KST and
JP2KST must also be. So, if the content of v is confidential (e.g., the value stored
in v could be private and never communicated), no program interacting with
JP1KST or JP2KST can discern it.

The formal definition of a fully abstract compiler is that it preserves and reflects
program equivalence between source and target-level programs. The security
aspect of a fully abstract compiler is, however, only entailed by the reflection of
program equivalence. Preservation of program equivalence matters for functional
correctness. The preservation property holds for compilers that are correct:
those that do not introduce faults in the translation, e.g., by translating an
expression 1 + 1 into 1 + 2. As the focus of this thesis is security, most of
its efforts are devoted to proving the reflection property (e.g., Chapter 7),
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while preservation follows directly from assuming that a compiler is correct
(Section 6.2 and Property 1 in Chapter 7).

Note that a fully abstract compilation scheme does not eliminate source-
level security flaws. It is, in a sense, conservative, as it introduces no more
vulnerabilities at the target-level than the ones already exploitable at the source
level. Thus, it is important that the source language for the secure compiler
has a way to specify security policies.

In this thesis, the source language for the secure compilation scheme will be
an object-oriented language called J+E that only allows private fields. J+E
is an extension of Jeffrey and Rathke’s Java Jr. with exceptions and local
variables [65]. Having only private fields, J+E allows the programmer to define
confidentiality, integrity and invariants in the code (as exemplified later in this
thesis in Section 2.5.1). For reasoning about equality of J+E programs, the J+E
language is formalised in its syntax, static and dynamic semantics. Then, the
J+E language is extended to consider multiple principals and the trust relation
between them. This extension results in a new language JEM which is also
formalised in its syntax and semantics, though most of its formalisation relies
on the one of J+E.

The compilation scheme devised in this thesis targets a language called A+I:
untyped assembly extended with PMA. The formalisation of the A+I language
provides its syntax and dynamic semantics, though reasoning about program
equivalence with an untyped assembly language is a notoriously complex task.
To ease this task, A+I programs are given a trace semantics that indicates what is
happening in the code as a sequence of actions such as “function call” or “return”.
Are we free to change the semantics used for a language, though? Yes, but only
if that semantics is proven to be as precise as the operational semantics [99].
Once such a result is established, the trace semantics is called fully abstract.6
Like all semantics, the trace semantics yields a notion of program equivalence
called trace equivalence. Trace equivalence is a much simpler equivalence to use
than the one yielded by the operational semantics of A+I. Moreover, it simplifies
the proof that the compilation scheme from J+E to A+I is secure. As for the J+E
case, A+I is also extended to support compilation of JEM and this results in a
new language AIM. While A+I only considered a single instance of the isolation
facilities provided by PMA, AIM considers multiple ones.

The breakthrough of the PMA security architecture (which now has an industrial
implementation in the Intel SGX [15, 82]), hints at a tougher world, in the
future, for attackers. The idea that leads the development of these architectures

6To avoid confusion, note that the term fully abstract is thus used for two concepts in this
thesis: compilation and trace semantics.
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is that we need more secure software for managing our everyday lives. The
results of this thesis are that in order to have truly secure software, we need
to securely compile it. This thesis lays the foundations for the development
of such truly secure software by discussing how to develop secure compilers.
Moreover it proves that those foundations are strong enough to build upon since
the discussed secure compilers are indeed proven to be secure.

Alas, adopting a secure compiler is not easy and a number of downsides are
foreseen before secure compilation will become a common practice. Firstly,
adopting PMA has downsides of its own. In fact, the software architecture of our
computers needs to be changed to adapt to the new security architecture. Sadly,
we know how most industry is resilient to change. Additionally, the development
of a fully-fledged secure compiler for an industry-adoptable programming
language is a non-trivial task for future programmers to get right and bug-free.
Many compilers are known to be buggy unless they are formally certified to be
correct. Such a certification would be needed for a secure compiler as well, and
that will require a significant amount of work and research.

1.1 Contributions

This thesis presents three main contributions.

The first contribution is the formalisation of the PMA architecture as untyped
assembly code (Chapter 4) and the extension of its semantics with a fully
abstract trace semantics (Chapter 5). As mentioned, a fully abstract trace
semantics simplifies the proof that the compilation scheme form J+E to A+I is
fully abstract.

The second contribution is the development of a secure compilation scheme
from J+E to A+I (Chapter 6). This secure compilation scheme is accompanied
by an exhaustive list of naïve compiler implementations that would make it
insecure. To prove that this compilation scheme is secure, it is proven to be
fully abstract (Chapter 7).

Finally, the last contribution of the thesis is the development of a secure
compilation scheme for multi-principal software from JEM to AIM (Chapter 8).
To prove this compilation scheme secure, we provide a novel definition of multi-
principal full abstraction. Multi-principal full abstraction is an adaptation of
the definition of full abstraction that considers principals and trust degrees
among them. Besides providing this definition, we argue both the correctness
of the definition and that the compilation scheme from JEM to AIM satisfies it,
i.e., it is secure.
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1.2 Outline

This thesis is organised as follows.

Chapter 2: Background Notions. This chapter presents background notions
that following chapters build upon. Firstly, it presents the PMA security
architecture, followed by an informal description of the languages of the first
secure compilation scheme (A+I and J+E). This chapter then presents the threat
model considered for the first secure compilation scheme. Moreover, it introduces
the formal tools used for proving the compilation scheme secure. This chapter
discusses program equivalence in the form of contextual and trace equivalence.
Then it presents fully abstract compilation and how the compilation scheme
from J+E to A+I will be proven to be fully abstract.

Chapter 3: Formalisation of the Source Language J+E. This chapter
formalises J+E, the source language of the secure compilation scheme. It presents
its syntax, static and dynamic semantics.

Chapter 4: Formalisation of the Target Language A+I. This chapter
formalises A+I, the target language of the secure compilation scheme. It describes
the syntax of A+I and its dynamic semantics (no static semantics is presented
as A+I is untyped). Moreover, it encodes the access control policy of PMA that
the dynamic semantics relies upon.

Chapter 5: Fully Abstract Trace Semantics for A+I. This chapter
presents two trace semantics for A+I programs. The first one, TracesS

A+I, is
the simpler one; it models the behaviour of compiled J+E code and it simplifies
the proof of secure compilation. The second one, TracesL

A+I, is more complex
and it serves for reasoning about arbitrary A+I programs. Before the semantics
are formalised, this chapter discusses which omissions in the trace semantics
formalisation do not make it fully abstract. Afterwards, both semantics are
proven to be fully abstract.

Chapter 6: A Secure Compiler from J+E to A+I. This chapter describes
the secure compilation scheme from J+E to A+I. Firstly, it describes the security
violations that a naïve implementation of a compiler from J+E to A+I can suffer.
Then, it splits J+E into fragments and it describes how to securely compile each
of them: outcalls, dynamic memory allocation and exceptions. Finally, this
chapter discusses how to securely compile language features that are not present
in J+E.

Chapter 7: Proof of Full Abstraction for J·KJ+E
A+I . This chapter proves that

the compilation scheme of Chapter 6 is fully abstract. It firstly presents the
algorithm that is used in one of the theorems, followed by theorem statements



8 INTRODUCTION

and their proofs.

Chapter 8: A Secure Compiler for Multi-Principal Languages. This
chapter describes the secure compilation scheme for multi-principal languages.
It firstly presents how to turn J+E and A+I into JEM and AIM. The former
modification is accomplished by introducing principal annotations, the latter is
accomplished by modelling PMA with multiple isolated modules. Then, this
chapter presents the definition of multi-principal full abstraction and argues
its correctness. Before presenting the secure compilation scheme, the security
violations arising from a naïve compiler implementation are discussed. Finally,
the languages of the secure compilation scheme are formalised and the chapter
argues that it is secure.

Chapter 9: Evaluation and Discussion. This chapter discusses and
evaluates the presented results. It provides benchmarks evaluating the
computational overhead of the secure compilation scheme from J+E to A+I.
Moreover, it presents how that secure compilation scheme can scale to the Intel
SGX, the first industrial prototype for PMA. Finally, this chapter discusses
limitations of this work and alterntive formulations of secure compilation.

Chapter 10: Related Work. This chapter presents related work on the
areas of security architectures, compilers, secure compilation and fully abstract
semantics. Since the focus of this thesis is on secure compilation, that related
work section is surveyed in greater detail.

Chapter 11: Conclusion and Future Work. This chapter presents future
work and concludes.

1.3 Related Publications

The contents of Chapter 2, 6 and 7, as well as part of the contents of Chapter 9
are taken from:

• Patrignani, M., and Clarke, D. Fully Abstract Trace Semantics
for Protected Module Architectures. Computer Languages, Systems &
Structures (2015). Special issue on the Programming Languages track at
the 29th ACM Symposium on Applied Computing.

• Patrignani, M., Clarke, D., and Piessens, F. Secure Compilation
of Object-Oriented Components to Protected Module Architectures. In
Proceedings of the 11th Asian Symposium on Programming Languages and
Systems (APLAS’13) (2013), vol. 8301 of LNCS, pp. 176–191.
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The contents of Chapter 4 and 5 are taken from:

• Patrignani, M., and Clarke, D. Fully Abstract Trace Semantics of
Low-level Isolation Mechanisms. In Proceedings of the 29th Annual ACM
Symposium on Applied Computing (2014), SAC ’14, ACM, pp. 1562–1569.

• Patrignani, M., and Clarke, D. Fully Abstract Trace Semantics for
Protected Module Architectures. In Computer Languages, Systems &
Structures, 2015. Special issue on the Programming Languages track at
the 27th {ACM} Symposium on Applied Computing.

The contents of Chapter 3 are taken from:

• Patrignani, M., Clarke, D., and Piessens, F. Secure Compilation
of Object-Oriented Components to Protected Module Architectures –
Extended Version. CW Reports CW646, Dept. of Computer Science,
K.U.Leuven, September 2013.

The contents of Chapter 8, as well as the contents of Section 10.3 are based on
work yet to be published.





Chapter 2

Background Notions

Quelli che s’innamorano di
pratica, sanza scienza, son come ’l
nocchiere, ch’entra in navilio
sanza timone o bussola, che mai
ha certezza dove si vada.

Those who fall in love with
practice without science are like a
helmsman sailing without rudder
nor compass, who is never sure
about where he is going.

Leonardo da Vinci

This chapter provides the background notions that the remainder of this work
relies upon. Firstly, it presents Protected Module Architectures and their access
control policy (Section 2.1). Then, it informally describes the target (Section 2.2)
and the source language (Section 2.3) of the secure compiler developed later in
this work. This chapter then discusses the threat model (Section 2.4). It also
describes how program equivalences can be used to express security properties
(Section 2.5) and fully abstract compilation (Section 2.6). Finally, this chapter
presents how the proof of full abstraction of the compilation scheme will be
carried out (Section 2.7).

This work assumes the reader is familiar with certain basic programming
language notions such as program, state, semantics, types etc. For a gentle
and superb introduction to these concepts, we refer to the book “Types and

11
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Programming Languages” by Benjamin Pierce [98].

2.1 Protected Module Architectures

PMA provides assembly code with the ability to create a protected module.
This protected module is a secure environment for code that needs to be
protected from a potentially malicious surrounding environment. Like their
high-level counterpart (e.g., ML modules) a protected module offers an interface
mechanism to allow interoperation with code that resides outside of the module.
Additionally, these modules isolate what is placed within the module boundaries.

Figure 2.1 contains a graphical representation of how the memory is affected
by the adoption of PMA. The memory space (dash-contoured area) represents
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Figure 2.1: Graphical representation of the PMA architecture.

the whole address space available to a computer; for the sake of simplicity,
we assume it to range from address 0 to address 300. The memory space is
split into a protected (dark grey) and an unprotected region (very light grey);
the protected region is the protected module and it spans from address 100 to
address 200. The protected module is further split into a code and a data section
(each ranging for 50 addresses in the example), which are both inaccessible from
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unprotected code. The only address where unprotected code can jump to are
called entry points (denoted with �), they are specific addresses in the code
section of the protected module.

The most common way to implement PMA is through program counter-based
memory access control mechanisms [40, 80, 81, 82, 91, 109, 111, 112, 123]. We
review this mechanism from the work of Strackx and Piessens [112]. Informally,
this mechanism introduces the same logical division of memory as described
above into a protected and an unprotected section. The protected section is
further divided into a code and a data section and a number of addresses in
the code section are defined to be entry points. Then, based on the location
of the program counter, the following access control policy is enforced. The
only protected addresses to which instructions in unprotected memory can
jump and execute are entry points, all the other addresses of the protected
module are inaccessible from unprotected memory. The code section cannot be
written, the data section cannot be executed and it is accessible only from the
protected section. The size and location of each memory section are specified in
a memory descriptor. Table 2.1 summarises the access control model enforced
by the protection mechanism. There, indicate read permission with an ‘r’, write
permission with a ‘w’ and execution permission with an ‘x’.

Table 2.1: Access control policy of PMA.

From\ To Protected Unprotected
Entry Point Code Data

Protected r x r x r w r w x
Unprotected x r w x

In 2013, Intel publicly announced Software Guard Extensions (Intel SGX), a
hardware implementation of a Protected Module Architecture [15,82]. Hence
PMA support will be broadly available in mainstream processors within a few
years. Any processor with PMA support can be targeted by secure compilers
developed according to the techniques proposed in this thesis.

2.2 The Target Language A+I, Informally

To model a realistic compilation scheme, the target language should be
close to what is used by modern processors. For this reason this paper
adopts A+I (acronym of Assembly plus Isolation), a low-level language that
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models an idealised von Neumann machine enhanced with a protected module
architecture [10, 94, 95, 97]. A detailed formalisation of A+I is presented in
Chapter 4. This section but gives an informal description of A+I to familiarise
the reader with it.

The protection mechanism affects the semantics of the language, preventing the
execution of certain instructions, in accordance with the PMA access control
policy presented in Section 2.1. Following are some code snippets that exemplify
the semantics of A+I. In all examples concerning A+I code, assume the presence
of a single protected memory section spanning from address 100 to 200, with
a single entry point at address 100. Let Ps denote the code located in the
protected section and Pu denote the code located in the unprotected one. Each
instruction in the code snippets is preceded by the address where it is located;
execution starts at address 0.

Example 1 (No execution of code in the protected memory partition)
Pu initialises register r0 to 101 (line 1) and then jumps to that address (line 2).

1 0 movi r0 101 // unprotected code
2 1 jmp r0
3 · · ·
4 100 add r0 r1 // protected code
5 101 ret

Since address 101 is not an entry point of the protected memory section, the
jump of Pu does not succeed as it is violating the PMA access control policy. �

When the PMA access control policy is violated, different implementations react
differently. For the rest of this thesis, consider that the execution is halted
when the PMA access control policy is violated. Halting can also happen in
a variety of ways, for example, in our prototype detailed in Section 9.1.1, the
execution is suspended and trapped by the hypervisor [112].

Example 2 (No reading/writing the protected code section) Pu initialises
register r0 to 101 (line 1) and register r1 to 20 (line 2), then it writes the content
of r1 at the address in r0 (line 3).

1 0 movi r0 101 // unprotected code
2 1 movi r1 20
3 2 movs r0 r1
4 · · ·
5 100 add r0 r1 // protected code
6 101 ret

Since address 101 is protected, Pu cannot write there, so execution is halted,
as in Example 1. Analogously, if the instruction of line 2 were replaced with
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movl r0 r1, the execution is halted. In that case, Pu would be attempting to
read the protected memory section, while it does not have that privilege. �

Example 3 (Interoperation between protected and unprotected code)
Pu initialises register r0 to 12 (line 1), register r1 to 10 (line 2), register r5 to
100 (line 3) and then calls to the protected function located at address 100 (line
4), storing address 4 on the call stack. Ps subtracts registers r0 and r1 (line 6)
and, if the result is greater than or equal to zero, it returns that result (line 9).
Otherwise if the result is less than zero, Ps jumps to address 104 (lines 7,8),
and returns 0 (lines 10, 11). Execution then continues in unprotected memory
at address 4 (line 5, omitted), which is the address popped from the call stack.

1 0 movi r0 12 // unprotected code
2 1 movi r1 10
3 2 movi r5 100
4 3 call r5
5 · · ·
6 100 sub r0 r1 // protected code
7 101 movi r3 104
8 102 jl r3
9 103 ret

10 104 movi r0 0
11 105 ret

�

2.3 The Source Language J+E, Informally

The source-level language adopted by the compilation scheme is J+E (acronym of
Java plus Encapsulation): a strongly-typed, single-threaded, component-based,
object-oriented language that enforces private fields and public methods. J+E
extends the Java Jr. language of Jeffrey and Rathke [65] with local variables
and exceptions. It was chosen since it provides a clear notion of encapsulation
for a source-level component, which makes for simpler reasoning about the
secure compilation scheme. In fact, J+E programs are collections of components,
which are collections of packages themselves. For the remainder of this work,
the focus will be on components rather than on programs.

J+E partitions packages into import and export ones. Import packages are
analogous to the .h header file of a C program.1 They define interfaces, which

1The kind of C programs one writes when learning C: devoid of preprocessor instructions,
macros etc.
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are named collections of method signatures, and externs, which are references
to externally defined objects. Export packages provide an implementation of
an import package. They define classes, which are named collections of method
implementations and fields (also known as instance variables), and objects, which
provide implementations of classes and bindings from fields to values.

Listing 2.1 illustrates the package system of J+E. There, and in future code
examples, we will massage the syntax of method bodies in the presented
examples for the sake of readability. It contains two package declarations:

1 package P-Import;
2 interface Account {
3 public createAccount() : Account;
4 public getBalance() : Int;
5 }
6 extern extAccount : Account;
7

8 package P-Export;
9 class AccountClass implements P-Import.Account {

10

11 AccountClass() {
12 this.counter = 0;
13 }
14 private counter : Int;
15

16 public createAccount() : P-Import.Account {
17 return new P-Export.AccountClass();
18 }
19 public getBalance() : Int {
20 return this.counter;
21 }
22 public addAmount( arg : Int ) : Unit {
23 this.counter + = arg;
24 }
25 }
26 object extAccount : AccountClass { private counter = 0 }

Listing 2.1: Example of the package system of J+E.

P-Import is an import package and P-Export is an export package implementing
P-Import. P-Export provides class AccountClass that implements interface
Account defined in P-Import. Object extAccount allocated in P-Export provides
an implementation for the extern with the same name defined in P-Import.

One of the security mechanisms of J+E is given by private fields. Since
they are not accessible from outside the class declaring them (as described
in Section 2.5.1), they can be used to define security properties such as
confidentiality and integrity (Definitions 2 to 3 in Section 2.4). In J+E,
classes are private to the package that contains their declarations. Objects are
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allocated in the same package as the class they instantiate. Due to this package
system, compiling a package only needs the import packages of any package it
depends on. As a result, formal parameters in methods have interface types,
since classes that implement those interfaces are unknown. This discipline is
called: programming to an interface. While this discipline does not restrict the
expressiveness of a language, it enforces a programming pattern on programmers,
who have a more fine-grained control of how the classes they implement can
be instantiated. In fact, since constructors are not exposed in interfaces, cross-
package object allocation happens by using factory methods, i.e., methods
to which the creation of an object is delegated (as opposed to using the new
expression, which immediately allocates an object) [47]. For example, the
name of class AccountClass from Listing 2.1 is not visible from outside package
P-Export. Thus expressions of the form new P-Export.AccountClass() cannot
be written outside P-Export. Instead, to allocate a P-Export.AccountClass(),
code outside package P-Export must rely on the implementor of that package
providing a factory method (in this case it is method createAccount()).

2.4 Threat Model

This section firstly gives an informal presentation of the threat model considered
in this paper, followed by a more precise definition of the elements that constitute
the threat model.

The threat model represents an attacker with kernel-level code injection
privileges introducing malware into a software system. Complex software
system often allow separation between user-level and kernel-level code.2 While
the former is subject to certain restrictions (e.g., it cannot access specific
hardware functionality without requesting it to the kernel), the latter is not.
Kernel-level code injection is a critical vulnerability of complex software system
where injected code operates with kernel-level privileges and it can thus bypass
all existing software-based security mechanisms.

Even though kernel functionalities as well as bugs that can exploit them are
thoroughly checked, exploitable vulnerabilities often appear in complex software
systems. Notorious examples include OpenBSD’s IPv6 remote kernel buffer
overflow3 and a buffer overrun in JPEG processing of Microsoft applications.4
An attacker who exploits such a vulnerability injects code that can violate the

2We deliberately make this simplification, avoiding to discuss rings of protection for the
sake of simplicity.

3http://www.securityfocus.com/archive/1/462728/30/150/threaded
4https://technet.microsoft.com/library/security/ms04-028

http://www.securityfocus.com/archive/1/462728/30/150/threaded
https://technet.microsoft.com/library/security/ms04-028
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security property of the whole software system and disclose confidential data,
disrupt running applications and so forth. The attacker’s aim is in fact to violate
the security policy of existing software running in the system. The injected
code is also not subject to most source-level restrictions such as well-typedness.

For the sake of simplicity, no differentiation between kernel and user code is
defined in A+I: all code is already operating at the kernel level. Thus, by
modelling the attacker as injecting A+I code, we are modelling exactly kernel-
level code injection. Let us now define the system under attack.

The system under attack is assumed to be equipped with a single PMA instance
that provides one protected memory partition (a protected module). The PMA
instance is responsible for enforcing the access control policy of Section 2.1 on
the whole memory. The instance is assumed to be beyond the reach of A+I
code, so it cannot be tampered with by the attacker. This assumption seems
reasonable, since most PMA implementations have small TCBs that can be
verified for the absence of exploitable vulnerabilities such as buffer overflows. A
compromised PMA would render all security guarantees void, as the attacker
would be able to circumvent its access control policies.

Given this system, it is desirable to guarantee that at least the software within
the protected module is secure. Definition 1 presents the definition of program
security property used in the remainder of this thesis.

Definition 1 (Program security property) A program security property
for J+E programs is defined as any property that can be expressed by means of
contextual equivalence.

Security properties that can be expressed with contextual equivalence include
confidentiality and integrity (as discussed in Example 4 in Section 2.5.1). By
the terms confidentiality and integrity we mean the following.

Definition 2 (Confidentiality) Confidentiality of a value means that it
cannot be discerned by other code besides the code declaring it. Thus, a value v
in a program P is confidential if P is contextually-equivalent to P ′ which is P
with a different value for v.

Definition 3 (Integrity) Integrity of a value means that it cannot be modified
by other code besides the code declaring it. Thus, a value v in a program P has
integrity if P is contextually-equivalent to P ′ which is P where every interaction
with other code is followed by a check that the value of v is the same as before
the interaction.

According to Definition 1, J+E security properties include the following:
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1. confidentiality and integrity of field contents, of object names and of
method bodies;

2. the control flow is only dictated by calls, returns and exception throwing
and catching;

3. non-reachability of stuck (error) program states.

Item 1 defines secrets in J+E software. Field contents are secrets as they can be
never revealed outside a certain program if the programmer chooses to. This
also holds for object names which, additionally, cannot be forged by malicious
programs. Method bodies are confidential and there is no way to reveal them in
J+E, so there should be no way for an A+I-level attacker to discern two different
implementations of the same method. In different scenarios, method bodies can
be made publicly available to the attacker; in that case, the languages used
to model those scenario should allow attacker code to discern method bodies.
Secrets can be discerned by an attacker only if methods reveal them, no other
ways should be exploitable by an attacker to discern a secret. Problem 1 below
presents an example of how a naïve compiler implementation would generate
code whose confidentiality of field contents can be violated. More of these
examples are presented throughout Section 6.1.

Problem 1 (Stack security) Consider the two code snippets below, present-
ing two classes that define a secret field with different values and the same
method doCallback that inputs an object and calls method callback on it. These
two classes are implemented by two objects: oL and oR. In order to differentiate
between the left-hand side and the right-hand side implementations, a subscript
L or R is added. Assume the presence of an external object cb of type External,
that presents a method callback(). When presenting snippets side by side,
differences are highlighted in a red font.

1 package pL;
2 class CL {
3 private secret : Int = 0;
4

5 public doCallback( cb : External
) : Int {

6 var x : Int = secret;
7 cb.callback();
8 return 0;
9 }

10 }
11 object oL : CL

1 package pR;
2 class CR {
3 private secret : Int = 1;
4

5 public doCallback( cb : External
) : Int {

6 var x : Int = secret;
7 cb.callback();
8 return 0;
9 }

10 }
11 object oR : CR

Objects oL and oR are equivalent at the source level, but their compiled
counterparts are not. Since local variables are placed on the call stack (in
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unprotected memory) and an A+I-level attacker can read unprotected memory,
she can read the value of x during the callback cb.callback(). Variable x
contains the value of secret, which is a private field and which is different for
both objects.

A naïve compilation scheme does not enforce the confidentiality or integrity
of the call stack, which allows attackers to read and write local variables. An
attacker can use this vulnerability to read secrets from the stack, similarly to a
buffer-overread attack [114]. Alternatively she can even tamper with the control
flow by overwriting a return address on the stack, similarly to a return address
clobbering attack [41]. �

Item 2 ensures that the only way to modify the flow of execution is through
method calls, returns and exceptions. So, it is not possible to jump in the
middle of a method body nor execute only a part of it (unless an exception
was thrown at that stage). Once a method body is called, it will carry out its
statements in their entirety up to the next method call, return or exception
throw.

Item 3 is similar to Item 2: there is no way of disrupting some functionality by
supplying ill-typed parameters to method calls. Well-typed programs “cannot
go wrong” [84]. They can diverge, which can be an intended behaviour, but
their execution can never be stuck, which is never an intended behaviour.

The presence of a protected module provides enforcement of some of the
aforementioned properties, but not all of them are. To ensure all of them
are enforced, a secure compiler is used.

Definition 4 (Secure compiler) Let a compiler be a function that maps
source-level programs to target-level ones. A compiler is secure if it outputs
programs that enjoy precisely the same security properties of their source-level
counterparts, no less, no more.

The adoption of a secure compiler for compiling J+E software ensures that all
aforementioned security properties (Items 1 to 3) are enforced in the compiler
output. By defining such a secure compiler as a fully abstract compiler we
capture exactly the preservation of those properties in the generated target
code: a fully abstract compiler makes the software in the protected memory
secure.

For a more precise treatment, the threat model consists of the following
definitions: the system under attack (Definition 5), the security property of the
system (Definition 6), and the attacker to the system (Definition 7).
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Definition 5 (System under attack) The system is a von Neumann ma-
chine with a flat address space and one PMA instance that provides a single
protected partition in memory (a protected module). The protected module
contains A+I code, called the protected code, that complies to J+E specification.
The unprotected memory contains arbitrary A+I code.

In the system under consideration, for the sake of simplicity, only compiled
J+E software is considered to be present and no other software written in other
languages. Moreover, only one protected module is assumed to be present. A
single module suffices to protect the concerns of a single user or of multiple users
who trust each other. Addressing the challenges of adopting multiple protected
modules in the system, each belonging to mutually-distrusting stakeholders,
is addressed in Chapter 8. An alternative characterisation of the system is to
consider it to be composed of J+E code that is compiled inside a module and
linked to arbitrary A+I code.

Definition 6 (Security property) The protected code behaves the same as
its J+E specification and in no other way.

This property has the security implications described above since it is applied
to the J+E language. In different languages, this property may not have the
same security relevance. For example, this property in the context of the C
language would not entail confidentiality and integrity, as any structure can be
inspected by virtue of simple pointer arithmetic.5

Definition 7 (Attacker) The attacker can arbitrarily change the state of the
unprotected partition of the memory, moreover, she also knows how to interact
with the secure module. Finally, the attacker cannot violate the PMA access
control policy (Table 2.1), e.g., by tampering with the PMA implementation.

The attacker is assumed to know the interfaces implemented by the protected
code: the location of each entry point, the types each method expects and
the addresses of possibly static objects. The attacker has knowedge of the
functionality of existing software in the system so the injected code can interact
(possibly safely) with existing software.

In the following, the code injected by the attacker will be referred to with the
terms external code or context.

5The C standard states that the behaviour of these scenarios is “undefined”, but most C
compilers allow arbitrary pointer arithmetic.
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Limitations This threat model does not cover all possible security threats that
the system is subject to, as exemplified below. Source-level security violations,
for example a method returning a field-stored private key that was supposed
to be secret, are not considered in this thesis. These violations should not
be countered at the compiler level, but with source-level artefacts such as
type systems. Availability attacks, for example unprotected code that never
calls protected code, are also not considered. The attacker is in fact assumed
to interact with the software to be protected in order to violate its security
properties. Finally, side channel attacks are also not considered. The definition
of the attacker’s power, in fact, limits the kind of attacks she can mount. The
attacker cannot exploit covert channels to mount side-channels attacks such as
timing attacks, since these attacks fall outside the scope of the model.

2.5 Program Equivalences and Security

As mentioned before, program equivalence is used in the definition of
secure (fully abstract) compilation. Two program equivalences are mainly
used throughout this work, contextual equivalence (Section 2.5.1) and trace
equivalence (Section 2.5.2).

2.5.1 Contextual Equivalence

The notion of contextual equivalence (Definition 10 below) relies on the definition
of context and of divergence, which are now introduced (Definition 8 and 9).

Definition 8 (Context) A context C is a program with a hole (denoted by [·]),
which can be filled by a program P , generating a new program: C[P ].

Contexts model the code that can interact with a specific piece of software (in
this case, the hole-filling program P ). Based on the language of P , contexts can
assume a variety of forms. For example, if P is the λ-calculus expression λx.(xx),
a context is another λ-calculus expression with a hole, such as (λy.(yy)) [·] or
[·] (λy.(yy)). In this case, when P is plugged in the hole of either context, the
resulting program is the diverging term Ω.6 Analogously, when P is a Java
program, contexts are other Java programs which refer to (and use) the classes
P defines.

6Ω is in fact the term λx.(xx)λx.(xx) which, under any reduction strategy, always reduces
to itself, e.g., it diverges.
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Definition 9 (Divergence) A program P diverges if it performs an unbounded
number of reduction steps. Denote that P diverges with P⇑.

Definition 10 (Contextual equivalence [99]) Two programs P1 and P2
written in the same language L are contextually equivalent if they are
interchangeable in any context without affecting the observable behaviour of the
program. Formally: P1'L P2 , ∀C. C[P1]⇑ ⇐⇒ C[P2]⇑.

Contextual equivalence (also known as observational equivalence) provides a
notion of observation of the behaviour of a program (in this case, termination)
and states when two programs exhibit the same observable behaviour. Only
what can be observed by the context is of any relevance, and this changes from
language to language, since different languages have different functionalities.
From the security perspective, contexts can model malicious attackers that
interoperate with the secure software (the hole-filling program P ) and that can
attack that software.

Contextual equivalence can be used to model security properties of source code,
as described by Example 4.

Example 4 (Security properties via contextual equivalence) The code
snippets of Figure 2.2 describe a confidentiality property. Both snippets define
a class with a private field secret whose value is never made public. Calling
method setSecret assigns different values to secret. If the two snippets are

1 class Secret{
2 private secret : Int = 0;
3

4 public setSecret( ) : Int {
5 secret = 0;
6 return 0;
7 }
8 }

1 class Secret{
2 private secret : Int = 0;
3

4 public setSecret( ) : Int {
5 secret = 1;
6 return 0;
7 }
8 }

Figure 2.2: These code snippets express confidentiality properties.

contextually equivalent, then the value of secret is confidential to the code.
Since the two snippets assign different values to secret, if they are contextually
equivalent, then secret must not be discernible by external code.

The code snippets of Figure 2.3 describe an integrity property. Both snippets
define a method proxy that allocate a variable secret on the stack. Then, they
perform a call to function callback on object cb (from Problem 1). The left-hand
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side snippet also performs a check whether the variable secret has been modified
during the callback call. If these code snippets are contextually equivalent, then

1 public proxy( callback : Unit →
Unit ) : Int {

2 var secret = 0;
3 cb.callback();
4 if(secret == 0)
5 return 0;
6 return 1;
7 }

1 public proxy( callback : Unit →
Unit ) : Int {

2 var secret = 0;
3 cb.callback();
4

5 return 0;
6

7 }

Figure 2.3: These code snippets express integrity properties.

secret has not been modified during the callback, so its integrity is preserved.

The code snippets of Figure 2.4 describe memory size properties. Both snippets
define a method kernel that perform a call to a function callback, then proceed
with security-relevant code (omitted for the sake of simplicity). The left-hand
side snippet also allocates n new objects. The code of function callback could

1 public kernel( n : Int, callback :
Unit → Unit ) : Int {

2 for (Int i = 0; i < n; i++){
3 new Object();
4 }
5 cb.callback();
6 // security-relevant code
7 · · ·
8 return 0;
9 }

1 public kernel( n : Int, callback :
Unit → Unit ) : Int {

2

3

4

5 cb.callback();
6 // security-relevant code
7 · · ·
8 return 0;
9 }

Figure 2.4: These code snippets express unbounded memory size properties.

disrupt the execution flow by overflowing the memory. If these code snippets were
contextually equivalent, then the memory size would not affect the computation.

The code snippets of Figure 2.5 describe memory allocation properties. Both
snippets define a method newObjects that allocates two objects x and y and then
return x. The only difference is the allocation order between the two snippets.
If these snippets are contextually equivalent, then the memory allocation order
is invisible to code interacting with them. �

Although other definitions of contextual equivalence exist (for example,
Curien [31] uses reduction to the same value instead of divergence), no alternative
formulation drops the universal quantification on contexts.
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1 public newObjects( ) : Object {
2 var x = new Object();
3 var y = new Object();
4 return x;
5 }

1 public newObjects( ) : Object {
2 var y = new Object();
3 var x = new Object();
4 return x;
5 }

Figure 2.5: These code snippets express memory allocation properties.

Contextual equivalence shows its limitations both in the attacks it can express
and complexity it introduces in proofs. Firstly, timing attacks or, more
generally, side-channels attacks cannot be expressed with contextual equivalence.
However, these attacks are always disregarded by secure compilation techniques;
they can be countered using orthogonal protection mechanisms. Secondly,
proving properties about contexts, is notoriously complex [13, 45, 62, 97]. To
compensate for this difficulty, different forms of equivalence can be used, e.g.,
trace equivalence [65,95], weak bisimulation [105], applicative bisimilarity [8]
and logical relations [11], but only if they are first proven to be as precise as
contextual equivalence. Informally, given an equivalence ≈L, if ≈L is correct (it
captures all equivalent cases) and complete (it does not capture additional cases)
w.r.t. 'L, then it can be used in place of 'L. In this case, ≈L is said to be
fully abstract. Examples of such fully abstract trace semantics will be presented
in Chapter 5, while Section 10.4 will discuss related works that achieve similar
results.

Well-Behaved Contextual Equivalence

Sometimes it can be desirable to restrict the contexts considered for contextual
equivalence to a set of contexts behaving in a particular way. For security
purposes, this can be used to reduce (or augment) the power of an attacker to
model a particular scenario.

A form of contextual equivalence considering a restricted number of contexts
is well-behaved contextual equivalence, denoted as P1

w'TS P2. Well-behaved
contextual equivalence is defined for programs of a language T with respect to
a different language S. Well-behaved contextual equivalence is analogous to
contextual equivalence except that it considers only T contexts that behave like
S ones, not just arbitrary T contexts. Thus, well-behaved contexts replicate
the expressiveness of source-level contexts at the target level.

The notion of well-behaved contextual equivalence is used for compiler
correctness specification [92]. To prove a compiler correct, one often wants to
consider target programs that behave as source-level ones, i.e., ruling out any
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possible target-level attacker. This is the subject of a vast body of research, but
it is not the focus of this thesis, so we do not develop the subject further.

2.5.2 Trace Equivalence

Trace equivalence relates two programs when they produce the same traces,
where traces are sequences of actions. Trace equivalence (Definition 12) relies
on the concept of labelled transition system (LTS), which is now defined.

Definition 11 (LTS) A labelled transition system is a triplet (S,Λ,→) where
S is a set of states, Λ is a set of labels and → ⊆ S×Λ×S is a ternary relation
of labelled transitions.

A transition between two states S1 and S2 ∈ S on a label λ ∈ Λ is indicated as
S1

λ−−→ S2. Labels represent what an entity external to S can observe from the
states of S, as these states perform computations. Labels often concern inputs
and outputs, as presented in the following example.

Example 5 (LTS [105]) Consider the LTS of a vending machine that
produces tea or coffee for coins, after the appropriate request is made. It is for-
malised as ({SI , SR, ST , SC}, {coin, req-tea, req-coffee, tea, coffee}, {SI

coin−−−−→
SR, SR

req-tea−−−−−−→ ST , SR
req-coffee−−−−−−−→ SC , ST

tea−−−→ SI , SC
coffee−−−−−→ SI}) and it

is depicted below.

SI SR

ST

SC

coin
req-tea

req-coffee

tea

coffee

SI models the state of a vending machine waiting for input, coin expresses the
user input and SR models the state in which the machine wait for the type of
product to deliver. Based on the two different inputs from SR, the machine can
reach two states: ST and SC , the states where the machine produces tea and
coffee, respectively. Then, both ST and SC transition back to SI , labelled with
the output it provided to the user: tea or coffee. �
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Oftentimes labels are also equipped with decorations that indicate their direction:
! is an observable produced from the program, ? is an observable received from it.
The aforementioned transitions can thus be decorated as follows SI

coin?−−−−→ SR,
SR

req-coffee?−−−−−−−−→ SC and ST
tea!−−−→ SI .

Given the LTS of a program P , the behaviour of P can be described with
sequences of labels that can be generated according to the LTS. These sequences
of labels, denoted with λ, are called traces. The set of of all traces that can be
generated by a program is given by its trace semantics. Formally, given that λ==⇒
is the reflexive and transitive closure of λ−−→, the trace semantics of a program P ,
indicated as Traces(P ), is calculated as follows: Traces(P ) = {λ | ∃P ′.P λ==⇒ P ′}.

Definition 12 (Trace equivalence) Two programs are trace equivalent if
their trace semantics coincide P1 T=P2 , Traces(P1) = Traces(P2).

When working with trace equivalence in place of contextual equivalence for
secure compilation, labels model what the external code (i.e., the context in
contextual equivalence) can observe about a program. The external code is
modelled as a black box that triggers transitions. So, trace equivalence abstracts
from the behaviour of the attacker but maintains the reaction of the program to
certain actions of the attacker. This abstraction is the great advantage of trace
equivalence as opposed to contextual equivalence. When a trace semantics is
fully abstract, it is used in place of contextual equivalence. In this case it is
crucial that all possible attacker behaviour is captured by the traces, so as to
have a precise characterisation of what the attacker can do.

Trace equivalence also comes with a somewhat simpler proof technique than for
contextual equivalence. Traces are in fact often defined inductively, and they
give a neat, structural argument for proofs adopting them.

Let us now give two informal examples that present how traces look and what
behaviour can they capture. Example 6 presents traces in the J+E setting and
Example 7 presents traces in the A+I setting. A more formal presentation of
trace semantics is delayed until Chapter 5.

Example 6 (Traces for J+E) At program level, we are interested in observing
function calls and returns. Two kind of labels are thus considered: call (call)
to a method m on object o with parameters (v) and return (ret) of a value v.
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Considering Example 3, the following two traces give part of its behaviour.

call extAccount.getBalance()? ret 0!
call extAccount.addAmount( 5 )? ret 0! call extAccount.getBalance? ret 5!

�

Example 7 (Traces for A+I) At the A+I setting, we are interested in traces
capturing the same behaviour captured by traces in J+E: function calls and
returns. In this setting, however, function do not have names, but they can be
identified by the address where a call jump is made; moreover function calls
are not made on objects.

Considering Example 3, the following two traces give part of its behaviour.

call 100(12, 10)? ret 2!
call 100(10, 12)? ret 0!

�

2.6 Fully Abstract Compilation

As previously said, secure compilation is concerned with protecting a part of a
whole program from a malicious attacker. Therefore, the compilation scheme
considered in this thesis is for partial programs. In A+I, the partial programs
of interest are those residing within a protected module while the J+E ones of
interest are components C. The formal tools used to reason about compiled
programs are tailored to reason about partial programs. In fact, both contextual
equivalence and trace equivalence describe the behaviour of partial programs.
By working with partial programs we give playground to the attacker: all that
is not the partial program is the attacker. We could consider partial programs
and then model the attacker as inputs to the program, but the partial program
approach is more general and well-established in the literature.

A compiler is fully abstract if it translates indistinguishable source-level programs
into indistinguishable target-level programs. Moreover, indistinguishable,
compiler target-level programs come from indistinguishable source-level ones.
Consider a source language S and a target language T , the compiled version of
an S program P is denoted with JP KST .

Definition 13 (Fully abstract compilation [1]) A compiler is fully ab-
stract if it preserves and reflects contextual equivalence: P1'S P2 ⇐⇒
JP1KST 'T JP2KST .
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The preservation and reflection of contextual equivalence imply that no security
flaws are introduced by the compilation scheme. However an already insecure
source language can be compiled to a target language but the output of the
compilation will still be insecure. A fully abstract compiler is, in a sense,
conservative as it introduces no more vulnerabilities at the target-level than the
ones already exploitable at the source-level. Only when the source language
has means to specify security properties is a fully abstract compilation scheme
a secure compilation scheme.

A Note on Reflection Most modern compilation schemes, such as those for
Java and C#, are not secure [1, 67]. The main obstacle to secure compilation
in this cases is the large number of features provided by these languages. The
most notorious language feature to securely compile is reflection: i.e., the ability
to examine and modify the state of programs at runtime. In fact, reflection
rules out any sensible notion of security, since the state of a program can be
freely inspected. Conversely, with reflection, contextual equivalence is reduced
to alpha-equivalence [86,118], so a fully abstract compiler would be one that
translates programs with the same syntactic structure into programs with
the same sytactic structure and nothing more. A fully-abstract compiler for a
language with reflection could then be developed for untyped assembly language,
but it would not be a secure one, since reflection nullifies any sensible abstraction,
including security.

An additional benefit of fully abstract compilers comes in the form of source-
level reasoning. Source-level reasoning means that in order to understand how
a program behaves, the programmer needs only think about it at the source
level, without considering any other (lower) levels. From a security point of
view, this property ensures that security properties of implementations follow
from reviewing the source code and its source-level semantics [18]. Source-level
reasoning simplifies the task of a programmer, who need not be concerned with
the behaviour of target languages and can focus only on the source code.

Definition 13 can also be formulated with the addition of a stochastic assumption,
for example that certain values can be guessed with negligible odds. This type
of full abstraction result is referred to as probabilistic full abstraction.

The proof of full abstraction of a compiler is generally split into two theorems
based on the preservation (⇒) and reflection (⇐) directions. In both theorems,
the statements to be proven have a universal quantification over all possible
contexts, due to the expansion of the definition of contextual equivalence. This
makes some proofs particularly complicated, as certain languages (e.g., assembly)
have contexts that do not offer a clearly inductive (or co-inductive) structure,
and so are of little help for the proof. Some works adopt other equivalences,
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such as trace equivalence, that are as expressive as contextual equivalence in
order to simplify these proofs.

While the connection between fully abstract compilation and security is strong,
especially in the scope of this paper, this subject has also been studied
without security as a main concern [101, 102]. In these works, fully abstract
translations were used to compare the expressiveness of different λ-calculi; if such
a translation between two calculi exists, then they are equivalently expressive.
A discussion on such related work is delayed until Chapter 10.

2.7 Proof Strategy for Secure Compilation

This section describes how we will prove the compilation scheme from J+E to
A+I to be fully abstract. A fully abstract compilation scheme preserves and
reflects contextual equivalence of source- and target-level programs. Formally:
C1'S C2 ⇐⇒ JC1KST 'T JC2KST (Definition 13). In order to prove this
statement, the equivalence is split into two cases.

• The direction JC1KST 'T JC2KST ⇒ C1'S C2 states that the compiler
outputs target-level programs that behave the same as the corresponding
source programs. This is what most compilers achieve, at times even
certifying the result [28, 75]; we are not interested in this direction.
Assuming we start from a correct compiler, this direction is easily
proven, since the devised compilation scheme only adds checks to an
existing compiler and does not change the way source-level expressions
are translated into target-level instructions.
Most importantly, this direction is unrelated to the security of the
compilation scheme: a compiler that is proven to satisfy only this direction
of the equivalence is not a secure one. The following direction is the one
that has security implications.

• The direction C1'S C2 ⇒ JC1KST 'T JC2KST states that source-level
abstractions are preserved through compilation to the target level. Proving
this direction requires reasoning about contexts, which is difficult when
contexts are low-level memories lacking any inductive structure. To avoid
working with contexts, we replace the notion of contextual equivalence
('T ) at the target level, with that of trace equivalence (T=

T ), which
provides an inductive principle to use in the proof. This direction is
thus restated as C1'S C2 ⇒ JC1KST T=

T JC2KST ; the contrapositive of this
statement is proven to hold: JC1KST T=/

T JC2KST ⇒ C1'/ S C2.
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Given two different traces of their compiled counterparts JC1KST and JC2KST ,
to prove that C1 and C2 are not contextually equivalent, it suffices to show
that there exists a source-level context that behaves differently depending
on whether its hole is filled with C1 or C2. Such a context is said to
differentiate C1 from C2. This proof relies on an algorithm that creates a
source-level context, a witness that differentiates C1 from C2, and it is
often adopted by related work [10,32,64,94,95,96,97].





Chapter 3

Formalisation of the Source
Language J+E

The only true wisdom is knowing
you know nothing.

Socrates.

You know nothing, Jon Snow.

Ygritte, feeling particularly
socratic. A song of Ice and Fire.

This chapter formalises the J+E language. Firstly, it presents the syntax of J+E
(Section 3.1), followed by its static and dynamic semantics (Section 3.2 and
Section 3.3, respectively). This formalisation borrows extensively from the Java
Jr. work of Jeffrey and Rathke [65]; the only additions are local variables and
exceptions.

The main differences between J+E and real-world object-oriented languages (i.e.,
Java) revolve around the qualifiers associated to classes and fields. A qualifier
is an annotation that is applied to a syntactic element (interface, class, method
or field) of the language and that dictates how other parts of the program can
see that element. Java has the following annotations:

public for elements that are always accessible from any point in the program;
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34 FORMALISATION OF THE SOURCE LANGUAGE J+E

protected for elements that are only accessible from within the same package;

private for elements that are only accessible from within the same class.

In Java, these annotations can be applied freely to all above mentioned syntactic
elements, but in J+E this does not hold. Firstly, interfaces are public; they are
always in scope. Classes only have the protected qualifier, a class name cannot
be referred to from outside the package that defines it. Methods only have
the public qualifier. However, when they are defined in an interface, they are
effectively accessible from any part of the program. When they are only defined
in a class, their qualifier is effectively protected. Finally, fields are private, so
they cannot be accessed from outside a class.

A second difference between J+E and real-world object-oriented languages is
that exceptions can only be caught based on their class type in J+E.

Finally, J+E does not provide an extensive System runtime with commonly-
used classes readily implemented and the only primitive types it supports are
Unit, Bool and Int. No characters encoding is provided in J+E, for the sake of
simplicity.

3.1 Syntax

J+E supports many of the basic constructs one expects from a programming
language (Figure 3.1). Denote a sequence of elements E1, . . . , En with E. Given
an element E, e.g., a component C, denote the sets of elements that obey to
the related grammar with Ê, e.g. the set of all possible components is denoted
with Ĉ. A program in J+E is a collection of components that communicate via
interfaces and public objects. A component, is a collection of import packages
with a single export package.

Methods in J+E may throw exceptions. The top of the class hierarchy is Obj.
The only primitive types in J+E are Unit, inhabited by unit; Bool, inhabited
by true and false; and Int, inhabited by word-sized integers. The expression
E in p is borrowed from Java Jr. It is a type coercion that allows the following:
if the expression E is well-typed to run in package p with return type t, then
the expression E in p is well-typed to run in any package q with return type t,
as long as t is a visible type in q.



STATIC SEMANTICS 35

programs P ::= C

components C ::= Pi;Pe
import packages Pi ::= {package p;Di}
export packages Pe ::= {package p;De}
import declarations Di ::= interface i extends t {Mt}

| extern o : t;
export declarations De ::= class c extends t implements t {K Ft M}

| object o : t implements t {F}
constructors K ::= c(f : t, f ′ : t′) {super(f); this.f ′′ = f ′}
fields F ::= private f = v

field types Ft ::= private f : t
methods M ::= public m(x : t) : t [throws t] {return E; }

method types Mt ::= public m(x : t) : t [throws t]
expressions E ::= v | x | E.f | E.f = E | E.m(E) | E op E | exit E

| E;E | E in p | var x : t = E | if (E) {E} else {E}
| new t(E) | try {E} catch (x : t) {E} | throw E

types t ::= p.c | p.i | p.c in p | p.c in ∗ | Obj | Unit | Bool | Int
operations op ::= + | − | · | / | ∧, | ∨ | · · ·
values v ::= p.o | unit | true | false | n | throw v

Figure 3.1: Syntax of J+E.

3.2 Static Semantics

This section presents the static semantics of J+E (Section 3.2.2) after defining
the notion used therein (Section 3.2.1).

3.2.1 Notation

This section introduces some auxiliary functions and notation that the static
semantics of J+E relies upon.

Definition 14 (Declaration equivalence) Define D1 ≡ D2 whenever two
sequences of declarations are equal up to reordering: D1D2D3 ≡ D2D1D3.
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Definition 15 (Package equivalence) Define P 1 ≡ P 2 when two sequences
of package definitions are equal up to reordering of packages and of declarations:

P 1P 2P 3 ≡ P 2P 1P 3

{package p;D1} ≡ {package p;D2} if D1 ≡ D2

Definition 16 (Domain) Define dom(·) as:

dom(P1 . . . Pn) = dom(P1) ∪ . . . ∪ dom(Pn)
dom({package p;D}) = {p.n | n ∈ dom(D)} ∪ {p}
dom(D) = {name(D)}

The domain of a list of elements is the set of elements obtained by applying the
domain function to all elements of the list.

Definition 17 (Names) Define name(·) as:

name(class c . . .) = c name(object o . . .) = o

name(interface i . . .) = i name(extern o : t; ) = o

name(public m. . .) = m name(m(x : t) : t; ) = m

name(f : t) = f name(f = v) = f

Use n to range over names. Define fn(·) as the free names of an entity, namely
its name and the names of all other syntactic categories it contains.

Definition 18 (Paths) Define C.p as:

C.p = {package p;D} if {package p;D} ∈ C

Define C.p.n (or C.t where t ≡ p.n) as:

C.p.n = {package p;D} if {package p;D} ∈ C,D ∈ D, name(D) = n

Definition 19 (Super types) Define C.t.superTypes() as:

C.Obj.superTypes() = ε

C.t.superTypes() = t′, t

if C.t = {package p; class c extends t′

implements t{K Ft M}}
C.t.superTypes() = t

if C.t = {package p; interface i extends t{Mt}}
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Definition 20 (Acyclic component) A component C is acyclic when for all
types t defined in C, given the supertypes of t as C.t.superTypes() = t, there is
no u ∈ t that is a supertype of another supertype of t.

For the remainder of the paper assume components to be acyclic.

Definition 21 (Additions) Define the addition of components C + C ′ as:

C + ε = C

C + ({package p;D}, C ′) = (C, {package p;D}) + C
′

if p /∈ dom(C)
(C1, {package p;D}, C2) + ({package p;D′}, C ′) = (C1, {package p;D +D

′}, C2) + C ′

Define the addition of sequences of declarations D +D
′ as:

D + ε = D

D + (D,D′) = (D,D) +D
′ if name(D) /∈ dom(D)

(D1, D,D2) + (D′, D′) = (D1, D
′, D2) +D

′ if name(D) = name(D′)

M +M ′, Mt +M ′t, F + F ′ and Ft + F ′t are defined analogously.

Definition 22 (Interfaces) Define C1, . . . , Cn.interfaces() (and analogous
functions) as:

C1, . . . , Cn.interfaces() = C1, interfaces() ∪ . . .
∪ Cn.interfaces()

Pi1, . . . , Pin;Pe.interfaces() = Pi1.interfaces() ∪ . . .
∪ Pin.interfaces()

interface i extends t {Mt}.interfaces() = interface i extends t {Mt}
extern o : t; .interfaces() = ∅

Definition 23 (Headers) Define C.t.headers() as:

C.Obj.headers() = ε

C.t.headers() = C.t′.headers() +M.headers()
if C.t = {package p; class c extends t′

implements t{K Ft M}}
C.t.headers() = C.t.headers() +Mt

if C.t = {package p; interface i extends t{Mt}}
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Define M.headers() as:

public m(x : t) : t{return E; }.headers() = m(x : t) : t;

Define t.headers() as:

t1.headers() + . . .+ tn.headers() if t = t1 . . . tn

M.headers() is defined analogously.

Definition 24 (Header compatibility) A sequence of headers Mt is com-
patible, denoted with `Mt : compat, if, when a method name occurs more than
once, it has the same signature.

`Mt1 . . .Mtn : compat , ∀i, j ∈ 1..ni 6= j ⇒
Mti = m(x : t) : t;∈ N and Mtj = m(y : u) : u;∈ N
and t ≡ u and t ≡ u

Definition 25 (Interface compatibility) Two interfaces I1 and I2 are
compatible, denoted with I1 _I2, if they both have distinct names and the
method they define are compatible.

I1 _I2 , name(I1) 6= name(I2) and
∀Mt1 ∈ name(I1).headers(),∀Mt2 ∈ name(I2).headers(),
if name(Mt1) = name(Mt2), then `Mt1,Mt2 : compat

Definition 26 (Fields) Define C.t.fields() as:

C.Obj.fields() = ε

C.t.fields() = C.t′.fields() + Ft

if C.t = {package p; class c extends t′ implements t{K Ft M}}

Definition 27 (Methods) Define C.t.methods() as:

C.Obj.methods() = ε

C.t.methods() = C.t′.methods() +M

if C.t = {package p; class c extends t′ implements t{K Ft M}}

Definition 28 (Super) Define C.t.super() as the supertype of type t in
component C. Formally:

C.Obj.super() = ε

C.t.super() = t′

if C.t = {package p; class c extends t′ implements t{K Ft M}}
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Definition 29 (Exports) Define C.p.exports to be the component containing
all the export packages for C, and analogously for C.p.imports.

Definition 30 (Method can throw an exception) Define M.canThrow(t)
to be true if the method signature of M includes throws t′ where t<: t′.

3.2.2 Static Semantics

The static semantics defines typing relations based on the judgements of
Figure 3.2. Adopt Γ as the standard type environment that binds variables to

` P : prg well-typed program P
` C : cmp well-typed component C

C ` P : pkg well-typed package P
C ` D : dec in p well-typed declaration D in package p
C ` t : type in p t is a valid type in package p
C ` c : cls in p c is a valid class in package p
C ` i : itf in p i is a valid interface in package p
C ` t<: t′ in p t is subtype of t′ in package p
C ` v : t in ∗ value v has type t in the whole component
C ` K : cnstr in p well-typed constructor K in package p
C `Mt : hdr in p.i well-typed method header Mt of interface i

in package p
C `M : mth in p.c well-typed method M of class c in package p

C; Γ;M ; t ` E : t in p well-typed expression E in package p
in current method M according to caught-types t

Figure 3.2: Typing judgments of J+E.

types, where variables cannot be repeated [98]. Since secure compilation relies
on components, typing can also be done on a per-component basis. Thus, when
typechecking a component C, the component is added to the typing environment
to act as a reference to the standard class table. Moreover, current method M
and caught types t are added to the environment for checking expressions to
handle exceptions. To preserve the encapsulation principle given by packages,
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types are annotated with package names; thus an expression does not simply
have type t but type t in p.

Figures 3.3 to 3.6 present the typing rules [65]. They are mostly standard,
except for the following modifications. Rule Declaration-class, Declaration-
object, Declaration-interface and Method-Types are modified to ensure the
“programming to an interface” paradigm is enforced. Rule Expr-concat and
Scope-all have been devised by the authors as they were not presented in the
original paper. Rule Expr-try and Expr-throw have been added to support
exceptions; Rule Expr-var supports local variables and Rule Expr-exit supports
termination via the exit command.

(Program)

P ≡ C ` C : cmp
∀I1, I2 ∈ P.interfaces().I1 _I2

` P : prg

(Component)

C ` P i : pkg
C ` Pe : pkg
` P i;Pe : cmp

(Packages)

C ` D : dec in p
C ` {package p;D} : pkg

(Declaration-class)
C ` t : cls in p name(K) = c C ` t : itf in ∗

C ` K : cnstr in p C `M : mth in p.c
∀u ∈ {t, t} C.u.headers() ⊆ C.p.c.headers()

C ` class c extends t implements t {K Ft M} : dec in p
(Declaration-object)

C ` t : cls in p C ` t<: t in p C ` t : itf in ∗
C.t.flds = {f : t′} C ` v : t′ in p

C ` object o : t implements t {f = v} : dec in p
(Declaration-interface)

C ` t : itf in ∗ C `Mt : hdr in p.i
∀t ∈ t C.t.headers() ⊆ C.p.i.headers()

C ` interface i extends t {Mt} : dec in p
(Declaration-extern)

C ` t : type in ∗ ∀I1, I2 ∈ C.t.headers().I1 _I2
C ` extern o : t; : dec in p

Figure 3.3: J+E typing rules (part I).
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(Classes)

C.t = {package p; class c extends t′ implements t {K Ft M}}}
C ` t : cls in p

(Classes-Obj)

C ` Obj : cls in p

(Interfaces)

C.t = {package p; interface i extends t {Mt}}
C ` t : itf in p

(Types-class)
C ` t : cls in p
C ` t : type in p

(Types-interface)
C ` t : itf in p
C ` t : type in p

(Subtype-refl)
C ` t : type in p
C ` t<: t in p

(Subtype-trans)
C ` t<: t′′ in p
C ` t′′<: t′ in p
C ` t<: t′ in p

(Subtype-obj)
C ` t : type in p
C ` t<: Obj in p

(Subtype-def)
C ` t : type in p

t′ ∈ C.t.superTypes()
C ` t<: t′ in p

(Scope-all)

C.p = {package p;D} v /∈ fn(C \ p) C ` v : t in p
C ` v : t in ∗
(Constructors)

C ` u : type in p C.c.flds = {g : u} C.p.c.super.flds = {f ′ : t}
C ` c(f : t, h : u){super(f); this.g = h} : cnstr in p

(Method-Types)
C ` t : itf in ∗ C ` t : itf in ∗

C ` m(x : t) : t; : hdr in p
(Methods)

C;x : t, this : p.c;M ; ∅ ` E : t in p C ` t : type in p C ` t : type in p
M = public m(x : t) : t {return E; }

C ` public m(x : t) : t {return E; } : mth in p.c

Figure 3.4: J+E typing rules (part II).

3.3 Dynamic Semantics

The dynamic semantics is given in terms of a relation (P ;S ` E)→ (P ′;S′ ` E′)
that models the evolution of program P executing expression E with stack S
to P ′ executing E′ with stack S′. A binding B is a list of associations from
variables to values, B ::= ∅ | B; (x 7→ v). The lookup of the value associated
to a variable, denoted as B(x), returns v if (x 7→ v) ∈ B and is undefined
otherwise. A stack S is a list of bindings S ::= B, lookup and addition are
always made to the top of the stack, so if S = B1, · · · , Bn, then S(x) stands for
B1(x) and S, (x 7→ v) stands for B1, (x 7→ v). The expression being executed is
immersed in an evaluation context E, which models the environment in which
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(Expr-val-obj)

C.v = {package p; object o : t implements t{F}}
C; Γ;M ; t ` v : t in p

(Expr-val-obj-itf)

C.v = {package p; object o : t implements t{F}} t′ ∈ t
C; Γ;M ; t ` v : t′ in p

(Expr-val-extern)
C.v = {package p; extern o : t; } t ∈ t

C; Γ;M ; t ` v : t in p

(Expr-var)
x : t ∈ Γ

C ` t : type in p
C; Γ;M ; t ` x : t in p

(Expr-fld)
C; Γ;M ; t ` E : t′ in p

f : t ∈ C.t′.flds
C; Γ;M ; t ` E.f : t in p

(Expr-fldup)
C; Γ;M ; t ` E : u in p C; Γ;M ; t ` E′ : t in p

f : t ∈ C.u.fields()
C; Γ;M ; t ` E.f = E′ : t in p

(Expr-meth)

C; Γ;M ; t ` E : u in p C; Γ;M ; t ` E : t in p
m(x : t) : t ∈ C.u.headers()
C; Γ;M ; t ` E.m(E) : t in p

(Expr-new)

C ` c : cls in p C ` E : t : in p
C ` C.p.c.fields() : t

C; Γ;M ; t ` new p.c(E) : p.c in p
(Expr-if)

C; Γ;M ; t ` E : u in p C; Γ;M ; t ` E′ : u in p
C; Γ;M ; t ` ET : t in p C; Γ;M ; t ` EF : t in p

C; Γ;M ; t ` (E == E′?ET : EF ) : t in p
(Expr-concat)

C; Γ ` E : u in p
C; Γ, E : u in p ` E′ : t in p
C; Γ;M ; t ` E;E′ : t in p

(Expr-coercion)
C; Γ;M ; t ` E : t in p C ` t : type in q

C; Γ;M ; t ` E in p : t in q

(Expr-subsumption)
C; Γ;M ; t ` E : t in p C ` t<:u in p

C; Γ;M ; t ` E : u in p

Figure 3.5: J+E typing rules (part III).
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(Expr-try)
C; Γ;M ; t, t ` E : t′ in p C; Γ, x : t;M ; t ` E′ : t′ in p

C ` t : cls in p
C; Γ;M ; t ` try {E} catch (x : t) {E ′} : t′ in p

(Expr-throw)
C; Γ;M ; t ` E : t in p M.canThrow(t) or t ∈ t

C; Γ;M ; t ` throw E : t in p
(Expr-var)

C; Γ;M ; t ` E : t′ in p
C; Γ;M ; t ` var x : t = E : t′ in p

(Expr-exit)
C; Γ;M ; t ` E : t in p

C; Γ;M ; t ` exit E : t in p

Figure 3.6: J+E typing rules (part IV).

the evaluation takes place. The syntax of evaluation contexts is:

E ::= [·] | E.m(E) | p.o.m(v,E, E) | E.f | E.f = E | v.f = E | new t(v,E, E)
| if(E){ET }else{EF } | E;E | E in p | var x : t = E | return E
| E op E | v op E | try E catch(x : t) E | throw E | exit E

The following are the redexes of the language:

R ::= v.m(v) | return v | v.f | v.f = u | new p.c(v) | if(v){ET }else{EF }
| v in p | try{v}catch(x : t){E} | exit v | throw v

Rules for reductions of the form (P;S ` E) → (C ′;S′ ` E′) are presented in
Figures 3.7 to 3.9.

Contextual equivalence for J+E programs is defined based on J+E contexts C,
which are components with a hole, denoted with C[·] [65]. The hole can be
filled with another component C to denote the interaction between C and the
context. Assume the context defined a Main package with a Main class and a
main method that identify where the execution starts.

Definition 31 (Contextual equivalence for J+E)

C1'J+E C2 , ∀C. C[C1]⇑ ⇐⇒ C[C2]⇑ .
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(Eval-method)

C ∈ P C.v = {package p; object v : t implements t {F}}
public m(x : t) : t′{return E; } ∈ C.t.mths

(P;S ` E[v.m(v)])→ (P; ∅, S ` E[return E[v/this, v/x] in p])
(Eval-return)

(P;B,S ` E[return v])→ (P;S ` E[v])
(Eval-field)

C ∈ P f = u ∈ F
C.v = {package p; object v : t implements t {F}}

(P;S ` E[v.f ])→ (P;S ` E[u])
(Eval-field-update)

C ∈ P P ′ = P + C ′ (f = u; ) ∈ F F
′ = F + (f = u)

C.v = {package p; object v : t implements t {F}}
C ′ = C + {package p; object v : t implements t {F ′}}

(P;S ` E[v.f = u])→ (P ′;S ` E[u])
(Eval-new)

C ∈ P P ′ = P + C ′ C.p.c.flds = f : t p.o /∈ dom(C)
C ′ = C + {package p; object o : p.c implements ε{f = v}}

(P;S ` E[new p.c(v)])→ (P ′;S ` E[p.o])
(Eval-if-true)
v = true

(P;S ` E[if(v){ET }else{EF }])→ (P;S ` E[ET ])
(Eval-if-false)
v = false

(P;S ` E[if(v){ET }else{EF }])→ (P;S ` E[EF ])

Figure 3.7: Dynamic semantics of J+E (part I).
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(Eval-coercion)

(P;S ` E[v in p])→ (P;S ` E[v])
(Eval-local-var)

(P;S ` E[var x : t = v])→ (P;S, (x 7→ v) ` E[unit])
(Eval-lookup)
S(x) = v

(P;S ` E[x])→ (P;S ` E[v])

(Eval-concatenation)

(P;S ` E[v;E])→ (P;S ` E[E])
(Eval-op)

v op v′ = v′′

(P;S ` E[v op v′])→ (P;S ` E[v′′])
(Eval-try)

v 6= throw v′

(P;S ` E[try{v}catch(x : t){E}])→ (P;S ` E[v])
(Eval-catch)

C ∈ P C.v = {package p; object v : t implements t{F}} t<: t′
(P;S ` E[try{throw v}catch(x : t′){E}])→ (P;S ` E[E[v/x]])

(Eval-catch-fail)

C ∈ P C.v = {package p; object v : t implements t{F}} t<:/ t′

(P;S ` E[try{throw v}catch(x : t′){E}])→ (P;S ` E[throw v])
(Eval-exit)

(P;S ` E[exit v])→ (P;S ` v)

Figure 3.8: Dynamic semantics of J+E (part II). The subtyping relation is
denoted with <:.
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(Eval-throw-sequence)

(P;S ` E[throw v;E])→ (P;S ` E[throw v])
(Eval-throw-throw)

(P;S ` E[throw throw v])→ (P;S ` E[throw v])
(Eval-throw-var)

(P;S ` E[var x : t = throw v])→ (P;S, (x 7→ throw v) ` E[throw v])
(Eval-throw-new)

(P;S ` E[new throw v])→ (P;S ` E[throw v])
(Eval-throw-if)

(P;S ` E[if(throw v){ET }else{EF }])→ (P;S ` E[throw v])

Figure 3.9: Dynamic semantics of J+E (part III).



Chapter 4

Formalisation of the Target
Language A+I

Stop fidgeting with the ruler,
minion!

prof. Dave Clarke.

This chapter presents the formalisation of the A+I language, the target language
of the secure compilation scheme of Chapter 6. Language A+I is formalised as
an untyped assembly language, and this chapter defines its syntax (Section 4.1)
and its dynamic semantics (Section 4.2). As the semantics relies on PMA, the
access control policy presented in Section 2.1 is also formalised. Finally, this
chapter defines contextual equivalence for A+I programs and presents examples
of contextual equivalence at work to relate equivalent programs (Section 4.3).

4.1 Syntax

A+I programs run on an architecture that models a von Neumann machine
consisting of a program counter p, a register file r, a flags register f and memory
space m. The program counter indicates the address of the instruction that is
executed next. The register file contains 12 general purpose registers r0 to r11
and a stack pointer register SP, which contains the address of the top of the
current call stack. The flags register contains a zero flag ZF and a sign flag SF,

47
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which are set or cleared by arithmetic instructions and are used by branching
instructions, respectively. Instructions executed by the language are listed in
Figure 4.1.

movl rd rs Load the word from the memory address in register rs into
register rd.

movs rd rs Store the contents of register rs at the address found in register
rd.

movi rd k Load the constant value k into register rd. Note that k < 2`.
add rd rs Write rd + rs mod 2` into register rd and set the ZF flag

accordingly.
sub rd rs Write rd − rs mod 2` into register rd and set both the ZF and

the SF flags accordingly.
cmp r1 r2 Calculate r1 − r2 and set both the ZF and the SF flags

accordingly.
jmp ri Jump to the address located in register ri.
je ri If the ZF flag is set, jump to the address in register ri.
jl ri If the SF flag is set, jump to the address in register ri.
call ri Push the value of the program counter +1 onto the call stack

and jump to the address in register ri.
ret Pop a value from the call stack and jump to the popped

location.
halt Stop the execution. We consider the value of register r0 the

result of the execution.

Figure 4.1: Instruction set I of language A+I.

For the sake of simplicity, assume the architecture targeted by the language
works with ` bit-long words, where ` is a power of 2. This allows the formalisation
presented to scale to architectures with words of different sizes.

Figure 4.2 presents elements of the formalisation. Words w are sequences of
bits 0 or 1 of length `. Instructions i are elements of the set I and define the
programming language executed on the architecture (Figure 4.1). Addresses
a are natural numbers, ranging from 0 to 2` − 1. Memories m are maps from
addresses to words. Memory access, denoted as m(a), is defined as follows:
m(a) = w if a 7→ w ∈ m; it is undefined otherwise. Define the domain
of a memory as dom(m) = {a | a 7→ w ∈ m}. If two memories m and m′

have disjoint domains, they can be merged into another memory. Formally, if
dom(m) ∩ dom(m′) = ∅, then m+m′ = {a 7→ w | a 7→ w ∈ m or a 7→ w ∈ m′}.
Registers files r map each register (r0 to r11 and the stack pointer SP to a
word. Flags registers f map the sign and zero flags SF and ZF to a word.
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Words w ::= [0 or 1]`

Instructions i ∈ I ⊂Words
Numbers n ::= n ∈ N

Addresses a ∈ 0..2` − 1
Memories m ::= ∅

| m; a 7→ w

Register files r ::= r0 7→ w, . . . , r11 7→ w,SP 7→ w

Flags registers f ::= ZF 7→ w,SF 7→ w

Memory descriptors s ::= (ab, nc, nd, n, auc, aud)
Programs P ::= (m, s)

Figure 4.2: Elements of the A+I formalisation.

Memory descriptors s are sextuples: (ab, nc, nd, n, auc, aud) that formalise the
concepts of Section 2.2. ab is the address where the protected memory partition
starts, nc and nd are the sizes (in number of addresses) of the code and data
section respectively and n is the number of entry points. Additionally, auc states
where the code section of the unprotected code starts and aud states where the
data section of the unprotected code starts (and where the unprotected code
section ends). This partitioning of unprotected code is not enforced by PMA
architectures but it helps devising a fully abstract trace semantics, as explained
at the end of Section 5.1. Entry points are allocated starting from the base
address ab. Each entry point is Ne words long. Assume that the entry points do
not overflow the protected code section, thus the constraint n · Ne < nc holds
for the all memory descriptors. Programs P are pairs of a memory m and a
memory descriptor s.

4.2 Semantics

Before introducing the semantics, a number of auxiliary notions are defined.

Figure 4.3 defines the access control enforcement rules informally presented in
Section 2.2. Read judgments s ` predicate(a, b, · · · ) as: “according to memory
descriptor s, predicate holds for addresses a, b, · · · ”.
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(Aux-protected)
ab ≤ p < (ab + nc + nd)

s ` protected(p)

(Aux-unprotected1)
p < ab

s ` unprotected(p)

(Aux-unprotected2)
(ab + nc + nd) ≤ p
s ` unprotected(p)

(Aux-unprotected-code)
auc ≤ a < aud

s ` unprotectedCode(a)

(Aux-unprotected-data)
aud ≤ a s 0 unprotected(a)

s ` unprotectedData(a)

(Aux-returnEntry)
p = ab + (n− 1) · Ne
s ` returnEntryPoint(p)

(Aux-entryPoint)
p = ab +m · Ne
m ∈ N m < n
s ` entryPoint(p)

(Aux-data)
(ab + nc) ≤ p

p < (ab + nc + nd)
s ` data(p)

(Aux-read-1)
s ` protected(p)
s ` protected(a)

s ` readAllowed(p, a)

(Aux-read-2)
s ` unprotectedData(a)
s ` readAllowed(p, a)

(Aux-write-1)
s ` unprotectedData(a)
s ` writeAllowed(p, a)

(Aux-write-2)
s ` protected(p)
s ` data(a)

s ` writeAllowed(p, a)

(Aux-entry)
s ` unprotectedCode(p)
s ` entryPoint(p′)
s ` entryJump(p, p′)

(Aux-return)
s ` protected(p)

s ` unprotectedCode(p′)
s ` exitJump(p, p′)

(Aux-internal)
s ` protected(p)
s ` protected(p′)
s 0 data(p′)

s ` intJump(p, p′)
(Aux-external)

s ` unprotectedCode(p)
s ` unprotectedCode(p′)
s ` extJump(p, p′)

Figure 4.3: Access control enforcement rules. Assume s ≡
(ab, nc, nd, n, auc, aud).

Define functions msec(m, s) and mext(m, s), which return the protected and
unprotected parts of a memory m according to descriptor s, respectively as:

msec(m, s) = {a 7→ w | a 7→ w ∈ m, s ` protected(a)}
mext(m, s) = {a 7→ w | a 7→ w ∈ m, s ` unprotected(a)}

In the semantics there are two call stacks, one for the protected code, called
the secure stack, and one for the unprotected code, called the insecure stack.
Each stack is preceded by a word containing the location of the current top
of the stack: SPsec and SPext are memory locations that indicate the top of
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the secure and insecure stack respectively. Given a memory descriptor s =
(ab, nc, nd, n, auc, aud), the secure stack starts at the beginning of the protected
data section and the insecure stack starts at beginning of the unprotected
data section, both stack grow up. Thus SPsec = (ab + nc) and, initially,
SPsec 7→ (ab+nc+1); analogously, SPext = (aud) and, initially, SPext 7→ (aud+1).
Call and return instructions see the SP register being set to the correct address
when crossing boundaries between protected and unprotected memory by using
SPsec and SPext. The value of the program counter is pushed onto the stack by
a call instruction, while a ret instruction pops one address from the top of the
stack and jumps to that location. Updating the stack pointer SP is performed
using the auxiliary function ↘SS: p̂ × r̂ × m̂ × ŝ → p̂ × r̂ × m̂ (Figure 4.4).1
The stack switching enforcement rules do not modify anything if a call or a

(Stack-out-to-in)
s ` entryJump(p, p′)

m′ = m[SPext 7→ r(SP)]
r′ = r[SP 7→ m(SPsec)]
s ` unprotected r(SP)
s ` protected r′(SP)
p, r,m, s↘SS p′, r′,m′

(Stack-in-to-out)
s ` exitJump(p, p′)

m′ = m[SPsec 7→ r(SP)]
r′ = r[SP 7→ m(SPext)]
s ` protected r(SP)

s ` unprotected r′(SP)
p, r,m, s↘SS p′, r′,m′

(Stack-no-change-i)
s ` intJump(p, p′)
s ` protected r(SP)
p, r,m, s↘SS p′, r,m

(Stack-no-change-e)
s ` extJump(p, p′)

s ` unprotected r(SP)
p, r,m, s↘SS p′, r,m

Figure 4.4: Stack switch enforcement rules.

ret are performed within the same memory partition (Rule Stack-no-change-i
and Rule Stack-no-change-e). For a call or a ret across different memory
partitions, Rule Stack-out-to-in updates the top of the unprotected stack (SPext)
with the current value in the stack pointer. Then, it sets the stack pointer to
the location contained in the top of the unprotected stack (contained in SPsec).
Rule Stack-in-to-out performs the dual of Rule Stack-out-to-in.

In the rules, notation m[a 7→ w] indicates that memory m is updated to a new
one that is equal to m except that the value stored at address a is w. Notation
r[r 7→ w] indicates that the register file r is updated to a new one that is equal
to r except that the value stored in register r is w. Notation r(r) indicates the
value contained in register r in register file r. Given a jump between addresses
p and p′, the stack switch rules produce a new register file r′ and a new memory
m′ based on old ones r and m. The memory is updated to store the top of the

1Recall that Ê denotes the set of elements E that obey to the related grammar.



52 FORMALISATION OF THE TARGET LANGUAGE A+I

current stack, located in SP, in the address storing the top of the current stack.
When the stack is changed, the register file is updated to initialise SP to the
top of the right stack: the address stored at SPsec or SPext.

The operational semantics is a small step semantics that describes how each
instruction of the language transforms an execution state into a new one. The
operational semantics describes programs in terms of the whole memory: both
the protected and unprotected partitions.2

Definition 32 (Execution state) An execution state, denoted as Ω, is a
quintuple Ω = (p, r, f,m, s), where p is a program counter, r is a registers file,
f is a flags register, m is a memory and s is a memory descriptor.

Given execution state Ω = (p, r, f,m, s), let bΩc be the state for protected
programs (p, r, f, msec(m, s), s). Dually, let dΩe be the state for unprotected
programs (p, r, f, mext(m, s), s). We overload the msec(·) and the mext(·) functions
to deal with states, so that if Ω = (p, r, f,m, s), msec(Ω)= msec(m, s) and
mext(Ω)= mext(m, s). We can thus state that a state Ω can be split into a
protected state bΩc and some unprotected memory mext(Ω), formally: Ω =
bΩc + mext(Ω). Dually, a state is an unprotected state and some protected
memory, so Ω = dΩe+ msec(Ω).

Relation →i ⊆ bΩc × bΩc (Figures 4.5 to 4.6) describes the evaluation of
instructions that only affect the protected memory. Dually, relation →e ⊆
dΩe×dΩe describes the evaluation of instructions that only affect the unprotected
memory. Rules for →e can be obtained from the rules for →i by replacing
all intJump assumptions with an extJump one and are thus omitted. Let
m(p) = inst denote that inst is the word allocated in m(p), where inst ∈ I.
When an access control violation is detected, or when the secure stack is

overflowed, all registers and flags are reset and the execution is halted. Note that
the program counter is set to −1 whenever the halt instruction is encountered,
in order to capture termination. This way, no progress can be made, as m(−1)
does not return a valid instruction: the program is in a stuck state.

Definition 33 (Stuck state) A state Ω = (p, r, f,m, s) is stuck, denoted as
Ω⊥, when the program counter does not point to a valid instruction: m(p) /∈ I.

The operational semantics of A+I is captured by the binary relation over states
→ ⊆ Ω× Ω (Figure 4.7). Relation → defines how to evaluate instructions that
affect the whole memory. Thus, it relies on →i and →e and it defines rules for

2The trace semantics for A+I in Chapter 5 will describe protected programs only, in terms
of the protected memory partition.



SEMANTICS 53

(Eval-movl)
m(p) = (movl rd rs)
s ` intJump(p, p+ 1)

s ` readAllowed(p, r(rs))
r′ = r[rd 7→ m(r(rs))]

(p, r, f,m, s)→i (p+ 1, r′, f,m, s)

(Eval-movs)
m(p) = (movs rd rs)
s ` intJump(p, p+ 1)

s ` writeAllowed(p, r(rd))
m′ = m[r(rd) 7→ r(rs)]

(p, r, f,m, s)→i (p+ 1, r, f,m′, s)

(Eval-movi)
m(p) = (movi rd i)
s ` intJump(p, p+ 1)

r′ = r[rd 7→ i]
(p, r, f,m, s)→i (p+ 1, r′, f,m, s)

(Eval-compare)
m(p) = (cmp rs rd)
s ` intJump(p, p+ 1)

f ′ = f [ZF 7→ (rs == rd);
SF 7→ (rs < rd)]

(p, r, f,m, s)→i (p+ 1, r, f ′,m, s)
(Eval-add)

m(p) = (add rd rs) s ` intJump(p, p+ 1) v = (r(rd) + r(rs))%2`
r′ = r[rd 7→ v] f ′ = f [ZF 7→ (v == 0)]

(p, r, f,m, s)→i (p+ 1, r′, f ′,m, s)
(Eval-sub)

m(p) = (sub rd rs) s ` intJump(p, p+ 1) v = (r(rd)− r(rs))%2`
r′ = r[rd 7→ v] f ′ = f [ZF 7→ (v == 0); SF 7→ (r(rd)− r(rs) < 0)]

(p, r, f,m, s)→i (p+ 1, r′, f ′,m, s)

Figure 4.5: Operational semantics of instructions in the protected memory
partition (part I).

instructions that affect both protected and unprotected memory at the same time
(e.g., a call between protected and unprotected memory). Let us now describe
the rules that define the → relation. Rule Eval-protected and Eval-unprotected
capture reductions that happen only in protected and only in unprotected
memory. Rule Eval-movl-out captures a read to unprotected memory while
Rule Eval-movs-out captures a write to unprotected memory. Rule Eval-outcall
and Eval-returnback ensure that the address to be followed after an outcall is
stored in the secure stack and that the address of the returnback entry point is
pushed onto the insecure stack. Thus the unprotected code always jumps to
the returnback entry point when returning from an outcall. Rule Eval-call and
Eval-return capture function calls and returns.

The reflexive-transitive closure of relation → is indicated with →∗. The
evaluation of program P is a sequence of steps that takes the initial state
of P to another state.

Definition 34 (Initial state) The initial state of a program (m, s), denoted
as Ω0(m, s), is a state (p0, r0, f0,m, s), where s = (ab, nc, nd, n), p0 = (ab+nc+
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(Eval-function-call)
m(p) = (call rd) p′ = r(rd)

s ` intJump(p, p′)
p, r,m, s↘SS p′, r′,m′

r′′ = r′[SP 7→ r(SP) + 1]
m′′ = m′[r′′(SP) 7→ p+ 1]

(p, r, f,m, s)→i (p′, r′′, f,m′′, s)

(Eval-function-ret)
m(p) = (ret) p′ = m(r(SP))

s ` intJump(p, p′)
r′ = r[SP 7→ r(SP)− 1]
p, r′,m, s↘SS p′, r′′,m′

(p, r, f,m, s)→i (p′, r′′, f,m′, s)

(Eval-je-true)
m(p) = (je ri) f(ZF) == 1
p′ = r(ri) s ` intJump(p, p′)
(p, r, f,m, s)→i (p′, r, f,m, s)

(Eval-jl-true)
m(p) = (jl ri) f(SF) == 1
p′ = r(ri) s ` intJump(p, p′)
(p, r, f,m, s)→i (p′, r, f,m, s)

(Eval-je-false)
m(p) = (je ri) f(ZF) == 0

s ` intJump(p, p+ 1)
(p, r, f,m, s)→i (p+ 1, r, f,m, s)

(Eval-jl-false)
m(p) = (jl ri) f(SF) == 0

s ` intJump(p, p+ 1)
(p, r, f,m, s)→i (p+ 1, r, f,m, s)

(Eval-jump)
m(p) = (jmp rd) p′ = r(rd)

s ` intJump(p, p′)
(p, r, f,m, s)→i (p′, r, f,m, s)

(Eval-halt)
m(p) = (halt)

(p, r, f,m, s)→i (−1, r, f,m, s)

Figure 4.6: Operational semantics of instructions in the protected memory
partition (part II).

nd + 2), r0 = [SP 7→ m(SPext); ri 7→ 0 i=0..11], and f0 = [ZF 7→ 0; SF 7→ 0].

The evaluation of P terminates if ∃Ω′.Ω0(P )→∗ Ω′ and Ω′⊥; the result of the
computation is stored in r0. If the evaluation of program P does not terminate,
P diverges. A state Ω performing n reduction steps is indicated as Ω→n Ω′.

Definition 35 (Divergence for A+I programs) A program P diverges, de-
noted with P⇑ if it executes an unbounded number of reduction steps: P⇑,
∀n ∈ N,∃Ω′. Ω0(P )→n Ω′.

4.3 Contextual Equivalence for A+I

Contextual equivalence relates two programs that cannot be distinguished by
any third program interacting with them [99]. This section specialises the
general definition of contextual equivalence (Definition 10) to A+I programs.
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(Eval-protected)
bΩc →i bΩ′c Ω = bΩc+ mext(Ω)

Ω′ = bΩ′c+ mext(Ω)
Ω→ Ω′

(Eval-unprotected)
dΩe →e dΩ′e Ω = dΩe+ msec(Ω)

Ω′ = dΩ′e+ msec(Ω)
Ω→ Ω′

(Eval-movs-out)
m(p) = (movs rd rs) s ` intJump(p, p+ 1) s ` writeAllowed(p, r(rd))

s ` unprotected(r(rd)) m′ = m[r(rd) 7→ r(rs)]
(p, r, f,m, s)→ (p+ 1, r, f,m′, s)

(Eval-movl-out)
m(p) = (movl rd rs) s ` intJump(p, p+ 1) s ` readAllowed(p, r(rs))

s ` unprotected(r(rs)) r′ = r[rd 7→ m(r(rs))]
(p, r, f,m, s)→ (p+ 1, r′, f,m, s)

(Eval-outcall)
m(p) = (call rd) p′ = r(rd) s ` exitJump(p, p′)
r′ = r[SP 7→ r(SP) + 1] m′ = m[r(SP) 7→ p+ 1]

p, r′,m′, s↘SS p′, r′′,m′′ r′′′ = r′′[SP 7→ r′′(SP) + 1]
m′′′ = m′′[r′′′(SP) 7→ a] s ` returnEntryPoint(a)

(p, r, f,m, s)→ (p′, r′′′, f,m′′′, s)
(Eval-call)

m(p) = (call rd) p′ = r(rd) s ` entryJump(p, p′)
p, r,m, s↘SS p′, r′,m′ r′′ = r′[SP 7→ r′(SP) + 1]

m′′ = m′[r′′(SP) 7→ p+ 1]
(p, r, f,m, s)→ (p′, r′′, f,m′′, s)

(Eval-returnback)
m(p) = (ret) p′ = m(r(SP)) s ` entryJump(p, p′)

r′ = r[SP 7→ r(SP)− 1] p, r′,m, s↘SS p′, r′′,m′ s ` returnEntryPoint(p′)
(p, r, f,m, s)→ (p′, r′′, f,m′, s)

(Eval-return)
m(p) = (ret) p′ = m(r(SP)) s ` exitJump(p, p′)
r′ = r[SP 7→ r(SP)− 1] p, r′,m, s↘SS p′, r′′,m′

(p, r, f,m, s)→ (p′, r′′, f,m′, s)

Figure 4.7: Operational semantics of whole A+I programs.

Since our focus is on A+I programs P that are placed in protected memory
and interact with arbitrary unprotected code, contexts model that unprotected
code. Thus for any descriptor s, contexts M are partial memories with a
hole: M = m[·], where all addresses of M are unprotected. Formally, given s,
∀a ∈ dom(M), s ` unprotected(a). The hole models the possibility to combine
a program P with the memory M iff they are compatible, denoted as P _M,
namely when the memories of P and M have disjoint domains. Let dom(M) =
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dom(m) if M = m[·]; formally, P _M if P = (m′, s) and dom(m′)∩ dom(M) = ∅.
If P and M are compatible, the hole of M can be filled with P in order to model
interaction between P and M. Formally, if P _M then M[(m′, s)] = (m′+m, s).

Programs P1 and P2 are contextually equivalent, denoted as P1'A+I P2, when,
for all contexts they interact with, P1 diverges if and only if P2 also diverges.

Definition 36 (Contextual equivalence) P1'A+I P2 , ∀M. P1 _M ∧M[P1]⇑
⇐⇒ P2 _M ∧ M[P2]⇑.

An implication of this definition is that for P1 and P2 to be contextually
equivalent they must have the same memory descriptor. For the sake of
simplicity, always assume the compatibility of a protected program and the
context it is plugged in, shortening the above definition to:

P1'A+I P2 , ∀M. M[P1]⇑ ⇐⇒ M[P2]⇑

Example 8 (Contextually equivalent programs) The following programs
PL and PR write the values of r1 and r2 respectively to the protected address 150
(line 2) and then return 0 (line 3). Recall that the protected memory partition
spans from address 100 to 200, with one entry point at address 100.

1 100 movi r0 150
2 101 movs r0 r1
3 102 movi r0 0
4 103 ret

1 100 movi r0 150
2 101 movs r0 r2
3 102 movi r0 0
4 103 ret

The only difference between PL and PR is in the value stored at address 150.
However, an unprotected program cannot read that value. Since that value does
not affect the computation of PL or PR or the unprotected code, PL and PR are
contextually equivalent. �

Having defined the assembly language and its operational semantics, the thesis
introduces the two different trace semantics for it. Trace equivalence is also
introduced, it will be proven the same as contextual equivalence, thereby
establishing full abstraction of the trace semantics.



Chapter 5

Fully Abstract Trace
Semantics for A+I

Una bella dimostrazione ha la
forma di una bella donna: larga in
alto, si restringe al centro per
riallargarsi un poco alla fine.

A beautiful proof has the shape of
a beautiful woman: it starts wide
at the top, narrowing at the
middle, and widening again at the
bottom.

A professor of Mathematical
Logic, lecturing on type theory

As seen in Section 4.3, the description of the behaviour of protected A+I code
can be rather burdensome since it is expressed in terms of the external code and
each protected instruction. A trace semantics can give a simpler description
of the behaviour of protected A+I code in terms of a set of sequences of labels.
These labels capture how communication between protected and unprotected
code happens and what is communicated. However, defining a fully abstract
trace semantics is not trivial, so this chapter describes possible failures that can
occur when devising one (Section 5.1).

As Curien stated [31], two ways to achieve full abstraction for a trace semantics
exist, and in this chapter, two trace semantics are devised for the A+I language.

57
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The first way is to change the operational semantics to restrict what is
communicated to what is captured by the labels. This is achieved by restricting
the ways in which communication is performed, for example by preventing reads
and writes to unprotected memory, and the related semantics is called TracesS

A+I
(Section 5.2). This trace semantics captures the behaviour of a compiled J+E
component and it will be used in the proof that the compilation scheme of
Chapter 6 is secure.

The second way is to modify the labels so that they capture more precisely what
is communicated between protected and unprotected code. In this case, labels
should capture the values of all registers and flags as well as what protected
code reads and writes in unprotected memory; the related semantics is called
TracesL

A+I (Section 5.3). This trace semantics captures the behaviour of any
program located in the protected memory partition.

Finally, this chapter proves that both trace semantics are fully abstract
(Section 5.4).

5.1 Failures of Full Abstraction

This section provides a first attempt to define a trace semantics for A+I, which
is used to reveal possible full abstraction failures of the semantics. Then, it
discusses adding writeout and readout labels for writes and reads to unprotected
memory and how those labels affect the trace semantics. Each problem that is
presented and that makes a trace semantics not fully abstract is followed by a
description of how to address it.

Example 9 (Describing behaviour with traces) Consider only the pro-
tected code of the snippet from Example 3.

1 100 sub r0 r1 // protected code
2 101 movi r3 104
3 102 jl r3
4 103 ret
5 104 movi r0 0
6 105 ret

Since there is a single entry point to this code, located at address 100, this code
represents a single function. A possible behaviour of this code can be expressed
as follows (· is used to separate actions of the same trace):

call 100(r0, . . . , r11)? · ret r0!

�
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To describe the behaviour of the code of Example 9 as a trace, we identify
the actions that are observable from the point of view of code interacting with
the snippet above: call and ret. These actions are the labels of the trace
semantics; they are generated by call and ret instructions. Not all instructions
generate a visible label in a trace, only those whose effect can be observed from
the unprotected code.

Following is the syntax of labels of a trace semantics for protected A+I code.

Labels L ::= α | τi
Observable actions α ::=

√
| γ? | γ!

Actions γ ::= call p(v) | ret v

A label λ can be an observable action α or a non-observable action τ . Decorations
? and ! indicate the direction of the observable action: from unprotected to
protected code (?) or vice-versa (!). Address p is an address in memory, v is
a list of the contents of all registers in a call and v indicates the contents of
register r0 in a return. Calls and returns executed by unprotected code are
named calls and returnbacks, dually, if they are executed by protected code
they are named outcalls and returns [10, 65].

This chapter aims at providing fully abstract trace semantics, implying that the
trace semantics is the most precise possible from a behavioural characterisation
perspective. Informally, a trace semantics is fully abstract when its labels capture
all that is being communicated between the protected and the unprotected code
but no more. A trace semantics following the discussion above would not be
fully abstract due to a number of subtleties, as highlighted in Example 10.

Example 10 (Limitation of the aforementioned trace semantics) Consider
the two protected A+I programs below. Call the left one PL and the right one
PR.

1 100 sub r0 r1
2 101 movi r3 106
3 102 jl r3
4 103 movi r3 10
5 104 movs r3 r4
6 105 call r2
7 106 movi r11 41
8 107 movi r0 0
9 108 ret

1 100 sub r0 r1
2 101 movi r3 106
3 102 jl r3
4 103 movi r3 10
5 104 movs r3 r5
6 105 call r2
7 106 movi r11 42
8 107 movi r0 0
9 108 ret

Both PL and PR assign the result of r0−r1 to r0 (line 1). If the result of the
operation is not less than 0 (line 3), they respectively write the contents of r4
and r5 to the unprotected address 10 (lines 4,5) and call the function whose
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address is stored in r2 (line 6). Otherwise they assign different values to r11
(line 7) and return 0 (lines 8,9).

With the trace semantics hinted at after Example 9, the behaviours of PL and
PR coincides as they generate the same traces. However, PL and PR can be
distinguished by an external observer as described below, and the traces they
generate should reflect this. Consider trace α1, which is generated by both PL
and PR (omitted details are indicated using . . .).

α1 = call 100(1, 2, . . .)? · ret 0!

α1 does not capture the different values contained in r11 (line 7), which, even if
they are not the returned values of the function, still constitutes an observable
difference between PL and PR.

Trace α2 is also generated by both PL and PR.

α2 = call 100(2, 1, 40, . . .)? · call 40(. . .)!

α2 does not capture the different value written at address 10 (line 5), which also
constitutes a observable difference between PL and PR.

Since α1 and α2 do not capture the observable differences between PL and PR,
the trace semantics fails to be fully abstract. �

To summarise, this example points out that the contents of registers (and flags)
can be used to differentiate protected programs as well as writes (and reads) to
unprotected memory.

Let us now consider writing and reading to unprotected memory.

Writeouts

Protected code writing a value into the unprotected memory partition is called
a writeout. Since such values can be observed by unprotected code, writeouts
need to be captured in traces. This is done with a writeout label of the following
form: write(a, v) stating what was written (v) and where (a). Following are
the subtleties that need to be considered when introducing writeouts into the
trace semantics (Examples 11 to 14). In the first case the problem is that the
write is not observable, while in the second case the problem is the ordering
of writeout labels. In the remaining cases the problem is that control is not
returned to the external code, which means that it will not be able to detect
the difference introduced by the writeout.
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Example 11 (Invisible writeouts) The following PL and PR read a value
from an unprotected address 10 and 20, respectively (line 2), and then rewrite
the same value back to the same address (line 3).

1 100 movi r0 10
2 101 movl r1 r0
3 102 movs r0 r1
4 103 movi r0 0
5 104 ret

1 100 movi r0 20
2 101 movl r1 r0
3 102 movs r0 r1
4 103 movi r0 0
5 104 ret

The writeouts of PL and PR are invisible. In fact, they do not alter the contents
of unprotected memory, since address 10 (20, resp.) already contains the written
value. Thus, PL and PR are contextually equivalent. However, they are not
trace equivalent, since the following is a trace of PL and not of PR:

call 100(· · · )? · read(10, 0)write(10, 0)ret 0!

Notice that if the readout were absent, the writeout would distinguish between
PL and PR, as there are unprotected memories whose existing value at address
10 (20, resp.) differs from what is written by PL or PR.

To address this concern, the readout information must be accumulated and
used to detect when a writeout is not introducing an observable difference in
unprotected memory. �

Example 12 (Order independence of writeouts) The following PL and
PR write 0 to addresses 10 and 20 in unprotected memory (lines 4 and 5). The
only difference between the two is that PL writes to address 10 then to address
20 while PR does the same writes in the opposite order.

1 100 movi r1 10
2 101 movi r2 20
3 102 movi r0 0
4 103 movs r1 r0
5 104 movs r2 r0
6 105 ret

1 100 movi r1 10
2 101 movi r2 20
3 102 movi r0 0
4 103 movs r2 r0
5 104 movs r1 r0
6 105 ret

These programs are contextually equivalent, but if their labels are generated by
the orders of the instructions, they will have different labels, since the following
will be a trace of PL and not of PR.

call 100 (· · · )? · write(10, 0)write(20, 0)ret 0!

To address this concern, writeouts need to be sorted when they are added to a
trace. A more precise discussion over this solution is delayed until Example 20
since the solution is affected by the solutions of other �
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Example 13 (No writeouts with termination) The following PL and PR
write 0 and 1 respectively to address 10 in unprotected memory (line 3) and
then terminate (line 4).

1 100 movi r1 10
2 101 movi r0 0
3 102 movs r1 r0
4 103 halt

1 100 movi r1 10
2 101 movi r0 1
3 102 movs r1 r0
4 103 halt

The only difference between PL and PR is the value written at address 10.
However, the unprotected code cannot detect this difference since execution
is halted before control is returned to it. Thus, PL and PR are contextually
equivalent. If the writeout would appear in the traces, PL and PR would be
trace-inequivalent, since the trace below would belong to PL and not to PR.

call 100 (· · · )? · write(10, 0)
√

Consequently, writeouts do not appear if the protected program halts afterwards.
�

Example 14 (Writeouts are not executable) The following PL and PR
set r0 to 20 and 10 respectively (line 1), then write the instruction jmp r0 at
addresses 20 and 10 respectively (line 2). Finally, they jump to the instruction
they just wrote (line 3).

1 100 movi r0 20
2 101 movs r0 “jmp r0”
3 102 call r0

1 100 movi r0 10
2 101 movs r0 “jmp r0”
3 102 call r0

When r0 is set to 20 (resp. 10), the instruction jmp r0 written at address 20
(resp. 10) will diverge when called. Thus, PL and PR are contextually equivalent,
since no context can differentiate between them. However, PL and PR are trace
inequivalent, since the following is a trace of PL and not of PR, since a trace of
PR would contain a write(10, “jmp r0”)call 10 (10, · · · )! label.

call 100 (· · · )? · write(20, “jmp r0”)call 20 (20, · · · )!

The solution to this concern is to split the unprotected memory in a code and
a data section and to allow writeouts only to the unprotected data section. A
more complete analysis of the solution is delayed until Example 21. �
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Readouts

A readout occurs when protected code reads unprotected memory. Not all PMA
implementations allow readouts, they are forbidden in some implementations [81]
and discouraged by others [91,112]. When protected code can perform readouts,
devising a fully abstract trace semantics is challenging. The readout label
read(a, v) states that a value v was read from address a. It is not obvious to
decide when such a label should appear and the following examples present
when the readout label should appear in traces or not (Examples 15 to 21).

Example 15 (Unobservable readouts) Consider the two protected A+I
programs below.

1 100 movi r0 10
2 101 movl r1 r0
3 102 movi r1 0
4 103 movi r0 0
5 104 ret

1 100 movi r0 20
2 101 movl r1 r0
3 102 movi r1 0
4 103 movi r0 0
5 104 ret

PL and PR read the contents of unprotected addresses 10 and 20, respectively,
and store the result in register r1 (line 2), then they set registers r0 and r1 to 0
(lines 3,4) and return (line 5). In this case, the value read does not influence
the behaviour of PL or PR, which behave the same, so the readout should not
appear in their traces. �

Example 16 (Readouts reduce to a constant) Consider the two protected
A+I programs below:

1 100 movi r1 10
2 101 movl r0 r1
3 · · · // manipulate r0
4 // until it contains k
5 102 ret

1 100 movi r1 10
2 101 movi r0 k
3

4

5 102 ret

Here, PL reads the contents of address 10 into r0 (line 2), performs computations
until r0 contains a constant value k (omitted lines), independent of the value
read, and then returns (line 5). PR simply initialises r0 to k (line 2) and returns
(line 3).

These programs are contextually equivalent, both always return k, however,
PL also performs a readout. If this readout appears in traces, it would be a
failure of full abstraction, since the traces of PR do not have such a label. The
problem here is that the omitted code of PL always reduces the contents of r0 to
a constant, no matter what values it contained beforehand. The trace semantics
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must be able to identify that the value read does not affect the execution of the
program and thus not include the read label in this case. �

Example 17 (Observable readouts) Consider the two protected A+I pro-
grams below.

1 100 movi r0 10
2 101 movl r1 r0
3 102 movi r0 0
4 103 sub r0 r1
5 104 movi r0 108
6 105 je r0
7 106 movi r0 30
8 107 call r0
9 108 ret

1 100 movi r0 20
2 101 movl r1 r0
3 102 movi r0 0
4 103 sub r0 r1
5 104 movi r0 108
6 105 je r0
7 106 movi r0 30
8 107 call r0
9 108 ret

In this case PL and PR read the contents of unprotected addresses 10 and 20,
respectively, in register r1 (line 2). Then, if those values are less than 0 (lines
3, 4) they jump to address 108 (lines 5, 6) and return (line 9), otherwise they
call to a function at address 30 (lines 7, 8).

The value read in unprotected memory constitutes an observable difference
between PL and PR, as it alters the execution flow. Thus, the readout value
should itself be present in the trace. �

The problem in this case is detecting when does a read affect the behaviour of
a program. A read affects the behaviour of a program if some future behaviour
of the program depends on the value read; when different values are read, the
behaviour of the programs varies. On the other hand, if a read does not affect
the behaviour, any value can be read and the program behaves the same. By
viewing readout values as inputs, in the former case we can say that different
inputs make a program have different behaviours (as in Example 17, while in
the latter case different inputs do not vary the behaviour of a program (as in
Examples 15 to 16).

The concept described above is analogous to non-interference [50, 126]. Non-
interference is a property of systems whose input can be classified to be either
low or high security (for non sensible and classified material respectively). A
system is non-interfering if for a given set of low inputs it will produce the same
low outputs, regardless of what the high level inputs are.

In this setting, if we treat readouts as high inputs and future traces as low
outputs, we can apply non-interference notions to detect whether a readout
affects a program. A readout does not affect a program if it is non-interfering,
i.e., for any readout value (high input) the future traces (low output) do not
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vary. The trace semantics can use the non-interference information to decide
whether a readout label should appear on traces or not. In Examples 15 to 16,
the readouts are non-interfering, whatever value is read, the behaviour of the
program does not vary, thus the trace semantics can exclude these readouts
from traces. However, in Example 17 if the value read is 0, the program will
behave differently than if it is not 0, so the readout is interfering. Here the
trace semantics can tell that the readout must be included in the trace.

The main difference between the way non-interference is used in the literature
and in this work is in the treatment of readout values. These values are in
the external memory, thus intuitively low security, and they should be kept
immutable. However, in order to apply non-interference correctly, they have to
vary, thus they are regarded as high security.

Example 18 (Unobservable readouts after writeout) The following PL
and PR write 0 to address 10 (line 3), then PR reads from address 10 (line 4).

1 100 movi r1 10
2 101 movi r0 0
3 102 movs r1 r0
4

5 103 ret

1 100 movi r1 10
2 101 movi r0 0
3 102 movs r1 r0
4 103 movl r0 r1
5 104 ret

These programs are thus contextually equivalent, but the following is a trace of
PR and not of PL.

call 100 (· · · )? · write(10, 0)read(10, 0)ret 0!

To address this concern, reads to an address that was the subject of a writeout
should not appear on traces. In fact, the readout value cannot be different from
the writeout one, and that information is already known to protected programs.
�

Example 19 (Multiple readouts) The following PL and PR read from
address 10 in unprotected memory (line 2).

1 100 movi r1 10
2 101 movl r1 r0
3

4 102 ret

1 100 movi r1 10
2 101 movl r1 r0
3 102 movl r1 r0
4 103 ret

The only difference between the two is that PR reads from address 10 twice, but
this does not affect its behaviour, since the same value is read. Thus, these
programs are contextually equivalent, but the following is a trace of PL and not
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of PR.
call 100 (· · · )? · read(10, v)ret 0!

To address this concern, multiple readouts to the same address should thus be
filtered, only one must be present in the traces as long as no writeouts to the
same address have occurred between the readouts. �

Example 20 (Order independence of readouts) In the following, PL reads
the contents of unprotected address 10 into register r1 (line 2), then it reads the
contents of unprotected address 20 into register r2 (line 4). Finally, it calls to
a function located at address 20 (line 5, the value of register r0). PR does the
same, but first its reads happen in the reversed order: first it reads address 20
into register r2 (line 2), then address 10 into register r1 (line 2).

1 100 movi r3 10
2 101 movl r1 r3
3 102 movi r0 20
4 103 movl r2 r0
5 104 call r0

1 100 movi r0 20
2 101 movl r2 r0
3 102 movi r3 10
4 103 movl r1 r3
5 104 call r0

These programs are contextually equivalent, but the traces they create are
different. The order in which the readouts are executed and accumulated on the
traces makes it so that the following trace is generated by PL and not by PR.

call (· · · )? · read(10, v)read(20, v′)call 20 (20, v, v′, 10, · · · )!

To address this and the concern of Example 12 readouts and writeouts can be
sorted based on the address to which the operation is performed.

This introduces a sort of normal form for traces, which consist of a sorted prefix
of readouts and writeouts followed by a call or a return. The normal form
effectively merges the solutions to Examples 18 to 19. �

Example 21 (Readouts are not executable) In the following, PL always
halts while PR reads the contents of address 10 into r1 (lines 1, 2). If the value
read is not an instruction (line 3, omitted for the sake of simplicity), PR jumps
there (line 4), otherwise it halts (line 6).
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1 100 halt
2

3

4

5

6

7

8

9

10

1 100 movi r3 107
2 101 movi r0 10
3 102 movl r1 r0
4 // load the encoding for halt in

r2
5 103 movi r2 "halt"
6 104 cmp r1 r2
7 // if address 10 contains halt
8 105 je r3
9 106 call r1 // jump to address 10

10 107 halt // otherwise halt

These two programs are contextually equivalent: they always terminate. However,
PR generates the following trace, which PL does not:

call (· · · )? · read(10, v)call 10 (10, v, · · · )!

The problem is that the trace above will always be followed by termination (in
unprotected code), which unprotected code cannot observe. This is due to PR
reading executable unprotected code and PR behaving differently based on the
value read. �

To address this concern and Example 14 unprotected code is split in a code and
a data section, just as protected code is. Writeouts and readouts can only be
performed on the data section of unprotected code, so protected code cannot
read nor write executable unprotected code.

From the threat modeling perspectimes this assumption somewhat reduces
the attacker’s power, since she is not able to execute the values written by
the protected code. However, this assumption seems reasonable, since most
times we are interested in modelling the behaviour of code that uses readouts
for parameters and not to execute readout values. Future work will consider
writeouts and readouts of executable unprotected code.

To include writeouts and readouts in traces, a label for each operation must
be added to the syntax of labels. These operations must not be done on the
executable part of unprotected memory. These labels must be sorted when
added to a trace. Moreover, readout labels must be added only when they
influence future computations and readout labels must be added only if they
are not followed by termination.
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5.2 TracesS
A+I: Changes to the Semantics

This section describes TracesS
A+I, the trace semantics that models the behaviour

of securely-compiled J+E components.

A notion of execution states is required for the trace semantics as it was for
the operational semantics. Execution states for TracesS

A+I, denoted as Θ, can
be (unk,m, s), a state that models when code is executing in unprotected
memory [65]. Moreover, Θ can be a state like those of the operational semantics,
except that the memory in Θ is not the whole memory, just the protected
partition. So, the memory m of (p, r, f,m, s) spans only the protected memory
partition indicated by memory descriptor s. Formally: Θ ::= (unk,m, s) |
(p, r, f,m, s), such that ∀a ∈ dom(m), s ` protected(a).

The notion of initial state is required for the trace semantics as it was for the
operational semantics.

Definition 37 (Initial state for traces) The initial state for traces of a
program (m, s), denoted as Θ0(m, s), is the state (unk,m, s).

The semantics of protected programs is changed w.r.t. the semantics specified
in Section 4.2 as follows (Figure 5.1):

• when the program counter jumps between the protected and the
unprotected memory partitions, or vice-versa, flags are set to 0 (Rule Stack-
out-to-in’ and Stack-in-to-out’);

• in case of a return, all registers but r0 are also set to 0 (Rule Eval-return’);

• readouts and writeouts are prohibited (Rule Aux-write-1’ and Aux-read-2’
replace the access control rules with the same name).

These changes do not limit the expressivity of the language. They ensure
communication between protected and unprotected code happens in a specific
fashion, namely only via function calls (with 12 parameters) and returns (with
1 returned value).

Following are the labels of TracesS
A+I, they include those presented in Section 2.2.

Observable actions include a tick
√

indicating that the evaluation has terminated.
Flags do not appear in traces because they are always set to 0, as are all registers
but r0 in case of a return. Readouts and writeouts are prohibited so there are



TRACESS
A+I: CHANGES TO THE SEMANTICS 69

(Aux-write-1’)
s ` unprotectedCode(p)
s ` unprotectedData(a)
s ` writeAllowed(p, a)

(Aux-read-2’)
s ` unprotectedCode(p)
s ` unprotectedData(a)
s ` readAllowed(p, a)

(Stack-out-to-in’)
s ` entryJump(p, p′)

m′ = m[SPext 7→ r(SP)]
r′ = r[SP 7→ m(SPsec)]
f ′ = [ZF 7→ 0; SF 7→ 0]
s ` unprotected r(SP)
s ` protected r′(SP)

p, r, f,m, s↘SS p′, r′, f ′,m′

(Stack-in-to-out’)
s ` exitJump(p, p′)

m′ = m[SPsec 7→ r(SP)]
r′ = r[SP 7→ m(SPext)]
f ′ = [ZF 7→ 0; SF 7→ 0]
s ` protected r(SP)

s ` unprotected r′(SP)
p, r, f,m, s↘SS p′, r′, f ′,m′

(Eval-return’)
m(p) = (ret) p′ = m(r(SP)) s ` exitJump(p, p′)

r′ = r[SP 7→ r(SP)− 1; ri 7→ 0i=1..11] p, r′, f,m, s↘SS p′, r′′, f ′,m′

(p, r, f,m, s)→ (p′, r′′, f ′,m′, s)

Figure 5.1: Changes to auxiliary functions and to the operational semantics for
TracesS

A+I.

no labels that capture them.

Labels L ::= α | τi
Observable actions α ::=

√
| γ? | γ!

Actions γ ::= call p (r) | ret p r(r0)

The following rules define the relation λ−−→→ ⊆ Θ × λ̂ × Θ which describes
how labels are generated (Figure 5.2). Internal instructions, generated by a
→i transition, do not produce a visible label (Rule Trace-s-internal). If a state
is stuck, then the label for termination is produced (Rule Trace-s-termination).
A call to an entry point generates a call label (Rule Trace-s-call) while a
return to the returnback entry point generates a returnback label (Rule Trace-
s-returnback). Calling to an unprotected address generates an outcall label
(Rule Trace-s-outcall), while returning to any unprotected address generates a
return label (Rule Trace-s-return).

The reflexive and transitive closure of λ−−→→, denoted with α==⇒⇒ ⊆ Θ× α×Θ, is
responsible for the accumulation of labels into traces (Figure 5.3).

The TracesS
A+I traces of a program P are defined as follows:

TracesS
A+I(P ) = {α | ∃Θ. Θ0(P ) α==⇒⇒ Θ}
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(Trace-s-internal)
(p, r, f,m, s)→i (p′, r′, f ′,m′, s)

s ` intJump(p, p′)
(p, r, f,m, s) τi−−→→ (p′, r′, f ′,m′, s)

(Trace-s-termination)
(p, r, f,m, s)→i (p′, r′, f ′,m′, s)

(p′, r′, f ′,m′, s)⊥

(p, r, f,m, s)
√
−−→→ (p′, r′, f ′,m′, s)

(Trace-s-call)
s ` entryPoint(p) f = [SF 7→ 0; ZF 7→ 0]

(unk,m, s) call p (r)?−−−−−−−−→→ (p, r, f,m, s)
(Trace-s-returnback)

s ` returnEntryPoint(p) f = [SF 7→ 0; ZF 7→ 0]
(unk,m, s) ret p r(r0)?−−−−−−−−−→→ (p, r, f,m, s)

(Trace-s-outcall)
s ` exitJump(p, p′) m(p) = (call p′) m′ = m[r(SP) 7→ p+ 1]

(p, r, f,m, s) call p′ (r)!−−−−−−−−→→ (unk,m′, s)
(Trace-s-return)

p′ ∈ 0...2` s ` exitJump(p, p′) m(p) = (ret)
(p, r, f,m, s) ret p′ r(r0)!−−−−−−−−−→→ (unk,m, s)

Figure 5.2: Rules of the TracesS
A+I trace semantics.

(Trace-s-refl)

Θ ε=⇒⇒ Θ

(Trace-s-tau-i)

Θ τi−−→→ Θ′
Θ ε=⇒⇒ Θ′

(Trace-s-trans)

Θ α==⇒⇒ Θ′′ Θ′′ α′

==⇒⇒ Θ′

Θ α·α′

====⇒⇒ Θ′

(Trace-s-action)

Θ α−−→→ Θ′
Θ α==⇒⇒ Θ′

Figure 5.3: Reflexive and transitive closure of the TracesS
A+I trace semantics

rules.

5.3 TracesL
A+I: Expressive Labels

This section presents TracesL
A+I, a trace semantics that changes the labels of

Section 2.2 to include all possible observable behaviour, including readouts and
writeouts. The semantics used for TracesL

A+I is the operational semantics of A+I,
as presented in Section 4.2.

The states of the TracesL
A+I semantics are indicated with Θ, they do not change

from the definition given for the TracesS
A+I semantics. The syntax of labels,
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however, changes as indicated below, including a readout and a writeout label.

Labels l ::= τ | a

Observable actions a ::= g? | d! |
√

Actions g ::= call p(r; f) | ret p(r; f)
Prefixable actions d ::= g | o(a, v).d

Prefixes o ::= read | write

To ensure that the issues of Examples 11 to 12 and Examples 18 to 20 (Section 5.1
and 5.1) do not arise, d! labels are converted to a normal form.

The normal form of d! labels is achieved by applying the rewrite rules presented
in Figure 5.4. Equations (Constraint-write) to (Constraint-read) ensure that

write(a, v)read(a, v′)⇒ v = v′ (Constraint-write)
read(a, v)read(a, v′)⇒ v = v′ (Constraint-read)

write(a, v)write(a′, v′) write(a′, v′)write(a, v) if a′ < a (Write-order)
read(a, v)read(a′, v′) read(a′, v′)read(a, v) if a′ < a (Read-order)

read(a, v)write(a′, v′) write(a′, v′)read(a, v) if a′ < a (WR-order)
write(a, v)read(a′, v′) read(a′, v′)write(a, v) if a′ < a (RW-order)

write(a, v)read(a, v) write(a, v) (Write-no-read)
read(a, v)write(a, v) read(a, v) (Read-no-write)

write(a, v)write(a, v′) write(a, v′) (Write-drop)
read(a, v)read(a, v) read(a, v) (Read-drop)

Figure 5.4: Rewrite rules to reduce a d! label to its normal form.

labels generated by the semantics are consistent [100]. Equation (Write-order),
(Read-order), (WR-order) and (RW-order) ensure the prefix of reads and writes
are sorted based on the address field. If two actions are performed at the same
address, their order is the same as the order in which the program performed
those actions. Equations (Write-no-read) to (Read-no-write) ensure that reading
the same writeout value (resp. writing the same readout value) does not appear
in labels. Equations (Write-drop) to (Read-drop) eliminate all but the last
writeouts and readouts to the same address.

The rewrite rules of Figure 5.4 are convergent so their application always returns
a unique result (Theorem 1 in Section 5.3.1). We can thus define the normal-
form function norm(·) to denote the application of those rewrite rules. This
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function inputs a d label and returns it in normal form, i.e., a sequence of
write(a, v) and read(a, v) label sorted on the address parameter a.

The rules that define the single label relation l−−→→⊆ Θ× l̂×Θ (Figure 5.5) rely on
the semantics presented in Section 4.2. Rules for generating call, return and τ

(Trace-internal)
(p, r, f,m, s)→i (p′, r′, f ′,m′, s)

s ` intJump(p, p′)
(p, r, f,m, s) τi−−→→ (p′, r′, f ′,m′, s)

(Trace-termination)
(p, r, f,m, s)→i (p′, r′, f ′,m′, s)

(p′, r′, f ′,m′, s)⊥

(p, r, f,m, s)
√
−−→→ (p′, r′, f ′,m′, s)

(Trace-call)
s ` entryPoint(p)

(unk,m, s) call p(r;f)?−−−−−−−−−→→ (p, r, f,m, s)
(Trace-returnback)

s ` returnEntryPoint(p)
(unk,m, s) ret p(r;f)?−−−−−−−−→→ (p, r, f,m, s)

(Trace-outcall)
s ` exitJump(p, p′) m(p) = (call p′) m′ = m[r(SP) 7→ p+ 1]

(p, r, f,m, s) call p′(r;f)!−−−−−−−−−→→ (unk,m′, s)
(Trace-return)

m(p) = (ret) p′ ∈ 0...2`
s ` exitJump(p, p′)

(p, r, f,m, s) ret p′(r;f)!−−−−−−−−→→ (unk,m, s)

(Trace-tau-compression)

Θ τ−−→→ Θ′ Θ′ a−−→→ Θ′′
Θ a−−→→ Θ′′

(Trace-writeout)
m(p) = movs rd rs s ` intJump(p, p+ 1) s ` unprotectedData(a) a = r(rd)

v = r(rs) (p+ 1, r, f,m, s) d!−−→→ (unk,m, s) v′ ∈ W
(p, r, f,m, s) write(a,v)d!−−−−−−−−−→→ (unk,m, s)

(Trace-writeout-termination)
m(p) = movs rd rs s ` intJump(p, p+ 1) s ` unprotectedData(a)

(p+ 1, r, f,m, s) o(a,v)
√

−−−−−−→→ (p′, r′, f ′,m′, s′)

(p, r, f,m, s) o(a,v)
√

−−−−−−→→ (p′, r′, f ′,m′, s′)
(Trace-readout)

m(p) = movl rd rs s ` intJump(p, p+ 1) s ` unprotectedData(a) a = r(rs)
v ∈ W r′′ = r[rd 7→ v] (p+ 1, r′′, f,m, s) d!−−→→ (unk,m, s)

(p, r, f,m, s) read(a,v)d!−−−−−−−−→→ (unk,m, s)

Figure 5.5: Rules for the TracesL
A+I trace semantics.
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labels resemble the rules for the TracesS
A+I semantics. Rule Trace-tau-compression

ensures that τ labels are not accumulated, so readout and writeout labels are
not interleaved with τs. For writeouts, Rule Trace-writeout ensures writeout
labels are always created, dually, for readouts, Rule Trace-readout ensures
readout labels are always created. Rule Trace-writeout-termination addresses
Example 13, so no writeout label is created when a program terminates.

The reflexive transitive closure of the l−−→→ relation is captured by relation
a=⇒⇒⊆ Θ×â×Θ (Figure 5.6). The only difference with the way this is performed

with regards to TracesS
A+I (Figure 5.3) is that when a label is produced in TracesL

A+I,
it is converted to a normal form via the norm(·) function and stripped of its
non-interfering reads via the StripNI(·) function (Figure 5.7 defined below).

(Trace-l-refl)

Θ ε=⇒⇒ Θ

(Trace-l-tau-i)

Θ τi−−→→ Θ′
Θ ε=⇒⇒ Θ′

(Trace-l-trans)

Θ a=⇒⇒ Θ′′

Θ′′ a′

==⇒⇒ Θ′

Θ a·a′

===⇒⇒ Θ′

(Trace-l-action)

Θ a−−→→ Θ′
StripNI(Θ, norm(a)) = a′

Θ a′

==⇒⇒ Θ′

Figure 5.6: Reflexive and transitive closure of relation −→→ for TracesL
A+I.

The trace semantics of a state is defined as follows:

Tr-state(Θ) = {a | ∃Θ′.Θ a=⇒⇒ Θ′}

Thus, the TracesL
A+I traces of a program P are defined as the traces of its initial

state:
TracesL

A+I(P ) = Tr-state(Θ0(P ))

The greatest concern when adding readouts is detecting whether a readout is
non-interfering, as explained in Examples 15 to 17. In fact, non-interfering
readouts must not have a corresponding label in traces. To understand whether
a readout to a certain address is non-interfering, we rely on judgment NI(Θ, a).
That judgment tells whether an address a is non-interfering for a state Θ as
follows. Consider Θ that performs different reductions to different states Θ′ and
Θ′′. These reductions generate labels that include a readout of different values
v and w to the same address a. If the behaviour of the different states Θ′ and
Θ′′ is the same (i.e., they have the same trace semantics), then the readouts to
a are non-interfering. In fact, if the readout would affect the behaviour of the
code (i.e., if it were interfering), a difference in the traces would be detected.
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Formally:

NI(Θ, a) , ∀v, w. Θ a1==⇒⇒ Θ′ and Θ a2==⇒⇒ Θ′′

and a1 = o(a′, v′)read(a, v)d!
and a2 = o(a′, v′)read(a,w)d!
and Tr-state(Θ′) = Tr-state(Θ′′)

The definition of NI(·) relies on the formalisation of Tr-state(Θ) which returns
the set of traces that can be generated from Θ. Tr-state(·) is used to access the
behaviour of the program after either value is read from address a, no difference
can be found there for the readout to be non-interfering. It is not sufficient to
check the single immediate action d following the readout, as the readout value
could be stored in memory and be used only for successive computations. The
prefix o(a′, v′) makes it possible to identify a readout that happens at any point
during the first action.

Note that the definition of Tr-state(·) and that of NI(·) are mutually recursive.
However, they are still well-founded since Tr-state(·) uses NI(·) when filtering
a label d! generated as Θ d!==⇒⇒ Θ′ and then NI(·) relies on Tr-state(·) on the
traces generated from Θ′ onwards.

With this information, define a function StripNI(Θ, a) that returns a′ which is
a stripped of its non-interfering reads, provided that a is generated from Θ
(Figure 5.7). Since this function preserves the ordering of the labels in a, when
applied to labels in normal form it still produces labels in normal form.

StripNI(Θ, g) = g

StripNI(Θ, write(a, v)d) = write(a, v)d′ if StripNI(Θ, d) = d′

StripNI(Θ, read(a, v)d) = d′ if StripNI(Θ, d) = d′ and NI(Θ, a)
StripNI(Θ, read(a, v)d) = read(a, v)d′ if StripNI(Θ, d) = d′ and ¬NI(Θ, a)

Figure 5.7: Function to strip a label of its non-interfering reads.

This trace semantics addresses all examples presented in Section 5.1. Example 11
and 12 are addressed by the rewrite rules of Figure 5.4. Example 13 is addressed
by Rule Trace-writeout-termination. Example 14 is addressed by the auxiliary
function Rule Aux-write-1. Example 15 and 16 are addressed by the StripNI(·, ·)
function. Example 17 is addressed by Rule Trace-readout. Examples 18 to 20
are addressed by the rewrite rules of Figure 5.4. Example 21 is addressed by
the auxiliary function Rule Aux-read-2.
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5.3.1 Properties of the Rewrite Rules of Figure 5.4

The rewrite rules of Figure 5.4 are confluent (Lemma 1) and terminating
(Lemma 2), thus they are convergent (Theorem 1). This implies that when
applied to a prefix o(a, v), they will always return its unique normal form.

In the following, denote a prefix sequence o(a, v) with p.

Lemma 1 (Confluence) The rewrite rules are confluent. For any p, for all
p′ and p′′ such that p p′ and p p′′, there exists p′′′ such that p′  ∗ p′′′ and
p′′  ∗ p′′′.

Proof of Lemma 1. This proof proceeds by induction over the length of o(a, v).

Base case (length 0 or 1) No reduction rules apply, so the theorem holds.

Inductive case (length > 1) For any combination of the first two actions
of the prefix (o0(a0, v0) and o1(a1, v1)) only one rule is applicable, as
presented in the case analysis below. Thus, p′ and p′′ are the same and
so both flow into the same p′′′.

read(a, v)read(a, v) only Equation (Read-drop) applies.
read(a, v)read(a,w) and v 6= w firstly, Equation (Constraint-read) en-

sures that v = w, then only Equation (Read-drop) applies.
read(a, v)read(b, v) and a 6= b in this case if a < b no rule apply, while

if a > b only Equation (Read-order) applies.
read(a, v)write(a, v) only Equation (Read-no-write) applies.
read(a, v)write(a,w) and v 6= w no rule applies.
read(a, v)write(b, v) and a 6= b in this case if a < b no rule apply, while

if a > b only Equation (RW-order) applies.
write(a, v)write(a, v) only Equation (Write-drop) applies.
write(a, v)write(a,w) and v 6= w only Equation (Write-drop) applies.
write(a, v)write(b, v) and a 6= b in this case if a < b no rule apply, while

if a > b only Equation (Write-order) applies.
write(a, v)read(a, v) only Equation (Write-no-read) applies.
write(a, v)read(a,w) and v 6= w firstly, Equation (Constraint-read) en-

sures that v = w, then only Equation (Write-no-read) applies.
write(a, v)read(b, v) and a 6= b and a 6= b] in this case if a < b no rule

apply, while if a > b only Equation (WR-order) applies.
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2

Lemma 2 (Termination) The rewrite rules are terminating: for any prefix,
all possible sequences of application of the rewrite rules to o(a, v) are finite.

Proof of Lemma 2. The proof proceeds by structural induction on o(a, v).

Base case: o(a, v)= ε As no rewrite rules apply here, this case is terminating.

Inductive case: o(a, v)= o0(a0, v0) · · · on(an, vn) The inductive hypothesis
IH tells us that applying the rewriting rules to a prefix o1(a1, v1) · · · on(an, vn)
of length n is terminating in q steps. Apply Lemma 1 to know that the
confluent form of o1(a1, v1) · · · on(an, vn) is o′1(a′1, v′1) · · · o′n(a′n, v′n). The
following alternatives arise based on o0(a0, v0) and o′1(a′1, v′1).

a0 < a′1. In this case no rewrite rules apply for prefixes of index 0 and
1. Their application terminates in q steps for prefixes 1 onwards as
stated in the IH. So this case terminates in q steps.

a0 > a′1. In this case, o0 and o′1 are swapped in place by applying one
rewriting rule. We can then apply the IH to state that applying the
rewrite rules to o0(a0, v0)o′2(a′2, v′2) · · · o′n(a′n, v′n) is terminating. By
applying Lemma 1, we can define the confluence form of that prefix
with p. o1(a1, v1)p is thus terminating since no rewrite rules apply to
prefixes of index 0 and 1 while their application terminates in q steps
for prefixes 1 onwards as stated in the IH. So this case terminates in
q + 1 steps.

a0 = a′1 = a. The following cases arise:
o0(a, v0) = read(a, v0) and o′1(a, v′1) = read(a, v′1). Firstly,

Equation (Constraint-read) is applied, thus v0 = v′1. Then,
Equation (Read-drop) drops one of those actions, so we can apply
the IH since the prefix is of length n. So this case terminates in
q + 2 steps.

o0(a, v0) = read(a, v0) and o′1(a, v′1) = write(a, v′1). The following
cases arise:
v0 = v′1 = v. Equation (Read-no-write) is applied, and only the

0-indexed action is kept. We can apply the IH to the prefix
o0(a0, v0)o′2(a′2, v′2) · · · o′n(a′n, v′n) which is of length n. So
this case terminates in q + 1 steps.

v0 6= v′1. In this case no rewrite rules apply for prefixes of index
0 and 1. Their application terminates for prefixes 1 onwards
as stated in the IH. So this case terminates in q steps.
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o0(a, v0) = write(a, v0) and o′1(a, v′1) = read(a, v′1). Firstly,
Equation (Constraint-write) is applied, thus v0 = v′1.
Then, Equation (Write-drop) drops the 1-indexed action, so we
can apply the IH to the prefix o0(a0, v0)o′2(a′2, v′2) · · · o′n(a′n, v′n)
since it is of length n. So this case terminates in q + 2 steps.

o0(a, v0) = write(a, v0) and o′1(a, v′1) = write(a, v′1). Equation (Write-drop)
is applied and only the 1-indexed action is kept, so we can apply
the IH and this case holds. So this case terminates in q+ 1 steps.

Since all cases terminate in a finite number of steps, applying the rewrite rules
always terminates. 2

Theorem 1 (Convergence) The rewrite rules are convergent, i.e., they are
confluent and terminating.

Proof of Theorem 1. By Lemma 1 and Lemma 2. 2

5.4 Proof of Full Abstraction for the Trace Seman-
tics

This section presents the proof through which both TracesS
A+I and TracesL

A+I are
proven to be fully abstract w.r.t. the corresponding operational semantics.

A fully abstract trace semantics is both sound and complete with respect to the
operational semantics. Soundness means that the trace semantics captures all
behaviours expressible with the operational semantics. Thus, for all contexts,
two trace equivalent programs cannot be told apart. Completeness means
that the trace semantics does not capture additional behaviours that are not
expressible with the operational semantics. Thus, for all trace-inequivalent
programs, there exists a context that can differentiate them.

Full abstraction of trace semantics is formally stated as: P1 T=
A+I
P2 ⇐⇒

P1'A+I P2; its proof is split in two cases, one for each direction of the co-
implication (Theorem 2 and Theorem 3, respectively).

Call the interface of a state its registers, flags and unprotected memory. Two
states Ω1 and Ω2 have the same interface, denoted as Ω1 $ Ω2, if they have
the same registers, flags and unprotected memory. Formally, Ω1 $ Ω2 if
Ω1 = (p1, r, f,m1, s1) and Ω2 = (p2, r, f,m2, s2) and mext(m1, s1) = mext(m2, s2).
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Given Ω = (p, r, f,m, s), define bΩc to be the state Θ = (p, r, f, msec(m, s), s) if
s ` protected(p) and (unk,m, s) otherwise.

To prove Theorem 2, both programs must be proven to offer the same interface
to the unprotected program. This is captured by an interface-preservation
lemma (Lemma 3) which must be proven for each trace semantics since it
depends on the labels of each trace semantics. Lemma 3 says that two states
with the same interface still have the same interface after they perform the
same observable action. Thus unprotected programs do not see differences, in
terms of flags, registers and unprotected memory, between P1 and P2.

Lemma 3 (Interface preservation after same observable action) If Θ1
α==⇒⇒ α−−→→ Θ′1 and Θ1 = bΩ1c and Ω1 →→∗ Ω′1 and Θ′1 = bΩ′1c and Θ2

α==⇒⇒ α−−→→
Θ′2 and Θ2 = bΩ2c and Ω2 →→∗ Ω′2 and Θ′2 = bΩ′2c and Ω1 $ Ω2 then Ω′1 $ Ω′2
(assuming there is no overflow of the secure stack).

We overload the hole-filling notation and allow a hole to be filled by a state
Ω = (p, r, f,m, s) as follows: M[Ω] = (p, r, f,m+m′, s), if (m, s)_M. Given
an instruction i ∈ I, identify a transition triggered by the execution of that
instruction as i−−→.

Proof of Lemma 3. By Definition 36 the thesis P1'A+I P2 becomes ∀M. M[P1]⇑
⇐⇒ M[P2]⇑.

The proof is split in two cases, one for each side of the co-implication.

1. Direction ⇒, so the thesis is ∀M. M[P1]⇑ ⇒M[P2]⇑.
Apply the definition of contextual equivalence (Definition 36) and the
thesis becomes ∀M. M[Ω0(P1)]⇑ ⇒M[Ω0(P2)]⇑.
Let Ω1 = M[Ω0(P1)] and Ω2 = M[Ω0(P2)].
The thesis is ∀M. ∀n ∈ N.∃Ω′1. Ω1 →→n Ω′1⇒∀m ∈ N.∃Ω′2. Ω2 →→m Ω′2.
The proof proceeds by induction on m.

Base case: m = 0. Straightforward: Ω2 →→0 Ω2.
Inductive case: m = h+ 1. The thesis is: ∃Ω′2.Ω2 →→h+1 Ω′2.

The inductive hypothesis (IH) is: ∀M. ∀n ∈ N.∃Ω′1. M[Ω0(P1)]→→n

Ω′1⇒M[Ω0(P2)]→→h Ωh2 .
By IH we have that: ∃Ω1. M[Ω0(P1)]→→h Ωh1 →→n−h Ω′1.
Let Ωh1 = (p1, . . .) and Ωh2 = (p2, . . .).
There are two cases based on p1 and p2: both p1 and p2 are in the
protected partition (Item 1a) or in the unprotected one (Item 1b).
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(a) s1 ` protected(p1) and s2 ` protected(p2).
This case relies on the trace semantics rules to say that either P1
and P2 produce the same label, or they diverge; in both cases
there is a corresponding reduction in the operational semantics.
There are two cases: either both programs will perform another
action d! (Item 1(a)i), or not (Item 1(a)ii).
i. ∃d!. bΩh1c

d!==⇒⇒ bΩh′

1 c.
By hypothesis P1 T=P2, bΩh2c

d!==⇒⇒ bΩh′

2 c.
This, in conjunction with IH, implies the thesis Ω2 →→h+1 Ω′2.
Note that d! cannot be a

√
, as this violates the hypothesis

∀n ∈ N.M[Ω0](P1)]→n Ω′1.
ii. @d!. bΩh1c

d!==⇒⇒ bΩh′

1 c.
Let Ωh

1 = (p1, r1, f1,m + m1, s1) and Ωh
2 = (p2, r2, f2,m +

m2, s2).
In this case, Ωh2 does not terminate, since it does not produce
a
√

label, so it computes, generating τ actions.
By inspecting rules for generating τ in traces (the only
possible rule that applies in this case), we have thatm1(p1) =
i1 ∈ I and m2(p2) = i2 ∈ I.
The thesis holds because Ω2 can always make a step for
instruction i2, so Ω2 →→h Ωh2

i2−−→ Ω′2.
(b) s1 ` unprotected(p1) and s2 ` unprotected(p2).

In this case we need to prove that, for whatever computation
was done so far, P1 and P2 end up with a program counter in
the same location in their unprotected memory. We rely on
Lemma 3 to state that, if P1 and P2 have jumped inside the
protected partition and then back outside, their unprotected
memory is still the same.
By IH ∃l ≤ h. M[Ω0(P1)]→→l Ωl1 and bΩ0(P1)c aa==⇒⇒ bΩl1c.
By hypothesis P1 T=P2, ∃l ≤ h. M[Ω0(P2)]→→l Ωl2.
Additionally, bΩ0(P2)c aa==⇒⇒ bΩl2c.
By Lemma 3, Ωl

1 = (pl, rl, f l,Ml + m1, s1) and Ωl
2 =

(pl, rl, f l,Ml + m2, s2) (if a does not exist and a is the empty
list, there is no need to apply Lemma 3).
Additionally, Ωl1 →→h−l Ωh1 and Ωl2 →→h−l Ωh2 .
Since Ml is the same for both P1 and P2, the (h− l)-steps they
perform in unprotected memory are the same for Ωl1 and Ωl2.
Thus Ωh1 = (ph, rh, fh,Mh +m1, s1) and Ωh2 = (ph, rh, fh,Mh +
m2, s2).
As stated in Section 4.2 p ∈ dom(Mh) implies that s1 `
unprotected(ph) and s2 ` unprotected(ph).
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By hypothesis ∀n ∈ N. M[Ω0(P1)]→→n Ω′1: we have that Ωh1
i−−→

Ω′1 and that Mh(ph) ∼= i ∈ I.
This implies the thesis: Ω2 →→h+1 Ω′2 since Ω2 →→h Ωh2

i−−→ Ω′2.

2. ⇐ As in case Item 1, mutatis mutandis.

2

Theorem 2 (Soundness) P1 T=
A+I
P2 ⇒ P1'A+I P2 (assuming there is no

overflow of the secure stack).

Proof of Theorem 2. The proof proceeds by induction on a that leads to a case
analysis on a. We omit the inductive cases and proceed directly to the case
analysis considered for the base case.

√
. Straightforward: the thesis is Ω1 $ Ω2, which is among the hypotheses.

?-decorated action. This action can either be a call of the form callp(r; f)
or a return of the form retp(r; f), only the case for the call is presented
since the one for the return is analogous.

So: Θ1
call p(r;f)?−−−−−−−−−→→ Θ′1 and Θ2

call p(r;f)?−−−−−−−−−→→ Θ′2.
By definition, Θ′1 = Ω′1 = (p, r, f,m′1, s1) and Θ′2 = Ω′2 = (p, r, f,m′2, s2).
The thesis is Ω′1 $ Ω′2, so (p, r, f,m′1, s1) $ (p, r, f,m′2, s2). Both states
need to have equal registers, flags and unprotected memory. The first two
points are clear, as registers and flags are set to be the same by the label.
What needs to be proven is that mext(m′1, s1) = mext(m′2, s2).
From hypothesis Ω1 $ Ω2, we have that mext(m1, s1) = mext(m2, s2).
Since the action call p(r; f)? does not touch the unprotected memory,
we have that mext(m1, s1) = mext(m′1, s1) and mext(m2, s2) = mext(m′2, s2).
By transitivity we obtain that mext(m′1, s1) = mext(m′2, s2) holds, so this
case holds as well.

!-decorated action. Here, δ! is in the form δ1 · · · δng!. The action g! can either
be a call of the form callp(r; f) or a return of the form retp(r; f); only
the case for the call is presented since the one for the return is analogous.

So: Θ1
δ1···δncall p(r;f)!−−−−−−−−−−−−−→→ Θ′1 and Θ2

δ1···δncall p(r;f)!−−−−−−−−−−−−−→→ Θ′2.
Θ1 = Ω1 = (p, r, f,m1, s1) and Θ2 = Ω2 = (p, r, f,m2, s2).
By definition, Θ′1 = (unk,m′1, s1) and Θ′2 = (unk,m′2, s2).
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We can reconstruct Ω′1 by applying the following hypotheses: Θ1 = bΩ1c
and Ω1 →→∗ Ω′1 and Θ′1 = bΩ′1c. Analogously, we can reconstruct Ω′2.
So, Ω′1 = (p, r, f,m′1, s1) and Ω′2 = (p, r, f,m′2, s2). The thesis is Ω′1 $ Ω′2,
so (p, r, f,m′1, s1) $ (p, r, f,m′2, s2). Both states need to have equal
registers, flags and unprotected memory. The first two points are clear,
as registers and flags are set to be the same by the label. What needs to
be proven is that mext(m′1, s1) = mext(m′2, s2).
From hypothesis Ω1 $ Ω2, we have that mext(m1, s1) = mext(m2, s2).
What needs to be considered are the prefixes δ1 · · · δn, which can be either
readouts or writeouts: The proof now proceeds by induction on n.

Base case, n = 0 Trivial, since we have that mext(m1, s1) = mext(m′1, s1)
and mext(m2, s2) = mext(m′2, s2).
This, combined with the hypothesis mext(m1, s1) = mext(m2, s2),
fulfils this case.

Inductive case, n = k + 1 Consider δ1 · · · δkδ′, the inductive hypothesis
states that up to δk, external memories are the same. Indicate the
memory up to the kth step with mk, the inductive hypothesis states
that mext(mk

1 , s1) = mext(mk
2 , s2).

Two cases arise for δ′, one for the readout and one for the writeout.
δ′ = read(a, v) Readouts do not change the external memory, so

apply the inductive hypothesis and this case holds.
δ′ = write(a, v) Writeouts do change the external memory, so

mext(m′1, s1) = mext(mk
1 , s1)[a 7→ v] and mext(m′2, s2) =

mext(mk
2 , s2)[a 7→ v].

Since the initially-equal memories mext(mk
1 , s1) and mext(mk

2 , s2)
are changed in the same way, the thesis holds in this case as
well.

Having covered all the cases, the theorem holds. 2

The proof of Lemma 3 for TracesS
A+I is included in the proof for TracesL

A+I with
very small syntactical changes since the labels of TracesS

A+I are a subset of the
labels of TracesL

A+I.

Theorem 3 (Completeness) P1'A+I P2 ⇒ P1 T=
A+I
P2 (assuming there is no

overflow of the secure stack).

Completeness is equivalently stated as: P1 T=/
A+I
P2 ⇒ P1'/ J+E

P2.
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Proof Sketch. This is proven by devising an algorithm that takes as input two
different traces a1 and a2 and the two programs P1 and P2 generating them and
outputs a program P that interacts with P1 and P2 and is able to differentiate
between them [10, 64, 94, 97]. The algorithm produces unprotected code that
performs all ?-decorated actions in the traces and then terminates with result
1 or diverges, based on the program it is interacting with after the different
!-decorated action.

The two different traces are generated as follows. Since P1 T=/
A+I
P2, we have

that Traces(P1) 6= Traces(P2), thus there exists a trace a that belongs to either
only Traces(P1) or only Traces(P2). Assume wlog that a ∈ Traces(P1). The
trace a can be split in two parts as (the common prefix) and ad such that
a=asad, and so that there exists a trace a′ ∈ Traces(P2) that can be split in two
parts as and a′d such that a′=asa′d and ad 6= a′d. Trace a′ always exists, it could
be an empty trace, it could be composed by an empty as and, possibly, by an
empty a′d. The traces input for the algorithm are a1 = asad and a2 = asa′d.

Algorithm description Assume that there is always enough memory to store
the algorithm; call the algorithm P . In P there must be four functions in order
to set the flags to the all combinations. These function are of the form:

• store r1 and r2 in unprotected memory;

• set r1 and r2 to the right values that set the flag to the desired combination
(e.g., for SF=0; ZF=1, set r1=1 and r2=1);

• execute cmp r1 r2;

• restore r1 and r2 to the corresponding previous values;

• ret.

The algorithm keeps track of where to write instructions in P with a stack: the
current address stack c. Initially, the top of stack c is set to p0 – the initial
value of the program counter.

The algorithm scans the traces a1 and a2. By construction, each even-numbered
label is !-decorated; each odd-numbered label is ?-decorated. The algorithm
is split in two subroutines based on what kind of actions it is examining.
Each subroutine analyses one action from each trace and then calls the other
subroutine on the following actions until the differentiation is achieved; in that
case the algorithm terminates.
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?-decorated actions. These actions are generated by the unprotected code.
The algorithm must output a P that generates those traces. Thus, at
location c, the algorithm writes code depending on what action is being
considered.

call p (r, f)? Firstly, the algorithm writes a call to the function that
sets the flags to f . Then the top of stack c is incremented by 1.
Then, all twelve registers are set to the values of r, thus given that
the values of register i in r is vi, the following instruction is written:
movi ri vi for all i = 0..11. If the value to be written in a register is
larger than the constant allowed by movi, an add instruction is used.
Then the top of c is incremented by 12 (or more, if add instructions
are used). Then based on which register contains the value p that is
where the call is directed, instruction call rp is written. Then the
top of c is incremented by 1.

ret p (r, f)! As in the previous step, the algorithm sets flags and registers
to the desired values. Then instruction ret is written. Then the top
of c is incremented by 1.

!-decorated actions. These actions are generated by protected code.

callbacks. If both actions are of the form call p (r, f)?, then p is pushed
on top of the stack c.

returns. If both actions are of the form ret p (r, f)!, then the top of the
stack c is popped.

writeouts. The algorithm adds no code to P . In this case we are assured
that control will jump back to the code because protected code does
not write in the code section of unprotected code.

readouts. If both actions are of the form read(a, v), then the following
instructions are written before other code at address c: movi r0
a; movi r1 v; movs r1 r0. These instructions ensure that address a
contains value v.

To avoid clashes with writeouts and readouts, assume traces are inspected
beforehand and the location where P is stored does not clash with the
addresses of those operations.

If the labels are different, then the algorithm writes the differentiating
code at address c in P . Differences in the labels can be of these types:

different length. Thus one label is
√

and the other one is a 6=
√
. In

this case, given that a is generated by program Pi, the algorithm
writes diverging code at the address indicated by c.
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different actions. Assume that a1 = ret p (r, f)? and a2 = call 10 (r, f)!.
Then the algorithm writes instructions movi r0 1; halt at c and
diverging code at address 10.
Assume that a1 = write(a, v).d! and a2 = d!. In this case, before
executing the protected code that generates that trace, the algorithm
writes value u, different from v, at address a. Then, after the
protected code has performed d!, the value in a is read and compared
to u. If they are the same, then instructions movi r0 1; halt are
written at c, otherwise diverging code is written there.
Other cases are similar.

different values in the same action. Assume that a1 = ret p (r; 0, 1)?
and a2 = ret p (r; 0, 0)?. Then the differentiating code is the
following: perform a jump (via jl in this case since flag SF bears a
different value in the two traces) to an address a in case the flag is 1.
At address a, instructions movi r0 1; halt are written. Right after
the jump, diverging code written.
Assume that a1 = ret p (1, . . . ; f)? and a2 = ret p (2, . . . ; f)?. Then
the differentiating code is the following: movi r1 1; sub r0 r1. Now
the problem is reduced to different values in flags, so the previous
approach can be used.
Assume that a1 = call 10 (r; f)! and a2 = call 20 (r; f)!. Then
the algorithm writes instructions movi r0 1; halt at address 10 and
diverging code at address 20.
Assume that a1 = write(a1, v1).d! and a2 = write(a2, v2).d!. The
same procedure stated in the last paragraph for the previous point
is applied.
Concerning readouts, they are included in the traces only if they
are followed by different actions. Readouts that are not followed by
different actions satisfy the non-interference judgment NI(·), they are
non-interfering. On the other hand, readouts that are followed by
different actions do not satisfy that judgment, they are interfering.
Function StripNI(·) (Figure 5.7), which is used to accumulate labels
in Rule Trace-l-action, ensures that all non-interfering readout labels
are eliminated from traces. So, readouts that appear in traces are
interfering and thus followed by different actions. It is that action
that determines what the code generated by the algorithm is, no
action is undertaken for readouts.

2

Theorem 4 (Fully abstract trace semantics for A+I ) P1'A+I P2 ⇐⇒
P1 T=

A+I
P2 (assuming there is no overflow of the secure stack).
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Proof of Theorem 4. Apply Theorem 2 and Theorem 3. 2

These proofs are presented for TracesL
A+I, but they scale easily to TracesS

A+I. In
fact, the proofs perform a case analysis on the labels and the labels of the
TracesS

A+I semantics are a subset of those of the TracesL
A+I one. The proof of

Lemma 3 induce on the operational semantics related to a trace semantics, but
the changes to the operational semantics considered for TracesS

A+I are minimal
w.r.t. the one of TracesL

A+I.





Chapter 6

A Secure Compiler from J+E
to A+I

The essence of a role-playing
game is that it is a group,
cooperative experience.

Gary Gygax

This chapter presents the secure compiler from J+E to A+I. Firstly, this
chapter describes security violations that can arise due to a naïve compiler
implementation (Section 6.1). Then it presents the secure compiler and
how to securely compile language features such as outcalls, dynamic memory
allocation and exceptions (Section 6.2). Finally, it discusses how to securely
compile additional language features that have not been incorporated in J+E
(Section 6.3).

6.1 Security Violations

This section presents a series of security violations that arise due to a naïve
compiler implementation (Problems 2 to 8) that follows standard conventions
about how objects are compiled [38]. These problems are each presented as two
source-level snippets that are equivalent at the source level but are inequivalent
to the target level. The compilation scheme used to compile them is thus not
fully abstract. This full abstraction failure manifests itself in the proof in the

87
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form of two different target-level traces for which it is not possible to devise a
distinguishing source-level component (the witness mentioned in Section 2.7).
These cases (often) lead to security violations. Consider the code of Figure 2.3.
The behaviour of the two code snippets can be represented with the following
traces even when a supposedly compiled version of those snippets is considered:

First case = call o.proxy? call cb.callback! ret 0? ret 1!
Second case = call o.proxy? call cb.callback! ret 0? ret 0!

The final return of the first trace is 1 because the local variable secret has
been tampers with (this tampering is not captured by the traces). Generating a
source-level component from these traces is not possible, since at the source level,
unprotected code cannot access the local variable secret. For the compilation
scheme to be secure, securely-compiled programs must not generate this kind
of traces.

The failure of full abstraction for each problem is presented by the target-level
trace that differentiates the two snippets at the target level, and for which a
source-level witness cannot be created. As for Problem 1, the two snippets
provide different implementations for the same classes or methods. Recall that
these implementations often interact with an external object of type External
which presents a method callback(). For example, each snippet implements a
class that is implemented by an object o, which is called oL in the left-hand
side snippet and oR in the right-hand side one.

Problem 2 (Stack security) Consider two classes that define a secret field
called secret with different values and the same method doCallback that calls
method callback on object cb.

1 package pL;
2 class CL {
3 private secret : Int = 0;
4

5 public doCallback( ) : Int {
6 var x : Int = secret;
7 cb.callback( );
8 if ( x == secret )
9 return 0;

10 return 1;
11 }
12 }
13 object oL : CL

1 package pR;
2 class CR {
3 private secret : Int = 1;
4

5 public doCallback( ) : Int {
6 var x : Int = secret;
7 cb.callback( );
8 if ( x == secret )
9 return 0;

10 return 1;
11 }
12 }
13 object oR : CR

Objects oL and oR are equivalent at the source level, but their compiled
counterparts are not. Since local variables are placed on the call stack (in
unprotected memory) and an A+I-level attacker can read unprotected memory,
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she can read and write the value of x during the callback cb.callback(). Variable
x contains the value of secret, which is different for both objects. The following
trace is generated by the right-hand side snippet but not by the left-hand side
one. No source-level component can be created to replicate the behaviour of this
trace since local variables are not accessible in J+E.

call o.doCallback()? call cb.callback()! ret 0? ret 1!

This full abstraction violation happens because there is no J+E program that can
read the stack contents, so the violation is not replicable at the source level. An
attacker can use this vulnerability to read secrets from the stack, similarly to a
buffer-overread attack [114]. Alternatively she can even tamper with the control
flow by overwriting a return address on the stack, similarly to a return address
clobbering attack [41]. �

Problem 3 (Information leakage) Consider two classes that define the
same method testVariable which assigns different values to a local variable x.
Both methods tests whether that value is 0 and the left-hand side one returns 0
if it is and 1 otherwise while the right-hand side ones returns 1 if it is and 0
otherwise.

1 package pL;
2 class CL {
3 public testVariable( ) : Int {
4 var x : Int = 0;
5 if ( x == 0 ) {
6 return 0;
7 } else {
8 return 1;
9 }

10 }
11 }
12 object oL : CL

1 package pR;
2 class CR {
3 public testVariable( ) : Int {
4 var x : Int = 1;
5 if ( x == 0 ) {
6 return 1;
7 } else {
8 return 0;
9 }

10 }
11 }
12 object oR : CR

Objects oL and oR are equivalent in J+E, as method testVariable always returns
0 for both. However, an A+I-level attacker can differentiate their translations,
due to the equality test in the condition of the if-statement. This test sets
the ZF flag in oL and clears it in oR. This example illustrates that the flags
register can leak information. Information can also be leaked through the general
purpose registers r0 to r11 or through the stack pointer register SP. This full
abstraction violation happens because flags are not observable in J+E. Whether
a conditional statement in some function evaluated its “then” or “else” branch
is not discernible by external code that called that function. No source-level
component can be created to replicate the behaviour of this trace since flags are
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not accessible in J+E.

call o.testVariable()? ret 1!

�

Problem 4 (Value of booleans) Consider two classes that provide a method
identBool which inputs a Boolean value and returns true if that value is true
or false otherwise.

1 package pL;
2 class CL {
3 public identBool( x : Bool ) :

Bool {
4 if( x == true )
5 return true;
6 return false;
7 }
8 }
9 object oL : CL

1 package pR;
2 class CR {
3 public identBool( x : Bool ) :

Bool {
4

5 return x;
6

7 }
8 }
9 object oR : CR

The two classes implement this method differently, yet the behaviour is the same,
so objects oL and oR are equivalent in J+E. Their A+I translations however are
not, because an A+I-level attacker can use any A+I-level value for parameter x.
The following trace is generated by the right-hand side snippet but not by the
left-hand side one. No source-level component can be created to replicate the
behaviour of this trace since only boolean values can be passed as arguments of
identBool in J+E.

call o.identBool( 7 )? ret 7!

This problem arises whenever the source language is high-level and it has
primitive types inhabited by a reduced number of values, such as Booleans
and Unit [10, 45]. This is similar to a full abstraction failure for the .NET C#
compiler reported by Kennedy [67], where the boolean type is two valued in C#
but is byte valued in the .NET virtual machine. �

Problem 5 (Type of the receiver) Consider two packages that provide a
class with an unaccessible secret and a class that implements Pairs of Objects
with a method to get the first element of the pair.
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1 package pL;
2 class PairL {
3 private fst, snd : Obj = null;
4 public getFirst(): Obj {
5 return this.fst;
6 }
7 }
8 class SecretL {
9 private secret : Int = 0;

10 }
11 object oL : SecretL

1 package pR;
2 class PairR {
3 private fst, snd : Obj = null;
4 public getFirst(): Obj {
5 return this.fst;
6 }
7 }
8 class SecretR {
9 private secret : Int = 1;

10 }
11 object oR : SecretR

The value of secret cannot be leaked at the J+E level, however, the compiled
counterparts of those packages can leak its value. An A+I-level attacker can
perform a call to method getFirst() with current object oL or oR. This will
return the secret field, since fields are accessed by offset (this is an assumption
deriving from the usage of standard conventions for compiling objects). As A+I
code is untyped, nothing prevents this attack from happening. The following
trace is then generated by the right-hand side snippet but not by the left-hand side
one. No source-level component can be created to replicate the behaviour of this
trace since J+E programs are well typed, so the aforementioned A+I behaviour
cannot be replicated.

call o.getFirst( )?ret 1!

�

Problem 6 (Type of the arguments) Similarly to Problem 5, arguments
of methods can be exploited in order to mount an A+I-level attack. Extend both
packages from Problem 5 with the class ProxyPair, that has a method takeFirst
that inputs a Pair and returns the output of the method getFirst called on the
input.

1 · · ·
2 class ProxyPair {
3 public takeFirst( v : Pair ): Obj {
4 return v.getFirst();
5 }
6 }

In J+E, both packages are still equivalent. However, an A+I-level attacker can
pass an object of type Secret as argument to method takeFirst( ) and the
code will leak the contents of field secret. Assuming there exists an object p of
type ProxyPair, the differentiating trace in this case is the following:

call p.takeFirst( o )? ret 1!

�
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Problem 7 (Guessable object references) Consider two packages with a
class Secret implemented by two objects and with different implementations of
method createSecret. While that method in SecretL returns a new object, in
SecretR it allocates two objects and returns one of them.

1 package pL;
2 class SecretL {
3 private secret : Int = 0;
4 public createSecret( ) : Secret {
5

6 return new Secret( );
7 }
8 }
9 object oL1 : SecretL

10 object oL2 : SecretL

1 package pR;
2 class SecretR {
3 private secret : Int = 0;
4 public createSecret( ) : Secret {
5 var x : Secret = new Secret();
6 return new Secret( );
7 }
8 }
9 object oR1 : SecretR

10 object oR2 : SecretR

Object references at the A+I-level are the address where objects are allocated.
Once pL and pR are compiled an attacker can discover that, for example,
the identities of oL1 and oR1 are 100, while those of oL2 and oR2 are 104.
After method createSecret is executed, an attacker can see that, for example,
createSecret()L returns 108 and createSecret()R returns 112. With this
knowledge, the attacker can guess that pR created an additional object at address
108.

The attacker can thus call methods on objects it does not know of by
guessing the address where an object is allocated. This trace, that only
belongs to the right-hand side snippet, captures exactly this, as is contains
a call x.createSecret( )?. That label intuitively models the calling of method
createSecret() on object x, which is only possible in the right-hand side snippet.

call o.createSecret( )? ret o′! call x.createSecret( )? ret 1!

Passing object addresses from a secure program to an external one can give away
the allocation strategy of the compiler as well as the size of allocated objects.
An attacker that learns this information can then use it to mount attacks such
as those presented in Problem 5 and 6. From a technical point of view this
means that leaking object addresses and accepting guessed addresses breaks full
abstraction of the compilation scheme.

This full abstraction violation happens because object ids in J+E cannot be guessed
or forged, unlike addresses in A+I. �

Problem 8 (Excessive exception catching) Consider two implementations
of method safeCallback that both invoke method callback on object cb.
Even though callback does not specify that it will throw exceptions, one
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implementation of safeCallback wraps the call to callback in a try/catch
block.

1 package pL;
2 class CL {
3 public safeCallback( ) : Int {
4 try{
5 cb.callback( );
6 }catch ( v : Throwable ){
7 return 1;
8 }
9 return 0;

10 }
11 }
12 object oL : CL

1 package pR;
2 class CR {
3 public safeCallback( ) : Int {
4

5 cb.callback( );
6

7

8

9 return 0;
10 }
11 }
12 object oR : CR

In J+E, calling safeCallback on either oL or oR always returns 0. However,
when they are compiled an A+I-level attacker could throw an exception during
the execution of callback. This will cause differentiation between the two
implementations, as safeCallback called on oL returns 1, while called on oR it
returns 0. This is captured by the following trace for the right-hand side snippet.

call o.safeCallback( )? call cb.callback( )! call throw( v )? ret 1!

This full abstraction violation happens because the type system of J+E ensures
that exception-throwing methods always declare it in their signatures. �

6.2 The Secure Compiler

For the sake of simplicity, we start by developing a secure compiler for a simple
fragment of J+E. In the following, assume no dynamic memory allocation
(i.e., no new expressions) and no presence of exceptions (i.e., no try/catch
blocks and no throw e expressions). Since no new objects are created at
runtime, components use static objects and externs for now. Dynamic memory
allocation and exceptions will be added in subsequent sections (Section 6.2.2
and Section 6.2.3 respectively).

We follow some standard conventions about how objects are compiled [38]. The
compilation of a J+E component C outputs a protected module JCKJ+E

A+I , written
in A+I, consisting of a partial memory space and a memory descriptor. The
program interacting with the compilation output JCKJ+E

A+I should not be able to
distinguish modules just by their size. Therefore, a constant amount of memory
is reserved for each protected module, independent of the actual memory space
required. The protected module is placed in protected memory and the memory
descriptor divides the reserved space over the code and the data section. The
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stack pointer register is set up by the context and is pointing to free space in
unprotected memory.

The compilation process consists of translating each package, class, object,
interface and method of the input component. To prevent a target-level
module from being distinguished by the order of its methods in memory,
packages, interfaces, methods in interfaces, classes, objects and externs are
sorted alphabetically. Methods that do not appear in interfaces are compiled
based on the order of occurrence in the class.

When an object is compiled, a word is reserved to indicate its class, which
is used to dynamically dispatch methods. Methods are dispatched based on
offsets through the v-tables, which associate class and method offsets with the
corresponding method body. For each object, fields are then given a unique
index number starting at 1, based on their order of occurrence. For a field fi, one
word of memory is reserved at the i-th memory address of the memory section
of a given object. Integer-typed constants are translated to their corresponding
numeric value, unit is translated to 0, true and false are translated to 1 and
0 respectively.

To translate a method body, the compiler processes each expression in turn,
translating it into a list of behaviourally-equivalent instructions. Therefore,
the compiler is assumed to be correct (as formally denoted by Property 1 in
Section 7.3). Method bodies cannot contain exit expressions, as explained
later in Section 7.2. Registers r0 to r3 are used as general working registers,
return values are passed through r0. In a method call at the target level,
register r4 identifies the current object (this). Method calls are limited to seven
parameters, which are passed through registers r5 to r11. These choices are
not critical, the compiler may use registers in a different way and still be fully
abstract. A calling convention is set so that register r0 contains the address
to return to after a call at the target level (i.e., any jump instruction between
the protected and unprotected sections, located at address x is preceded by an
instruction movi r0 x + 1). This choice simplifies the proof of full abstraction of
the compilation scheme, we envisage it can be lifted at the price of complicating
the proof, without making it unprovable.

Parameters and local variables are given a method-local index number. For
each translated method body, a prologue and an epilogue are prepended and
appended to it. The prologue allocates and initialises a new activation record
on the call stack, the record contains local variables and parameters for the
method body. The epilogue deallocates the activation record when the method
is done. The code of prologues, epilogues and method bodies is placed in free
space in the code section.
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To support programming to an interface, and since protected memory can
be entered only through entry points, a method entry point is generated for
each interface-defined method. The entry point for the i-th method is placed
at address i ∗ 128 of the code section. The offset of 128 memory words is
chosen arbitrarily, with the only condition that there is enough space between
entry points to perform a number of simple operations that are described in
Section 6.2.1. Each entry point forwards the call to the actual method body,
so code at entry points consists of two parts: (1) a call to the method’s body
and (2) a return instruction. When the call to the body returns, the return
instruction returns control to the location from which the entry point was called,
so the second part of each method entry point is named exit point.

In order to specify how the component interacts with external code, assume the
component being compiled provides one import package whose interfaces and
externs are not implemented in the export package. Refer to this package as
the distinguished import package (DIP). The DIP contains interface and extern
definitions; calls to methods defined in the DIP, on externs defined in the DIP,
are called outcalls.

Component code is not supposed to implement interfaces defined in the DIP,
as the DIP provides functionality that the component required of external
programs. External code which provides an implementation for the DIP can
implement interfaces defined in the component. This can lead to the dynamic
dispatch procedure being called on objects that are not in the protected memory
partition. When this case is detected, the compiled component must behave as
in the case of an outcall. The address where protected code must jump to when
performing an outcall is assumed to be known based on a calling convention set
up between protected and unprotected code.

To support returning from an outcall, a specific entry point is created; it is
called the return entry point. To perform an outcall, the actual return address
is first pushed on the call stack, then the address of the return entry point is
pushed on the call stack. Control is then transferred to unprotected memory.
When the code in unprotected memory returns from the outcall, control will
first be transferred to the return entry point, which will then subsequently
return back to the actual return address. The compilation scheme as described
above ensures that a module is exited either through an outcall, or through the
return statement at the end of an entry point.

To provide a better understanding of the compilation scheme thus far, Figure 6.1
presents the memory layout of the compiled counterpart of the code of Listing 2.1.
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createAccount
... (128 words)

getBalance
... (128 words)

return entry point
... (128 words)

createAccount
... (body)

getBalance
... (body)

addAmount
... (body)

dynamic dispatch

�

�

�

address 100

address 228

address 356

C
ode

Section

v-tables
...

Heap
extAccount
... (fields)

D
ata

Section

Protected
M
odule

address 1000

address 2000

Figure 6.1: Memory layout of the compilation of code from Listing 2.1. Entry
points are indicated with �. The protected memory partition spans from address
100 to address 2000, the code section spans 900 addresses.

6.2.1 Outcalls

This section describes how to securely compile outcalls, i.e., calls to methods
of objects defined outside the component being compiled. To address the
vulnerabilities of Problems 1 to 4, the compilation scheme is enhanced in the
following ways.

Stack security The compiler must ensure the confidentiality and integrity of
variables and control structures on the call stack. Instead of storing the entire
stack in unprotected memory, it is split into an unprotected stack in unprotected
memory and a secure stack in the data section of the protected memory section.
The protected module output by the compiler places its activation records
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exclusively on the secure stack. The secure stack is given a large enough upper
bound so that most programs can run without overflowing it. If the stack is
overflowed, all registers and flags are cleared and execution halts.

At the start of each entry point, the stack is switched to the secure stack.
When leaving the protected module, the stack pointer is restored to its previous
address, which is checked to be in unprotected memory. When returning from
protected to unprotected code, the return address is also checked to be in
unprotected memory. An outcall is performed by first pushing the actual return
address onto the secure stack. Then, r4 is stored in the secure stack so as to
be able to restore this to the right value once the outcall returns. Next, the
stack is switched to the unprotected stack and the address of the return entry
point is pushed onto it. Control is then transferred to the context. When the
outcall returns, control will first be transferred to the return entry point, which
switches back to the secure stack. Then this is restored to the expected value
and control is transferred back to the actual return address. Because data is
written to the unprotected stack during this process, the compiler must ensure
that the location of the unprotected stack lies outside of protected memory
before it writes to it. Without this check, parts of protected memory might get
overwritten.

One problem that can occur related to the control flow of program is that the
context could jump to the return entry point when there is no outcall to return
from. To prevent this, the compiler initialises the first location of the secure
stack to the address of a procedure clears all registers and flags and then halts.
The return entry point will jump to this address if it is called when there is no
outcall to return from.

Information leakage In J+E, the only way for two objects to communicate, is
through well-typed method calls and returns. The compiler must ensure that
a target-level attacker cannot use any other communication channels, as this
might leak information that should be kept private to the protected module.

The model of A+I inherently provides three ways to exchange information: (1)
through reads and writes to unprotected memory, (2) through the flags register
and (3) through the general purpose registers r0 to r11 and SP. Method (1) is
precluded because compiled programs never write in unprotected memory. The
only J+E constructs that are compiled as a read and a write to memory is field
lookup and update; since fields are private, no lookups and updates are possible
on fields of object allocated in the unprotected memory. The SP register does
not convey private information, because it is restored to the location of the
unprotected stack whenever control leaves the protected module. The compiler
constrains methods (2) and (3) as follows:
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• Flags are cleared (i.e., set to 0) at each outcall and exit point.

• Every general purpose register except r0 is cleared at each exit point.

• Every general purpose register is cleared at each outcall, except if it is
used for passing a parameter.

The compiler generates code at each entry point to enforce these constraints.

Value of primitives The compiler must ensure that all memory locations
corresponding to J+E fields and variables contain only values for which there is a
corresponding J+E value. The only values of type Bool are true and false and
the corresponding A+I values are 1 and 0. The compiler enforces this constraint
by adding a run-time check at each entry point, to verify that the value of any
Bool-typed parameter is either 0 or 1. An analogous check is added at each
outcall to a method with return type Bool. The same checks are introduced for
type Unit, inhabited by unit in J+E which is compiled to 0 in A+I. If any check
fails, all registers and flags are cleared and the execution halts.

These checks are needed for all ground types inhabited by a number of values
that do not fit a A+I word representation. This is why Integer-typed values are
not checked, because any A+I word can map to a J+E integer.

In the light of these additions to the compilation scheme, Table 6.1 presents
pseudo-code of the routine that is executed at the various kinds of entry points.

Table 6.1: Pseudo-code of entry point routines.

Method p entry point Preamble to returnback entry point
1 Switch stack to protected one a Switch stack to unprotected one
2 Check primitive-typed parame-

ters
b Clear flags and unused registers

(run method p code) (run outcall code)
Exit point Returnback entry point

3 Clear flags and registers r1 - r11 c Switch stack to protected one
4 Switch stack to unprotected one d Check primitive-typed parame-

ters
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6.2.2 Dynamic Memory Allocation

The vulnerabilities of Problems 5 to 7 are related to dynamic memory allocation,
which is now considered to be part of the J+E fragment of components to be
securely compiled. To address these vulnerabilities, the compilation scheme is
enhanced in a number of ways, as presented below. Since the countermeasure
to Problem 7 affects the others, it is presented first.

Object identity The concern of Problem 7 is that an attacker can just guess
the object id of a securely-compiled object in order to call methods on it. To
address this concern, target-level object identities must be masked as explained
below.

To mask target-level object identities, a data structure O is added to the
protected code section. It is a map between natural numbers and target-level
object identities that have been passed to external code. Such object identities
that are passed to external code are added to O right before they are passed
outside. The index in the data structure is then passed in place of the object
identity, the same index must be passed whenever an already recorded object
is passed. Indixes in O are thus passed in a deterministic order, based on
the interaction between external and internal code. Code at entry points is
responsible for retrieving object identities from O before the actual method call.
Access and retrieval of entries in O is very fast and can be implemented in O(1).
As the only objects in the data structures are the ones the attacker knows,
she cannot guess object identities. This does not hamper the functionality of
external code as it can only call methods on objects.

Consider for example the right code snippet in Problem 7. There, oR1 and
oR2 are given indexes 0 and 1 respectively and they are added in O at compile
time (since they are static objects). Once method createSecret is called, two
objects are created. However, the object saved in variable x is not returned, so
it is not added to O. The other object is, so it is added to O. Thus, at the A+I
level, the compiled counterpart of createSecret will return 2 the first time it
is called in both pL and pR.

Entry points Table 6.2 describes the code executed at entry points. Both
method entry points and the return entry point are logically divided in two
parts; they maintain the functionality introduced in Section 6.2.1 and expand
them as follows. The first part performs the checks described below and then
jumps either to the code that performs the dynamic dispatch or to the outcall.
The second part returns control to the location from which the entry point was
called.
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Table 6.2: Extension to the pseudocode executed at entry points presented in
Table 6.1. Loading means that a value is retrieved from the memory, push and
pop are operations on the secure stack.

Method p entry point Preamble to returnback entry point
1 Load received v = O(r4) a Push current object v = r4,

return address a and return type
m

2 Check that v’s class defines
method p

b Reset flags and unused registers

3 Load parameters v from O c Update O with leaked object
ids and replace object ids to be
leaked with indexes from O

4 Dynamic typecheck that v have
the right types

d Jump to outcall address

5 Perform dynamic dispatch
(run method p code) (run external code)

Exit point Returnback entry point
6 Reset flags and unused registers e Pop return type m and check it
7 Update O with leaked object

ids and replace object ids to be
leaked with indexes from O

f Dynamic typecheck that the
returned value has the right
type

g Pop return address a, current
object v and resume execution

For type constraints to be respected, the code at entry points performs dynamic
typechecks. This checks that a method is invoked on objects of the right
type (line 2), with parameters of the right type (line 4), addressing Problem 5
and 6. Similar checks are executed when returning from an outcall, in the
returnback entry point (line f). These checks are performed only on objects
whose class is defined in the compiled component, as they are allocated in
protected memory; no control over externally allocated objects can be assumed.
Dynamic typechecks are performed based on the word that indicates the class
of a compiled object, that value is checked to be the type or a subtype of the
value the method expects.

Resetting flags and registers are as in Section 6.2.1. If any check fails, all
registers and flags are cleared and the execution halts.

A convention between protected and unprotected code is needed in order to
distinguish between indexes in O from unprotected addresses. For this, assume
that the leftmost bit of a word is 1 if it denotes an index in O.
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6.2.3 Exceptions

To present secure compilation of exceptions, from this section onward, source-
level components can contain try/catch blocks and throw e expressions. Method
signatures can specify if the method throws a single, particular exception.
Method bodies can include throw statements whose semantics is to “throw” the
objects they have as parameters; thrown objects are referred to as exceptions.
Finally, method bodies can include try blocks, where some code that can
potentially throw an exception is run. These blocks are followed by catch blocks,
which intercept thrown exceptions based on the class type of the thrown object.
To declare a catch block, the class name of the exception to be caught must
be known, thus a component catches only exceptions that are objects whose
classes it defines. Overcoming this restriction, thus catching objects based on
interface types, is discussed in Section 6.3.4.

Secure compilation of languages supporting exceptions must handle the
difficulties that result from the modification of the flow of execution of a
program. This flow of execution can be modified when a part of a program
throws an exception and another part catches it. Exception handling can be
implemented by modifying the runtime of the language so that it knows where
to dispatch a thrown exception. Activation records are responsible for pointing
to the exception handlers in order to propagate a thrown exception to the right
handler.

1 package P-Exc;
2 class AccountTest {
3 public withdraw() : Unit {
4 try{
5 new P-Exc.EmptyAccount().getBalance();
6 } catch ( e : P-Exc.NoMoneyException ) {
7 // handle e
8 }
9 }

10 }
11 class EmptyAccount {
12 public getBalance() : Unit throws P-Exc.NoMoneyException {
13 throw new P-Exc.NoMoneyException();
14 }
15 }
16 class NoMoneyException implements Throwable {· · ·}

Listing 6.1: Example of exceptions usage.

In Listing 6.1, the catch block of method withdraw() in class AccountTest
defines a handler for exceptions of type NoMoneyException. When the activation
record for withdraw() is allocated, the handler is registered in that activation
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record. When an exception of type NoMoneyException is thrown, the stack is
traversed to find the closest handler for exceptions of type NoMoneyException.
As the stack is traversed and a handler is not found an activation record, that
record is popped from the stack and the next record is inspected.

In order to implement throwing an exception in secure code that is caught
in insecure code (or vice versa), throwing is securely compiled as outcalls (or
calls). Two additional entry points must be created for securely-compiled
code: the throw entry point and the throwback entry point. These entry points
forward calls to the secure and insecure exception dispatchers, respectively.
The secure exception dispatcher traverses the secure stack looking for handlers
for the thrown exception. After an activation record has been inspected and
deallocated, if the ‘next’ allocation record to be inspected is in unprotected
memory, the exception is forwarded to the external code through the throwback
entry point.

Since exceptions are objects, in order to prevent exploits as in Problem 5, the
throwback entry point must remember internally allocated exceptions that are
thrown to external code. Data structure O is used to register such exceptions.
Dually, this prevents external code from passing a non-existing object identity
to the secure exception handler in place of the object identity of an exception,
effectively throwing a non existent exception.

Figure 6.2 presents a graphical overview of how exceptions are handled normally
(on the left) and in the presented compilation scheme (on the right). Lower case
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Figure 6.2: Comparison of ways to handle exceptions.

letters indicate the allocation record for the corresponding function. A subscript
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s indicates a secure function; the stack grows downward thus exceptions are
propagated upwards. The order in which exception handlers are searched is
indicated on arrows. The throw and throwback entry point split the same arrow
in two parts labelled a and b respectively.

The introduction of two additional entry points may seem to introduce
functionality at the target level that the source-level lacks; however this is not the
case. Only exceptions of existing types can be thrown and handling exceptions
follows the normal course of the stack. The external code could replace an
exception, but this is equivalent to the source-level language functionality of
catching an exception and throwing another one. Jumping to the throwback
entry point is exactly like returning after an exception has been thrown, which is
also a functionality that the source level has. As for the return entry point, the
throwback entry point must not be abused. When code jumps to the throwback
entry point, securely compiled code not only checks that an outcall was made,
but also that an exception had been trown. This last bit of information is kept
track of in the securely compiled code. We can thus conclude that the target
level is not granted additional functionality.

To counter the vulnerability of Problem 8, and thus provide support for secure
compilation of exceptions, the compilation scheme is enhanced as follows.

Excessive Exceptions Catching The code responsible for compiling outcalls
needs to be modified. Information about the possible exceptions thrown by
outcalls is known at compile times it appear in the method signature in the
DIP. Allocation records must contain a can− throw− exception flag; when
they are created, this flag is set to 0. If no exceptions can be thrown by an
outcall, that flag is set to 1 in the topmost allocation record of the secure stack
before calling the outcall. If an exception is thrown, this flag in the topmost
allocation record is checked. If it is set, then no exceptions could be thrown, so
a fault is detected so all registers and flags are reset and the execution halts.

When compiling an outcall to method m(x) throws u, type u must also be saved
on the secure stack. Code at the throwback entry point must then check that
an exception thrown by unprotected code is an exception that could be thrown
according to the corresponding unprotected method signature. This is done by
performing a dynamic typecheck on the type of the thrown exception. As for
method parameters, the dynamic typecheck is performed only on exceptions
that are allocated in protected memory. If the typecheck succeeds, then the
exception is treated normally, otherwise all registers and flags are cleared and
the execution halts. If the exception to be caught comes from unprotected
memory (i.e., it is an object id in unprotected memory), it is immediately
thrown back to the unprotected code. In fact, as exceptions are caught based
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on class type, such an exception cannot be caught in the protected code, since
the class type of that exception is unknown.

Since exception handling can be securely compiled, the compilation scheme is
complete, as it addresses the totality of J+E. This thesis then discusses how to
securely compile additional language features before moving to the formalisation
of the languages and the proof that this compilation scheme is fully abstract.

6.3 Additional Features

This section describes how to securely compile first-class method references
(Section 6.3.1), cross-package inheritance (Section 6.3.2), inner classes
(Section 6.3.3) and catching exceptions based on interface types (Section 6.3.4).
These features are presented separately because they are not part of J+E, so
the correctness of their implementation is only argued and not proven like for
the previous features.

6.3.1 First-Class Methods

With first-class methods, method names can be supplied as parameters of other
methods in order to be called. Right now the address of an outcall cannot
be supplied by external code, that can only supply primitive-typed arguments
and objects. With first-class methods, A+I-level attackers can supply arbitrary
addresses instead of these parameters, raising the following problem.

Problem 9 (Illegal addresses) Consider two classes that define a method
doCallback that inputs a reference to a method cb, calls that method and
then continues by performing the same computation. These two classes are
implemented by two objects: oL and oR.
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1 package pL;
2 class CL {
3 private f : Int = 1;
4

5 public doCallback( cb : Unit →
Unit ) : Int {

6 cb();
7 f += 1;
8 f −= 1;
9 return f;

10 }
11 }
12 object oL : CL

1 package pR;
2 class CR {
3 private f : Int = 1;
4

5 public doCallback( cb : Unit →
Unit ) : Int {

6 cb();
7 f −= 1;
8 f += 1;
9 return f;

10 }
11 }
12 object oR : CR

Objects oL and oR are equivalent in J+E, as in both objects the method
doCallback always returns 1. Once compiled an A+I attacker can differentiate
between them by giving the address of the instructions corresponding to line 8
as the outcall cb. In this case, oL will decrement f without first incrementing
it, while oR will increment f without first decrementing it. This will result in
f having a value of 0 in oL and 2 in oR. This is similar to a return-oriented
programming attack [103]. �

To counter this attack, the compiler must ensure the integrity of control flow
when jumping from a protected module to an externally supplied address. For
a call to a method whose address was externally supplied, a valid destination
address is (1) an address outside of the memory bounds of the module, or
(2) the address of one of the method entry points. The compiler must add
run-time checks for these conditions at each indirect call. In case of a jump
to the entry point, the additional checks provided at the entry point and the
signature information ensure that the supplied address has a signature that
matches that which is specified in the source-level component.

6.3.2 Cross-Package Inheritance

With cross-package inheritance, we indicate a class from an export package
extending a class from a different export package. This feature is not provided
by J+E, as it breaks the encapsulation property of the language that only
allows interfaces to be exported to other components and not classes. With
cross-package inheritance, both classes and interfaces can be exported to other
components. Apart from violating the component-oriented language paradigm,
exporting classes can create a breach in the security of the language, which is a
second reason why it is not included in J+E. Nevertheless, as there can be cases
in which this feature is desirable, and many programming languages allow this,
so this paper now discusses how to securely implement it.
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Listing 6.2 provides an example of code using cross-package inheritance.
Consider a public class Animal defined by protected code (lines 3 to 15) that is
extended by class Feline in unprotected code (lines 30 to 40). Class Feline
is ultimately extended by another class of protected code, called Cat (lines 16
to 26). In the following, a class extending another class is referred to as the
sub-class (as in the case of Cat), while the extended class is the super-class (as in
the case of Animal). Class Feline is the sub-class of Animal and the super-class
of Cat. Sub-classes can optionally override methods of the super-class, as is

1 // in protected code
2 package animal {
3 public class Animal {
4 public Animal() {
5 this.legs = 4;
6 return this;
7 }
8 public sound() : Int {
9 return 0;

10 }
11 public doSound() : Int {
12 return this.sound();
13 }
14 private legs : Int;
15 }
16 public class Cat extends feline.Feline {
17 public Cat() {
18 super();
19 this.tail = 1;
20 return this;
21 }
22 public sound() : Int {
23 return super.sound();
24 }
25 private tail : Int;
26 }
27 }
28 // in unprotected code
29 package feline {
30 public class Feline extends animal.Animal {
31 public Feline() {
32 super();
33 this.whiskers = 10;
34 return this;
35 }
36 public sound() : Int {
37 return 1;
38 }
39 private whiskers : Int;
40 }
41 }

Listing 6.2: Example code to explain cross-package inheritance.
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the case of method sound(). Within those methods, calls to super can be used
in order to call method sound() of the super-class, as in the case of class Cat.
Alternatively, if a method is not overridden (e.g., as in the case of method
doSound), calling doSound() on an object of type Feline executes method body
defined in the super-class Animal (as in standard object-oriented languages).

Let us firstly describe what changes to a compiler are needed to compile
(not necessarily securely) components exporting classes. To include the cross-
package inheritance feature and preserve as many benefits as possible from the
encapsulation property of J+E, classes that can be extended must appear in
import packages. Given an import package, entry points are created not only
for interface-defined methods, but also for public class-defined methods and
for constructors. This ensures that whatever is declared as public in the source
code is publicly available in the target code as well.

If the normal compilation scheme were followed, at the target-level an object
of type Cat would be allocated to a single memory area where fields from
classes Cat, Feline and Animal are all allocated. When secure classes can
extend insecure ones and vice-versa, some complications arise, as presented in
Problems 10 to 12.

Problem 10 (Allocation of a sub-object) When an object felix of type
Cat is allocated, its fields are tail, whiskers and legs, each coming from a
different class. Since all fields are private, sub-classes do not have access to
fields of super-classes (i.e., code in class Feline cannot access field legs in
class Animal).

If felix is allocated outside the protected memory partition, private fields of
the Cat sub-object become accessible to external code, thus breaking the security
of the compilation scheme. If felix is allocated inside the protected memory
partition, two options arise. The first one is placing methods of Feline in the
protected memory partition, violating the security of the compilation scheme.
The second is to place methods of Feline in the unprotected memory partition,
but at this point these methods cannot access Cat’s fields via offset. Getters and
setters for fields of Cat could be exposed through entry points, but this violates
full abstraction, as those methods are not in general available at the source
level [1].

These problems also arise when an object of type Feline is allocated, but from
the dual perspective. �

To allocate an object whose class extends classes that are not defined in the
same component, the object is split into sub-objects, one per class [116]. Given
a class c that has n super-classes (a number that is known statically), an object
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of type c occupies: 1 word for its type, 1 word for a possible bottom-most object
id, n words, one per super-object id. If the object has not been extended by
other classes, it is the bottom-most object of its class hierarchy. The second
word of its memory representation will be 0. The role of the bottom-most object
is described now.

Given a class hierarchy such as that of Listing 6.2, the sub-object approach
to object implementation ensures that there is a sub-object per class in the
hierarchy. This effectively creates a hierarchy of sub-objects; in the following,
we use the term super-objects w.r.t. another object to refer to the sub-objects
implementing the super-classes of that object. The bottom-most object in
this sub-object hierarchy must regulate the creation of the super-objects. In
Listing 6.2, code inside the Cat constructor is responsible to call the Animal
constructor and the Feline one. The target-level representation of an object
must include fields that indicate the sub-objects of which a Cat object is made of.
In Listing 6.2, a Cat object must have a field that indicates the Cat type, a field
pointing to its Animal sub-object id, and another field pointing to its Feline
sub-object id. These fields are used to implement specific functionalities as
described below. For example, method doSound needs to be always dispatched
to the Animal sub-object.

Two entry points are generated for constructors, one for a normal call and one
for a super call. Intuitively, the former should be called only when a Feline
object is created. The latter should be called when a sub-object of type Feline
is created. So, for allocating a Feline object, a call to the normal constructor
should be made. When Cat calls the Feline constructor, it calls it via super,
so it should jump to the super-constructor entry point for Feline.

Code at the super-constructor entry point does not allocate an object of all
extended super-types. The constructor of the bottom-most object must call the
constructors of all super-classes. When allocating a Cat, code at its constructor
is responsible to create a Felix sub-object and an Animal sub-object.

An alternative could be that each constructor just calls the direct super
constructor. This is a problem because intermediate classes in the inheritance
hierarchy (such as Feline here) could violate this chain of super-calls. This
violation could go undetected and cause security violations.

Following is a pictographic representation of the target-level memory layout of
a Cat object felix and of a Feline object richard (Figure 6.3). To allocate
object felix, an Animal object felix-a is created in protected memory, with
field legs. Then a Feline object felix-f is created in unprotected memory,
with field whiskers and finally a Cat object felix-c is created in protected
memory, with field tail. The object id of the Cat object felix is felix-c.
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Cat type

felix-c O(1)

0x00111

0 0x00112
0x00aaa 0x00113
0x00ffa 0x00114

tail field 0x00115

Feline type
felix-f

0x00aaa

1 (in O) 0x00aab

0x00ffa 0x00aac

whiskers field 0x00aae

Animal type

felix-a O(2)

0x00ffa

0x00111 0x00ffb
legs field 0x00ffe

Feline type
richard-f

0x00775

0 0x00776

3 (in O) 0x00777

whiskers field 0x00778

Animal type

richard-a O(3)

0x00cc3

0x00775 0x00cc4
legs field 0x00cc5

Figure 6.3: Memory layout of object felix:Cat and of object richard:Feline.
For objects located in the protected memory partition, the notation O(n)
indicates that they have masking index n. The protected memory is
indicated with a dark grey background; fields whose contents are addresses are
accompanied by a dashed line denoting where the address points to.

The creation of sub-objects may seem to break full abstraction of the compilation
scheme in a way similar to what Abadi discovered for inner classes [1] in the
early JVM. In fact, target level external code is given the functionality to call
felix-a.sound(), which is not explicitly possible in the source-level language.
However, felix-f.super.sound() is an implicit call to the sound() method of
Animal, functionality that the source-level language already has. This way of
handling cross-package inheritance does not add functionality at the target
level, so it does not break full abstraction of the compilation scheme.

Problem 11 (Correct method dispatch) Another concern with the code of
Listing 6.2 is the dispatch of method sound in method doSound in class Animal.
If that method is called on an object of type Cat, it returns 1, while when it
is called on an object of type Animal is returns 0. However, when dispatching
method calls, the sub-object Animal does not know if it is part of a larger object
or not, so it cannot dispatch to its Cat sub-object because it does not know its
id. �

To address this concern, the super-constructor entry points take these additional
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parameters: the object id of the bottom-most object and the object id of the
sub-object of its extended super-class. The super-constructor entry point for
Animal could save the object id of a Cat sub-object or of a Feline sub-object
depending of which class constructor calls it. At a super-constructor entry point
there is an additional check that the supplied ids are addresses in unprotected
memory.

Unless it is 0, the id of the bottom-most object is used as the current object id
to resolve all method dispatches. If nothing is stored in the bottom-most field
of the target-level representation of an object, the object is not a sub-object of
a larger object, so its object id is used as current object. For example, when
a Feline object is created as part of a Cat object, it stores the id of its Cat
sub-object and of its Animal sub-object (to dispatch eventual super-calls). If
a Feline object is created as a new object, its bottom-most field will not be
initialised to another object id.

The last concern is more related to a correct implementation of sub-objects
rather than to security.

Problem 12 (Super method invocation) Another concern of the presented
sub-object splitting approach and of using the bottom-most sub-object id for
dispatch is the following. Consider an object felix of type Cat, which is
composed of sub-objects felix-c, a felix-f and a felix-a corresponding to the
Cat, Feline and Animal classes. When felix.doSound() is executed (technically
it is felix-c.doSound()), it is dispatched to the felix-a identifier. Then, that
method calls felix-c.sound() which is dispatched to felix-c. Then, the Cat
implementation of sound calls to the super one, so a call is dispatched to the
sound entry point of felix-f (let us assume unprotected code also has entry
points). There, the felix-f sub-object knows that its current object to be used is
felix-c, so a loop is entered where the dispatch bounces between the two sound
functions of Cat and Feline. �

In order to address this concern, super entry points are created for all public
methods, as for constructors (see Problem 10). When a super-call is identified,
the current sub-object id is used as the current object id in place of the bottom-
most sub-object id stored in the target-level object representation. In these
super-call entry points, an additional check is made that the current object has
indeed a bottom-most non-zero sub-object id. If that field is 0, then the super
should not be called on that object because it has not been extended. If that
check does not succeed, 0 is placed in r0 and the execution is halted.



ADDITIONAL FEATURES 111

6.3.3 Inner Classes

An inner classe is one that is defined inside another class; one such example is
presented in Listing 6.3. An inner class has access to private fields of the class
it is defined within. Inner classes have not been included in the formalisation of
J+E as to keep it as simple as possible.

1 class AccountClass implements P-Import.Account {
2 AccountClass() { counter = 0; }
3 private counter : Int;
4

5 class Inner { // Inner has access to counter }
6 }

Listing 6.3: Example of an inner class.

To securely compile inner classes, we follow an approach inspired by Abadi [1].
That approach is shown to break full abstraction of compilation in an early
version of the JVM, however it does not violate full abstraction in our setting.

For inner classes to be securely compiled they are compiled as normal classes in
the protected memory partition, in the usual fashion. To implement access from
the inner class to the private fields of the surrounding class in a JVM style [42],
a getter and a setter for each private field are created. In the case of Listing 6.3,
class AccountClass is extended with getters and setters for the counter field
when compiled. Access from Inner to counter is compiled as method calls via
the getter and setter.

In the JVM setting of the work of Abadi, the additional target-level methods
are not available at the high level. Thus other target-level code besides the
inner classes can call those methods, achieving something that was not possible
at the high level. In our secure compilation scheme, the additional methods
are available in the surrounding class. However the additional methods are not
made available through entry points, thus the external code cannot invoke them.
This means that the addition of inner classes to the secure compilation scheme
preserves the full abstraction property.

6.3.4 Catching Exceptions Based on Interface Type

This section discusses how to lift the restriction of catching exceptions only
based on class types (Section 6.2.3) to catching exceptions based on interface
type.
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In the secure compilation scheme of Chapter 6, catching exceptions is done
only based on class types. Because of the strong encapsulation property of
J+E, this means that a component can only catch exceptions that are objects
whose class is defined in that component. However, this can be undesirable in
certain software systems (Listing 6.4). For example, consider a programmer

1 public writePDF( pdf : PDF ){ // protected code
2 File f = new TextFile( );
3 try{
4 f.write( );
5 }catch( x : FileNotFoundException){
6 // do something
7 }
8 }

Listing 6.4: Example of code where catching exceptions based on interfaces is
desirable.

who is writing a PDF viewing program that relies on a File library for creating,
reading and writing files. When writing to a file (with method write), the file
may be inexistent, and this generally results in the read operation throwing
a FileNotFound exception (line 5). To be able to handle the file manager’s
FileNotFound exception, the PDF application programmer must implement a
class FileNotFound.

To implement catching exceptions based on interface types, type information
must be known at the target level. For catching an exception based on an
interface type, the type of the thrown object must be accessible to all who can
catch an exception: both protected and unprotected code. Then, as both code
bases agree on a bit-representation for interface types, they must check that
the type of the exception to be caught is implemented by a throws object.

A first concern for supporting catching exceptions based on interface types
is how to add the type information at the target level. In fact, adding this
information is necessary for code to function properly; without it there is no
way of knowing the type of an object and thus to catch an object when it is
thrown. This affects the target-level object representation of both unprotected
objects and protected ones.

For unprotected objects (i.e., those residing in unprotected memory), a
convention is set up: every object id must be followed by a pointer to a list of
implemented interfaces. Concerning list encodings, they must firstly define their
length (in a word), then all interfaces. So, when checking whether an interface
is in a list, a bound is provided to prevent scanning the whole memory looking
for an interface type. Any time the securely compiled component receives an
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unprotected object (via a method call or a return), it must check that this
convention is respected. There are three cases in which it cannot be respected:
(i) if the pointer of the list is not an address in unprotected memory; (ii) if
the length of the list is greater than the maximum number of interfaces it can
implement or (iii) if an interface is not a valid encoding. If any of these cases
are detected, all registers and flags are reset and the execution is halted.

Remark 1 (Dynamic typechecks on parameters) As the protected code
has access to the interface type information of unprotected objects, the dynamic
typechecks performed at entry points can be done on unprotected objects as well.
Table 6.2 can be expanded with dynamic typechecks on unprotected objects.

For securely-compiled objects, the masking associated to them is changed since
the masking must capture the interface types as well. Masked object ids then
become two words long: the first word is the masking index in O while the
second word is a pointer to a list of interface types. As already mentioned, a
convention between protected and unprotected code is set up to encode interfaces
as bit values so. This list of interface types contains all bit-representation of
interface types in alphabetical order.

For a component that defines n interfaces in its import packages, P (n) lists
are made, one for each combination of possible implementable interfaces. Call
this list of list simply the list of implemented interfaces. For example, if a
component declares interfaces Account and Bank, the following lists are created.

Account
Bank
Account, Bank

A second concern is how to represent the lists of interfaces at the target level.
The lists of interfaces is written in unprotected memory for it to be readable
from unprotected code This makes the output of the compilation scheme be
not just a protected module but a protected module and some unprotected
memory. Only the unprotected code uses the lists of interfaces for catching
exceptions so, when unprotected code is not a malicious attacker, this list will
not be tampered with. If the unprotected code tampers with this list, only the
unprotected code will be affected by tampering with the list.

An alternative to the list is to encode each possible combination of interfaces as
a bit mask: sort the interfaces alphabetically, if an object implements interface
j and i, then only the jth and the ith bits are set to 1. This is only possible if
there are a total of less than ` interfaces defined in the J+E component. This
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alternative representation, when less than ` interfaces are present in a system,
allows for the object id and its interfaces to be expressed all in the same word
for optimisation purposes.

Catching exceptions based on interface types grants additional power to an
attacker already at the source level. In fact, since interfaces are all known, at
the source level one can write code that tests whether an object implements
any interface (Listing 6.5). That same power is added at the target level by

1 // unprotected code
2 public receiveAccount ( account : Account ){
3 try{
4 throw account;
5 }catch ( x : Account ){
6 try{
7 throw x;
8 }catch ( y : Bank ){
9 // account has type Account and Bank

10 }catch (y : Account ){
11 // account only has type Account
12 }
13 }catch (x : Bank){
14 // account only has type Bank
15 }
16 }

Listing 6.5: Example code that discerns all interfaces implemented by an object.

augmenting the representation of a target-level object id. Since the knowledge
of interface types is already present at the source level, we argue that adding it
at the target level does not violate full abstraction.



Chapter 7

Proof of Full Abstraction for
J·KJ+E

A+I

I have a cunning plan!

Baldrick, Black Adder

This chapter presents the proof that the compiler of Section 6.2 is fully abstract.
This proof revolves around an algorithm, which this chapter defines (Section 7.1).
This chapter then discusses why is the algorithm applicable (Section 7.2) and
then presents the actual proofs (Section 7.3).

7.1 The Algorithm

This section presents the algorithm which takes as input two different, target-
level traces α1 and α2 and two components C1 and C2 and outputs a source-level
component C that differentiates between C1 and C2. Traces α1 and α2 were
generated by JC1KJ+E

A+I and JC2KJ+E
A+I when interacting with the same, unknown

external memory.

This section firstly describes the general idea of the algorithm (Section 7.1.1).
Then, it presents the starting point of the codebase of the algorithm
(Section 7.1.2) and it presents examples of the expected output of the algorithm
when different traces and components are input (Section 7.1.3). The examples
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illustrate crucial cases the algorithm needs to considers when creating the output
component.

In the following, the adjective internal denotes objects (classes) that are
allocated (defined) by components C1 and C2. The adjective external denotes
objects (classes) that are allocated (defined) by the output component.

7.1.1 General Idea

The algorithm analyses actions in the target-level traces α1 and α2. Those
actions can be: call, return, callback, returnback and termination (

√
). Actions

that appear at even-numbered positions in a trace are calls or returnbacks,
generated from the external memory. Actions that appear at odd-numbered
positions are returns or callbacks, generated by C1 or C2. This partitioning is
because execution starts in unprotected memory.

For the algorithm to be correct, it must detect when two different actions are
encountered at the same odd-numbered position in the traces. Assuming the
first different actions are at index i, the algorithm produces code that replicates
the first i− 1 actions. Then, it produces code that, based on the difference in
the i-th action, either diverges or terminates based on which component it is
interacting with.

The algorithm has been implemented in Scala, and it outputs Java components
that adhere to the J+E formalisation.1 For implementation purposes, instead of
diverging in a case and terminating in the other the implementation terminates
with value 1 or 2. This formulation of contextual equivalence is equivalent to
ours [31], yet more amenable to an implementation, as divergence can be hard
to tell from a long-lasting computation. Nevertheless, in the examples presented
below, differentiation will be achieved by terminating in a case and diverging in
the other.

7.1.2 Starting Point

The algorithm starts by creating a knowledge base about C1 and C2. The
knowledge base contains all signatures of internally- and externally-defined
methods, as well as source- and target-level identities of static objects and
externs. This is because the algorithm needs to be able to differentiate, for
example, whether a type is internally or externally defined or what the identities

1Available at http://people.cs.kuleuven.be/∼marco.patrignani/Publications.html.

http://people.cs.kuleuven.be/~marco.patrignani/Publications.html
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of static objects are. Then, a code skeleton for the output component is created,
based on the structure of the distinguished import package (DIP) of C1 and C2.

A single class Main is created, it implements all interfaces i defined in the
DIP. An object main of type Main is then created. Class Main contains dummy
implementations of all methods defined in all interfaces i. These method
implementations return a value whose type matches the expected return type:
0 for type Int, unit for type Unit and null otherwise. Moreover, class Main
contains a main method and a method called defaultCreate() that returns a
new Main object (used for allocation of external objects).

7.1.3 Examples of Algorithm Code for Differentiation

Examples 22 to 29 present different implementations of C1, on the left, and
of C2, on the right. Components C1 and C2 are modifications of the code in
Listing 2.1, whose DIP is defined in Listing 7.1 below. Omitted code is the

1 package PIMP;
2 interface Transaction extends Atomic {
3 public createTrans() : Transaction;
4 public callback( arg : Transaction ) : Unit;
5 }
6 interface Atomic {
7 public lock() : Int;
8 }
9 extern extTrans : Transaction;

Listing 7.1: Example of a distinguished import package (DIP).

same in both C1 and C2 and can be found in Listing 2.1. Each code fragment
is followed by the target-level trace it generates: α1 and α2 for C1 and C2
respectively. The examples also describe what the algorithm must do in order
to create the correct output before presenting the output produced for each
case.

The target-level traces will be massaged to aid understanding. For example,
given that object extAccount is compiled to identity 0x123 and that the entry
point of method createAccount is located at address 0x456, the target-level
label call 0x456(r[r4 = 0x123])? is written as extAccount.createAccount().
This abstraction is safe, as it does not introduce additional information, it
merely massages the present one into a more human-readable form. Numbers
in italic font, e.g., 1 , refer to indexes from the masking table O, while identities
of externally allocated objects are numbers in hexadecimal form.
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Example 22 (Different returned values) Consider the following imple-
mentations for C1 and C2.

1 object extAccount: AccountClass{
2 counter = 1
3 }
4 public getBalance(): Int{
5

6 return counter;
7 }

1 object extAccount: AccountClass{
2 counter = 1
3 }
4 public getBalance(): Int{
5 counter += 1;
6 return counter;
7 }

Trace α1 for C1 is extAccount.getBalance()?·ret 1!·extAccount.getBalance()?·
ret 1!, while trace α2 for C2 is extAccount.getBalance()?·ret 1! ·extAccount.
getBalance()? ·ret 2!. In this example, the code produced needs to differentiate
between C1 and C2 based on the type of expected returned values. These types
can be either: primitive, internal, external. With primitive-typed values the
differentiation is based on the different values returned by C1 or C2, in this
example C1 returns 1 and C2 returns 2.

This example highlights how both the algorithm and the code produced need to
keep track of the index of the action they replicate. To that end, the algorithm
maintains a global variable that keeps track of the index of the action being
replicated. The code produced is extended with a class Helper and a static object
oc implementing it. Helper contains a field step with methods getStep() and
incrementStep(), the latter increases the value of step by one. Additionally,
it contains a method diverge() that recursively calls itself, which is used to
achieve divergence. As oc is static, its fields are global variables for the output
component.

The algorithm outputs the code of Listing 7.2. The first actions generate the code
in lines 2 to 6, thus it is wrapped in an if-statement that makes the generated
code take place only when the considered action is the first: i.e., step is 0. The
second actions are responsible for incrementing step in line 5. The third actions
generate the code in lines 7 to 11, while the fourth actions, the different ones,
generate the code in line 10.

The approach of this example is similar to what the algorithm does in case the
difference in the traces is in primitive-typed parameters of a callback. In that
case, instead of creating fresh variable varb, the code produced performs the
differentiation by using the name of the parameter which has the different value.

�

Example 23 (Different internally-typed returned objects)
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1 public main ( args : String[] ) : Unit {
2 if ( oc.getStep() == 0 ) {
3 oc.incrementStep();
4 var vara : Int = extAccount.getBalance();
5 oc.incrementStep();
6 }
7 if ( oc.getStep() == 2 ) {
8 oc.incrementStep();
9 var varb : Int = extAccount.getBalance();

10 if ( varb == 1 ) {
11 exit( 1 );
12 } else {
13 oc.diverge();
14 }
15 }
16 }

Listing 7.2: Output of the algorithm for Example 22.

1 public createAccount() : Account {
2 return this;
3 }

1 public createAccount() : Account {
2 return new AccountClass();
3 }

Trace α1 is extAccount.createAccount()? · ret extAccount!, while trace α2 is
extAccount.createAccount()? · ret 1 !. In this case the code produced must be
able to differentiate between two return values that are internal objects. They
are given different indexes in O. Here, C1 returns a known object: extAccount,
while C2 returns a new object: index 1 in O.

To achieve differentiation in this case, the code produced needs to keep track of
internally allocated objects. For this it relies on a list internals provided by
oc. In order for internal objects to be accessible, they are wrapped with a new
class: Internal that has two fields. The first, of type Obj, contains a reference
to an internal object. The second, name, can be used to filter the search for
objects, that field contains the target-level id as found in the traces. No two
objects with the same name can be added to internals. Elements of this list can
be accessed via method getNameByObject( o ), which returns the name of object
o or null if o is not in internals. The algorithm has a table with target-level
identities of all dynamically-allocated objects in order to generate correct code
when retrieving internals as in line 6 in the code below. Table internals is
initialised with entries for all known static objects.

The algorithm outputs the code of Listing 7.3. Line 5 has no effect, since
internals already has an entry for extAccount. In case C1 and C2 were
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1 public main ( args : String[] ) : Unit {
2 if ( oc.getStep() == 0 ) {
3 oc.incrementStep();
4 var f : Account = extAccount.createAccount();
5 oc.addInternal( new Intern ( f, "extAccount" ) );
6 if ( "extAccount" == oc.getNameByObject( f ) ) {
7 exit( 1 );
8 }else {
9 oc.diverge();

10 }
11 }
12 }

Listing 7.3: Output of the algorithm for Example 23.

swapped, line 5 would bind f to name 1 , ensuring the execution of the else-
branch in the if statement in line 6.

This example scales to different internally-typed parameters in a callback. �

Example 24 (Different method of callbacks)

1 public createAccount() : Account {
2 extTrans.lock();
3

4 }

1 public createAccount() : Account {
2 var b : Transaction = extTrans.

createTransaction();
3 }

Trace α1 is extAccount.createAccount()? · extTrans.lock()!, while trace α2
is extAccount.createAccount()? · extTrans.createTransaction()!. In this
example, C1 performs a callback to method lock, while C2 performs it to method
createTransaction.

To achieve differentiation in this case, the algorithm needs to keep track of the
current method, since it indicates where the differentiating code will be placed.
The current method is recorded in a stack which is initially set to method main.
Callbacks indicate that the current method is changed to a new entry, returnbacks
indicate that the current method is restored to a previous one. Thus, whenever a
callback to method m (implemented in class Main) is performed, an entry of the
form Main.m is pushed on the stack. A returnback pops the head of the current
method stack.

The algorithm outputs the code of Listing 7.4. Notice that the if-statements
of lines 8 and 12, whose addition was discussed in Example 22, help the code
produced differentiate between C1 and C2 in this case as well. Should methods
createTransaction() or lock() be called multiple times the if-guard ensures
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that the differentiation only happens at the right time. �

1 public main ( args : String[] ) : Unit {
2 if ( oc.getStep() == 0 ) {
3 oc.incrementStep();
4 var f : Account = extAccount.createAccount();
5 }
6 }
7 public createTransaction() : Transaction {
8 if ( oc.getStep() == 1 ) {
9 oc.diverge();

10 }
11 return null;
12 }
13 public lock() : Int {
14 if ( oc.getStep() == 1 ) {
15 exit( 1 );
16 }
17 return 0;
18 }

Listing 7.4: Output of the algorithm for Example 24.

Example 25 (Different callees of callbacks)

1 public createAccount() : Account {
2 var b : Transaction = extTrans1.

createTransaction();
3 }

1 public createAccount() : Account {
2 var b : Transaction = extTrans2.

createTransaction();
3 }

Trace α1 is extAccount.createAccount()? · extTrans1.createTransaction()!,
while trace α2 is extAccount.createAccount()?·extTrans2.createTransaction()!.
In this case the difference is the external object on which the second callback is
performed. Here, C1 calls createTransaction() on extTrans1, while C2 calls
it on extTrans2.

In order to achieve this differentiation, the code produced needs to keep track
of external objects similarly to how it needed to keep track of internal objects
in Example 23. All external objects must be bound to a name, just as the
internally allocated ones are. For this purpose, a class Listable is created, class
Main extends it. Listable contains a name and a type field, with getters and
setters. It also contains a method setAndRegister( n , t ) that sets name = n,
type = t and adds the object to a list of Listable called externals that is kept
in object oc. Object oc contains method getExternal( n , t ) to retrieve these
objects based on name and type.
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The algorithm outputs the code of Listing 7.5. Fields name and type for external

1 // same main as in Example 24
2 public createTransaction() : Transaction {
3 if ( oc.getStep() == 1 ) {
4 if ( this.getName() == "extTrans" ) {
5 exit( 1 );
6 } else {
7 oc.diverge();
8 }
9 }

10 return null;
11 }

Listing 7.5: Output of the algorithm for Example 25.

static objects are initialised in the first instructions of the main. That code is
omitted for brevity. �

Example 26 (Different callees of callbacks #2)

1 public createAccount() : Account {
2 var b : Transaction = extTrans.

createTransaction();
3 b = b.createTransaction();
4 }

1 public createAccount() : Account {
2 var b : Transaction = extTrans.

createTransaction();
3 b = extTrans.createTransaction();
4 }

Trace α1 is extAccount.createAccount()? · extTrans.createTransaction()! ·
ret 0x6?·0x6.createTransaction()! while α2 is extAccount.createAccount()?·
extTrans.createTransaction()! · ret 0x6? · extTrans.createTransaction()!.
In this case the difference is the external object on which a callback is performed.
Here, C1 calls createTransaction() on 0x6, while C2 calls the same method
on extTrans.

The algorithm outputs the code of Listing 7.6. Lines 14 to 17 ensure that if an
external object is not found in the list externals, it is allocated by calling to the
default factory method and then added to externals. Fields name and type for
external static objects are initialised to the right value in the first instructions
of the main. That code is omitted for brevity. �

Example 27 (Different externally-typed callback parameters)
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1 // same main as in Example 24
2 public createTransaction() : Transaction {
3 if ( oc.getStep() == 1 ) {
4 oc.incrementStep();
5 }
6 if ( oc.getStep() == 2 ) {
7 oc.incrementStep();
8 var h :Transaction = oc.getExternal( "0x6", "Transaction" );
9 if ( h == null ) {

10 h = staticForTransaction.defaultCreate();
11 ( ( Listable ) h ).setAndRegister( "0x6", "Transaction" );
12 }
13 return h;
14 }
15 if ( oc.getStep() == 3 ) {
16 if ( this.getName() == "0x6" ) {
17 exit( 1 );
18 } else {
19 oc.diverge();
20 }
21 }
22 return null;
23 }

Listing 7.6: Output of the algorithm for Example 26.

1 public createAccount() : Account {
2 var b : Transaction = extTrans.

createTransaction();
3 b.callback( b );
4 }

1 public createAccount() : Account {
2 var b : Transaction = extTrans.

createTransaction();
3 b.callback( extTrans );
4 }

Trace α1 is extAccount.createAccount()? · extTrans.createTransaction()! ·
ret 0x6?·0x6.callback( 0x6 )!, while trace α2 is extAccount.createAccount()?·
extTrans.createTransaction()! ·ret 0x6? ·0x6.callback( extTrans )!. This
example presents the expected output in case the difference is in a parameter
of a callback. The code produced relies on the notions defined in Example 25,
using the field name of external objects to achieve differentiation.

The algorithm outputs the code of Listing 7.7. Casting arg to Listable is needed
in order to make sure the call to getName() succeeds. In fact, arg is known to
implement interface Transaction, which has no connection with class Listable
that defines method getName().

Casts are not present in J+E, yet casting an object o to a type t can be modelled
by throwing o and catching an exception of type t. The cast is presented for the
sake of simplicity. �
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1 // same main and createTransaction from Example 25,
2 // except that lines 20 - 22 are removed
3 public callback( arg : Transaction ) : Unit {
4 if ( oc.getStep() == 3 ) {
5 if ( ( ( Listable ) arg ).getName() == "0x6" ) {
6 exit(1);
7 } else {
8 oc.diverge();
9 }

10 }
11 }

Listing 7.7: Output of the algorithm for Example 27.

Example 28 (Traces with different actions)

1 public createAccount() : Account {
2 return extAccount;
3

4 }

1 public createAccount() : Account {
2 var b : Transaction = extTrans.

createTransaction();
3 }

Trace α1 is extAccount.createAccount()?· ret 1 !, while trace α2 is extAccount.
createAccount()?·0x6.createTransaction()!. In this case the algorithm needs
to identify the two different locations where execution will be after the different
actions are executed. The concept of current method introduced in Example 24
can be used in this case as well in order to determine where to place the code
that performs the differentiation.

The algorithm outputs the code of Listing 7.8. �

1 public main ( args : String[] ) : Unit {
2 if ( oc.getStep() == 0 ) {
3 oc.incrementStep();
4 var f : Account = extAccount.createAccount();
5 exit( 1 );
6 }
7 }
8 public createTransaction() : Transaction {
9 oc.diverge();

10 return null;
11 }

Listing 7.8: Output of the algorithm for Example 28.

Example 29 (Traces of different length)
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1 public createAccount() : Account {
2 while ( 1 == 1 ) { skip; };
3 return null;
4 }

1 public createAccount() : Account {
2

3 return new AccountClass();
4 }

Trace α1 is extAccount.createAccount()?, while trace α2 is extAccount.
createAccount()? · ret 1 !.

The algorithm outputs the code of Listing 7.9. When control is returned to

1 public main ( args : String[] ) : Unit {
2 if ( oc.getStep() == 0 ) {
3 oc.incrementStep();
4 var f : Account = extAccount.createAccount();
5 exit( 2 );
6 }
7 }

Listing 7.9: Output of the algorithm for Example 29.

main after a call to createAccount(), it means that the output component is
interacting with C2. In this case the code produced terminates via the expression
of line 5. Divergence is accomplished by C1. �

As previously mentioned, exceptions are objects. Throwing and receiving
exceptions are compiled as call and callbacks to the throw and the throwback
entry points. These calls have a single parameter: the object id of what is being
thrown. Whenever a call to the throw entry point is detected in the traces, a
throw expression is written in place of a normal method call. The signature
of the method must declare that it will throw an exception, otherwise the last
action in the trace will be this thrown exception. This means that after this
trace the execution will halt, as no exception to be thrown is registered, but
this contradicts the presence of a difference in α1 and α2. Calls to methods
that can throw exceptions are wrapped in a try/catch block. If a jump to the
external exception handler is detected, then the code is written in the catch
block. Otherwise if a normal action is detected, the code is written in the try
block, below the method call.

As further clarification, the pseudo-code of the algorithm is presented in
Listing 7.10 below.
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1 //inputs two traces and two components and returns a J+E component that
differentiates between the two components

2 Algorithm(trace1, trace2, component1, component2)
3 knowledge_base = ... // get interfaces, methods, etc. from components
4 index = 0
5 while( index <= min(length(trace1), length(trace2)))
6 elem1 = trace1[index]
7 elem2 = trace2[index]
8

9 if( elem1 is a ? action ) // so is elem2 and elem1 == elem2
10 WriteCode( " if (oc.getStep() == "+ index +")" )
11 case elem1 of
12 | "call p v1 ... vn" →
13 meth = lookup "p" in methods_Table of knowledge_base
14 curr_obj = Get A+I value corresponding to( "v4" )
15 w1 = Get A+I value corresponding to( "v5" )
16 ...
17 wn = Get A+I value corresponding to( "vn" )
18 WriteCode( "curr_obj.meth("+ w1 +", ...,"+ wn +");" )
19 | "ret p v" →
20 w = Get A+I value corresponding to( "v" )
21 WriteCode( "return "+ w +";" )
22 else // both elem1 and elem2 are ! actions
23

24 if( elem1 6= elem2 )
25 // write differentiating code as in Examples 22 to 29
26 case elem1, elem2 of
27 | "call P v1 ... vn", "call Q v1 ... vn" →... // different methods
28 | "call p v1 ... V4 ... vn", "call p v1 ... W4 ... vn" →...
29 // different callee
30 | "call p V5 ... vn", "call p W5 ... vn" →... // different parameter

#1
31 | ... // all other cases for different parameters
32 | "call p v1 ... vn", "ret p v" →... // different actions
33 | "ret p V", "ret p W" →... // different returned value
34 | "ret p v", " " →... // different actions
35 | "call p v1 ... vn", " " →... // different actions
36 else // elem1 and elem2 are the same ! action
37 case elem1 of
38 | "call p v1 ... vn" →
39 knowledge base. add ( "v1", Type for "v1", argument for "v1")
40 ...
41 knowledge base. add ( "vn", Type for "vn", argument for "vn")
42 | "ret p v" →
43 knowledge base. add ( "v", Type for "v", argument for "v")
44 index++;

Listing 7.10: Pseudo-code representation of the algorithm.
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7.2 Algorithm Applicability

All ?-decorated actions are either followed by a !-decorated one, by a
√

or by
nothing in case of divergence of protected code. For all A+I traces of securely
compiled J+E components, if a ?-decorated action γ? is followed by a !-decorated
one, then there must exists a source-level component that can replicate γ?.
Otherwise, if a ?-decorated action is followed by a

√
, then a check inserted

by the compiler has been triggered and the execution has been stopped. A
source-level component that can replicate γ? does not exist in this case. This is
the only case when securely-compiled components stop (i.e., they execute halt),
thus they cannot contain exit statement. If they could, ambiguity would arise
for when a

√
is encountered in traces, as

√
could be generated from a triggered

check or from the execution of exit. Since we need to be able to distinguish
all cases when a check has been triggered, no exit statement can be found in
method bodies.

For the algorithm to be applicable, all ?-decorated actions considered in
the distinguishing traces must correspond to actions that a source-level J+E
component can replicate. Replicating a target-level action at the source level
has been described as part of the algorithm; this means generating J+E code
that performs a method call or a return (based on the encountered label), with
the source-level parameters corresponding to those found in the trace. The
inability to replicate a target-level action at the source level corresponds to
creating a source-level component that is ill-typed. If all ?-decorated actions
can be replicated at the source level, the algorithm is sure to create a witness
that can replicate all actions in the considered traces.

Theorem 5 (Applicability of the Algorithm) Consider a J+E component
C. For any trace α ∈ TracesS

A+I(JCKJ+E
A+I ), ∀i ∈ N.α(i) = γ?, if γ? cannot be

replicated in J+E, then α(i+ 1) =
√
.

Proof of Theorem 5. The proof proceeds by induction on i, then by case analysis
on γ?. For each case of γ?, a number of cases arise when considering which
actions A+I code can do that are not replicable in J+E. Only the case analysis
for the base case is presented. In fact, the only difference between the base
and the inductive case is that in the latter, dynamically created objects can be
communicated in the trace via the actions up to index i− 1 .

Case analysis on γ?:

call a v? In this case, a can be either the throw entry point or the entry point
for a method m.
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Throw entry point. By analysing v, the following cases arise for when
the action could not be replicated in J+E:

• An exception could not be thrown;
• An internally-typed, ill-typed exception was thrown;
• A non-existent internally-typed object was thrown;
• Something that was not an object was thrown.

The secure compiler inserts checks that capture all of the aforemen-
tioned faults and termination is triggered when they arise.

Method m entry point. The following cases arise by analysing v:
• Ill-typed current object;
• Non-existent current object;
• Ill-typed, internally-typed parameter;
• Non-existent, internally-typed parameter;
• Ill-typed, primitively-typed parameter.

The secure compiler inserts checks that capture all of the aforemen-
tioned faults and termination is triggered when they arise.
One could think that there is a fault missing from this list, namely
that A+I code could pass a non-existent, externally-typed parameter.
However, this is not a fault because given an externally-typed
parameter, there always exists a context that has an object allocated
for that type. This, together with the fact that interfaces are
compatible in J+E programs, allows us to conclude that this is not a
fault, as an externally-typed parameters can always be created.

ret a v? In this case a is the return entry point.

Return entry point . The following cases arise:
Wrong returned value In this case, v could be: (i) an ill-typed,

internally-typed parameter; (ii) a non-existent, internally-typed
parameter, (iii) a non-existent, externally-typed parameter or
(iv) an ill-typed, primitively-typed parameter. All these cases
have been debated before.

Non-existent return In this case, no return is possible because
no outcall was made. The compiler checks that an outcall was
made when jumps to the returnback entry point are made, and
if it is not the case, the execution is terminated.

2
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7.3 Theorem Statements and Proofs

This section presents the theorem statements that the compiler of Section 6.2 is
secure and their proofs.

Property 1 (Correct compilation) To be correct, a compiler can be proven
to preserve and reflect contextual equivalence at the source level with well-behaved
contextual equivalence at the target level. Formally, for a correct compiler, the
following holds: C1'S C2 ⇐⇒ JC1KST

w'TS JC2KST .

Theorem 6 (Compiler preserves behaviour) Given that the secure com-
piler is a correct compiler extended with checks, the secure compiler outputs
target-level programs that behave as the corresponding input ones. Formally:
JC1KJ+E

A+I 'A+IJC2KJ+E
A+I ⇒ C1'J+E C2.

Proof of Theorem 6. As stated in Section 6.2, for the development of the
secure compiler we start from a correct one and we extend it with checks. The
additional checks inserted by the compiler do not modify the behaviour of
compiled code, so the secure compiler J·KJ+E

A+I satisfies Property 1, so the following
holds: C1'J+E C2 ⇐⇒ JC1KJ+E

A+I
w'A+I

J+EJC2KJ+E
A+I . From this equivalence, we can

consider only the ⇐ direction: JC1KJ+E
A+I

w'A+I
J+EJC2KJ+E

A+I ⇒ C1'J+E C2. Since the
set of well-behaved contexts is a subset of the set of contexts, we have that
JC1KJ+E

A+I 'A+IJC2KJ+E
A+I ⇒ JC1KJ+E

A+I 'A+IJC2KJ+E
A+I . Thus the proof of this theorem

follows as a corollary of compiler correctness. 2

Theorem 7 (Algorithm correctness) For any two source-level components
C1 and C2 that, once compiled exhibit a different trace semantics, the algorithm
of Section 7.1 outputs a component C that differentiates between C1 and C2
(assuming there is no overflow of the secure stack and of the secure heap).
Formally: JC1KJ+E

A+I
T=/

A+IJC2KJ+E
A+I ⇒ C1'/ J+E

C2.

In the following, indicate the i-th action of a trace α as α(i).

Proof of Theorem 7. Trace semantics deals with sets of traces, while the
algorithm inputs single traces. Moreover, these single traces must be the same
up to a !-decorated action. The two different single traces are obtained as follows.
Since JC1KJ+E

A+I
T=/

A+IJC2KJ+E
A+I , we have that TracesA+I(JC1KJ+E

A+I ) 6= TracesA+I(JC2KJ+E
A+I ),

thus there exists a trace α that belongs to either only TracesA+I(JC1KJ+E
A+I ) or only

TracesA+I(JC2KJ+E
A+I ) but not to both. Assume wlog that α ∈ TracesA+I(JC1KJ+E

A+I ).
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The trace α can be split in two parts αs and αd such that α=αsαd and
such that αs is the longest prefix of all traces of α2. So, there exists a trace
α′ ∈ TracesA+I(JC2KJ+E

A+I ) that can be split in two parts αs and α′d such that
α′=αsα′d and αd 6= α′d. Additionally, α2 must have even length, so that the
different action in the traces is !-decorated and thus generated by either C1 or
C2. Trace α′ always exists, it could be an empty trace, it could be composed by
an empty αs and, possibly, by an empty α′d. The traces input for the algorithm
are α1 = αsαd and α2 = αsα′d.

Due to Theorem 5, the algorithm can be applied. There may be a case when
the differentiating traces contain a

√
in a case but not in the other. In this case,

the witness can be created, but it will not typecheck against the component
whose traces generate the

√
. The differentiation in this case is thus achieved

by detecting this case as the terminating one, while the algorithm must diverge
in the other case.

The proof analyses all possible differences in JC1KJ+E
A+I

T=/
A+IJC2KJ+E

A+I and proves
that the output of the algorithm differentiates between C1 and C2, so C1'/ J+E

C2.
For each possible difference, the proof refers to an example from Section 7.1
that generate the context capable of performing the differentiation.

• traces of different length (Example 29);

• different kind of actions (Example 28);

• same kind of actions with differences in their structure:

– return action
∗ different primitive-typed value (Example 22);
∗ different internally-typed value (Example 23);
∗ different externally-typed value (Example 27);

– call action
∗ different callee (Example 25 and 26);
∗ different primitive-typed parameter (Example 22);
∗ different internally-typed parameter (Example 23);
∗ different externally-typed parameter (Example 27);
∗ different method (Example 24).

As those listed above are the only differences that can appear in two different
traces, and since they all present a counterexample that reaches the contradiction,
the theorem holds. 2
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Theorem 8 (Full abstraction of the compilation scheme) For any two
source-level components C1 and C2, we have: C1'J+E C2 ⇐⇒ JC1KJ+E

A+I 'A+IJC2KJ+E
A+I .

Proof of Theorem 8. The equivalence is split into two subgoals. The direction
⇐ holds due to Theorem 6. The direction ⇒ is reversed to the equivalent
statement: JC1KJ+E

A+I '/
A+IJC2KJ+E

A+I ⇒ C1'/ J+E
C2. Apply Theorem 4 to restate the

statement as JC1KJ+E
A+I

T=/
A+IJC2KJ+E

A+I ⇒ C1'/ J+E
C2. Apply Theorem 7 to prove

the statement. 2





Chapter 8

A Secure Compiler for
Multi-Principal Languages

"I dislike him." - Why? - "I’m no
match for him." - Has a human
being ever answered in this way?

Friedrich Nietzsche - Beyond
Good and Evil Part IV -

Aphorism 185

The secure compiler of Section 6.2 considered code written by a single
programmer, a single principal who runs his code on a certain machine that
is susceptible to attacks. However, it is often the case that code of different
programmers are executed alongside on the same machine. Many high-level
languages in fact have module systems (à la ML), package systems (à la Java)
or mixins (called traits in Scala) that allow source-level programmers to define
interaction between their different programs.

Consider for example two clients (called Alice and Eve) of the same network
library (called Network), operating on the same machine. The clients are likely
not to trust each other, yet they do trust the network library. How should the
whole code base be compartmentalised in a low-level target language? Placing
the library code in the same compartment of one client code will either generate
redundancy of code or violate the other client’s trust assumption.

To address this concern, each code base needs to be separated and the

133
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interoperation between each code base must be secured. As previously seen, a
technique to achieve this result is secure compilation. However, applying known
secure (fully abstract) compilation schemes to this setting results in insecure,
exploitable code (Problem 13).

Problem 13 (Unknown object guessing) Consider an implementation of
a class Alice (lines 1 to 6) with a single method create that calls method send
on object net (line 4), which is implemented by the trusted library. Function
send is called with a newly allocated Alice object n as parameter (line 3).

1 class Alice implements Client { // code of a client
2 public create( ) : Int {
3 var n = new Alice( ); // allocate a new Client object
4 return net.send( n ); // call the code of the trusted library
5 }
6 }

The code snippet above only calls the trusted library. With the following
implementation of send that just returns 0 without ever leaking arg to other
code, the communicated object n is confidential.

1 public send( arg : Client ) : Int { return 0; } // trusted code

However, by securely compiling the Alice class with known techniques, the
confidentiality of n can be violated. A malicious attacker operating at the target-
language level can call method create on an object of type Alice, and it will
create object n and call method send. Once both methods return, the control is
given back to the attacker who can just “guess” the target-level object id of n
and violate the confidentiality property.1

When proving a compiler to be fully abstract, these security violations must
be detected. Since the communicated argument is confidential, the Alice class
above must be indistinguishable (once compiled) from the Alice class below,
whose only difference is the argument of send (this in place of n, line 4).

1 class Alice implements Client { // code of a retailer
2 public create( ) : Int {
3 // this version does not create a new

object
4 return net.send( this ); // communicate this
5 }
6 }

1This violation does not happen if the target language uses address space layout
randomisation (ASLR) [6,62]. Nevertheless, ASLR-compiled code is subject to other multi-
principal-related violations described in the remainder of this thesis.
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Informally, the current definition of fully abstract compilation is concerned with
two parties: the code to be secured and the attacker to that code. If trusted
code is considered part of the former, the trust assumption of code of other
principals is violated. If trusted code is considered part of the latter, the trust
assumption of the code to be secured is violated. Thus the definition of fully
abstract compilation must be changed and it must account for trusted code
explicitly. �

The goal of this chapter is to provide a secure (fully abstract) compilation
scheme for multi-principal, object oriented languages that allows a programmer
to write programs like that of Problem 13 that are secure.

Firstly, this chapter informally presents the changes to PMA and A+I to support
multiple protected modules and changes to J+E to support principal annotations
(Section 8.1). Then, it defines the security violations that arise when multi-
principal code is considered (Section 8.2). The core of this chapter is the secure
compilation scheme for multi-principal code (Section 8.3). The target and the
source language are then formalised (Section 8.4 and Section 8.5, respectively)
before arguing that the compilation scheme of Section 8.3 is secure (Section 8.6).

8.1 Language Changes

This section firstly presents PMAS , which is an extension of PMA from
Section 2.1 with multiple protected modules (Section 8.1.3). Then it
informally describes AIM, the extension of A+I with multiple protected modules
(Section 8.1.1) and JEM, the extension of J+E with principal annotations
(Section 8.1.2). Finally, it presents the threat model considered for this chapter
(Section 8.1.4) and the definition of multi-principal full abstraction, which is
used to prove the compilation scheme secure (Section 8.1.5).

8.1.1 PMAS : PMA with Multiple Protected Modules

PMAS adds multiple protected modules to PMA, where a single protected
module was considered. Figure 8.1 contains a graphical representation of how
is the memory affected by the adoption of PMAS .

All previously presented PMA instances (e.g., Fides, the Intel SGX etc) support
multiple modules but, for the sake of simplicity, they were not considered. The
PMAS architecture introduces no new concepts, it simply extends the access
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Figure 8.1: Graphical representation of the PMAS architecture.

control policy of PMA to consider inter-module access. Table 8.1 summarises
the PMAS access control model.

8.1.2 A Target Language with PMAS : AIM

This chapter adopts AIM (acronym of Assembly plus Isolation and Modules)
as target language for the secure compiler. AIM extends the A+I language of
Chapter 4 with support for PMAS .
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Table 8.1: Access control policy of PMAS .

From\ To Protected (same Id) Protected (different id) Unprotected
E. Point Code Data E. Point Code Data

Protected r x r x r w x r w x
Unprotected x x r w x

Examples 30 to 31 provide code examples of how AIM works.

Example 30 (AIM code) Consider a protected module spanning from address
100 to 200 with two entry points at address 100 and 106 and another protected
module spanning from address 300 to 400 with a single entry point at address
300. The code snippet below shows some AIM instructions (preceded by the
address where they are located) and how code from different modules interacts
with each other.

1 0 movi r0 12 // unprotected code. Load value 12 in register r0
2 1 movi r1 10 // load value 10 in register r1
3 2 movi r5 100 // load the address of the entry point of protected

code
4 3 call r5 // call the first protected module by jumping there
5 · · ·
6 100 sub r0 r1 // protected module. Calculate the subtraction r0 − r1
7 101 movi r3 104
8 102 jl r3 // check if the ’less-than-zero’ flag was set (by sub)
9 103 ret // if not, return the value of the subtraction (in r0)

10 104 movi r0 300 // otherwise the flag was set. In this case
11 105 call r0 // first call another protected module
12 106 ret // and then return what that code returns
13 · · ·
14 300 movi r1 350 // another protected module
15 301 movs r1 r0 // writes in its own protected memory (address 350)
16 302 movi r0 0
17 303 ret // and returns 0

�

Example 31 (Violations of the PMAS access control policy) Consider the
same memory partition of Example 30.

1 0 movi r0 101 // unprotected code. Load value 101 in r0
2 1 jmp r0 // jump to address 101

Since address 101 is not an entry point of the protected module, the jump of
protected code (line 2) does not succeed.
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1 0 movi r0 101 // unprotected code. Load value 101 in r0
2 1 movi r1 20 // load value 20 in r1
3 2 movs r0 r1 // write 20 at address 101

Since unprotected code cannot write (nor read) inside protected modules, the
write at address 2 (line 3) fails. Analogously, if the instruction of line 2 were
replaced with movl r0 r1 (i.e., a read to address 101), that would fail as well
since unprotected code does not have that privilege. If these code snippets
were placed in a different protected module (e.g., at address 300) instead of in
unprotected memory, the same violations would be detected. Any violation of the
access control policy of PMAS is trapped by the architecture and the execution
is halted. �

8.1.3 A Source Language with Principal Annotations: JEM

JEM extends the J+E language of Chapter 3 with explicit principal annotations
to study how principals affect secure compilation. In most component-based
languages, component information is implicitly used to identify the principal
that wrote that component. In JEM, principal annotations and trust statement
are explicit in order to reason about them. Principal annotations are used to
identify the entity that provides a software component. Trust statements define
code whose behaviour is not supposed to deviate from its JEM specification once
compiled.

To provide a better understanding of the language, Listing 8.1 presents the
complete definition of Alice’s code from Problem 13.

8.1.4 The New Threat Model

The threat model of this chapter consists of: the system under attack, the
security properties that the system must uphold, the attacker to the system
and how are security properties enforced with a secure compiler. This threat
model extends the one of Section 2.4 to multi-principal systems.

The system under attack is a von Neumann machine with a flat address space
and multiple PMA-enforced protected modules. The system contains protected,
trusted and unprotected code. Protected and trusted code reside within two
different protected modules, unprotected code resides both in unprotected
memory and within other protected modules. To refer to trusted code or
unprotected code alike, the term external code is used.
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1 package library of principal Network { // package defining library code
2 interface Network {
3 public send( arg : client.Client ) : Int;
4 }
5 extern net : Network; // static object implementing Network methods
6 }
7

8 package client of principal Alice { // interface exposed by Alice’s code
9 interface Client {

10 public create( ) : Int;
11 }
12 extern alice : Client; // static object provided by Alice
13 }
14

15 package alice of principal Alice { // Alice’s code implementation
16 trust principal Network; // explicit trust statment
17 class Alice implements client.Client {
18 · · · // omitted, see P roblem 13
19 }
20 object alice : Alice; // implementation of the homonymous extern
21 }

Listing 8.1: Complete definition of Alice’s code.

The security property that the system must uphold is that protected and trusted
code behave like JEM components and in no other way. As in Section 2.4, this
property entails: (i) confidentiality and integrity of fields, of object names and of
method bodies; (ii) no control flow alteration apart from method calls, returns
and exception usage; (iii) non reachability of stuck (error) program states.

The attacker does not change from the one defined in Section 2.4.

To relate these concepts to Problem 13, Alice’s code is the protected code,
the Network implementation is the trusted code and code from other clients
is the unprotected code and the omitted Eve implementation is the attacker.
The security property entails that the newly created object n is confidential,
inaccessible from Eve.

Since the definition of fully abstract compilation does not permit the
differentiation between protected and trusted code, this chapter defines multi-
principal fully abstract compilation (Section 8.1.5). If a compilation scheme
is proven to enjoy that property, the output it produces behaves only like its
source level counterpart, satisfying the property that the system must uphold.
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8.1.5 Multi-Principal Full Abstraction

Definition 13 presented what a fully abstract compilation scheme is. When
multi-principal program are considered, this notion is no longer sufficient, since
it has no way of specifying what trusted code is. In fact, when relating this
definition to the elements of the threat model, we can see that C1 and C2 are
the protected code and contexts are the unprotected code [6,62,94], but trusted
code is missing. If trusted code is part of the context, it can behave arbitrarily
once compiled and this violates the security property that the system must
uphold. Trusted code is assumed to behave as its source-level counterpart and
the definition of fully abstract compilation scheme must reflect this. Trusted
code can also not be considered as part of the protected code, as this could
violate possible trust assumptions from other principals. If Alice and Eve
mistrust each other but trust the Network, incorporating the Network with
either principal will violate the trust assumption of the other.

We could change Definition 13 to reason about lists of components C1 and C2,
so that a list of component contains the trusted ones as well. However, consider
C1 and C2 to both contain the code of Alice and of the Network but C2 also
contains CC , a component with no public methods that no code can interact
with. Intuitively, these two lists of components are equivalent at the source
level since CC cannot be interacted with. However, its presence at the target
level (CC occupies its own module) highlights a difference between C1 and C2
that causes a failure of full abstraction.

Following is a definition of secure compilation scheme that overcomes these
limitations (Definition 38). It states that a compilation scheme is secure if and
only if it preserves and reflects contextual equivalence of two programs, for all
possible trusted program CT they link against (denoted as C + CT ).

Definition 38 (Multi-principal full abstraction of a compilation scheme)
A compilation scheme J·KST : S → T is multi-principal fully abstract if: ∀C1, C2,
CT ∈ S. if C1 trusts CT and C2 trusts CT then (C1 +CT )'S(C2 +CT ) ⇐⇒
J(C1 + CT )KST 'T J(C2 + CT )KST .

CT cannot be existentially quantified because if it were, existing secure
compilation schemes could be proven to be secure while they are subject to
security violations (as Section 8.2 discusses).

This definition scales to lists of trusted components CT , but this is not considered
for the sake of simplicity. With lists of trusted components, more trusted
components can be considered. In this scenario, assume the trust relation is
transitive, i.e., if a trusted component CT trusts another component CS , CS
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is securely compiled with C1, C2 and CT . Future work will investigate the
relationship between intransitive trust statements and secure compilation.

Proving Multi-Principal Full Abstraction

To prove a compilation scheme secure, the same strategy of Chapter 7 can be
followed. The co-implication of Definition 38 is split in two cases: ⇐ and ⇒,
one for each of its directions.

Direction JC1 + CT KST 'T JC2 + CT KST ⇒ (C1 + CT )'S(C2 + CT ) states that
the compiler outputs target-level programs that behave as their source-level
counterparts.

Direction (C1 + CT )'S(C2 + CT )⇒ JC1 + CT KST 'T JC2 + CT KST states that
source-level abstractions are preserved through compilation to the target level.
To avoid working with target-level contexts, we replace the notion of contextual
equivalence at the target level ('T ), with that of trace equivalence (T=

T ).
This notion is used to prove the contrapositive of the current direction: JC1 +
CT KST T=/

T JC2 +CT KST ⇒ (C1 +CT )'/ S(C2 +CT ). To prove that C1 +CT and
C2 + CT are not contextually equivalent, it suffices to show that there exists a
source-level context that behaves differently depending on whether its hole is
filled with C1 +CT or C2 +CT . Such a context is said to differentiate C1 +CT

from C2 + CT .

As before, when the witness cannot be generated, failures of multi-principal full
abstraction arise, and these failures (often) lead to security violations. Consider
the code of Problem 13; let n denote the target-level object id of the confidential
object n and c denote the offset of method create. The behaviour of the two
code snippets can be represented with the following traces:

First case = call c on n? return 0!
Second case = call c on n?

√

In fact, while a call on n succeeds in the first case, it does not in the latter,
since n does not exist there (assume in the latter case the execution stops as
indicated by

√
). However, generating a source-level component from these

traces is not possible, since at the source level, unprotected code does not know
name n and thus cannot call methods on it. For the compilation scheme to be
secure, securely-compiled programs must not generate this kind of traces. The
next section will highlight other similar security violations that arise due to the
presence of multiple principals.
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8.2 Multi-Principal Related Security Violations

This section describes the security pitfalls that a naïve implementation of a
compiler for multi-principal languages must avoid (Problems 14 to 19). Each
problem highlights a security vulnerability and how it makes multi-principal
full abstraction not provable for a compilation scheme. In the following, code
snippets are extensions of the ones presented in Section 8.1.3; when new methods
are defined assume their signature appears in the Client interface. Each
problem is followed by a brief, high-level overview of the solution that addresses
it. The secure compilation scheme of Section 8.3 will provide more detailed,
implementable solutions to these problems.

Problem 14 (Principal information at the target level) Consider method
allocate (lines 1-3) that returns new objects of type Client (line 2). Method
proxyAlloc (lines 4-11) calls method allocate (line 6) and forwards the
returned value in case it is not null, otherwise it returns a new Bob object.

1 class Alice implements Client{ // protected code
2 public allocate( ) : Client { return new Alice( ); }
3 }
4 class Bob implements Client{ // unprotected code
5 public proxyAlloc( ) : Client {
6 var nl = alice.allocate( );
7 if ( nl == null )
8 return new Bob( );
9 return nl;

10 }
11 }

When proxyAlloc returns at the target level, it returns a target-level object
id. Since the code interacting with proxyAlloc does not know the principal
related to the returned object, dispatching of methods called on that object can
be ambiguous. In fact, the known type of the returned object is Client, but both
principals provide code that implements that interface. �

To address this concern, target-level object ids must indicate their principal.

Problem 15 (Unknown structure guessing) As mentioned in Problem 13,
target-level object ids can be guessed by unprotected code.

A naïve solution to this problem is keeping track of which principal has received
a certain object id. In Problem 13, protected code could keep track that trusted
code has received the object id of n. With this solution a guess from unprotected
code would be detected and stopped. However, this solution also prevents
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unprotected code from using that id altogether. Consider the following, different
implementation of send (renamed sendLeak to avoid confusion) that forwards its
argument to Eve’s unprotected code. Eve is implementing a logging functionality
that the trusted code uses.

1 // trusted code
2 public sendLeak ( arg : Client ) : Int { return eve.log( arg ); }

With the aforementioned solution, unprotected code would not be able to call
methods on object n. In fact, protected code would have registered that trusted
code has received n and it would not accept it once Eve’s code uses it. �

To address this concern, target-level object id must be unforgeable: if a principal
supplies an object id it is because it has received it, not guessed it.

Problem 16 (Different target-level object id) Consider two implementa-
tions of the method allocate. The left-hand side one allocates a new object
new1 and sends it to trusted code using method send, then it allocates a new
object new2 and sends it to unprotected code over method log. The right-hand
side implementation does the same but in the reverse order.

1 // protected code
2 public allocate( ) : Client {
3 var new1 = new Alice( );
4 net.send( new1 );
5 var new2 = new Alice( );
6 eve.log( new2 );
7 return new1;
8 }

1 // protected code
2 public allocate( ) : Client {
3 var new2 = new Alice( );
4 eve.log( new2 );
5 var new1 = new Alice( );
6 net.send( new1 );
7 return new1;
8 }

These code snippets are equivalent at the source level (when the send
implementation of Problem 13 is considered). However, at the target level,
object new1 will have a certain id in the left-hand side snippet and a different
one in the right-hand side one. Assuming the allocation strategy is deterministic,
in the former case new1 will be placed at a certain location while in the latter
case, new2 will be placed there. This would generate two target-level traces
with different values for the same target-level object id that the source-level
differentiating component could not tell apart.

The same security violations of Problem 13 happen (i.e., confidentiality violation),
though the violation is revealed by a different failure of the multi-principal full
abstraction proof. �

To address this concern, the compiler must ensure that objects communicated
to different principals do not affect each others’ target-level id.
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Problem 17 (Call stack shortcutting) Consider two implementations of
method add (lines 2 to 7) that call function send (line 3). If send returns the
same value as the supplied argument (elem on the left-hand side or this on the
right-hand side, 1 is returned (line 5), otherwise, 0 is returned (line 6).

1 // protected code
2 public add( elem : Client ) : Int {
3 var tmp = net.send( elem );
4 if ( tmp == elem )
5 return 1;
6 return 0;
7 }

1 // protected code
2 public add( elem : Client ) : Int {
3 var tmp = net.send( this );
4 if ( tmp == this )
5 return 1;
6 return 0;
7 }

Method send calls log, which is in unprotected code, then returns arg.
1 // trusted code
2 public send( arg : Int ) : Int { eve.log( null ); return arg; }

These code snippets are equivalent at the source level, the else branch of line
6 is never taken, so both add implementations return 1. However, once their
compiled counterparts are considered, they are not equivalent. At the target level,
the address where to return can be read from the registers file and this causes
the security violation. Once control is returned to unprotected code (in method
log), that code can use a previously-read address to perform a call shortcut.

Figure 8.2 provides a pictographic representation of call stack shortcutting. The
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Figure 8.2: A shortcuttable call stack. The stack grows down.

figure presents the view of the stack during a particular execution of a program,
where code from the Network called code from Alice that called code from Eve
(left-hand side of the fig.). Then, Eve calls to function add, presented in the
snippets above, and the stack grows accordingly: Alice’s add calls Network’s
send that calls Eve’s log (central part of the fig.). Allocation records are marked
with the principal they belong to: E for unprotected code (Eve), N for trusted
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code (Network), A for protected code (Alice). Records N0, A0 and E0 belong to
omitted code whose implementation is not relevant. In the function corresponding
to allocation record E0, unprotected code can read the address where to return
to A0 from the registers file. Then, in the function corresponding to allocation
record E1 (Eve’s log), unprotected code can use that address and jump to the
previously-read address (right-hand side of the fig.). Protected code will then
execute the return code related to A1, assuming that it will return to E0 but when
popping the return value from the stack, execution will jump to the function
related to N1.

Applying call-stack shortcutting to the code snippets above, can make the left-
hand side return 0 and the right-hand side return 1 at the target level as follows.
External code can call method add on an object o with an argument different
from o, then it can shortcut the stack and supply the id of o as the return value.
These differences can be captured by target-level traces, though no source-level
component can cause the same behaviour. JEM components cannot in fact cause
an unnatural traversal of the stack; even when using exceptions, the stack is
traversed from top to bottom. Note that in fact also exceptions can be used to
trigger stack shortcutting.

Call stack shortcutting can violate confidentiality properties as protected code can
be made return to unprotected code in place of trusted code, leaking confidential
information as in Problem 13. �

To address this concern, unnatural traversals of the stack must not happen.

Problem 18 (Types of other parties’ parameters) Consider two func-
tions fw that call a function send on an parameter arg of type Network (line 3)
that is defined in trusted code. The two implementations always return 0 (line
5), though right-hand implementation checks that the value returned by send is
equal to 0.

1 // protected code
2 public fw( arg : Network ) : Int {
3 var n = arg.send( this );
4

5 return n;
6

7 }

1 // protected code
2 public fw( arg : Network ) : Int {
3 var n = arg.send( this );
4 if (n == 0)
5 return n;
6 return 0;
7 }

In addition to the implementation of Problem 13, trusted code provides a class
Connection implementing method test that always returns 1.

1 // trusted code
2 class Connection { public test( arg : Client ) : Int { return 1; } }
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The two protected code snippets are equivalent at the source level but they are not
at the target level. Unprotected code can call fw supplying the index of an object
of type Connection in place of an object of type Network. Protected code has no
way to tell the difference between the two at the target level because there is no
type information there, so it will call function test, since functions are accessed
by offset. This causes two different target-level traces for the code snippets above.
In fact, the left-hand side snippet returns 1, (the value returned by test) while
the right-hand side always returns 0. This differentiation is not possible at the
source level, where only well-typed code is executed since passing an object of
type Connection in place of an object of type Network is not possible.

This vulnerability can lead to violation of invariant properties, causing protected
code to call undesired functionality of trusted code. �

To address this concern, protected code must check that the type of a received
trusted object complies to the expected type.

Problem 19 (Existence of other parties’ objects) Analogously, to Prob-
lem 18, in place of an object of the wrong type, unprotected code can call fw by
passing a non-existent trusted object id.

Consider a different fw implementation that firstly checks whether the passed
argument is null, in which case it returns 1 (line 3). Then it calls method send
of the trusted code (line 5) and it returns 1 (line 9). In case an exception is
raised, the right-hand side snippet returns 0 (line 7).

1 // protected code
2 public fw( arg : Network ) : Int {
3 if ( arg == null ) return 1;
4 try{
5 arg.send( this );
6 } catch e : Obj {
7

8 }
9 return 1;

10 }

1 // protected code
2 public fw( arg : Network ) : Int {
3 if ( arg == null ) return 1;
4 try{
5 arg.send( this );
6 } catch e : Obj {
7 return 0;
8 }
9 return 1;

10 }

These snippets are equivalent at the source level: they always return 1. At
the target level, unprotected code can call fw supplying a fake object id of a
trusted object that does not exist. This generates two different traces, since the
left-hand side snippet returns 1 anyway while the right-hand side one returns
0. Unfortunately, this cannot be expressed at the source level, because the
differentiating component cannot invent fake object ids. �
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To address this concern, protected code must assess whether a trusted object
exists or not before calling methods on it.

Finally, let us consider a different concern of the secure compiler: attestation.
When linking different code pieces coming from different principals, the secure
compiler must attest that the code has not been tampered with and that the
expected principal is providing the expected code. To that extent, existing
techniques such as proof carrying-code can be used [90]. Thus, target-level
protection mechanism must provide code attestation functionalities, as some
PMA implementations do [15,112]. Since attestation falls beyond the scope of
language translation (which is the subject of this thesis), this is not considered
further.

8.3 The Secure Compiler

The code of each principal is compiled in a separate protected module as
described in Section 6.2 with the following adjustment regarding how object ids
are encoded (Section 8.3.1), how to address call stack shortcutting (Section 8.3.2)
and how to perform checks on trusted objects (Section 8.3.3).

8.3.1 Encoding of Object Ids

To address Problem 13, 14, 15 and 16, the secure compiler must use a different
format for target-level object ids. Currently, target-level object ids are either
indexes in the masking table (for objects of the protected code), or addresses
in memory (for objects of external code). With multiple securely-compiled
modules, using the index in the masking table is not enough, as different objects
in different modules can have the same id (Problem 14). Moreover, object ids
must not be guessable (Problem 13). Target-level object ids now consist of
three words: a module id, a masking index and a random number. They take
three registers to be communicated. This can be optimised in architectures
with sufficiently-long word sizes but we omit such optimisations for the sake of
simplicity.

The module id is required so that object ids can uniquely identify an object in
memory (Problem 14). For objects in unprotected memory, this value is 0.

To prevent unknown object id guessing (Problem 13), the object id includes a
randomised nonce (also stored in O). When an index is looked up in O, the
nonce must be supplied as well, if the wrong nonce is supplied, the check fails.
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To ensure the same object always has the same masking index (Problem 16),
a masking table for each principal interacting with the protected code is
required. In the case of Problem 16, objects new2 is placed in the masking
table for principal Eve, who implements log). Object new1 is then placed in
the masking table for principal Network, who implements send. To know in
which table to insert an object, protected code must know the module id of
the code where it is jumping next. Thus, protected code must use caller-callee
authentication, a feature provided by most PMA implementation that support
multiple modules [15,82,91,112]. With caller-callee authentication, the PMA
implementation tags function calls with the id of the module that is doing the
call (or who is returning from a call) by storing the module id in a predefined
register. When protected code is returning from a function call, it uses the
module id supplied at call time to know the masking table of which module
to use. Otherwise if it is jumping to a function, protected code statically
knows which module implements that function and that tells protected code
the masking table to use. Should this static information not be known, most
PMA implementations provide functionality that determine a module id given
an address in the memory range of that module.

8.3.2 Preventing Call Stack Shortcutting

When additional entry points are created (e.g., the returnback entry point,
the throw entry point, and so on) they must not allow call stack shortcutting
(Problem 17). PMA is subject to call stack shortcutting because the stack is
split among different modules. Method-related entry point are not subject to
call stack shortcutting, since a global method can always be called. An entry
point for a specific functionality must lead to executable code only if the specific
functionality can be called. For example, an exception can only be thrown if the
call stack is traversed in the right order, and the secure compiler must ensure
this is fulfilled by adding extra checks.

Caller-callee authentication can also be used to address call stack shortcutting.
The information regarding the caller module id must be stored in the secure
stack any time a method of protected code is called. The compiler must insert
a check at the returnback entry point to ensure that code returning there comes
from the module whose id was stored in the secure stack.

Remark 2 (Alternative solution) An alternative solution is to replace
caller-callee module id with random number. When protected code calls methods
of the external code, it supplies a random number, which is then expected at the
returnback entry point. Only by guessing the random number can the unprotected
code impersonate trusted code when retuning to protected code.
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8.3.3 Checks on Trusted Objects

To typecheck other objects in trusted code (Problem 18), the compiler creates
an additional entry point in securely-compiled code. This entry point contains
a function that takes two parameters: and object id and the bit representation
of an interface type implemented by the component (so, a convention is set
up to express interface types as the md5 has of their names). The function
returns 1 if the object id is of the specified type and 0 otherwise (in most
object-oriented languages this is the instanceof operator). This approach also
addresses Problem 19, as that function returns 0 when called on non-existing
objects.

To avoid violating full abstraction with the introduction of instanceof, (i)
the source language must have the same functionality but, at the same time
(ii) securely-compiled programs must not use it. JEM is extended with the
instanceof operator but an additional check is performed on securely-compiled
programs, to ensure that they do not use it. Point (i) is analogous to what
Abadi discovered in an early JVM implementation [1] or what Kennedy found
in compilers for the .NET platform [67]. In fact, target-level languages must not
offer functionality that are not present in the source-level language. Concerning
point (ii), if securely-compiled programs can use instanceof, the following
source-level equivalent programs would be inequivalent at the target level.
Consider two objects eve and eve2 of type Log.

1 // protected code
2 public create( ) : Item {
3 return instanceof( eve, Log );
4 }

1 // protected code
2 public create() ) : Item {
3 return instanceof( eve2, Log );
4 }

These snippets always return true at the source level, thus they are equivalent.
However, at the target level, external code implementing Log can detect a
difference in the two snippets. Because the Log implementation of instanceof
is called with two different arguments: eve and eve2. This difference, however,
cannot be replicated at the source level, since instanceof is not a principal-
implemented function but it is implemented by the runtime. To avoid this
violation of full abstraction, securely compiled code cannot use instanceof.

Remark 3 (Types of trusted objects and catching exceptions) The con-
cerns of Problem 18 do not arise when catching exceptions is done based on
interface types. In fact, as explained in Section 6.3.4, to support that, interface
type information of all objects is required at the target level. However, that does
not address Problem 19, i.e., the need to check that a supplied trusted object id
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exists and is not null, for which a specific solution such as the one presented
here is required.

Remark 4 (Function parameters and register file size) One last remark
concerns the amount of function parameters and its relation to the registers
file size. As a register file has finite size, parameters that exceed that size are
spilled on the unprotected stack. However, when multiple modules are taken
into account, this spilling is no longer possible. Spilling in unprotected memory
would in fact leak the spilled data to unprotected code. Spilling on the stack
of other modules is also not possible, since modules do not have access to each
other’s data section.

Some PMA implementations [112] use chunks of unprotected memory for bulk-
data communication between modules. The PMA implementation ensures that
no other module can access the communicated data. Unfortunately, not all PMA
implementations support this functionality, so AIM does not have it.

For function calls to have an unbounded number of parameters, source-level
calls are split in a series of target-level ones, each with a reduced number of
parameters. The first call jumps to the related entry point and passes only the
first chunk of parameters. The callee stores these information and immediately
returns in order to allow the caller perform other calls with the successive four
parameters through the registers. The protocol continues until all parameters
are passed; when the callee has all the parameters, it can perform the required
checks. Any violation of the protocol, such as jumping to another entry point, is
treated as a failed check. The only downside of this solution is its efficiency, as
crossing module boundaries can be costly in certain PMA implementations.

Heving defined the compilation scheme, this chapter formalises both its target
and source languages and argues that it is secure.

8.4 The Target Language AIM, Formally

As mentioned in Section 8.1.2, AIM is an extension of A+I with multiple protected
modules. This section presents the syntax (Section 8.4.1) and the semantics
(Section 8.4.2) of AIM. Then, it describes how to account for randomisation
in the definition of contextual equivalence for AIM (Section 8.4.3). Finally, it
presents trace semantics for AIM programs (Section 8.4.4).
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Memory descriptors s ::= (ab, nc, nd, n, id)
Programs P ::= (m, s,O)

Oracles O ::= w;O
Principals id ∈ PR ⊂Words

Instructions I + rand rd Initialise rd with a random value.

Figure 8.3: Elements of the AIM language. The instruction set I is defined in
Figure 4.2

8.4.1 Syntax of AIM

Figure 8.3 presents additional elements of the language formalisation; missing
elements can be found in Figure 4.1. Memory descriptors s are quintuples:
(ab, nc, nd, n, id) that formalise the access control policy of Section 8.1.2. In
this case we do not partition unprotected code in a code and a data section
since the trace semantics for AIM does not consider reading or writing to it.
Programs P are pairs of a memory m and a sequence of memory descriptors s,
one for each protected module. Principals are taken from the set PR, which is
a subset of all possible words. Instructions are the same considered for A+I plus
the instruction to randomly initialise the value of a register. The semantics
of rand rd is to initialise register rd with a random value (Rule Eval-rand).
To model the semantics of rand, we use an oracle [5], which provides random
values for the randomisation function. An oracle O is an infinite stream values.
Oracles affects AIM contexts P, whose holes can now be filled by a pair consisting
of a program and an oracle.

8.4.2 Semantics of AIM

The dynamic semantics of AIM relies on auxiliary functions to encode the access
control policy of Section 8.1.2 (Figure 8.4). In the rules, p indicates program
counter values (i.e., addresses in memory), a indicates an address in memory
and s is a memory descriptor. Rules Aux-cross-un to Aux-cross-modules are
the addition to the rules of the single module case. They tell when a jump
across different domains is performed, where different domains can be different
protected modules or unprotected memory.

The dynamic semantics of AIM is analogous to the semantics of A+I. The
semantics considers states Ω ::= (p, r, f,m, s,O) where p is the program counter,
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(Aux-range)
s ≡ (ab, nc, nd, n, id)

ab ≤ a ≤ ab + n + c + nd

s ` range(a)

(Aux-current-module)
s = (ab, nc, nd, n, id) ∈ s

s ` range(p)
s ` currentModule(s, p, id)

(Aux-unprotected)
@s ∈ s.s ` range(p)

s ` unprotected(p, un)

(Aux-int-jmp)
s ` range(p) s ` range(p′)

s ` validJmp(p, p′)
s ` intJmp(p, p′)

(Aux-ext-jmp)
s ` unprotected(p)
s ` unprotected(p′)
s ` intJmp(p, p′)

(Aux-cross-un)
s ` unprotected(p, un)
∃s ∈ s.s ` range(p′)
s ` crossJmp(p, p′)

(Aux-cross-modules)
∃s ∈ s.s ` range(p)
∃s′ ∈ s.s′ ` range(p′)

s 6= s′

s ` crossJmp(p, p′)

Figure 8.4: Access control enforcement rules for AIM.

r is the registers file f is the flags register, m is the memory, s is the list of
memory descriptors and O is the oracle. The dynamic semantics is given via
relation id−−→ ⊆ Ω × id × Ω for reductions within the same module with id
id (Figure 8.5). This relation extends the →i relation of A+I by adding an
assumption of the form s ` currentModule(s, p, id) to all rules; this is used to
indicate the id of the current module. Instead of re-stating all rules, Figure 8.5
presents how two example rules (Rule Eval-movl and Rule Eval-jump) together
with the rule for generation of a random value (Rule Eval-rand). Reductions

(Eval-movl)
s ` currentModule(s, p, id) s ` intJmp(p, p + 1) s ` readAllowed(p, r(rs))

m(p) = movl rd rs r′ = r[rd 7→ m(r(rs))]
(p, r, f, m, s, O) id−−→→ (p + 1, r′, f, m, s, O)

(Eval-jump)
s ` currentModule(s, p, id)

m(p) = (jmp rd) p′ = r(rd) s ` intJump(p, p′)
(p, r, f, m, s, O) id−−→ (p′, r, f, m, s, O)

(Eval-rand)
s ` currentModule(s, p, id) s ` intJmp(p, p + 1) m(p) = rand rd

r′ = r[rd 7→ w] O = w; O′

(p, r, f, m, s, O) id−−→→ (p + 1, r′, f, m, s, O′)

Figure 8.5: Reduction rules for AIM.

within unprotected memory (given by relation un−−−→) are derived from those
of within a module by changing the s ` currentModule · · · assumption with an
s ` unprotected · · · one.



THE TARGET LANGUAGE AIM, FORMALLY 153

Reduction → ⊆ Ω × Ω gives cross-module reductions for AIM programs
(Figure 8.6). Cross-module calls and returns use s ` crossJmp · · · assumptions

(Eval-id)

Ω id−−→ Ω′

Ω→ Ω′

(Eval-un)

Ω un−−−→ Ω′

Ω→ Ω′

(Eval-call-cross)
s ` currentModule(s, p, id) m(p) = (call rd) p′ = r(rd)

s ` crossJmp(p, p′) p, r, m, s↘SS p′, r′, m′

r′′ = r′[SP 7→ r(SP) + 1; r0 7→ id] m′′ = m′[r′′(SP) 7→ p + 1]
(p, r, f, m, s, O)→ (p′, r′′, f, m′′, s, O)

(Eval-ret-cross)
s ` currentModule(s, p, id) m(p) = (ret) p′ = m(r(SP))

s ` crossJmp(p, p′) r′ = r[SP 7→ r(SP)− 1; r0 7→ id] p, r′, m, s↘SS p′, r′′, m′

(p, r, f, m, s, O)→ (p′, r′′, f, m′, s, O)
(Eval-call-un)

s ` unprotected(p, un) m(p) = (call rd) p′ = r(rd)
s ` crossJmp(p, p′) p, r, m, s↘SS p′, r′, m′

r′′ = r′[SP 7→ r(SP) + 1; r0 7→ un] m′′ = m′[r′′(SP) 7→ p + 1]
(p, r, f, m, s, O)→ (p′, r′′, f, m′′, s, O)

(Eval-ret-un)
s ` unprotected(p, un) m(p) = (ret) p′ = m(r(SP)) s ` crossJmp(p, p′)

r′ = r[SP 7→ r(SP)− 1; r0 7→ un] p, r′, m, s↘SS p′, r′′, m′

(p, r, f, m, s, O)→ (p′, r′′, f, m′, s, O)

Figure 8.6: Rules for the → relation. un is the principal related to unprotected
code.

while previously-defined same-module calls and returns relied on s ` intJmp · · ·
assumptions. Moreover, jumps between modules set the r0 to the id of the
principal from which the call originates.

8.4.3 Randomisation and Contextual Equivalence for AIM

To account for randomisation in AIM, a randomisation instruction is added to
the language, and the odds of guessing its outcome must be considered.

Examples 32 to 33 describe the usage of oracles; Example 34 discusses how
guessing random numbers affects the definition of contextual equivalence.

Example 32 (Obvious equivalences) With an explicit oracle, obvious equiv-
alences are respected; a program Pr that returns a random value is equivalent to
itself.
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1 0 rand r0 // call this program Pr

2 1 ret // return a random number in r0

In fact, for any oracle O, there exists an oracle (the same oracle O) that makes
the behaviour of Pr independent of random values.

Pr is also equivalent to the following snippet Prr, which generates two random
numbers and only returns the second.

1 0 rand r0 // generate a number
2 1 rand r0 // then generate a second number
3 2 ret // return the second random number in r0

The oracle that must be used with Prr is one that has all elements of O interleaved
with other elements. �

Example 33 (Obvious inequivalences) Consider a program that returns
two random numbers and a program that returns the same random number
twice.

1 100 rand r0
2 101 · · · // copy r0 in r1
3 102 ret

1 100 rand r0
2 101 rand r1
3 102 ret

For any oracle used with the left-hand side snippet, the oracle that contains the
same value twice will make the right-hand side snippet equivalent to it. However,
there is no oracle that will make the opposite true. �

By generalising these examples, we can conclude that any two AIM programs are
equivalent if, for any oracle used with the first program, there exists an oracle
for the second program such that they have the same behaviour and vice versa.

The notion of contextual equivalence for A+I programs will therefore be defined
in terms of a preorder relation that must hold in both directions between two
programs for them to be equivalent.

Example 34 (Guessing) Consider two programs that store a random number
(line 3) and then input from the external code on r1 (line 6). If that input
matches the random number, one returns 0, the other returns 1 (line 15),
otherwise they both return 2 (line 14, the syntax is massaged for the sake of
simplicity).
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1 100 rand r0
2 101 movi r1 120 // at address 120
3 102 movs r0 r1 // store r0
4 103 movi r0 0
5 // call unprotected code
6 104 call r0 · · ·
7 105 movi r1 120
8 // load the random number
9 106 movl r5 r1

10 // compare it with argument r1
11 107 cmp r1 r5
12 108 movi r3 111
13 109 je r3 // if it is not zero
14 110 ret 2 // return 2
15 111 ret 1 // otherwise return 1

1 100 rand r0
2 101 movi r1 120 // at address 120
3 102 movs r0 r1 // store r0
4 103 movi r0 0
5 // call unprotected code
6 104 call r0 · · ·
7 105 movi r1 120
8 // load the random number
9 106 movl r5 r1

10 // compare it with argument r1
11 107 cmp r1 r5
12 108 movi r3 111
13 109 je r3 // if it is not zero
14 110 ret 2 // return 2
15 111 ret 0 // otherwise return 0

If the random function is strong enough, external code has very little chance of
telling these programs apart; intuitively, that chance is ∼1/2` times the number
of guesses (where ` is the length of a word in memory). However, the contexts
considered in the definition of contextual equivalence are universally quantified.
Thus there is also a context that differentiates between the two programs by
guessing the number and we do not want to consider it [6,62]. The definition
of contextual equivalence needs to incorporate probability concepts to rule out
these contexts that can succeed in guesses with negligible odds. �

The probabilistic notion of contextual equivalence states that two programs
are equivalent if they behave the same to a certain probability. Denote the
probability of a certain event with Pr(·) and let σ range over the 0..1 interval.

Definition 39 (Contextual preorder for AIM) P1 <∼
AIM
σ

P2 , Pr(∀P, O1.
∃O2. P[P1, O1]⇑ ⇐⇒ P[P2, O2]⇑) > σ.

Contextual equivalence for AIM programs is thus defined as following.

Definition 40 (Contextual equivalence for AIM) P1'AIM
σ P2 , P1 <∼

AIM
σ

P2

and P2 <∼
AIM
σ

P1.

For securely-compiled components, if the randomisation function has a
guessability of σg, σ must be 1 − σg. Unprotected code can in fact only
guess once, if the guess is wrong, a fault is detected and the execution is halted,
therefore σ accounts only for one guess. Alternative definitions of analogous
concepts can be found in work reasoning about the security of cryptographic
primitives. For example, sometimes the distance between random number
distributions is considered, which is analogous to what we are doing here, as we
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consider that distribution to range uniformly between 0 and 2`−1. Alternatively,
weaker attackers could be considered (e.g., by using an analogous definition of
well-behaved contextual equivalence), but this would imply changing A+I, so
this is not considered further.

Correctness of Definition 40

Consider two programs; one always returns 0, the other always returns a random
value. Intuitively, we want them not to be equivalent, but with probability in
place, they might be.

1 100 movi r0 0
2 101 ret

1 100 rand r0
2 101 ret

Consider for the sake of simplicity, ` = 1, so words are 1 bit long, they can be
either 0 or 1. The probability to guess a random number is then 1/21 = 1/2,
the guessability of the random number generator is assumed to be σg = 1/2.
Contexts can therefore be split in two sets. Those that expect the output to be
0; and those that expect the output to be 1. In both cases, the two programs
will be the same 1/2 the times so there is 1/2 total chance that a context
differentiates these programs. However, to be declared equivalent, programs
need to have the same behaviour for a number of times strictly greater than
σg, which is 1/2. Since 1/2 is not greater than 1/2, the programs are not
equivalent.

8.4.4 Trace Semantics for AIM

The trace semantics for AIM programs is an adaptation of the TracesS
A+I semantics

of Section 5.2, so its labels comprise call and returns but no readouts nor
writeouts. These new states of the trace semantics must account for oracles,
thus they are indicated as follows Θ ::= Ω | (unk,m, s,O). Ω models that
the partial program is executing, while state (unk,m, s,O) models execution
happening outside of the partial program. Given a program P and an oracle O,
indicate its initial state (with program counter, registers and flags set to 0) as
Θ0(P,O).

Relation λ−−→→ ⊆ Θ× λ̂×Θ captures how labels are generated. That relation is
omitted as it is a small variation of the same relation defined for TracesS

A+I with
the changes for the semantics of AIM discussed in Section 8.4.2. For analogous
reasons, relation α==⇒⇒ ⊆ Θ× α̂×Θ, which captures how traces are generated,
is also omitted.
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Define the trace semantics of a program P as:

TracesAIM(P ) = {α | ∀O.∃Θ.Θ0(P,O) α==⇒⇒ Θ}

.

Example 35 (Traces of example AIM programs) Consider only the pro-
gram spanning from address 100 to 200 from Example 30, consider the rest of
the memory space to be undefined. The following traces are valid descriptions
of the behaviour of that program (use · · · to gloss over unimportant details):

T1 = call 100 12, 10, · · ·? ret 4 2!
T2 = call 100 5, 0, · · ·? call 300 · · ·!
T3 = ret 106 0? ret 4 0!

T1 captures the behaviour of the code in case it is called with r0 greater than
r1. T2 captures the opposite. T3 captures the behaviour of the code after it has
called code in the other protected module. �

Two programs P1 and P2 are trace equivalent, denoted with P1 T=
AIM
σ P2 if their

trace semantics coincides with a certain probability.

Definition 41 (Trace equivalence for AIM) P1 T=
AIM
σ P2 , Pr(TracesAIM(P1, O1)

= TracesAIM(P2, O2)) > σ.

For securely-compiled components, trace semantics coincides with contextual
equivalence, as captured by Proposition 1.

Proposition 1 (Fully abstract trace semantics for securely-compiled
JEM programs) ∀C1, C2, C

T ∈ JEM.JC1 + CT KJEM
AIM 'AIM

σ JC2 + CT KJEM
AIM ⇐⇒

JC1 + CT KJEM
AIM

T=
AIM
σ JC2 + CT KJEM

AIM .

Proof Sketch. Securely-compiled components only use call and ret instructions
to jump outside protected code. No other instruction is executed on external
code, e.g., no reading or writing in unprotected memory. Moreover, external code
also can only jump to the entry points of protected code and it cannot perform
any other instruction on protected code. Since unused registers and flags are reset
at each jump from and to the protected code, the information communicated
on the labels captures the behaviour of protected code precisely. 2
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8.5 The Source Language JEM, Formally

JEM is an extension of the J+E language of Chapter 3 that includes principal
definitions and trust statements. This section presents the language syntax
(Section 8.5.1) and the additions to the static semantics of J+E (Section 8.5.2).

8.5.1 Syntax

The syntax of JEM is the same as that of J+E (Figure 3.1). The only addition is
principals, which are taken from the denumerable set PR, and statements to
define the principal of an export package and which principals does a package
trust (Figure 8.7).

components C ::= P

packages P ::= {package p of principal t;Di}
| {package p of principal t;T ;De}

principals t ∈ PR
truststatements T ::= trust principal t;

Figure 8.7: Syntax of JEM.

8.5.2 Static Semantics

The static semantics extends that of J+E with consistency check on principals,
which are presented below. Function principal(P ) returns the principal of the
package, i.e., principal({package p of principal t;T ;Di}) = t.

(Packages)

C ` D : dec in p C ` T : trs
C ` {package p of principal t;T ;Di} : pkg

(Trust)
∃P ∈ C.principal(P ) = t ∧ isExport(P )

C ` trust principal t; : trs

Rule Packages checks the validity of its definitions and of its trust statements.
Rule Trust states that a trust statement is valid only if it talks of a principal
whose code is implemented in the component.
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As required by the new definition of full abstraction (Definition 38), a notion of
trust between components needs to be defined. A component C trusts another
component C ′ if the principal of C ′ is included in the trust statements of the
export packages of C (Rule JEM Trust).

(JEM Trust)

∀P ∈ C.isExport(P )∧, P ≡ {package p of principal t;T ;Di}
∃P ′ ∈ C ′.¬isExport(P ′)∧, P ′ ≡ {package p′ of principal t′;T ′;D′i}

∧ trust principal t′ ∈ T
Ctrusts C ′

8.6 Multi-Principal Full Abstraction for J·KJEM
AIM

This section presents the theorem statements whose proof would imply security
of the compilation scheme of Section 8.3. These theorems are analogous to the
ones proven for the compilation scheme of Section 6.2.

Conjecture 1 captures the assumption that the compiler translates JEM
expressions into a behaviourally-equivalent list of AIM instructions.

Conjecture 1 (Compiler preserves behaviour) Assuming there is no over-
flow of the secure stack and of the secure heap, the secure compiler outputs
AIM programs that behave as their JEM counterparts. Thus: ∀C1, C2, C

T ∈ JEM.
JC1 + CT KJEM

AIM 'AIM
σ JC2 + CT KJEM

AIM ⇒ (C1 + CT )'JEM(C2 + CT ).

The compilation scheme of Section 8.3 considers a correct compiler as starting
point and only adds checks without modifying the translation of source-level
expressions into target-level instructions. Thus, we believe this conjecture holds.

Conjecture 2 states that it is always possible to construct a source-level
component that distinguishes between two securely-compiled JEM components
that exhibit a different target-level trace semantics.

Conjecture 2 (Compiler security) Assuming there is no overflow of the
secure stack and of the secure heap, and that the randomisation function can be
guessed with a σg probability. Let σ = 1− σg, then: ∀C1, C2, C

T ∈ JEM.JC1 +
CT KJEM

AIM
T=/

AIM
σ JC2 + CT KJEM

AIM ⇒ (C1 + CT )'/ JEM(C2 + CT ).

We only argue that this conjecture holds without any formal proof. Based on
the examples of Section 8.2, the compiler has checks that prevent any target-
language context from violating the well-typedness of securely compiled JEM
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components. So the only way that AIM contexts have to interoperate with a
compiled JEM component is to behave like a JEM context, thus without violating
any of the desired security properties (as highlighted in the thread model of
Section 8.1.4. If two different traces are provided, an algorithm that is analogous
of that of Section 7.1 could be developed, as for the secure compilation scheme
of Chapter 6. The witness must replicate all ?-decorated actions at the source
level and, upon receiving the distinguishing !-decorated action, it must tell
whether it is (C1 + CT ) or (C2 + CT ). The development of such an algorithm
is left for future work.

The presented compilation scheme is multi-principal fully abstract (Conjecture 3).

Conjecture 3 (Multi-principal full abstraction for J·KJEM
AIM ) Assuming that

there is no overflow of the secure stack and of the secure heap and that the
randomisation function can be guessed with a σg probability. Let σ = 1−σg, then:
∀C1, C2, C

T ∈ JEM. if C1trusts CT∧, C2trusts CT then (C1 + CT )'JEM(C2 +
CT ) ⇐⇒ J(C1 + CT )KJEM

AIM 'AIM
σ J(C2 + CT )KJEM

AIM .

This conjecture holds as soon as Conjecture 1 and Conjecture 2 do. Since multi-
principal full abstraction implies security of the compilation scheme, proving
this theorem implies that J·KJEM

AIM is secure.



Chapter 9

Evaluation and Discussion

The aim of argument, or of
discussion, should not be victory,
but progress.

Joseph Joubert

This chapter firstly presents benchmarks that evaluate the computational
overhead introduced by the secure compiler (Section 9.1). Then, it briefly
considers how to port the results developed to the Intel SGX architecture
(Section 9.2). Finally, it presents the limitations of the secure compilation
scheme (Section 9.3) and discusses different definitions of a secure compilation
scheme (Section 9.4).

9.1 Benchmarking

This section details the architecture adopted to develop the secure compiler
of Chapter 6 (Section 9.1.1). Then it presents benchmarking of the overhead
introduced by the secure compiler (Section 9.1.2).

9.1.1 The Fides Protected Module Architecture

The secure compilation scheme of Section 6.2 relies on the target language having
a protected module architecture for it to be secure. In order to time the overhead

161



162 EVALUATION AND DISCUSSION

of the secure compiler we implemented it for the Fides architecture [112].

The Fides architecture implements precisely the protection mechanism described
in Section 2.1 in a very small TCB: ∼7000 lines of code. Fides consists of a
hypervisor that runs two virtual machines: the secure VM handles the protected
memory section and the Legacy VM handles the unprotected one. Switching
between the two virtual machines of Fides (i.e., when performing calls and
outcalls) is more costly than in a hardware-based implementation. However,
we are not interested in this overhead: the overhead that we are interested in
timing is the one provided by the additional checks introduced by the secure
compiler.

This section gives a brief description of the Fides architecture, followed by an
informal presentation of the implementation of the secure compiler.

Legacy VM The Legacy VM executes all legacy applications and other code
in unprotected memory. Using virtualisation techniques, this virtual machine is
able to execute commodity operating systems and legacy applications without
any modification. From the point of view of the Legacy VM, the only difference
compared to running on bare hardware is that certain memory locations are
inaccessible. More specifically, two memory regions are inaccessible to the Legacy
VM: (1) the memory region reserved for the hypervisor and (2) the protected
memory region as defined in our low-level machine model. Whenever an access
to these memory locations is attempted, execution traps to the hypervisor.

Hypervisor The hypervisor serves two simple purposes. First, it offers a
coarse-grained memory protection: it prevents any code executing in the Legacy
VM from accessing the protected module and it prevents the Secure VM from
accessing the hypervisor.

Second, the hypervisor implements a simple scheduling algorithm. When the
Legacy VM calls an entry point in the protected module, control goes to the
hypervisor which then schedules the Secure VM. Execution control only returns
to the Legacy VM when the protected module either returns or performs an
outcall to unprotected memory.

Secure VM The Secure VM can access all memory, with the exception of
memory containing the hypervisor. The fine-grained memory access control
mechanism is implemented by a security kernel running in this VM, as follows.
First, when a request is received from the hypervisor to execute a method in
the protected module, the requested entry point is checked against a list of
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valid entry points provided in the module’s memory descriptor. When this
check passes, the hardware memory management unit is set up to allow memory
accesses to the module’s memory region and execution proceeds from the entry
point that was called. When execution tries to jump back out of the protected
module, a page fault is generated, which causes the security kernel to ultimately
return execution control to the Legacy VM.

Secure Build Tools

To simplify the development and benchmarking of modules, a fully abstract
compilation tool chain has been developed using the LLVM compiler and the
ELF Tool Chain library.1

Compilation of modules follows the guidelines of Section 6.2 and is done in two
steps. First, for every function that is annotated as an entry point, an entry
in the module’s entry point table is created. Each entry checks whether an
initialisation function needs to be called, sets up the stack pointer and stores the
return address in unprotected memory on the stack. After the correct function
is called, registers not carrying a result value are cleared. Wrapper functions
for each entry point are also generated, in order to simplify the calling of the
module. Secondly, the source code is analysed and modified so that every call
site that results in an outcall to unprotected memory flows through the callback
entry point. Registers not carrying a function parameter are reset, so that no
information is leaked.

After compilation of the module – possibly resulting in multiple ELF files if the
source code was split over multiple files – a secure linker lays out the module
in memory according to Fides’ requirements. Protected modules must start
with the entry table, followed by all compiled code and read-only data such
as strings (i.e., the Code section) and the runtime stack and security sensitive
variables (i.e., the Data section).

9.1.2 Measurements

To benchmark the cost of the additional checks introduced by the secure
compilation scheme, we have implemented stub objects in C, a data structure
that models the low-level representation of objects. Stub objects have an
Integer field that indicates the class of the object followed by the fields of the
object. We have implemented a secure runtime containing the data structure

1Respectively available at http://llvm.org/ and http://sourceforge.net/p/elftoolchain/
wiki/Home/.

http://llvm.org/
http://sourceforge.net/p/elftoolchain/wiki/Home/
http://sourceforge.net/p/elftoolchain/wiki/Home/
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O and functions to mask object references through it. The secure runtime
also implements the runtime checks presented in Section 6.2. These tests are
simply used as an indicator that the overhead introduced by the compiler is
reasonable. More detailed measurements, detailing the strengths and limitations
of particular PMA implementations are left for future work.

We have then taken a simple program and, using a hardware high-frequency
timestamp, we have timed its performance in three cases, as presented in
Figure 9.1. The figure presents the average program execution time without
any protection (in blue), with Fides (in red) and with Fides extended with the
runtime checks provided by the security runtime (in beige).

0 2 4 6 8 10 12 14

call 1

call 8

callback 1

callback 8

return

returnback

Time (µs)

Normal Fides Prototype

Figure 9.1: Cost of different benchmarked instructions.

In Figure 9.1, the y axis indicates which operations have been tested. The
number following calls and callbacks indicates the number of arguments used,
they trigger runtime checks. The security runtime adds checks to calls, callbacks,
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returns and returnbacks, so they are the only instructions that are considered.
The “Normal” (blue) row indicates the cost of each operation without using the
Fides architecture. The “Fides” (red) row indicates the cost of each operation
while using the Fides architecture without the secure compilation scheme. The
“Prototype” (beige) row the cost of each operation when the secure compilation
scheme is used in addition to Fides. Each operation was performed 1000 times
on a MacBook Pro with a 2.3 GHz Intel Core i5 processor and 4GB 1333MHz
DDR3 RAM. The difference between rows “Normal" and “Fides" shows the
already high overhead of adopting the Fides architecture. The difference between
rows “Fides” and “Prototype” is the overhead of the security checks introduced
by the secure compiler: on average, this is a ∼3% overhead. Security checks are
triggered only when the boundary between the protected and the unprotected
memory partitions is crossed. Method calls within the same memory partition
suffer no overhead. The overhead introduced by the compiler is proportional to
the number of boundary crossings.

9.2 Intel Software Guard eXtensions

In June 2013 Intel publicly disclosed its work on Software Guard eXtensions
(SGX) [15, 58, 82]. SGX provides a hardware-implemented isolation mechanism
that is very similar to Fides [112] and related protected module architectures [91,
111,112,113]. Enclaves is the SGX terminology for what we called protected
modules in this paper. Enclaves live in the same address space as unprotected
parts of the application and can only be accessed through an explicitly exposed
interface. Direct memory accesses from unprotected memory to enclaves memory
regions are prevented. Enclaves, like protected modules, have full access to
unprotected parts of the application. We believe that the presented fully abstract
compilation scheme can be easily ported to SGX-enabled platforms, modulo
small technical changes.

There are a few notable differences between Fides and SGX. For instance, SGX
requires special entry and exit instructions to cross enclaves boundaries, while
Fides does not. SGX also provides only a single entry point to enclaves [82],
but additional entry points can be emulated by taking the index of the intended
function as an additional function argument. The main difference between Fides
and SGX is the following. To prevent denial-of-service attacks by buggy or
malicious modules that never return control to code in unprotected memory,
SGX supports interruption of enclaves. Unfortunately, without added security
measures, this may violate the integrity of SGX enclaves, as explained below.
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Problem 20 (SGX Interrupts) Consider two classes that define the same
methods plusTwo and reset that, respectively, increment a variable even by
two and reset that variable to 0. These two classes are implemented by two
objects: oL and oR. Assume these objects are compiled to SGX enclaves.

1 package p;
2 class CL {
3 private even : Int = 0;
4

5 public plusTwo() : Int {
6 even = even + 1;
7 even = even + 1;
8 return 0;
9 }

10

11 public reset() : Int {
12 even = 0;
13 return 0;
14 }
15 }
16 object oL : CL

1 package p;
2 class CR {
3 private even : Int = 0;
4

5 public plusTwo() : Int {
6 even = even + 2;
7

8 return 0;
9 }

10

11 public reset() : Int {
12 even = 0;
13 return 0;
14 }
15 }
16 object oR : CR

Objects oL and oR are equivalent at the source-code level, but their compiled
counterparts are not. The enclave with the compiled counterpart of oL may
receive an interrupt before executing the instruction located at line 7 in method
plusTwo. The interrupt can call to method reset before the execution of
plusTwo is resumed. This will result in even holding value 1 in oL, while oR
will either have value 0 or 2 in even. �

This integrity constraint violation of Problem 20 can be prevented by ensuring
that new entry points cannot be called while an interrupt is handled. In practice,
this can be accomplished by adding a boolean field busy to the compiled code.
The busy field is set when the module is entered and reset before control is
passed back to unprotected memory. In case a module is interrupted, it has still
the busy variable set and the module may refuse to service the function request.
To avoid race conditions, an atomic test− and− set instruction should be
used to keep track of the busy variable.

Finally, SGX, in contrast to Fides also provides protection against hardware
attacks such as an attacker snooping the memory bus [122] or performing a cold
boot attack [55]. This enables various TPM primitives to be offloaded to the
main CPU but does not impact the development of a fully abstract compilation
scheme.
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9.3 Limitations of the Compilation Schemes

This section presents limitations of the presented compilation schemes (both
Section 6.2 and Chapter 8).

Like many model languages [6, 62], J+E lacks features that real-world
programming languages have, such as multithreading, foreign-function interfaces
and garbage collection. A thorough investigation of the changes needed in order
to support secure compilation of languages with those features is left for future
work. For now we informally present the research challenges of performing
garbage collection (Section 9.3.1) in concert with securely compiled code and
sketch the path future research could follow to address these challenges.

9.3.1 Garbage Collection and Secure Compilation

Garbage collection is a runtime mechanism of certain languages that (generally)
manages whole programs. Since in the secure compilation scenario whole
programs are split between the protected and the unprotected memory partition,
the garbage collector (GC) would be also split into a protected and an
unprotected part. Given the powers of an attacker to the system (Definition 7
in Section 2.4), the attacker can tamper with the unprotected GC but not
with the protected one. The attacker can thus inspect all references that the
unprotected GC has, introduce fake pointers and impersonate the unprotected
GC when interacting with the protected one.

Since the unprotected GC can be tampered with, the implementation of a secure
garbage collector is reduced to extending the securely compiled program with
a secure GC in charge of the secure memory partition. The secure GC must
be trusted and its code must be placed inside the protected memory partition,
so it can access O and the object graphs of the protected objects. However to
allow the secure GCs to communicate with a GC in unprotected memory (for
the case when there is no attacker), additional entry points need to be set up.
Unfortunately, this violates full abstraction in a similar way to that pointed out
by Abadi for Java [1]: this functionality is available only at the target level but
not at the source level. The first challenge is proving that the secure GC does
not introduce security leaks. The possible approach to such a proof is described
at the end of this section.

Additional challenges arise for the implementation of the secure GC. A common
implementation for GCs is reference counting. With reference counting, the GC
keeps track of how many references an object has, when this counter reaches
0, the objects can be safely deallocated, as no other object has a reference to
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it. Reference counting introduces a failure of full abstraction, as highlighted by
the code below.

1 package p;
2 class CL {
3 public doCb( Object x , Object y

) {
4 while ( · · · ) { //infinite

loop
5 x.callback( this );
6 }
7 }
8 y.callback();
9 }

1 package p;
2 class CR {
3 public doCb( Object x , Object y

) {
4 while ( · · · ) { //infinite

loop
5 x.callback( this );
6 }
7 }
8

9 }

In these code snippets, both functions doCb receive two arguments x and y (line
3) and loop infinitely (line 4) on performing outcalls on x (line 5). Additionally,
the left hand side snippet has unreachable code where callback is called on y
as well (line 8). A garbage collector that does reference counting will behave
differently in these two cases. In fact, it will keep a reference to y in CL and
not in CR, as it cannot know that y lies in unreachable code without solving
the halting problem. This is a failure of full abstraction: CL and CR behave the
same at the source level but not at the target level, when a garbage collector is
considered. A simple solution to problem would be to change the way references
are counted and let parameters also increase the counter for an object reference.
The return would decrease the counter for all parameters.

However, a second challenge arises: once a reference to an internal object is
passed to the unprotected code (such as for this in the callback above) the
GC does not know when to deallocate such a reference. Here, an arguably safe
methodology is to not deallocate a reference that is passed from the secure
component to unprotected code. However, this creates problems when the
allocated object is large or when many references are passed out, namingly that
a large part of memory cannot be freed.

An analogy that can be made now is that the secure GC faces challenges similar
to those faced by distributed garbage collectors [7]. Passing a reference to
unprotected code is in fact analogous to passing a reference to a remote program:
it is difficult to find out when such a reference can be deallocated. In the
distributed setting this is due to communication problems and the impossibility
for a garbage collector to inspect the object graph of a program on a remote
machine. In this setting, this is because the object graph in the unprotected
memory section can be tampered with by the attacker. Unfortunately, in this
setting the GC needs not only to be performant in case of interaction with
unprotected code, it needs also to defend from potential attackers. Research
on distributed garbage collection has developed several ways to addresses
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this problem, for example by giving each leaked reference a lease time. An
unprotected object receiving a leased reference must periodically renew the lease
on the reference, because once the lease time has expired the reference is collected
by the secure GC. This solution could be adopted in order to implement a secure
memory manager, for it already addresses the need to provide a performant
GC algorithm in case the unprotected code is well behaved. The details of the
implementation, of how to make such a GC resilient against attacks and a more
thorough treatment of the problems arising in various implementations are left
for future work.

The proof that the garbage collector is secure remains a great challenge for the
integration of secure compilation and GC. In any way such a proof is approached,
GC notions (allocation, deallocation, references, the object graph etc.) need
to be carried into both the target and the source language in order to prove
the compilation scheme between the two to be fully abstract [87]. However,
this causes the source-level programming model to become hindered by memory
management – an additional way to let programmers introduce security flaws in
their code. A way to overcome this challenge is to capture the behaviour of the
GC in a different semantics of the source-level language, an extended semantics.
Full abstraction of the compilation scheme should then be proven with respect to
the extended semantics. This treatment would not clutter the source language
with explicit GC, but it would still capture the effect of GC at the source level.
The extended semantics should capture the behaviour of the GC as it is at the
target level, so that problems as those highlighted above do not arise, since they
are captured at the source level as well. Additionally, the extended semantics
should be proven to be secure w.r.t the normal operational semantics: this
would guarantee that the behaviour of the GC does not introduce security leaks.

Devising such an extended semantics and proving (i) that it is not introducing
security leaks and (ii) a fully abstract translation involving it are left for future
work.

9.4 Different Formulations of Secure Compilation

Fully abstract compilation is not the only way to define that a compilation
scheme is secure. Another such definition is security-types preserving
compilation (Section 9.4.1).

Alternatives to define a secure compilation scheme exist, but they do not
have a crisp, acknowledged definition like full abstraction and security types
preservation. The general idea behind these alternative definitions is to establish
a property between source-level programs that captures the security abstraction
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one is interested in. Then, the compilation scheme must be proven to preserve
that property in compiled programs in the presence of arbitrary target-level code
interacting with the compiled program. To the best of the author’s knowledge,
no definition or official statement of such a property exists (yet).

9.4.1 Security Types Preserving Compilation

The definition of security types preserving compilation relies on two assumptions.
Firstly, the security properties of interest in the source language are enforced
only by means of a type system. Secondly, the target language is equipped with
a type system that entails non-interference.

Concerning the first assumption, starting from the seminal work of Volpano et
al. [117], security type systems have been developed in a variety of forms, often
in order to tackle non-interference [115,126]. To prove non-interference the input
of a program, as well as its variables, are tagged to be either high or low security
(more complicated security lattices can be considered [33] but we will not delve
into that for the sake of simplicity). Informally, a program is non-interfering
if and only if any sequence of low inputs will produce the same low outputs,
regardless of what the high level inputs are. By denoting secure values as high,
if a program is non-interfering, its security policies are not violated.

Concerning the second assumption, it has been shown that languages such as
assembly, though providing low-level abstractions, can enjoy the benefits of
powerful type systems. The most renowned example of such a language is the
Typed Assembly Language (TAL) of Morrisett et al. [88]. It is important to
note that attackers written in these languages must also be well-typed.

When a compiler is security types preserving, it transforms non-interfering source
programs into non-interfering target programs. Formally, let Γ ` NI(P ) denote
that program P is non-interfering according to environment Γ. A compiler J·KST
is security types preserving if the following holds: ∀P ∈ S,Γ ` NI(P ) ⇒ Γ `
NI(JP KST ).

Proving a compiler to be security types preserving seems more straightforward
than proving it fully abstract, as it does not require any reasoning about
contextual equivalence. However, it is only applicable to a setting where the
target language is typed with a type system that is powerful enough to entail
non-inteference.



Chapter 10

Related Work

In questo campo [analisi dei
programmi], piccolo è bello. Non
dappertutto funziona così però!

In [the field of program analysis],
small is good. Mind that this
does not apply to all fields!

A prof., lecturing on program
analysis

This chapter presents related works. Firstly, it discusses security architectures
(Section 10.1) and related work in compiler research (Section 10.2). Then it
surveys other secure compilation results (Section 10.3). Finally, it discusses
fully abstract semantics (Section 10.4) and the usage of principals in other work
(Section 10.5).

10.1 On Target-Level Protection Mechanisms

This section presents a number of target-level protection mechanisms that
have been used (or could be used) to achieve secure compilation: ASLR
(Section 10.1.1), PMA (Section 10.1.2), Sandboxing (Section 10.1.3), Capability
machines (Section 10.1.4), the Crash-Safe machine (Section 10.1.5) and massive-
scale differentiation techniques (Section 10.1.6).
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10.1.1 Address Space Layout Randomisation (ASLR)

ASLR is a technique that randomises the memory layout of key data areas of
a program such as the base of the stack, of the heap, of libraries, etc. when
creating the executable. The executable is divided into segments whose order
is randomised by the dynamic linker (i.e., just before running the executable).
This technique is used to hinder an attacker from mounting “return to libc”
attacks, and from using previously acquired knowledge of the location of certain
data to access that data in subsequent runs of a program.

10.1.2 Protected Module Architectures (PMA)

PMA is an assembly-level isolation mechanism implemented in several research
and industrial prototypes that encodes the access control policy of Section 2.1 [40,
80, 81, 82, 91, 109,111,112]. As mentioned in Section 9.1.1, Fides is a hypervisor
implementation of such a machine [112]. Only two hardware implementations
exist: Sancus [91] and the Intel SGX [15,82]. The Salus implementation provides
the same guarantees of PMA but in a higher position in the software stack, it is
in fact an OS-based implementation [111]. Mondriaan is a PMA implementation
with fine-grained protection schemes aimed at developing less monolithic
operating systems [123]. Flicker is a software-based PMA implementation
that can execute pieces of code in complete isolation guaranteeing secrecy of
sensitive information [81]. Some disadvantages of this architecture have been
mitigated in Trust visor by using a hypervisor [80]. The TCB of PMA can be
very small [81, 109,112,113] or even zero-software [40, 82, 91]. A more in-depth
analysis of variations of the PMA concept can be found in Raoul Strackx’s
Ph.D. thesis [110].

A formalisation of PMA as an untyped assembly language extended with a
program counter-based access control manager was provided by Patrignani
and Clarke [95]. Albeit glossing over specific implementation details, this
formalisation captures the general access control policy and it can, up to due
changes, scale to effectively model specific PMA implementations.

The isolation mechanism of PMA has been studied by Larmuseau et al. [70].
They specified an operational semantics that securely combined an abstraction-
rich language with a model of an arbitrary attacker without relying on any
static checks. To do so, they lifted the PMA memory isolation mechanism into
the semantics of a multi-language system à la Matthews and Findler [78].
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10.1.3 Sandboxing

A protection mechanism seemingly dual to PMA is sandboxing [51,127]. With
sandboxing, a trustworthy environment is extended with a location (the sandbox)
where non-trustworthy code is placed and monitored as to detect any malicious
action it performs. Conceptually, sandboxing seems to be dual of PMA, thus
we expect that the same insights developed in the secure compilation works
for PMA would lead to the development of a secure compiler for sandboxed
programs. However, no such secure compiler has been devised yet.

10.1.4 Capability machines

Capability machines embody the capability paradigm of Dennis and Van
Horn [34]. The idea revolves around the concepts of subjects, operations
and objects: subjects perform operations on objects. For example, Alice (a
subject) can write (an operation) something to the filesystem (an object). With
capabilities, Alice’s write succeeds only if she is able to present a capability
that allows her to at least write to the filesystem. In this case, we say that
Alice has permission to write the filesystem. Were she not able to present
such a capability, the write would fail. With capabilities, only connectivity
begets connectivity. So if a subject cannot create a capability to an object,
and if she does not receive a capability to an object, she cannot perform
operations on the object. Capabilities are thus not forgeable, all Capability
Machines provide a supervisor (to use the terminology of Dennis and Van Horn)
that ensures this. The literature on the subject is very vast, but for secure
compilation purposes, we are interested in implementations of this machine.
Few capability machines implementation exist: the M-Machine [25], Cheri [124]
and Capsicum [119]. In the M-Machine, capabilities are words whose first bit
is set to 1 (no instruction can set this bit to 1 without calling the supervisor).
Capsicum introduces capabilities at the OS level in a BSD-like operating system.
Cheri introduces capabilities at the hardware level like the M-Machine. However,
a capability co-processor is added to the CPU in order to handle capabilities;
normal instructions then succeed only if an enabling capability is present in the
co-processor.

Capability Machines are very expressive security architectures that would suit
being targeted by a secure compiler.
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10.1.5 The Crash-Safe machine

A more general-purpose security architecture is the Pump machine [35,36], which
is the base of the Crash-Safe machine [17]. The architecture permits arbitrary
meta-data tracking at the machine code level, which can be used to enforce
security policies like information flow ones [17]. Support for the enforcement of
these security properties suggests that these security architectures may also be
suitable targets for secure compilation schemes.

10.1.6 Massive-Scale differentiation

Massive-scale software differentiation is a biologically-inspired software defence
mechanism that aims at protecting the same software from being susceptible
to the same attack. The idea is that the same software is not distributed in
the same copy but each copy has small modifications that do not impact the
general behaviour but that can hinder certain attacks [59, 71]. This defence
mechanism has a clear property that can be formalised: all copies of the same
software generated via differentiation techniques must be fully abstract w.r.t.
the original one. This technique seems to provide some of the benefits of ASLR,
so it could be given to the target language of a secure compiler in order to
exploit it for secure compilation purpose. No work that achieves such a result
exists, though.

10.2 On Compilers

This section describes related research advances concerning compilers.

Certifying compilers generate target code that is accompanied by a certificate
that the code enjoys certain properties. PCC [90] is a mechanism that binds a
program to a proof of its properties, so that a host can check the properties of a
program before executing it. PCC can be integrated with secure compilation to
allow the insecure code to prove that it is compliant to a pre-defined agreement,
i.e., it is not malicious, so to speed up runtime checks. Several of the surveyed
works envisage such a cooperation between PCC and secure compilation [18,19,
20,73,88].

A related, yet different research field is that of verified compilation (also known as
certified compilation). Verified compilation aims at providing formal guarantees
that a compiler is correct [74]. This correctness is often stated as semantics
preserving: the compiler is proven to output target code that behaves as
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its source-level counterpart. To this extent, verified compilation works make
extensive use of theorem provers, the most widely used being Coq. The main
difference with secure compilation is that there is no notion of security in verified
compilation. This influences the notion of low-level contexts which compiled
programs interact with; they are obtained by compiling high-level contexts, so
low-level attackers have the same power as high-level ones. Results from this
field can be employed in a secure compilation scenario, as they provide one
direction of the proof of fully abstract compilation, namely the one we assumed
with Theorem 6.

The CompCert project is the most well-known effort to provide a verified
compiler; CompCert is a Coq-verified multi-pass compiler for a (growing) subset
of C to PowerPC, ARM and x86 assembly [74,76]. Other works have followed
the CompCert approach and provided verified compiler for multithreaded
languages [77], just-in-time compilation [89] and C with relaxed memory
concurrency [107].

Chlipala [28] also provided a Coq-verified compiler for the simply-typed
λ-calculus to assembly language that is proven to be type-preserving. Type
preservation is also an often proven result about compilers [27, 54, 73]. Type-
preservation, however, does not entail security of the compiler. In certain cases a
type-preserving compiler can also be secure [73], but that follows from additional
statements besides type preservation.

All these results apply to whole programs but recently, verified compilers have
appeared for partial programs as well. Benton and Hur [22] provided a verified
compiler from a call-by-value λ-calculus to a SECD machine as well as for
System F with recursion to the same target language [23]. Hur and Dreyer [60]
devised a verified compiler between an idealised ML to assembly. These works
rely on a logical relation between the source and the target language to prove
semantics preservation. Claiming that the results above do not scale to multi-
pass compilers (i.e., real-world compilers), Perconti and Ahmed devised a
two-steps verified compiler for System F with existential and recursive types to
TAL. Their works relies on logical relations that are devised in a multi-language
setting. The formal developments of these works hint at possible alternatives
to prove full abstraction for compilers for partial programs. Moreover, these
techniques seem more scalable than the approach proposed in this thesis (i.e.,
the algorithm), however, they have not been applied to secure compilation (yet).
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10.3 On Secure Compilation

This section surveys the existing research on secure compilation. This section
is organised based on the target language feature exploited: type systems
(Section 10.3.1), cryptographic primitives (Section 10.3.2), memory protection
mechanisms (Section 10.3.3) and the insertion of dynamic checks (Section 10.3.4).

10.3.1 Type Systems-Based

Following are the works that achieve secure compilation by exploiting the type
system provided by the target language. In most cases, secure compilation is
achieved by means of type-preserving compilation.

Typed Assembly Language is a RISC assembly language extended with a type
system based on primitive types (e.g., integers, records, arrays), higher order,
recursive types and more [88]. This language has been targeted by Morrisett et al.
to securely compile a variant of System F augmented with integers, products and
term-level recursion [88]. The compilation phase consists of five type-preserving
steps: continuation-passing style (CPS) conversion, closure conversion, hoisting,
allocation and code generation. The target languages of these steps are relatively
similar to each other, starting from System F and gradually adding features
such as closures and explicit memory allocation. Each translation step is
type-directed, i.e., it is guided by the type of the expression that is being
translated, and generates well-typed target-level code. In the original work,
these translation steps are not formally proven to be correct, in fact, subsequent
work proves that certain of these steps cannot be made with a fully abstract
translation [13].

As a first step, Ahmed and Blume proved that typed closure conversion from (and
to) System F is fully abstract [12]. This translation exploits additional typed
wrappers for source terms in the target language. Typed closure conversion
turns each function into a pair consisting of a function pointer and a closure
environment that provides bindings from free variables to values. The conversion
is type-directed and generates typed pairs, which are given the type of their
closure environment. Typed wrappers are terms that translate source values v
of type t to target values of type JtKST (and vice-versa) based on the syntactic
structure of v and of type t. As a proof technique the authors adopt step-
indexed logical relations [11] instead of contextual equivalence to prove the
translation fully abstract. Moreover, the proofs exploit several key properties
of typed wrappers: wrapper termination (i.e., wrapper functions are total),
cancellation (i.e., a translation from t to JtKST and one from JtKST to t cancel each
other) and parametricity (enabling the usage of wrappers for abstract types).



ON SECURE COMPILATION 177

In subsequent work, Ahmed and Blume proved that a typed CPS translation
from the simply-typed λ-calculus to System F is also fully abstract [13]. Instead
of using global “answer types” (i.e., the type of the continuation), the typed
CPS translation given each continuation its own individually abstract answer
type. Consequently, a well-typed function in typed CPS form can only use
its continuation, and this prevents “bad” target terms from being well-typed.
To prove the translation fully abstract, the authors combine source and target
language in a Matthews and Findler-style multilanguage system [79] so that
both languages have access to each other’s values. Preservation and reflection
of contextual equivalence is proven by using step-indexed logical relations.

Barthe et al. devised a secure compilation scheme from a WHILE language to
a typed, stack-based assembly language [19]. Both languages enjoy information
flow type systems, which is the mechanism exploited by the compilation scheme
to be secure. Information-flow type systems assign a security label l or h to
insecure and secure values respectively; they enforce a non-interference property:
h-level values do not influence l-level output [117]. The secure compilation
scheme produces target code that is well typed and therefore enjoys the non-
interference properties of the source code, thus making the translation security
types-preserving. Since the security properties of the source language stem only
from the type system, the compilation is secure. Subsequently, the authors
extended their secure compilation results to a Java-like concurrent setting,
extending both source and target languages with thread creation [20]. The
compilation scheme exploits the typing information to label its output code as
being either high or low security. Then, this information is fed into a secure
scheduler, which uses it to ensure that the interleaving of observable events may
not depend on sensitive data. Together, the compiler and the scheduler prevent
internal timing leaks performed by an attacker with access to low security
variables.

League et al. developed a secure compilation scheme from Featherweight Java
(FJ, [98]) to Fω that exploits the latter’s higher order type system (extended
with ordered records, fixed-point functionality, recursive types, existential types
and row polymorphism) [73]. The compilation scheme translates each FJ class
into an Fω term where fields are collected in one record and methods are
collected in a separate record which represents a virtual method table shared by
all instances of the class. In this type-preserving translation, compiled Fω terms
preserve the typing information of their source level counterparts. The type
system of FJ is not the only security mechanism, since classes can have private
fields that are securely compiled due to the adoption of existential types.
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10.3.2 Cryptography-Based

This section describes works which devise compilers for distributed and
concurrent languages, which are subject to a Dolev-Yao attacker. These works
achieve secure compilation by exploiting target-level cryptographic primitives
to protect messages exchanged between target-level processes.

Abadi, Fournet and Gonthier extensively studied the application of crypto-
graphic primitives to securely compile inter-process, message passing-based
communication, both in concurrent and distributed settings [2, 3, 4]. The
authors adopt source languages that are variations of the Join calculus: a
model of concurrency where processes send and receive messages on channels,
which are treated as first-class citizens. The Join calculus is reminiscent of the
π-calculus [85,106]; they are also equivalently expressive (up to weak barbed
congruence [43]). The target language chosen in their works is the SJoin calculus:
an extension of the Join calculus with security primitives for encryption ({M}k)
and decryption (case L of {M}k in P ) of message M with key k.

In their first work, the authors presented a fully abstract compilation scheme for
processes which are given secure local and global communication primitives [3].
Here, translated processes are wrapped in a “firewall” process that (i) maintains
key pairs for cryptographic primitives and (ii) transforms communication
on global channels into security protocols employing those primitives. The
translation is proven to preserve and reflect weak bisimulation, which is what
frequently replaces contextual equivalence for concurrent calculi.

Subsequently, the authors developed a secure compilation scheme for the
Join calculus extended with support for principals, so that the calculus has
authentication primitives [4]. In the target code, principals are translated
into key pairs that are used to generate unforgeable certificates that prove
a principal’s identity. The translation is proven to preserve and reflect weak
bisimulation, but only in the presence of noise in the network (i.e., enough
encrypted messages) to prevent traffic analysis.

Moreover, relying on similar techniques, the authors provided a secure
compilation scheme for the Join calculus extended with constructs to create
secure channels [2]. In this translation, target processes are given a cryptographic
key for each communication channel they define and they are placed behind
a “firewall” that keeps track of key usage. Communication is translated into
the execution of cryptographic protocols which use nonces and other techniques
to thwart different kind of attacks. Full abstraction of the translation is again
proven to preserve and reflect weak bisimulation and it again relies on the
presence of noise in the network.
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This line of work was further expanded by Bugliesi and Giunti, who provided
a secure compilation scheme from a dynamically-typed π-calculus to the
applied Spi-calculus which relies on cryptographic operations to secure channel
communication [24]. The Spi-calculus is the extension of the π-calculus with
cryptographic primitives much as the SJoin calculus is to the Join calculus.
The usage of the π-calculus (as opposed to the Join calculus of previous works
by Abadi, Fournet and Gothier), allows forward secrecy attacks to be modelled
(i.e., the logging of encrypted data to be decrypted in the future). This is
because in the π-calculus a communicated channel can also be used to perform
input, while this is not possible in the Join calculus. This work presents a
translation that protects against these attacks by extending translated processes
with self-signed certificates and a proxy server. Self-signed certificates are the
target-level implementation of source-level channels; these certificates include
the channel identity and two encryption keys corresponding to the input and
output capabilities. The proxy server keeps track of cryptographic keys related
to channels, to preserve the expected interactions between processes. Also in
this case, full abstraction of the compilation scheme is proven to preserve and
reflect weak bisimulation.

Techniques similar to those employed by Abadi, Fournet and Gonthier were also
employed by Adão and Fournet, who developed a secure compilation scheme
for a π-calculus extended with secure channels, mobile names and high-level
certificates [9]. The characteristic of their work is the target language and the
adversary model. The target language is a set of machines that have input
and output network interfaces and can perform cryptographic operations. The
adversary is modelled as a probabilistic algorithm that controls that network
and some corrupted machines. The compilation scheme is proven secure by
showing that it preserves and reflects weak bisimulation.

The work of Laud has also exploited encrypted and signed messages to
securely compile ABS into the applied π-calculus extended with cryptographic
operations [72]. ABS is a concurrent, object-oriented language with
asynchronous method calls and futures [66]. The compilation scheme translates
each asynchronous method call into an explicit message which is uniquely
identified by means of a fresh cryptographic key. Compiled objects are also
uniquely identified by means of fresh keys associated to them. The semantics
of both the source and the target languages are given in terms of LTSs, where
attackers are modelled as other LTSs that synchronise on visible actions. Full
abstraction of the translation is proven to preserve and reflect weak bisimulation
defined on these LTSs.

Duggan provided a secure compilation scheme from a π-calculus-like language
with cryptographic types and principals to the Spi-calculus [39]. Cryptographic
types express cryptographic guarantees on values at the type system level, since
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types mention that certain values are encrypted or signed by certain principals.
The information regarding principals is hidden for communication over insecure
medium, while it is exposed when the medium is trusted. The type system
performs static checks to ensure that values are used in the expected manner, but
it also performs dynamic checks on cryptographic-typed values when principals
data is unavailable. The compilation scheme inserts cryptographic operations
only when a dynamic check is required thus minimising the computational
overhead introduced by cryptography. As in previously-mentioned works,
principals are translated to pairs of keys which are used for encryption and
signing of network messages. Here, contextual equivalence is defined to be a
weak bisimulation; the work then proves the presented translation to be fully
abstract.

Session types ensure that distributed parties comply to a protocol; the latter
is encoded as a session: a sequence of actions detailing what message is
communicated between various peers [26]. Corin et al. presented a secure
compiler from F # extended with session types to F # extended with libraries
providing cryptographic primitives [30]. The secure compiler produces code
that is shielded from the attempts of other peers to deviate from their
session by exploiting the cryptographic primitives of the target language. The
compiler does not introduce additional messages but it maps each session
action to a cryptographic message between the same sender and receiver. Each
cryptographic message contains a unique session identifier and the signatures of
the sender and of the senders of the previous messages, so it can be uniquely
identified. Any attempt to tamper with the integrity of the session can thus be
detected and any such message can be dropped. The secure compiler is proven
fully abstract by adopting a labelled operational semantics which makes explicit
the communication between secure code and a potential attacker.

Focussing on distributed languages, Fournet et al. [44], presented a fully abstract
compilation scheme for a distributed WHILE language featuring a type system
with security levels. In this case, the target language is a WHILE language
extended with cryptographic libraries and with threads that reside at different
locations. The compiler performs four passes of the source code in order to
generate secure target code. Firstly, source code with location annotations is
sliced into local programs, each meant to run in a different location. Secondly,
each local program is extended with global variables to keep track of its state.
Then, each global variable is given local replicas and additional functionality
for explicit updates between these replicas. Finally, global variable updates
are protected with cryptographic operations and the keys that regulate these
operations are disseminated to the threads.

Another class of distributed languages is multi-tier languages, which are adopted
to develop web applications split into several tiers (i.e., client, server, database,
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etc) that can reside in different machines. Baltopoulos and Gordon [18] described
a secure compilation scheme for the multi-tier language TINYLINKS into
F7, an ML dialect extended with refinement types. The secure compiler is
proven to preserve data integrity and control integrity properties of well-typed
source programs in the generated target programs by exploiting authenticated
encryption mechanisms. Malicious attackers are modelled as untyped contexts
which also have power over the network connecting the different tiers. The
compiler is secure because it is proven to translate well-typed programs into
robustly-safe F7 expressions. These expressions are a subset of F7 expressions
which are immune to the aforementioned attacks when interoperating with any
attacker.

10.3.3 Memory Protection Mechanisms-Based

Memory-related attacks have resulted a large body of research on memory
protection mechanisms.

Abadi and Gordon adopted ASLR to achieve (probabilistic) fully abstract
compilation in a λ-calculus setting [6]. Their source language is a simply-typed
λ-calculus extended with an abstract memory: a mapping from locations to
values; locations can be public or private. Their target language is a λ-calculus
extended with a concrete memory: a mapping from natural numbers (in this
case they assume an unbounded memory) to values. Abadi and Gordon prove
that with a large enough memory ASLR ensures that an attacker operating
at the target level has a negligible chance of guessing values, thus achieving
probabilistic full abstraction.

Subsequently, Jagadeesan et al. [62] extended this secure compilation scheme
to a source language with more complex features: dynamic memory allocation,
higher-order references and call-with-current-continuation. The source language
is λµhashref-calculus, a λ-calculus extended with operations for testing the hash
of a reference, and the target language is the λµprobref-calculus, a λ-calculus
with the ability to reverse the hash of a reference. Reversing a hash succeeds
when a reference is known, but it is complex when the reference is unknown due
to the large memory layout and the random allocation of references in memory.
To prove full abstraction of the translation, the authors develop LTSs for both
λµhashref-calculus and λµprobref-calculus which yield trace semantics which is
then used to guide the proofs.

Agten et al. were the first to present a fully abstract compilation scheme that
use PMA to preserve confidentiality and integrity properties of their source
languages [10]. The authors devised a secure compilation scheme for a language
with objects, interfaces and first-class method references to an assembly language
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extended with PMA. The compilation scheme places the objects to be secured
in the PMA protected memory partition. Then, it creates entry points for
methods appearing in interfaces, so that external code can call them. Secure
methods activation records are allocated on a secure stack that resides within
the protected memory section. Dynamic checks are introduced for all values
communicated to and from the unprotected section in order to prevent ill-
formed values affecting the computation. For example, primitive-typed values
are checked to be inhabitants of that type, i.e., a bool value is checked to be
one of two predefined values: the compiled versions of true and false.

Patrignani et al. expanded the work of Agten et al. to a source language with
dynamic memory allocation, exceptions and inner classes [97]. This source
language is an extension of Java Jr. [65]: a Java-like object-oriented language
that provides strong encapsulation of classes and objects, which are not visible
outside the package that defines them. Moreover, packages communicate based
on exported interfaces and exported objects. With the introduction of class
types, the secure compilation scheme introduces more dynamic checks. Objects
are checked to define the method they are called on, which is possible as objects
are allocated in the secure memory partition alongside their type information
(which is also used for dynamic dispatch). Similar checks are performed on
parameters whose type is a securely-defined class. Moreover, the identities of
objects passed to the unprotected code are replaced with natural numbers, so
as to obscure the allocation strategy of objects in the protected memory section
and prevent related attacks. Whenever an exception is thrown from unprotected
code, it is also checked to be among the exceptions that could be thrown (i.e.,
defined in the method signature) and not a maliciously crafted exception.

When proving full abstraction of the compilation schemes, both works assume
the reflection of contextual equivalence claiming that most compilers achieve
this. By relying on a fully abstract trace semantics for the target language [95],
both works prove the contrapositive of the preservation of contextual equivalence
by devising an algorithm that always constructs a context that differentiates
between two components that exhibit different target-level traces.

10.3.4 Dynamic Checks Insertion-Based

Some of the presented works add dynamic checks to make their compilation
schemes secure, for example Agten et al.’s primitive value checks. Those works
relied on other mechanisms besides the checks, while this section describes works
that achieve secure compilation mainly through the dynamic checks added in
the generated target code. It is crucial when adding dynamic checks in the
generated target code that the attacker cannot tamper with these checks, which
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would render them void. All of the works presented below adopt different
techniques to protect the inserted checks.

Ghica et al. [48] described a fully abstract compilation scheme from a λ-calculus
extended with iteration to VHDL digital circuits. Security of compilation
is achieved through the addition of a runtime monitor that forces external
code communicating with the generated digital circuits to respect the expected
communication protocol. The attacker is prevented from tampering with the
hardware and thus cannot disrupt the runtime monitor.

Fournet et al. [45], used defensive wrappers in concert with other techniques
to securely translate f *, a monomorphic ML-like language with references, to
JavaScript, the assembly of the web. The compiler firstly translates f * terms
into JavaScript terms, then proceeds to defensively wrap these terms against the
features of JavaScript that can be exploited by a malicious attacker. Defensive
wrappers (similar to the dynamic checks introduced by the compilers of Agten et
al. [10] and Patrignani et al. [97]) provide dynamic type checks for the untyped
JavaScript code. For the compiler to be secure, it firstly makes a local copy of
the implementation of trusted values from the global namespace, to prevent an
attacker from redefining these values. Secondly, it exports defensively-wrapped,
translated terms into the global namespace to make them globally available.
Even though the compiler emits JavaScript code, for the proof of full abstraction
the authors employ js∗, a JavaScript model in a monadic version of f *, as target
language. This is so they can translate f * types into js∗ types in order specify
inariants and let automate proofs via F *. As a proof technique, the authors
use a labelled bisimulation called applicative bisimulation instead of contextual
equivalence.

10.4 On Fully Abstract Semantics

Full abstraction has been largely studied in two fields: inter-language translation
(e.g., compilers) and language semantics. Several results on the former have
been presented in Section 10.3. As discussed by Gorla and Nestman [52], fully-
abstract translation are interesting when they are used to enforce a language
property (e.g., security) and not to show that a translation exists. In fact,
recently, Parrow has proven that a fully-abstract translation from a source
to a target language is only possible if the target language has strictly more
equivalence classes than the latter [93].

This section only focusses on the latter kind of results, fully-abstract language
semantics, that are related to this work. In fact, the literature on the subject
is enormously vast and spans several decades of research. Full abstraction has
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been largely studied as a way to formalise the correctness of a denotational
semantics with respect to an operational one [99]. It has been studied for
different programming languages paradigms, such as the λ-calculus [83] and
the π-calculus [63]. The reader interested in full-abstraction results for process
algebra is referred to the survey of Parrow [92].

Trace semantics was developed to study the behaviour of concurrent CSP [46]
and it has been adopted for describing concurrent and distributed language
behaviour [104]. Several works have devised fully abstract trace semantics for
functional [6, 49, 62, 69] and object-oriented [65, 120] languages. Abadi and
Plotkin [6] developed a fully abstract trace semantics for a λ-calculus with
references in order to prove a secure compilation using Address Space Layout
Randomisation secure. Jagadeesan et al. [62] extended the results of Abadi and
Plotkin to a λ-calculus with more advanced language features and equipped that
language with a fully abstract trace semantics for secure compilation purposes.
While the languages are different, the goal of the trace semantics of these works
and of the presented work are analogous, as the trace semantics is used to prove
secure compilation results related to the language. Laird [69] presented a fully
abstract trace semantics for a functional language with locally declared general
references that does not focus on the security aspects of that language. Ghica
and Tzevelekos [49] provided a fully abstract trace semantics, with regards
to a game operational semantics, of a C-like language that, unlike this work,
does not present a protection mechanism. Jeffrey and Rathke [65] provided
a fully abstract trace semantics for a core Java-like language that enforces
strong encapsulation of objects in packages and of fields in classes. Welsch and
Poetzsch-Heffter [120] devised a fully abstract trace-based semantics for class
libraries in Java-like languages, focussing on backward compatibility for class
libraries instead of security.

10.5 Principals in Related Work

In the programming language community, principal information have been made
explicit in programming languages for a different purpose than the one of this
thesis. The closest work is that of Zdancewic et al. [125], where principals are
embedded in a λ-calculus and the execution migrates from the environment of
a principal to that of another one. Principals have also been investigated in the
information flow setting. Tse and Zdancewic [115] developed a system where the
runtime information on principals is used to enforce non-interference properties
and safety of declassification for principals. Finally, Chothia et al. [29] enforced
information-flow properties on a distributed, object-oriented language with
multiple principals that relies on cryptographic keys. For the sake of simplicity,
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JEM does not incorporate advanced type systems that use principal information
for the enforcement of information flow-like properties.





Chapter 11

Conclusion and Future Work

Three things fears the wise man:
a moonless night, the storming
sea, and the anger of a quiet man.

Pathrick Rothfuss – The wise
man’s fear

This section contains concluding remarks (Section 11.1) on the presented
work. Moreover, it discusses trajectories for future work on the topic of secure
compilation and security in programming languages (Section 11.2).

11.1 Conclusion

Most prominently, this thesis presents the development of a secure compilation
scheme from J+E to A+I. The source language of the compilation scheme is
called J+E. J+E is a strongly-typed, single-threaded, component-based, object-
oriented language that supports dynamic memory allocation and exceptions.
The target language of the compilation scheme is called A+I. A+I is an untyped
assembly language enhanced with a protected module architecture – a memory
isolation mechanism of emerging processors. To guide the implementation of the
secure compilation scheme, this thesis highlighted mistakes that make a naïve
compilation scheme not secure and how to correct them. To prove that the
compilation scheme is secure, it is proven to be fully abstract, i.e., it preserves
and reflects contextual equivalence between source-level components and their
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compiled counterparts. The connection between full abstraction and security
has also been discussed and this thesis provided examples of security properties
that can expressed via fully abstract compilation. To devise the proof of fully
abstract compilation, this thesis relied on a fully-abstract trace semantics for A+I.
It presented two different characterisation of traces for A+I and proved that both
are fully abstract, i.e., they are as precise as contextual equivalence. Finally,
this thesis discussed the security vulnerabilities that arise when languages with
multi-principal support are considered for secure compilation. A secure compiler
for multi-principal languages has also been devised and its security has been
argued to hold.

The work presented in this thesis could have been carried out in different
ways. An improvement over the presented work would be to formalise the
J·KJ+E

A+I compiler. This would allow us to prove Theorem 6, ensuring that
none of the presented countermeasures conflict with source-language features
implementation (even though we are quite sure this is not the case). A verified
implementation of that compiler formalisation could also be provided, were
all the theory presented in this thesis formally proven with a proof assistant
such as Coq. However, before going down the proof assistant path, we believe
a better proof technique (i.e., without the algorithm) is necessary to simplify
the Coq development. Such a better proof technique for proving a compilation
scheme fully abstract is currently under development.

11.2 Future Work

A number of future research trajectories can be envisioned from this point, some
have also been mentioned throughout the text.

Firstly, no existing work considers how would a secure compiler interact with a
garbage collector. Garbage collection (i.e., automated memory management) is
a reality in all mainstream programming languages. To bring secure compilation
to mainstream usage, it has to support most features that programmers rely
upon: garbage collection is clearly one of those.

Secondly, no existing secure compiler targets concurrent untyped assembly
language, i.e., an untyped assembly language running on a machine with multiple
cores. As stated in Chapter 10, concurrency-related secure compilation has
been studied in the distributed setting but only in a message-passing based
model for concurrency or in a concurrent typed assembly setting. However,
concurrent untyped assembly language is a reality in modern multi-core machines.
Supporting such a target language seems necessary to bring secure compilation
to mainstream audiences.
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Having worked with PMA, one wonders what can be expressed and what can
not be expressed with it. The isolation mechanism it brings seems very powerful,
but will it allow secure compilation of advanced security policies such as those
based on information-flow? In particular, are there security properties that
non-interference can capture and that program equivalence (Definition 1) can
not? And if so, can they be securely compiled to PMA-enhanced assembly?
Moreover, will PMA support secure compilation of polymophic languages and of
dependantly-typed ones? All these points are interesting per-se but we believe
that a general result on the expressiveness of PMA is also desirable.

As seen in Section 10.1, capability machines are a powerful, promising security
architecture apt at being targeted by a secure compiler. In fact, research is
already ongoing to develop a secure compiler for existing capability machine
implementations, and that research shows that the insights developed in this
thesis are applicable outside of the PMA architecture. However, no industrial
implementation of capability machines exist. So, when developing a secure
compilation scheme for them, we (as programming language researchers) can
steer the evolution of this security architecture by stating what is desirable and
what is not from a programming language perspective. This would (hopefully)
result in capability machine implementations that provide building blocks for
supporting secure programming.
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