
1

Very Sparse LSSVM Reductions for Large Scale
Data

Raghvendra Mall and Johan A.K. Suykens

Abstract—Least Squares Support Vector Machines (LSSVM)
have been widely applied for classification and regression with
comparable performance to SVMs. The LSSVM model lacks
sparsity and is unable to handle large scale data due to compu-
tational and memory constraints. A primal Fixed-Size LSSVM
(PFS-LSSVM) was previously proposed in [1] to introduce
sparsity using Nyström approximation with a set of prototype
vectors (PV). The PFS-LSSVM model solves an over-determined
system of linear equations in the primal. However, this solution
is not the sparsest. We investigate the sparsity-error trade-off by
introducing a second level of sparsity. This is done by means
of L0-norm based reductions by iteratively sparsifying LSSVM
and PFS-LSSVM models. The exact choice of the cardinality for
the initial PV set is not important then as the final model is
highly sparse. The proposed method overcomes the problem of
memory constraints and high computational costs resulting in
highly sparse reductions to LSSVM models. The approximations
of the two models allow to scale the models to large scale datasets.
Experiments on real world classification and regression datasets
from the UCI repository illustrate that these approaches achieve
sparse models without a significant trade-off in errors.

Index Terms—L0-norm, reduced models, LSSVM classification
& regression, sparsity

I. INTRODUCTION

Least Squares Support Vector Machines (LSSVM) were
introduced in [2] and have become a state-of-the-art learning
technique for classification and regression. In the LSSVM for-
mulation instead of solving a quadratic programming problem
with inequality constraints as in the standard SVM [3], one has
equality constraints and the L2-loss function. This leads to an
optimization problem whose solution in the dual is obtained
by solving a system of linear equations.

A drawback of LSSVM models is the lack of sparsity as
usually all the data points become support vectors (SV) as
shown in [1]. Several works in the literature address this
problem of lack of sparsity in the LSSVM model. They can
be categorized as:

1) Reduction methods: - Training the model on the dataset,
pruning support vectors and selecting the rest for retrain-
ing the model.

2) Direct methods: - Enforcing sparsity from the beginning.
Some works in the first category are [4], [5], [6], [7], [8], [11],
[9] and [10]. In [5], the authors provide an approximate SVM
solution under the assumption that the classification problem

Raghvendra Mall, Department of Electrical Engineering, ESAT-
STADIUS (SCD), KU Leuven, B-3001 Leuven, Belgium, email:
rmall@esat.kuleuven.be.

Johan A.K. Suykens, Department of Electrical Engineering,
ESAT-STADIUS (SCD), KU Leuven, B-3001 Leuven, Belgium,
email:johan.suykens@esat.kuleuven.be.

is separable in the feature space. In [6] and [7], the proposed
algorithm approximates the weight vector such that the dis-
tance to the original weight vector is minimized. The authors
of [8] eliminate the support vectors that are linearly dependent
on other support vectors. In [9] and [10], the authors work on
a reduced set for optimization by pre-selecting a subset of data
as support vectors without emphasizing much on the selection
methodology. The authors of [11] prune the support vectors
which are farthest from the decision boundary. This is done
recursively until the performance degrades. Another work [12]
in this direction suggests to select the support vectors closer
to the decision boundary. However, these techniques cannot
guarantee a large reduction in the number of support vectors.

In the second category, the number of support vectors re-
ferred to as prototype vectors (PVs) are fixed in advance. One
such approach is introduced in [1] and is referred to as fixed-
size least squares support vector machines (FS-LSSVM). It
provides a solution to the LSSVM problem in the primal space
resulting in a parametric model and a sparse representation.
The method uses an explicit expression for the feature map
using the Nyström method [13] and [14]. The Nyström method
is related to finding a low rank approximation to the given
kernel matrix by choosing M rows or columns from the large
N ×N kernel matrix. In [1], the authors proposed searching
for M rows or columns by maximizing the quadratic Rènyi
entropy criterion. It was shown in [15] that the cross-validation
error of primal FS-LSSVM (PFS-LSSVM) decreases with
respect to the number of selected PVs until it does not change
anymore and is heavily dependent on the initial set of PVs
selected by quadratic Rènyi entropy. This point of “saturation”
can be achieved for M ¿ N but this is not the sparsest
solution. A sparse conjugate direction pursuit approach was
developed in [16] where they iteratively build up a conjugate
set of vectors of increasing cardinality to approximately solve
the over-determined PFS-LSSVM linear system. The approach
works most efficiently when few iterations suffice for a good
approximation. However, when few iterations don’t suffice for
approximating the solution the cardinality will be M .

In recent years the L0-norm has been receiving increasing
attention. The L0-norm is the number of non-zero elements
of a vector. So when the L0-norm of a vector is minimized
it results into the sparsest model. But this problem is NP-
hard. Therefore, several approximations to it are discussed
in [17] and [18] etc. In this paper, we modify the iterative
sparsification procedure introduced in [19] and [20]. The major
drawbacks of the methods described in [19] and [20] are that
these approaches cannot scale to very large scale datasets due
to memory (N×N kernel matrix) and computational (O(N3)

2

time) constraints. We reformulate the iterative sparsification
procedure for LSSVM and PFS-LSSVM methods to produce
highly sparse models. These models can efficiently handle
very large scale data. We discuss two different initialization
methods for which in a next step the sparsification step is
applied:
• Initialization by Primal Fixed-Size LSSVM: Sparsifi-

cation of the primal fixed-size LSSVM (PFS-LSSVM)
method leads to a highly sparse parametric model namely
sparsified primal FS-LSSVM (SPFS-LSSVM).

• Initialization by Subsampled Dual LSSVM: The subsam-
pled dual LSSVM (SD-LSSVM) is a fast initialization to
the LSSVM model solved in the dual. Its sparsification
results into a highly sparse non-parametric model namely
sparsified subsampled dual LSSVM (SSD-LSSVM).

We compare the proposed methods with state-of-the-art
techniques including C-SV C, ν-SV C from the LIBSVM
[22] software, Keerthi’s method [23], L0-norm based method
proposed by Lopez [20] and the L0-reduced PFS-LSSVM
method (SV L0-norm PFS-LSSVM) [21] on several bench-
mark datasets from the UCI repository [24]. Below we mention
some motivations to obtain a sparse solution:
• Sparseness can be exploited for having more memory

and computationally efficient techniques, e.g. in matrix
multiplications and inversions.

• Sparseness is essential for practical purposes such as
scaling the algorithm to very large scale datasets. Sparse
solutions means fewer support vectors and less time
required for out-of-sample extensions.

• By introducing two levels of sparsity, we overcome the
problem of selection of the smallest cardinality (M) for
the PV set faced by the PFS-LSSVM method.

• The two level of sparsity allows scaling to large scale
datasets while having very sparse models.

We also investigate the sparsity versus error trade-off.
This paper is organized as follows. A brief description of

PFS-LSSVM and SD-LSSVM is given in Section II. The L0-
norm based reductions to PFS-LSSVM, i.e., SPFS-LSSVM
and SD-LSSVM, i.e., SSD-LSSVM are discussed in Section
III. In Section IV, the different algorithms are successfully
demonstrated on real-life datasets. We discuss about the spar-
sity versus error trade-off in Section V. Section VI states the
conclusion of the paper.

II. INITIALIZATIONS

In this paper, we consider two initializations. One is based
on solving the least squares support vector machine problem
in the primal (PFS-LSSVM). The other is a fast initialization
method solving a subsampled least squares support vector
machines problem in the dual (SD-LSSVM).

A. Primal FS-LSSVM

1) Least Squares Support Vector Machine: We provide a
brief summary of the Least Squares Support Vector Machines
(LSSVM) methodology for classification and regression.

Given a sample of N data points {xi, yi}, i = 1, ..., N,
where xi ∈ Rd and yi ∈ {+1,−1} for classification and yi ∈

R for regression, the LSSVM primal problem is formulated
as follows:

min
w,b,e

J (w, e) =
1
2
wᵀw +

γ

2

N∑

i=1

e2
i

s.t. wᵀφ(xi) + b = yi − ei, i = 1, . . . , N,

(1)

where φ : Rd → Rnh is a feature map to a high dimensional
feature space, where nh denotes the dimension of the feature
space (which can be infinite dimensional), ei ∈ R are the
errors and w ∈ Rnh , b ∈ R.

Using the coefficients αi for the Lagrange multipliers, the
solution to (1) can be obtained by the Karush-Kuhn-Tucker
(KKT) [25] conditions for optimality. The result is given by
the following linear system in the dual variables αi:

[
0 1ᵀ

N

1N Ω + 1
γ IN

] [
b
α

]
=

[
0
y

]
, (2)

with y = (y1, y2, . . . , yN)ᵀ, 1N = (1, . . . , 1)ᵀ, α =
(α1, α2, . . . , αN)ᵀ and Ωkl = φ(xk)ᵀφ(xl) = K(xk, xl), for
k, l = 1, . . . , N with K a Mercer kernel function. From the

KKT conditions we get that w =
N∑

i=1

αiφ(xi) and αi = γei.

The second condition causes the LSSVM to be non-sparse as
whenever ei is non-zero then αi 6= 0. Generally, in real world
scenarios the ei 6= 0, i = 1, . . . , N for most data points. This
leads to lack of sparsity in the LSSVM model.

2) Nyström Approximation and Primal Estimation: For
large datasets it is often advantageous to solve the problem
in the primal where the dimension of the parameter vector
w ∈ Rd is smaller compared to α ∈ RN . However, one
needs an explicit expression for φ or the approximation of
the nonlinear mapping φ̂ : Rd → RM based on a sampled
set of prototype vectors (PV) from the whole dataset. In [15],
the authors provide a method to select this subsample of size
M ¿ N by maximizing the Quadratic Rènyi entropy.

Williams and Seeger [26] uses the Nyström method to
compute the approximated feature map φ̂ : Rd → RM , i =
1, . . . ,M for a training point, or for any new point x∗, with
φ̂ = (φ̂1, . . . , φ̂M)ᵀ, is given by

φ̂i(x∗) =
1√
λs

i

M∑

j=1

(ui)jK(zj , x
∗), (3)

where λs
i and ui denote the eigenvalues and the eigenvectors of

the kernel matrix Ω̄ ∈ RM×M with Ω̄ij = K(zi, zj), where zi

and zj belong to the subsampled set SPV which is a subset of
the whole dataset D. The matrix Ω̄ relates to a subset of the big
kernel matrix Ω ∈ RN×N . However, we should never calculate
this big kernel matrix Ω in our proposed methodologies. The
computation of the features corresponding to each point xi ∈
D in matrix notation can be written as:

Φ̂ =




φ̂1(x1) . . . φ̂M (x1)
...

. . .
...

φ̂1(xN) . . . φ̂M (xN)


 . (4)

Solving (1) with the approximate feature matrix Φ̂ ∈ RN×M

in the primal as proposed in [1] results into solving the

3

following linear system of equations:
[

Φ̂ᵀΦ̂ + 1
γ I Φ̂ᵀ1N

1ᵀ
N Φ̂ 1ᵀ

N1N

] [
ŵ

b̂

]
=

[
Φ̂ᵀy
1ᵀ

Ny

]
, (5)

where ŵ ∈ RM , b̂ ∈ R are the model parameters in the primal
space with y ∈ {+1,−1} for classification and y ∈ R for
regression.

3) Parameter Estimation for Very Large Datasets: In [15],
the authors propose a technique to obtain tuning parameters
for very large scale datasets. We utilize the same methodology
to obtain the parameters of the model (ŵ and b̂) when the
approximate feature matrix Φ̂ given by (4) cannot fit into
memory. The basic concept is to decompose the feature matrix
Φ̂ into a set of S blocks. Thus, Φ̂ is not required to be stored
into memory completely. Let ls, where s = 1, . . . , S, denote

the number of rows in the sth block such that
S∑

s=1
ls = N .

The matrix Φ̂ can be described as:

Φ̂ =




Φ̂[1]

...
Φ̂[S]


 ,

with Φ̂[S] ∈ Rls×(M+1) and the vector y is given by

y =




y[1]

...
y[S]


 ,

with y[S] ∈ Rls . The matrix Φ̂ᵀ
[S]Φ̂[S] and the vector Φ̂ᵀ

[S]y[S]

can be calculated in an updating scheme and stored efficiently
in the memory since their sizes are (M + 1) × (M + 1) and
(M +1)×1 respectively, provided that the size of each block,
i.e., ls can fit into memory. Moreover, the following also holds:

Φ̂ᵀΦ̂ =
S∑

s=1

Φ̂ᵀ
[s]Φ̂[s], Φ̂ᵀy =

S∑
s=1

Φ̂ᵀ
[s]y[s].

Algorithm 1 summarizes the overall idea.

Algorithm 1: PFS-LSSVM for very large scale data [15]
Divide the training data D into approximately S equal blocks
such that Φ̂[s] with s = 1, . . . , S, calculated using (4) can fit
into memory.
Initialize matrix A ∈ R(M+1)×(M+1) and c ∈ RM+1.
for s = 1 to S do

Calculate matrix Φ̂[s] for the sth block using Nyström
approximation (4)
A← A + Φ̂ᵀ

[s]Φ̂[s]

c← c + Φ̂ᵀ
[s]y[s]

end
Set A← A +

IM+1
γ

Solve the linear system (5) to obtain parameters ŵ,b̂.

Algorithm 2: Primal FS-LSSVM method
Data: D = {(xi, yi) : xi ∈ Rd, yi ∈ {+1,−1} for

classification & yi ∈ R for regression, i = 1, . . . , N}.
1 Determine the kernel bandwidth using the multivariate

rule-of-thumb.
2 Given the number of PV, perform prototype vector selection by

maximizing the quadratic Rènyi entropy.
3 Determine the learning parameters σ and γ performing fast

v-fold cross validation as described in [15].
4 if the approximate feature matrix (4) can be stored into

memory then
5 Given the optimal learning parameters, obtain the

PFS-LSSVM parameters ŵ and b̂ by solving the linear
equation (5).

6 else
7 Use Algorithm 1 to obtain the PFS-LSSVM parameters ŵ

and b̂.
8 end

B. Fast Initialization: Subsampled Dual LSSVM

In this case, we propose a different approximation instead of
the Nyström approximation and solve a subsampled LSSVM
problem in the dual (SD-LSSVM). We first use the active
subset selection method as described in [15] to obtain an initial
set of prototype vectors PV, i.e., SPV . This set of points is
obtained by maximizing the quadratic Rènyi entropy criterion,
i.e., approximate the information of the big N × N kernel
matrix by means of a smaller M ×M matrix and this can be
considered as the set of representative points of the dataset.

The assumption for the approximation in the proposed
approach is that this set of prototype vectors is sufficient to
train an initial LSSVM model in the dual and is sufficient
to obtain the tuning parameters σ and γ for the SD-LSSVM
model. Here the major advantage is that it greatly reduces
the computation time required for training and cross-validation
(O(M3) in comparison to O(NM2) for PFS-LSSVM). This
results in an approximate value for the tuning parameters close
to the optimal values (for the entire training dataset). However,
as the training of the LSSVM model is performed in the dual,
we no longer need explicit approximate feature maps and can
have the original feature map of the form φ : Rd → Rnh

where nh denotes the dimension of the feature space which
can be infinite dimensional.

Thus, the SD-LSSVM problem of training on the M pro-
totype vectors selected by Rènyi entropy is given by:

min
w̄,b̄,ē

J (w̄, ē) =
1
2
w̄ᵀw̄ +

γ

2

M∑

i=1

ē2
i

s.t. w̄ᵀφ(zi) + b̄ = yi − ēi, i = 1, . . . , M,

(6)

where zi ∈ SPV and SPV is a subset of the whole dataset D.

III. SPARSIFICATIONS

We propose two L0-norm reduced models starting from
the initializations explained in Section II: One for the primal
FS-LSSVM method namely the sparsified primal FS-LSSVM
(SPFS-LSSVM) and the other one for the SD-LSSVM method
namely sparsified subsampled dual LSSVM (SSD-LSSVM).
Both models can handle very large scale data efficiently.

4

A. L0-norm Reduced PFS-LSSVM - SPFS-LSSVM

In this section, we propose an approach using the L0-norm
to introduce a second level of sparsity resulting in a reduced
set of prototype vectors SSV whose cardinality is M ′ and
is giving a highly sparse solution. We modify the procedure
described in [19] and [20]. The methodology used in [19] and
[20] cannot be extended to large scale data due to memory
constraints (O(N × N)) and computational costs (O(N3)).
The L0-norm problem can be formulated as:

min
w̃,b̃,ẽ

J (w̃, ẽ) = ‖w̃‖0 +
γ

2

N∑

i=1

ẽ2
i

s.t. w̃ᵀφ̂(xi) + b̃ = yi − ẽi, i = 1, . . . , N,

(7)

where w̃, b̃ and ẽi, i = 1, . . . , N are the variables of the
optimization problem and φ̂ is the explicit feature map as
discussed in (3).

The weight vector w̃ can be approximated as a linear com-
bination of the M prototype vectors, i.e., w̃ =

∑M
j=1 β̃j φ̂(zj)

where β̃j ∈ R which don’t need to be the Lagrange multipliers.
We apply the regularization weight λj on each of these β̃j

to iteratively sparsify such that most of the β̃j move to zero
leading to an approximate L0-norm solution as shown in [19].
The L0-norm problem can then be re-formulated in terms of
reweighting steps of the form:

min
β̃,b̃,ẽ

J(β̃, ẽ) =
1
2

M∑

j=1

λj β̃
2
j +

γ

2

N∑

i=1

ẽ2
i

s.t.
M∑

j

β̃jQ̂ij + b̃ = yi − ẽi, i = 1, . . . , N.

(8)

The matrix Q̂ is a rectangular matrix of size N ×M and is
defined by its elements Q̂ij = φ̂(xi)ᵀφ̂(zj) where xi ∈ D,
zj ∈ SPV . The set SPV is a subset of the dataset D. This
problem (8) is similar to the one formulated for SVMs in [19]
and guarantees sparsity and convergence. It is well known
that the Lp-norm problem is non-convex for 0 < p < 1. We
obtain an approximate solution for p → 0 by the iterative
sparsification procedure and converge to a local minimum.

We propose to solve this problem in the primal which
allows us to extend the sparsification procedure to large scale
datasets along with incorporating the information about the
entire training dataset D. Thus, after eliminating the ẽi the
optimization problem becomes:

min
β̃,b̃

J(β̃, b̃) =
1
2

M∑

j=1

λj β̃
2
j +

γ

2

N∑

i=1

(yi − (
M∑

j=1

β̃jQ̂ij + b̃))2.

(9)
The solution to (9) resembles the ridge regression solution

(in case of zero bias term) and is obtained by solving:
[

Q̂ᵀQ̂ + 1
γ diag(λ) Q̂ᵀ1N

1ᵀ
N Q̂ 1ᵀ

N1N

][
β̃

b̃

]
=

[
Q̂ᵀy
1ᵀ

Ny

]
(10)

where diag(λ) is a diagonal M × M matrix with diagonal
elements λj . The iterative sparsification method is presented
in Algorithm 3.

Algorithm 3: SPFS-LSSVM method

Data: Solve PFS-LSSVM (5) to obtain initial ŵ and b̂
β̃ = ŵ
λi ← β̃i, i = 1, . . . , M
if the Q̂ matrix can be stored into memory then

Calculate Q̂ᵀQ̂ once and store into memory.
else

Divide into blocks for very large datasets computing
Q̂ᵀ

[s]Q̂[s] in an additive updating scheme similar to
procedure in Algorithm 1.
Calculate once and store the M ×M matrix into memory.

end
while not convergence do

H ← Q̂ᵀQ̂ + diag(λ)/γ ;
Solve system (10) to give β̃ and b̃ ;
λi ← 1/β̃2

i , i = 1, . . . , M ;
end
Result: indices = find(|β̃i| > 0), β′ = β̃(indices), b′ = b̃.

The procedure to obtain sparseness involves iteratively solv-
ing the system (10) for decreasing values of λ. Considering the
tth iteration, we can build the matrix H ← Q̂ᵀQ̂+diag(λ)/γ
from the in-memory matrix Q̂ᵀQ̂ and the modified matrix
diag(λt) and solve the system of linear equations. From this
solution we get λt+1 and the process is restarted. It was shown
in [19] that as t→∞, β̃t converges to the L0-norm solution
asymptotically. This is shown in Algorithm 3. Since, this β′

depends on the initial choice of weights, we set them to the
PFS-LSSVM solution ŵ and b̂ to avoid ending up in very
different local minima. For this procedure we need to calculate
Q̂ᵀQ̂ matrix just once and keep it into memory. The final
predictive model is:

f(x∗) =
M ′∑

i=1

β′iφ̂(zi)ᵀφ̂(x∗) + b′.

We use f(x∗) for regression and sign[f(x∗)] for classification.
Table I provides a conceptual and notational overview of the
steps involved in SPFS-LSSVM model.

Initial 1st Reduction 2nd Reduction
SV/Train N/N M/N M ′/N

Primal w, D Step 1 → ŵ, SPV Step 2 → β′, b′, SSV
φ(x) ∈ Rnh PFS-LSSVM φ̂(x) ∈ RM SPFS-LSSVM

TABLE I: Given the dataset D we first perform the primal FS-
LSSVM in Step 1. We obtain the prototype vector set SPV , the
weight vector ŵ along with the explicit feature map φ̂ : Rd →
RM . In Step 2 we perform the SPFS-LSSVM, i.e., we use an
iterative sparsifying L0-norm procedure in the primal where
w̃ =

∑M
j=1 β̃j φ̂(zj) and regularization weights λj are applied

on β̃j . We construct the Q̂ matrix which has information about
the entire training set D. After the 2nd reduction we obtain
the solution vector β′ and b′. The solution vector relates to
prototype vectors of the highly sparse solution set SSV .

5

B. L0-norm reduced subsampled dual LSSVM - SSD-LSSVM

The subsampled dual LSSVM (SD-LSSVM) performs a
fast initialization on a subsample obtained by maximizing the
quadratic Rènyi entropy. The SD-LSSVM model as described
in Section II results in ᾱ, i = 1, . . . , M and b̄ as a solution
in the dual. However, we have not seen all the data in the
training set for this case. Also, we don’t know beforehand
the ideal value of the cardinality M for the initial PV set.
In general, we start with a large value of M for fixing the
initial cardinality of the PV set. But we propose an iterative
sparsification procedure for the SD-LSSVM model leading to
an L0-norm based solution. This results in a set of reduced
prototype vectors SSV whose cardinality is M ′ which can be
much less than M . We use these reduced prototype vectors
along with the non-zero ᾱi, i = 1, . . . , M and b̄ obtained as
a result of the iterative sparsification procedure for the out-
of-sample extensions (i.e. test data predictions). The L0-norm
problem for the SD-LSSVM model can then be formulated as:

min
w̄,b̄,ē

J (w̄, ē) = ‖w̄‖0 +
γ

2

N∑

i=1

ē2
i

s.t. w̄ᵀφ(xi) + b̄ = yi − ēi, i = 1, . . . , N,

(11)

where w̄, b̄ and ēi, i = 1, . . . , N are the variables of the
optimization problem and φ is the original feature map.

One of the KKT conditions of (6) is w̄ =
M∑
i=1

ᾱiφ(zi) where

ᾱi are Lagrange dual variables. We apply the regularization
weight λj on each of these ᾱj to iteratively sparsify such that
most of the ᾱj move to zero leading to an approximate L0-
norm solution as shown in [19]. In order to handle large scale
datasets and obtain the non-zero ᾱj leading to the reduced
set of prototype vectors SSV , we formulate the optimization
problem by eliminating each ēi. Thus, the optimization prob-
lem can be reformulated as:

min
ᾱ,b̄

J(ᾱ, b̄) =
1
2

M∑

j=1

λjᾱ
2
j +

γ

2

N∑

i=1

(yi − (
M∑

j=1

ᾱjQij + b̄))2.

(12)
The matrix Q is a rectangular matrix of size N × M and
is defined by its elements Qij = φ(xi)ᵀφ(zj) = K(xi, zj)
where xi ∈ D, zj ∈ SPV . The variables xj and zj which are
part of the PV set SPV are used interchangeably. This marks
the distinction between (12) and (9) where we use explicit
approximate feature maps. The solution to (12) is obtained by
solving:

[
QᵀQ + 1

γ diag(λ) Qᵀ1N

1ᵀ
NQ 1ᵀ

N1N

] [
ᾱ
b̄

]
=

[
Qᵀy
1ᵀ

Ny

]
. (13)

Here diag(λ) is a diagonal M × M matrix with diagonal
elements λj . We train the SD-LSSVM only on the PV set
(cardinality M) but we incorporate the information from the
entire training dataset (cardinality N) in the loss function
while performing the iterative sparsification algorithm. This
results into an improvement in performance as more informa-
tion is incorporated in the model. The approach to perform an
iterative sparsification procedure for the SD-LSSVM model is
presented in Algorithm 4.

Algorithm 4: SSD-LSSVM method
Data: Solve SD-LSSVM (6) on actively selected PV set to

obtain the initial ᾱ and b̄
λi ← ᾱi, i = 1, . . . , M
if the Q matrix can be stored into memory then

Calculate QᵀQ once and store into memory.
else

Divide into blocks for very large datasets computing
Qᵀ

[s]Q[s] in an additive updating scheme similar to
procedure in Algorithm 1.
Calculate once and store the M ×M matrix into memory.

end
while not convergence do

H ← QᵀQ + diag(λ)/γ ;
Solve system (13) to give ᾱ and b̄ ;
λi ← 1/ᾱ2

i , i = 1, . . . , M ;
end
Result: indices = find(|ᾱi| > 0), α′ = ᾱ(indices), b′ = b̄

The procedure to obtain sparseness works similarly as
described in Section III-A. Once we obtain the indices
corresponding to the non-zero ᾱi, we can obtain the reduced
set of prototype vectors SV corresponding to those non-zero
ᾱi. We can then use α′ and b′ (as defined in Algorithm 4)
along with these SV to perform the test predictions. The final
predictive model is:

f(x∗) =
M ′∑

i=1

α′iK(zi, x
∗) + b′.

We use f(x∗) for regression and sign[f(x∗)] for classification.
Table II provides a conceptual and notational overview of the
steps involved in SSD-LSSVM model.

Initial 1st Reduction 2nd Reduction
SV/Train N/N M/M M ′/N

Dual α, D Step 1 → ᾱ, SP V Step 2 → α′, b′, SSV

φ(x) ∈ Rnh SD-LSSVM φ(x) ∈ Rnh SSD-LSSVM

TABLE II: Given the dataset D we first perform the SD-
LSSVM as a fast initialization in Step 1. We obtain the dual
Lagrange variables ᾱi, i = 1, . . . , M . In Step 2 we perform
the SSD-LSSVM, i.e., we use an iterative sparsifying L0-
norm procedure in the primal resulting in a reduced set of
vectors SSV . We construct the rectangular matrix Q which
incorporates information about the entire training set. After
the 2nd reduction we select the non-zero ᾱi and b̄ to obtain
the solution vector α′ and b′.

Figure 1 and 2 compare the proposed SPFS-LSSVM method
and SSD-LSSVM method with the normal PFS-LSSVM
method for classification on the Ripley dataset and for re-
gression on the Boston Housing data. For the Boston Housing
dataset we display the projection of all the data points on the
first eigenvector (for visualization purpose) along the x-axis
while the estimator value is plotted along the y-axis since the
dataset has dimensions d > 3. From Figure 1, we can observe
that the PFS-LSSVM method results in a better decision
boundary with lower prediction error. However, the cardinality
of the SV set is much higher in comparison with the SPFS-

6

LSSVM and SSD-LSSVM methods. The proposed approaches
result in a much sparser model without any significant trade-
off in error and have good decision boundaries.

From Figure 2, we observe that the SPFS-LSSVM method
results in better prediction errors than the SSD-LSSVM using
a fewer number of prototype vectors. In the SSD-LSSVM
method during the training phase, we train just over the SV
set, in comparison to the SPFS-LSSVM technique where we
train over the entire training set. So, we might end up with
an under-determined model in the SSD-LSSVM case as less
information is incorporated in the model. Figure 2 also shows
that the proposed methods select points with high and small
predictor values as prototype vectors for the set SSV . However,
the difference in errors between the proposed approaches is
not very significant and when compared to the PFS-LSSVM
method, the trade-off in error with respect to the amount of
sparsity gained is not significant.

IV. COMPUTATIONAL COMPLEXITY & EXPERIMENTAL
RESULTS

The convergence of Algorithm 3 and 4 is assumed when
the difference ‖ β̃t − β̃t+1 ‖ /M and ‖ ᾱt − ᾱt+1 ‖ /M
respectively is lower than 10−4 or when the number of
iterations t exceeds 50. The result of the two approaches is the
indices of those SVs for which |β̃i| > 10−6 and |ᾱi| > 10−6

which provides us the reduced set of prototype vectors SSV .
We perform an analysis of the computation time required for
the proposed approaches and are futher described.

A. Computational Complexity

The computation time of the PFS-LSSVM method involves:
• Solving a linear system of size M + 1 where M is the

number of prototype vectors selected initially (PV).
• Calculating the Nyström approximation and eigenvalue

decomposition of the kernel matrix of size M once.
• Forming the matrix product ΦᵀΦ.

This computation time is O(NM2) where N is the dataset
size as shown in [15].

The computation time for the SPFS-LSSVM method com-
prises a v-fold cross-validation time (O(vNM2)), time for
matrix multiplication Q̂ᵀQ̂ (O(NM2)) once and iteratively
solving a system of linear equations whose complexity is
(O(M3)). Since M ¿ N , the overall complexity of SPFS-
LSSVM is O((v + 1)NM2).

The computation time for the SD-LSSVM method of train-
ing on M prototype vectors is given by the time required
to solve a system of linear equations with M variables
and is equivalent to O(M3). For the proposed SSD-LSSVM
approach the computation time is O(NM2) for the matrix
multiplication QᵀQ once and then iteratively solving a system
of M linear equations (O(M3)). Thus the overall time com-
plexity of SSD-LSSVM method is much less in comparison
with the SPFS-LSSVM technique. The major part of the
computation time is required for cross-validation to obtain the
tuning parameters γ and σ for the proposed approaches.

Since there is no widely accepted approach for selecting
an initial model selection value M , in our experiments we

selected M = dk × √Ne where k ∈ N, the complexity of
SPFS-LSSVM can be re-written as O(k2N2). The parameter
k is a user-defined parameter and is not a tuning parameter.
However, k should be chosen carefully such that the N ×
M matrices can fit into memory. For smaller datasets like
Ripley, Breast-Cancer, Diabetes, Spambase, Magic Gamma,
Boston Housing, Concrete, Slice Localization and Adult, we
experimented with different values of k. For each value of k,
we obtained the optimal tuning parameters (σ and γ) along
with the prediction errors. In Table III, we report the value of
k corresponding to which we get the lowest classification and
regression errors for these smaller datasets.

B. Dataset Description

All the datasets have been obtained from the UCI bench-
mark repository [24]. A brief description about the datasets is
given in Table III.

Classification
Dataset N Dims Ntest PV k

Ripley(RIP) 250 2 84 60 4
Breast-Cancer(BC) 682 10 227 155 6

Diabetes(DIB) 768 8 256 167 6
Spambase(SPAM) 4061 57 1354 204 3

Magic Gamma(MGT) 19020 11 6340 414 3
Adult(ADU) 48842 14 16281 664 3

Forest Cover(FC) 531012 54 177004 763 1
Regression

Dataset N Dims Ntest PVs k
Boston Housing(BH) 506 14 169 135 6

Concrete(Con) 1030 9 344 192 6
Slice Localization(SLC) 53500 385 17834 694 3

Year Prediction(YP) 515345 90 171780 718 1

TABLE III: Classification & Regression Data Description and
initial number of prototype vectors (PV) selected such that
M = dk ×√Ne.

C. Numerical Experiments

All experiments are performed on a PC machine with Intel
Core i7 CPU and 8 GB RAM under Matlab 2008a. We use the
RBF-kernel for the kernel matrix construction in all cases. As a
pre-processing step, all records containing unknown values are
removed from consideration. All given inputs are normalized
to zero mean and unit variance. The codes for the proposed
method and FS-LSSVM method are available at http://www.
esat.kuleuven.be/sista/ADB/mall/softwareFS.php.

We compare the performance of our proposed ap-
proaches with methods including normal PFS-LSSVM clas-
sifier/regressor, SV L0-norm PFS-LSSVM proposed in [21],
C-SVM and ν-SVM, L0-norm method of Lopez [20] and
Keerthi’s method [23] for classification. The latter SVM and
ν-SVM methods are implemented in the LIBSVM software.
All methods use a cache size of 8 GB. Shrinking is applied
in the SVM case. All comparisons are made on the same
10 randomizations of the methods. The SV L0-norm PFS-
LSSVM method tries to sparsify the PFS-LSSVM solution
by an iterative sparsification procedure but its loss function
only incorporates information about the set of PV vectors (M)
while performing this operation. Thus, it results in solutions
having more variations in error and more variations in the

7

Fig. 1: Comparison of best results out of 10 randomizations for the PFS-LSSVM method with the proposed approaches for
the Ripley dataset.

Fig. 2: Comparison of best results out of 10 randomizations for the PFS-LSSVM method with the proposed approaches for
the Boston Housing dataset projected on the first eigenvector as the dimensions of the dataset (d > 3). We use 337 training
points whose projections are plotted for all the methods. This projection is only for visualization purposes.

8

number of reduced prototype vectors (SV). Details of the
method are provided in [21]. The Lopez method cannot scale
to large scale data. Keerthi’s method greedily finds a set of
basis functions of a specified size using a Newton optimization
technique. However, if the number of iterations required for
the Newton method to converge increases, the time complexity
increases and becomes even worse than the time required for
the SVM methods as shown in Table IV.

For all the approaches, we use the method of coupled
simulated annealing (CSA) as described in [34] to obtain
the optimal tuning parameters namely γ, σ for PFS-LSSVM,
LSSVM, SVM, Lopez, Keerthi, SV L0-norm PFS-LSSVM,
SPFS-LSSVM and SSD-LSSVM methods. We start by using
5 multiple random starters for each tuning parameter. For each
combination of tuning parameters we evaluate the cost. The
cost is defined as the accuracy in the case of classification
and mean squared error (mse) in the case of regression. This
cost is obtained by performing one iteration of 10-fold cross-
validation of the corresponding method. These costs along
with the combination of parameters are provided to CSA to
obtain the optimal tuning parameters as illustrated in [34]. We
fixed the ν parameter in ν-SVM to a value of 0.5 because
if we tuned for ν then the method becomes computationally
very expensive. Thus, the number of 10-fold cross-validations
performed for PFS-LSSVM, LSSVM, SVM, Lopez, Keerthi
and the two proposed approaches is 25 (5 × 5) for each
randomization of these methods. The time reported in Table
IV includes the time required for performing all these cross-
validations.

All comparisons are performed on an out-of-sample test
set depicted as Ntest in Table III consisting of 1/3 of the
data. The first 2/3 of the data is reserved for training and
cross-validation. Several techniques [27], [28], [29] use cross-
validation for estimating the model parameters as it optimizes
the bias-variance trade-off. For each algorithm, the average
set performances and sample standard deviations on the same
10 randomizations are reported. Also the mean total time
(training, cross-validation and testing) and the corresponding
standard deviation, the mean number of prototype vectors for
each method is depicted in Table IV.

Table IV provides a comparison of the mean estimated
error, mean value of cardinality of prototype vectors (PV or
SV, denoted in Table IV by SV) and a comparison of the
mean run time computations of the proposed approaches with
Keerthi’s, Lopez method, PFS-LSSVM and SVM methods for
various classification and PFS-LSSVM and SVR methods for
different regression datasets. Figure 3 represents the estimated
error, run time performance and variations in the number of
prototype vectors for Adult dataset (ADU). From Figure 3,
we observe that Keerthi’s method result in best prediction
errors but requires the maximum computation time as well.
The variations in the prediction errors by the proposed SPFS-
LSSVM and SSD-LSSVM method are insignificant and their
estimated errors are comparable to that of the PFS-LSSVM
method though they require a much smaller prototype vectors
set. An important observation was that the SSD-LSSVM
method produces the maximum amount of sparsity and has
the least computation time without significant trade-off in error

and thus making it highly suitable for very large scale datasets.
The SSD-LSSVM method works well because the initial set
of prototype vectors (PV) that it selects is only helping to
construct a basis set where this basis set is maximizing the
quadratic Rènyi entropy criterion. We also observe that the
number of reduced prototype vectors (SV) can vary a lot for
L0-norm based methods as during each randomization we
start with a different initialization and after performing the
iterative sparsification procedure we end up in a different local
minimum. This results in variations in the number of reduced
support vectors (SV) for these methods.

D. Performance Analysis

In case of classification datasets, the proposed approaches
called SPFS-LSSVM and SSD-LSSVM work much better in
comparison with SVM methods both in terms of sparsity and
prediction errors as observed from Table IV. Their errors are
comparable to those of PFS-LSSVM and Keerthi’s method
and in the case of the Forest Cover dataset even better than
PFS-LSSVM method. The amount of sparsity introduced is
quite high for the proposed approaches, which is consistent
with the fact that the L0-norm leads to highly sparse solutions.
However, an observation shows that the number of prototype
vectors is reduced to a maximum extent in most of the datasets
for the SSD-LSSVM approach. The SPFS-LSSVM method
results in best prediction error for Breast-Cancer(BC) dataset
while the SSD-LSSVM method gives best results for the
very large scale FC dataset as highlighted in Table IV. The
amount of sparsity introduced varies for different datasets. For
example, for the BC dataset the PFS-LSSVM method uses
33.65%, Keerthi’s method uses 6.59%, SPFS-LSSVM and
SSD-LSSVM method use 5.71% and 1.76% of the training
data respectively as SV without significant trade-off in errors.

From Figure 4, we observe the performance for the Forest
Cover (FC) dataset. PFS-LSSVM uses 0.22% while SV L0-
norm PFS-LSSVM uses 0.1%, SPFS-LSSVM uses 0.14% and
SSD-LSSVM method uses 0.18% of the training data as SV.
This suggests that for the FC dataset the amount of sparsity
achieved by the proposed approaches is much less in compar-
ison to that for the BC dataset. The SSD-LSSVM results have
less variations while the SV L0-norm PFS-LSSVM method
has maximum variance in error predictions which can be
attributed to the lack of information in the loss function that
the technique was incorporating while performing the itera-
tive sparsification procedure. This results in more variations
in the number of SV obtained for the 10 randomizations.
The computation time for PFS-LSSVM, SV L0-norm PFS-
LSSVM, SPFS-LSSVM are higher in comparison to that of
SSD-LSSVM which follows the line of the reasoning provided
in Section IV-A. Another important observation is that since
SPFS-LSSVM and SSD-LSSVM result in much fewer number
of prototype vectors SV , the time required for out-of-sample
predictions (testing time) for these methods is much less in
comparison to the other methods.

For datasets like Boston Housing and Concrete, the esti-
mated error by the proposed methods is larger than for the
PFS-LSSVM method, but the amount of sparsity introduced is

9

Te
st

C
la

ss
ifi

ca
tio

n(
E

rr
or

an
d

M
ea

n
SV

)
R

IP
B

C
D

IB
SP

A
M

M
G

T
A

D
U

FC
A

lg
or

ith
m

E
rr

or
SV

E
rr

or
SV

E
rr

or
SV

E
rr

or
SV

E
rr

or
SV

E
rr

or
SV

E
rr

or
SV

PF
S-

L
SS

V
M

[1
5]

0.
10

2
±

0.
00

8
58

0
.0

2
3
±

0
.0

0
4

15
3

0.
21
±

0.
00

8
16

7
0.

08
±

0.
00

2
20

4
0.

13
4
±

0.
00

1
41

4
0
.1

4
7
±

0
.0

66
4

0
.2

0
4
8
±

0
.0

2
6

76
3

C
-S

V
C

[2
2]

0
.1

5
±

0
.0

7
81

0
.0

3
4
8
±

0
.0

2
41

4
0
.3

3
2
±

0
.0

2
50

9
0
.0

7
5
±

0
.0

6
7

80
0

0
.1

4
4
±

0
.0

1
5

70
00

0
.1

5
1
(∗

)
1
1
0
8
5
(∗

)
0
.1

8
5
(∗

)
1
8
5
0
0
0
(∗

)
ν

-S
V

C
[2

2]
0
.1

6
7
±

0
.0

3
11

2
0
.0

2
8
±

0
.0

1
1

39
80

.3
3
8
±

0
.0

1
7

51
2

0
.1

1
3
±

0
.0

7
15

25
0
.1

5
8
±

0
.0

1
4

72
52

0
.1

6
1
(∗

)
1
2
2
0
5
(∗

)
1
8
4
(∗

)
1
6
5
2
0
5
(∗

)
L

op
ez

[2
0]

0
.1

8
3
±

0
.1

7
0.

04
±

0.
01

1
17

0.
24

8
±

0.
03

4
10

0.
07

26
±

0.
00

5
34

0
-

-
-

-
-

-
K

ee
rt

hi
[2

3]
0
.1

2
9
±

0
.0

3
3

26
0.

04
63
±

0.
03

7
30

0.
22

8
±

0.
03

5
53

0.
07
±

0.
00

5
17

5
0
.1

3
5
±

0
.0

0
2

26
0

0.
14

5
±

0.
00

2
49

4
0.

20
54

(*
)

76
2(

*)
S

V
L

0
-n

or
m

[2
1]

0
.1

6
5
1
±

0
.1

3
15

0.
02

3
±

0.
01

27
0.

27
±

0.
05

39
0
.1

2
7
±

0
.0

9
15

2
0
.1

5
±

0
.0

0
9

75
0
.1

4
9
±

0
.0

0
1

23
6

0.
23

46
±

0.
02

5
35

2
SP

FS
-L

SS
V

M
0
.1

4
7
±

0
.0

3
11

0.
02

1
±

0.
01

26
0.

27
3
±

0.
04

8
0
.0

8
2
±

0
.0

0
2

16
9

0.
14

1
±

0.
00

4
16

3
0
.1

4
8
±

0
.0

46
4

0
.2

1
9
5
±

0
.0

3
50

5
SS

D
-L

SS
V

M
0
.1

3
±

0
.0

2
11

0.
02

56
±

0.
00

7
8

0.
22

7
±

0.
02

6
0
.0

8
3
6
±

0
.0

0
5

63
0
.1

3
5
±

0
.0

28
0

0
.1

4
8
8
±

0
.0

0
1

10
2

0.
19

05
±

0.
00

9
63

5
Te

st
R

eg
re

ss
io

n(
E

rr
or

an
d

M
ea

n
SV

)
B

os
to

n
H

ou
si

ng
C

on
cr

et
e

Sl
ic

e
L

oc
al

iz
at

io
n

Y
ea

r
Pr

ed
ic

tio
n

A
lg

or
ith

m
E

rr
or

SV
E

rr
or

SV
E

rr
or

SV
E

rr
or

SV
PF

S-
L

SS
V

M
[1

5]
0.

13
3
±

0.
00

2
11

3
0.

11
2
±

0.
00

6
19

3
0.

05
54
±

0.
0

69
4

0.
40

2
±

0.
03

4
71

8
ε-

SV
R

[2
2]

0.
16
±

0.
05

22
6

0.
23
±

0.
02

67
0

0.
10

2(
*)

13
01

2(
*)

0.
46

5(
*)

19
24

20
(*

)
ν

-S
V

R
[2

2]
0.

16
±

0.
04

19
5

0.
22
±

0.
02

33
0

0.
09

2(
*)

12
52

4
0.

47
2(

*)
17

52
50

(*
)

L
op

ez
[2

0]
0.

16
±

0.
05

65
0.

16
5
±

0.
07

21
5

-
-

-
-

S
V

L
0
-n

or
m

[2
1]

0.
19

2
±

0.
01

5
38

0.
26

5
±

0.
02

25
0.

15
6
±

0.
13

38
1

0.
49

5
±

0.
03

42
2

SP
FS

-L
SS

V
M

0.
17

6
±

0.
03

50
0.

23
83
±

0.
04

46
0.

05
8
±

0.
00

2
65

1
0.

44
±

0.
05

59
5

SS
D

-L
SS

V
M

0.
18

9
±

0.
02

2
43

0.
16

45
±

0.
01

7
54

0.
05

6
±

0.
0

57
7

0.
42
±

0.
01

68
8

Tr
ai

n,
C

ro
ss

-v
al

id
at

io
n

&
Te

st
C

la
ss

ifi
ca

tio
n(

C
om

pu
ta

tio
n

Ti
m

e)
A

lg
or

ith
m

R
IP

B
C

D
IB

SP
A

M
M

G
T

A
D

U
FC

PF
S-

L
SS

V
M

[1
5]

3.
16
±

0.
18

27
.3

6
±

1.
33

36
.1

4
±

2.
4

18
2
±

7
31

42
±

61
16

52
3
±

54
0

11
85

00
±

92
94

C
-S

V
C

[2
2]

4.
6
±

0.
83

14
.7

6
±

1
61
±

75
10

10
±

53
20

60
3
±

39
6

13
97

3(
*)

58
96

2(
*)

ν
-S

V
C

[2
2]

5.
67
±

11
14

.9
1
±

1
83

.5
±

11
5

78
5
±

22
13

90
1
±

18
9

13
99

2.
7(

*)
53

47
8(

*)
L

op
ez

[2
0]

5.
12
±

0.
9

28
.2
±

5.
4

39
.1
±

5.
9

95
0
±

78
.5

-
-

-
K

ee
rt

hi
[2

3]
21

.1
±

0.
6

74
.3

4
±

3.
9

86
.7
±

5.
12

10
70
±

37
.7

16
60

8
±

39
7

20
35

9
±

76
2

91
49

.8
(*

)
S

V
L

0
-n

or
m

[2
1]

3.
19
±

0.
16

27
.3

84
±

1.
32

36
.1

8
±

2.
4

18
2.

2
±

7
31

43
±

61
16

52
7
±

53
9

11
85

40
±

92
67

.9
SP

FS
-L

SS
V

M
3.

21
±

0.
16

27
.4

2
±

1.
33

36
.2

66
±

2.
4

18
2.

3
±

7
31

55
±

61
16

58
8
±

52
9

11
85

70
±

92
47

.6
SS

D
-L

SS
V

M
0.

95
5
±

0.
05

8.
67
±

0.
14

11
.8

2
±

0.
14

81
.5
±

0.
6

21
92
±

1.
9

13
48

2
±

15
.6

86
46

0
±

2.
8

Tr
ai

n,
C

ro
ss

-v
al

id
at

io
n

&
Te

st
R

eg
re

ss
io

n(
C

om
pu

ta
tio

na
l

Ti
m

e)
A

lg
or

ith
m

B
os

to
n

H
ou

si
ng

C
on

cr
et

e
Sl

ic
e

L
oc

al
iz

at
io

n
Y

ea
r

Pr
ed

ic
tio

n
PF

S-
L

SS
V

M
[1

5]
14

.2
8
±

0.
2

58
.4

1
±

1.
41

33
76

9
±

15
71

24
80

46
±

15
33

0
ε-

SV
R

[2
2]

63
±

1
16

8
±

3
52

43
8(

*)
67

23
1(

*)
ν

-S
V

R
[2

2]
61
±

1
13

1
±

2
42

72
4(

*)
59

89
9(

*)
L

op
ez

[2
0]

15
8.

6
±

3.
2

75
3
±

35
.5

-
-

S
V

L
0
-n

or
m

[2
1]

14
.5

8
±

0.
2

58
.6
±

1.
48

33
77

5
±

15
74

24
81

78
±

15
26

2
SP

FS
-L

SS
V

M
14

.5
±

0.
2

58
.7

6
±

1.
44

33
79

0
±

15
71

24
84

12
±

15
24

8
SS

D
-L

SS
V

M
3.

75
±

0.
06

21
.3

5
±

0.
13

7
25

99
1
±

11
86

65
2
±

24

TA
B

L
E

IV
:

C
om

pa
ri

so
n

in
pe

rf
or

m
an

ce
of

th
e

di
ff

er
en

t
m

et
ho

ds
fo

r
U

C
I

re
po

si
to

ry
da

ta
se

ts
.T

he
(*

)
re

pr
es

en
ts

no
cr

os
s-

va
lid

at
io

n
an

d
pe

rf
or

m
an

ce
on

a
fix

ed
va

lu
e

of
tu

ni
ng

pa
ra

m
et

er
s

du
e

to
co

m
pu

ta
tio

na
l

bu
rd

en
an

d
(-

)
re

pr
es

en
ts

th
e

m
et

ho
d

ca
nn

ot
sc

al
e

fo
r

th
is

da
ta

se
t.

10

Fig. 3: Comparison of the proposed approaches with PFS-LSSVM, SV L0-norm PFS-LSSVM and Keerthi’s method for the
Adult dataset.

quite significant. This is because regression in general requires
a large number of support vectors as observed for the different
SVR approaches in Table IV. From Table IV, we observe
that for the proposed approaches the higher the mean value
of SV, the lower is the estimated error. An exception is the
case of Slice Localization dataset which can be attributed to
the non-parametric nature of SSD-LSSVM as we are not using
an explicit feature map in this method and thus information
about all the features (dimensions) are intact. From Figure
4, we observe the performance of the various approaches
for the large scale Year Prediction dataset. The PFS-LSSVM
method has the least error estimates, but the SSD-LSSVM
approach results in comparable prediction errors with a much
lower computation cost. We also observe that the number
of reduced prototype vectors (SV) can vary a lot for the
L0-norm based methods as during each randomization, we
start with a different initialization and after performing the
iterative sparsification procedure, we end up in a different local
minimum.

V. SPARSITY VERSUS ERROR TRADE-OFF

In this section, we perform additional experiments to illus-
trate the sparsity versus error trade-off between PFS-LSSVM
and SPFS-LSSVM techniques and between SD-LSSVM and
SSD-LSSVM methods.

A. Additional Experiments

Table V provides a comparison between the error variations
and the mean number of prototype vectors for PFS-LSSVM
and SPFS-LSSVM and SD-LSSVM and SSD-LSSVM tech-
niques. For PFS-LSSVM and SD-LSSVM methods, we report

the value of M as the number of prototype vectors PV. For the
proposed techniques we report the mean value of M ′ as the
number of reduced prototype vectors SV. From Table V, we
observe that the PFS-LSSVM performs the best with respect
to error variations but the amount of sparsity introduced by the
proposed techniques is quite significant without much trade-
off in error. An interesting observation is that the SD-LSSVM
method results in poor prediction errors in comparison with the
SSD-LSSVM method for most of the datasets. This is because
the SD-LSSVM works with only M PV vectors while training,
cross-validating and testing. But the SSD-LSSVM uses the
information about the entire training set N in its loss function
while performing the iterative sparsification procedure. Thus,
it results in a set of prototype vectors SV which improves
prediction errors particularly for large scale datasets like Adult,
Forest Covertype for classification, Slice Localization and Year
Prediction datasets for regression.

B. Trade-off Analysis

Table VI illustrates the sparsity versus error trade-off for
the proposed L0-norm based reductions to PFS-LSSVM and
SD-LSSVM methods for various classification and regression
datasets of different sizes.

Sparsity is calculated as the fraction between the change in
the number of prototype vectors to the total number of pro-
totype vectors, i.e., |SP V |−|SSV |

|SP V | . We use the metric fractional
change in error for classification. For the PFS-LSSVM and
SPFS-LSSVM it is defined as (errSPFS − errPFS)/errPFS

where errSPFS is the error corresponding to SPFS-LSSVM
and errPFS is the error corresponding to PFS-LSSVM. Sim-
ilarly, for the SD-LSSVM and SSD-LSSVM it is defined

11

Fig. 4: Comparison of performance of the proposed approaches with PFS-LSSVM, SV L0-norm PFS-LSSVM method for FC
& Year Prediction datasets.

as (errSSD − errSD)/errSD where errSSD is the error
corresponding to SSD-LSSVM and errSD is the error cor-
responding to SD-LSSVM. For regression we report the mean
squared error (mse). It is sufficient to investigate the change
in error, i.e., errSPFS − errPFS and errSSD − errSD w.r.t.
the sparsity introduced by the proposed approaches.

From Table VI we observe that for some datasets the
fractional change in error or the change in error takes neg-
ative values. This means that by introducing sparsity the
performance of the model has improved. This is seen only
for the case of the SD-LSSVM and SSD-LSSVM methods.
The reason for this improvement is that the subsampled
dual LSSVM (SD-LSSVM) model is built by incorporating
information about only the M prototype vectors selected by
maximizing the quadratic Rènyi entropy. On the other hand for
the sparsified subsampled dual LSSVM (SSD-LSSVM) during
the sparsification process we incorporate the information about
the entire training set (N data points) and thus it results

in a better predictive model. This method works particularly
well for large scale datasets as can be observed from the
results corresponding to SPAM, MGT, ADU, FC, SLC and YP
datasets. In case of classification, the sparsity introduced for
these datasets by the SD-LSSVM and SSD-LSSVM methods
is quite substantial as shown in Table VI.

For the PFS-LSSVM and SPFS-LSSVM methods, if the
amount of sparsity increases then the change in error also
increases. This is reflected for datasets like RIP, DIB and
Con in Table VI. However, for large scale datasets like MGT,
ADU, FC, SLC and YP a considerable amount of sparsity
is introduced without much change in error estimation of the
model as highlighted in Table VI.

The PFS-LSSVM can scale to large datasets but the result-
ing models are not the sparsest due to the problem of selection
of smallest cardinality value (M) for the PV set. We overcome
this problem by the means of the proposed SPFS-LSSVM.
The LSSVM model in general cannot scale for large scale

12

Classification
Intial Step Final Step Initial Step Final Step

Dataset PFS-LSSVM SPFS-LSSVM SD-LSSVM SSD-LSSVM
Error PV Error SV Error PV Error SV

RIP 0.1± 0.01 58 0.15± 0.03 11 0.12± 0.03 58 0.13± 0.02 11
BC 0.02± 0.0 153 0.02± 0.01 26 0.02± 0.03 153 0.03± 0.01 8
DIB 0.2± 0.01 167 0.27± 0.04 8 0.22± 0.01 167 0.23± 0.02 6

SPAM 0.08± 0.0 204 0.082± 0.0 169 0.15± 0.01 204 0.083± 0.01 63
MGT 0.13± 0.0 414 0.14± 0.0 163 0.19± 0.01 414 0.135± 0.0 280
ADU 0.15± 0.0 664 0.15± 0.0 464 0.16± 0.0 664 0.15± 0.0 102
FC 0.20± 0.03 763 0.22± 0.03 505 0.26± 0.0 763 0.19± 0.01 635

Regression
Intial Step Final Step Initial Step Final Step

Dataset PFS-LSSVM SPFS-LSSVM SD-LSSVM SSD-LSSVM
Error PV Error SV Error PV Error SV

BH 0.13± 0.0 113 0.18± 0.03 50 0.12± 0.0 113 0.19± 0.02 43
Con 0.11± 0.0 193 0.24± 0.04 46 0.16± 0.2 193 0.16± 0.02 54
SLC 0.06± 0.0 694 0.06± 0.0 651 0.08± 0.0 694 0.06± 0.0 577
YP 0.4± 0.03 718 0.44± 0.05 595 0.49± 0.0 718 0.42± 0.0 688

TABLE V: Error & mean SV comparisons for PFS-LSSVM
(Initial) and SPFS-LSSVM (After Sparsification), SD-LSSVM
(Initial) and SSD-LSSVM (After Sparsification).

Classification
Intial Step Final Step Initial Step Final Step

Dataset PFS-LSSVM & SPFS-LSSVM SD-LSSVM & SSD-LSSVM
Sparsity Fractional Change Sparsity Fractional Change

in Error in Error
RIP 0.81 0.50 0.81 0.08
BC 0.63 0.00 0.95 0.50
DIB 0.95 0.35 0.96 0.05

SPAM 0.17 0.03 0.69 -0.45
MGT 0.61 0.08 0.32 -0.29
ADU 0.30 0.00 0.85 -0.06
FC 0.34 0.10 0.17 -0.27

Regression
Intial Step Final Step Initial Step Final Step

Dataset PFS-LSSVM & SPFS-LSSVM SD-LSSVM & SSD-LSSVM
Sparsity Change in Error Sparsity Change in Error

BH 0.56 0.05 0.62 0.07
Con 0.76 0.13 0.72 0.00
SLC 0.07 0.00 0.17 -0.02
YP 0.17 0.04 0.04 -0.07

TABLE VI: Sparsity versus Error trade-off for PFS-LSSVM
(Initial) and SPFS-LSSVM (After Sparsification), SD-LSSVM
(Initial) and SSD-LSSVM (After Sparsification). Negative
change in error means that by introducing sparsity the per-
formance of the model has actually improved or remained
unchanged. These results are highlighted. This is explained
in detail in Section V-B.

datasets as it creates and N ×N kernel matrix. To overcome
this problem we introduced the SD-LSSVM which trains on
the smaller PV set. We further incorporate the information
about large training set (N) while performing the L0-norm on
top of it. This results in the SSD-LSSVM. By doing this we
prevent loss of information in the final model. Thus, the two
levels of sparsity allows to scale to large scale datasets while
having very sparse models.

VI. CONCLUSION

In this paper, we proposed two techniques namely SPFS-
LSSVM and SSD-LSSVM resulting in very sparse solutions
for mining large scale datasets. The problem of selection of
smallest cardinality M for the PV set faced by the PFS-
LSSVM method is solved by using an iterative sparsifying L0-
norm procedure resulting in very sparse solutions. The compu-

tation time required by one of the proposed approaches (SSD-
LSSVM) is quite low due to lower training, cross-validation
and most importantly out-of-sample extension time because
of fewer prototype vectors. We compared the error predic-
tions of proposed approaches with the recent approaches like
Keerthi’s method, SV L0-norm PFS-LSSVM, Lopez method
and traditional approaches like ν-SVM and C-SVM with good
performance and sparser models. We also investigated the
trade-off between sparsity versus performance and showed that
a significant amount of sparsity can be obtained without much
change in error.

ACKNOWLEDGMENTS

EU:The research leading to these results has received funding
from the European Research Council under the European Union’s
Seventh Framework Programme (FP7/2007-2013) / ERC AdG A-
DATADRIVE-B (290923). This paper reflects only the authors’
views, the Union is not liable for any use that may be made of the
contained information. Research Council KUL: GOA/10/09 MaNet,
CoE PFV/10/002 (OPTEC), BIL12/11T; PhD/Postdoc grants, Flem-
ish Government: FWO: projects: G.0377.12 (Structured systems),
G.088114N (Tensor based data similarity); PhD/Postdoc grants IWT:
projects: SBO POM (100031); PhD/Postdoc grants, iMinds Medical
Information Technologies SBO 2014 and Belgian Federal Science
Policy Office: IUAP P7/19 (DYSCO, Dynamical systems, control and
optimization, 2012-2017)

REFERENCES

[1] J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor and J. Vandewalle.
Least Squares Support Vector Machines. World Scientific Publishing Co, Pte, Ltd
(Singapore), (ISBN: 981-238-151-1), 2002.

[2] J. A. K. Suykens and J. Vandewalle. “Least Squares Support Vector Machine
Classifiers”. Neural Processing Letters, Vol 9, No 3, pp: 293-300, 1999.

[3] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New
York, 1995.

[4] J. A. K. Suykens, L. Lukas and J. Vandewalle. “Sparse approximation using least
squares support vector machines”. IEEE International Symposium on Circuits and
Systems ISCAS 2000, pp. 757-760, 2000.

[5] D. Geebelen, J. A. K. Suykens and J. Vandewalle. “Reducing the Number
of Support Vectors of SVM Classifiers Using the Smoothed Separable Case
Approximation”. IEEE Transactions on Neural Networks and Learning Systems,
Vol 23, No 4, pp: 682-688, April 2012.

[6] C. J. C Burges. “Simplified support vector decision rules”. In Proceedings of 13th

International Conference on Machine Learning, pp: 71-77, 1996.
[7] B. Schölkopf, S. Mika, C. J. C. Burges, P. Knirsch, K. Müller, G. Rätsch and

A. J. Smola. “Input space verus feature space in kernel-based methods”. IEEE
Transactions on Neural Networks and Learning Systems, Vol 10, No 5, pp: 1000-
1017, September 1999.

[8] T. Downs, K. E. Gates and A. Masters. “Exact Simplification of Support Vector
Solutions”. Journal of Machine Learning Research, Vol 2, pp: 293-297, December
2001.

[9] Y. J. Lee and O. L. Mangasarian. “RSVM: Reduced Support Vector Machines”.
In Proceedings of the 1st SIAM International Conference on Data Mining, 2001.

[10] Y. J. Lee and O. L. Mangasarian. “SSVM: A smooth support vector machine for
classification”. Computational Optimization and Applications, Vol 20, No 1, pp:
5-22, 2001.

[11] J. A. K. Suykens, L. Lukas and J. Vandewalle. “Sparse approximation using
Least Squares Support Vector Machines”. In Proceedings of IEEE International
Symposium on Circuits and Systems (ISCAS 2000), pp: 757-760, 2000.

[12] Y. Li, C. Lin and W. Zhang. “Improved Sparse Least-Squares Support Vector
Machine Classifiers”. Neurocomputing, Vol 69, No 13, pp: 1655-1658, 2006.

[13] E. J. Nyström. “Über die praktische Auflösung von Integralgleichungen mit
Anwendungen auf Randwertaufgaben”. Acta Mathematica 54, pp: 185-204, 1930.

[14] C. T. H. Baker. “The Numerical Treatment of Integral Equations”. Oxford Claredon
Press, 1983.

[15] K. De Brabanter, J. De Brabanter, J. A. K. Suykens and Bart De Moor. “Optimized
Fixed-Size Kernel Models for Large Data Sets”. Computational Statistics & Data
Analysis, Vol 54, No 6, pp: 1484-1504, 2010.

[16] P. Karsmakers, K. Pelckmans, K. De Brabanter, H. Van Hamme and J. A. K.
Suykens. “Sparse conjugate directions pursuit with application to fixed-size kernel
methods”. Machine Learning, Special Issue on Model Selection and Optimization
in Machine Learning, Vol 85, No 1, pp: 109-148, 2011

[17] J. Weston, A. Elisseeff, B. Schölkopf and M. Tipping. “Use of the Zero Norm with
Linear Models and Kernel Methods”. Journal of Machine Learning Research, Vol
3, pp: 1439-1461, 2003.

13

[18] E. J. Candes, M. B. Wakin and S. Boyd. “Enhancing Sparsity by Reweighted l1
Minimization”. Journal of Fourier Analysis and Applications, Vol 14, No 5, pp:
877-905, special issue on sparsity, 2008.

[13] G. C. Cawley and N. L. C. Talbot. “Improved sparse least-squares support vector
machines”. Neurocomputing, Vol 48, No 1-4, pp: 1025-1031, 2002.

[19] K. Huang, D. Zheng, J. Sun, Y. Hotta, K. Fujimoto and S. Naoi. “Sparse Learning
for Support Vector Classification”. Pattern Recognition Letters, Vol 31, No 13, pp:
1944-1951, 2010.

[20] J. Lopez, K. De Brabanter, J. R. Dorronsoro and J. A. K. Suykens. “Sparse
LSSVMs with L0-norm minimization”. In Proceedings of the European Sym-
posium on Artificial Neural Networks, Computational Intelligence and Machine
Learning (ESANN 2011), pp: 189-194, Belgium, 2011.

[21] R. Mall and J. A. K. Suykens. “Sparse Variations to Fixed-Size Least Squares
Support Vector Machines for Large Scale Data”. In the The 17th Pacific-Asia
Conference on Knowledge Discovery and Data Mining (PAKDD2013). ftp://ftp.
esat.kuleuven.be/SISTA/rmall/PAKDD ms.pdf

[22] C. C. Chang and C. J. Lin. “LIBSVM : a library for support vector machines”,
ACM Transactions on Intelligent Systems and Technology, Vol 2, No 27, pp.1-27,
2011.

[23] S. S. Keerthi, O. Chapelle and D. DeCoste. “Building support vector machines
with reduced classifier complexity”. Journal of Machine Learning Research, Vol
7, pp: 1493-1515, July 2006.

[24] C. L. Blake and C. J. Merz. “UCI repository of machine learning databases”.
http://archive.ics.uci.edu/ml/datasets.html , Irvine, CA.

[25] R. Fletcher. Practical methods of Optimization. John Wiley & Sons, 1987.
[26] C. K. I. Williams and M. Seeger. “Using the Nyström method to speed up kernel

machines”. Advances in Neural Information Processing Systems, Vol 13, pp: 682-
688, 2001.

[27] M. Rudemo. “Empirical choice of histograms and kernel density estimators”.
Scandinavian Journal of Statistics, Vol 9, pp: 65-78, 1982.

[28] L. Du, Y. Yang, D. He, R. G. Harley, T. G. Habetler and B. Lu. “Support
Vector Machines Based Methods For Non-Intrusive Identification of Miscellaneous
Electric Loads”, 38th Annual Conference of the IEEE Industrial Electronics
Society (IECON 2012), October 25-28, Montreal, Quebec, Canada.

[29] A. W. Bowman. “An alternative method of cross-validation for smoothing of
density estimators”. Biometrika, Vol 71, pp: 353-360, 1984.

[30] D. W. Scott and G. R. Terrel. “Biased and unbiased cross-validation in density
estimation”. Journal of American Statistical Association, Vol 82, pp: 1131-1146,
1987.

[31] C. C. Taylor. “Bootstrap choice of the smoothing parameter in kernel density
estimation”. Biometrika, Vol 76, pp: 705-712, 1989.

[32] S. J. Sheather and M. C. Jones. “A reliable data-based bandwidth selection method
for kernel density estimation”. Journal of the Royal Statistical Society, Vol 53, pp:
683-690, 1991.

[33] D. W. Scott and S. R. Sain. “Multi-dimensional Density Estimation”. Data Mining
and Computational Statistics, Vol 23, pp: 229-263, 2004.

[34] S. Xavier de Souza, J. A. K. Suykens, J. Vandewalle and D. Bolle. “Coupled
Simulated Annealing for Continuous Global Optimization”. IEEE Transactions on
Systems, Man, and Cybertics - Part B, Vol 40, No 2, pp: 320-335, 2010.

Johan A.K. Suykens received the degree in Electro-
Mechanical Engineering and the Ph.D. degree in
Applied Sciences from the KU Leuven, in 1989
and 1995, respectively. In 1996 he has been a
Visiting Postdoctoral Researcher at the University
of California, Berkeley. He has been a Postdoctoral
Researcher with the Fund for Scientific Research
FWO Flanders and is currently a Professor with KU
Leuven. He is author of the books ”Artificial Neural
Networks for Modelling and Control of Non-linear
Systems” (Kluwer Academic Publishers) and ”Least

Squares Support Vector Machines” (World Scientific), co-author of the book
”Cellular Neural Networks, Multi-Scroll Chaos and Synchronization” (World
Scientific) and editor of the books ”Nonlinear Modeling: Advanced Black-Box
Techniques” (Kluwer Academic Publishers), ”Advances in Learning Theory:
Methods, Models and Applications” (IOS Press) and Regularization, Opti-
mization, Kernels, and Support Vector Machines (Chapman and Hall/CRC).
He is a Senior IEEE member and has served as associate editor for the IEEE
Transactions on Circuits and Systems (1997-1999 and 2004-2007) and for the
IEEE Transactions on Neural Networks (1998-2009). He received an IEEE
Signal Processing Society 1999 Best Paper Award and several Best Paper
Awards at International Conferences. He is a recipient of the International
Neural Networks Society INNS 2000 Young Investigator Award for significant
contributions in the field of neural networks. He has been awarded an ERC
Advanced Grant 2011.

Raghvendra Mall was born in Kolkata, India on
March 5th, 1988. He received his BTech degree in
2010 and MS by Research in Computer Science in
2011 from IIIT-Hyderabad, India. He is started his
doctorate at ESAT-STADIUS, KU Leuven, Leuven,
Belgium in 2012 under the guidance of Prof. Johan
A.K. Suykens. He is currently developing techniques
to explore sparsity in large scale machine learn-
ing problems. His current research interests include
sampling and community detection in complex net-
works,exploring the role of sparsity in classification,

clustering and regression.

