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The friction and the consequent energy transfer in plasmas consisting of two species with di�erent

temperatures is discussed. In a quasi-neutral plasma the friction between the two species is shown to

have no e�ect on the ion acoustic mode, while using the Poisson equation instead of the quasi-neutrality

reveals the possibility for an instability driven by the collisional energy transfer. The di�erent starting

temperatures of the two species imply an evolving background. It is shown that the relaxation time

of the background electron-ion plasma is, in fact, always shorter than the growth time. Therefore

the mentioned instability is unlikely to develop. The results obtained here should contribute to the

clari�cation of some contradictory results obtained in the past.
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1. Introduction
Plasmas are frequently in the state of partial ther-

modynamic equilibrium, i.e., with an initial tempera-

ture disparity of the plasma constituents. Collisions in

such plasmas will after some time eventually result in

equal temperatures of the species, implying an evolv-

ing plasma. In Ref. [1] it is claimed that the corre-

sponding energy transfer may result in the instability

of the acoustic mode within the quasi-neutrality limit.

The necessary instability condition for an electron-ion

plasma appears very easily satis�ed because it requires

Te > 4Ti=3. This instability condition is obtained by

using the energy equations including the source/sink

terms originating from the collisional transfer, to-

gether with the corresponding friction force terms in

the momentum equations. The su�cient instability

condition is stronger than the necessary one because

of additional dissipative e�ects, like viscosity and ther-

mal conductivity. However, the current-less instability

described in Ref. [1] is based on a model which disre-

gards the same temperature disparity in the descrip-

tion of the spatially homogeneous background, which,

due to the same reasons, must be time evolving. In

other words, the e�ects of collisions in the background

plasma have been explicitly neglected. Note that here

and further in the text, because of the time evolution,

the term background is used instead of the equilib-

rium. These e�ects of collisions have been discussed

in Ref. [2] for the same quasi-neutrality case. It is

claimed that there is no instability for any tempera-

ture ratio of the two plasma components, and more-

over, that this holds even in a current-carrying plasma,

as long as the di�erence between the electron and ion

equilibrium velocity remains below the sound speed.

All that was needed to come to that conclusion was to

let the background plasma evolve freely in the pres-

ence of the given temperature di�erence. However,

Ref. [2] has remained almost unnoticed by researchers,

in contrast to the widely cited Ref. [1].

This controversy is revisited in the present work

for any two-component plasma. Essential for the prob-

lem is the energy equation describing the temperature

variation of the species a, which, following Braginskii

[3] is given in the form:
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The corresponding equation for the species b has the

same shape, but with a minus sign on the right-hand

side. We use the Landau formula [4] for the en-

ergy transfer source/sink term, Qa = 3mb�banb(Tb �

Ta)=ma, where [5]
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The Coulomb logarithm is given by Lba = log[rd=b0],

rd = rdardb=(r
2
da + r2db)

1=2, rdj = vTj=!pj , and b0 =

[jqaqbj=(4�"0)]=[3(Ta + Tb)] is the impact parameter.

The other terms, due to viscosity and thermal

conductivity, are omitted only for the sake of clarity,

i.e., in order to demonstrate more clearly the e�ect

of the disputed collisional energy transfer term. The

e�ect of these omitted terms is easily predictable.

2. Non-Evolving Background
In Ref. [1] the collisions in the equilibrium were

explicitly ignored. In that case, the two perturbed
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energy equations without the evolving background ef-

fects read:
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nb1
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Here, the minus sign applies to the species b.

The momentum equation which we use through-

out the text for the species a is of the form

mana@~va=@t = �qanar��r(naTa)�mana�ab(~va �

~vb), and the continuity equation has its standard form.

Similar equations are used for the species b, where the

friction term is of the form ~Ffb = �mbnb�ba(~vb � ~va).

In the case of quasi-neutral perturbations, the two

number densities n(a;b)1 are calculated from the conti-

nuity equations and are made equal, like in Refs. [1, 2]

(this is typically valid when dealing with wavelengths

that are much longer than the Debye length). The

dispersion equation in that case reads:�
! +

i4mb�ba
ma

��
!2�

5k2

3

Ta0+Tb0
ma+mb

�
= 0: (3)

Hence, even using the same model as in Ref. [1],

we conclude that there is neither an instability nor

damping of the acoustic mode, regardless of the ratio

Ta0=Tb0.

Note that the momentum conservation condition

�ab = mbnb�ba=(mana) is nowhere used in the deriva-

tion of Eq. (3). This is because the friction terms

vanish in any case. In fact, from the two conti-

nuity equations we have the velocities va1 � vb1 =

(!=k)(na1=na0 � nb1=nb0). Using qana = qbnb, and

assuming the constant charge on the two species a

and b, we have va1 � vb1 = 0. Hence, the as-

sumption of quasi-neutrality cancels the friction com-

pletely. Otherwise, for a varying charge we would have

va1 � vb1 = [!na1=(kna0)][1 � za1zb0=(zb1za0)], where

zj denotes the charge number, and therefore the fric-

tion e�ects would remain. This would require dealing

with additional charge variation equations, however

this is beyond the scope of the present work. Further

in the text we assume singly charged species.

3. Isothermal case
The derivations are now repeated for isothermal

quasi-neutral perturbations. In addition, the energy

equation may be omitted in the equilibrium also as-

suming that the relaxation time for the equilibrium

temperature is much longer than the period of wave

oscillations. Keeping the full friction force ~Ff in both

momentum equations, and within the same quasi-

neutrality limit, yields a real dispersion equation !2 =

k2(Ta0+Tb0)=(ma+mb). Hence, in the given limit the

collisions (through friction) do not a�ect the isother-

mal ion acoustic mode.

This fact is usually overlooked in the literature

where, in the limit ma � mb, a typical mistake is that

the friction is kept for the lighter species only, in the

incomplete simpli�ed form ~Ffb = �mbnb�ba~vb. For

an electron-ion plasma this gives the incorrect result

! = �k(c2s + v2
T i)

1=2 � �ei=2. We stress again that

the collisions appear in Eq. (3) only from the energy

equations, yet they do not a�ect the IA mode.

Using the Poisson equation instead of quasi-

neutrality, for isothermal perturbations we obtain cou-

pled and damped IA and Langmuir waves
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In the collision-less limit the two modes (4) decou-

ple by setting Ta = Tb, though in some situations

this may have no sense because in this case the

acoustic mode may lose its electrostatic nature, espe-

cially in pair-plasmas. For a pair (pair-ion, electron-

positron) collision-less plasma the solutions are !2 =

!2
p + k2(v2

Ta + v2
Tb)=2� [!4

p + k4(v2
Ta � v2

Tb)=4]
1=2.

In the low frequency limit ! � !p(a;b) and for

an e-i plasma, from Eq. (4) we have !2 = k2v2s �

i2�ei!mer
2
dek

2=mi, so that the IA mode is damped

!=�kvs
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2
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�i�ier

2
dek
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Here, v2s = c2s + v2
T i and we have used the momentum

conservation �ie = me�ei=mi. Note that the damping

is k-dependent.

4. Evolving Background Plasma
From Eq. (1) it is seen that in a quasi-neutral

homogeneous background, without 
ows/currents, the

background temperature is also evolving in time as

@T(a;b)0

@t
= �2

mb

ma
�ba(Tb0 � Ta0): (6)

Keeping the collision frequencies constant (the ap-

proximation discussed below), this gives the tempera-

tures for the two species

T(a;b)0(t) =
1

2

h bT(a;b)0(1 + exp(�4�abt))

+ bT(a;b)0(1� exp(�4�abt))
i
:

Here, bT(a;b)0 are the starting values of the temperature

for the two species in some moment which we set to be

t = 0. It is seen that they evolve towards the common

value ( bTa0 + bTb0)=2.
On the other hand, solving Eq. (6) numerically,

with time dependent collision frequencies (2) gives a
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Fig. 1 Approximative (full lines), and exact relaxation
with time-dependent collision frequencies (dashed
lines) of the background plasma temperatures (6).

slightly faster relaxation for the two temperatures.

To get a feeling on the relaxation time scale, this

is presented in Fig. 1 by taking n0 = 1018 m�3 andbTa0 = 0:1 eV, bTb0 = 3 bTa0.
Eq. (6) is to be used in the linearization of Eq. (1),

which in the case na0 = nb0 = n0 yields:

@Ta1
@t

+
2

3
Ta0r � ~va1 = +2

mb

ma
�ba (Tb1 � Ta1)

�2�ba
mb

ma

na1 � nb1

n0
(Tb0 � Ta0) : (7)

The corresponding equation for the component b is

@Tb1
@t

+
2

3
Tb0r � ~vb1= �2

mb

ma
�ba(Tb1�Ta1) : (8)

Here, in the process of linearization yielding Eq. (8),

the term (3=2)nb1@Tb0=@t on the left-hand side, can-

cels out with the term �(mb=ma)�ba(Tb0�Ta0)nb1 on

the right-hand side after using the background equa-

tion (6) for the species b.

Hence, both Eqs. (7) and (8) are obtained taking

into account the evolution of the background. There

appears an additional asymmetry between the two en-

ergy equations (apart from the opposite signs of the

�rst term on the right-hand side), due to the last term

in Eq. (7). This extra asymmetry is a consequence of

the fact that the internal energy of the two species

may also change due to the presence of the new ingre-

dient in the system, i.e., the perturbed electric �eld

na1 � nb1 = "0r � ~E1=e (in the presence of the neces-

sary collisions of course). However, it vanishes if the

quasi-neutrality condition is used on the right-hand

side in Eq. (7). This may sometimes be permissible

in higher order terms but not in general, for exam-

ple assuming that the source/sink term in the energy

equations gives only small imaginary corrections to

the frequency.

However, regardless of the fact that the last term

in Eq. (7) is used or not, the e�ects of the evolving

background remain within Eq. (7) in both cases. Note

also that the cancelation of the terms in the equation

for the species b (which is due to evolving background

as described above) remains intact regardless if the

quasi-neutrality is used or not.

We stress that Eq. (3) is obtained also by us-

ing Eqs. (7, 8) in the quasi-neutral limit (implying

that the last term in Eq. (7) is omitted). Hence, the

IA mode appears una�ected by friction in the quasi-

neutral limit even if the energy equations are used, and

if the background is described correctly as evolving.

We now use the two energy equations (7, 8) with

the Poisson equation. The dispersion equation be-

comes
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Solving for the IA mode yields approximately
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The corresponding growth rate is:
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+(8�2ab=!
2
IA
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�
!2
IA
� k2v2

Tb

��	
: (11)

In principle, Eq. (11) reveals the possibility for a grow-

ing IA mode if the Poisson equation is used instead

of the quasi-neutrality in a time-evolving background

plasma. For example, this can be easily demonstrated

in the limit of negligible terms originating from the

last term in Eq. (7). This is permissible on condi-

tion j(Ta1 � Tb1)=(na1 � nb1)j � jTa0 � Tb0j=n0, or

in an alternative form, j(Ta1 � Tb1)=(Ta0 � Tb0)j �

r2dbk
2jqb�1j=Tb0. In that limit, the numerical solution

of Eq. (9) yields the growth-rate of the IA mode in an

electron-ion plasma.

However, we stress that the system evolves in

time. Thus, in order to have a reasonably fast growth

of the perturbations, the following condition must be

satis�ed [cf. Eq. (6)] :


r � 2(mb=ma)�ba � 
: (12)

Here, 
�1r determines the relaxation time for the back-

ground. Taking the electron-ion case like in Ref. [1]

and the corresponding self-evident conditions mb �

ma, Ta0 < Tb0, k2v2
Ta < !2

IA
< !2

pa < !2
pb, from

Eq. (11) to the leading order terms we obtain


 � 
r ' �
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2
�
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pb + 5k2v2
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+
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�
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3
+

8�2ab
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�
+ 8�2ab

��
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Hence, because always !pa � !IA, here we have


 < 
r; (14)

i.e., the system relaxes on a time scale that is (much)

shorter than the eventual growth time of the perturba-

tions. Consequently the assumed instability actually

can not develop. We note that this is in agreement

with some experiments, e.g., in a Q-machine plasma

where the instability has never been observed even by

cooling the ions to near room temperature while keep-

ing various temperatures for the electrons.

5. Summary
The long existing controversy dealing with the

stability of the ion acoustic mode in plasmas in the

state of partial thermodynamic equilibrium has been

revisited. The results obtained here can be summa-

rized as follows. i) The friction does not a�ect the

IA mode in the limit of quasi-neutral perturbations.

ii) Even using the non-evolving model equivalent to

Ref. [1], there is no instability of the IA mode, con-

trary to claims from Ref. [1]. iii) When the back-

ground plasma is properly described as evolving in

time, and as long as the quasi-neutrality is used, col-

lisions do not produce a growth of the ion acoustic

mode. iv) When the Poisson equation is used instead

of quasi-neutrality, in principle there is a possibility

for a positive growth-rate of the IA mode. It appears

as a combined e�ect of the breakdown of the charge

neutrality from one side (introduced by the Poisson

equation), and the heat transfer (the compressibility

and advection in energy equation) from the other side,

all within the background of a time-evolving plasma.

However, as the equilibrium plasma evolves in

time, with the relaxation time �r given in Eq. (6), the

obtained growth time must be (much) shorter than the

relaxation time. Yet, this shows to be impossible and

we conclude that there is no instability in the electron-

ion plasma with an initial temperature disparity if the

plasma evolves freely.
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