Breaking the Complexity Barrier
of Pure Functional Programs
with Impure Data Structures

Pieter Wuille and Tom Schrijvers*

Department of Computer Science, K.U.Leuven, Belgium
FirstName.LastName@cs.kuleuven.be

Abstract. Pure functional programming language offer many advan-
tages over impure languages. Unfortunately, the absence of destructive
update, imposes a complexity barrier. In imperative languages, there are
algorithms and data structures with better complexity.

We present our project for combining existing program transformation
techniques to transform inefficient pure data structures into impure ones
with better complexity. As a consequence, the programmer is not exposed
to the impurity and retains the advantages of purity.

1 Introduction

Pure functional programming offers many advantages over normal-style impera-
tive programming. It leads to very elegant and straightforward code. Referential
transparency, the absence of side effects, greatly simplifies the analysis and op-
timization process of pure functional programs.

However, the lack of side effects, and destructive update in particular, im-
poses a barrier on the best achievable time and space complexity. Arrays, the
most efficient data structure known for representing a modifiable mapping from
integers to elements of a fixed size, can be implemented with constant-time mod-
ification and constant-time retrieval when destructive update is available.

Algebraic data types (ADTs) are the building block for data structures in
pure functional languages. Though many ADT-based purely functional imple-
mentations of arrays exist, they all require at least a logarithmic complexity for
access or modification, and often logarithmic memory usage per modification.

In our project we aim to achieve the efficiency of imperative code in functional
programs, by transforming the data structures used to other, possibly impure
ones. This paper consists of a preliminary study of our work in progress. Our
contributions are as follows:

— A systematic approach using a sequence of transformations to improve the
efficiency of code that uses purely functional data structures. (Section 3),

— A number of case studies in which this approach is applied to real examples
(Section 4), and

— Experiments that show their effect on performance (Section 5).

* Post-Doctoral Researcher of the Research Foundation— Flanders (FWO-Vlaanderen).

2 Preliminaries

We introduce a simple first-order functional language to demonstrate code ex-
amples. Our target language is an impure extension of the pure source language.
The syntax is based on Haskell [8], but the operational semantics is strict in
order to accommodate the target language’s impurity.

2.1 The Pure Source Language

A program consists of a number of first-order function definitions and data type
definitions. A first-order function definition is of the form:

froom*xmx*x .0 %71, —>7T
fvirv ... vy =e

where f is the function name, the v; are the formal parameters and e is the
body, an expression. The first line is the function signature, which contains the
parameter types 7; and the return type 7.

The table below lists the possible expressions:

v variable
Cey...en constructor application
fer...em function application
if e. then e; else ey | if-then-else
case e, of p; — €; pattern match
where a pattern p is of the form Cw; ... v,. Note that all constructor and

function applications must be saturated: it is a first-order language!

We support the usual primitive data types like Int, Bool and String. Other,
polymorphic algebraic, data types can be defined with the familiar Haskell syn-
tax.

Some further syntactic conveniences from Haskell are also used, such as the
list notation with [] and :, record field names, and the traditional infix operators
like +.

2.2 The Impure Target Language Extension

In order to improve the complexity of the source language, we generate impure
code in the target language. Hence, we extend our first-order language with two
effectful features, not allowed in source language programs.

— We allow a field of an algebraic type to be declared mutable, and provide
a fieldname_set :: adt * fieldtype —> () function. For example, a mu-
table integer could be declared as data MutInt = {mutable val :: Int},
and modified using val_set.

— Our target language provides dynamically growing arrays that can be de-
structively overwritten. The interface of the array type Array a is:

empty :: Array a create an empty array
set :: Array a * Int * a -> () | update a position
get :: Array a * Int -> a get element at given position

Note that a function only run for its side-effect has () as return type.

Impure features must be used inside a do ... end block. This block is to
be understood as equivalent to Haskell’s unsafePerformI0 operation which is
passed an IO action. The last expression before the end is the return value of
the construct, as if it was preceded by a return in the equivalent Haskell code.

Using impure operations is solely at the discretion of the programmer, who
must take responsibility that it causes no observable side effects.

3 Four-Step Approach to Improved Complexity

In this section, we explain our general approach for improving data structures
and changing program complexity. The approach consists of four steps:

1. Abstracting interfaces: hide the concrete pure data structure representation
behind an interface with abstract operations.

2. Interface implementations: choose a better (possibly impure) data structure
representation from a library of implementations to implement the interface.

3. Ezxtending the abstraction: extend the interface with additional abstract op-
erations (optional).

4. Specialization: remove the the abstraction layer, inline the chosen implemen-
tation and optimizing further (optional).

We illustrate each of the above transformation steps in the following, with a
migration from a list to an array representation.

3.1 Step 1: Abstracting Interfaces

The first step is to abstract data structure interfaces. An interface for a data
structure consists of an abstract type with all required operations for the data
structure, but independent of its internal representation.

For instance, a program that operates on a list data structure typically uses
a concrete representation of those lists directly, using pattern matches and con-
structor applications. This however makes it very hard to change the represen-
tation of the list without breaking existing code.

The abstract AList type Lists are traditionally implemented using the algebraic
data type:

data List a = Nil | Cons a (List a)

Code operating on such a List, uses constructors and pattern matches. These
are, however, completely inflexible. Whenever we want to change the list’s repre-
sentation, all constructors and pattern matches throughout the entire program
must change too. To simplify this task we introduce an abstract type AList a,
that does not suffer from this problem. It features the following operations:

nil :: AList a create an empty list

cons :: a * AList a -> AList a | add an element to a list.

isnil :: AList a -> Bool check whether the given list is empty.
head :: AList a -> a return the first element.

tail :: AList a -> AList a return the tail.

Transformation Existing code using the concrete List representation, is easily
transformed to use the abstract interface instead, by the transformation «():

a([]) =nil
afer:es) = cons afer) ales)
case e of if isnil afe)
e 0->e = then a(er)
V1109 => €9 else a(es)[v; — head a(e),vy — tail a(e)]

Note that this transformation is very straightforward, because there is al-
most a one-to-one mapping between the operations on the representation and
the operations on the abstract type. We require that all operations on the repre-
sentation have a corresponding (sequence of) abstract operations. If this is not
the case, the abstract interface must be extended first (see section 3.3).

Merely applying the transformation does not result in any performance gain.
On the contrary, we are introducing an abstraction layer, which adds some over-
head. Furthermore, the basic operations on concrete data structures (native op-
erators, pattern matching, constructors) are usually constant-time with very
small constant factors. If we want to achieve any improvement to complexity, we
will need to do more.

3.2 Step 2: Interface Implementations

Once a (suitable) abstract form has been created, we need an implementation
for it. Which implementation is best often depends on what operations are used
on it, their frequency, and even what kinds and amounts of data are stored in
it. The decision what implementation to choose is a very complex one, and is
beyond the scope of this document. A naive but still useful way is trying different
implementations from a library for each identified data structure and measuring
the performance through a benchmark.

We will describe three implementations for the AList interface. The first one
is the native one, mimicking the original List representation we started with,
the second is one based on arrays with exactly the same semantics, and a third
based on so-called VLists.

The List implementation for ALists To recreate the original implementa-
tion, we represent the AList as the native algebraic data type List, and implement
all five primitive operations using constructors and pattern matches on them.

The Array implementation for ALists For some applications using a dif-
ferent, impure representation can be much faster. Arrays are the most popular
impure representation of lists.

We define our array representation of an AList not as an impure array alone,
but rather as the tuple of an Array and the list length. The Array stores the
elements in order, and the length indicates the position of the last element in
the array. By keeping track of the length, the actual array can be larger than
the number of elements. This is useful for two reasons. Firstly, as long as there
is space left, we can extend the list without copying the Array. Note that the
Array stores the elements in reverse order: the last (oldest) element in the list is
at index 0 in the Array.

[1 [2,1] [4,3,2,1]

Fig. 1. Using Arrays to represent ALists

Secondly, we can share the same Array between two ALists, one of which
is a suffix of the other. This by itself however, would lead to problems when a
given AList is extended in two different ways. Since the extensions would share
the same Array to store their elements, they would be overwriting each other’s
data. The solution for this is keeping track of one more piece of information: the
length of the longest AList using the Array. When modifying the Array through
an AList whose length is less than the longest-used length of the Array, the
Array is copied first (using the function copy). Hence, all operations but cons
take always O(1) time, while cons takes either O(1) or O(n) time.

In summary, we end up with the following implementation:

data AListBack a = LB {array :: Array a, mutable size :: Int}
data AList a = L {back :: AListBack a, size :: Int}
nil = L {back = LB {array = empty, size = 0 }, size = 0 }
unshare 1 = if (size 1) > (size (back 1))
then L { back =
LB {array = copy (array (back 1)), size = size 1},
size = size 1 }
else 1

do
Array.set (array (back 1)) (size 1) e
size_set (back 1) ((size 1)+1)
L {back = back 1, size = (size 1)+1}
end
cons 1 e = modify (unshare 1) e
head 1 = Array.get (array (back 1)) ((size 1)-1)
tail 1 = L {back = back 1, size = (size 1)-1}
isnil 1 = (size 1)==0

modify 1 e

The VList implementation for ALists When no copy operations are re-
quired for cons, Arrays are the best we can achieve. Otherwise, a more involved
data structure is more appropriate, VLists [1], for which cons always takes O(1)
time.

The idea of the VList is to present an AList as a linked list of blocks of
exponentially increasing size. Each block consists of an Array (of pre-determined
size) to store successive list elements, a mutable field to count the number of
used positions in the Array, and a reference to the preceding block. A particular

4 /

\ \

[1 [2,1] [4,3,2,1]

Fig. 2. Using VLists to represent ALists

list is represented, in the same way as with plain Arrays, by a tuple that refers
to a given position in a given block.

When adding a new element to a VList, we check whether the next position
in the last block is available and, if so, simply put it there. Otherwise, we create
a new block with the original list reference as its predecessor and containing the
new element. In the worst case, the VList degenerates to a linked-list.

3.3 Step 3: Extending the abstraction

One way of improving the efficiency is by extending the abstract interface itself.
Assume we add an operation to our abstract AList interface:

’nth :: int * AlList a -> a \ return the nth element of the given 1ist‘

For expressivity purposes, it is not necessary to add this operation, as it can be
implemented in terms of the abstract operations isnil, head and tail:

nthnl=if isnil 1
then error "index of out bounds"
else if n=0 then head 1 else seek (n-1) (tail 1)

The above can act as a default implementation, which works for any represen-
tation that provides isnil, head and tail, but it is not efficient. It calls tail
n times in a loop, and thus has at least linear time complexity.

For some implementations however, it is possible to provide a more efficient
version of the nth operation, exploiting properties of the concrete representation.

Arrays For example, in the earlier Array implementation for ALists, it is possible
to implement it as:

nth n 1 = Array.get (array (back 1)) ((size 1)-1-n)

Note that this implementation has O(1) rather than O(n) time complexity.

VLists For VLists, the nth operation takes constant time iff each block is suffi-
ciently full. Assume the optimal case, where n blocks have been filled completely.
Hence, the ith block contains 2¢~! elements, and n—i-+1 blocks must be traversed
to reach them. This means at most an amortized! 2 steps per element:

S (n—i+1)207t oontl -2

B s T

Limitation While the abstract interface provides the nth operation, this is of
no consequence if the programmer does not use it. She may directly implement
such an operation herself rather than using the interface function. Consider the
programmer-written code:

seek n 1 = case 1 of
[-> error "index out of bounds"
a:b -> if n==0 then a else seek (n-1) b

This would be abstracted to this loop of heads:

seek n 1 = if isnil 1
then error "index out of bounds"
else if n==0 then head 1 else seek (n-1) (tail 1)

instead of to this probably more efficient version:

seeknl =nthnl

1 Yet, the first block takes n steps, i.e. logarithmic in the number of elements.

To overcome this problem in general, algorithm-recognition techniques need to
be investigated. However, in cases where the result of an inefficient operation is
not only semantically, but also representationally equivalent to the result of the
optimized version, Section 3.4 presents an alternative.

3.4 Step 4: Specialization

Rather than manually adding additional operations to the abstract data struc-
ture interface and implementations, we can leave hem implemented on top of the
original primitives, and rely on program transformation techniques to optimize
them.

We illustrate this process on the seek function below, that uses the abstract
AlList interface described earlier:

seek n 1 = if isnil 1
then error "index out of bounds"
else if n ==
then head 1
else seek (n-1) (tail 1)

Implementation Inlining Once the implementation of the abstract interface is
chosen, it can be be inlined [11] (unfolded) at the use sites.

This removes the overhead of the abstraction layer introduced earlier, and
generating code that again directly operates on the data structure representa-
tion. If we had chosen the same representation before and after abstraction the
interface (Step 1), then we would end up with the original code after inlining.

However, the idea is that we choose a different data structure than the one
the original code happens was written for, say an Array:

seek n 1 = if size 1 ==
then error "index out of bounds"
else if n ==
then get (array (back 1)) ((size 1)-1)
else seek (n-1)
(L {back = back 1, size = size 1 - 1})

Field Selector Inlining and Outward Floating of Case Expressions As many field
selectors are used on the same variable 1, we inline them as case expressions
and float them outward (see [7]) so they can be shared:

seek n 1 = case 1 of
L 1b 1s —>
if 1s ==
then error "index out of bounds"
else if n ==
then get (array 1b) (1s-1)
else seek (n-1) (L {back = 1b, size = 1s - 1})

Constructor Specialization If we specialize the seek function with respect to the
list argument [9], we get a helper function with two separate arguments (1s and
1b):

seek n 1 = case 1 of
L 1b 1s -> seek_L n 1b 1s
seek_L n 1b 1s =
if 1s ==
then error "index out of bounds"
else if n ==
then get (array 1b) (1s-1)
else seek_L (n-1) 1b (1s-1)

Strength Reduction After realizing the recursive call decreases the first and sec-
ond arguments equally, until the second one is zero, we can use strength reduction
(eg. [15]) to reach:

seek n 1 = case 1 of
L 1b 1s -> seek_L n 1b 1s
seek_L n 1b 1s =
if n >= 1s
then error "index out of bounds"
else get (array 1lb) (1s-1-n)

Inlining Again After inlining the now non-recursive seek_L into seek, we end
up with the now constant-time seek function:

seek n 1 = case 1 of
L 1b 1s -> if n >= 1s
then error "index out of bounds"
else get (array 1lb) (1s-1-n)

Note that strength-reduction is the crucial step in going from linear to con-
stant time complexity. However, the other steps are essential for exposing the
opportunity.

4 Case Study

The techniques described in the previous section have been applied (manually)
to some examples, to show their effectiveness. We will now describe these in
more detail.

The examples we consider are:

— Mergesort, a comparison sorting algorithm on lists
— Union-find, an algorithm for maintaining partitions in a set
— Perfect shuffle, an algorithm to randomly permute a list of elements

4.1 Mergesort

Mergesort is an elegant O(nlogn) comparison sorting algorithm. It can be im-
plemented in a purely functional way, on Lists, or imperatively on destructably
overwritable Arrays. Although constant factors differ, their complexity does not.

We consider the implementation in the Ocaml [12] standard library; it is a
pure version of mergesort that acts as a stable list sorting algorithm.

Step 1: Abstraction Since this algorithm is implemented directly on Lists, it
was abstracted to only use the earlier described AList interface with nil, cons,
isnil, head and tail.

Step 2: Implementation Three different implementations are considered: the
naive List implementation, the Array version, and a version based on VLists.

Step 3: Extending The algorithm uses an O(n) operation, called chop, which
corresponds with the Haskell function drop:

drop k 1 =
if k==0 then 1
else case 1 of
[l -> error "index out of bounds"
a:b -> drop (k-1) b

This drop operation is actually a repeated tail, as it can also be written as
(after abstraction):

drop k 1 =
if k==0 then 1
else if (isnil 1) then error "index out of bounds"
else drop (k-1) (tail 1)

If we add this operation to the AList interface used, a more efficient imple-
mentation can be provided eg. for the Array version:

drop k 1 =
if k > (size 1) then error "index out of bounds"
else L {back = back 1, size = (size 1)-k }

Step 4: Specialization The optimized implementation of drop for the Array
version, could have been obtained through inlining the Array implementation
code, and optimizing it. Since the transformation was done by hand, inlining
was not done however, making specialization impossible.

4.2 TUnion Find

Union-find is the well-known algorithm for maintaining disjoint partitions in a
given set. The underlying data structure is called a disjoint-set data structure.
It provides only three operations:

— makeset: create a singleton in the disjoint-set structure containing a given
element

— find: find the representative element of the given set. Checking whether two
elements are in the same set is done by comparing their representatives.

— union: merge two sets (given by an element that is contained in them) into
one. By doing this, all elements of both sets will get the same representative.

The algorithm given in [13] models the items in the set as nodes in a forest,
where each node refers to one other node to which it is equal. By adding the
optimizations path compression (where each node is made to point to the root
upon traversal) and union by rank (the shallowest tree is made to point to the
tallest one), it attains an amortized time complexity of O(na~!(n)), i.e. near-
linear time.?

A variant of union-find, called persistent union-find [3], can be implemented
in a purely functional way. Instead of storing the points-to relation inside the
nodes, the nodes only contain an index into a shared persistent array that con-
tains the indices of the node pointed to.

A persistent array is a data structure, comparable to the normal Array type,
yet it creates a new version upon every modification instead of doing an in-place
update.

Its interface is defined as:

type PArray a the persistent array type

init :: List a -> PArray a create an array with given contents
get :: PArray a * Int -> a get element at given position

set :: PArray a * Int -> PArray a | set element at given position

Step 1: Abstraction The code given in [3] already uses an abstracted version
of the persistent array, so adding an abstraction layer was not necessary.

Step 2: Implementation Again, multiple implementations of this data type
are possible, with different performance characteristics.

A naive implementation with lists is possible, representing the array elements
as list elements. This enables all earlier AList implementations to be used for
the persistent array. However, a structure using an AList as backend would need
to copy on average half of the elements on each modification.

A better alternative is using balanced trees to implement a map from indices
to elements. Balanced trees have a O(log n) look-up and modification time, which

2 a7 ! is the near-constant inverse Ackermann function.

would be preferable over ALists’ O(1) look-up time (if Arrays or VLists are used)
but O(n) modification time.

Even better performance can be obtained by using an observably persistent
data structure proposed in [6], as shown in [3], which does use destructive update.
The key idea is representing the latest version used of the persistent array as
a real Array, and other versions as a tree of modifications each pointing to a
predecessor. It is however possible to swap the Array (the top) and a modification
to it (a child) in constant time, to make an older version the latest used.

Further optimizations are not necessary, so steps 3 and 4 can be skipped.

4.3 Perfect Shuffle

In general, a perfect shuffle algorithm is one that takes a list of n elements and a
random number generator, and returns a random permutation of this list, with
each permutation equally likely.

In the pure setting, we replace the random number generation with a list
[ap, a1, ...,an—1], where 0 < a; < n — i. Note that there are n! possible a; lists
for a given n. Our purely functional algorithm then starts with the input list
of elements to be permuted, and an empty output list. Take the agth element
from the input list, and move it to the output list. Continue by taking the a;th
element from the input list and moving it to the output list. Repeat until the
input list is empty.

The critical data structure here is a list from which an element with a given
index can be removed as efficiently as possible. This is the interface for such a
structure, which we will call an erase list or FEList:

type EList a erase list type

create :: List a -> EList a create a new one with given contents
get :: EList a * Int -> a get element at given position
extract :: EList a * Int -> EList a | remove element at given position

The order must be consistent between get and extract, passing a same index
to those must retrieve/remove the same element. However, extract need not
preserve the ordering of elements. This is a crucial property to achieve a good
complexity.

Step 1: Abstraction Since we write this algorithm ourselves, we start with an
abstracted version already.

Step 2: Implementation The most naive implementation is an ordinary List.
Comparable to using Lists for the persistent arrays from the previous section,
each modification would require on average half of the elements to be copied.
The complete shuffling algorithm would end up having O(n?) time complexity.

An alternative is using complete binary trees, with all nodes having a field
listing the amount of subnodes they contain, as shown in [14]. Since in each

operation the path to the root needs to be duplicated, this results in a pure
O(nlogn) shuffling algorithm.

If we drop the pureness restriction however, and reuse the persistent array
from the previous section, we can achieve O(n). We represent an EList by the
head of a persistent array. Thus an EList becomes a combination of a reference
to a PArray and an integer (giving the length of the head that is used):

data EList a = EL {ar :: PArray a, len :: Int}

Creating a new EList is done by initializing a PArray with all elements, and
creating an EList referring to the whole:

create 1 = EL {ar=PArray.init 1, len=List.length 1}

Retrieving an element is trivial, but when removing one, we decrease the
length-value, yet copy the element that would be discarded by this over the
element that is requested to be dropped:

extract 1 i = EL {
ar=PArray.set (ar 1) i (Parray.get (ar 1) (lemn 1)-1),
len=(len 1)-1}

Again, there is no need to optimize further.

5 Experimental Evaluation

We have implemented all three of the above case studies in Ocaml to experi-
mentally evaluate our approach. All programs were compiled with Ocaml 3.09.2
to native executables. Their average CPU usage time was measured on an Intel
Core2 Duo 6400 system for many problem sizes, and is shown in graphs.

Mergesort The mergesort algorithm was benchmarked for three different imple-
mentations of the abstract AList type: using concrete Lists, Ocaml arrays and
VLists. The Array and VList variant are faster than the concrete Lists through a
constant-time drop operation. The VList improves upon the Array by decreasing
the amount of data that needs to be copied, as can be seen in Figure 3.

However, mergesort has the optimal time complexity for a comparison sort
algorithm: O(nlogn), even with the O(n) drop operation. Therefore, optimiza-
tions that improve this operation can at best only affect a constant factor of the
complete algorithm’s run time. In the graphs can be seen that for large problem
sizes Array-based approaches are indeed slightly more efficient.

Union-find For the union-find algorithm, the benchmark (see Figure 4) was done
with the persistent array implemented using Lists, Ocaml trees, and Baker’s data
structure. Trees provide a large speedup over the naive List implementation, but
Baker’s structure wins, since only access to the latest version is required, for
which that data structure provides constant-time operations.

time (s)

time (s)

Mergesort benchmark

10 —— — ‘ — ‘ ———— — ‘ — ‘ —
1r b
0.1 E
0.01 |- E
0.001 |- E
| = lists
— arrays — — — |
vlists - - - -
00001 L L L L L L L L L L L L L L L L L L
10 100 1000 10000 100000 1le+06 1le+07
problem size
Fig. 3. Mergesort benchmark
Union-find benchmark
10 ‘ — ‘ — ‘ — ‘ — ‘ —
-
g g
1 p b
7 - 4
_ 7 -
7 - b
0.1 _7 _
- 7 - 7]
ya Pis 4
0.01 | E
0.001 | E
lists
C trees — — — |
Baker - - - -
00001 L L L L L L L L L L L L L L L
10 100 1000 10000 100000 1e+06

problem size

Fig. 4. Union-find benchmark

Shuffle The shuffle algorithm was benchmarked with five different combinations
to implement the EList: one using Ocaml native Lists, one using a tree-based
structure as described in [14], and an implementation that uses the earlier per-
sistent arrays.

The result can be found in Figure 5. The implementations that use lists are
clearly slower than the others. For large problem sizes the difference between the
tree-based implementations and the one using Baker’s structure becomes more
distinguished. Also notice the overhead the double abstraction causes, as the
persistent-array using Lists is slower than just Lists, and persistent-array using
trees is slower than just trees.

Shuffle benchmark
10 — — . — . —

01 L

time (s)

0.01 |

0.001 |- lists 7
p.arrays (list) — — - |
trees (oleg) - - - -
p.arrays (tree)

p.arrays (baker) —
L | n

0.0001 L . . . A
10 100 1000 10000 100000 le+06 1e+07

problem size

Fig. 5. Shuffle benchmark

6 Related work

Much effort has gone towards the development of efficient purely functional data
structures, and program transformations for program optimization. However, the
many efficient pure functional data structures developed, e.g. those in the Edison
library [10], do not overcome the complexity barrier.

Also, of the many works conducted on program transformation and opti-
mization, the majority, e.g. deforestation [4], focusses on the improvement of
constant factors, and not complexity. Only a small minority can improve com-
plexity, e.g. the worker-wrapper transformation [5] or tupling [2], but are still
limited by the complexity barrier. The reason is that these transformations all
restrict themselves to pure target languages.

7 Conclusions

In this paper we have described a systematic way to improve the efficiency of
purely functional code, by transforming data structures and the code operating
on it. The strategy has been applied to several real-world examples by hand.
Our benchmarks show that changing the data structure used has a significant
impact on performance.

Future work includes implementing and automating our approach, and study-
ing its effect. In particular we would like to 1) implement a framework for ex-
ecuting the first-order language presented, by compiling it to an existing strict
impure functional language, and 2) implement the transformations given in this
paper, initially for a few selected data structures, but with sufficient generality.
Further case studies and experiments should show the strategy’s effectiveness.

Acknowledgments We are grateful to Peter Jonsson for his helpful comments.

References

1. P. Bagwell. Fast functional lists, hash-lists, deques and variable length arrays. In In
Implementation of Functional Languages, 14th International Workshop, page 34.

2. W.-N. Chin, S.-C. Khoo, and N. Jones. Redundant call elimination via tupling.
Fundam. Inf., 69(1-2):1-37, 2006.

3. S. Conchon and J.-C. Fillidtre. A persistent union-find data structure. In ML ’07:
Proceedings of the 2007 workshop on Workshop on ML, pages 37-46, New York,
NY, USA, 2007. ACM.

4. A. Gill. Cheap deforestation for non-strict functional languages. PhD thesis, The
University of Glasgow, January 1996.

5. A. Gill and G. Hutton. The worker wrapper transformation. Submitted to the
Journal of Functional Programming, 2008.

6. J. Henry G. Baker. Shallow binding in lisp 1.5. Commun. ACM, 21(7):565-569,
1978.

7. S. L. P. Jones and A. L. M. Santos. A transformation-based optimiser for haskell.
In Science of Computer Programming, pages 32—1, 1998.

8. S. P. Jones. Haskell 98 Language and Libraries: The Revised Report. Cambridge
University Press, May 2003.

9. S. P. Jones. Call-pattern specialisation for haskell programs. In ICFP ’07: Pro-
ceedings of the 2007 ACM SIGPLAN international conference on Functional pro-
gramming, pages 327-337, New York, NY, USA, 2007. ACM.

10. C. Okasaki. An overview of edison. In Electronic Notes in Theoretical Computer
Science, pages 34-54. Elsevier, 2000.

11. R. W. Scheifler. An analysis of inline substitution for a structured programming
language. Commun. ACM, 20(9):647-654, 1977.

12. J. B. Smith. Practical OCaml. Apress, October 2006.

13. R. E. Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM,
22(2):215-225, 1975.

14. oleg@pobox.com. Provably perfect shuffle algorithms, 2001. http://okmij.org/
ftp/Haskell/perfect-shuffle.txt [Online; accessed 7-August-2008].

15. M. Wolfe. Beyond induction variables. In ACM, pages 162-174, 1992.

