KU LEUVEN ARENBERG DOCTORAL SCHOOL

Faculty of Engineering Science

Embedded Model Predictive Control
and Moving Horizon Estimation for

Mechatronics Applications

Milan Vukov

Dissertation presented in partial
fulfillment of the requirements for the
degree of Doctor in Engineering Science

April 2015

Embedded Model Predictive Control and Moving
Horizon Estimation for Mechatronics Applications

Milan VUKOV

Examination committee: Dissertation presented in partial
Prof. dr. ir. D. Vandermeulen, chair fulfillment of the requirements for
Prof. dr. M. Diehl, supervisor the degree of Doctor

Prof. dr. ir.]. Swevers, co-supervisor in Engineering Science

Dr. H. J. Ferreau, co-supervisor
(ABB Corporate Research)

Prof. dr. ir. H. Bruyninckx

Prof. dr. ir. M. Moonen

Prof. dr. ir. F. Logist

Prof. dr.]. Bagterp Jorgensen
(Technical University of Denmark)

April 2015

© 2015 KU Leuven - Faculty of Engineering Science
Uitgegeven in eigen beheer, Milan Vukov, Kasteelpark Arenberg 10, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt
worden door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder
voorafgaande schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.

Acknowledgments

I still feel quite strange in this, new, situation. Almost four and a half years
ago, at the beginning of my PhD adventure, reaching the end seemed nearly
impossible. Yet, after many hours of work, many ups and a bit more downs,
many collaborations and help from a number of very fine people the adventure
came to the end.

My first official meeting with my supervisor Moritz Diehl was in a park near
Naamsepoort in Leuven. Quite atypical I would say. Later when I joined his
group I realized environment in the group was atypical as well, full of flexibility.
Moritz, I would like to thank you for a given opportunity to pursue a PhD
degree in your group and sharing your vast enthusiasm with me. Moreover, I
am grateful for your always positive attitude, no matter how difficult situations
we encountered.

I'would like to thank all the members of my PhD jury, prof. Jan Swevers, Hans
Joachim Ferreau, prof. Herman Bruyninckx, prof. Marc Moonen, prof. Filip
Logist and prof. John Bagterp Jorgensen, for their valuable comments and
remarks given on my research and the PhD manuscript. In addition, I thank
Joachim for guiding me in the early stages of my studies, occasionally reminding
me of the bigger picture.

Funding by the EU projects FP7-EMBOCON, ERC HIGHWIND and Eurostars
SMART is gratefully acknowledged.

Andrew Wagner and I spent countless hours in the kite lab. We used to
work hard, but sometimes just goofing off. Thanks for helping me out with

ii ACKNOWLEDGMENTS

my problems, ideas and giving sometimes negative feedback that made me
think even more. Besides working together on research activities, Greg Horn
infected me with Python and taught me the American slang. Thanks for that!
Thanks to Sébastien Gros sometimes chaotic trains of thoughts in my mind
were put on the right tracks. It was my pleasure to work with Gianluca Frison.
I'wish I had met you earlier. Brainstorming sessions with Joel Andersson are
highly appreciated. I have always enjoyed them very much.

I'had a chance to spend quality time and collaborate with many smart people
I met on the Arenberg campus. Here, I would like to express my gratitude to
Hammad Ahmad, Max Bogli, Janick Frasch, Kurt Geebelen, Joris Gillis, Boris
Houska, Tom Kraus, Adeleh Mohammadi, Reinhart Paelinck, Rien Quirynen,
Michal Salaj and Mario Zanon.

A big thanks also goes to Alexander Domahidi for providing excellent tech
support for his solvers. Moreover, I am grateful to Tobias Gliick for sharing his
pendulum models.

The increasing amount of administrative tasks was carried out with the efficient
support from Veronique Cortens, Jacqueline De bruyn, Ida Tassens, Elsy
Vermoesen and John Vos. Thank you very much for your efforts!

During my internship at AmpyxPower in 2013, I had a chance to experience life
in a startup. I thank everyone there for making me feel welcomed and like a
part of the team. Despite their busy schedules, Séren and Mat always managed
to be helpful and enthusiastic. Thank you a lot guys!

The ex-Yu crew made my stay in Leuven even more memorable. I am indebted
to Ivan and Bogdan in so many ways, particularly for the period when I just
moved to Leuven. Moreover, I owe thanks, in no particular order, to: Li¢Vu,
Ti¢Ma, Mire, Paja, Ilija, Marija & Topke, Ljilja, Jelena, Milica & Danilo, Dusan,
Andelo, Gorana & Ivan, Ivana, Damjan, Marina & Bane.

My mother Dusanka, sister Jovana and father Ratomir have always encouraged
me, shared their love and support. Thank you for being there for me and making
those hundreds of kilometers between us look small. I would also like to thank
my mother- and father-in-law, Nada and Petar, for their generous help in the
final stage of my PhD.

I can hardly imagine finishing this adventure without my family, my wife
Snezana and our son Nikola. SneZana, thank you for just listening to my stories
about technical & research related silly stuff, though I knew most of them were

ACKNOWLEDGMENTS iii

boring and uninteresting to you. Knowing how much hard for maintenance 1
was, you did a really good job being my voice of reason, patient and always
encouraging. Thank you for believing in me, thank you for your limitless love.
Ti si moj ludi kamen spoticanja.

Milan Vukov
Leuven, April 2015

Abstract

The concepts of Model Predictive Control (MPC) and Moving Horizon
Estimation (MHE) received widespread acceptance in both industry and
academia. This is due to the ability to explicitly define objectives and constraints
in the framework of dynamic optimization. Those key facts eventually lead to
improved control performance. Progress in the area of optimization algorithms
and computational hardware in the last two decades have extended the
applicability of numerical optimization to mechatronics applications. In
particular, the applicability was extended for small-scale systems with time
constants in micro- and millisecond range. Following the success convex
quadratic programming (QP) solvers made in linear MPC, the ideas have been
extended for nonlinear MPC and MHE.

This thesis aims to further reduce the gap between academia and industry.
With optimized software for nonlinear MPC and MHE and extended problem
formulations we can efficiently handle complex nonlinear systems, possibly
working under nonlinear constraints. We present recent extensions to the
ACADO Code Generation Tool (CGT). Once specified, the problem structure
is exploited offline by the tool that generates the tailored code optimized for
execution in real-time environments. We demonstrate the strength of the newly
developed features of the tool in numerical simulations and two real-world
applications.

Our numerical simulations show readiness to effectively treat problems on both
short and long horizons. For the systems with a few states and few controls
solution times in the microsecond range are observed. Our largest test case
involves an MPC formulation comprising 33 states, 3 controls, and a prediction

vi ABSTRACT

horizon of 50 steps. This test case comprises 1800 optimization variables and is
possible to solve on modern hardware in under 50 milliseconds. For another test
problem where long prediction horizons are the necessity, we observe solution
times less than 4 milliseconds in a test case with the horizon of 150 steps.

The first experimental study is the application of nonlinear MPC and MHE to a
laboratory scale overhead crane. Here we present computational performance
of two generations of the ACADO CGT. Using the original implementation of
the tool and only an MPC controller in the first control scenario, we achieved
execution times close to 1 millisecond. With the recently optimized code, we
attained nearly the same execution times, now with both nonlinear MHE and
the MPC in the loop. In addition, with the more optimized code we reached
average runtimes for the nonlinear MPC three times faster than with the original
implementation.

The aim of the second real-world application is to validate the computational
performance of the auto-generated MHE and MPC solvers on an experimental
setup for rotational start-up of an airborne wind energy system. The system
model describes complex nonlinear dynamics comprising 27 differential states,
1 algebraic state and 4 controls. The results confirm that nonlinear MPC
formulation with more than 1500 optimization variables is solved in just less
than 5 milliseconds reducing the total feedback time to below 10 milliseconds.

Beknopte samenvatting

Model predictieve controle (MPC) en bewegende horizonschatting (MHE)
kenden een doorbraak in zowel de industrie als in de academische wereld.
De mogelijkheid van dynamische optimalisatie om een doelfunctie en beper-
kingen expliciet te specifiéren, ligt aan de basis van hun populariteit. Beide
mogelijkheden dragen bij tot een verbeterde controleperformantie. De afgelopen
twintig jaar kenden de domeinen van optimalisatie-algoritmes enerzijds en
computationele hardware anderzijds een grote progressie zodat toepassing van
numerieke optimalisatie ook in mechatronische systemen mogelijk werd. In het
bijzonder werd toepassing op kleinschalige systemen met tijdsconstanten in
de orde van micro- of milliseconden mogelijk. Geinspireerd op het succes van
solvers voor convex kwadratische programma’s (QP), werden de ideeén voor
lineaire MPC uitgebreid voor niet-lineaire MPC en MHE.

Deze thesis heeft tot doel om de tweespalt tussen industriéle praktijk en de
academische wereld verder te verkleinen. Met geoptimaliseerde software voor
niet-lineaire MPC en MHE, en met alternatieve probleemformuleringen kunnen
we op een efficiénte manier complexe niet-lineaire systemen behandelen, met
inbegrip van eventueel niet-lineaire beperkingen. Concreet presenteren we
recente uitbreidingen op de ACADO Code Generation Tool (CGT). Na de
probleemspecificatie wordt de structuur van het probleem offline uitgebuit
door deze tool die met deze informatie code genereert die geoptimaliseerd
is voor uitvoering op real-time platformen. De sterkte van de uitbreidingen
op deze tool demonstreren we met numerieke simulaties en ook met twee
uitgewerkte toepassingen op reéle systemen.

vii

viii BEKNOPTE SAMENVATTING

Onze numerieke simulaties geven aan dat probleemstellingen met zowel korte
als lange tijdshorizon efficiént kunnen opgelost worden. Voor systemen met
enkele toestanden en control-inputs nemen we oplossingstijden in de orde van
microseconden waar. De meest grootschalige test-case beschouwd in dit werk
is een systeem met 33 toestanden, 3 controle-inputs en een tijdshorizon van
50 stappen. Voor deze test-case met 1800 optimalisatie-veranderlijken is een
oplossingstijd van 50 milliseconden gerealiseerd op moderne hardware. Voor
een andere test-case die een lange tijdshorizon vereist, is een oplossingstijd van
4 milliseconden gerealiseerd voor een tijdshorizon van lengte 150.

Een eerste experimentele studie van niet-lineaire MPC en MHE is doorgevoerd
op een portaalkraan op laboratoriumschaal. We geven hierbij de computationele
performantie van twee generaties van ACADO CGT. De eerste generatie kent
een oplossingstijd van ongeveer 1 milliseconde voor MPC op zich. Met de recent
verbeterde generatie komen we uit op eenzelfde oplossingstijd, maar nu voor
de combinatie van niet-lineaire MPC en MHE. De MPC op zich komt met de
verbetering een factor 3 sneller uit dan de eerste generatie van de tool.

In een tweede experimentele toepassing gaan we de computationele performatie
na van automatisch gegenereerde MHE en MPC solvers na voor een toestel voor
rotationele opstart van een alternatief windenergie-systeem. Het systeemmodel
beschrijft complexe niet-lineaire dynamica met 27 toestanden, 1 algebraische
beperking, en 4 controle-inputs. De resultaten bevestigen dat een MPC
formulering met ruim 1500 optimalisatie-veranderlijken in 5 milliseconden
kan worden opgelost, waarmee de totale tijd voor een feedback-stap onder de
10 milliseconden komt.

Abbreviations

AWE Airborne wind energy
CGT Code generation tool

DAE Differential algebraic equations
DAQ Data acquisition

FLOP Floating point operation

IMU Inertial measurement unit
IPM Interior point method

KKT Karush-Kuhn-Tucker (first order optimality

conditions)
LAS Line angle sensor
LTI Linear time-invariant

MCU Microcontroller
MHE Moving horizon estimation
MPC Model predictive control

NLP Nonlinear program
NMPC Nonlinear model predictive control

ABBREVIATIONS

ocCr
ODE

QP
RTI

SQP

Optimal control problem
Ordinary differential equations

Quadratic program
Real-time iteration scheme

Sequential quadratic programming

List of Symbols

np
N
N

Ne

Map,it

ny
Ny

nz

Number of control intervals

Number of bounds

Number of control intervals in an MPC formulation
Number of affine constraints

Number of control intervals in an MHE formulation
Number of QP solver iterations

Number of control inputs

Number of optimization variables

Number of differential states

Number of algebraic states

xi

Contents

Abstract v
Contents xiii
List of Figures xvii
List of Tables xxi
1 Introduction 1
1.1 Motivation 1
1.2 Contributions and Overview 7
2 Fast Nonlinear Model Based Predictive Control and Estimation 13
2.1 Preliminaries. 15

2.1.1 Methods for Discretization of Optimal Control Problems 17
212 Nonlinear Programming 21
2.2 Fast Nonlinear Model Predictive Control 24

2.2.1 Real-time Iterations for Nonlinear MPC 25

xiii

xiv

CONTENTS

2.3 Fast Nonlinear Moving Horizon Estimation 29
2.3.1 Problem Formulation 30
2.3.2 Real-time iterations for Nonlinear MHE 33

2.4 The Big Picture: Real-time Iterations in Closed Loop with

Nonlinear MPCand MHE 35
2.5 Building Blocks for Fast Nonlinear MPCand MHE 36
Tailored Quadratic Programming Solvers 39
3.1 Active-set Quadratic Programming Solvers 42
3.2 Condensing Procedures 45
321 C(lassicalCondensing. 48
322 O(N?)Condensing 59
3.2.3 O(N?) Factorization of the Condensed Hessian 64
3.3 Structure Exploiting Interior Point Method Solvers 69
3.4 TheDual Newton Strategy 72
3.5 Numerical Simulations 76
3.5.1 Chain of Masses Connected by Springs 77
3.5.2 Double and Triple Pendulums 79
3.5.3 PerformanceProfiles 81
354 Results o 82
36 Conclusions 95
The ACADO Code Generation Tool 97
41 Peatures e 99
4.2 InterfacestoQPsolvers. 101

4.3 Structure of the Exported Solver. 102

CONTENTS

XV

44 Real-world Applications,

5 Real-time Control of an Overhead Crane

5.1 Experimental setup and DynamicModel
511 ExperimentalSetup.
512 DynamicModel L.
5.2 Control Architectures
521 Scenariol
522 Scenario2 e
53 ExperimentalResults,
531 Scenariol
532 Scenario2
54 Conclusions

6 Real-time Control of an Airborne Wind Energy System

6.1 ExperimentalSetup
6.1.1 Hardware
6.1.2 Software
6.2 Control Architecture, .
621 Modeling oo
6.22 Estimator
623 Controller
6.3 ExperimentalResults
6.4 Conclusions o

7 Conclusions and Outlook

7.1 Directions for Future Research

103

105
106
106
107
110
110
113
116
116
121
126

127
130
130
135
143
144
148
152
157
170

173

XVi CONTENTS

Bibliography 177

Curriculum Vitae 191

List of Publications 193

List of Figures

1.1

21

3.1
3.2

3.3

34

3.5
3.6
3.7

3.8

The Model Predictive Control and Moving Horizon Estimation
frameworks. L

Division into preparation and feedback step.

A chain of masses connected with springs.

Maximum execution times of four different NMPC solvers for a
chain of masses with up to three masses in the chain.

Maximum execution times of four different NMPC solvers for a
chain of masses with four and five masses in the chain.

Maximum number of QP iterations for different NMPC solvers
in the chain of masses benchmark.

Maximum feedback times for the chain of masses benchmark. .
Performance profiles for the chain of masses benchmark.

Maximum execution times of different NMPC controllers for the
double (DP) and the triple (TP) pendulums.

Maximum number of iterations for different NMPC solvers in
the pendulum benchmark.

xvii

xviii

LIST OF FIGURES

3.9

3.10
3.11

4.1

5.1
52

5.3
54

55

5.6
5.7
5.8

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Conditioning within the condensing based solvers in the pendu-

lumbenchmark. L o o 91
Maximum feedback times for the pendulum benchmark. 92
Performance profiles for different NMPC solvers in the pendu-

lumbenchmark. o o 93
Structure of an exported MHE/MPC solver. 103
Schematic of the experimental overhead crane. 106

Relation between measured angle & and pendulum angle
deflection®. 109

Point-to-point motions in the first scenario: states and controls. . 117

Point-to-point motions in the first scenario: performance of the
nonlinear MPC. 119

Rejection of an external disturbance force applied to the hanging
mass in the first scenario: states and controls. 120

Point-to-point motions in the second scenario: states and outputs.121
Point-to-point motions in the second scenario: controls. 122

Point-to-point motions in the second scenario: computational

performance of the MHE and the NMPC. 125
An airborne wind energy concept. 128
The experimental setup. 131
A schematic representation of the experimental setup. 132
A schematic representation of the carousel control hardware. . . 133

A schematic representation of control hardware inside the plane. 134

Simplified software organization. 137
Simplified deployment of the real-time software components. . 140
The schematic representation of the carousel. 144

LIST OF FIGURES

6.9
6.10

6.11

6.12
6.13

6.14

6.15

6.16

6.17

Xix

Position of the plane obtained in closed-loop experiments.

Aerodynamic forces and torques estimated in closed-loop exper-
iments.

Carousel speed 9, torque u; and torque slew rate ug obtained in
closed-loop experiments. L.

Euler angles obtained in closed-loop experiments.

Control surfaces’ angles and corresponding slew rates obtained
in closed-loop experiments.

Performance indicators for the MHE obtained in closed-loop
experiments. oL oo

Estimated invariants defined in the equation (6.6).

Performance indicators and execution times for the NMPC
obtained in closed-loop experiments while using the HPMPC
QPsolver. e

Performance indicators and execution times for the NMPC
obtained in closed-loop experiments while using the condensing
based approach and qpOASES QP solver.

161

164

168

6.18 Samples of timing diagrams obtained in closed loop experiments.169

List of Tables

3.1

3.2
3.3
34
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14

5.1

Number of optimization variables for the sparse and the con-

densed QP. 46
Computational cost of Algorithm 3.1. 51
Computational cost of Algorithm 3.3. 52
Computational cost of Algorithm 3.4. 53
Computational cost of Algorithm 3.5. 54
Computational cost of Algorithm 3.6. 57
Computational cost of Algorithm 3.7. 57
Computational cost of Algorithm 3.8. 58
Computational costs of Algorithms 3.9 and 3.10. 62
Computational costs of Algorithms 3.11and 3.12. 64
Computational costs of Algorithms 3.13and 3.14. 68
Relevant dimensions for the chain of masses benchmark. 79
Relevant dimensions for the pendulum benchmark. 80
Percentages of the RTI scheme spent in the feedback phase. . . . 94

Estimate of the model parameters. 108

xxi

xxii

LIST OF TABLES

52
5.3

6.1
6.2
6.3
6.4
6.5

Execution times of the auto-generated NMPC. 118
Execution times for the auto-generated MHE and NMPC algo-

rithms. 123
Synchronization of the real-time software components. 139
Measurement information. Lo L. 141
Standard deviations for measurements and disturbances. 150
Dimensions relevant to the MHE formulation (6.15). 150

Dimensions relevant to the NMPC formulation (6.18). 154

1

Introduction

1.1 Motivation

The task of operating a system is typically referred to as a control problem and
requires the design of a controller. The controller is an algorithm that steers the
system to a desired state. For example, a controller can serve for the regulation
of the water level in a basin, or for the movement of a welding tool at the
end of a robot arm along a trajectory. A solution of the control problem can
be separated in two contexts: offline and online. The offline context refers to a
system which is nonoperational, i.e. not running. Design of the controller is
one of the tasks that is always done offline. Once the controller is designed it
needs to be deployed to serve its purpose: to control the system. Assuming
the system is running, once the controller is turned on, it executes within the
online context. Implementations on digital computers require the controller to
be repeatedly executed as the system is operated. Typically the controller is
executed periodically. We define this time interval as the control period.

Model based control design is a technique that further requires development
of a mathematical model of the system — a set of equations that describe the
dynamics of the system. The developed model enables one to simulate the
system and predict system’s evolution for arbitrary control inputs. Looking
from the perspective on when to calculate the controls, two approaches can be

2 INTRODUCTION

distinguished: open-loop and closed-loop.

The open-loop approach proposes to calculate all control actions offline. The
controls are pre-calculated based on some insights about the system dynamics
or, e.g. by using a model of the system. As a result, a sequence of control
actions is obtained. Once online, the controller takes the control actions from the
sequence, one control action per control period, and applies it to the system to
accomplish the prescribed task. If the model used for the design is of insufficient
quality and/or the system is under disturbances the approach might produce
unsatisfactory results or even fail.

Another methodology is to control the system in closed loop. Based on a feedback
signal, the controller calculates the control actions online at each time step.
Every system meant to be controlled has a number of outputs that can be sensed
with appropriate sensors. For example, a sensor can monitor the water level
in a basin, or a joint angle in a robot arm. The number of outputs is usually
limited, and sometimes additional efforts are needed to reconstruct the state
of the system. The task of an estimator is to reconstruct the state based on data
from the sensors. In a simple scenario, the estimator is an algorithm that is
executed prior to execution of the controller with the aim to estimate the state
of the system. The estimated state is fed back to the controller and the controller
calculates the control action based on the estimated state. As with the controller,
the estimator design is done offline, while the execution of the estimator is
within the online context. In comparison to the open-loop approach, the closed-
loop one has much higher potential to cope with model-plant miss-match' and to
react to disturbances. Control design often involves the design of an estimator,
thus in the text that follows we are not explicitly going to refer to estimator
design but indicate when necessary.

Designing a controller one tries to fulfill some objectives, while in turn satisfying
some constraints. For example, an objective might be to maintain the water
level in a basin, while keeping the tap angle between certain minimum and
maximum values. Yet another example of an objective is to keep the welding
tool on a certain path. Furthermore, while moving the welding tool, we might
want to penalize excessive and aggressive movements of the robot arm that
lead to direct energy savings and prolonged lifetime of the equipment. Robot
joints are typically actuated by electric motors, which have limits on available
torque, speed, and angle of rotation. An efficient control design is supposed
to take all those constraints into account. Control design in the framework of

n chemical industry terminology, systems are usually referred to as plants or processes.

MOTIVATION 3

Reconcile the past Forecast the future
Measurements
e MHE estimates
i AAAAAAAAAAAAAA
é°2°, A Forecast
1 ° A
[] A

A

i estimation horizon prediction horizon

past controls T MPC controls

time

current time

Figure 1.1: The Model Predictive Control and Moving Horizon Estimation
frameworks?.

dynamic optimization allows one to explicitly formulate objectives and constraints.
Explicit inclusion of constraints avoids safeguarding logic that is necessary for
some other approaches.

A mathematical formulation of a control problem within the dynamic optimiza-
tion framework that directly takes into account objectives, system dynamics and
constraints is called the Optimal Control Problem (OCP) formulation. In a similar
fashion a name for an estimator formulation can be coined, but is uncommon.
An OCP can be solved offline, yielding a sequence of optimal control actions
that can be applied to the system in open-loop. Another approach is to solve
an OCP repeatedly while the process is running. At each time step one OCP is
solved, yielding an optimal solution. In the closed-loop setting there is also a
need for an algorithm that solves the estimation problem that yields an optimal
state estimate that is fed to the controller. The principle of solving OCPs online
is commonly called Model Predictive Control (MPC). Similarly, Moving Horizon
Estimation (MHE) is an online approach to solve estimation problems.

Let us now take a more detailed look at the closed-loop setting of our interest.
The analysis is based in Figure 1.1, where for brevity we avoid constraints. The
task of the MHE is to reconcile the past — reconstruct the state trajectory (blue dots)

2The illustration is inspired by [1].

4 INTRODUCTION

based on noisy sensor data (green squares) and past control actions (dashed red
lines) on a finite estimation horizon in the past. Once the current state estimate
is obtained, the blue dot at the current time, the MPC is triggered. Output of
the MPC algorithm is a sequence of optimal control actions (red full line) such
that the forecast (blue triangles) eventually fulfills the design requirements.

In an ideal situation, if we take the calculated control actions and apply them
in open loop, the control sequence results in system evolution as predicted by
the controller. A legitimate question to ask in this situation is: why to employ MHE
and MPC techniques at all? The answer is: there is no need for those techniques
in the ideal situation. We compute optimal control actions only once — offline
- and later apply them in open-loop. However, the reality is everything but
ideal. First, an accurate model of a system is in general unavailable. Second,
the sensor data is usually corrupted with noise and of limited accuracy. Third,
the system is usually subjected to disturbances. Those are the reasons we need
state estimator to reconcile the past measurements.

Quality of the state estimates is directly affected by model quality, quality of the
sensor data, and naturally depends on estimator design. In effect, this means
that the system is not going to be at the state predicted by the MPC after we
apply the first step from the sequence. Thus, we apply the first optimal control
action and at the next time step we repeat all calculations: estimate the state
and recompute the optimal control actions on the prediction horizon. One of
the bright sides of this approach is that with an appropriate control design one
can expect that the system is going to be in a vicinity of the predicted state after
the first control action is applied.

The key feature to remember and the one that motivates the usage of model
based predictive control and estimation techniques such as MPC and MHE is
the ability for a direct specification of objectives and constraints in the elegant
mathematical framework of dynamic optimization. This approach cannot only
improve the closed-loop performance but potentially speed up control design. In
particular, heuristics other control approaches exercise can be avoided. However,
those appealing properties come at the expense of potentially computationally
expensive numerical calculations.

The dynamic systems we are particularly interested in are the ones with
nonlinear dynamics, possibly running under nonlinear constraints. Numerical
solvers for optimal control of nonlinear dynamic systems face a set of challenges.
In addition to the typical need for solving linearized (sub-)problems, exactly

MOTIVATION 5

the same as in linear MPC and MHE, treatment of nonlinear dynamics and
constraints demands for additional — often expensive — online computations.
For instance, the model simulation and evaluation of nonlinear functions is
performed online.

Online solution to control and estimation problems not only has to be
numerically correct, but also has to be performed on time — within the control
period. This is the real-time feasibility requirement. Numerical calculations for
MPC and MHE take a finite amount of time that is in general non-negligible in
comparison to the control period. This time period is called the computational
delay, and consists of the execution time of an MHE algorithm and the execution
time of an MPC algorithm. A number of factors influence the execution times
of the numerical solvers for MHE and MPC, e.g. model complexity and horizon
length. Moreover, the solution to the underlying optimization problems is an
iterative process in general, meaning that the execution times are varying.
A direct consequence is that in a fair number of circumstances the exact
optimal solution cannot be found in real-time, and the ultimate aim is to find a
feasible sub-optimal solution, i.e. the partly optimized response that satisfies
the constraints.

Besides the fact we require implementations to be real-time feasible, there is
also the strong incentive to minimize the computational delays. Remember,
the MPC approach calculates the (sub-)optimal control actions based on
predictions of system evolution. Long execution times can significantly delay
the moment the control action is applied to the system. This issue leads to
incorrect predictions and decreased closed-loop performance [2, 3]. For highly
complex nonlinear systems, incorrect predictions can even result in complete
failure of the controller.

Traditionally, the control and estimation approaches based on dynamic
optimization were almost exclusively applied to systems with slow dynamics:
e.g. chemical reactors and refineries. Here, we also include our water basin
example from the beginning. By slow dynamics we mean that the control
periods are larger than one second, and typically in the order of minutes or
hours. Recent advances in algorithms and computational hardware extended the
applicability of MPC and MHE to electro-mechanical, mechatronics, applications:
robotics, power electronics, control of electrical drives, and aerospace. These
systems with fast dynamics require short control periods, much less than
one second and typically in the milli- and microsecond range. Here, we list
the two most important insights that led to algorithmic advancements in the

6 INTRODUCTION

last two decades and enabled MPC and MHE to be utilized for mechatronics
applications.

* The underlying (sub)-problems are highly structured. Exploiting the
structure is of paramount importance and yields reduced complexity
algorithms [4, 5].

* In the online context, sequences of similar optimization problems are
being solved. Therefore, using the solution of the current problem as
initial guess for the next one can accelerate the solution search and at the
same time reduce the computational delays [6].

Next to improvements in algorithm design, modern computer architectures al-
lowed for great speed-ups of the most time consuming parts of the optimization
algorithms, i.e. linear algebra routines.

Production process limitations that implied clock speed stagnation of modern
processors — central processing units (CPUs) — forced manufacturers to explore
different levels of parallelized processing. On a CPU level, manufacturers
implement nowadays multiple computational cores in a single CPU. For perfor-
mance boost of a single core, vendors implement nowadays various instructions
for vectorized processing. In dynamic optimization, the routines for matrix-
matrix and matrix-vector multiplications as well as solving solving systems of
linear equations typically take most of the execution time. These operations
are exactly the ones to profit the most from the efficient implementations
on modern processors. Furthermore, certain optimization algorithms have
inherent properties for parallelization. In a closed-loop setting multi-core CPU
configurations allow big portions of the MHE and MPC algorithms to be
executed in parallel.

An additional requirement that often appears in mechatronics applications is
to embed the computational hardware together with the equipment. Thus, it
may be necessary to choose computational hardware with limited resources,
e.g. with less superior architecture, lower clock cycle, and/or reduced memory.
Reasons for such decisions include (but are not limited to) smaller price tag,
power efficiency, increased reliability and size of the embedded system. In
the area of optimal control, algorithms are commonly labeled as embedded to
indicate the intention to either be used for fast mechatronics applications or
implemented on computationally limited hardware. Within the scope of this

CONTRIBUTIONS AND OVERVIEW 7

thesis, we use the term embedded to emphasize our intentions to apply MHE
and MPC algorithms to mechatronic systems.

One of the approaches found to be efficient for software implementations
intended to be used for optimal control of nonlinear mechatronics systems
is automatic code generation. The basic idea of code generation is to generate
the code tailored to a specific MPC or MHE formulation. One of the few
publicly available tools is the ACADO Code Generation Tool [7], that has been
developed at the KU Leuven since 2010. Already the first implementation
showed promising results and an order of magnitude faster execution times
compared to standard solvers.

However, the first implementation offered a limited set of features and no
support for MHE formulations. Within this thesis we aim to extend the feature
set of the ACADO Code Generation Tool such that it can be applied to a much
wider range of applications. The improved implementations and more advanced
features should minimize the gap between academia and industry. Eventually,
the improved software will demonstrate that the nonlinear MPC and the MHE
techniques are ready to be used for complex mechatronics systems.

To further motivate the use of the nonlinear MPC and MHE, we intend to apply
the developed software on two challenging real-world applications. The first one
is the laboratory scale overhead crane, and the second one is an airborne wind
energy system. Both applications will prove the potential and computational
effectiveness of the implemented methods.

1.2 Contributions and Overview

Chapter1 Fundamentals of model based control and estimation are intro-
duced, and the motivation for the research is given.

Chapter2 In this chapter we introduce the necessary mathematical foun-
dations for fast nonlinear Model Predictive Control (MPC) and
Moving Horizon Estimation (MHE). A survey of the currently
available techniques is presented. The method of choice, the well-
established Real-time Iteration (RTI) [8] scheme is introduced.
Building blocks for fast MPC and MHE are identified and
discussed.

INTRODUCTION

Chapter 3

The chapter is based on the work presented in [9, 10, 11]. In [11], MV
contributed with a prototype implementation of a solver for nonlinear
MHE. Moreover, MV provided support leading towards successful closed-
loop simulations.

One of the building blocks in nonlinear MPC and MHE is a
fast solution of the underlying quadratic program (QP). The
chapter contributes with benchmarks presented in § 3.5. We
tested NMPC solvers employing four efficient QP solvers on
two challenging benchmarks. The first benchmark is related to
control of a scalable chain of masses connected by springs. In
the second benchmark, task of the solvers is to stabilize the
unstable double and triple inverted pendulums. Three methods
for solution of QPs arising in optimal control and estimation
are tested: active-set methods, interior point methods and the
recently developed dual Newton strategy. The active-set method
requires pre-processing of the original QP, condensing, to make the
approach computationally efficient. We review and analyze three
different condensing approaches in details from two perspectives:
solutions of the QPs from MPC and MHE. In addition to the
benchmarks, two procedures for reduced complexity condensing
originally developed for MPC are extended for the MHE.

The results for the chain of masses benchmark confirm the
effectiveness of condensing based solvers for short to medium
horizon lengths and high ratios of the number of the states to the
number of the controls. Sparse solvers showed to be effective for
long horizons and the state-to-control ratios. In one of the extreme
test cases, we achieved execution times of a sparse NMPC solver
lower than 1 ms for a dynamic system with 9 states, 3 controls,
and a prediction horizon of 50 steps. For the largest considered
dynamic system with 33 states and 3 control, the corresponding
MPC problem formulation with 50 steps — comprising 1800
variables — is possible to solve within 50 ms. For the pendulum
benchmark, where long prediction horizons were required, it was
shown that a structure exploiting NMPC solver can successfully
solve a test case with a prediction horizon of 150 steps in just less
than 4 ms.

CONTRIBUTIONS AND OVERVIEW 9

Chapter 4

Chapter 5

The chapter is partly based on the work presented in [9, 10, 12, 13].
In [12], MV implemented an interface for the qpDUNES QP solver
to the ACADO CGT, that eventually led to a new NLP solver for
NMPC. In [13], MV contributed with an implementation of the O(N?)
condensing routine for NMPC and corresponding benchmarks.

Contributed features to the ACADO Code Generation Tool (CGT)
are summarized in this chapter. The tool is a module within
the open-source software package ACADO Toolkit — a software
package for dynamic optimization and control. The tool allows
the user to specify nonlinear MHE or MPC formulations using
a convenient syntax either in C++, or using MATLAB or Python
interfaces. Afterwards, the fully customized solver is exported
in the form of optimized C-code. Such a solver can be compiled
and deployed to a real-time platform for real-world applications.
As the exported code optimization led also to dramatic decrease
of code compilation time, the tool found its way to be used for
rapid prototyping. The most distinguishable contributed features
include:

e full support for multiple-shooting discretization and exten-
sions for parallelization,

¢ extensions for support of general nonlinear path and point
constraints,

¢ efficient condensing routines,
¢ support for MHE formulations,

¢ interfaces for three additional structure exploiting QP solvers.

The chapter is partly based on the work presented in [9, 10, 11]. The
ACADO CGT has been jointly developed with Hans Joachim Ferreau,
Boris Houska and Rien Quirynen and with generous help from Joel
Andersson, Alexander Domahidi, Janick Frasch, and Gianluca Frison.

This chapter demonstrates an application of nonlinear MPC and
MHE algorithms to a mechatronics system with fast dynamics. We
use the auto-generated solvers from ACADO CGT that implement
the real-time iteration scheme for both the controller and the
estimator to control a laboratory scale overhead crane. The
experimental setup consists of a cart moving in one dimension

10

INTRODUCTION

Chapter 6

and a varying length pendulum attached to it.

Experimental results confirm fast execution times and fast conver-
gence of the RTT scheme. We present the closed-loop performance
while employing different scenarios using two generations of the
code-generation software. Both scenarios show average execution
times close to one millisecond. Using the more advanced software
implementations, developed within this thesis, astonishing speed-
ups are obtained in the second scenario. In particular, the average
execution time of the MPC from the first scenario is nearly equal to
the time both the MHE and the MPC need in the second scenario.

This chapter is based on the work presented in two publications,
namely [9] and [14]. In [14], MV contributed with formulations for
the NMPC and the MHE as well as with extensions to the ACADO CGT.
Besides the detailed comparisons shown in the chapter, the following
practical contributions by MV made the laboratory experiments possible:

* modeling, offline simulations, software for real-time control,

* hardware and software integration and experiments.

The experimental work has been done jointly with Frederik Debrouwere,
Wannes van Loock, Rien Quirynen, and Keivan Zavari.

The aim of the second application is to validate the computational
performance of the auto-generated MHE and MPC solvers on an
experimental setup for rotational start-up of an airborne wind
energy system. The system model describes complex nonlinear
dynamics comprising 27 differential states, 1 algebraic state and
4 controls. A long prediction horizon and a short control period
of 40 ms were necessary to achieve satisfactory performance of
the NMPC. The same MPC formulation is solved online by two
solvers employing different QP solvers. The first one is employing
the structure exploiting interior point QP solver, and the second
one utilizes an efficient condensing technique and an active-set
QP solver.

The results show reasonably well control performance and ex-
ceptional computational performance of the solvers. The interior
point QP solver manages to solve the MPC formulation with more

CONTRIBUTIONS AND OVERVIEW 11

Chapter 7

than 1500 optimization variables in just less than 5 ms. Moreover,
the total feedback time for this particular application is always
less than 10 ms.

The introduction of this chapter is partly based on the work presented
in [15]. In [15], MV contributed with extensions to the ACADO CGT
for fast NMPC and MHE solvers as well as with the hardware and
software integration. The results presented in this chapter are submitted
in an extended form as the article [16] to a journal. Besides the detailed
comparisons shown in the chapter, the following practical contributions
by MV made the laboratory experiments possible:

e development of software for data acquisition,
o development of telemetry software,
o development of a real-time simulator,
* finalization and testing of an MHE and an NMPC,
* hardware and software integration and
* performing closed-loop experiments.
The work in the KU Leuven kite laboratory has been done jointly with

Hammad Ahmad, Kurt Geebelen, Joris Gillis, Sébastien Gros, Greg Horn,
Andrew Wagner, and Mario Zanon.

The overall conclusions are drawn and directions for follow-up
research activities are given.

2

Fast Nonlinear Model Based
Predictive Control and Estimation

Model predictive control (MPC) has been originally designed and used for
control of large-scale processes, typically in the chemical and petroleum
industry. The slow dynamics of those systems allowed long control intervals
measured in tens of seconds or even hours, leaving enough time to compute a
solution to the underlying optimization problem. During the last decades, the
concept of MPC proved to be powerful and has received widespread acceptance
in both academia and industry [17, 18, 19, 20, 21, 22].

Progress in the area of optimization algorithms and computational hardware in
the last two decades have extended the applicability of numerical optimization
on embedded platforms. These developments made MPC suitable for control of
fast dynamic systems with time constants in the micro- and millisecond range.
As convex quadratic programming solvers became increasingly faster [23, 24,
25], especially linear MPC became applicable for fast dynamic systems such as
mechatronic devices [26, 27]. In contrast, nonlinear MPC (NMPC) — that allows
one to apply MPC to nonlinear dynamic systems [28] — has been mainly applied
to systems exhibiting slower dynamics so far. This is mainly due to the fact that
nonlinear MPC requires more computation power than linear formulations,
but also ensuring convergence of iterative methods for solving non-convex
optimization problems is more challenging. Overviews of existing algorithms

13

14____ FAST NONLINEAR MODEL BASED PREDICTIVE CONTROL AND ESTIMATION

for fast nonlinear MPC algorithms can be found in [6, 29, 30].

Feedback control strategies such as model predictive control (MPC) are typically
designed under the assumption that all current process states and parameters
are known. However, in most real applications it is either impossible to measure
all these quantities directly or at least undesired for economic reasons. The task
of recovering the full knowledge of all current process states and possibly some
parameters is referred to as state and parameter estimation, respectively.

A nearly dual problem [6] to MPC is the Moving Horizon Estimation (MHE)
approach [31, 32]. Building on the popularity of MPC, the MHE approach also
gained popularity, see e.g. [33]. In comparison to the mostly used techniques
for estimation — Kalman filters — this approach is deterministic in the sense that
is does not have to assume Gaussian distributions of state and measurement
errors. Though, this insight is valuable when tuning the weighting matrices of
the least-squares objective function. Moreover, MHE offers an elegant inclusion
of constraints and handling of delayed and multi-rate measurements. Other
approaches to state and parameter estimation can cope with constraints and
delayed /multi-rate measurements as well, but typically with more involved
algorithmic techniques. For a general overview of the topic we refer to [19] and
for general overview of efficient methods for fast MHE to [6].

In this chapter we summarize the necessary theoretical foundations needed
for the application of MHE and MPC to fast mechatronic systems. Starting
with § 2.1 we introduce the continuous in time Optimal Control Problem (OCP)
formulation relevant within the scope of the thesis. Afterwards, numerical
methods for discretization of OCPs are briefly reviewed in § 2.1.1, followed
by the presentation of the method of choice, the direct multiple shooting.
Discretization of an OCP yields a nonlinear program (NLP). The solution
methods for NLPs are outlined in § 2.1.2. The concept of nonlinear MPC is
introduced in § 2.2 together with the well established real-time iteration scheme.
In § 2.3 we introduce the formulation of our choice and address some of the
common issues. The real-time iteration scheme for MHE is presented in § 2.3.2.
In § 2.4 we explain the closed-loop setting with MHE and MPC using the RTI
scheme. We give details on how the control scheme can be implemented on
modern computer architectures. The chapter is concluded with a summary of
key building blocks that are necessary for efficient implementations of MHE
and MPC.

PRELIMINARIES 15

2.1 Preliminaries
Within this thesis we consider continuous-time dynamic models described by
initial condition
x(tp) = xo, (2.1)
an index-1 differential-algebraic equation (DAE) [34]
0= fa(x(t),x(t),z(t),u(t)), VteT :=][ty,00), (2.2a)
0= fq(x(t),z(t),u(t)), VteT, (2.2b)

and an output function

y(#) = hy(x(£), u(t)). (23)

Here, the initial value is xy € R, the differential states are x : 7 — R™,
the algebraic states arez: 7 — Rz, the controlsare u: 7 — R™, and the
outputsarey : 7 — R'™. As the index-1 DAE is in question, it is assumed
that the matrix dg/dz is invertible. Additionally, it is assumed that the matrix
df /9% is invertible, so that the DAE is of semi-explicit type [8]. For notation
convenience, we will refer to the DAE (2.2) in a compact form:

0= f(x(t),x(t),z(t),u(t)), vVteT (2.4)

and when necessary explicitly refer to (2.2). In absence of algebraic states, the
DAE boils down to an ordinary differential equation (ODE)

0= f(x(t),x(t),u(t)), VvteT. (2.5)

Possible system parameters p : 7 — R can be additionally embedded
into (2.2a) as 0 = p(t), Vt € T with p(tg) = po. On the other hand, inclusion
of a disturbance model can be achieved by extending the system model with
additional disturbance inputs and the corresponding dynamics.

Our intention is to minimize the cost functional of Bolza type

/tf L(x(t), u(t)) dt + E(x(tf)) (2.6)

to

16 FAST NONLINEAR MODEL BASED PREDICTIVE CONTROL AND ESTIMATION

where L(.) is called the Lagrange term and E(.) is called the Mayer term. The
prediction horizon length is defined as T. = t; — to. The cost functional is
minimized such that the general path constraints

r(t) <r(x(t),u(t)) <7(t), Vte [ty tf] (27)
and the point constraint

rp <rp(x(ty)) <7s (2.8)
are satisfied along the trajectory of the system described by the model (2.4).

The particular continuous-time OCP formulation we are interested in reads as
follows:

.1t _ _
min > [n(x(e),u(t) - Gl dt + e (x(te) = G5l (29a)

x,z,u 2 to

st x(tg) = %o, (2.9b)
0= f(x(t), x(t), z(t),u(t)), (2:9¢)
x(t) < x(t) <x(t), (2.9d)
u(t) <u(t) <u(t), (2.9€)
r(t) <r(x(f),u(t)) <7(t), Vte [totg], (2.91)
ry <rp(x(ty)) <7 (2.9g)

Therein, the Lagrange and the Mayer term are of the least-squares type. The
output functions are defined as h and Iy and 7 and 7 are called the references.
This type of the objective is commonly called the tracking objective. The positive
definite matrices W(f) and Wy are referred to as the weighting matrices. Within
the initial constraint (2.9b) £y denotes the current state feedback and (2.9c¢) is the
system dynamics described by the DAE (2.4). From now on, we split the general
path constraints (2.7) into two groups: 1) bounds on the states (2.9d) and the
controls (2.9e) with appropriate lower and upper bounds and 2) nonlinear path
constraints (2.9f). The point constraint, sometimes called the terminal constraint,
is defined in (2.9g). For the treatment of more general OCP formulations
including more general objective formulations and the more complete treatment

PRELIMINARIES 17

of DAEs, we refer to e.g. [35, 36, 37].

2.1.1 Methods for Discretization of Optimal Control
Problems

Treatment of continuous time OCP formulations on digital computers and
application on real systems requires formulation discretization. Regarding the
discretization process, there exist two big families of methods for solving the
continuous OCPs: the indirect and the direct methods.

The first group of methods, the indirect methods (also known as optimize-then-
discretize), build up on ideas coming from the dynamic programming [38] and
Pontryagin’s maximum principle [39]. The first-order necessary conditions for an
infinite dimensional OCP yield a boundary value problem (BVP) that needs to
be solved. After the solution of the BVP is obtained, the trajectory of optimal
controls is discretized. While attractive from a theoretical point of view, the
methods are less favorable for practical considerations mainly because of the
significant efforts needed to analytically formulate the BVPs and because the
BVPs are nontrivial to solve for higher state dimensions. Moreover, constraints
are difficult to handle with this group of methods.

The direct methods, sometimes referred to as discretize-then-optimize methods,
first discretize the infinite dimensional OCP into a finite dimensional nonlinear
program (NLP). The NLP is afterwards solved numerically by an iterative
algorithm. Within this group of methods, two approaches can be distinguished:
sequential and simultaneous. The representative of the sequential approach is
the direct single shooting (DSS) method, where the simulation of the dynamic
system (2.9¢) on the finite horizon has to be done sequentially. The numerical
simulation of the system’s model is done using a numerical integrator. While
the DSS proposes to integrate the system dynamics from beginning of the
horizon fo until the end t ¢, the direct multiple shooting (DMS) approach proposes
to split the integration process and introduce more degrees of freedom. While
computationally slightly more expensive than DSS, the DMS typically shows a
much faster convergence for highly non-linear systems. Moreover, the DMS is
a preferred method for solving highly nonlinear and unstable systems where
DSS approach occasionally fails. A third approach of the direct methods is
called direct collocation [40, 41]. Instead of using the numerical integrators for
simulation of the system dynamics, this approach proposes to embed this step

18 FAST NONLINEAR MODEL BASED PREDICTIVE CONTROL AND ESTIMATION

directly into the NLP. The approach proved to be efficient for solving large-scale
optimization problem typically arising in process control.

The shooting methods yield an NLP which has a specific block structure that
can be efficiently handled by numerical solvers. Furthermore, the DMS can be
efficiently and trivially parallelized. On the other hand, the direct collocation
approach typically results in a sparse large-scale NLP that can be efficiently
parallelized and solved with sparse linear algebra methods.

To this date, OCPs designed for control of small-scale systems with of up to a
couple of dozen of states and few controls are typically solved with shooting
methods. The main reason for this is that the structure of the NLPs can be
efficiently exploited on the block level, where existing and well optimized
dense linear algebra routines are used. Application of the direct collocation
approach to small-scale systems is, to our knowledge, an unexplored area. The
reason for this seems to be nonexistence of efficient linear algebra routines.
For the reasons outlined above, our method of choice for discretization of the
continuous time OCP (2.9) is the DMS method.

Direct Multiple Shooting

The discretization process of an infinite dimensional OCP (2.9) starts with a
choice of N, intervals that partition the prediction horizon into sub-intervals
[tx, tx + 1] defined by N + 1 nodes

o<t <.. <tn, (2.10)

where ty. = tf. Consequently, the lengths of the intervals are denoted as
O = tkr1 —te, kK = 0,...,N. — 1 and the following equality always holds:
60+ ...+ 6n.—1 = Tc. The discretization intervals are sometimes also called the
shooting intervals and the nodes f;, are sometimes referred to as the shooting nodes.
Next to the time partitioning, controls are parametrized. The typical choice is
to use the piece-wise constant control parametrization, although more complex
parametrizations are possible. This parametrization choice results in N, control
variables uy, k =0,...,N; — 1.

In the context of Bock’s direct multiple shooting [42], the state trajectory is
computed independently on each sub-interval d¢. For that purpose, additional

PRELIMINARIES 19

variables s]’(‘ and si are introduced to serve as initial values:

0= fxx(t), xx(t), zx(t), ux), xx(tx) = s, z(te) = si, t € [l teya]. (2.10)

Furthermore, the matching constraints are added to the NLP to ensure continuity
of the optimal state trajectory on the whole prediction horizon:

st = B (sispoug), k=0,...,Ne—1, (2.12)

where F,i“t represents the solution of the initial value problem (IVP) (2.11) at
time t = ;4.

The objective (2.9a) and the constraints (2.9d) - (2.9g) are discretized at the same
grid as the differential and algebraic states and controls. The NLP that comes
as a result of the multiple shooting discretization of the OCP (2.9) reads:

1N § §
min 5 Y (s i) — Gl + 1N (sk) — I Fi, (2.13a)
sy k=0
s.t. 5o = %o (2.13b)
st = F™(s}, s, ug) (2.13¢)
X < sp <X (2.13d)
e < up < g (2.13e)
re < r(sg,ug) <7k (2.13f)
N, <IN (s’f\]c) < 7N, (2.13g)

Within the NLP formulation (2.13) the choice is made to evaluate least-squares
terms point-wise instead of integrating them on the each interval. This choice
is often made to reduce computational burden. It is further motivated by an
accurate approximation of the integral with the sum and a fine discretizaton of
the prediction horizon, provided the objective function is sufficiently smooth.
In practice, even for coarse discretization this approach can provide sufficiently
accurate results. A more detailed discussion about efficient integration schemes
can be found in e.g. [43]. The second choice is not to explicitly use the additional
algebraic variables as optimization variables in the NLP but to make them

20 FAST NONLINEAR MODEL BASED PREDICTIVE CONTROL AND ESTIMATION

internal to the integrator. In other words, the numerical integration algorithm
is responsible to update s} such that the consistency condition (2.2b) is satisfied
at the end of each shooting interval, see [44]. For notational convenience we
rename the OCP quantities iz Wf, re, tp, Ty to NLP quantities hn_, W, In.,
"Ner "N,

Soft constraints The NLP constraints (2.13c) —(2.13g) are typically regarded to
as hard constraints. In other words, they impose strict limitations on constrained
quantities. The constraints on control inputs are usually reflect real physical
limitations, e.g. a limitation of the available current a low-level servo amplifier
can provide to an electrical motor. Thus, it makes sense to enforce them strictly.
On the other hand, state, path and point constraints typically define design
requirements that may be relaxed. As pointed out in [5], it is sometimes
desirable to relax those hard constraints to avoid feasibility issues. From practical
perspective, it is indeed undesirable having an algorithm declaring infeasibility
in online context. For instance, the hard state constraints (2.13d) may be replaced
by soft constraints

Xp—ep <sp <X+, g >0, (2.14)

introducing the extra slack variables ¢ in the NLP and appropriately penalizing
them in the objective using a combination of ¢1- and ¢;-norms [5]. Within
the scope of this thesis, we treat all constraints as hard, but point out that
the soft constraints can be handled with minor modifications to the NLP
formulation (2.13). For more details on the topics we refer to e.g. [5].

PRELIMINARIES 21

2.1.2 Nonlinear Programming

Grouping the optimization variables of the NLP (2.13) in a vector

X = [(s3), (wo)', (s1)',- -, (s%)] (2.15)

the following general NLP formulation is obtained:

m}}n F(X) (2.16a)
st. G(X) =0, (2.16b)
H(X) <0, (2.16¢)

where F(X) is the objective function, and G(X) and H(X) denote summarized
equality and inequality constraints, respectively. Therein, we assume that the
functions F(X), G(X) and H(X) are at least twice differentiable.

The optimality conditions for any solution of the NLP are stated in the famous
Karush-Kuhn-Tucker (KKT) conditions of optimality [45, 46]. In particular, any local
solution X* has to satisfy the following set of conditions:

VxL(X*, A%, u*) =0, (2.17a)
G(X*) =0, (2.17b)

H(X*) <0, (2.17¢)

p >0, (2.17d)

() H(X*) =0, (2.17¢)

where A*, u* are optimal multipliers. Moreover, the Lagrangian function used
in (2.17) is defined as

L(X, A, 1) := F(X) + G(X)'A + H(X) . (2.18)

In the language of nonlinear optimization, the condition (2.17a) is commonly
called the dual feasibility, conditions (2.17b) and (2.17c) the primal feasibility and
the complementary conditions are defined in (2.17d) and (2.17e).

There exist two big families of methods for solving nonlinear programs: the

22___ FAST NONLINEAR MODEL BASED PREDICTIVE CONTROL AND ESTIMATION

sequential quadratic programming (SQP) and the interior point methods (IPM).
The key difference between them is how the inequality constraints in the KKT
conditions (2.17) are treated. We only give a brief overview and refer for more
details to the excellent books [47, 40].

Sequential Quadratic Programming

The SQP approaches propose to solve the NLP iteratively by successive
(re)linearizations of the nonlinear functions F, G and H. As a result, at iterate k
the following quadratic program is obtained:

min %AX’AkAX + VF(X*)AX (2.19a)
st. G(XF) 4+ VG(X)YAX =0 (2.19b)
H(X*) + VH(X*)AX <0, (2.19¢)

where AX is the search direction, X¥ is the current linearization point, and Ay is
an approximation of the Hessian of the Lagrangian function V% £(X*, A, i) at
iterate k. Once the QP solved, the next iterate is obtained as Xf™1 = X¥ 4+ aAX*,
where the step length a is chosen by a suitable globalization strategy —see e.g. [47].

If the matrix Ay is exactly the Hessian of the Lagrangian the exact Hessian
SQP is obtained. The method is locally qudratically convergent and the global
solution can be found if the Hessian of Lagrangian is positive semi-definite.
Here, however, we are interested in the Gauss-Newton Hessian approximation,
since the NLP objective (2.13) of our discretized OCP (2.9) is of the least-squares
type. In particular, the objective is can be put in the form

F(X) = 5 IR()B

where R(X) is the vector of residuals. If the norm of the residuals is small, the
Gauss-Newton approximation to the Hessian of the Lagrangian

A = VR(XF)VR(XF) (2.20)

yields surprisingly good results. This SQP method is commonly referred to
as the generalized (constrained) Gauss-Newton method. In general, the method
exhibits only linear convergence rate, but in many cases shows good contracting

PRELIMINARIES 23

properties. In comparison to the Exact Hessian method, the (generalized) Gauss-
Newton method does not require computations of second-order derivatives.
This fact is naturally attractive for the online optimization. In context of optimal
control, this approach has been first used by Bock, see [48].

Monitoring the iteration progress is usually done by assessing outputs of
a particular globalization strategy employed and the value of the objective
function. In addition, there exists a cheap tool for monitoring the progress of
an SQP method, using only the knowledge of the current linearization point X*
and the current multipliers A* and p*. The measure is called the KKT tolerance
and is calculated as:

ng ny
KKTTOL := |[VF(X*)AX|+ Y [AFG(XF)| + Y | Hi (X)) (2.21)
i=0 i=0

This KKT tolerance was invented and used by Powell in some of his earliest SQP
implementations [43]. The measure has the same unit as the objective function
and summarizes possible progress of the objective function and constraint
violations. As pointed out as an example in [43], "KKTTOL = 10~ means that the
objective value is likely to be correct to about six digits”. In absence of a globalization
strategy, this measure can serve as a reliable performance indicator.

Interior Point Methods

The idea of interior-point methods is to solve the inequality constrained
NLP (2.16) as a sequence of equality constrained NLPs. The inequality
constraints are typically eliminated by introducing the slack variables T, such
that the following barrier problem is obtained

min F(X)-—7 nZH log(—H;(X))
X j=0 (2.22)

st. G(X)=0.

With a suitable initial guess inside the interior defined by the inequality
constraints, the sequence of the barrier problems is solved. The corresponding
KKT systems are solved by a Newton’s methods and decreasing values of 7.
The aforementioned approach is the so-called primal barrier method. For more
details about interior point methods, we refer to [49, 50].

24 FAST NONLINEAR MODEL BASED PREDICTIVE CONTROL AND ESTIMATION

2.2 Fast Nonlinear Model Predictive Control

The main idea of Model Predictive Control (MPC) is to calculate the control
as the solution of the NLP, such as the one defined in (2.13). Only the first
control piece from the solution sequence is applied for the time duration of the
control period. This approach for calculating controls is exercised at regular time
intervals, defined by the control period, see Chapter 1. At each time instant T;, an
OCP is solved on the prediction horizon [T;, T; + Tc] —i.e. to = Tj, tf = T; + Te.
Now we can formalize the conventional MPC scheme in the following few steps:

1. Formulate the NLP using the data available at time T;.

2. Solve the NLP.

3. Send the first control piece from the optimized sequence to the system.
4. Wait until the next time instant T, .
5

. Return to step 1.

In a typical real-time setting, solving an NLP until convergence criteria are met
usually is impossible and is limited by the execution time of the numerical solver
and the length of control period. Even if this is possible, the execution time of
the algorithm might introduce substantial computational delays that possibly
deteriorate the control performance or in extreme cases lead to complete failures
of the controller. Moreover, given that sensors and actuator typically have
limited resolution, the question arises whether a highly accurate solution is
needed at all. Those two observations motivated development of the algorithms
that yield sub-optimal solutions in a short time.

From another perspective, efficient algorithms must exploit that the MPC
approach solves a sequence of NLPs that are similar. The solution of the NLP
at time T; should be used to obtain an initial guess for the solution of the NLP
at the next time instant T; 1 with the aim to accelerate convergence and/or
improve the quality of the next sub-optimal solution.

Finally, some algorithms aim to split the calculations with the primary aim to
reduce the delivery time of the control action to the system. The secondary aim
is naturally to decrease the overall execution time of the algorithm.

Several approaches have been proposed for nonlinear MPC to address the
issues of long execution times and long feedback delays. Among them are the

FAST NONLINEAR MODEL PREDICTIVE CONTROL 25

continuation/ GMRES method by [51], the advanced step NMPC controller
by [52] and the real-time iteration scheme by [35, 8]. For a detailed survey of
algorithms for fast nonlinear MPC we refer to [6].

2.2.1 Real-time Iterations for Nonlinear MPC

The real-time iteration (RTI) algorithm has been originally developed in [35].
The basic strategy is to discretize the optimal control problem (2.9) with
a multiple shooting discretization [42] using numerical integration and a
piece-wise constant control parameterization. This leads to a structured
nonlinear programming problem that can be solved with a sequential quadratic
programming (SQP) method. As the objective consists of a least squares tracking
term, it is reasonable to employ a Gauss-Newton method to approximate the
Hessian matrices [48]. Thus, the algorithm requires only first-order sensitivities
of the state trajectory with respect to the inputs.

The main idea of the real-time iterations is to use the control and state variables
of the previous optimization run, possibly after a shift, as new linearization
point, and perform only one SQP step per sampling time. Consequently, the
method produces locally sub-optimal solutions. The ultimate aim of the RTI
scheme is 1) to reduce the feedback delay and 2) make short control periods
possible. In other words, the optimal control problem (2.9) is only approximately
solved in each control period. We can integrate the dynamic system and generate
corresponding sensitivities without knowing the actual value of the system
state, because the state estimate £ enters the optimization problem only via
the affine constraint (2.13b). This part is called the preparation phase. As soon
as an estimate of the system state is available we only need to solve a single
QP. Afterwards, the QP solution corresponding to the control inputs of the first
time-interval can be immediately sent to the real process. This phase is called
the feedback phase and is typically much shorter than the overall SQP iteration.
As the initial value enters the problem linearly, it can be shown to deliver a
generalized tangential predictor to perturbations, and nominal convergence of
the resulting NMPC loop can be proven [53].

For the details of this approach, we refer to [35]. Moreover, a mathematical
foundation of the nonlinear real-time iteration scheme as well as stability results
can be found in [54, 53, 52, 6].

Since the objective (2.13a) is of least squares form the NLP (2.13) can be solved

26 FAST NONLINEAR MODEL BASED PREDICTIVE CONTROL AND ESTIMATION

utilizing the generalized Gauss-Newton method. Using the notation from §2.1.2,
after the QP (2.19) is solved the NLP variables are updated using the full Newton
step

Xt = X+ AX*, (2.23)

where AX* denotes the solution of the underlying QP and X denotes possibly
shifted NLP solution from the previous solver run. More about shifting
techniques for the RTI scheme can be found in [55, 56].

Let us look now into the details of the QP resulting from linearization of the
NLP (2.13). Using the Gauss-Newton Hessian approximation, linearization of
the NLP (2.13) yields the following QP:

wn 35) 9 50 () 18

Aups 2 = [Aug| [S; Ry [Aug Au] (g}

+ %AS’NCQNCASNC + Ashy.8X. (2.24a)

s.t. Asy = X9 — sp, (2.24b)
Aspi1 = ap + AgAsg + BrAuy, k=0,... N —1, (2.24¢)
up—up < Aup < up—u, k=0,...N.—1, (2.244d)

Xe— Sk < Asp < Xp—sk, k=1,...N (2.24€)

mp < MpAsp+ NeAuy < my, k=0,...N.—1, (2.241)

my. < MnAsy, < . (2.24¢g)

Therein, the objective and the linear terms are defined using
Qi = () Wiz, gx = () Wic(h(sk, 1) — Fi), (2.25)
Qne = (M) W, 8 = () Wi (h(sne) =), (226)
with iif = Vi h(sg, ug), by, = Vs h(sn,), and

Ry = (h)' Wihil, Si = ()" Wi, i = () Wi(h(sk, ue) — i), (2.27)

FAST NONLINEAR MODEL PREDICTIVE CONTROL 27

with i = V, h(sy, ug). The linearized matching conditions from the multiple
shooting discretization read

a = F™(sg, s5, ux) — sgr1, Ax = Vs F™ (st 55, ug), By = Vi F™ (s, %,),
(2.28)

where Ay and By are called the sensitivities of solution to the IVP (2.11). Moreover,
the Jacobians of the nonlinear path and point constraints are defined as

Mk = Vskr(sk, uk), Nk = Vukr(sk, uk), JVINC = VSNC N, (SNC). (2.29)

For notational convenience, we drop the superscript x for differential variables
sy- The bounds on the path and point constraints in (2.24f) and (2.24g),
respectively, are defined as:

my =1, — r(sg,uy), W=7 —r(sp,ug), k=0,...,No—1,
(2.30)
my, = 1N, — "™N.(SN.), TN = TN, — N (SN,)-

Analyzing (2.24), (2.24a) in particular, it can be easily concluded that all
quantities except the linear term gj can be pre-computed in the preparation
phase. As soon as the current state estimate £y becomes available, the initial
value embedding step is executed — the estimate of the current state is embedded
into the QP (2.24). The initial value embedding and the QP solution are the key
steps of the feedback phase. Once the QP is solved, the control vector on the
first shooting interval is updated, uj = up + Auj, and immediately sent to the
process.

A oanilla solution of the QP is naturally of complexity cubic in number of
shooting intervals. Fortunately, the QPs coming as the result of discretization
of the optimal control problems have a special structure that, when efficiently
exploited, can be reduced to linear complexity in number of shooting intervals.

One popular approach to solve the underlying QP is to apply the condensing
procedure to reduce the sparse block-structured QP (2.24) to a typically
much smaller but dense QP. The condensing procedure is based on the
observation that by knowing the first state variable Asg and the control sequence
Auyg, ..., Aun__1, the affine map (2.24c) — the state trajectory — can be removed

28 FAST NONLINEAR MODEL BASED PREDICTIVE CONTROL AND ESTIMATION

Algorithm 2.1 Real-time iterations for the nonlinear MPC

Initialization: Initialize s, k = 0,..., N; and si, ug,k=0,...,N. — 1L
Repeat online:

1 Preparation step

1.1 Possibly shift the old solution.
1.2 Solve IVPs (2.11) and generate sensitivities Ay and By.
1.3 Evaluate objective.

1.4 Optional: Condense large block-structured QP (2.24) into a smaller but dense
QP (2.31).

1.5 Wait for a new state feedback %j.
2 Feedback step
2.1 Use the state feedback to compute the linear term in the (possibly condensed)
QP.

2.2 Optional: Use the state feedback to compute the bounds on affine constraints
in the condensed QP.

2.3 Solve either the sparse QP (2.24) or the condensed QP (2.31).
2.4 Send the first control, uar , to the process.

2.5 Optional: Recover the optimized state trajectory from the condensed QP
solution.

from the QP yielding the parametric QP
mingHE +g°(30)/8 st £ <E<T £, () < Ad < Lin(f0) 231)

with the parameter £y and optimization variables ¢ = [Aug, ..., Auy._1]’. In
addition to computing the linear term g{j in the feedback step prior to solution of
the QP, one also needs to compute the linearized affine constraints § __and ¢y
The condensed QP can be efficiently solved with a dense linear algebra QP solver.
After the solution of the QP is obtained, the variables Asi, k = 1,..., N are
updated using the affine map (2.24c). This step is commonly called the expansion
step. We summarize the RTI scheme for nonlinear MPC in Algorithm 2.1.

FAST NONLINEAR MOVING HORIZON ESTIMATION 29

2.3 Fast Nonlinear Moving Horizon Estimation

A typical choice for linear systems is to use the classical Kalman filter [57, 58]
that turned out to be a powerful state estimation algorithm. The Kalman filter
is an exact maximum likelihood estimator when the estimation problem is
unconstrained and the error distribution of the estimated states is Gaussian.

There exists a great variety of state estimation methods for nonlinear systems.
Some of them are extensions of linear state estimators, such as the different
variants of the extended Kalman filter (EKF) that linearize the nonlinear
system at the current estimate and then apply the usual linear Kalman filter
recursion [58, 59]. For efficient update of Kalman-like update routines we refer
to [60, 61]. Unscented Kalman filters replace this simple linearization by a more
accurate approximation of the multidimensional probability density of the state
vector, which is also assumed to be Gaussian [62]. In contrast, particle filter
methods allow to approximate arbitrary probability densities that are integrated
by means of Monte Carlo sampling [63]. Particle filters need to cover the relevant
region of the state space and thus suffer from the curse of dimensionality. Excellent
surveys on nonlinear state estimation can be found in e.g. [64, 65].

Most of the above approaches with the exception of particle filters make
explicit assumptions on the error distribution of the estimated states. Thus,
they may loose their theoretical justification if either the actual distribution is
different or if estimated quantities are subject to (physical) constraints. This is
in contrast to estimating the states by simply fitting them to the measurements
in a least-squares fashion. This least-squares estimation goes back to Gauss
and is a deterministic approach in the sense that it does not rely on any specific
error distribution — though this insight is valuable when tuning the weighting
matrices of the least-squares objective function.

In order to use all available information when estimating the process states,
it is desirable to use all past measurements within the estimation algorithm.
However, the computational burden of such full-information estimators might
quickly become intractable as the number of measurements grows. Thus,
most estimators are based on recursive schemes that only use the most
recent measurement explicitly, while information gathered through all earlier
measurements is implicitly incorporated within updating rules. An important
exception is the optimization-based least-squares estimator. It allows one to deal
with the growing amount of measurement data by only considering a window

30 FAST NONLINEAR MODEL BASED PREDICTIVE CONTROL AND ESTIMATION

comprising a fixed number of past measurements, and possibly incorporating
information of previous measurements into some of the least-squares weighting
matrices. This variant of least-squares estimation is usually referred to as moving
horizon estimation (MHE), see for example [66]. In contrast to Kalman filters
and particle filters, handling of missing, delayed or multi-rate measurements is
straightforward with the MHE. The question whether MHE is the most suited
estimation algorithm for a specific application is beyond the scope of this thesis.

2.3.1 Problem Formulation

As aforementioned, a moving horizon estimator does not consider all past
measurements explicitly, but only minimizes the misfit of model prediction
and measurements on a fixed estimation horizon of length T, partitioned into
N intervals. The intervals are defined by N, + 1 nodes:

to <t <... <tn, (2.32)

where tg = T; — Te,tn. = T;; T; denotes the current time instant. This can
be formulated in form of a constrained, nonlinear least-squares optimization
problem. The considered MHE problem formulation in the form of an NLP
that is the result of the multiple shooting discretization reads as follows:

1 Ne- 1 N
min 2{||56‘—Xacléac+ Yo (st ue) — dellfy, + llwillB,
k=0

s*, w

+ i (sk) - 7w, | (2.330)

st sipy = B (K sk, ko wi) (2.33b)
re <rlsgugwe) <7 k=0,...,Ne—1 (2.33¢)

Ne S TN (SN) S TN (2.33d)

Therein, jj; are the measurements and the functions h, hy, are the output
functions commonly referred as to the measurement functions. Typically those
functions include sensor models. In addition to the models of the real system
outputs, the measurement functions can also include the pseudo-measurement
output functions that can help to define a numerically well posed problem. We

FAST NONLINEAR MOVING HORIZON ESTIMATION 31

can notice that in comparison to the MPC formulation the output functions, the
IVP solution, and the constraint functions depend on one extra input argument,
the disturbance vector w € R™W. In this formulation we do not penalize the
inputs variables uy, although that can be done. The idea to penalize the misfit
between the variables u; and the past inputs can be motivated by the fact that
usually the controls computed by e.g. MPC are approximately equal to the ones
applied to the real system. The reasons behind this are the finite accuracy and
precision of the actuators and /or the fact the connection between the computing
hardware and the actuator is realized by analog lines which naturally collect
electromagnetic noise. In the formulation at hand, we simply use the past
control inputs for simulation purposes.

The optional first term in the least-squares objective is called the arrival cost [33]
and is used with the purpose to summarize all information prior to the
beginning of the estimation horizon. The a priori estimate is denoted by x,c
and the deviation from the variable sj is penalized by the positive definite
matrix Q,c that is the inverse of the a priori covariance matrix. As it was the
case with the MPC formulation, we define the weighting matrices Wy, Qy to
be symmetric positive definite. For brevity, we summarize all possible bounds
and constraints on optimization variables in (2.33¢c) and (2.33d). In contrast to
MPC where the constraints are imposed to reflect both physical limitations and
design requirements, in estimation the constraints are used for safety, to ensure
the physical limitations and/or validity of models are satisfied.

Weighting matrices Within formulation (2.33), it mostly depends on the
choice of the weighting matrices Qac, Wk, Qw, Wn, which estimates are con-
sidered optimal. In order to choose them properly, it is common practice to rely
on the assumption that the measured quantities exhibit Gaussian distributions.
Let us assume that the initial value sjj is normally distributed random variable
with covariance matrix X and mean values x§*. Let also the measured outputs
7k and unknown inputs wy be Gaussian with mean value y; and 0 as well as
covariance matrices Zz and X}/, respectively. Then, it is well-known that (2.33)
delivers maximum-likelihood estimates for the true trajectories of the current
window if (i) Qac is chosen as (£3) 7!, (ii) Wy and Q, are chosen as (Zz)_1 and
()71, respectively, and (iii) no constraints are present. This result has been
extended in [32] to the case where constraints on the estimated quantities are
present.

32____ FAST NONLINEAR MODEL BASED PREDICTIVE CONTROL AND ESTIMATION

Robust formulations The least-squares objective formulation has one impor-
tant disadvantage. Namely, the presence of outliers, i.e. bad measurements, can
significantly deteriorate the estimators performance as the misfits are penalized
quadratically. The issue can be simply mitigated by using external logic and
declare the measurement missing. However, there exist alternative methods, i.e.
objective formulations that can efficiently treat outliers. One popular approach
to mitigate the issue is to penalize the misfits with the Hubber norm, where small
misfits are penalized with ¢, norm and the large ones with ¢; norm [67]. The
norm can be efficient embedded into the Gauss-Newton framework using the
algorithmic trick described in [67]. For more sophisticated approaches, such as
the M-estimators we refer to [68, 69].

Missing and delayed measurements One of the key advantages of the MHE
approach is that one can handle delayed and missing measurements in an
elegant way. The missing measurements are simply handled by setting the
appropriate element in the weighting matrix to 0. In statistical sense, this means
that one says there infinitely small confidence in the measurement. By suitably
choosing the discretization grid, the delayed measurements are simply put on
the correct place in the data buffer that is given to the MHE.

Multi-rate sensor fusion Often the system outputs are monitored by the
sensors that output data at different rates. For example, in aerospace applica-
tions accelerometer and gyroscope data rates are in order of 1 kHz while the
data coming from a GPS is outputted at much lower rates, typically less than
50 Hz. It is desirable to fuse all the data to get the most accurate state estimates.
This in turn requires more sophisticated MHE formulations involving multiple
discretization grids. Consequently, the sensitivities have to be outputted on all
those grid points. The continuous-output MHE was presented in [70], for which
the efficient sensitivity generation schemes were previously studied in [44]. For
large-scale applications, we refer to [69, 71] and references therein.

Arrival cost approximation The arrival cost term in the objective func-
tion (2.33) summarizes all information gathered through measurements before
the beginning of the estimation horizon. The a priori estimate x,c is typically
taken from the solution of the MHE problem at the previous estimation instant.
The arrival cost matrix Qac can be chosen in different ways: a constant zero
matrix has been proposed in [72]. Alternatively, [32] proposed a so-called

FAST NONLINEAR MOVING HORIZON ESTIMATION 33

smoothed EKF-update based on sensitivity information obtained while solving
the previous MHE problem, which is also what our MHE algorithm uses. It has
been shown that the classical EKF is equivalent to MHE using smoothed EKF-
updates and a horizon of length one [32]. A similar approach that was found
to be suitable for real-time applications is presented in [73]. Approximation of
the of the full information estimator has been a topic of extensive research during
the past decades. Different approaches have been proposed based different
approaches to approximate the arrival cost using either EKF, UKF or particle
filters. For an extensive survey on the topic we refer to [19].

2.3.2 Real-time iterations for Nonlinear MHE

Building on the same ideas for use in nonlinear MPC, the RTI scheme has
been recently adapted for solving nonlinear MHE problems [74, 73]. The direct
multiple shooting technique is used for discretization of the continuous-in-time
counterpart to the NLP (2.33), and the generalized Gauss-Newton method is
applied for the NLP solution. Proof of convergence of MHE based on the RTI
scheme is presented in [75].

The NLP (2.33) possesses a structure similar to the one arising in MPC.
Comparing the MHE NLP with the MPC one (2.13) it can be easily concluded
that the only structural difference is that in the MHE formulation the initial
condition does not exist, as the initial state is free. Stating the obvious, the first
three terms in the MHE objective can be trivially put in the form of the first
term of the MPC objective (2.13).

In the RTI for MHE all expensive calculations involving sensitivity generation
and possibly the condensing part involving the expensive computation of
the condensed Hessian, can be done without knowledge of the current
measurement. As soon as the measurement is available, it is embedded in
the underlying QP. The current state estimate is sent to the controller as soon as
the QP solver finishes execution.

The QP resulting from the Gauss-Newton linearization of the NLP has almost
the same structure as the one in the MPC (2.24) with the exception of absence of
the initial condition (2.24b). The special block-structure of the QP can naturally
be exploited, yielding a reduced complexity solution in the number of the
shooting intervals. Alternatively, one can opt to condense the sparse QP and
solve a condensed one, similar to (2.31). The differences in the condensed

34____ FAST NONLINEAR MODEL BASED PREDICTIVE CONTROL AND ESTIMATION

Algorithm 2.2 Real-time iterations for the nonlinear MHE

Initialization: Initialize s;, k =0, ..., Ne and si, uy,k=0,..., Ne — 1. Optional initialize
the arrival-cost update routine.

Repeat online:
1 Preparation step
1.1 Optional: Update xac, Qac using an arrival-cost update routine.
1.2 Possibly shift the old solution.
1.3 Solve IVPs (2.33b) and generate sensitivities Ay and B.
1.4 Evaluate objective.
1.5 Optional: Condense block-structured QP into a smaller but dense QP.

1.6 Wait for a new measurement fy, .
2 Estimation/Feedback step

2.1 Use the new measurement to compute the linear term in the (possibly
condensed) QP.

2.2 Solve either the sparse QP or the condensed QP.

2.3 Optional: Recover the optimized state trajectory from the condensed QP
solution.

2.4 Send the current state estimate control, £ := SJI\}e, to the controller.

QP are that only the linear term depends now parametrically on the current
measurement and that the vector of optimization variables contains the initial
state sg, as it is unconstrained. The latter one makes the condensing approach
less favorable for practical applications where the ratio (1, Ne) /1, is small.

The main steps of the nonlinear RTI scheme for MHE are summarized
in Algorithm 2.2. In comparison to the RTI scheme for MPC, see Algorithm 2.1,
we can see that in the MHE there is the optional arrival cost update that happens
before the possible shift of the old solution. Furthermore, if a condensing based
solution is aimed, one needs to perform the expansion step to calculate the
current state estimate slf]e.

THE BIG PICTURE: REAL-TIME ITERATIONS IN CLOSED LOOP WITH NONLINEAR MPC AND MHE _
35

Control interval

Data <«——feedback delay

acquisition

Estimator
Feedback Step

Estimator

I

I

I

I

! 1

I I

T T

] I

1 1

| |

! 1

| 1

I [l

| |

I I

! :
Preparation Step :

[]

I

I

I

I

I

[}

I

I

I

I

I

]

I

1

1
Controller |
Feedback Step

Controller
Preparation Step

T; 1 Tiq time

Figure 2.1: Division into preparation and feedback step.

2.4 The Big Picture: Real-time Iterations in Closed
Loop with Nonlinear MPC and MHE

In a real-application setting, the control period typically starts with gathering
of data from the sensors, the data acquisition (DAQ) task, see Figure 2.1.

Using the RTI scheme for solving the MHE NLP, as soon as the DAQ step is
finished, the current measurement vector f, is embedded into the underlying
QP and the QP is solved. This step is called measurement embedding within the
feedback step of the RTI scheme. The product of the MHE feedback step is the

current state estimate £y = Sltle'

MHE feedback step completion triggers the MPC feedback step. The current
state estimate £(gets embedded into the underlying QP. The solution of the QP
yields the optimized control sequence from which the first control u is taken
and sent to the system. In this control architecture, the feedback delay lasts
from the moment the DAQ step is started until the optimized control action is
sent to the process. The delay is primarily defined by the time spent in solving

36 FAST NONLINEAR MODEL BASED PREDICTIVE CONTROL AND ESTIMATION

the two QPs, but it also includes the time needed to embed the measurement
and the current state estimate to corresponding QPs. Moreover, it can possibly
include the time spent in condensing the QPs and expanding the solution of
the condensed QP.

After each feedback step, the corresponding preparation step is triggered.
In each preparation step necessary sensitivity information is generated and
possibly the big portion of the condensing procedure is performed. Often, a
preparation step takes much more than a corresponding feedback step. As
illustrated in Figure 2.1, the preparation steps can be executed fully in parallel —
as opposed to the feedback steps that need to be executed in the specific order.
In the simplest setting, the one illustrated here, one needs at least a processor
with two cores. We say at least to emphasize that in a real-world application
next to the control and estimation tasks, the computational hardware has to
perform a set of additional tasks, e.g. communication with external hardware,
logging, and telemetry.

The preparation and the feedback steps can be further parallelized in the context
of the RTI scheme. The feedback time can be reduced by parallelizing the
solution of the underlying QPs. QP algorithms that can exploit sparse structure
of the QPs arising in optimal control can be efficiently parallelized, see e.g. [76,
56]. The preparation step can be efficiently parallelized as the direct multiple
shooting has the inherent property to be parallelized in the shared memory
fashion — one integration routine is applied to multiple data.

2.5 Building Blocks for Fast Nonlinear MPC and
MHE

The focus of this thesis are applications of the well-established RTI scheme. In
a single iteration of the RTI scheme, the NLP is linearized with direct multiple
shooting technique resulting in the block structured QP. The linearization
involves evaluation of nonlinear functions, solving the initial value problems,
as well as generation of sensitivity information. The QP can be solved either
in sparse form employing an efficient structure exploiting QP solver, or pre-
processed using the condensing technique and solved afterwards with a dense
linear algebra QP solver.

BUILDING BLOCKS FOR FAST NONLINEAR MPC AND MHE 37

Evaluation of nonlinear functions and algorithmic differentiation The
nonlinear models we are interested in come from the first principles and are
supplied in symbolic form. The linearization involves evaluation of nonlinear
functions such as the objective functions, nonlinear constraints and right-hand
sides of the model equations. In addition, the computation of the Jacobians is
required. Instead of evaluating the Jacobians numerically by means of expensive
and usually inaccurate finite differences [47], the algorithmic differentiation
approach [77] is employed to calculate the derivative information exactly to
machine precision. We refer to [78] for details on efficient implementations for
automatic differentiation.

Numerical integration Typically the most computationally intensive numer-
ical task within the direct multiple shooting linearization is the solution
of the IVP (2.11), see e.g. [79, 34]. The solution of the IVP is commonly
referred to as integration, and to the corresponding algorithm as integrator. In
general, the integration process is an iterative process, where the integration
algorithm solves the IVP to desired accuracy. To achieve the desired accuracy,
the algorithms typically partition the shooting interval into arbitrary many
integrator steps (intervals). In a real-time setting we are considering, the one
where short control periods are required, solving the IVPs to high accuracy
is usually impossible and typically unnecessary. Consequently, it is desirable
to choose and fix the number of integration steps during the design phase of
the controller and/or the estimator. For non-stiff models in form of explicit
ODEs, x = f(x, u), explicit Runge-Kutta integrators typically produce results of
sufficient quality. For stiff models and the models described by implicit ODEs
or DAEs implicit integrators are necessary to solve the IVPs reliably. Moreover,
for stiff explicit ODEs the implicit integrators often produce as good results
as the explicit integrators but with much less integration steps per shooting
interval. The implicit integration routines are iterative procedures and in real-
time applications it is usually required to limit or fix the number of iterations
to ensure deterministic execution. For an extensive discussion on solutions of
IVPs and generation of corresponding sensitivity information for milli- and
micro-second applications we refer to [44, 80].

Solution of the underlying quadratic program The crucial step to reduce
the feedback delay within the feedback phase of the RTI scheme is to employ
efficient structure exploiting QP solver. This is the topic of the next chapter.

3

Tailored Quadratic Programming
Solvers for Short and Long
Horizons

One of the key components for the fast solution of nonlinear MPC and MHE is
a fast solver for the underlying linearized problem. In context of the real-time
iteration (RTI) scheme based on SQP described in Chapter 2 we are interested
in a fast solution of the underlying quadratic program (QP). The time spent
solving the QP of the linearized NLP from MHE formulation almost entirely
defines the time needed to deliver the state estimate to the controller. Likewise,
roughly all time needed to deliver the control action to the process, from the
moment state estimate is available, is time spent solving the QP with an MPC
solver. In a closed-loop setting with MHE and MPC the total feedback time, the
time period defined from the moment all measurements are available to the
moment MPC produces the control action, is almost entirely spent in solving
the sequence of the two QPs.

As we saw in Chapter 2, the QP coming from linearization of the NLP
corresponding to an MHE formulation is of similar structure as the one coming
from an MPC formulation. The only difference, structure wise, is that the
initial state is free. The QP structure is preserved with addition of the arrival
cost to MHE formulation. Therefore, in the text to come we will often refer to

39

40 TAILORED QUADRATIC PROGRAMMING SOLVERS

OCPs/NLPs with fixed and free initial states, referring implicitly to MPC and
MHE formulations, respectively.

Due to a specific structure of the QP, it is of paramount importance to exploit that
structure. Exploiting the structure not only leads to fast and efficient algorithms,
but also opens the doors for fast software implementations. In particular, the
QP data can be organized in specific data structures such that modern CPUs
can run the code much faster than if the data was packed in a generic way.

The QP data consists, in general, of structured sparse matrices whose di-
mensions are defined by dynamic model dimensions, horizon length and
discretization method applied to the original OCP. Within the scope of this thesis
we are interested in shooting discretization techniques. For ease of presentation,
we repeat the QP formulation (2.24) arising after linearization of the MPC
related NLP (2.13):

. 1 N=1 Asy ' Qr Si| |Ask Asy ' gz
Auds 2 k;o [Auk] [512 RJ {A“J * {A“J Lﬁj
——

-

Hy
+ %ASQ\IQNASN + AshgN (3.1a)
s.t. Asy = %y — sg, (3.1b)
Asgiq = ay + AgAsg + BrAuy, k=0,...N —1, (3.10)
u—up < Aup < up—uy, k=0,...N—-1, (3.1d)
Xp—Sk < Asg < Xp—sk, k=1,...N, (3.1e)

m < MpAsg+ NAuy < my, k=0,...N-—1, (3.11)
my < MpyAsy < my. (3.1g)

Therein, we assume that the symmetric matrices Q; and Ry satisfy: Q; = 0,
Ry > 0. Furthermore, we assume that the matrix of active constraints formed
from (3.1b) - (3.1f) has a full row rank. For the strictly convex QP under
consideration, the full row rank of the active constraints matrix! ensures a

This condition is called linear independence constraint qualification (LICQ).

TAILORED QUADRATIC PROGRAMMING SOLVERS 41

unique primal-dual solution; see e.g. [47]. The current linearization point
is defined with ug,...,un_1 and sgp,...,sN. A similar QP is obtained after
linearization of the MHE related NLP. The only structural difference is that the
initial condition (3.1b) is nonexistent.

At this moment we do not make any special assumptions about matrices in (3.1).
Later in the text, special cases that lead to non-negligible computational savings
will be mentioned. For example, it is common that blocks Qk and Ry, are diagonal
and blocks Sy are zero matrices. For brevity, in the rest of the chapter we use N
as the number of control intervals, as opposed to using the number of prediction
N, or estimation N, intervals directly.

In essence there are two ways to solve the QP (3.1). One way is to keep the sparse
structure of the problem and apply an efficient structure exploiting algorithm,
e.g. [5, 81, 82]. As it is going to be shown later, sparse solvers possess linear
complexity in number of control intervals N. However, all sparse solvers suffer
from cubic complexity in number of states and controls. Alternatively, one can
employ a procedure called condensing [42] and reduce number of optimization
variables at the expense of cubic complexity in number of control intervals.
Afterwards, the condensed QP is passed to a dense linear algebra QP algorithm,
e.g. [24]. As the solution of the dense QP is of cubic complexity in the number
of intervals N, the reduction of variables using the condensing procedures is of
utmost importance. For moderate horizon lengths and high enough ratios of
ny /1y the combination of the condensing procedure and the dense solution of
the condensed QPs is shown to be computationally efficient.

In this chapter we review and compare three different approaches that proved
to be efficient in context of embedded MPC and MHE. For each of them we
present dominant computational cost factors and the situations when they might
be favorable. In § 3.1 active-set algorithms are presented. In § 3.2 we review
and extend three different methods for condensing of the sparse QP. For each
condensing method we study the two cases, specifically related to QPs coming
from MHE and MPC formulations. Structure exploiting QP solvers based on
interior point methods are described in § 3.3 and the recently developed dual
Newton strategy is the topic of § 3.4. Four different software implementations of
the nonlinear MPC controllers are tested on two challenging benchmarks. The
benchmark setups and the results are presented in § 3.5. Finally, conclusions
are drawn in § 3.6.

42 TAILORED QUADRATIC PROGRAMMING SOLVERS

3.1 Active-set Quadratic Programming Solvers

In the context of this chapter, we are interested in solving a strictly convex
QP [47] written in a general form

. 1, /
mym Ey Hy+ gy (3.2a)

st. Gy>b, (3.2b)

with the vector of the optimization variables y € R"¥ and the symmetric positive
definite Hessian matrix H > 0. In comparison with (3.9), the simple bounds and
the affine constraints are lumped in (3.2b) with the constraint matrix G € R"<*".
Next, we define G as a matrix consisting of rows of the matrix G where the
indices of the rows are indicated by a working set A C {1,2,...,nc}. Accordingly,
we define the part of the constraint vector as b . In solution y*, the working set
is a linearly independent subset of the active set A = A(y*) — the set of active
constraints. Moreover, the working set in the solution spans the same subspace
as the active set. If the active set is known, the solution y* of the strictly convex
QP (3.2) is unique and is equal to the solution of the equality constrained QP.
In general, when the active set is unknown a priori, an active-set solver involves
an iterative process. Within that iterative process, the solver typically changes
the working set by one constraint at the time to correctly estimate the active set.

The active-set methods can be roughly classified in three categories: primal,
dual and parametric.

Primal active-set methods (see e.g. [47]) yield iterations that are always primal
feasible, i.e. constraints (3.2b) are always satisfied. In the online context where
a solver might need to be prematurely stopped — such that the real-time
constraints are satisfied — the solver still provides a feasible solution. A
disadvantage, on the other hand, of the primal methods is that it requires
a feasible initial guess. If not provided, the so called Phase I procedure has to
be performed prior to solving the actual QP [83]. The solution time of the Phase
I procedure can take as much as solution time of the actual QP.

In contrast to the primal methods, the dual active-set methods do not require
feasible initial guess. The dual feasibility is maintained, and the primal
feasibility is satisfied only at the last iterate when the solution is found. From
the implementation point of view, this approach is equivalent to solving the

ACTIVE-SET QUADRATIC PROGRAMMING SOLVERS 43

dual QP to (3.2) with a primal active set solver [83, 84].

The parametric active-set methods aim to exploit that e.g. in MPC a sequence
of similar QPs is solved in a sequence. One such method designed for fast MPC
applications is the online active set strategy [24]. The method maintains both
primal and dual feasibility on a homotopy path from a solution of an old QP to
the new one. Advantages of the method are that the method does not require
the Phase I procedure and that the iterative process can be safely interrupted.

The active-set methods possess good warm-starting properties. In particular,
having an accurate initial estimate of the active set, the active-set methods show
typically low numbers of iterations. In a general case, the active-set methods
need a lot of iterations to converge. Fortunately, each iteration of an active-set
method is relatively cheap. For more detailed discussion about complexity
factors of this family of QP solvers we refer to an excellent survey [85]. In
the following we are going to discuss the most dominant speed factors of the
active-set solvers in context of nonlinear MPC and MHE.

For brevity, in the rest of the section we base the presentation on primal active-
set methods. For the extension to other approaches see e.g. [84]. On the lower
level, the solution of a QP boils down to the solution of an equality constrained
QP. At iterate k, the next iterate is computed as yx1 = yx + Ay, where 7 is
the step length. The step direction Ay can be seen as a solution of a convex QP

1
min S AyHAY, + Ayi(Hye +8) (3.3a)
Yk
st. GaAyr =0, (3.3b)

where A is the current working set and G has a full row rank.

Among a number of methods to solve the equality constrained QPs [47], we
restrict the presentation to the null space approach and briefly compare it to
the range space approach.

Defining a null space basis matrix Z whose columns form the null space of the
matrix Gp, i.e. GpZ = 0, every feasible point can be written as

Ayk = ZAyZ,k/ AyZ,k e R "a, (3.4)

44 TAILORED QUADRATIC PROGRAMMING SOLVERS

Substituting (3.4) into (3.3), the following unconstrained convex QP is obtained

o1

min Ay (Z'HZ) Ayz i+ Dy, (Z' (Hye +8)) - (3.5)

Ayzx 2 ——
Hgr

Now, the solution of this QP is straight-forward. Typically, the Cholesky
decomposition is applied to the reduced Hessian Hg and the solution is calculated
with forward and backward substitutions. Accordingly, the reduced Hessian
is required to be positive definite. An appealing feature of the null space
approach is that the conditioning of the reduced Hessian Hy is not worse
than the conditioning of the original Hessian H.

The most expensive parts of the approach are calculation of the null space
basis matrix which is typically done with a variant of the QR decomposition
and factorization of the reduced Hessian. In addition, prior to factorization
one also needs to form the reduced Hessian. Building of the reduced Hessian
and its factorization are O(n;) operations. It must be also taken into account
that throughout the iterative process inside the solver, the dimensions of
matrices Gp, Z and HR change. The more the active constraints, the smaller
the dimension of the reduced Hessian is. Instead of factorizing the reduced
Hessian and calculating the matrix Z at each iteration from scratch, efficient
implementations rely on the fast O(nﬁ) routines for update of the Cholesky and
OR factorizations [86]. This means that initially the expensive Cholesky and
OR factorizations indeed have to be used, but later on the fast update routines
are applied [87]. Initial factorization can be accelerated using the multiplier
information from the previous QP if a sequence of similar QPs is solved. This
fact can be exploited in the area of dynamic optimization.

In a nutshell, range space methods project the Hessian onto the range space
of the active constraints [47, 84]. The most expensive part is the inversion of
the projected Hessian G/, H !Ga which also involves explicit inversion of
the original Hessian H. The approach is attractive when the number of active
constraints is low and when H is easily invertible. A disadvantage of the method
is the that it is sensitive to conditioning of the active constraint matrix and the
Hessian. Efficient update procedures for range space methods exist and can be
found e.g. in [88].

The MPC user might be interested in linear algebra routines for the efficient
exploitation of the sparse QP structure arising therein [89]. Such update routines
are developed in [87]. However, to our knowledge, no fast implementations of

CONDENSING PROCEDURES 45

those routines exist. Instead, we opt to use in our benchmarks and applications
an open-source implementation of the online active-set method qpOASES [90,
84] that employs null-space approach and dense linear algebra at lower levels
assuming no particular structure of the QP matrices H and G. An alternative
fast implementation is a dual active-set method solver QPC [91].

As briefly stated in the beginning of the chapter, the block-structured QP
coming from discretization of an OCP is typically condensed before fed to a
dense linear algebra active-set QP solver. The condensing procedures produce
the dense version of the same QP, reducing the dimensions of the QP at the same
time. The QP solver internally does the factorization of the reduced Hessian.
However, even when the superior O(nﬁ) routines are used (see § 3.2.2), the
overall complexity of the NMPC (or MHE) solver is still cubic in number of
control intervals because of the O (ng) factorization of the reduced Hessian in
the QP solver.

3.2 Condensing Procedures

The goal of the condensing procedure [42] is to reduce the number of
optimization variables in the QP (3.1). The system of linearized dynamic
equations (3.1c) can be regarded as an affine time-varying dynamic system
with steps Asy. Depending on the particular formulation of an OCP we can
distinguish between two condensing approaches.

Full condensing In the NMPC, the initial state As is fixed and assuming the
variables Auy, . .., Auyn_1 are known, the variables Asy, . .., Asyn can be obtained
by a forward simulation. Therefore, we can define a vector of independent
variables Awj,g and a vector of dependent variables Awgey:

Awing = [Aug, ..., My 4], (3.6)
Awgep = [As), ..., AsN] . (3.7)

Note that here Asg gets eliminated through the condensing procedure as well.

Partial condensing A QP that comes as a result of discretization of an MHE
problem, Asg is considered to be independent variable as well. The vector of

46 TAILORED QUADRATIC PROGRAMMING SOLVERS

Table 3.1: Number of optimization variables for the sparse and the condensed

QP.

Sparse QP Condensed QP

MPC N(ny, + ny) Nny,
MHE N(n, +ny)+ny Nny+ny

independent variables now reads:
Awing = [Asp, Aug, ..., Duy_q]' . (3.8)

The vector of the dependent variables remains the same as in (3.7). This
approach can be applied to NMPC formulations as well, at the expense of
more costly procedure and memory consumption.

Applying the condensing procedure to the original sparse QP (3.1), an
equivalent, condensed, QP is obtained as:

1

min - Aw, jHAwing + Aw!, 49 (3.9a)

Awing 2
s.t. Ayb S Awind S Awb, (39b)
Aw, < ADdwing < Ac. (3.9¢)

In the full condensing, the condensed Hessian is denoted as H. and the
condensed linear term as g.. The partial condensing equivalent counterparts
will be referred to as HP and gP. These and other items in (3.9) are dependent
on the sparse QP problem definition and the applied condensing algorithm,
thus will be properly defined in the following sub-sections.

The number of optimization variables for the sparse (3.1) and for the dense QP
(3.9) formulation is summarized in Table 3.1.

It can be noted here that the structure of the original sparse QP is almost lost
during the condensing procedure. In particular, the condensed Hessian H¢ is
dense now. The typical choice at this point is to employ a general dense linear
algebra QP solver to solve the QP (3.9). An efficient active-set algorithm can be
favored in this situation, mainly because of superior warm-starting features in
comparison to interior-point methods.

CONDENSING PROCEDURES 47

In MPC, the state estimate £ enters linearly the sparse QP (3.1) via the initial
constraint (3.1b). This characteristic enables certain relocation of computations.
In particular, only the linear term ¢¢ and the constraints Aw,., AW, depend on
the state feedback £y. Effectively this means that those three quantities have
to be calculated in the feedback step of the RTI scheme. The most costly part,
building of the condensed Hessian, can be moved to the preparation phase. In
the MHE, the linear term g°P is the only one that needs to be calculated in the
feedback phase, prior to triggering the QP solver.

The classical condensing [42] is of O(N3) complexity and can be optimized using
the block structure information from the sparse QP [43]. A comparison with
off-the-shelve sparse solvers is presented in [92]. In comparison to a vanilla
implementation, the optimized one can achieve order of magnitude speed-
ups. The first indication of a reduced complexity condensing algorithm has
been reported in [93]. Based on this indication, the reduced complexity O(N?)
implementation of the full condensing routine was developed in [94]. The same
procedure was later found and presented independently in [78]. The extension
for the partial condensing is developed and will be presented in § 3.2.2. In [95]
the authors propose a procedure for factorization of the fully condensed Hessian
H¢ in O(N?) time. Moreover, the paper proposes an efficient solution to the
KKT system based on the reduced complexity, O(N 2), factorization. In § 3.2.3
we extend the ideas presented in [95] to the partial condensing.

Within the context of this thesis we are interested in cases where the number of
the states 7, is typically much higher than number of inputs 7. The extreme
case is the one with ny = n, coming from an MHE formulation with the
full process noise in the system dynamics. For the cases where n, < n,, the
complementary condensing scheme is developed in [87].

48 TAILORED QUADRATIC PROGRAMMING SOLVERS

3.2.1 Classical Condensing

Full Condensing
The affine map (3.1c) to be removed can be defined as follows:
Awgep = d + CASo + EAWjng. (3.10)

Here, matrices C € R(N")*x and E € RIN)*(N'u) have a special block
structure:

Co Eo0
c=| G|, E= E?’l E?’l , (3.11)
CN— Eon-1 o Encina
where the corresponding blocks are computed as:
Ck=Ar-...- Ay, k=0,...,N—-1,
Em = AtExcimy k=1,..,N—1,m=0,... k-1, (3.12)

Exx = By, k=0,...,N—1.

Vector d can be computed by a forward simulation of the affine dynamic system
(3.9) with Asy = 0 and Aw;,q = 0. This yields a recursion:

dy=a9, dp=ar+Ad_1, k=1,...,N—1. (3.13)
The Hessian and the linear term of the condensed QP are obtained as:

H*=R+EQE+ES+SE, (3.14a)

/
SO 1 ASO

¢°=g" +E'(Q(d + CAsg) +¢°) + 5 (d + Chsp) +
O(Nfl)»n,,xnx

(3.14b)
where Q € RIN')*(N') and R € R(IN7)* (N1 are block diagonal matrices:

QI diag(Ql,...,QN), E: diag(RO,...,RN,l) (315)

CONDENSING PROCEDURES 49

and

§: O(Nfl)-nxxnu diag(51,...,SN_1) '

(3.16)
Onx XNy OnxX(Nfl)'nu
The items in (3.9b) are defined as:
AWy, = Wing — Wind, AWy = Wing — Wind, (3.17)

Wing = (g, - 1yl Bina = [H, -, Uy] Wing = (g, - 1y

(3.18)
One way to define quantities in (3.9¢) is as follows:
Wdep — wdep < Aco < wdep - Zz'Jdep
[1 — 1] S A Bnd S (3.19)
N e’ A e
Aw, Ac AT,
with
Ao =E, (3.20a)
Z’Ddep = Wgep + d + CAsy, (3.20b)

Waep = (21, -+, XN]), Waep = (X1, TN], Waep = [¥1,-- -, xy]". (3.200)

The aforementioned quantities define bounds on the state variables which
are transformed to the affine constraints in the condensed QP. Linearized path
constraints from the sparse QP, (3.1f) and (3.1g), are transformed into condensed
affine constraints using the following relations:

m=[my,...,my|', m=I[my,... my, (3.21)
MoA _ o
m=| 070 L M(d+CAsg), Acy = ME+N, (3.22)
Odimml x1

50 TAILORED QUADRATIC PROGRAMMING SOLVERS

where
_ Ogi , — [diag(No, ..., Ny—
M — . clmm1 XN -1y , N= lag(0 N l) , (3'23)
dlag(Ml, ey MN) OdimmN XN-ny
dim;1 = dimy,, + ... + dimy,,, . (3.24)

An efficient implementation should exploit that only lower triangular blocks of
the matrix E need to be computed and stored in the memory. Apart from
possible memory savings, there are positive implications on the memory
access performance of the algorithms that use matrix E, e.g. most notably
the calculation of the condensed Hessian. In principle there are two ways to
calculate and store blocks of the matrix E. The first one is column-by-column
ordering, where block-columns are concatenated forming together an eventually
slim block-matrix of dimension N(N + 1)n,/2 x n,. Here, we address a non-
zero block E; as

E(i,j) = E.vec Gj(zN —j+1)+ i) . (3.25)

An alternative is to use block-wise row-by-row ordering where a non-zero block
E;; is referred as:

E(i,j) = E.vec <i(i;1) +j> . (3.26)

In order not to clutter the presentation of the algorithms in the text that follows,
we will simply refer to the aforementioned storage options when needed. Even
though the amount of work to build up the matrix E is the same, see Table
3.2, there are some subtle differences about how the calculations are actually
done. As defined in Algorithm 3.1, the first storage option for E forms one
block-column of the matrix E in each pass of the outer loop, but at the expense
of (re)reading the already read (used) blocks Ay; e.g. in the worst case the block
An-_1 is going to be read N — 1 times. On the contrary, the row-by-row scheme
reads each block Ay exactly once, see Algorithm 3.2, meaning better temporal
locality of the algorithm. For long horizons and medium values of number of
states 11, this might be beneficial, as long memory jumps are avoided. The choice
which of the two implementations to use is usually dictated by algorithms that
are the bottleneck of the procedure. In the condensing procedure, that is the

CONDENSING PROCEDURES 51

Algorithm 3.1 Building of the matrices E and C (3.12).

fori=0,...,N—1do > Build E
Eii < B;
forj=i+1,...,N—1do
Ej,i — AjEjfl,i
end for
end for
Co < Ap > Build C
fori=1,...,N—1do
Ci+ AC_4
end for

Algorithm 3.2 An alternative implementation to build the matrix E.

EO,O <«— Bo
fori=1,..., N—1do
forj=0,...,i—1do
Eij < AiEi_1
end for
Eij < B;
end for

algorithm for building of the condensed Hessian. Finally, building of the matrix
C is trivial and an efficient implementation might even consider to overwrite
blocks Ay with the blocks Cj if they are not needed later.

A procedure to build up the condensed Hessian H® is given in Algorithm 3.3.
This implementation exploits the symmetry of H® and builds up only the
upper triangular blocks. Lower triangular blocks can be obtained later at
almost no extra cost by copying appropriate blocks. Before the calculations are
actually done, it is wise to pre-compute the product QF and avoid redundant
matrix-matrix multiplications. Exploiting symmetry reduced the number of
block multiplications from N3 to N(N + 1)(N + 2)/6, i.e. number of block

Table 3.2: Computational cost of Algorithm 3.1.

Quantity Cost [FLOPs]

E (N —1)Nn2n, + Nnyn,
C (N—1)nd +n?

52 TAILORED QUADRATIC PROGRAMMING SOLVERS

Algorithm 3.3 Full condensing procedure for building the condensed Hessian
H¢ (3.14a).

1: fori=0,..., N—1do >W « QE
2 forj=i...,N—1do

3 Wi Qj1Ej;

4 end for

5: end for

6: forrow =0,...,N—1do > Build H®
7: Hfow,row < Rrow

8 forcol=row+1,...,N—1do

K Hl(‘:OW,COI = Eéol,rowSCOI

10: end for

11: for col =row,...,N—1do

12: forblk = col,...,N —1do

13: Hfow,col = Hfow,col + Ek/ﬂk,rowwblk,COI
14: end for

15: end for

16: end for

Table 3.3: Computational cost of Algorithm 3.3.

Quantity Cost [FLOPs]
W« QE N(N +1)n2n,

3
H¢ (I\é +2N2+N> nyn% + Nn?

multiplications is reduced by 70% or more for N > 7; this computational
cost reduction was observed first in [43]. The cost analysis of the algorithm
is given in Table 3.3. The computation of HC is of O(N?3) complexity, but free
of calculations of cubic complexity in the number of the states 1. The cost of
forming the blocks of the matrix W can be further reduced if blocks Qy are
diagonal, which is often the case in NMPC. The blocks of H® are formed row-
wise (outermost loop) and blocks of matrices E and W are accessed linearly
column-wise (innermost loop). Therefore, this implementation should profit
from using the column-wise storage for matrices E and W.

An algorithm for calculation of the linear term g€ is presented in Algorithm 3.4.
Computations are intentionally organized so that the algorithms facilitates
matrix-vector products as much as possible. As a consequence, two extra vectors

CONDENSING PROCEDURES

53

Algorithm 3.4 Full condensing procedure for building of the linear term g°

(3.14b).

wl —d
fori=0,...,N—1do
wll <—wl1+CiAso

end for

w? + g°

fori=0,..., N—1do
w? + w? + Qi pqw!

end for

gC%gH

86 < 86+ SpAso

fori=0,..., N—1do
forj=i...,N—1do

g < & +Ejw;

end for

end for

fori=1,...,N—1do
8§ < & + Siw}_4

end for

>w! < d+ CAsg

> w? « ¢ + Quw!

> Build ¢¢ (3.14b)

Table 3.4: Computational cost of Algorithm 3.4.

Quantity Cost [FLOPs]
w! < d+CAsy Nny +2Nn2
w? < ¢° + Qw' Nny +2Nn?
g° (N? 4+ 3N)nyn, + Nny,

are allocated w! and w? to hold intermediate results. The amount of work is
still O(N?), see Algorithm 3.4, but block operations are of lower complexity

than for forming H€. The cost of Algorithm 3.4 is presented in Table 3.4.

54 TAILORED QUADRATIC PROGRAMMING SOLVERS

Algorithm 3.5 Full condensing procedure for the linearized path constraints.

g <— MpAsg > Build m
fori=1,...,Ndo

m; < Miw}_l > Reuse w! from the Algorithm 3.4
end for
fori=0,...,N—1do > Build A¢!

AS! N,

fork=i+1,...,Ndo

Ai;} — MkEk,i

end for

end for

Table 3.5: Computational cost of Algorithm 3.5.

Quantity Cost [FLOPs]

~ N .
7! Hy Y s dimy,,

N—-1 3: N N :
ACl ny Zi:() dimy,, +nxny, Y2, Z]':i dlmmj

Transformation of the pure state constraints (3.20) to affine constraints in
the condensed QP is trivial and can reuse some intermediate products
from Algorithm 3.4. Condensing of the linear path constraints is presented
in Algorithm 3.5 and its cost is summarized in Table 3.5. The amount of work to
form the block A“! is again quadratic in number of intervals, with the notion
that the higher the index i on the horizon, the more work is required for the
transformation. This observation is useful in cases the NLP has some of the
path constraints undefined.

CONDENSING PROCEDURES 55

Partial Condensing

In partial condensing, we assume As is also an optimization variable in the
vector of independent variables Aw;,g (3.9). The affine map (3.1c) now reads:

Awgep = d + [C E] Awypg. (3.27)
——
Ep
Consequently, the expressions involved in forming the condensed Hessian HP
and the condensed linear term g°P are slightly modified:

Qo So
p 56 Ro I = 1= =/
HP — . + ELQEp + E;Sp + S, Ep (3.28)
L Rn-1
[+S
— — .
oP — 2’3 +(ELQ+S,)d + Ejg°, with (3.29)
gp = I:ON”rlxan ﬂ ° (330)

The bounds in the condensed QP are defined as

Wind = (80,40, - 1), Bing = 50, W, Uy), (331)
together with the current linearization point wing = [sg, 1, ..., u)_4]". The
state bounds and the path constraints from the sparse QP are transformed into

affine constraints using the relations:

Ao = Ep, wdep = Wdep +d and (3.32)
_ M _ _
Aey1 = ME, + O IN|, m=Md (3.33)
dimﬁ, 1 X1y

The condensed Hessian HP can be partitioned in the following blocks:

Hoo H,
P — lHZ(l) Hﬂ (3.34)

56 TAILORED QUADRATIC PROGRAMMING SOLVERS

Algorithm 3.6 Calculation of the condensed Hessian in the partial condensing
procedure.

Hpp < Qo > Calculate Hy
fori=0,...,N—1do

Hop < Hoo + C/Qi+1Ci
end for
Hp,1(0) <= So > Calculate Hy
fori=1,...,N—1do

HO,l(i> “— CLlSi
end for
Call the first part of Algorithm 3.3 to calculate W
fori=0,...,N—1do

forj=1i,...,N—1do

HO,l(i) — HO,l(i) + C],I/V],l

end for
end for
Call the second part of Algorithm 3.3 to calculate Hj ;

where
Hop = Qo +C'QC, (3.35)
Hox = [So Oppx(n-1n,] + C'QE+C'S, (3.36)
Hyy = H" (3.37)

Now itis clear that the partially condensed Hessian HP can reuse a large portion
of the computations from the full condensing procedure. The cost analysis
in Table 3.6 suggests O(N) complexity for forming Hy o and O(N?) complexity
for forming block Hy 1. However, the nice property of the full condensing
procedure to be free of operations cubic in 7y is lost. This is evident when
forming the block Hy . Note that certain code optimizations can be performed
to reduce work for symmetric products C;Q;1C}, see e.g. [96].

Using the same ideas as for the Hessian HP, we can efficiently partition the
linear term g°P:

g+ C(Qd+g°)

P = _

CONDENSING PROCEDURES 57

Table 3.6: Computational cost of Algorithm 3.6.

Quantity Cost [FLOPs]

Hoy 4Nnd +n?
Hy, (N? 42N — 1)n2n,
Hi, See Table 3.3

Algorithm 3.7 Partial condensing procedure for building of the linear term gP.

L w<+ g >w <+ ¢+ Qd
2: fori=0,...,N—1do
3w« wi+ Qi1d;
4: end for
5. g« ((g5)", (8")")' > Build g%
6: fori=0,...,N—1do
7. g < g + Clw,
8: end for
9: fori=0,...,N—1do
10: forj=1i,...,N—1do
cp cp
11: gj+1 — g]-Jrl + E]’-,iwj
12: end for
13: end for
14: fori=1,...,N—1do
5 gP gt S
16: end for

that leads to Algorithm 3.7. At first glance, those computations indeed look
a bit simpler than in the full condensing. Compared to the full condensing,
the Algorithm 3.7 is using a bit less temporary memory than Algorithm 3.4.
The complexity of forming ¢ is however the same, O(N?). The cost of Algo-
rithm 3.7 is summarized in Table 3.7.

Transformation of state bounds to appropriate affine constraints is trivial

Table 3.7: Computational cost of Algorithm 3.7.

Quantity Cost [FLOPs]

w+ g +Qd 2Nn2
QP (N? +3N)nyn, +2Nn2 4+ Nny, + ny

58 TAILORED QUADRATIC PROGRAMMING SOLVERS

Algorithm 3.8 Partial condensing of the linearized path constraints.

Mg <— 0 > Build m
fori=1,...,Ndo
m; < Mid; 4
end for
AC,l (O, 0) — My, AC,l (O, 1) — Ny > Build AC,l

fori=1,...,N—1do
Acll(i,O) — M;C;_4
forj=1,...,ido

Aca(i,j) < MiEi 1,1

end for
AC,l (i, i+ 1) < N;

end for

Aci(N,N) < MNEn-1N-1

Table 3.8: Computational cost of Algorithm 3.8.

Quantity Cost [FLOPs]

m Same as in Table 3.5
+nxnu(zll\gl }:1 dimy,;, + dimy,,,)

again. An algorithm for condensing of the linearized path constraints is
derived in Algorithm 3.8 and corresponding computational cost is summarized
in Table 3.8. The same as in the full condensing, the complexity of this part of
the procedure is O(N?).

CONDENSING PROCEDURES 59

3.2.2 O(N?) Condensing

Full Condensing

In the following, we mainly present results originally published in [78].
Moreover, we comment on computational demands of the O(N?) condensing
procedure and its abilities for parallelization.

The affine map (3.1c) can also be defined in a bit different form:

I ag + AogAsg
_Al I a
Awclep = . +
—An-1 aN-1
| ——
A @
By
By

+) Awing, (3.39)

Bn_1

B
yielding more compact representation Awgep, = d 4+ EAw;pg with:

E=A B and d=A 4 (3.40)

It can be easily shown [78] that the matrix E is equivalent to the one defined in
(3.12). However, here it can be observed that the matrix E is formed in O(N?)
time by exploiting the special structure of A and B. In particular, the product
A~ 'B can be formed easily using block-wise forward substitutions, where each
substitution of A is of order O(N)). Given the special structure of A not a single
matrix inverse has to be performed.

60 TAILORED QUADRATIC PROGRAMMING SOLVERS

The expression for the condensed Hessian H¢ becomes:
H =R+ E'QE +SE+ ES

—R+B A Y (QF)+%E + ES. (3.41)
———
P

Given that E is lower block-triangular and Q is block-diagonal, the product
QE retains the same block triangular structure as before. The product P can be
formed by applying block-wise backward substitutions — for each of N block-
columns of E the block-wise backward substitution of order O(N) has to be
done. This is the crucial step to observe and it is indeed the one that reduces
the complexity of the condensing procedure to O(N?). Furthermore, exploiting
the lower block triangular structure of E and that only upper (or lower) block
triangle of H® has to be calculated, the amount of calculations can be further
reduced. Multiplication of B with P is trivial since B is block diagonal and
preserves the computational complexity of the procedure.

Similarly, the aforementioned observations enable computation of the linear
term g¢ in linear time in N:

—)—

8 =g8"+EQd+g) +5d

—¢"+B A (Qd+¢)+54d (3.42)
| ——
14

utilizing block-wise substitutions for A’ to form the vector p.

The state bounds computation gets even simpler, with Wgep, = Waep + d, cf.
(3.20). An extension for condensing of the path constraints can be formulated
as follows:

MQASO

dim~1 x1
]

A1 =ME+N and m= + Md. (3.43)

Calculation of 1 is trivial and building of A.; can be done reusing a part of
the Algorithm 3.5. The complexity of this part of the procedure in principle
cannot be reduced and is still O(N?).

For completeness and ease of the presentation we present algorithms for

CONDENSING PROCEDURES 61

Algorithm 3.9 O(N?) full condensing of the condensed Hessian H°.

1: fori=0,...,N—1do

2 W < ONEN-1,

3 fork=N-1,...,i+1do
4: Hi,k < El/cfl,isk + W/Bk
5: W QkEkfl,i + A]/(W
6

7

8:

end for
Hf; + B;W + R;

forming H® and g° in Algorithm 3.9 and Algorithm 3.10, respectively [78]. The
complexities of both implementations are given in Table 3.9. As in the classical
condensing, Algorithm 3.9 presents computation of the upper triangular blocks
of H. The first to be observed is that forming H® does not require caching
of the matrix products QE as in Algorithm 3.3. Instead, a small work matrix
W € R"*" js needed. This leads to better temporal locality of the algorithm
— the same work vector is reused (and updated) many times. Next, it can be
observed that the i-th pass of the outer loop calculates the i-th row of H¢
using only the column i of the matrix E. In other words, each row of the
condensed Hessian H® can be computed individually. Obviously, this enables
one to parallelize the computations. Nevertheless, since the work performed
for each row is unequal, the amount of work lowers as the index i grows,
special care needs to be taken to keep all processors busy for approximately
the same amount of time. For example, for an OCP with N = 8 intervals and a
processor with two cores, core 1 can process the first three rows and core 2 can
process rows four till eight. The core 1 processes 21 blocks and core 2 processes
the remaining 15 blocks. Since the computations are totally decoupled (block
row-wise), the core 2 can proceed with e.g. processing of g¢. In this simple
analysis, we assumed memory copies needed to form H° take negligible time.
Further implementation optimizations in this context are possible as well. The
algorithms 3.1 and 3.9 can be interleaved [78]. This way, the i-th column of the
matrix E is calculated in the forward sweep and used in the backward sweep
to create row i of H¢. Consequently, spatial locality of the implementation can
be improved.

A reduced complexity O(N) algorithm for the computation of the linear term
g¢ is given in Algorithm 3.10. Compared to Algorithm 3.4 only a small work
vector w € IR™* has to be allocated compared to the two working vectors of size
Nny.

62 TAILORED QUADRATIC PROGRAMMING SOLVERS

Algorithm 3.10 O(N) full condensing of the condensed linear term g°.
. gC +— gll
w < Qndn-1+ 8N4
:fork=N-1,...,1do
gf « 8% + Biw + Spdi4
W< Qrdx—1+84 1+ A]/(w
end for
: 86 < 86 + Bow + SpAsg

N g RN

Table 3.9: Computational costs of Algorithms 3.9 and 3.10.

Quantity Cost [FLOPs]

H¢ 2N2(nyn? + nny,)
g© N(2n2 + 2nyny, + ny)

Partial Condensing

Building on the same ideas as in the full condensing, we write the affine map
for the linearized system dynamics:

—A1 I ai
Awdep = . +

—An-1 aN-1

x|
S
o

(3.44)

CONDENSING PROCEDURES 63

Algorithm 3.11 Partial condensing of the condensed Hessian HP.

: V< ONCNn—1
:fori=N-1,...,1do
HO,l(i) — V/Bl‘ + Cl{_lsi
V+— QiCi_1+ A;V
end for
: Hy (0) < So+ V'By
: Hop < Qo+ A6V
: Call Algorithm 3.9 to calculate Hj ;

® N U A W

the yields the following relations

A Bl =[C E] and (345)

d=7A"a,. (3.46)

Partitioning the condensed Hessian HP
C'OC = A,A'0C and C'QE =A,A 'QE (3.47)

leads to the efficient — O(N) — computation of the blocks Hpo and Hy; as
presented in the Algorithm 3.11. The overall complexity for computation of
H€P is still O(N?), however. The linear term ¢°P is computed in linear in N
time, cf. Algorithm 3.12. The linearized path constraints can be computed using
the Algorithm 3.8.

Algorithm 3.11 is not free of O(n3) computations, like in the classical
condensing. Note that computation of the blocks Hpo and Hp; can be done
separately, i.e. in parallel with computation of H; ;. Moreover, in the classical
condensing the blocks Hyp and Hj; are O(N?) and O(N) computations,
respectfully, while in this procedure Hy comes at O(n3) cost reusing results
from O(N) computation of the block Hy ;. The number of FLOPs (floating point
operations) for the algorithms to form HP and g is summarized in Table 3.10.

64 TAILORED QUADRATIC PROGRAMMING SOLVERS

Algorithm 3.12 Partial condensing of the condensed linear term g°P.

gS
§P |0

w <+ g\ + Ondn-1
C
&N 81+ By w
fork=N-1,...,1do
C] C
81 ¢ 8+ Sidi
w = Sh z; deiﬂ + Ajw
8 < 8 TBw
end for
S5 6 + Ao

Table 3.10: Computational costs of Algorithms 3.11 and 3.12.

Quantity Cost [FLOPs]
H¢P
Hypand Hy; 4N (n3 +n2n,) — 2n2n,
Hi, See Table 3.9
P N(6nyn, + Zn,% +ny) + an(—4n,ny, +ny

3.2.3 (O(N?) Factorization of the Condensed Hessian

Full Condensing

Let us consider the permuted vector of independent and dependent variables:
AWing = [Auy_1,..., D]’ and Adgep = [Asy, ..., As]. (3.48)

Next, permuted transition matrices £ and C can be defined as:
Eij=En-1-in-1-; and Cj=Cn_1_;. (3.49)

The permuted condensed Hessian has the same form as in (3.14a) with the
N o A2 A A2 N

permuted quantities: H* = R+ E'QE + E'S + S E. A recursive algorithm to

compute the factorization of the condensed Hessian HP? = (U°)'U° in O(N?)

time is based on the following observations. First, the transition matrix E can
be defined in a recursive fashion. If we refer to non-zero blocks in the row i of

CONDENSING PROCEDURES 65

the upper-triangular matrix £ as E;, then
Ei=[B; A, (3.50)

with Ex_1 = By. Second, the blocks of the condensed Hessian H° can be written
in a more compact form. The first two rows of the permuted Hessian read:

Ro + ByFy (S0 + B4 Ag)Ey
e — % Ri+BiR (51 +FHA)E | (3.51)
* * :
with
Fy = QnBo, (3.52)
£y = Qn-1B1 + AjQnAoB;. (3.53)

The recursion starts from the upper left block of F¢, namely F¢(0,0) can be
factored as:
Dy = chol(Ro + By(QnBo)),

where chol(.) denotes the operator that returns the upper-triangular Cholesky
factor of the input matrix. Next, the first row of the factorized condensed Hessian
becomes:

(3.54)

Dy L0E1]

with Ly = Dy 1(So + (QnBo)’ Ap). The next step updates the remaining block
of A° to be factorized:

A*(1:N—-1,1:N-1)=H1:N—-1,1: N—1) - E{L{LoE;

_[Ri+BiE S+ (F) ADE,

(3.55)

*

After some minor rearrangements it can be shown that the updated block F;
can be expressed as:

Ef = Qy_1B1 + A)QnAoBy, (3.56)

66 TAILORED QUADRATIC PROGRAMMING SOLVERS

with the updated weight Q%,_; = Q-1 — LjLo. We can see now that the
structure of the updated block is the same as the one of the original matrix H¢,
thus the same procedure can be applied. Finally, given the special structure
of E intermediate results for calculation of temporary block F; can be done
efficiently, see Algorithm 3.13. The explained procedure is repeated N times,
until the last block H¢(N — 1, N — 1) is factorized.

In the original paper [95] that proposed this strategy it was observed that for
the solution of the unconstrained problem (3.1a) — (3.1c), the explicit calculation
of the whole factorized Hessian U° is not needed at all. Instead, only blocks Dy
and Ly are required to calculate the solution of the corresponding KKT system.
In this case, lines 9 to 12 and line 19 of Algorithm 3.13 can be omitted.

Algorithm 3.13 An algorithm for O(N?) factorization of the condensed Hessian,
full condensing case.

1. T <+ On

2: forcol=0,...,N—1do > Initialize temporary matrix F
3: Feol <= TEo,col

4: end for

5: forblk = N—1,...,1do > Build U°¢
6: row = N — 1 —blk

7: Drow ChOl(Rblk + B[/ﬂkFrow)

8: I:row < (Djow) ! (St + FowAbik)

9: uJtrcow,row < Drow

10: forcol=row+1,...,N—1do

11: ufow,col — LrowEroerl,col

12: end for

13 T < Qpik — LiowLrow > Update Qpik
14: forcol=row+1,...,N—1do > Update F
15: Fcol — TErow+1,col + A{)lkFcol

16: end for

17: end for

18: Dy_q1 + ChOl(RO + BéFNfl)
19: HZC\Ifl,Nfl < Dn_q

CONDENSING PROCEDURES 67

Partial Condensing

Extension of the O(N?) procedure for building of a factor of the condensed
Hessian when the initial state is free is straightforward. Compared to the
previous procedure one extra block column (the last one) of HP has to be
processed to form the factor U°P, see line 14 of Algorithm 3.14. This procedure
requires one more work matrix G, which is used to propagate the intermediate
results along the horizon and it is used at the end of the procedure to calculate
the last two blocks, Ulc\il, N and Uf\f ~- This propagation, together with building
of matrix C, introduces extra O(n3) calculations.

Algorithm 3.14 An algorithm for O(N?) factorization of the condensed Hessian,
partial condensing case.

T=0Qn
forcol=0,...,N—1do > Initialize temporary matrix F
F col < TEO,col
end forA
G+ TGy > Initialize temporary matrix G
forblk=N-1,...,1do > Build TP
row = N —1—blk
Diow ChOl(Rblk + BllglkFrOW>
LArgw (Djow) ! (Stic + FowAbik)
urc}))w,row — Drow
forcol=row+1,...,N—1do
yays .
Urgw,col < LrowErow-+1,col
end for

Urow, N ¢ LiowCeol 1

T < Qpix — L;oerOW > Update Qpik

forcol=row+1,...,N—1do > Update F
Feol Tﬁrow-&-l,col + A{)lkF col

end for

G ¢ TCrows1 + Apy G > Update G

: end for

: Dn_1 ¢ ChOl(RQ + B{)FNfl)

: H;?_w_l < DNfl

+ Ly—1 ¢ (Dy_y) 7' (Sp + ByG)

: HIC\IID—LN — Ly_q

: DN+ ChOl(QO + A6G)

: l:[;\?,N < Dn

D A

N NN N N NN == e e e e e e e
A U s i e B S R L S COl S vl =

68 TAILORED QUADRATIC PROGRAMMING SOLVERS

Table 3.11: Computational costs of Algorithms 3.13 and 3.14.

Quantity Cost [FLOPs]

3
n
UC Nz(zn%}’lu + Tlxl’l%l) +N (31! + 21’1%7’111 + 27’13(7’1%1 =+ Tl%)
—(2n2ny + 3nynZ — n2 +n2)
N N 8
aep flops(U°) + 2N (213 + n2ny,) + ~n3 — 2n2n, + nyn?

3

Computational Cost Analysis

Besides the complexity reduction, the O(N?) routines for the factorization of
the reduced Hessian have one more benefit: the condensed Hessian can be
factorized before the call to a QP solver code. This is in contrast to the standard
full condensing approach where the condensed Hessian is factorized inside
the QP solver. However, using the standard approach the factorization of the
condensed Hessian is free of any computations depending on 7, while the
reduced complexity factorization routines introduced O (n2) computations. On
the other hand, the partial condensing still involves O (n3) computations present
in both the classical and enhanced condensing procedures. The computational
costs of both approaches are summarized in Table 3.112.

Let us now briefly discuss the factorization techniques in conjunction with null
space active-set QP solvers. In NMPC, the cost of the initial factorization of the
condensed Hessian in the cold-started QP solver is O((Nn,)3). If the solver
is warm-started, one also has to take into account cost to form the reduced
Hessian that might not be negligible if not many constraints were active in the
previous QP. Let us remind the reader, again, that in the nonlinear MPC the
factorization typically has to be performed at each time instant. A first guess
that leads to complexity reduction of factorization of the reduced Hessian is
to provide the solver with the Hessian and corresponding factorization. At
first sight this is reasonable since the newly developed routines reduce the
complexity from cubic to square in number of intervals N. Our preliminary
analysis revealed that this approach is competitive in the full condensing to the
standard approach (supplying only the condensed Hessian to QP solver) only
for ratios of ny/n, less than 2 and independent from N.

2The flops(.) operator returns computational cost of an algorithm in number of FLOPs.

STRUCTURE EXPLOITING INTERIOR POINT METHOD SOLVERS 69

The partial condensing involves O(n3) calculations and the complexity of
factorization of the condensed Hessian (and the QP solution) inside the QP
solver is O((Nn, + ny)3). As we saw in the text above, the O(N?) procedure
for factorization of the partially condensed Hessian suffers the same issue.
Another preliminary analysis revealed that supplying the QP solver with both
the Hessian and its factorization is always faster than providing the solver solely
with the Hessian. This is indeed expected because of the complexity reduction in
number of intervals N. Moreover, both approaches depend on O(n3) operations
— in the full condensing internal factorization of the condensed Hessian was
not dependent on number of states 1,. However, the biggest speed-ups were
observed for the low ratios 11, /n,,. Following this observation, the new approach
for factorization of the condensed Hessian might be beneficial when the user
wants to use a standard variant of MHE with process noise, where number of
states is equal to the number of inputs.

3.3 Structure Exploiting Interior Point Method
Solvers

The second way of solving (3.1) is to keep and optimize all variables: As and
Au, i.e. avoid the aforementioned condensing procedure. This leaves far more
variables in the problem. However, compared to the condensed, dense QP
(3.9), the problem described in (3.1) is highly structured. This structure can be
exploited to yield a computational complexity of O (N (ny +n,)3), i.e. linear
in number of intervals N, but cubic in number of states and controls. On
the other side, in the nonlinear MPC condensing based approach is free of
O(n3) computations at the cost of increased complexity in number of intervals
— O(N3) - because of the factorization of reduced Hessian. In the MHE, the
partial condensing suffers from O(n3) computations as well, unfortunately.
Interior point methods can significantly reduce the execution time of the
QP solution, and consequently execution time of an RTI, for long prediction
horizons compared to the condensing based approaches. The exploration of
this banded structure in the solution of nonlinear control problems was first
proposed in [4] and for linear MPC in [5].

As for the active-set solvers, the primal barrier interior point methods might
require an expensive Phase I procedure to obtain a feasible initial guess. One
of the successful fast implementations for linear MPC based on primal barrier

70 TAILORED QUADRATIC PROGRAMMING SOLVERS

method is presented in [97]. On the other hand, the primal-dual interior
methods (IPMs) do not require expensive Phase I procedure and showed to be
successful in practice [49]. A structure exploiting QP solver for linear MPC based
on Mehrotra’s [98] primal-dual IPM is presented in [5]. Following the ideas
from that paper, more optimized implementations for embedded MPC-like
QPs are derived [99, 100].

The sparse QP (3.1) can be cast in the following general QP form:

min %w’ Hw + g'w, (3.57a)

s.t. Fw =b,, (3.57b)

Cw < by, (3.57¢)

with stacked stage variables w = [w(,w}, ..., w}|". The stage variables are

defined as wy = [As}, Auy)', k =0,...,N —1and wy = Asy. In the primal-
dual IPMs, the inequality constraints (3.57c) are relaxed with slack variables
t:

CZ{)—Ft:bi,tZO,

where t is the vector of slack variables t = [t), t},...,ty]’. The KKT conditions
for the relaxed QP can be put in the compact form

Hw+FA+C'u+g
—Fw + be
—Cw —t + bi
(1)
Therein, the vectors of the Lagrangian multipliers are denoted as A =
AG AL AN = (b s uy) and

The KKT system (3.58) is typically solved with a Newton-like algorithm.
The algorithm generates a sequence of iterates where the search direction is

=0, with u>0,t>0. (3.58)

STRUCTURE EXPLOITING INTERIOR POINT METHOD SOLVERS 71

computed as

H F Aw rH
-F AM | TF
—C —I| |Au| |rcl|’ (3:59)
Dt Dy At Tt
\\/—/

r

where D;, = diag(x) and D; = diag(t). The vector of residuals r is specific
for a particular IPM implementation [49, 47]. Elimination of At followed by
elimination of Ay yields a reduced system

. (3.60)

-F AA

H+C'DuD;'C f’} {Aw} _ {rHC’Dt_l(DHrCJrn)
re

Given the block diagonal structure of H and the special block structure of the
matrix C, the upper left block in the coefficient matrix in (3.60) retains the same
block structure as the matrix . Another way around, the reduced system (3.60)
has exactly the same structure as an unconstrained QP, e.g. the sparse QP (3.1)
without the inequality constraints. In [5] it is shown that with suitable grouping
of Awy and ANy, e.g. & = [AA, Awp, AN}, A ..., Aw)]’, the reduced system can
be cast in a symmetric block tri-diagonal form where the coefficient matrix
reads

I

I Qo 5:0 —Aj
* Ro —Bj . (3.61)
* * ' 1

Such a system can be efficiently solved by a discrete Riccati-like recursion.
Efficient implementations for factorization of the block tri-diagonal matrices
exhibits O(N(ny + n,)3) complexity. We refer for implementation details in
the MPC context to [5], and to [33] for implementation details related to an
MHE solver. Let us observe briefly that the sub-problem (3.60) is always of the
same structure and dimensions for one particular sparse QP (3.1) during the
whole iteration process. An equality constrained QP (3.3) that is a sub-problem
in the active-set methods is always changing the structure as constraints and
bounds are (re)moved from the working set. For a software implementation

72 TAILORED QUADRATIC PROGRAMMING SOLVERS

it means that for a particular inequality constrained QP, only one subroutine
needs to be coded. This makes the reduced system particularly interesting
for extreme software optimizations for embedded (linear) MPC, as explored
in [96, 100, 101, 102].

An alternative approach to solution of (3.58) further reduces (3.60) applying
the Schur complement for the zero block in the coefficient matrix [97, 99].
The approach yields the further reduced system with a block tri-diagonal
coefficient matrix. The linear system can be solved with Riccati-like recursion
at the same complexity — O(N(ny + n,)3). On the linear algebra level, this
approach allows for better structure exploitation and code optimizations than
original implementation [5]. In particular, in [99] is studied how implementation
can be optimized based on the sparsity of the weighting matrices and type of
constraints involved in an OCP.

Unlike the active-set QP solvers, the interior-point methods show limited
capabilities for warm-starting from which the MPC applications might profit.
Warm-staring strategies for fast MPC exist and for more details on this topic we
refer to [103, 104]. In practice, IPMs in general need much less iterations than
active-set solvers and the number of iterations is independent of the number
of active constraints. However, one IPM iteration of a structure exploiting QP
solver for MPC is in general more costly than one iteration of a dense active-set
solver employed to solve the condensed QP. An advantage that is attractive
from purely theoretical point of view is the polynomial complexity in number
of iterations of the IPMs. In contrast, the theoretical worst-case complexity for
the active-set methods is exponential.

3.4 The Dual Newton Strategy

The advantage of this so-called dual Newton strategy, introduced in [82] and
extended in [76, 105], is that it combines structure exploitation capabilities of
interior point methods with the warm-starting capabilities of active set methods;
in particular it comes with only a linear runtime complexity in the horizon
length. Note that in contrast to classical active-set methods this approach
permits several active-set changes in each Newton-type iteration. Based on
original ideas from [106] and [107] the stage coupling constraints connecting
the MPC problem over the prediction horizon are dualized and the resulting
QP is solved in a two level approach, using a non-smooth Newton method

THE DUAL NEWTON STRATEGY 73

in the multipliers of the stage coupling constraints on the higher level, and a
primal active-set method in the decoupled parametric QPs of each stage on
the lower level. Due to the structural equivalence, moving horizon estimation
(MHE) can be cast into the same framework and can be solved efficiently using
the RTI scheme. In the following, we subsume both problem classes, MHE and
MPC, under the term MPC for clarity of the presentation.

Within the RTI scheme we repeatedly need to solve the following subproblem,
that can be interpreted as a linear MPC problem, see Chapter 2. Here, we group
the optimization variables, state increments As; and control increments Ay,
in stage variables z; = [ASL, Au;(}’, fork=0,...N —1,and zy = [As), 0]’ for
the last stage; cf. (3.1). In the context of the RTI scheme, we are consequently
interested in repeatedly solving the following QP in an efficient manner:

N
min I;J <;zf<szk + g}’ﬂk) (3.62a)
sit. Exy1zki1 = Gz +c¢x, forallk=0,...,N—1, (3.62b)
di < Dyzi < dy, forallk=0,...,N. (3.62¢)

Here, we assume that all first order stage coupling terms Cy have full row rank
and that the term Ej have special structure E = [1,,,xn,, 0], where 0-matrix
has appropriate dimensions. Moreover, we assume full row rank of the stage
constraints’ matrices Dy.

The main idea of the dual Newton strategy is to decouple the QP stages by
dualizing constraints (3.62b). Introducing A = [A}, A}, ..., AY] € RN we can
express (3.62a) and (3.62b) by the partial Lagrangian function:

N1 A1 [-E
L(z,A) = ZIHZ+IZ+[k][k}z—k/\’ c
(z,A) g(z kikZk T 8kZk M Ce k k+1Ck

(3.63)
N

=Y Li(zk, Ak Ak,
k=0

where we define zero matrices Eg = Cy = 0y, xn, and redundant multipliers
Ao = ANn+1 = 04, x1 only for notational convenience.

74 TAILORED QUADRATIC PROGRAMMING SOLVERS

By elementary Lagrangian duality theory the primal QP (3.62) is equivalent to

N
max min Li(zk, A, A
it o kgo k(kr Ve k+l) (364)

s.t. dk S Dka S Hk, forallk = 0,...,N.

Observing that (3.64) is separable in stage variables z;, the problem (3.62) can
be written in as

N
“(A) = (), 3.65
max f*(A) mfxlgfk() (3.65)
where
1 AT T-ET)
o0 = mn s (s [] []) 5ot
. (3.66)
pr(A)

st dp < Dyzp < Hk

Under the assumption that a feasible solution for (3.62) exists, it was shown
in [82] and [76] that f*(A) exists and further is a concave, piecewise quadratic,
and once continuously differentiable function. The unconstrained piecewise-
quadratic program (3.65) is solved by employing a non-smooth Newton method,
as originally proposed in [106].

Due to its temporal coupling, problem (3.65) possesses a specific structure that
can be exploited for an efficient solution. In particular, here we are interested in
an efficient solution for step direction AA

B aZf*
0A2

a *
s =2 (3.67)
that is typically the computational bottleneck; A; denotes the current iterate.
The dual gradient is easily seen to only depend on two neighboring stages in
each block A, and the dual Hessian possesses a block tri-diagonal structure as

THE DUAL NEWTON STRATEGY 75

only neighboring multipliers Ax, Ay, 1 can have a joint contribution to f*:

roof* ofF T _azi aZf* -
a])iol + a{ll A2 Ay
aff | ofy perss
of* ﬁ T ﬁ 02 f* * aAfg ’
(A) = (A), 537 (A) = ().
A . A 2
. IAN_1AN
af*— af* 82 *
e T oy I * aA’%

(3.68)

Knowing this special structure, the solution of the (possibly regularized)
Newton system requires O (N n3) FLOPs [76]. Furthermore, in [76] the authors
propose a method for parallel factorization of the dual Hessian.

Each stage problem (3.66) has a fixed second order term Hj and a parametric
first-order term py(A). An efficient method to solve such parametric problems
repeatedly for changing parameter values A is the so-called online active-set
strategy [24]. For algorithmic details on explicit derivative computation we refer
to [76]. By using this approach, the computational complexity to solve (3.66) is
cubic in number of stage variables.

In the special case when Hj, is a diagonal matrix and Dy is an identity matrix, i.e.
only bounds on states and controls of the MPC problem exist, the optimal
solution z; can conveniently be computed by component-wise clipping of
the unconstrained solution, as presented in [82]. In this special case, the
computation effort to solve (3.66) is negligible and can be easily parallelized [82].

76 TAILORED QUADRATIC PROGRAMMING SOLVERS

3.5 Numerical Simulations

In this section we perform a series of tests to bechmark the NMPC solvers
available in the ACADO Code Generation Tool suite. In particular, we test the
following four types of controllers.

qpoases_cn2 The solvers are based on the O(N?) condensing routine and
embedded version of qpOASES [90] QP solver is used to solve
the condensed QP.

forces Those solvers employ the structure exploiting IPM QP solver
FORCES [108]. For each NMPC problem, a tailored QP solver
is auto-generated.

qpdunes The underlying QP is solved by the structure exploiting QP
solver qpDUNES [109] that implements the dual Newton
strategy.

hpmpc The HPMPC [110] based NMPC solvers utilize a structure
exploiting IPM.

The two benchmarks, a chain of masses connected by springs and an inverted
pendulums, are formulated in such a way that all four types of controllers
can handle them. Certain solvers in the ACADO CGT suite can handle more
complex NMPC formulations, however, they are not covered.

All simulations are performed on a desktop computer equipped with one
3.4 GHz Intel Core i7-3770 CPU, running the 64-bit version of Ubuntu Linux
14.04. All generated code generated by ACADO CGT and FORCES is compiled
with the Clang 3.4 compiler, using optimization flag -03. The HPMPC and
qpDUNES libraries are compiled with the same compiler. In addition, HPMPC
library is compiled with an additional compiler flag -mavx, such that the full
capabilities of the library are exploited by the target CPU. Execution times are
measured with the Linux function clock_gettime () that yields a resolution in
the nanosecond range. All tests are ran in a single thread mode.

NUMERICAL SIMULATIONS 7

V

«——— Fixed end

0.6 0.8 1

X[m]

y[m]

Figure 3.1: A chain of masses connected with springs. The blue chain denotes
equilibrium state, the red chain illustrates disturbed state. The green patch
represents a wall and black dot the fixed point of the chain.

3.5.1 Chain of Masses Connected by Springs

The first benchmark problem is a chain of masses connected with springs
[111], illustrated in Figure 3.1. The dynamics of this system is nonlinear due to
nonlinear spring forces. Furthermore, this model is easily scalable, meaning
that the problem complexity can be increased by adding additional masses
to the chain. The goal of each controller is to move back the chain from its
disturbed to its equilibrium state, respecting upper and lower bounds on both
states and input variables.

78 TAILORED QUADRATIC PROGRAMMING SOLVERS

Simulation Model

We consider a chain with M balls of equal mass m that are connected with
springs. All springs have equal rest length L and spring constant D. At both
ends additional identical springs are attached. One end of the chain is attached
to a fixed point, while the velocity of the other end u = (ux, Uy, uz) can be
controlled. The center of each ball is represented by a 3-dimensional coordinate
Pi = (Px,is Py,ir Pz,i)- For the chain comprising M balls, an ODE that describes
model dynamics has ny = (2M + 1) - 3 states and n,, = 3 controls. In the rest of
the paper it is assumed that all states can be measured. For all details specific
to the model we refer to [111].

Simulation Scenario

The continuous ODE model is parametrized by the multiple shooting technique
using intervals of T; = 200 ms. For reliable integration the model and sensitivity
generation we chose implicit Gauss-Legendre integrator of order four. One
integration step per shooting interval was used for a chain with up to three
masses and the two steps per shooting interval were used for chains with four
and five masses. This setting enabled us to run successfully all solvers for nearly
all test problems. All simulations are noise-free and the controllers are supplied
with the perfect state feedback, as predicted by a particular controller. The
formulation of the NMPC is the same as in the original paper [111], with the
two exceptions. First, we impose simple input bounds

—1m/s < uj < 1m/s, je{xyz},

and a set of tight state bounds imposed by a wall next to the equilibrium plane
(see Figure 3.1):

~001m<p,;, i=0,.., M-1

Compared to the simulation settings in [111], the wall is placed at a closer
distance to the equilibrium plane. This makes the problem even harder to
solve, and this was a design decision made to increase the number of active
constraints during the simulations. Note that for condensing based NMPC
state bounds are transformed to affine inequalities, in the form (3.9c). Relevant
controller QP dimensions are summarized in Table 3.12. Therein, the number of
variables, bounds and constraints in the corresponding QPs are denoted with

NUMERICAL SIMULATIONS 79

Table 3.12: Relevant dimensions for the chain of masses benchmark.

Sparse QP Condensed QP

M ny ny Ny np Nne Ny np Ne
1 9 12N 8N 2N
2 15 18N 9N 3N
3 21 3 24N 10N 0 3N 6N 4N
4 27 30N 11N 5N
5 33 36N 12N 6N

ny, np, ne, respectively. The second difference is the addition of the terminal
penalty in the objective that is equal to the part of the stage cost related to the
penalization of the state vector. Our experience showed that terminal penalty
with the weighting matrix coming from the solution from the discrete Riccati
equation was unnecessary to successfully solve the problem.

Simulations are performed for five different variants of the chain mass problem,
namely for M = 1,...,5. For each dynamic system four types of NMPC
controllers, as explained above. Each of those four types of the controllers
is tested for six different horizon lengths N: 5,10, 20, 30,40, and 50. In total each
problem is solved by 24 different controllers or, in other words, each of the
four types of the controllers (based on the QP solver in use) is tested on 30
different problems. Longer horizon lengths, based on our experience, were
unnecessary to successfully solve the benchmark problems - to bring the chain
to the equilibrium state.

3.5.2 Double and Triple Pendulums

The second type of benchmark problems is based on the work presented
in [112, 113]. Namely, the papers deal with swing-up and stabilization of the
double- and triple-pendulum on a cart — both simulations and experimental
validations. The authors developed high fidelity models of the corresponding
experimental setups. We use the two models and do swing-ups with different
NMPC controllers. The models for both pendulums are highly stiff and
represent nonlinear and unstable dynamics. Thus, fast sampling times are
required, much faster than the time needed for a swing-up. Consequently, long
prediction horizons needed to be used. We test each of the four types of the

80 TAILORED QUADRATIC PROGRAMMING SOLVERS

Table 3.13: Relevant dimensions for the pendulum benchmark.

Sparse QP Condensed QP
Pendulum n, n, ny n, ne ny "y Ne

Double 6 7N
Triple 3 1 ON 6N 0 N 2N 4N

NMPC controllers on both pendulum examples for different horizon lengths
N = 50,60, ...,150.

The cart position is denoted by p and the velocity with v. The cart is actuated
by a strong motor with highly dynamic lower level controller. In the original
publication is chosen, under certain assumptions, that the input to the system
is the cart acceleration a. The state vector of the double pendulum reads

X = ;0 91,0.71,92, wy // (369)
p

where 60; and w; are the angle and the angular velocity of segment i. Similarly,
the state vector for the triple pendulum is defined as

x = [p,v,01,w1,02, w2, 03w3]'. (3.70)

For the double pendulum, in the least-squares objective for the NMPC we define
the output functions as:

h(x,u) = [p,v,a,cosb,sin 0y, wr,cos B,sin 02, wy)’,
(3.71)
hn(x) = [p,v,cos0y,sin 0y, wq,cos by, sin B, wo]'.

Extension for the triple pendulum follows accordingly. As we are uninterested
whether a segment makes turns during the swing-up, we choose the output
functions with sines and cosines of the segment angles. Finite length of the
rail on which the cart moves and the limited torque the motor can provide are
translated in input and state bounds in NMPC formulations. The dimensions
relevant for this benchmark are summarized in Table 3.13.

In the original papers short sampling times were used, Ts < 2ms. Our
simulations revealed that by using the implicit Runge-Kutta integrators of order
4 with 2 steps per multiple shooting interval with sampling time Ts = 20 ms was

NUMERICAL SIMULATIONS 81

sufficient. Similar to the chain of masses benchmark, all simulations executed
within the pendulum benchmark are noise-free.

3.5.3 Performance Profiles

One common way to compare different optimization solvers is by the performance
profiles [114]. Let us consider a benchmark with a set of problems P and a set of
solvers S. The time solver s € S needs to the solve problem p € P is denoted
by t, 5. The performance ratio is a quantity that compares the time solver s needs
to solve problem p compared to the fastest solver:

tp,s

—_ 72
mint,s:s €S (3.72)

rp,s =

If the solver s cannot solve the problem p, the ratio takes an arbitrary value
'm > Tps, Vp € P,s € S. Using the performance ratio one can make a plot of
the performance profile for solver s. Such a profile is a plot of the cumulative
distribution of the performance ratio:

ps(T) = cal‘dll(79)card (peP:rps <71). (3.73)
The value ps(1) reflects the probability that that solver is going to perform
better than any other solvers. Increasing 7, we get the percentage of problems
the solver s will solve within the time relative to the time needed by the best
solver. In a general benchmark, solvers that exhibit high values of ps(7) should
be favored.

82 TAILORED QUADRATIC PROGRAMMING SOLVERS

gpoases_cn2 forces gqpdunes hpmpc

1

Runtime [ms]

COREINNGWOWE
culcuocunownio

_
N

—_

O N B OO

2
Runtime [ms]

30 |
25 |
20
15 |
[
|

3

M=
Runtime [ms]

10 i

10 20 30 40 50
Horizon length

Figure 3.2: Maximum execution times of four different NMPC solvers for a
chain of masses with up to three masses in the chain.

3.5.4 Results

Simulation results for the chain of masses benchmark for up to three masses are
presented in Figure 3.2. All plots show the maximum run-times for all types of
controllers. Simulation results show that in an extreme case for a test problem
with 9 states, 3 control inputs (M = 1) and 50 prediction intervals the execution
time of the HPMPC based solver by factor of 4 lower than the condensing based
approach.

The condensing based approach is competitive for short horizon length in
comparison with FORCES and qpDUNES based solvers. This is in concordance
with the observations commonly found in the literature that the condensing
based approach is faster than the sparse solvers for shorter horizon lengths. The
break-even point moves higher on the scale for longer horizon lengths, mainly

NUMERICAL SIMULATIONS 83

gpoases_cn2 forces qpdunes hpmpc

4
Runtime [ms]
w
)

5

M=
Runtime [ms]
D
S

10 20 30 40 50
Horizon length

Figure 3.3: Maximum execution times of four different NMPC solvers for a
chain of masses with four and five masses in the chain.

because the sparse structure exploiting solvers have O(n3) complexity.

Although the FORCES generated code for the QP solver is well optimized,
the loops that call lower level linear algebra routines are fully unrolled.
Consequently, this makes the compiled code slower. In comparison with [10],
here we use the superior O(N?) condensing on the one hand and an updated
version of qpOASES on the other hand. Recent modifications to qpOASES
solver led to speed-ups of up to 40 % for building and factorizing of the reduced
Hessian.

The results obtained for the solver based on qpDUNES are similar to the results
presented in [105], where it was observed that the sparse solver outperforms
the condensing one for yet short horizon lengths when the ratio ny /1, is small.

The HPMPC based solver seems to always produce outstanding execution times.
This is mainly because of the fact the code is well optimized for the architecture
where the code is executed. The only case when the condensing solver is actually
faster is for M = 1 and N = 5 — here the condensed QP has only 15 variables,
compared to 60 variables in the sparse QP.

The maximum execution times for the chain of masses example for four and

84 TAILORED QUADRATIC PROGRAMMING SOLVERS

fives masses in the chain are shown in Figure 3.3. For such a high ratio n, over
n, we can observe that even highly optimized solvers based on HPMPC QP
solver cannot significantly outperform the condensing based solvers for short
horizon lengths. However, for longer horizons, HPMPC solver shows again
superior performance. Although this is unlikely from pure algorithmic point
of view, it is a consequence of a well optimized implementation. None of the
solvers was able to solve the chain of masses with M = 5 and short horizon
N = 5.Inall cases infeasibility was detected®. The cause of the failures is related
to the insufficiently long horizon and/or lack of a stabilizing terminal cost and
accompanying terminal constraint; for more information about stabilizing MPC
schemes we refer to e.g. [115, 116].

For a fixed number number of prediction intervals N, the condensing based
NMPC solver has Nn, optimization variables, i.e. independent of the number
of the states n,. However, an increase of the number of states n, leads to
an increased number of affine constraints (3.9c) — MN. This directly makes
an NMPC problem harder to solve, i.e. possibly requires more working set
recalculations when using an active set based QP solver, resulting in longer
runtimes, as it can be observed in Figure 3.2 and Figure 3.3.

The number of iterations for this benchmark is summarized in Figure 3.4. The
condensing based solver with qpOASES typically show higher number of
iterations, which is expected. On the other hand, the maximum number of
iterations qpDUNES solver needs is typically low. It only becomes higher than
for HPMPC based solver for some of the more challenging problems with
M = 4,5. The difference in number of iterations between the two IPM solvers,
FORCES and HPMPC, is due to the fact they implement different line search
and initialization procedures.

3The infeasibility was confirmed by the qpOASES QP solvers. For the other QP solvers we
observed stagnation of the iteration process, eventually hitting the high iteration limits.

NUMERICAL SIMULATIONS 85

@ qgpoases_cn2 [forces I qpdunes [hpmpc

1

M
Nr. QP iterations
[y
o
I
I
I
:
:

w
|
=
=
=
=
=

M=2
Nr. QP iterations

%
=
===
===
=saiBENl

3

M=
Nr. QP iterations
[E =
o wuo !
I
=
T

4

M=
Nr. QP iterations
[E
o wuno !
S
1
1

s 50 r

g L L

2 40 5 i e
w0 £ 30 -
S%{ 20

—~

Z | Il I I

10 20 30 40 50
Horizon length

Figure 3.4: Maximum number of QP iterations for different NMPC solvers in
the chain of masses benchmark.

86 TAILORED QUADRATIC PROGRAMMING SOLVERS

The maximum feedback times for the benchmark are shown in Figure 3.5.
For the low ratio ny/n, and the short horizon, all solvers seem to produce
fast feedback. Most notably for the M = 1 and N = 5. The exception is the
condensing based solver that outperforms all others. This is expected, as stated
above, because the condensed QP dimensions are low. Prolonging the horizon
makes condensing less competitive, and the HPMPC and the qpDUNES based
solvers dominate. The FORCES based solver outperforms the condensing based
solver only for M = 1, N > 32. The plots suggest that for the low state/control
ratios and long horizons the qpDUNES and the HPMPC based solver should
be preferred. With the increase of number of masses, i.e. increase of the number
of the states, condensing becomes more and more competitive. In particular,
M = 4,5 the condensing based solver can compete with the HPMPC up to 18
and 22 prediction intervals, respectively. The plots indicate that the qpDUNES
based solver will eventually overpower condensing based approach for N > 50
and M > 4. Moreover, the FORCES based solver is expected as well to eventually
provide faster feedback than the condensing based approach —because of the
dominant O(N?) complexity of the condensing approach.

Comparing the total execution times in Figure 3.2 and Figure 3.3 to the feedback
times in Figure 3.5 it can be concluded that condensing based approaches are
more competitive from the viewpoint of providing the fast feedback than overall
execution times. This is the consequence of relocation of the condensed Hessian
computation to the preparation step of the RTI.

NUMERICAL SIMULATIONS 87

qpoases_cn2 forces qpdunes hpmpc
10! ‘
o
g
5 1 =4 :
1% ‘
T e G ——
< 10
<]
: |
1072
10 ‘ T ‘
B | | ‘
\
a> 100 > |
1% | |
S 101
"93 10
5
1072
107
o
£ 10 ‘ ‘ i :
o
Il o 0 =
s 10
E;g p
g 10
=~
1072
10? I [
2 i
£ 10 —— ‘ ‘ \ |
©
g 107! =
=
1072
10 | ‘ ‘
B |
E | | | 1
5 7 ‘ | ‘
iy | | |
5 0
?.j 10 \
= |
10!
10 20 30 40 50

Horizon length

Figure 3.5: Maximum feedback times for the chain of masses benchmark.

88 TAILORED QUADRATIC PROGRAMMING SOLVERS

qpoases_cn2 forces gpdunes hpmpc

1.0 1 1 !

0.8

0.6 —

ps(T)

0.4

02

00 H

Figure 3.6: Performance profiles for the chain of masses benchmark.

The performance profiles, see § 3.5.3, for the chain of masses benchmark are
presented in Figure 3.6. As expected, the HPMPC based NMPC solver shows
the highest probability to win over all other; this can be observed for T = 1.
The plot also suggests that the condensing based solver should be faster than
qpDUNES based solver up to the factor of 2 of the best solver. Neither of the
solver reaches ps = 1, as none of the solvers was capable to solve the problem
with M =5, N = 5.

NUMERICAL SIMULATIONS 89

gpoases_cn2 forces gqpdunes hpmpc

12

DP
Runtime [ms]
SN o ®

25 ‘
20 ‘
15 — 7‘
| |

|

10 —— |

TP
Runtime [ms]

60 80 100 120 140

Horizon length

Figure 3.7: Maximum execution times of different NMPC controllers for the
double (DP) and the triple (TP) pendulums.

The maximum runtimes of the NMPC solvers applied for swing-up of the
double and triple pendulums are presented in Figure 3.7.

For the double pendulum, we can observe that except qpOASES based solver, all
other solvers manage to solve all problems successfully. The condensing based
solver fails because of the bad conditioning of the problem — consequently the
failure of the Cholesky factorization of the condensed Hessian. The FORCES
solvers shows the slowest performance because of the large number of function
calls they have to perform — in the generated solvers all routines for calling linear
algebra routines are unrolled. The qpDUNES solvers show similar performance
to the condensing ones. Finally, the HPMPC again shows that it is the one with
the most optimized code. This can be concluded based on small fluctuations of
execution times compared to the number of iterations.

We observe that the condensing based solver fails to solve most of the problems
for the triple pendulum — in fact, it manages to solve only three. For N = 60
infeasibility was detected*. The cause of the failure for N > 90 was the bad
conditioning of the reduced Hessian. When it manages to solve the problem, a
large number of iterations was observed. Almost all structure exploiting solvers

4The infeasibility is the consequence of the shifting initialization for the RTI scheme.

90 TAILORED QUADRATIC PROGRAMMING SOLVERS

T gpoases_cn2 [forces T gpdunes 0 hpmpc

L, 30 -
ERS *
20— g 1
£ 15 — | I
AEEEEE EE
[5 — — H
“ 0
L, 300
§ 250 —j
T 200 —
BZ 150
& 100 —
g 50 — i
Z ollm [w B e f lm m [l m (e 4
60 80 100 120 140

Horizon length

Figure 3.8: Maximum number of iterations for different NMPC solvers in the
pendulum benchmark.

manage to successfully solve all the problems. The exception is the FORCES
based solver which fails to solve the problem for N = 60°. As for the previous
benchmark, it seems that the size of the code FORCES generated solvers heavily
influences the execution times. The fastest performance in this benchmark
was observed for the HPMPC based solvers. Cache efficiency of the solvers is
confirmed with small fluctuations of the execution times compared to observed
number of iterations Figure 3.8.

The maximum number of iterations for the double pendulum for all solvers
except the HPMPC is similar, but the HPMPC shows a bit less iterations. To
our surprise, the number of iterations of qpOASES QP solver was similar to
the other solvers — typically the active-set solvers need more iterations than
IPM or dual Netwon strategy based QP solvers. The condensing based solvers
for the triple pendulum need more iterations than the other. Comparing the
number of iterations qpDUNES based solver needs to solve the problems with
the corresponding execution times in Figure 3.7, a conclusion can be made that
the cache efficiency of the solver might be improved.

Let us take a closer look at the conditioning problem observed for condensing

5The solver reached the maximum number of iterations, set to 10000.

NUMERICAL SIMULATIONS 91

qpoases_cn2 —— (qpoases_cn3 hpmpc

DP, N =130
—_
=

90

TP, N
—
N

0 20 40 60 80 100 120 140 160

Simulation steps

Figure 3.9: Conditioning within the condensing based solvers in the pendulum
benchmark. For clarity, the moments of failure are denoted with dashed lines.

based NMPC solvers. The task of the controller is to bring the pendulums
to the upright position, that is, to the unstable equilibrium. Low friction of
the mechanical structure makes the system, thus the model, very sensitive
to perturbations in the vicinity of the unstable equilibrium. Consequently, it
is reasonable to expect badly conditioned sensitivity matrices Ay and By in
that area. Loosely speaking, the condensing approach proposes the removal
of the state trajectory from the sparse QP, using the affine map (3.10). In
the affine map, matrices E and C are the ones to propagate the system
dynamics. Conditioning of the propagation matrices C and E highly depends
on conditioning of the sensitivity matrices and the horizon length N. This is due
to row-wise propagation of sensitivities by multiplication. Consequently, the
conditioning of the condensed Hessian is directly affected by the conditioning of
the propagation matrix E®. To illustrate the issue on the concrete problems, we
present in Figure 3.9 the results from two test cases. Therein, we also included
simulation results for the NMPC solver with the classical condensing; the solver
is denoted with gpoases_cn3. The first test is for the double pendulum (DP) and
the controller with N = 130. The second test case is for the triple pendulum (TP)
and the controller with N = 90. As the controller brings the system closer to the

bsee § 3.2 for details about building of the condensed Hessian.

92 TAILORED QUADRATIC PROGRAMMING SOLVERS

qpoases_cn2 forces gpdunes hpmpc
10! ‘ ‘
) ‘ | ‘ : ‘
E |
= | |
5 FERG - :
©
9]
)
2
107!
107
7 |
E ot — ——th |
e ‘
[
= 0
g 10 ‘
)
2
107!
60 80 100 120 140

Horizon length

Figure 3.10: Maximum feedback times for the pendulum benchmark.

equilibrium, the conditioning of the condensed Hessian gets worse for the both
solvers: gpoases_cn2 and qpoases_cn3 ”. The low, constant, condition number
for the sparse QP is obtained in a simulation with the HPMPC based solver. The
both condensing controllers fail due to ill-conditioning of the reduced Hessian
inside the QP solver®. While both solvers produce high condition numbers, the
classical condensing based solver survives for a little longer and eventually fails.
The results presented in Figure 3.9 give strong indications that the condensing
approach should be avoided in the situations involving unstable dynamics and
long horizons. Furthermore, the results demonstrate that for the considered
test cases the conditioning of the condensed Hessian is not compromised by
employing the O(N?) condensing routine.

The maximum feedback times obtained in the pendulum benchmark are
presented in Figure 3.10. It can be distinguished that the qpOASES solver, for the
double pendulum, always provides faster feedback than qpDUNES, despite the
fact that the overall execution time is sometimes larger. We can also observe that
a number of solvers can provide fast feedback in less than 1 millisecond. For the

7Condition numbers were estimated using the routine dgesvd from LAPACK [117]. The routine
computes singular value decomposition (SVD) for a given matrix, and the condition number is
computed as the ratio between the maximum and the minimum singular value.

8The both implementations employ the same implementation of the qpOASES QP solver.

NUMERICAL SIMULATIONS 93

qpoases_cn2 forces gpdunes hpmpc

1.0 H

0.8

0.6

ps(T)

0.4

0.2

00 H

Figure 3.11: Performance profiles for different NMPC solvers in the pendulum
benchmark.

double pendulum, the HPMPC solver provides feedback in microseconds for
N <120 and two times for the triple pendulum. The qpOASES and qpDUNES
based solvers can provide feedback in the microsecond range as well, but for
shorter horizons.

The joint performance profiles for the pendulum benchmark are summarized
in Figure 3.11. The plots suggest that after the HPMPC based solver the
qpOASES one might be most effective for shorter horizons and that qpDUNES
might be more effective for longer ones. The FORCES based solvers might be
more efficient than qpDUNES for long horizons — cf. Figure 3.7.

94 TAILORED QUADRATIC PROGRAMMING SOLVERS

Table 3.14: Percentages of the RTI scheme spent in the feedback phase.

NMPC Solver Benchmark

Chain of masses Pendulums

average maximum average maximum

gqpoases_cn2 12 77 19 76
forces 62 81 63 79
gpdunes 20 70 18 77
hpmpc 15 62 17 42

For practical applications it might be beneficial to know the typical percentage
of the RTI spent in the feedback phase. For this purpose, we summarized all
information from the two benchmarks in Table 3.14. The average percentages
are calculated from the average runtimes, and the maximum percentages are
calculated from the maximum runtimes. In average, the feedback phase is much
shorter than the preparation phase, as commonly stated in the literature. For
a well optimized implementation, typically up to 20 % is spent solving the
QP and possibly condensing the sparse QP. The maximum runtimes should
be evaluated as case-specific — depending on the nature of the problem, limit
on the number of iterations and so on. The user should be aware that the
maximum runtimes can be significantly longer than the average. Reasons for
high maximum percentages include optimized implementations of the fixed-
step integrators and the condensing procedures.

CONCLUSIONS 95

3.6 Conclusions

This chapter gave an overview of QP solvers tailored for possibly nonlinear
MPC and MHE applications that were found to be useful and successful in the
literature but also in the scope of this thesis. In essence, two approaches were
reviewed. The sparse one, where efficiency is gained by exploiting in depth
the structure of the sparse QP coming from MPC and MHE formulations. The
second approach based on condensing proves to be efficient if the sparse QP
structure is exploited to reduce the original QP to a dense one with typically
much smaller dimensions. Three condensing approaches have been studied
in detail, for the both cases: QPs coming from MPC and MHE formulations.
Within § 3.2, the O(N?) approaches have been extended for partial condensing.

We compared four different NMPC solvers on two benchmarks in § 3.5. In
particular, we compared NMPC solvers that employ the O(N?) condensing
and the qpOASES QP solver with NMPC solvers that employ three different
structure exploiting QP solvers. Out of those three, two are based on the primal-
dual interior point methods. One of them, FORCES, is an auto-generated QP
solver. The other one, HPMPC, is the library consisting of routines specifically
optimized for solving the kernel of the interior-point methods: the discrete
Riccati equation. The fourth type of the NMPC solvers is based on the newly
developed dual decomposition strategy that should utilize advantages of both
worlds: low iteration count of interior-point methods and capability to be warm-
started like the active-set approaches.

Short horizons For the very short horizons, e.g. N < 5 and the low state/-
control ratio, the condensing should be favored because the QP dimensions are
small. In this case, the condensing based solvers provide the fastest feedback
as well as the total times. Keeping the horizon short, but increasing the
state/control ratio, the condensing approach continues to provide the best
results. With the increase of the ratio, the condensing approach becomes even
more competitive while increasing of the horizon length. It should be further
observed that relocation of the computations in the condensing based approach
makes condensing based solver even more competitive from the fast feedback
point of view. Next to the condensing approach, qpDUNES and HPMPC based
solvers show to be competitive at short horizon lengths for the low state/control
ratio.

96 TAILORED QUADRATIC PROGRAMMING SOLVERS

Long horizons With the increase of the horizon length, the condensing and
the QP solution become expensive. Eventually, the O(N?) complexity of the
solution makes them the slowest for long enough horizons. Furthermore, our
benchmarks revealed that for the highly nonlinear, possibly unstable, systems
the condensing procedure leads to bad conditioning. Although appealing, and
reasonable, the code-generation approach FORCES employs seems not to be
the only nor the best path to achieve fast execution times of an interior-point QP
solvers. The slow performance of the solvers is suspected to be a consequence
of the huge amount of the generated code for longer horizons. According to
our benchmarks, qpDUNES and the HPMPC structure exploiting QP solver
should be favored for longer horizons. The performance of the gqpDUNES based
solvers is promising, especially for the lower state/control ratios. Low iteration
counts and low execution times per iteration renders HPMPC the solver with
the best overall performance. The implementation demonstrates that IPMs for
MPC/MHE applications can be well optimized, even for larger state/control
ratios. While the feedback time with FORCES solvers is always longer than the
preparation step, qpDUNES and HPMPC solvers maintain the average ratio
between the feedback and the preparation phases low.

4

The ACADO Code Generation Tool

During the design phase of an MPC controller or an MHE estimator a control
engineer tries out different formulations. Different objectives are tested to
achieve satisfactory performance in simulations. Constraints are added to
meet certain design requirements and account for physical limitations. Model
equations might need to be adjusted to fit within the set of features of a
particular software package. Once satisfied with a preliminary design, one
needs to think about how to adjust the model and/or formulations such that the
controller/estimator can be executed in real-time at desired sampling rate using available
software? This step requires in-depth knowledge of a set of features of the
software package of choice. Knowing software advantages and limitations
the designer usually adjusts e.g. horizon lengths, sometimes model equations,
or number of constraints. Moreover, in this step the designer makes choices
such as the QP solver, integration routine and number of integration steps
depending on the system dynamics. Eventually control engineer becomes
satisfied and chooses to try out the controller in a real-time simulator and later
in experiments. At this point all relevant dimensions to the controller/estimator
formulations are known. This particular fact strongly motivates code generation
of a customized solver for a particular formulation. In such a solver fixed
problem dimensions can help compilers to better optimize the code leading to
fast execution times. Another important benefit is that by fixing the problem
dimensions dynamic memory allocation is avoided, which is the preferred way

97

98 THE ACADO CODE GENERATION TOOL

of memory management in real-world applications.

The ACADO Code Generation Tool (CGT) [7, 118, 119] is the software tool
designed primarily for the purpose to generate customized solvers and
integrators with the aim to be used in fast applications with milli- and
micro-second sampling times. The tool is a module within the open-source
software package ACADO Toolkit [120] — a toolkit for automatic control and
dynamic optimization. The tool was originally inspired by the software package
CVXGEN [121] that allows the user to generate customized interior-point solvers
for small-scale LP and QP problems as arising in linear MPC problems. A
somewhat similar software package AutoGenU [122] generates source code
implementing the continuation/ GMRES method.

The main idea is to tailor the auto-generated code to the specific problem
structure and optimize for fast execution based on a symbolic problem formu-
lation. The number of required operations in the evaluation of the nonlinear
right-hand side of the differential equation, objective and constraints as well as
in the associated derivatives is optimized for the particular formulation. The
derivatives are symbolically simplified employing automatic differentiation
tools and taking into account zero-entries in the Jacobian. Similarly, the
tool exports tailored fixed-step Runge-Kutta methods for integration of the
model equations and generation of corresponding sensitivity information. The
underlying structured QP is solved either directly, or after the condensing step.

Next to the primary role, recent improvements to both the generator and the
generated code made possible to use the tool for rapid prototyping. Namely,
as code generation and compilation became faster, it became convenient to
use the tool in the design phase. This valuable use case became attractive
due to interfaces of the ACADO Toolkit as well the generated code to
MATLAB & Simulink as well as to Python language using the software package
rawesome [123].

Features of the toolkit are summarized in § 4.1. Interfaced QP solvers are
outlined in § 4.2. Structure of an exported QP solver is described in § 4.3. Several
known real-world applications of the ACADO CGT solvers and/or integrators
are listed in § 4.4.

FEATURES 99

4.1 Features

The ACADO Code Generation tool exports efficient self-contained C-code
that implements the Gauss-Newton RTI scheme for both the nonlinear MHE
and the nonlinear MPC. The user interface allows one to specify nonlinear
dynamic model equations as well as objective and constraint functions. The
tool supports continuous-in-time explicit ODEs, as well as implicit ODEs and
DAESs. The OCP formulation is discretized using the direct multiple shooting
technique'. The solution of the underlying QP can be done using one of
the four available QP solvers. The QP can be condensed using either the
standard O(N?) or the superior O(N?) condensing techniques. Afterwards,
the condensed QP is solved with the embedded version of the qpOASES
solver [90]. Alternatively, the user can opt for structure exploiting QP solvers:
FORCES [108] and HPMPC [110] implement interior point methods while the
qpDUNES [109] implements the dual Newton strategy; see Chapter 3. Before a
solver gets exported, problem structure and dimensions are exploited together
with sparsity patterns to remove all unnecessary computations and remove any
need for dynamic memory allocations.

The ACADO CGT provides the complete solution for doing fast nonlinear
MPC and MHE. The automatic differentiation can be done either using the
implementation within ACADO or an external one. The recent improvements
allow the user to supply external code for symbolic evaluation and link
against the generated code, providing more flexibility. The suite of fixed step
numerical integrators enables the formulation and handling of models of
various complexity in size and stiffness. The ACADO CGT itself does not offer
auto-generation of a QP solver, but the choice has been made to interface current
state-of-the-art solvers.

In the rest of the section we briefly survey the implemented features; for more
details about the implemented features and limitations we refer to the ACADO
manual [124].

Nonlinear MPC solvers The original implementation of the tool allowed for
restrictive MPC formulations involving penalization of the full state and control
vector and bounds on the states and the controls. Moreover, the only way to
discretize the OCP was by means of the single shooting approach. Already at

I The direct single shooting is supported only for O(N?) condensing based solvers.

100 THE ACADO CODE GENERATION TOOL

that stage the tool showed promising performance in simulations [7] and in the
first experimental validation [9]. Addition of the multiple shooting, nonlinear
residual functions in the least-squares objectives and nonlinear constraints
made problem specifications possible for more complex applications. Initial
applicability of the tool was limited by inefficiency of both the generator and
the generated code for longer horizons. This was a direct consequence of the
vanilla implementation of the condensing routine. Later extensions led to
improved standard condensing and the O(N?) condensing routines. Interfaces
to structure exploiting QP solvers resulted in reduced computational burden for
long horizon formulations. One of the latest improvements extends the scope of
the tool to general objective formulations and Exact Hessian RTI scheme [125].

Nonlinear MHE solvers With the aim to solve complex estimation problems
with complex dynamics possibly involving (nonlinear) constraints or to
efficiently handle the cases when other approaches fail, the tool has been
extended to support MHE formulations [11]. This extension showed to
be simple, given the similarities between MPC and MHE formulations,
see Chapter 2. Since the original MHE implementation, the tool has been
extended to support the general Gauss-Newton type formulation. As the
arrival cost is sometimes necessary to handle complex use cases, the prototype
implementation of the smoothed arrival cost update [73] has been implemented;
the complex cases include e.g. parameter estimation and avoidance of long
horizons needed when short sampling times are required.

Integrators One of the key components for the efficient MPC and MHE
solution is the integrator. The ACADO CGT implements a variety of efficient
numerical integration schemes?. Using variational differential equations explicit
ODEs and corresponding sensitivities can be handled efficiently with explicit
Runge-Kutta integrators. Support for implicit integrators has been added [80] to
prevent prohibitively long execution times while integrating stiff systems and
to tackle more challenging nonlinear dynamic systems represented by DAEs. In
addition, linear input and output sub-systems can be exploited leading to great
reductions in execution time [126]. Continuous-output integrators meant to be
used for multi-sensor fusion are developed within [44] and later verified in a
prototype MHE implementation [70]. The implemented integrators can be used
in MHE/MPC solvers but also as the stand-alone components. For example,

2The numerical integrators within the ACADO CGT have been developed by Rien Quirynen.

INTERFACES TO QP SOLVERS 101

this feature was used to develop a real-time simulator in Chapter 6 to simulate
an implicit DAE with 27 states, 4 controls and 8 outputs at the sampling rate of
1kHz.

4.2 Interfaces to QP solvers

The exported solver code can use one of the four interfaced QP solvers®. In the
following we list the interfaced solvers.

qpOASES [90] The QP solver qpOASES implements the efficient online
active-set strategy [24]. In particular, the version that is interfaced to exported
solver is the special, embedded, variant of the solver that uses the static
memory allocation. This solver is used always in conjunction with one of the
implemented condensing techniques. The qpOASES solver is provided in the
form of self-contained ANSI C++ code, thus creates slightly more dependencies.
The solver is freely available under the LGPL license. The solver provides
solutions in time proportional to the cube of optimization variables. However,
in conjunction with the efficient condensing techniques, the solver shows
competitive performance for short to medium horizons and large ratio ny/n,,.

FORCES [108] The structure exploiting QP solver FORCES [99] implements
the Mehrotra’s primal-dual IPM. Structure exploitation leads to linear complex-
ity in number of the shooting intervals. The tool supports QP formulations,
as well as linear programs (LPs) and QPs with quadratic constraints (QCQPs).
Problem formulation is specified in either a MATLAB or Python script.
Afterwards, the data is sent to a web-server that generates the custom code
for the specific formulation. The generated code can profit from knowledge
about the sparsity of the stage Hessian blocks, see § 3.3. In particular, if
the stage Hessians are diagonal, which is a common in MPC formulations,
factorization of the reduced Hessian becomes trivial. One of the disadvantages
of the exported code is that all for-loops that call the low-level linear algebra
routines are unrolled. This is the design decision that seemed to be necessary
to support general multi-stage problem formulations, i.e. more general multi-
stage formulations that arise in optimal control. The FORCES is released as

3Ini’cially the CVXGEN [127] QP solver was interfaced as well, but the support for this QP solver
was dropped because of the low interest.

102 THE ACADO CODE GENERATION TOOL

academically free service, and the generated code is released under the GPL
license.

qpDUNES [109] This solver implements the dual Newton strategy [76, 105]
that is specifically designed for block structured QPs arising in MPC and
MHE. The advantage of the dual Newton strategy is that it combines structure
exploitation capabilities of interior point methods with the warm-starting
capabilities of active set methods. Consequently, the complexity of the solution
is linear in the horizon length. The solver is provided in form of C99 C-code
under the industry friendly LGPL license. The solver uses dynamic memory
allocation, but all the memory is pre-allocated before the solver is used.

HPMPC [110] This is yet another IPM QP solver that implements the
Mehrotra’s predictor corrector method. The solver, at the version that is used in
this thesis, provides an efficient implementation for QP arising in MPC with
box constraints on states and controls. The implementation, at the lower level,
implements the discrete Riccati recursion as described in [128]. The key feature
that differentiates this solver from the rest is that a kernel for Riccati recursion is
well optimized for modern CPU architectures. Special memory layouts are used
to reduce both CPU cache misses. Moreover, the tool implements customized
linear algebra routines for matrices and vectors of small dimensions optimized
for vector instructions. For more details we refer to [96, 100]. The library is
provided in form of C99 compatible C-code, released under the LGPL license.

4.3 Structure of the Exported Solver

The structure of an exported solver for MPC or MHE is illustrated in Figure 4.1.
The solver itself contains routines for fast evaluation of nonlinear functions
(objective and constraints) and generation of necessary derivative information.
The integrator, that can be also used standalone, implements an efficient
integration Runge-Kutta scheme. Data coming as a result of direct multiple
shooting discretization can be directly passed to one of the three interfaced
structure exploiting QP solvers: FORCES, qpDUNES or HPMPC. Alternatively,
the DMS data is passed to a condensing routine. The condensed QP data is
then forwarded to the qpOASES QP solver.

REAL-WORLD APPLICATIONS 103

Solver
Objective & Constraints ODE/DAE Integrator
(evaluation + Jacobians) (evaluation + sensitivites)
| qpOASES || FORCES || gpDUNES | | HPMPC |

| Interfaces: MATLAB, Simulink, Python I

Figure 4.1: Structure of an exported MHE/MPC solver. The shaded blocks
indicate the external software packages.

In addition to the generated code implementing the tailored MPC or MHE
solver, the tool can also export wrappers for MATLAB, Simulink, or Python. For
usage in MATLAB scripts, the mex wrapper is provided. The Simulink wrapper
is provided so that the solver can be directly used in a Simulink diagram.
The wrapper is created with specific aim to enable one to use the solver in real-
world applications. The software package rawesome [123] provides a convenient
interface to the Python language. In [129], the MPC and MHE solvers were
successfully interfaced to the LabView environment.

4.4 Real-world Applications

In the following we list several known applications of the ACADO Code
Generation Tool. In particular, we list real-world applications, where the
generated code was used in online context in real experiments.

e To our knowledge, the first real-world application of ACADO CGT
generated NMPC solver is the one applied to the overhead crane at KU
Leuven [9]. The follow-up experiments [14] reported improvements in
execution times due to usage of more advanced implementations. More
details can be found in Chapter 5.

* The first application of a generated solver that was executed on embedded
hardware is the one reported in [130]. Therein, auto-generated MHE solver

104

THE ACADO CODE GENERATION TOOL

with 6 intervals and arrival cost approximation from [73] was used for
state estimation of an induction motor. The model equations comprise 5
states and 2 controls. The achieved sampling frequency was 1.5 kHz with
the solver running on a 1 GHz low power Texas Instruments DSP. The
maximum recorded execution time was less than 270 ps, i.e. less than a
half of the sampling period.

The first closed-loop experiments for rotational start-up of an airborne
wind energy system using the auto-generated MHE and MPC solvers
are reported in [15]. Execution times less than 5ms were reported for
MHE and MPC consisting of 10 intervals each, using nonlinear ODE
models with 22 states and 2 controls. The follow-up study is presented
in Chapter 6.

In [129, 131] generated MHE and MPC solvers are used for state and
parameter estimation, as well as for control of an agricultural tractor
utilizing an adaptive nonlinear kinematic model. The model comprises
4 states, 2 controls and 2 parameters. Using 15 intervals for both the
MHE and the MPC, feedback execution times in the range 0.6-1.6 ms were
achieved on a modern CPU. The total time execution time of the both
solvers was reported to be less than 5 ms.

An industrial robotic arm is successfully controlled by a nonlinear MPC
controller generated by the ACADO CGT at 1kHz [132]. Therein, a path-
following NMPC scheme was experimentally validated on the KUKA
lightweight robot IV.

An approach for online solution for optimization of reference trajectories is
reported in [133]. The proposed control strategy is validated on a reaction
wheel pendulum. The corresponding model consists of 4 states and 1
control input. The NMPC control period was chosen to be 70 ms and
the number of control intervals N. = 29. On an embedded platform,
execution time of 29 ms was observed.

Research presented in [134] reports the application of the auto-generated
NMPC solvers for control of autonomous cars. Using a spatial reformula-
tion of the time-optimal objective, it was possible to solve the optimization
problem in the constrained Gauss-Newton framework. The authors report
execution times less than 10 ms for NMPC formulations consisting of 4
states, 2 inputs and up to 50 intervals.

5

Real-time Control of an Overhead
Crane

This chapter demonstrates the application of nonlinear MPC and MHE
algorithms to a mechatronics system with fast dynamics. We use the auto-
generated solvers, presented in Chapter 4, that implement the real-time iteration
scheme (see Chapter 2) for both the controller and the estimator to control a
laboratory scale overhead crane. The experimental setup consists of a cart
moving in one dimension and a varying length pendulum attached to it.
In [135, 136], similar crane setups have been controlled by means of nonlinear
MPC and linear time-optimal MPC with constant cable length. In contrast, line
length variations which greatly increase the nonlinearities of the system are
controlled directly by the nonlinear MPC. Experiments show that the worst
case execution times are much faster than the necessary sampling time of 10
milliseconds. A similar NMPC based approach implemented on a PLC and
applied to an overhead crane is reported in [137].

We present results from the two sets of experiments, demonstrating capabilities
of two software generations of the ACADO Code Generation Tool (see
Chapter 4). The first set of experiments, presented in [9], utilizes a standard
MPC formulation and a simple estimator. Although real-time feasible and
demonstrating promising performance, the lack of an estimator and the use of
a simple objective formulation showed to be insufficient for achieving a higher

105

106 REAL-TIME CONTROL OF AN OVERHEAD CRANE

Figure 5.1: Schematic of the experimental overhead crane.

tracking performance. Therefore, with improved software, using more advanced
formulations and a proper estimator, we show how the control performance
can be improved in the second set of experiments [14]. Moreover, we present
speed improvements of the auto-generated solvers over the previous generation
used in the first set of experiments.

The overhead crane setup and its dynamic model are presented in detail in § 5.1.
The control architectures used in the experiments are detailed in § 5.2. The
resulting closed-loop performance while performing point-to-point motions or
rejecting external disturbances is discussed in § 5.3. Finally, conclusions are
drawn in § 5.4.

5.1 Experimental setup and Dynamic Model

This section briefly describes the experimental setup as well as the dynamic
model which is used in the nonlinear model predictive controller and later in
the moving horizon estimator.

5.1.1 Experimental Setup

A schematic description of the considered overhead crane is given in Figure 5.1.
The cart is actuated by a Servotube 1108 linear motor from Copley Controls.
The motor has an integrated incremental encoder which measures the position

EXPERIMENTAL SETUP AND DYNAMIC MODEL 107

of the cart xc with a resolution of 5pm. Its maximum stroke is 0.6 m. The
pendulum consists of a cylindrical load with mass m = 1.3 kg hanging on two
parallel cables. One end of each cable is mounted to a fixed point on the cart,
Figure 5.1, while the other two ends are connected to a winch mechanism. The
winch mechanism consists of a pulley and a coupled DC motor (A-max 32 from
Maxon Motors) with a gearbox reduction ratio 18. An incremental encoder with
a resolution of 500 pulses per revolution is attached to the winch motor yielding
a resolution of the cable length measurement xj, of 2.15 pm. The maximum
cable length is 0.95m, while the minimum cable length is bounded to 0.5m
for safety reasons. The angular deflection « of the left cable is measured with
rotary incremental encoder BFH 1P.05A40000-B2-5 from Baumer Electric with
a resolution of 40000 pulses per revolution. The relation between the angular
deflection of the pendulum 6 and of the left cable « is detailed in § 5.1.2. The
horizontal and the vertical position of the load are denoted with x; and xp,
respectively.

The inputs to this system are the voltages uc and uy,, which represent set-points
for the associated velocity controllers. These voltages are internally limited to
£10V. The control software is implemented using the OROCOS Toolchain [138]
and runs on a PC with an Intel Xeon 2.53 GHz quad core processor, 12 GB RAM
memory, and a preemptive Linux kernel as operating system.

5.1.2 Dynamic Model

The equation of motion of the variable cable length overhead crane is given by
[139]:

¥ccos(0) = —xp.0 — 2410 — gsin(6), (5.1)

where g denotes the gravitational constant. The damping of the pendulum is
neglected.

The cart dynamics G¢(s), from the set-point to the dedicated velocity controller
uc to the cart position xc, is modeled as the second order system. The winch
mechanism dynamics Gy (s) from the input of the winch velocity controller uy,
to the cable length x1 is modeled as a second order system as well. Thus the

108 REAL-TIME CONTROL OF AN OVERHEAD CRANE

Table 5.1: Estimate of the model parameters.

Parameter Description Value

Ac gain of G¢(s) 0.0474m/s/V
AL gain of G (s) 0.0341m/s/V
TC time constant of Gc(s) 0.0128s

L time constant of G (s) 0.0247's

g gravitational constant ~ 9.81m/s?

transfer functions are given by

__Ac
a s(tes +1)

Ar

Gels) s(ts+1)°

and Gr(s) = (5.2)
Non-parametric estimates of the frequency response functions (FRFs) of these
systems were obtained from random phase multisine excitations [140]. The
parameters Ac, Ar, 7c and 11, were subsequently identified by a weighted
nonlinear least squares frequency domain identification method [140]. The

numerical values for the parameters of the model are given in Table 5.1.

The closed-loop transfer function G¢(s) can be simplified to the pure integrator
Gce(s) = Ac/s due to the fast dynamics of the velocity controller compared
to the overall system dynamics. Moreover, the higher order model requires
smaller discretization steps if an explicit integrator is used. Consequently, this
scenario leads to a much longer integration time of the model.

By combining (5.1) and (5.2) and introducing voltage rate variables ucr and
u R, which allow us to account for actuator torque constraints indirectly, we
find the following nonlinear ordinary differential equation:

. . 1 n Ac
XCc =0 UCc = ——70 —u
C C/ C T C T C/
; . 1 A
X, =09L, OUL=——0UL+—uL,
L 9

. , 1, _ (5.3)
f=w, w= e (9c cos(0) + gsin(0) + 2vpw),
L

tc = UCR,

Uy, = ULR.

EXPERIMENTAL SETUP AND DYNAMIC MODEL 109

fixed points

Figure 5.2: Relation between measured angle a# and pendulum angle deflection
0.

These equation will in the following be summarized as X = f(x, u) where
x = [xc,vc, xr, 0L, 0,w,uc,ur] and u:= [ucg, urr)’ (5.4)

denote the states and the controls, respectively. The sampling frequency is
chosen to Ts = 100 Hz, such that good control performance can be achieved.

The outputs that the equipment provides can be summarized in a vector
y = [xc, x4 (5.5)

The two states are measured directly: the position of the cart xc and the cable
length xp.. The third measurement & = f, (6, x1.) is a nonlinear function of the
swinging angle 6 and the cable length x1, see Figure 5.1.

Measurement of the angular deflection A detailed situation is depicted
in Figure 5.2. Noting that triangles ABF and DEF are similar, the following
equation can be obtained:

Le _Leathita), (5.6)
Ly d

110 REAL-TIME CONTROL OF AN OVERHEAD CRANE

with:
B=rm/2+a—06, Ly =asin(f), L, = acos(h),

(5.7)
a=99mm, d = 14.5 mm.

If needed, solving (5.6) gives the angle deflection 6 in function of «. In practice,
a second order polynomial approximation produces sufficient results.

5.2 Control Architectures

The two sets of experiments employed different control architectures, mainly
governed by availability of the software for optimal control and estimation.
In the text to come, we refer to the two control architectures as Scenario 1 and
Scenario 2. The first scenario describes the control architecture used in [9] and
the second scenario the one used in [14].

5.2.1 Scenariol

Nonlinear MPC formulation

At each sampling time the NLP:

Nc Nc.—1
xmi? 2 ka—xref||2Q+ 2 Huk_uref”%{ (5.8)
0s+++sAN¢ — —
Ugeefine—y k=0 k=0
s.t. X9 = %o (5.9)
Xpy1 = F™(xp, up), fork=0,...,N. — 1, (5.10)
x<x <% fork=0,..., N (5.11)

u<u < fork=0,...,N.—1, (5.12)

CONTROL ARCHITECTURES 111

is solved with the following bounds on controls and states
—10V <uc <10V,

—10V < ug, <10V,
(5.13)
—100V/s < ucg < 100V/s,

—100V/s < upr <100V/s.

The system inputs uc and uj, are constrained by internal limitations of
the corresponding velocity controller. Constraints for the control rates ucr
and upR are tuned such that saturation in the cart and winch actuators are
avoided. The state and control vectors x; and 1 and the system description
are defined as in (5.4) and (5.3), respectively. The control horizon is chosen
to be T, = 1s, which was found to be suitable by empirical testing. The
discretized system dynamics are represented by the function FI™t. A continuous-
in-time formulation counterpart to (5.8) is discretized using the single shooting
technique on an equidistant grid with N, = 10 intervals.

The MPC formulation (5.8) incorporates references for full state and control
vectors and we keep the references constant over the control horizon. Further-
more, only the references for the cart position and cable length are changed
online, while all other references are always set to zero:

Xref = [xC,ref/ 0, XL, refs 0,0,0,0, O}I and upef 1= [0/ 0]/-

Moreover, we choose weighting matrices Q and R defined as:
Q = diag (56m~?,65%/m?,115m 2, 0.01s%/m?,
10,105,105 V2,108 v2),
R := diag (10*5 s?/V2,1075 s /VZ) .
Since our intention is to perform accurate point-to-point motions, the weights
corresponding to the tracking errors of the cart position and the cable length
are chosen to be large in comparison to the weights which penalize the tracking

error of the velocities. Similarly, the weights for the control cost are low. The
aim of this tuning is to enable fast but well damped closed-loop behavior.

112 REAL-TIME CONTROL OF AN OVERHEAD CRANE

Software implementation The solver that solves online the NLP (5.8) is
generated by the ACADO CGT. The first generation of ACADO generated
NMPC solvers that is used in the first validation was limited to the NLP
formulation given in (5.8). In addition, the user was constrained to use only the
single shooting technique to discretize the OCP. The solver implemented the
O(N2) condensing technique and qpOASES QP solver was employed to solve
the underlying QP.

Simple estimator

Note that the nonlinear MPC controller itself requires estimates for all the
eight states as an input. However, only the positions are directly measured by
the encoders. Consequently, we have to estimate the corresponding velocities
vc, v, and w. Limited by the available software, we opt for finite differences
approximations. For the cart velocity we use vclk] = (xc[k] — xc[k —1])/Ts,
Ts = 10ms. To reduce effects of high-frequency noise, we filter all velocities
using a first order low-pass digital filter with a cut-off frequency of f. = 10Hz.
This choice is justified by the slow pendulum dynamics and the assumption
that the NMPC does not trigger fast modes of the cart mechanism.

CONTROL ARCHITECTURES 113

5.2.2 Scenario 2

Nonlinear MPC formulation

In this scenario we used the following discretized OCP formulation for the
NMPC:

L min Ncil e (e, 1) = il IR + e (o) — Pl IRy, (5.14a)
UopiineSy k=0

st. xg=%o (5.14b)

Xpp1 = F™(xy, uy), fork=0,...,N —1, (5.14¢)

0 <x < xF, fork=0,..., N, (5.14d)

u}(" <y < u;p, fork=0,...,N.—1, (5.14¢)

where discretized system dynamics are represented by the function F. The
current state estimate provided by an estimator is denoted £y € R"*. The
controlled system output is captured with reference functions in (5.14a): h, €
R"™ and h,n € R™N, and the corresponding weighting matrices are R € R"*"
and Ry € R"N*"N_Variables 7y € R" and 7y € R""N denote time-varying
references. As in the previous scenario, we use the same box constraints defined
in (5.13). Finally, the number of control intervals is denoted as N.. The control
horizon is chosen to be 1s with N. = 10 shooting intervals, which was found
to be suitable by empirical testing.

Output model for MPC In the first scenario, the load position and swinging
is controlled indirectly by controlling the cart position xc, cable length x1, and
angle 6. For more effective control of the load position while using the objective
in (5.8), one needs to introduce off-diagonal weights in matrix Q. Tuning of
those extra terms might be involved and counter intuitive. In order to avoid
those problems and come up with an easy to tune objective, we aim here to
control the position and swinging of the load in the x1-x, plane directly. For
this purpose, the selected reference output function are the load position x;

114 REAL-TIME CONTROL OF AN OVERHEAD CRANE

and x,, the swinging velocity w and the control slew-rates:

hy(x,u) = [xc + x sin(6), x cos(0), w, ucr, urr)’,
(5.15)

hn ,(x,u) = [xc + xpsin(6), xp cos(6), w)]'.
The MPC formulation incorporates a reference vector #, which is a nonlinear
combination of the state vector x. Point to point motions are executed by giving
step reference changes, hence the references are constant over the whole control
horizon. We consider the following reference for # and u:

Ty = [xl,ref/ X2 refr 0,0, 0], (516)

Here x1 ref, X2 ref are the desired load xq and x, position, while the desired
angular velocity is zero to suppress swinging of the load. The control reference
is set to zero to minimize the total control effort. The empirically found suitable
weight reads:

R = diag(100 m 2,100 m 2,1 s%,107° s> /V2,107° s?/V?) (5.17)

Since we want accurate point to point motions, the weight on the position x;
and x; is large with respect to the weight on the control inputs.

Software implementation The NMPC is auto-generated by the ACADO CGT.
We use O(N2) based condensing and the dense linear algebra QP solver
qpOASES. The OCP is discretized with the direct multiple shooting technique.
In comparison with the first scenario, we use the implicit Runge-Kutta integrator
of order four for integration of the system dynamics. This way we avoid a large
number of integrator steps needed if explicit integrators are used. Let us note
here that the system dynamics in the first scenario had to be simplified (the
dynamics of the cart) because of availability of only the explicit integrator in
the ACADO CGT suite. In addition to more advanced integrators, we use the
more advanced O(N?) structure exploiting condensing procedure, detailed
in§3.2.1.

CONTROL ARCHITECTURES 115

Nonlinear MHE formulation

The moving horizon estimation (MHE) problem solved at each time step reads:

Ne—1
Jmin Y [y (o) = el 3+ iy (o) = O[5, (5:18a)
uo,.f.,L;Nee,l k=0
st X = F™(xy,uy), fork=0,...,Ne — 1, (5.18b)

where the number of estimation intervals is N.. Measurement functions are
denoted with i, € R™ and h, N, € R"Ne and the corresponding weighting
matrices are S € R™*"™ and Sy, € R"yNe "y Ne,

We choose to have the same dynamic model for both the controller (5.14) and
the estimator (5.18). The main motivation for this approach is that we want the
estimator to capture the same dynamics we want to control using NMPC.

Measurement model for MHE The measured states of the system are y =
[xc, xp, &, uc, up, ucr, uLr)’, cf. Figure 5.2. Strictly speaking, uc, ur, ucr, ULR
are pseudo-measurements. We cannot measure them, but we can penalize the
deviation from the references calculated by the NMPC. The output functions
hy and hy, N, read:

hy(x,u) = [xc, XL, &, uc, ur, UCR, ULR]',
(5.19)
hy N, (%) = [xc, xL, &, uc, uL]'.

Optimizing the controls allows uc, 1y, one to account for disturbances and non-
modeled dynamics. This approach is motivated by the fact that the control
hardware and the actuators are connected via analog lines. Those analog lines
collect noise and disturb the control signal that is sent to the system.

The weights on the diagonal of the weighting matrix

S = diag(16.5m™2,25.1 m2,119.4,1.2 V72,04 V2,
0.01 s2/V?,0.01 s*>/V?)

are obtained experimentally and each weight denotes the inverse of the

116 REAL-TIME CONTROL OF AN OVERHEAD CRANE

covariance of the corresponding measurement. The estimation horizon is chosen
to be 0.2s with N, = 20 shooting intervals, which was found to be suitable by
empirical testing.

Software implementation The MHE solver is auto-generated by the ACADO
CGT and implements the O(N2) condensing routine outlined in § 3.2.1. The
continuous-in-time counterpart to (5.18) is discretized by the direct multiple
shooting technique.

5.3 Experimental Results

5.3.1 Scenariol

A first experiment illustrates the controller performance for point-to-point
motions, see Figure 5.3. Multiple reference changes are applied to the controller
(Figure 5.3a). The steady state error on xc is less than 2mm and less than
1mm on xr. The control inputs and corresponding control rates are shown
in Figure 5.3b. Note that the winch control and its slew-rate, uy, and upR, hit
their limits because the corresponding weights in the Q and R matrix are set
aggressively. Weights in the Q and R matrices which correspond to motion of
the cart and to pendulum swinging are set to conservative values resulting in
slow yet accurate motion. Let us note that the third setpoint change, a change
in xc only, results in a control input for the winching motor as well.

EXPERIMENTAL RESULTS 117

0.6
E 04 / \\
Y o2 I
0.0
1.0
E 08 |\ 7
2 06 M-
0.4
4
2 N
()
=) JaN AN I\ 7 o~
=)
s \
0 5 10 15 20 25 30 35
Time [s]
(a) Cart position xc, cable length xp..
10
2 N\ N
g]
—10
— 100
2]
~
=" k
o~ ~
¢
= —100
10
S A \
0 0 / >
=
-10
- 100
= !
i 0 N AN A
o [v
|
= —100
0 5 10 15 20 25 30 35
Time [s]

(b) Controls uc, ur, and control rates ucgr, UrR.

Figure 5.3: Point-to-point motions in the vertical plane: states and controls;
solid blue lines: measurements, solid red lines: references, dashed red lines:
constraints.

118 REAL-TIME CONTROL OF AN OVERHEAD CRANE

Table 5.2: Execution times of the auto-generated NMPC.

Feedback phase Preparation phase Overall

[ms] [ms] [ms]
Maximum 0.19 0.90 1.08
Average 0.04 0.86 0.93

Figure 5.4a validates the low execution time of the auto-generated C-code. The
average execution time is less than 1 ms. The peak execution time measures less
than 1.1 ms. In the worst case, the time spent in the feedback phase is 17 % of
the overall execution time, see Table 5.2. The peak times in the feedback phase
are directly proportional to the number of active-set changes for solving the
QP. The ratio between the average time spent in the feedback and preparation
phase is almost equal to results obtained in synthetic tests in [7]. Execution
times are measured with OROCOS timer services. Those services internally
use the Linux function clock_gettime (), which provides a resolution in the
nanosecond range.

Performing only one SQP iteration at each sampling time results in sub-optimal
control. Therefore it is beneficial to know how well the controller performs
in terms of optimality. In the software implementation used in this scenario,
the controller performance is measured using the absolute value of the first
term from the Tailor expansion of the objective function!. The measurements
presented in Figure 5.4b show a good convergence rate of the proposed MPC
controller. Jumps in the optimality measure occur at big reference changes since
the solution obtained from one SQP iteration is only a rough approximation to
the optimal solution in these situations. However, due to the good contraction
properties of the Gauss-Newton real-time iteration scheme, the optimality
measure decreases quickly in subsequent sampling instants. Note that the
measure would be identical to zero for a linear system because in each RTT a
QP is solved exactly; thus, the non-zero values of the measure are an indication
of the nonlinearity of the optimal control problem.

In a second experiment an external disturbance acts on the load by pushing it
from its equilibrium. As seen in Figure 5.5a, the controller successfully rejects
the disturbance. Note that the cable length does not change despite a non-

1This measure is the first term of the KKT tolerance, see § 2.1.2, monitoring only the progress of
the objective function. This was one of the limitations of the first implementation of the ACADO
CGT.

EXPERIMENTAL RESULTS

119

0.9

trotal [ms]
5

0.20

0.15

tfdb [ms]

0.00

0.10 4
0.05 wkﬁﬁw v

W

W T YT

0.92

0.90

0.88
0.86 1

L

tprep [ms]

0.84

15

Time [s]

20

25

30 35

(a) tiotal = tedb + tprep: overall NMPC execution time, tggp,: duration of the feedback phase, tprep:
duration of the preparation phase.

10!

10°

1071

1072

1073

—

1074 -

1075

10*6 L
1077 L]

Optimality measure

10*8 L

10

15

Time [s]

20

(b) KKT tolerance.

25

30 35

Figure 5.4: Point-to-point motions in the first scenario: performance of the

nonlinear MPC.

zero control signal (Figure 5.5b), due to a low voltage signal which cannot
overpower the static friction in the winch mechanism. Furthermore, since there
is no integral action on the states xc and xy, in the model (5.3), the NMPC is
outputting small non-zero values for the voltages uc and uy, in the steady state.

120 REAL-TIME CONTROL OF AN OVERHEAD CRANE

N
/

xc [m]

o
i
S

0.8004
— 0.8003
: 0.8002
= 0.8001

0.8000
1.5

1.0
7 N
00 [N

-0.5

6 [deg]

0 1 2 3 4 5 6 7

Time [s]

(a) Cart position xc, cable length x1, angle deflection 6.

ucR [V/s]
S

0.05
0.00 {"\\
£ —0.05 A

—0.10

[v]

u

upR [V/s]

0 1 2 3 4 5 6 7

Time [s]
(b) Controls uc, ur, and control rates ucR, ULR.

Figure 5.5: Rejection of an external disturbance force applied to the hanging
mass in the first scenario: states and controls.

EXPERIMENTAL RESULTS 121

0.6
g 04 [—— /~ \

O 0.
) 0.0 ‘/
1.0

\
—
08 D\ [\ //—

[m
o
o
<
/
\

x1, [m]

<)

>
|~
~
|~

0.4
20

PN A |
-10
0.6

0 [deg]

x1 [m]
o
'S
T
>
—
~]
| —1

0.2 \— \

0.0
1.0

0.8 /

x2 [m]

o

o
|~
—~~
|1
I~

0.4

0 5 10 15 20 25 30 35

Time [s]

Figure 5.6: Point-to-point motions in the second scenario: cart position xc, cable
length x1,, angle deflection § and position of the load x1, x7.

5.3.2 Scenario 2

In the following we present the results illustrating the closed-loop performance
in the second set of experiments. In particular, we present results related
to the point-to-point motions of the load, originally published in [14]. The
second set of experiments also included disturbance rejection and servo-
tracking experiments, however, the interested reader is referred to [14] for
more information.

Multiple step references for the x; and x; position of the load are applied to
the controller. The response of the controller is shown in Figure 5.6. The steady
state errors for the x1 and x; are less than 1 mm and 0.5 mm, respectively. The
settling time for large reference jumps is less than 3.5s. It can be seen that the

122 REAL-TIME CONTROL OF AN OVERHEAD CRANE

10

I -

uc [VI]
q
=
<

—10
— 100
S \
N V) ’ o A\,
o~ vV
Y
T _100

10
= ‘ \ I
- 0 f ‘ , i

—10
— 100
2 L \
Y . — N \
= T [V

~100

0 5 10 15 20 25 30 35

Time [s]

Figure 5.7: Point-to-point motions in the second scenario: controls: uc, ur, and
control rates ucr, ULR.

angle is still oscillating around zero with small amplitude (about 0.04 degrees).
This small residual oscillation on 6 is, however, not due to swinging in the
x1 — x7 plane but due to the yawing of the load around the vertical axis. This
yawing motion is induced by the motion of the crane and is a consequence of
the front and back of the load hanging imperfectly horizontal. This yaw results
in front and back cable motions and hence results in oscillating 6 measurements.
Since the set-up cannot control the yawing of the load, this residual cannot be
controlled to zero. The control reaction to this residual is negligible.

The control inputs and control rates are given in Figure 5.7. Here one can see
that the cart control uc, control rate ucg, cable control u, and control rate uy g
hit their limits. This aggressive performance is due to the small weights in the
R matrix on the control effort, and large weights on the tracking error (h, — 7).
The large weights on the tracking error will drive the controller toward the
system limits to minimize the set point error as fast as possible.

The aggressive settings of the controller are made possible by using the
alternative OCP formulation, the proper estimator and the proper numerical

EXPERIMENTAL RESULTS 123

Table 5.3: Execution times for the auto-generated MHE and NMPC algorithms.

Feedback phase Preparation phase Overall

[ms] [ms] [ms]
Maximum runtimes

MHE 0.15 0.73 0.88
NMPC 0.46 0.41 0.74

Total 0.54 1.03 1.45

Average runtimes

MHE 0.08 0.62 0.70
NMPC 0.04 0.26 0.29

Total 0.12 0.88 1.00

integrator. In the first set of experiments, the aggressive tuning was impossible
mainly because of the lack of the estimator. We approximated the velocities with
finite differences. Furthermore, we filtered the velocities to make them smoother,
but as a consequence we delayed those signals. With this in mind, more
aggressive tuning was unattainable. In addition, more dynamic closed-loop
responses were unachievable because the dynamics of the cart was simplified
in lack of the proper integrators.

Finally, the real intention is to control the position of the load, and position of
the cart during load movements is of minor importance. Using the alternative
objective formulation we achieved direct control of the load position. Indirectly,
use of the objective formulation in (5.14) allowed for easier and more intuitive
tuning.

The maximum execution time of the estimator is 0.88 ms, see Table 5.3. The
execution is expected to be constant, given that we solve an equality constrained
optimization problem (5.18) and that the solver solves the problem in a single
iteration. Deviations in the execution times, i.e. between the average and
the maximum, are a consequence of the solver running in a multi-threaded
environment.

On the contrary, it is unexpected from the NMPC solver to have constant
execution times since it solves online an inequality constrained OCP (5.14).
The maximum execution time equal to 0.74 ms.

Here, we can conclude that both the solvers complete in 1.45 ms worst case, far

124 REAL-TIME CONTROL OF AN OVERHEAD CRANE

more faster than the sampling time T; = 10 ms! In comparison to the previous
set of experiments, cf. Table 5.2, the average total execution time is slightly
higher than the average time that was needed just to solve the OCP (5.8) in
the NMPC; cf. Figure 5.4 and Table 5.3. The fotal feedback time, that is, the sum
of feedback times of the estimator and the controller is 0.54 ms. This is higher
than in the previous set of experiments and a direct consequence of more
aggressive settings of the controller. More efficient condensing procedure led
to significantly lower preparation time of the NMPC than in Table 5.2 — 0.41 ms
versus 0.90 ms.

For completeness, we present the execution time profiles as well as the KKT
tolerances in Figure 5.8. Despite sometimes high values of the KKT tolerances, no
problems were detected in the operation of the controller, nor the estimator. The
high values of the tolerances are consequences of: 1) large reference jumps and
2) scaling issues in the corresponding formulations of optimization problems.

EXPERIMENTAL RESULTS 125

MHE NMPC

o) h
A

S NI

trotal [ms]
o o o

o
=~

tfdb [ms]
o
)

Ll . " (R

RN

PN

tprep [ms]
o o

vy by bt | il

0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35

Time [s] Time [s]

(a) Execution times for MHE and the NMPC.

MHE NMPC
10*
8
g 90
E’ 10
a 1074 h
2 P N Py,)
1078
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Time [s] Time [s]
(b) KKT tolerances.

Figure 5.8: Point-to-point motions in the second scenario: computational
performance of the MHE and the NMPC.

126 REAL-TIME CONTROL OF AN OVERHEAD CRANE

5.4 Conclusions

In this chapter we have experimentally validated nonlinear MPC and MHE
strategies using automatic code generation applied to a fast mechatronics
system. Both control strategies showed satisfactory tracking accuracy and steady
state error in positioning of the load. Slightly better performance is achieved in
the second set of experiments. This was possible by using a more detailed model,
the proper state estimator in conjunction with a more advanced formulation of
the objective in the NMPC.

The both scenarios are real-time feasible, exhibiting execution times far
below the sampling time. However, using the more advanced software
implementations in the second control scenario resulted in astonishing speed-
ups. In particular, the average execution time of the controller in the first scenario
is nearly equal to the time both the estimator and the controller need in the
second scenario. The maximum time in the second scenario is higher than in
the first one, predominantly because of the aggressive settings of the controller
resulting in larger maximum feedback times of the NMPC. Both approaches
confirm the fast contraction rate of the RTI scheme [35].

6

Real-time Control of an Airborne
Wind Energy System

The concept of Airborne Wind Energy (AWE), introduced by Loyd [141],
proposes energy harvesting using a kite in crosswind flight — i.e. in the direction
perpendicular to the air flow. The fundamental difference in comparison with
the standard wind turbines is that the kites can fly at much higher altitudes
where the wind speeds are much highers than at the altitudes reachable by
the classical wind turbines. Stating the obvious, the tethered flight voids the
need for tons of concrete, steel and composites needed to build the conventional
wind turbines.

An illustration of an AWE concept is depicted in Figure 6.1. There, the kite is in
fact an airplane tethered to the grounded generator. The airplane flies along
a cyclic lying eight trajectory, most of the time pulling the cable, see e.g. [142].
Consequently, the generator is producing electricity. Only for about 30 % of
the cycle, according to [143], a small amount of energy needs to be invested to
retract the cable. Other approaches exist, using different kind of airfoils and
possibly on-board generators. For a detailed overview on the topic we refer
to [144].

127

128 REAL-TIME CONTROL OF AN AIRBORNE WIND ENERGY SYSTEM

energy

energy
production \ consumption

Figure 6.1: An airborne wind energy concept!.

Economic viability of the operation requires automation of the following phases:

1. start-up phase,
2. energy production phase and

3. the landing phase.

Here, we are interested in the start-up phase, the one that deals with bringing
the airplane from a parked position on ground to high altitudes. The approach
we are interested in is the rotational start-up [146]. This approach proposes to
gain altitude by rotation. The airplane is attached to the rotating carousel and
starting at a short tether length, the tether is released to gain the altitude. In
this setting, the generator is mounted on the carousel, see [147].

Tethered flight is a highly nonlinear, unstable and constrained system subjected
to often strong disturbances. Those characteristics motivate usage of the MPC
and the MHE for control and estimation. Within the scope of the thesis, we are
interested mainly to test computational performance of the well-established RTI
scheme for fast MHE and NMPC from Chapter 2 and employ fast algorithms
from Chapter 3 for the underlying QPs. In particular, we aim to validate the
applicability of the auto-generated solvers — from Chapter 4 — on complex MHE
and MPC formulations involving available models that describe the complex
nonlinear dynamics of one particular AWE system. In essence, this chapter
presents the results from the second round of experiments at the KU Leuven

IThe illustration is adapted from [145].

REAL-TIME CONTROL OF AN AIRBORNE WIND ENERGY SYSTEM 129

kite lab. The first set of experiments has been previously published in [15]. The
question whether the MHE and the NMPC are the best techniques for rotational
start-up of an AWE system is out of the scope of this thesis.

The details on hardware and software are presented in § 6.1. We give a detailed
description of the hardware setup, as well as of the software used for real-time
control. The control architecture is the central topic of § 6.2. Our aim is to employ
MHE as estimator and MPC as controller in closed-loop experiments. The
intention is to fly at a constant tether length and a constant speed while changing
the roll angle and consequently height of the airplane. The experimental results
are presented in § 6.3. The same MPC formulation is tested with two QP solvers.
The first one is employing the structure exploiting IPM QP solver HPMPC,
and the second one utilizes the efficient O(N?) condensing technique and the
active-set QP solver qpOASES. The conclusions are drawn in § 6.4.

130 REAL-TIME CONTROL OF AN AIRBORNE WIND ENERGY SYSTEM

6.1 Experimental Setup

The experimental setup at the KU Leuven has been built with the aim to
gain experience with sensors, actuators and real-time software on the one
hand and modeling, estimation and control techniques on the other. Those
research activities are expected to lead to eventual start-up of an airborne wind
energy system. In-depth description of the initial hardware setup is provided
in [148], and some of the later modifications are presented in [149, 15]. The
latest hardware modifications are going to be summarized in this section.

The setup is depicted in Figure 6.2. One can already identify three main entities:
the spinning carousel, the plane and the ground station. The carousel consists
of a tripod like structure with an arm mounted on its top. The arm itself can
rotate around the carousel’s central axis. The main control PC, most of the DAQ
hardware and the winching mechanism are located at the arm. The tether is
winded up on the winch, and one end of the tether is connected to the airplane.
The winching mechanism enables us to fly on longer or shorter tether lengths
during the experiments. The plane has three control surfaces for actuation —
two ailerons in differential configuration and an elevator. This effectively means
that one can control roll and pitch angle of the aircraft. The carousel and the
attached plane sit in a cage enclosed by thick Plexiglas sheets and safety nets.
The base of the cage measures approximately 8 x 8 square meters, effectively
allowing for tether lengths of up to 2.1 m. Finally, there is a ground station
outside the cage operated by an engineer. It consists of a PC that allows the
operator to have total control over the experimental setup. The ground station
PC is connected to the main control PC on top of the carousel via a wireless
connection. Typically the operator controls the control PC via a terminal (left
screen in Figure 6.2b). The software running on the ground station PC provides
live feed of all vital information: sensor and actuator data (middle screen in
Figure 6.2b). Additionally, there is 3D visualizer for easier monitoring of motions
of the airplane during the experiments (right screen in Figure 6.2b).

6.1.1 Hardware

A schematic representation of the hardware is sketched in Figure 6.3. The
ground station PC (Operator’s PC) communicates with the Main controller PC via
a WiFi connection. The operator can send commands to the control PC through

EXPERIMENTAL SETUP 131

(b) A screenshot from the ground station PC

Figure 6.2: The experimental setup.

a terminal and the telemetry data is streamed from the control PC to the ground
station PC for visualization.

The arm rotation is actuated by the Main motor — a DC motor connected to
the shaft. Similarly, the winching mechanism is actuated by the Winch motor.
Horizontal and vertical angles of the tether relative to the arm’s tip can be
measured by the Line angle sensor. The 3D wvision system consisting of the
two cameras on a boom mounted on the arm of the carousel is unused in

132 REAL-TIME CONTROL OF AN AIRBORNE WIND ENERGY SYSTEM

Operator's PC Main controller PC Plane Controller

]

Main motor \-p‘ 3 servo motors |

Winch motor 3D gyroscope

Line angle sensor 3D accelerometer

3D vision system

Ground station Carousel Plane

Figure 6.3: A schematic representation of the experimental setup.

the experiments to be presented in this chapter; interested reader is referred
to [150, 15] for more information on this subsystem.

The main controller PC and the Plane controller, an interface board inside the
plane, communicate via the (tethered) Ethernet connection using the TCP/IP
protocol. The interface board sends references, received from the main controller
PC, to the servo motors (servos). In addition, sensor data from gyroscopes and
accelerometers is streamed down to the main controller PC.

Carousel

The carousel mechanics is designed for high stiffness, such that forces and
torques induced by the airplane have minimal influence on the structure of the
carousel [148]. The height of the setup has been chosen to be 2.5m, allowing
some ground clearance for the airplane. The rotation of the arm is actuated
by a 300 W DC motor, which is coupled to the main shaft through a gearbox.
A rotational encoder is mounted on the motor, measuring the angle of the
motor’s shaft, see Figure 6.4. The main motor has a dedicated power electronics
device which has an integrated current controller. The current reference, current
measurement and encoder readings are all fed to an E/BOX device [151]. The
E/BOX device is a DAQ system with a number of analog and digital inputs
and outputs as well as quadrature encoder inputs and PWM (pulse width
modulation) outputs. The communication with the device is done via the fast

EXPERIMENTAL SETUP 133

EtherCAT Current Current Motor Gearbox
E/BOX Current _| controller +Shaft

Angle | Encoder

2
) Main motor drive
£
Main = ‘ﬂgle__l Potentiometer U/D |
controller E/BOX
PC

.ﬂgle__l Potentiometer L/R |

Line angle sensor

RS232
Angle — Positi Motor Gearbox
Angle < osition +Drum
controller
Current <— -—| Encoder |
Winch drive

Figure 6.4: A schematic representation of the carousel control hardware.
Measurements are denoted in blue and references in red. Thick lines refer
to the mechanical connections.

EtherCAT protocol that utilizes Ethernet infrastructure on hardware layer. As
depicted in Figure 6.4, the devices are daisy-chained.

The line angle sensor is mounted on the tip of the arm and comprises of a joystick
mechanism and a carbon rod. One end of the carbon rod is attached to the
joystick mechanism and the other one slides on the tether. Two potentiometers
mounted on the joystick mechanism capture horizontal and vertical movements
of the tether relative to the arm tip. The analog signals from the potentiometers
are fed into another E/BOX device after appropriate signal conditioning.

The winching mechanism is powered with a 400 W brushless DC (BLDC) motor
and the dedicated servo amplifier. The motor and the drum are coupled via a
gearbox and an elastic belt [149]. The angle of the motor shaft is measured by
a rotary encoder. The servo amplifier is connected to the main controller PC
with the standard R5232 connection and the communication is done using a
protocol defined by the manufacturer.

The main controller PC is an industrial PC equipped with a 2.3 GHz Intel Core
i7-3610QE CPU, 8 GB of RAM, a high speed 512 GB solid state drive (55D) and

134 REAL-TIME CONTROL OF AN AIRBORNE WIND ENERGY SYSTEM

Lgle_l Motor |_| Right aileron |

—.IAnglC Motor |—| Left aileron |
Angle

Plane Motor Elevator |

controller SPI

Angglfar .__I 3D gyroscope |
velocities

Accelerationsé_l 3D accelerometer |

MU

Figure 6.5: A schematic representation of control hardware inside the plane.
Measurements are denoted in blue and references in red. Thick lines refer to
the mechanical connections.

enough peripheral interfaces to connect all external hardware.

Airplane

The airplane used for the experiments is an Ariane P5 which is typically used
for radio controlled (RC) model racing. Those airplanes are supposed to take
sharp turns at high velocities. Therefore, they are built from carbon fiber that
gives them high strength and stiffness. The aircraft is equipped with sensors,
actuators, an interface board (Plane controller in Figure 6.5) and corresponding
electronics.

The sensor package consists of an inertial measurement unit (IMU) which
is connected to the interface board’s micro-controller (MCU) via the fast
serial peripheral interface (SPI). Communication protocol is defined by the
IMU manufacturer. The IMU has a 3D gyroscope, a 3D accelerometer and a
3D magnetometer?. Besides the sensors, the IMU possesses dedicated signal
conditioning circuits.

The aircraft has three control surfaces which are actuated independently with
dedicated RC servo motors. The RC servo motors used for RC applications
typically have integrated motor, gearbox, potentiometer and a control circuit.
The control circuit accepts angular reference signals that are defined by the pulse
width of the PWM signal that is supplied to the circuit. Obvious disadvantage

2We do not use the magnetometer in the experiments.

EXPERIMENTAL SETUP 135

of using such servos is that they do not provide the feedback signal. The three
reference signals are sent from the MCU on the interface board.

The interface board comprises of an ARM Cortex-M3 MCU, dedicated ports
and accompanying electronics. In particular, the heart of the board is the Texas
Instruments LM359B92 MCU clocked at 80 MHz. As briefly mentioned before,
the MCU has three simple tasks:

1. gather data from the IMU,
2. send reference signals to the three servos and

3. communicate with the main controller PC via Ethernet.

The communication between the interface board and the main PC is bidirec-
tional — the MCU receives the references which are sent to the servos and the
sensor data is streamed down to the main controller PC.

6.1.2 Software

The software used within the experimental setup can be roughly divided in two
groups. In the first group we have the necessary software for online tasks. Here
we briefly refer to operating systems (OSs), real-time middleware (a software
layer between OS kernel and user application), micro-controller firmware, safety,
telemetry, logging, data acquisition, and finally real-time control tasks. The
second software group can be regarded as a framework for modeling, control
and estimation. This software group is for offline tasks.

The ground station PC is running a 64-bit version of Ubuntu 14.04 using
the standard Linux kernel. This machine executes only noncritical tasks thus
installation of a real-time kernel was unnecessary. The main function of this
machine is to allow operator to control the main control PC. Besides the main
function, the ground station PC also has another important role — to visualize
telemetry data as fast as possible during the experiments; cf. Figure 6.2b.

The main controller PC is running a 64-bit version of Ubuntu 12.04 using a
patched real-time preemptive kernel. The RT-PREEMPT patch [152] allows for
advanced prioritization of user tasks (processes and threads) with the aim to
minimize latency and jitter. The middleware used for this application is the

136 REAL-TIME CONTROL OF AN AIRBORNE WIND ENERGY SYSTEM

OROCOS toolchain [153] — an open-source software framework for control of
robotic systems.

OROCOS is a component based framework that allows one to write real-time
software components. Typically, a real-time application consists of a number
of real-time tasks that need to be executed concurrently and synchronized in
some prescribed way. A component in OROCOS terminology is a basic unit of
functionality that executes real-time tasks in a single thread. Communication
between the components is done via ports — a component can have a number of
input and output ports. The toolchain itself ensures thread-safety and lock-
free data exchange between the components. A component also has a set
of operations that can be called by the operator or an another component.
While the development of components is done in C++, the deployment is
more conveniently done in a scripting language. At deployment level, the
user typically does the components’ configuration, e.g. defines a period of
execution or sets component specific properties. Moreover, using deployment
scripts the user defines connections between the components, defines priorities
and CPU affinities. The deployment scripts also allow the user to start
components. During runtime, the operator can execute the deployment scripts
and interact with components (e.g. start, stop, and configure them) via a
terminal application without breaking real-time data flow nor other real-
time requirements. Furthermore, the terminal application has functionality
for introspection of data on the components’ ports.

While most of the software for online tasks runs on the main controller PC,
there is also a firmware running on the MCU inside the airplane. The firmware
code contains a set of interrupt service routines (ISRs) that execute the tasks
described in § 6.1.1. There is an ISR periodically triggered by the IMU that
gathers data from the sensors. A couple of other ISRs are necessary for running
a TCP/IP server for communication with the main controller PC.

The real-time OROCOS components running on the main controller PC can be
roughly organized as follows:

abstraction layer for sensors and actuators,

safety component,

controller and estimator components,

logging and

SUEE S

telemetry.

EXPERIMENTAL SETUP 137

1

Y
PlaneComm
Controller]
D ey
ks EtherCAT
LineAngleSensor master

¥

Estimator Winch }
I |

Abstraction layer for sensors and actuators

Figure 6.6: Simplified software organization.

A simplified organization of the real-time components is depicted in Figure 6.6.
The abstraction layer for sensors and actuators encapsulates all components
that directly and/or indirectly penetrate with hardware.

PlaneComm All communication with the airplane is done within this
component. Communication is done in client-server fashion, where the
component is the client. At each run of the component, the code sends references
for the angles of the control surfaces to the motors. In case references for
the angular velocities are received, the component internally calculates the
reference angles. Furthermore, the component publishes sensor data on the
corresponding output port.

EtherCAT master The EtherCAT master acts as a bus master and directly
communicates with the two E/BOXs, cf. Figure 6.4.

MainMotor Communicates with the E/BOX that is connected to the main
motor power amplifier and the encoder. The component can accept torque or
torque slew-rate reference on an input port and publishes processed sensor
data on the output port. In addition, this component can execute a speed PI
controller which is used in the manual mode to warm-up the carousel after
which the predictive controller takes over.

LineAngleSensor The horizontal and the vertical tether angles are published
on the output port of the component upon data arrival from corresponding
E/BOX.

138 REAL-TIME CONTROL OF AN AIRBORNE WIND ENERGY SYSTEM

Winch The component communicates with the dedicated servo amplifier. The
component accepts tether length reference, and on an output port publishes
actual tether length, tether speed (estimated by the servo amplifier) and the
motor current.

The component deployment used in experiments always includes a safety
component, SegFaultHandler®. The component’s aim is to capture faulty OS
events and perform a safe shutdown procedure: reset the airplanes control
surfaces to neutral position, stop the carousel rotation at low deceleration and
retract the cable to a default length. This way the equipment stays undamaged.

In the automatic mode of operation, the Controller and the Estimator components
are employed. The estimator executes a sensor fusion algorithm using the
information available on input ports (see Figure 6.6) and outputs the current
state estimate on the output port. The controller component uses the state
estimate to calculate control action that is applied to the system. The control
algorithm outputs references for the airplanes’ control surfaces and torque
reference for the main motor. To this date, the automatic controller cannot
control the tether length for the reasons that are going to be explained in § 6.2.3.
Each of those two components is executed on a dedicated core, isolated from
other tasks. This allows for a fully parallelized implementation of the real-time
iteration (RTI) scheme, see § 2.4.

Components tagged with the green triangles, see Figure 6.6, have dedicated
logging components. The logging components are automatically turned on
at the beginning of each experiment and record data on output ports until
the end of experiment. Logging components have low priority, thus buffered
connections are required such that the data samples are not missed. A set of
telemetry components gather the data from dedicated components (marked
with orange triangles, see Figure 6.6), serializes it using the Google Protobuf
software library and publishes the serialized data on a port using the ZeroMQ
sockets. Those components are set to low priority as well, thus usage the
non-buffered connections prefers publishing of the newest samples. Software
executed on the ground station PC subscribes to appropriate data ports,
deserializes data, and visualizes the data on screens (see Figure 6.2) with some
negligible delay.

Synchronization of OROCOS components depicted in Figure 6.6 is summarized
in Table 6.1. A bit more detailed analysis reveals that all hardware related

3The name comes after the segmentation fault OS signal which occurs upon a bad memory access.

EXPERIMENTAL SETUP 139

Table 6.1: Synchronization of the real-time software components.

Component Type Period [ms] Trigger
SegFaultHandler Event driven / OS events
PlaneComm Periodic 2 A timer
EtherCAT master Periodic 1 A timer
MainMotor Event driven / EtherCAT master
LineAngleSensor Event driven / EtherCAT master
Winch Periodic 20 A timer
Estimator Periodic 40 A timer
Controller Event driven / Estimator

components are indeed periodic, providing data on corresponding output
ports at some regular rate. The estimator component is triggered by a timer at
the rate that will be justified in § 6.2. The controller naturally gets triggered after
the state estimate becomes available, running at the same pace as the estimator
does.

Real-time Software Deployment

Mapping of the software components to computational cores inside the CPU
is illustrated in Figure 6.7. The main controller PC is equipped with a CPU
with 4 physical cores, each of which can execute simultaneously 2 instruction
streams. This makes 8 logical cores in total. Operating system tasks are allowed
to run on physical cores 0 and 1, i.e. logical cores 0, 4, 1, and 5. Core 0 is
dedicated to execution of non-real-time critical tasks: logging and telemetry;
cf. Figure 6.6. Those components, 12 in total, are scheduled using a non-real-time
Linux scheduler with the lowest priority*. All other tasks are scheduled using
a real-time scheduler. Real-time tasks such as the SegFaultHandler component
and the components for communication with the sensors and the actuators are
executed on core 1. All components run with high priority, except the Winch
component. This decision is made based on the slower execution period and
longer execution times compared to the other components executing on logical
core 5. Cores 2 and 3 are completely isolated, and the user is responsible to
map tasks to them. We use those two cores for execution of the most expensive
computational tasks in our deployment: the controller and the estimator.

4In Linux, priority level 0 is the lowest priority, and priority level 99 is the highest priority.

140 REAL-TIME CONTROL OF AN AIRBORNE WIND ENERGY SYSTEM

ﬂ Logging ﬂ Telemetry

CORE 0 PlaneComm,MainMotor, PlaneComm,MainMotor,
LineAngleSensor, Winch, LineAngleSensor, Winch,

Controller, Estimator Controller, Estimator

SegFaultHandler (98) 5 PlaneComm 97)

98 i

CORE 1 EtherCAT master (98) MainMotor 97)

LineAngleSensor (97)

Winch (65)

CORE 2 i‘ Estimator 99) L‘
CORE 3 i‘ Controller 99) L‘

Figure 6.7: Simplified deployment of the real-time software components. Non-
real-time components are shaded. Task priorities are marked in parentheses.

Mapping of the components to the cores, in our experience, showed to be one of
the most sensitive practical tasks. Inappropriate mappings sometimes resulted
in increased, random, jitter5. Moreover, unexpected and sometimes random
increases in execution times were observed.

Data Acquisition System

The data acquisition system (DAQ) comprises a set of real-time software
components and dedicated hardware for signal conditioning and acquisition, cf.
§ 6.1.1. Examining Figure 6.6 we can identify the following DAQ components:
PlaneComm, MainMotor, LineAngleSensor and Winch.

The measurements gathered from the experimental setup are summarized in
Table 6.2. Making the assumption the connection between the motor, gearbox,
and the shaft is rigid, the angle of the carousel can be easily calculated. In other
words, the carousel angle can be measured based on encoder measurements and
gearbox ratio (a fixed parameter). The assumption holds if appropriate actions
are taken to avoid the resonant modes of the carousel, cf. § 6.2.3. The torque of
the carousel can be measured directly based on the current measurements and

5A deviation from the desired periodicity of a task.

EXPERIMENTAL SETUP 141

Table 6.2: Measurement information.

Source Measurement Period (Frequency) Delay
component [ms] ([Hz)]) [ms]
Angular velocities 2 500 1
PlaneComm Accelerations 2 500 1
Main motor Carousel angle 1 1000 0
Carousel torque 1 1000 0
LineAngleSensor Tether angles 1 1000 0
Tether length 20 50 10
Winch Tether speed 20 50 10
Winch motor current 20 50 10

the electrical motor constant. This statement holds true if the motor is operated
within its nominal regime — in this application this is always true mainly because
of the limitations of the dedicated power amplifier. Under similar assumptions
cable length can be directly measured based on encoder measurements and the
fixed parameters: gearbox and belt transmission ratios and drum diameter.

All measurements’ sample rates are within the manufacturer specified ranges
and/or subject to software limitations. For example, the IMU inside the airplane
provides data at 800 Hz clock rate but the communication link implementation
between the MCU and main controller PC limits the reliable sample rate to 500
Hz. The sample delays are mainly due to communication delays; e.g. the 10 ms
delay of the tether measurement is introduced by the slow RS232 connection
the winch servo amplifier provides.

Real-time Simulator

Testing newly developed control algorithms and real-time components is
a tedious process usually requiring debugging activities. Exercising such
activities on the real hardware, in experiments, can be potentially dangerous
for both the operator and equipment. Instead, the usual practice is to perform
1) offline simulations, 2) software-in-the-loop (SIL) and/or 3) hardware-in-the-
loop (HIL) simulations. While the offline simulations are typically exercised
during the control design phase, the SIL and HIL simulations are typically
used to test hardware and software integration before deployment to the

142 REAL-TIME CONTROL OF AN AIRBORNE WIND ENERGY SYSTEM

real hardware. SIL simulations involve a software simulator running on
the same machine as e.g. estimator and controller, running in real-time, to
simulate accurately the hardware — model of the system, sensors, actuators,
communication delays etc. A simulator in HIL simulations is typically executed
on a separate piece of computational hardware.

Utilizing the flexible component based architecture, the DAQ components
can be easily replaced by a simulator component. We can perform the SIL
simulations with the main aim to test control and estimation algorithms in
the real-time environment. The DAQ real-time components’ testing is done
separately. In our case, the simulator component executes the same simulation
model used for design of the estimator and the controller at 1 kHz and outputs
the measurements as prescribed in Table 6.2.

A Software Framework for Modeling, Control and Estimation

The offline tasks include system modeling, control design, code generation
of controllers and estimators, calculation of initial guesses and references
for the controllers. A Python tool called rawesome [123] is created with the
idea to provide easier integration of the existing tools for modeling, nonlinear
optimization and optimal control. In particular, the tool is mainly the front-end
for ACADO CGT and CasADi. The tool provides intuitive API (application
programming interface) for symbolic modeling and specification of OCPs as
well as general NLPs using the CasADi framework for automatic differentiation
and optimal control [154]. Once the OCPs are specified, either for MHE or MPC,
ACADO CGT is called to generate the optimized code. The tool compiles the
generated code and the compiled code can be used via a convenient wrapper in
offline simulations to test the control design. On the other hand, the compiled
code can be directly used within the real-time components. Furthermore,
the offline control design process involves a set of Python scripts for offline
calculations of initial guesses for the OCP solvers as well as the steady state
references that are embedded into the real-time control component — those
topics are going to be covered in § 6.2.

CONTROL ARCHITECTURE 143

6.2 Control Architecture

Recent improvements and extensions to the ACADO CGT enabled testing
of NMPC controllers employing different QP solvers. Those improvements
allowed for shorter sampling times with the aim to react faster to disturbances
acting on the airplane. Moreover, improvements of the control software enabled
us to test and use different formulations for the MHE and the MPC on longer
horizons.

Hardware and software improvements resulted in a redesigned data-acquisition
(DAQ) system, i.e. inclusion of tether length, tether (line) angles and main
motor current measurements in the state estimation algorithm. Tether length
and angles measurements replaced the 3D camera system used for gathering
absolute measurements, simplifying the sensor fusion process and testing of
the estimator. Such estimator is expected to eventually work outdoors. Direct
control of the torque on the carousel’s main axis with the NMPC is made
possible with the main motor current measurement.

In this section we present the simulation model used for experimental purposes
as well as design of the estimator and the controller. The dynamics of the
carousel coupled with 6-DOF (degrees-of-freedom) dynamics of the airplane
are described by a DAE developed in [155, 156]. The estimation and control
strategies we use here for the experiments are based on the work presented in
[157, 158, 159]. Those strategies are extended and modified taking further into
account hardware and software limitations, as well as the experience gained in
the laboratory.

Ultimately we aim to employ the moving horizon estimator together with the
nonlinear model predictive controller in the closed-loop experiments. We want
to demonstrate capabilities of the experimental setup and the available software
for fast NMPC and MHE while performing simple maneuvers with the airplane.
With the current hardware, our desire is to fly at a constant tether length and
a constant rotational speed while changing the roll angle and consequently
height of the airplane. In comparison with [15] we use the same control strategy
but with a more detailed model and updated formulations for the controller
and the estimator. Let us stress once again that a discussion whether the NMPC
and the MHE are the best strategies for rotational start-up of an AWE system is
out of the scope of this thesis.

144 REAL-TIME CONTROL OF AN AIRBORNE WIND ENERGY SYSTEM

tether

Figure 6.8: The schematic representation of the carousel.

6.2.1 Modeling

The dynamics of the carousel are coupled with the 6-DOF (degrees-of-freedom)
dynamics of the wing, and both are jointly described by a DAE model first
proposed in [155, 156].

The model layout is illustrated in Figure 6.8. A right-handed inertial reference
frame E' is attached to the axis of the carousel at the level of the arm. Another
reference frame E? is attached to the tip of the arm at the attachment point
of the tether, and rotates with the arm around its z-axis, which points down.
The position of the center of mass (CM) of the wing is expressed in Cartesian
coordinates p = [x,y,z]’ in the reference frame E2. A third reference frame
e is attached at the CM of the wing, and is aligned with its main axis. The
orientation of the wing relative to the reference frame E? is captured via the
direction cosine matrix (DCM) R € R3*3 which describes the rotation that
aligns reference frame e to E2. The rows of R = [e], €}, €]’ provide three vectors
describing the main axes of the wing in the reference frame E? (see Figure 6.8).

The fact that the airplane is tethered is reflected in an algebraic constraint:

c= % ((p +R'pr) (p+ R'pr) — r2> =0, 6.1)

where pr denoted the tether attachment point position at the aircraft expressed
in the body frame and r is the tether length.

Modeling of system dynamics can be done in the framework of Lagrangian
mechanics and yields an index-3 DAE [156]. Using the index reduction

CONTROL ARCHITECTURE 145

techniques an index-1 DAE is obtained, put in the form

0=f(X,X,ZU)

2
0= C(X) 62)
where C(X) represents the consistency conditions that must be enforced at
some time instant of the system’s trajectory. Vectors of the differential states,
the algebraic states and the inputs read:

X = [p/! p// ei/ eé/ eé/ w,/ r/ 7;/ i;/ C(S, S(5, 5, th, ua, Me]/ S R27, (6.3)
Z=[WeR, (6.4)
U = [¥, ugt, Usa, se]' € R% (6.5)

Here, the angular velocity of the aircraft expressed in the body frame is denoted
with w. Use of the carousel rotation angle § directly in (6.5) introduces an
unbounded variable that can easily lead to numerical problems in the integrator.
To avoid this problem, we opt to use cosine ¢; and sine s; of the carousel rotation
angle as the states in the model. In contrast to the simulation studies [157, 158,
155], we prefer to control torque u; on the carousel rotation axis instead of the
acceleration 4. The carousel rotational dynamics from u; to 6 is modeled as a
first order LTI system, taking into account carousel’s inertia and friction. Angles
of the control surfaces for actuation of ailerons and the elevator are denoted
with u, and u,, respectively. Let us remind the reader that uy, u,, ue and r are
the references sent to the low-level controllers, as explained in § 6.1.1 and § 6.1.2.

The multiplier u is associated with the consistency conditions in (6.2):
C=lc, ¢ eley —1, ehea —1, ehes — 1, eea, €jes, ehes, 3 +s3—1]". (6.6)

The first condition is the algebraic constraint of the DAE (6.1) and the second
one comes as a result of the index reduction. The remaining seven conditions
must be enforced to preserve the properties of the over-parametrized rotations.

The vector of inputs counts four elements: the third order derivative of the tether
length and the slew-rates of the real control actions. The advantage of this is
that we are smoothing the control actions and able to limit the corresponding
derivatives. On the other hand, this approach introduces four extra states in
the system dynamics model.

146 REAL-TIME CONTROL OF AN AIRBORNE WIND ENERGY SYSTEM

Outputs The experimental setup is equipped with a number of sensor as
described in § 6.1.2. The DAQ software provides the measurements summarized
in Table 6.2. In this context, the outputs of the system can be summarized as:

h = [atvu, Wivu, ¥LAS, BLAS, T, Ut, C5, S5 - (6.7)

In particular, some of the states can be directly measured: r, uy, cs, 5, under
the assumptions made in § 6.1.2. The accelerometer and the gyroscope
measurements output functions read:

X+ra -y -y 0

apmu = RmuR' [7—6% | y | +20| % |+ |x+ra|—[0] |, (6:8)
0 0 0 g

wMmu = Rimuw, (6.9)

where Rppy is the orientation of the IMU w.r.t. the body frame. The line angle
sensor provides measurements of the horizontal and vertical tether angles:

Yy +zres Z +zres3
———=, fBras = arctan

& As = arctan _—
5 x +zres;” x +zres”

(6.10)

where e3 = [e31, €32, €33].

Uncertainties The uncertainties enter the aerodynamics part of the model
only, as proposed in [158]. In [158], authors propose introduction of uncertain-
ties as translational and rotational components of the wind field modeled as
the first order Markov-chains. We use a similar approach, the one introduced
in [159], where the uncertainties are modeled as scaled virtual forces wf and
scaled virtual torques w' acting on the aircraft. The uncertainties are modeled
as integrating white noise. The actual virtual forces and torques introduce six
extra states:

wy = [w', wtya,w w', w]f/a,wfa} (6.11)

with the corresponding inputs:

ta wta w wfa wfa wfa] (6.12)

wu_[w v y

CONTROL ARCHITECTURE 147

Model discretization In the dynamic optimization framework that is used
for control and estimation, the dynamics is discretized using the direct multiple
shooting. The implicit DAE (6.2) is discretized using the implicit Runge-
Kutta integrator of order two, with two steps per shooting interval. The
aforementioned simulation studies suggested that the sampling period of
Ts = 100 ms is appropriate. However, during the first round of experiments [15],
it was learned that the proposed sampling period is too long. Main reasons
for this claim come from the facts that some of the model parameters are
approximate and that strong disturbances are acting on the system. Additionally,
let us emphasize that the model is developed for open-air scenarios, however
we aim to perform experiments in a confined and small space. For those reasons
it is chosen to decrease the sampling time to Ty = 40 ms with the ultimate
idea to allow the controller to react faster to the disturbances. Furthermore, the
sampling times of the estimator and the controller are chosen to be exactly the
same, Ts = Test = Tepl-

Steady State Calculation

Numerical algorithms that are going to be used for integration of the DAE
model (6.2) expect consistent initial guess, the one that satisfies the invariant-
in-time constraint C(X) = 0. In the context of rotation start-up of an AWE
system, it is natural to think about an initial guess representing the steady state,
calculated for arbitrary tether length rs and carousel speed dgs. Flying in a
steady state, one can properly initialize the estimator and the controller without
worrying too much about safety issues.

A naive approach to find a steady state enforces both nonlinear equations
in (6.2) in NLP. However, both equations describe the same dynamics and the
linear independence constraint qualifications (LICQ) issue arises. In practice,
an iterative solver employed for steady state calculation typically needs higher
number of iterations to successfully solve the problem. To avoid this issue, we
use the approach based on projection of the constraint-Jacobian | = (VC)’
suggested in [160] and based on ideas from [161]. The proposed strategy yields
a condition

0=X-f(X,Uu)-J'cC (6.13)

148 REAL-TIME CONTROL OF AN AIRBORNE WIND ENERGY SYSTEM

in which J' is the Moore-Penrose pseudo-inverse of constraint-Jacobian J. As X
and Z enter linearly in the DAE it is possible to obtain explicit expressions

2 -)

as explained in [160]. Accordingly, the explicit expression for X is embedded
into (6.13).

Finally, we come to the steady state calculation procedure. The steady state
characterized by the tether length rss and the carousel speed dss one can get by
solving the following NLP:

min u2 + u? (6.14a)
X,X

s.t. projected system dynamics (6.13), (6.14b)

r="Tss, §= 555, (6.14¢)

L < css(X, X) < Tiss, (6.14d)

u=0o. (6.14e)

where [and 7ss denote the operating constraints.

The constraint (6.13) can be formed in a symbolic form and we use the symbolic
framework and advanced automatic differentiation features of CasADi [154]
software tool for this purpose. The NLP is solved by employing the [IPOPT
solver.

6.2.2 Estimator

The estimator that we aim to employ is a moving horizon estimator that at each
time instant solves a nonlinear least-squares equality constrained problem. The
NLP formulation reads:

CONTROL ARCHITECTURE 149

2
1 Ne h(Xau k) _gk Nez1

min 3 s + Y Joueld, | 6152

Xooy 2° k;) TP (X)) — " k;) llwu kI,

s.t. Xaug,kJrl = Fint(Xaug,k/ Zi, U, wurk), k=0,...Ne —1, (6.15b)
C(Xaug,k/ Zk)'k:Ne =0. (6.15¢)

The vector of augmented differential variables is denoted with X;,gx =
[X}, wY], the vector of inputs with U, the vector of algebraic variables Z; = [y]
as in (6.5). The output of the numerical integrator is Fint. A continuous-in-time
formulation counterpart is discretized on an equally spaced time grid with
Test = 40ms.

Besides penalization of misfits between the real measurements 7, and the
output function /, there is also penalization of the pseudo-outputs defined with
the following output function:

WP = [#, 7, ua, tle, w]'. (6.16)

Since the aim is to perform the experiments at the constant tether length and we
know that the speed of the tether is low in the manual mode of operation (i.e.
when the controller is off), we can incorporate that knowledge by penalizing
7 and ¥. Next, even though we cannot gather measurements of the control
surfaces, we penalize the misfit between the references sent to the actuators
and corresponding optimization variables such that we get the smooth state
estimates and well conditioned estimator. For the same reasons the virtual
torques and forces are penalized. Summa summarum, the vector of pseudo
measurements at the time instant i is formed as

gP il = (0,0, yreb -1 yreb 11 o (17, (6.17)

The diagonal elements of weighting matrices Wx and Wy; represent inverse of
variance of particular measurements. The corresponding standard deviations
are defined after consulting specifications from sensor manufacturers and incor-
porating some practical knowledge. The standard deviations are summarized
in Table 6.3, and the scaling factor in the objective is chosen to be p = 0.001.

The horizon length is chosen to be N. = 15 samples, i.e. 0.6 seconds, with the

150 REAL-TIME CONTROL OF AN AIRBORNE WIND ENERGY SYSTEM

Table 6.3: Standard deviations for measurements and disturbances.

Standard deviation Unit
Measurements
amu 1.633 m/s?
WIMU 0.174 rad/s
XLAS, ,BLAS 0.035 rad
r 0.01 m
7 0.1 m/s
7 0.1 m/s?
Ut 0.02 Nm
Cs, Ss 0.009 -
Ua, Ue 0.006 rad
w'a 0.1 Nms?/kg
wt 0.1 Ns/kg
Disturbances
Wt 1.0 Nms/kg
wf 1.0 N/kg

Table 6.4: Dimensions relevant to the MHE formulation (6.15).

Sparse QP Condensed QP
ny ny; ny Ne ny mn, #ne ny np M
33 1 6 15 618 0 9 123 0 9

chosen sampling time of Test = 40 ms. This choice of horizon length is found to
provide reliable estimates even in the absence of the arrival cost. In addition,
this length of the horizon is in accordance with the findings presented in [159].

The consistency condition (6.15¢) is enforced at the last node, k = N, such that
the consistent state feedback is provided to the controller. Using the consistent
feedback signal, the invariants are preserved in the controller by numerical
integration and enforcement of the multiple shooting matching constraints.
The MHE formulation (6.15) relevant dimensions are summarized in Table 6.4.
Therein, 1, denotes the dimension of the augmented state vector Xaug and n,
denotes the dimension of the disturbance vector wy;.

A consistent initial guess provided to the MHE solver is calculated offline, using

CONTROL ARCHITECTURE 151

the technique explained in § 6.2.1. All shooting nodes are initialized with some
steady state value and it is assumed that the operator turns on the estimator in
the vicinity of the initial guess. Afterwards, before the solver is turned on, the
cosine cs and s; are adjusted to approximately match the real measurements.
Once turned on, the solver outputs the estimates when k > N,. Before this
condition is met, a data buffer is filled in with the measurements.

Pre-processing of the Measurements

The measurements provided by the DAQ software come at multiple rates,
cf. Table 6.2. Although MHE can operate on multi-rate data, the software tool
capable of supporting such a setup is not available at the moment. Given this
limitation, the formulation (6.15) is justified as follows.

As an example, consider a scenario where measurements coming from the IMU,
the LAS and the main motor are synchronized to a common (high) frequency
fs in the range 100 — 500 Hz. In such a setting, the MHE algorithm has to
either embed the a priori information from an arrival cost calculator [33] or
to employ a high number of estimation intervals. Those requirements are
related to the systems dynamics, and the need for estimation horizons of at
least 0.6 s for the production of reliable estimates; see [159] for more details.
A formulation without an arrival cost and a high number of the intervals is
avoided because of the unacceptable execution times of the currently unavailable
software implementations. Arrival cost calculation is not under consideration
because of the lack of a proper software implementation.

For the aforementioned reasons a hybrid approach is employed. For each
(pseudo-) output with sampling rate higher than fes, the corresponding
measurement sent to the MHE at time instant T; is approximated using the real
measurements obtained on interval (T; — 1, T;]. In particualar, the estimator
working at fest = 25Hz receives at each sampling instant, in average: 40
samples from the main motor and the LAS, and 20 samples from the IMU;
cf. Table 6.2. Each of the outputs {amvu, wiMu, &LAS, BLAS, Ut, C5, S5, Ua, Ue } has
a dedicated least-squares interpolator to fit the buffered data using a second
order polynomial. Based on our experience, the second order polynomial fits
provided satisfactory results. The measurements of tether length r coming at
the slower rate are appropriately embedded on the discretization grid of the
MHE.

152 REAL-TIME CONTROL OF AN AIRBORNE WIND ENERGY SYSTEM

Software Implementation

The solver used for simulations and the experiments is auto-generated by the
ACADO CGT. The only solver in the ACADO CGT suite that is able to solve
the formulation (6.15) is the NLP solver which relies of the O(N?3) condensing
routine, cf. § 3.2.1. Furthermore, the underlying QP is solved by the embedded
version of the qpOASES QP solver. In the context of the RTI scheme, both the
preparation and the feedback phase scale with O(N?). Offline simulations
revealed that for feedback execution times, the time spent in the QP solver, are
more sensitive to horizon length than the time spent in the preparation phase.
This observation heavily influenced the choice of the horizon length. The cubic
complexity in the number of the discretization intervals also influenced the
selection of input variables. In the formulation (6.15) the real DAE inputs Uy
are not the optimization variables, but the past inputs used solely for the model
simulation. Inclusion of the variables Uy to the vector of optimization variables
possibly leads to a real-time feasible formulation, but the offline simulations
showed long execution times of the feedback step, predominated by the time
spent in the QP solver.

6.2.3 Controller

As outlined in the beginning of this chapter, the goal of the closed-loop
experiments is to do simple maneuvers with the airplane, flying at a constant
tether length. The aircraft should repeatedly move from one steady state to the
another one. The initial reference is a steady state that is calculated for a specific
tether length r,,¢ ¢ and the carousel speed 5ref’0. Consequently, the steady state
calculator gives the initial height of the airplane z,o. The second reference
steady state is calculated for an arbitrary height of the plane z,.¢; that is above
the initial one. In an oversimplified view, such a maneuver is primarily done
by changing the angle of the ailerons and a consequence is a change of the roll
angle of the aircraft. Our intention is not only to perform the maneuvers as
fast as possible but also to show that the controller can efficiently stabilize the
airplane at each steady state.

CONTROL ARCHITECTURE 153

The dynamic optimization problem the NMPC controller solves at each
sampling instant is defined by a following NLP:

min %p (:ZO 1%k = Xretill7e, + ig_ol |uk||%vu> , (6.18a)
st Xpa1 = Fne(Xe, Zi, Ug), k=0,...N. — 1, (6.18Db)
Cx <Cx(Xy) <Cx, k=0,...N,, (6.18c¢)
Cy<Cu(ty) <Cy k=0,...N. -1, (6.18d)

that comes from a continuous-in-time OCP formulation that is discretized
on an equidistant grid with T = Ts = 40ms. The NLP (6.18) is a
classic formulation with a least-squares objective, and constraints comprising
discretized system dynamics (6.18b) and the box constraints on the states (6.18c)
and the controls (6.18d). Feasibility issues that might occur in absence of
terminal constraint and terminal penalty calculated from the discrete Riccati
equation are avoided by using the long enough horizon N.. The practical
experience showed that for performing fast maneuvers short horizons, i.e. less
than one second, work well but are insufficient for effective stabilization around
setpoints far above the initial steady state. For those reasons it is chosen to work
with N = 50 intervals, equivalent to 2 seconds.

The diagonals of the diagonal weighting matrices Wx and Wy, read
diag(Wy) = [0.0025,0.04,0.04,0.4,0.4,40.0
10% - 113, 10% - 113, 10% - 11 3,0.04,0.0004, 0.0004,
10712 - 193,107 - 11, 2.533,
0.002,205.175,73.863], (6.19)
diag(Wy) = [10712,0.053,182.378, 65.656], (6.20)

and the scaling factor is chosen to be p = 0.002. Note that in (6.20) appropriate
units are chosen such that the dimensionless objective value is obtained. The
choice of the weights forces the controller to primarily align the orientation of
the airplane to the reference orientation. In essence, aligning the y-axis in the
body frame of the aircraft with the unit vector e, of the reference orientation

154 REAL-TIME CONTROL OF AN AIRBORNE WIND ENERGY SYSTEM

Table 6.5: Dimensions relevant to the NMPC formulation (6.18).

Sparse QP Condensed QP
ny n; ny N Ny np HNe Ny np Ne
27 1 4 50 1550 700 O 200 350 350

should provide accurate tracking of the roll angle. Consequently tracking of
the height of the plane z should be satisfactory. Moreover, the NMPC should
keep the speed as close as possible to the reference one. High penalties on the
control actions should ensure a non-nervous behavior of the controller even in
the presence of strong disturbances and non-modeled dynamics.

The box constraints on the states (6.18c) are summarized as follows:

—01m< z, (6.21a)
—0.174 rad < u,, ue < 0.174 rad, (6.21b)
—21.697 Nm < u; < 21.697 Nm, (6.21¢c)

together with the box constraints on the control inputs (6.18d)

7 =0, (6.22a)
—0.262 rad /s < ug,, Use < 0.262 rad/s, (6.22b)
—43.394 Nm/s < ug < 43.394 Nm/s. (6.22¢)

The constraint on the height of the plane z is the safety one, preventing the
controller to push the airplane close to the ceiling of the laboratory. The
constraints on the control surfaces” angles u, and ue, equivalent to 10 deg, are
chosen such that the airplane flies within the nominal flight envelope [158, 157,
123]. In this light, the tight constraints on corresponding slew rates are chosen
to avoid bang-bang behavior of the controller. The dimensions relevant to the
MPC formulation are summarized in Table 6.5.

The constraint on the motor torque is a hard constraint, reflecting the amount
of current the current controller can supply to the motor. Together with the
conservative bound on torque slew rate ug; and the high weights on u and u
we ensure smooth control of the torque and speed on the carousel’s rotational

CONTROL ARCHITECTURE 155

axis. As a consequence, the non-modeled resonant modes are avoided.

Preliminary steady-state experiments with u, = ue = 0 revealed that control
of the tether length is limited at the speeds |6| > 50 rpm. While prolongation
of the tether is possible, the retraction is not. This is due to the limited power
of the winch motor, incapable of overpowering strong forces in the tether.
Consequently, it has been decided to perform experiments at constant tether
length. Instead of removing the tether dynamics and fixing the tether length
as a parameter, as it was done in [15], a simple tether model is kept in the
proposed AWE model. Benefits of this decision are twofold. First, the simple
tether model provides four extra degrees of freedom and the estimator can
account for flexibility of the tether. Second, using the more complete model one
can better assess computational demands for the MPC and the MHE that are
eventually going to be employed on further AWE rotational start-up systems.

After each run of the NMPC solver, a set of references is sent to dedicated soft-
ware components communicating with corresponding actuators. In particular,
the optimized slew rates ”:a,o and ”:e,o are being sent to a component in charge
to calculate the reference signals for the control surfaces; see § 6.1.2. In a similar
fashion, a component that communicates with the main motor receives ”;,O
and calculates the torque reference. In all cases, linear interpolation is employed
inside the dedicated software components to yield approximate piece-wise

linear references for the actuators.

The steady state initial guess for the solver is calculated offline using a method
presented in § 6.2.1. All multiple shooting nodes are initialized with a steady
state, and the cosine and the sine of the carousel rotation angle, c; and s;, are
properly adjusted prior to activation of the controller.

Reference Generation and Sequencing

Instead of giving a sharp reference transition to the controller, the transition is
smoothed. This approach is favored over an optimal trajectory mainly for safety
reasons. Starting from the initial steady state characterized by et and dyef 0,
we generate a sequence of steady states, such that the height changes smoothly

Az

1+ exp(—I(k)) (623)

Zss (k) = Zref0 T

156 REAL-TIME CONTROL OF AN AIRBORNE WIND ENERGY SYSTEM

from zyef tO Zyef o + Az using an input sequence (k) € [—50,50] of arbitrary
length. In this sequence, the tether length and the carousel speed are always
set to the same values. The sequence of NLPs of type (6.14) is solved offline
employing the IPOPT [162] solver. Each NLP (6.14) is modified for the constraint
z = zgs(k).

Taking into account the hardware capabilities, it has been decided to perform
the experiments at the tether length of r.fg = 1.7 m, and carousel speed of
—55 rpm, i.e. def90 = —5.76 rad/s. The negative speed accounts for the chosen
direction of rotation of the carousel. Given those two parameters the airplane
flies, ideally, in the initial steady state that is z,efg = 0.183 m below the arm
level. The second steady state is chosen to be Az = 0.125 m above the initial
one such that no constraints defined in (6.21) and (6.22) are hit.

Concatenating the sequence given in (6.23) and its mirrored version a periodic
sequence is obtained. The first reference given to the controller is always the
initial one. Samples of the periodic sequence of steady states are placed at
the end of the horizon at an arbitrary speed. In other words, the operator can
choose online the pace at which the new samples from the periodic sequence
are introduced to the controller.

Software Implementation

The solver for the controller is generated by the ACADO CGT. The references
and the initial guess are generated offline and exported to a C header file that
is compiled together with the rest of the controller code.

All four types of NMPC solvers from the ACADO CGT suite, based on
the particular QP solver used to solve the underlying QP, are able to solve
the NLP (6.18). However, preliminary simulations revealed that only the
condensing based OCP solver and the solver using the HPMPC QP solver give
solutions in real-time and provide fast enough feedback. The qpDUNES based
OCP solvers initially showed promising results while running in ideal closed-
loop simulations for shorter horizons. However, the much higher number of
iterations was observed in simulations with longer horizons. This is suspected
to be related to initialization of the dual variables in the QP solver. Consequently,
the higher number of iterations led to unacceptable execution times. Testing
an OCP solver based on the FORCES QP solver exposed long execution times
already for a single QP iteration. Moreover, it has been decided not to use

EXPERIMENTAL RESULTS 157

this type of solver because, in general, it does not produce fast feedback times
(cf. §3.5.4).

6.3 Experimental Results

A typical experiment starts at zero speed of the carousel in the manual mode.
The operator activates the rotation of the carousel by setting a reference speed
to a low-level PI controller. In our case the initial reference speed is set to
be —50 rpm. Moreover, the initial, default, tether length is rin;t =~ 1.3 m, and
extended to the reference length of 1.7 m manually during carousel acceleration.
During this warm-up phase, the operator typically sets some negative angle on
the elevator to decrease the counter-torque the aircraft induces on the carousel
rotation axis. Once the carousel rotation approximately reaches the reference
speed, the estimator is turned on. The estimator is turned on at this point
because the initial guess is, at the moment, calculated offline for the specific
reference speed and cable length. Activating the estimator far away from the
initial guess is possible, but occasionally fails.

Once the estimator is converged, typically within one second, the operator can
safely turn on the automatic controller. The initial reference for the NMPC
controller is set to be the steady state defined by the reference speed of —55 rpm
and the same tether length of 1.7 m. The NMPC increases the speed of the
carousel and stabilizes the plane around the setpoint. Once satisfied, the
operator enters the command to start maneuvering — moving the plane between
the two steady state setpoints.

The shutdown phase consists of slowing down of the carousel, retracting the
tether to the default length and putting the control surfaces of the airplane to a
neutral position. The tether retraction is done manually and the deceleration of
the carousel is done by the external PI controller.

In the following we present closed-loop experimental results with the MHE and
the NMPC. The results show the closed-loop performance for the two phases:
1) stabilizing around the initial setpoint (approximately first 50 seconds) and 2)
maneuvering (the rest of the experiment).

The estimated position of the airplane is shown in Figure 6.9. One of the main
objectives is to obtain accurate control of the height of the plane, the z-axis. We
can see that this objective is on average well satisfied and that the controller can

158 REAL-TIME CONTROL OF AN AIRBORNE WIND ENERGY SYSTEM

20141026_190001_closed_loop_tests

0 50 100 150 200

Time [s]

Figure 6.9: Position of the plane obtained in closed-loop experiments. Blue lines
denote the estimates, and the red lines denote the references.

successfully stabilize the plane around the setpoints. The tracking of the x-axis
is not the focus of these experiments, however, it is satisfactory.

The unsatisfactory tracking of the horizontal position is a consequence of the
following facts:

¢ The setpoints are calculated using the same simulation model that is used
for control design. In other words, the disturbances are neglected while
calculating the references.

e The estimates of the disturbances w™ and w' are not fed into the
controller.

* The controller is unable to compensate the oscillations because of the
hardware limitations.

Online calculation of setpoints that incorporate knowledge about the distur-
bances is explored to some extent, but led to unsatisfactory results — essentially
failures of the controller. Feeding the controller with the disturbances but
using the ideal references also led to unsatisfactory results. It is believed that
those attempts failed mainly because of the presence of strong, non-constant,
disturbances; see Figure 6.10. In particular, external torques on x-and y-axis of

EXPERIMENTAL RESULTS 159

20141026_190001_closed_loop_tests

50 100 150 200

Time [s]

(a) Estimated aerodynamic forces acting on the plane

20141026_190001_closed_loop_tests

50 100 150 200

Time [s]
(b) Estimated aerodynamic torques acting on the plane

Figure 6.10: Aerodynamic forces and torques estimated in closed-loop
experiments. The blue lines denote quantities estimated from model and the
green ones depict virtual quantities (disturbances).

the aircraft and the strong external force in y-direction are responsible for the
plane lagging far behind the arm.

160 REAL-TIME CONTROL OF AN AIRBORNE WIND ENERGY SYSTEM

20141026_190001_closed_loop_tests

—= =50
g
a.
= H\\ P e N e T
B
Z
2
~
g
Z
@
0 50 100 150 200
Time [s]

Figure 6.11: Carousel speed 4, torque u; and torque slew rate g obtained in
closed-loop experiments. The constraints are denoted by the dashed red lines.

It is arguable that the oscillatory motions in the horizontal direction can be
compensated with the motor torque. However, this is not possible with the
current hardware. Let us analyze the Figure 6.11. While maintenance of the
reference speed is indeed possible, the torque is almost always at the constraint.
From another point of view, even if we have had a stronger motor to drive the
carousel, more dynamic torque actions possibly require proper handling of the
resonant modes of the carousel — both in the model and the controller.

In Figure 6.11 we can see that the speed d can be tracked reasonably well, while
the controller can compensate for the maneuvers. The torque slew rate constraint
is hit only at the start of the experiment, while the carousel is accelerating to
the initial setpoint.

The attitude of the airplane is depicted in Figure 6.12. The roll angle tracking is
reasonably well. The small steady state offsets, on average less than six degrees
(see Figure 6.12b), are the consequence of the disturbance torque acting on the
X-axis.

The hardware limit on the torque is almost always active, and the NMPC
struggles to maintain the speed by pitching the airplane. Finally, the controller
does not have authority on the yaw angle at all in the lack of a rudder.

EXPERIMENTAL RESULTS

20141026_190001_closed_loop_tests

120
% ED 100 Mﬁﬁm\—#’\iﬁ
=3, 80
¥ L J s
10
w5
S 0 ——
-5
—65
%ED —70
>3, -75 i
—80
0 50 100 150 200
Time [s]
(a) Euler angles
20141026_190001_closed_loop_tests
T 20
= o0
s 0
3
—20
< 10
2
B 5
53 0|
8 -5
5
2
S 0
S
gE -5
@ -10
0 50 100 150 200
Time [s]

(b) Error Euler angles obtained from error rotation RlgRyef

Figure 6.12: Euler angles obtained in closed-loop experiments.

161

162 REAL-TIME CONTROL OF AN AIRBORNE WIND ENERGY SYSTEM

20141026_190001_closed_loop_tests

—. 10

)

()

S 0

TV W W v

gb wE - -~~~ - T " "= " =-=-=-"=-F === == 1

;gfloi_ _____ P S e — N]

—. 10

. T B G

R B e (B

gb 10’_ _____ il il T - - = = = 1

e i i e e

D e — e e e &
0 50 100 150 200

Time [s]

Figure 6.13: Control surfaces’ angles and corresponding slew rates obtained in
closed-loop experiments.

The control actions on the control surfaces of the airplane are given in Figure 6.13.
We can see that all the constraints are well satisfied. Experience gained in the
laboratory showed that more effective results are possible by tracking zero
references for the aileron and the elevator than the relevant references given by
steady state calculations. This is unsurprising given that the strong disturbances
act on the plane and that the estimates of those are not fed into the controller.

EXPERIMENTAL RESULTS 163

20141026_190001_closed_loop_tests

Obj. value
—
9

_
9
N

\ \
50 100 150 200

Time [s]

Figure 6.14: Performance indicators for the MHE obtained in closed-loop
experiments.

Computational Performance

The MHE solves at each step the equality constrained nonlinear least-squares
problem (6.15). The solution method employs the RTI scheme, where at the low
level an equality constrained QP is solved at each time step. The QP is solved
online by the online active-set solver qpOASES. Consequently, it is reasonable
to expect practically constant execution time of the solver. The execution times
obtained in the experiments are virtually flat, with fluctuations less than 200 ps,
which we consider more than acceptable — compared to the sampling time
and the execution time. The execution time of the feedback step is less than
3.5 ms on average and the preparation step is on average 8.5 ms long. In total,
the execution time of the MHE solver is less than 12 ms and well below the
sampling time of the estimator of Test = 40 ms.

The computational performance of the MHE solver is illustrated in Figure 6.14.
The low, non-drifting, objective values and the KKT tolerance suggest that the
underlying optimization problem in the MHE is well defined and properly
scaled.

Enforcement of the DAE invariants is confirmed in Figure 6.15. None of the
constraints are drifting, even in the absence of stabilization of the invariants
proposed in the simulation studies. However, one should take into account that

164 REAL-TIME CONTROL OF AN AIRBORNE WIND ENERGY SYSTEM

20141026_190001_closed_loop_tests

[IR'R = 1|

1

24
5

for

(%Jrs
042

50 100 150 200

Time [s]

Figure 6.15: Estimated invariants defined in the equation (6.6).

prediction horizons and /or shooting intervals in the aforementioned simulation
studies were longer than the ones used for the experiments presented in this
chapter. In addition, we did not observe drifting invariants in other experiments
performed over extended periods of time.

The task of the NMPC controller is to solve at each time instant the OCP given
in the NLP form (6.18). The OCP consists of the least-squares objective and
includes a set of bounds on the state and the control variables. Although the
formulation can be solved by all solvers in the ACADO CGT suite, we employ
only two solvers:

1. the solver coupled with sparsity exploiting QP solver HPMPC and

2. the solver based on the condensing procedure coupled to dense linear
algebra QP solver qpOASES.

The reasons for this decision have been explained in § 6.2.3.

EXPERIMENTAL RESULTS 165

The closed-loop experimental results presented so far come from the ex-
periments where the first NMPC solver is employed. The computational
performance of the first NMPC solver is presented in Figure 6.16. The objective
values suggest that the OCP is well scaled and we can also observe that on
average the values are stable, i.e. not drifting6. The number of iteration is initially
high, because we want to move the system to the reference point which is far
away from the initial state of the system. Afterwards, i.e. during maneuvers,
we can observe that the number of iterations is lower. This is in accordance
with general observation that the number of iterations for the IPM-like solvers
is general low. Next, we observe that the execution time of the RTI scheme is
always below 13 ms, i.e. far below the period of execution of the controller.
Within the execution time needed for the RTI step, the preparation step takes
just above 8 ms. Finally, the feedback is calculated in less than 5 ms initially and
in less than 3 ms afterwards. The optimization problem the solver has at hand
consists of 50 - 27 + 50 - 4 = 1550 variables, thus we can say the solver solution
times are indeed outstanding!

6Computation of the KKT tolerance for the HPMPC based NMPC solvers was unavailable.

166 REAL-TIME CONTROL OF AN AIRBORNE WIND ENERGY SYSTEM

20141026_190001_closed_loop_tests

[}
2 P N R T T N
>
! o, el o
© —1
10 ‘ |
10
. 8
%‘ 6
0 \
0 50 100 150 200
Time [s]
(a) Performance indicators for the NMPC
20141026_190001_closed_loop_tests
) 40
Eo
Eé 20
0
g _ 4
'_O 72}
TE 2 E—— y r— | ——— lﬁnﬁ“ﬁ
&
0
g
=
"é —_
i
=
[0
0 50 100 150 200

Time [s]

(b) Execution times for the NMPC. Dashed line in the top plot denotes the sampling time of the
controller.

Figure 6.16: Performance indicators and execution times for the NMPC obtained
in closed-loop experiments while using the HPMPC QP solver.

EXPERIMENTAL RESULTS 167

The computation performance of the second NMPC solver that utilizes the
condensing strategy and solves the underlying QP with qpOASES solver is
presented in Figure 6.17. The reader should be aware that the results come from
a separate experiment, i.e. nonidentical results should be expected. The second
solver solves exactly the same NMPC formulation as the first solver does. The
number of iterations nqp, it is on average lower than with the first solver when
the system is running near the steady state. However, the number of iterations
during maneuvers is higher. This observation is in line with the observations
commonly found in the literature that the active-set solvers typically show
more iterations than interior-point solvers. Furthermore, we can observe that
the number of iterations is high during the acceleration phase, where initially
the system is far away from the reference.

The NMPC solver is always real-time feasible, but shows much higher execution
times than the first solver which utilizes the sparse, i.e. non-condensing approach.
Compared to the preparation time of the sparse solver, cf. Figure 6.16, we can
observe that approximately 12 ms is spent in condensing. This is expected given
that we have a high number of the shooting intervals. The feedback time of the
solver is dominated by the time QP solver spends in factorizing the reduced
Hessian, the computation proportional to O(n3). A small amount of time is
spent in condensing of the linear term that is O(N) operation. The total feedback
time is higher than with the first solver, below 18 ms and always real-time
feasible.

168 REAL-TIME CONTROL OF AN AIRBORNE WIND ENERGY SYSTEM

20141026_191002_closed_loop_tests

0 50 100 150 200

Time [s]

(a) Performance indicators for the NMPC

20141026_191002_closed_loop_tests

9] 40
- R SRR —
ZE
&

0
~

15
Eg 10 . Wy e SV WY WP W
b=
g= 5
=0
g 3
£ 10
8 5
~ 0

0 50 100 150 200

Time [s]
(b) Execution times for the NMPC

Figure 6.17: Performance indicators and execution times for the NMPC obtained
in closed-loop experiments while using the condensing based approach and
qpOASES QP solver.

EXPERIMENTAL RESULTS 169

H B
SH S
m ey o Ay
=¥ =¥
o =
Uy Ow I] |]
& o - - -
SE ﬂ a SE
oN= oN=]
~ ~ | |
Time [20 ms/div] Time [20 ms/div]
(a) HPMPC based NMPC solver (b) qpOASES based NMPC solver

Figure 6.18: Samples of timing diagrams obtained in closed loop experiments.

Timing diagrams obtained in the closed loop experiments are depicted
in Figure 6.18. A control period starts with the execution of the MHE feedback
step (MHE FBK). After the state estimate is obtained, the MPC feedback phase
is triggered (MPC FBK). The MHE preparation phase (MHE PREP) is triggered
at the same time as the MPC FBK, because the MPC and the MHE are run in
parallel, on separate processor cores. This reduces the overall time required to
achieve the preparation phase of the overall scheme. The overall feedback time
(i.e. time from measurements to control action) mostly amounts to solving the
QP underlying the MHE and the MPC problems.

Low execution times of the HPMPC based NMPC solver and the MHE solver
suggest that execution of both the NMPC and the MHE on a single core is in
principle possible at the proposed sampling time, see Figure 6.18a. However,
parallel execution is preferred in order to have a large safety margin, and
allow possibly higher number of iterations inside the QP solver. In contrast,
the qpOASES based solver exhibits much longer execution times. In this case,
depicted in Figure 6.18b, separate execution of the MHE and the NMPC is of
utmost importance to satisfy the real-time feasibility.

170 REAL-TIME CONTROL OF AN AIRBORNE WIND ENERGY SYSTEM

6.4 Conclusions

In the beginning of the chapter and in § 6.2 we defined our objectives as to
perform simple maneuvers with the airplane: tracking of the height of the
airplane. Tracking of the height is in turn a consequence of tracking of the
reference orientation. Moreover, we required all prescribed constraints to be
satisfied as we use the control techniques that by design ensure this. Finally,
we wanted to demonstrate the capabilities of the developed software tools.
In more details, we wanted to show 1) that the solvers provide real-time
feasible solutions and 2) that the solvers can provide fast enough feedback. The
NMPC and the MHE problems are efficiently solved in real-time using recent
features added to the auto-generated solvers from the ACADO CGT software
tool. We experimentally verified two variants of NMPC solvers, employing
different structure exploiting methods for the solution of the underlying QP,
in combination with an MHE solver. The results show that both variants are
real-time feasible and emphasize the benefits of parallel execution of the solvers
on multi-core hardware.

It is worth noting that experiments with the condensing based NMPC showed
similar control performance to the first NMPC solver that employs the structure
exploiting QP solver. This can observed assessing the profiles of the objective
values in Figure 6.16a and Figure 6.17a. At the moment we do not have tools
for comparing the control performance between NMPC solvers, and a detailed
comparison remains a topic for eventual future research activities.

Throughout this chapter we characterized the uncertainties essentially as
disturbances, implicitly assuming the model is accurate enough. On a broader
perspective, uncertainties include non-modeled dynamics as well. The results
presented in this chapter might indicate that the model parameters are
insufficiently well identified and that the parameter identification experiments
should be performed in addition to the existing ones [163].

The reason for doing the indoors experiments is to verify the models,
control design and software as a preparation for outdoors experiments. The
knowledge gained through laboratory work should be invested further in the
outdoors experiments where the system should be operated in a more realistic
environment. Usage of the approximate model and the controller that is unaware
of disturbances acting on the system resulted in control performance with
obvious steady state offsets. On the other hand, the presented results indicate

CONCLUSIONS 171

that the controller can successfully cope with such working conditions.

It remains an open question how to successfully cope with disturbances in
a realistic scenario. The simulation study [157] suggest that modeling of the
disturbances by introduction of the wind field (linear components only) for
rotational start-up is possible, but there is no relevant information about offset-
free tracking of the references. In the power production regime, simulation
studies [164, 158] demonstrate successful NMPC schemes with both linear and
rotational wind components as disturbances. The former study indicates that
such a scheme might even produce more energy than specified.

7

Conclusions and Outlook

This thesis contributes in two areas relevant to bring nonlinear MPC and MHE
closer to industrial applications. The first area is software, where the ACADO
CGT has been extended to treat efficiently more general formulations than
original implementation offered, thus be usable for a much wider range of
applications. In the second area are applications. We tested the developed
code on two challenging mechatronics applications: an overhead crane and an
airborne wind energy system.

The ACADO CGT has been extended to support wider range of applications:
Next to support for MPC formulations including nonlinear output functions
and constraints, the extension for MHE formulations has been developed. The
MHE and the MPC formulations are efficiently solved with the well-established
RTI scheme, presented in Chapter 2. One of the crucial components for fast
solution of the formulations and the key one to reduce the feedback delays
is the fast solution of the underlying quadratic program. Efficient structure
exploiting algorithms are outlined and extended in Chapter 3. One way to go
for the fast QP solution is to condense the sparse QP into a smaller but dense
one that can be solved by e.g. efficient active-set method QP solver. Just by
counting FLOPs, a smart implementation of the classical condensing shows
speed-ups greater than 70 % already for short horizons. Going even further,
the new O(N?) algorithm promises extended applicability of the condensing
approach. Alternative way to solve the QP is to directly solve it by an efficient

173

174 CONCLUSIONS AND OUTLOOK

structure exploiting QP solver. We interfaced three different state-of-the-art
structure exploiting solvers aimed for fast embedded applications.

The benchmark results from Chapter 3 indicate that fast solutions for nonlinear
MPC are possible, even for the systems of relatively high state dimensions and
formulations with fairly long horizons. For short horizons, the condensing
approach proves to be competitive, as all the states are removed and the
expensive computations are relocated to the preparation phase. Furthermore,
this approach seems to be more preferable as the ratio #n, /1, goes higher. On
the other side of the spectrum, a well known fact is confirmed: in general,
the structure exploiting QP solvers are more effective for longer horizons. In
particular, those solvers are more effective as the ratio n, /1, goes lower. The
well optimized HPMPC QP solver greatly supports the fact that CPU-specific
optimizations for linear algebra routines are of paramount importance to achieve
low execution times.

The ACADO CGT has been successfully used, to our knowledge, in at least seven
real-worlds applications; see Chapter 4. Two out of those seven applications are
studied in this thesis. We studied the practical considerations and applicability
of the nonlinear MPC and MHE to real-world mechatronics applications in
Chapters 5 and 6.

Two different control strategies with MPC in the loop have been tested on the
laboratory scale overhead crane in Chapter 5. The choices on the control strategy
have been mostly based on available features in the ACADO CGT. Although
both approaches showed good closed-loop performance and the execution
times, slightly better performance has been observed with MHE in the loop in
the second control scenario. In addition to usage of the MHE in the loop, in
the second scenario we also employed MPC with better optimized condensing
strategy and more efficient integrators. As a result, it was possible to execute
both MHE and the NMPC in slightly higher time than to run the MPC only
with the first implementation of the auto-generated MPC from ACADO CGT.

In Chapter 6 are presented results from the second set of experiments on
the Leuven kite carousel. The complex system dynamics is described with
a DAE model that required usage of implicit integrators. In order to efficiently
cope with strong disturbances, a fairly long horizon length was necessary. We
tested two nonlinear MPC solvers, and the both approaches showed to be real-
time feasible. On the available multi-core machine we were able to execute the
preparation steps of the RTI scheme fully in parallel. Parallelization showed

DIRECTIONS FOR FUTURE RESEARCH 175

to be necessary in the case when condensing based MPC solver was used. In
the second case, the structure exploiting solver showed superior performance
being able to solve the MPC problem with more than 1500 variables in less than
5ms.

7.1 Directions for Future Research

The benchmarks in Chapter 3 tested the formulations with diagonal stage
Hessians and box constraints on the states and the controls. This case was chosen
because it is the most usual use case. Furthermore, this is the formulation that
is at this moment supported by all currently interfaced QP solvers. In this light,
the benchmarks should be extended to at least test all available features of the
available QP solvers; e.g. FORCES and qpDUNES QP solvers support the affine
constraints as well. We used all QP solvers with their default settings, set by
corresponding developers. Our observations showed that all solvers provided
very similar solutions. More rigorous tests can reveal the relations between the
execution time and the desired accuracy of the solution. The techniques for such
comparisons are developed in [165]. Finally, the benchmarks we conducted do
not include any comparisons for MHE solvers. While it is reasonable to expect
that structure exploiting sparse QP will overpower the condensing approaches
for standard MHE formulations with full state noise, the general case with
arbitrary number of disturbances remains an open question.

The tracking objectives we are using in this thesis cover a wide range of
applications. Nonetheless, the range of applications can we widened with
support for more general objective for which the Exact Hessian approximation
would be necessary. For example, the so called economic formulations and
the time-optimal formulations for MPC are the perfect candidates. Initial work
presented in [125] already shows promising results.

Recently, linear MPC was successfully realized on field programmable gate
arrays (FPGAs), see e.g. [166, 167]. Even more, an application of an MPC
with a custom running at 1 MHz was reported in [168]. An FPGA represents
configurable hardware, a chip with basic logic elements such as AND- and
OR-gates , fixed/floating point arithmetic-logic units (ALUs) and memory
elements. Typically the number of ALUs is much higher than in modern CPUs,
allowing for efficiently parallelized implementations of numerical algorithms.
What makes FPGAs really attractive for MPC, or optimal control in general,

176 CONCLUSIONS AND OUTLOOK

is flexibility and number of processing elements in a single chip. Instead
of programming the hardware at hand, one can create a fully customized
architecture for specific application. Fortunately, in linear MPC some crucial
calculations can be done before deployment. For example, based on the
fixed sensitivity matrices Ay and By number of solver iterations can be
calculated offline. Based on the fixed number of iterations, the custom solver
implementation can be further optimized. Nonlinear MPC brings on the table
even more challenges: algorithmic differentiation and numerical integrators.
Experimental nonlinear MPC implementations on FPGAs have been reported
in [169, 170, 171]. All three references report successful implementations for
particular applications, however a (semi-)automated solver design is still
missing.

Bibliography

[1]

J. B. Rawlings, “Optimal dynamic operation of chemical processes: Assessment of
the last 20 years and current research opportunities.” Bayer Lecture, Department
of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania,
April 2010. pages 3

W. Chen, D. Ballance, and J. O'Reilly, “Model Predictive Control of Nonlinear
Systems: Computational Delay and Stability,” IEEE Transactions on Automatic
Control, vol. 147, no. 4, pp. 387-394, 2000. pages 5

R. Findeisen and F. Allgéwer, “Computational Delay in Nonlinear Model
Predictive Control.” Proc. Int. Symp. Adv. Control of Chemical Processes,
ADCHEM, 2003. pages 5

M. Steinbach, Fast recursive SQP methods for large-scale optimal control problems. PhD
thesis, Universitat Heidelberg, IWR, 1995. pages 6, 69

C. Rao, S. Wright, and J. Rawlings, “Application of Interior-Point Methods to
Model Predictive Control,” Journal of Optimization Theory and Applications, vol. 99,
pp- 723-757,1998. pages 6, 20, 41, 69, 70, 71, 72

M. Diehl, H.J. Ferreau, and N. Haverbeke, Nonlinear model predictive control, vol. 384
of Lecture Notes in Control and Information Sciences, ch. Efficient Numerical Methods
for Nonlinear MPC and Moving Horizon Estimation, pp. 391-417. Springer, 2009.
pages 6, 14, 25

B. Houska, H. Ferreau, and M. Diehl, “An Auto-Generated Real-Time Iteration
Algorithm for Nonlinear MPC in the Microsecond Range,” Automatica, vol. 47,
no. 10, pp. 2279-2285, 2011. pages 7, 98, 100, 118

M. Diehl, H. Bock, J. Schléder, R. Findeisen, Z. Nagy, and F. Allgower, “Real-time
optimization and Nonlinear Model Predictive Control of Processes governed by
differential-algebraic equations,” Journal of Process Control, vol. 12, no. 4, pp. 577-
585,2002. pages 7, 15, 25

177

178

BIBLIOGRAPHY

[9]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

M. Vukov, W. V. Loock, B. Houska, H. Ferreau, J. Swevers, and M. Diehl,
“Experimental Validation of Nonlinear MPC on an Overhead Crane using
Automatic Code Generation,” in Proceedings of the 2012 American Control Conference,
Montreal, Canada., 2012. pages 8, 9, 10, 100, 103, 105, 110

M. Vukov, A. Domahidi, H. J. Ferreau, M. Morari, and M. Diehl, “Auto-generated
Algorithms for Nonlinear Model Predicitive Control on Long and on Short
Horizons,” in Proceedings of the 52nd Conference on Decision and Control (CDC),
2013. pages 8,9, 83

H. Ferreau, T. Kraus, M. Vukov, W. Saeys, and M. Diehl, “High-speed moving
horizon estimation based on automatic code generation,” in Proceedings of the 51th
IEEE Conference on Decision and Control (CDC 2012), 2012. pages 8, 9, 100

J. V. Frasch, M. Vukov, H. Ferreau, and M. Diehl, “A new Quadratic Programming
Strategy for Efficient Sparsity Exploitation in SQP-based Nonlinear MPC and
MHE,” in Proceedings of the 19th IFAC World Congress, 2013. pages 9

J. A.E. Andersson, J. V. Frasch, M. Vukov, and M. Diehl, “A Condensing Algorithm
for Nonlinear MPC with a Quadratic Runtime in Horizon Length,” Automatica,
2013. Submitted. pages 9

F. Debrouwere, M. Vukov, R. Quirynen, M. Diehl, and J. Swevers, “Experimental
Validation of Combined Nonlinear Optimal Control and Estimation of an
Overhead Crane,” in Proceedings of the 19th World Congress of the International
Federation of Automatic Control, 2014. pages 10, 103, 106, 110, 121

K. Geebelen, M. Vukov, A. Wagner, H. Ahmad, M. Zanon, S. Gros, D. Vandepitte,
J. Swevers, and M. Diehl, “An experimental test setup for advanced estimation and
control of an airborne wind energy systems,” in Airborne Wind Energy (U. Ahrens,
M. Diehl, and R. Schmehl, eds.), Springer, 2013. pages 11, 104, 129, 130, 132, 143,
147,155

M. Vukov, S. Gros, G. Horn, G. Frison, K. Geebelen, J. B. Jorgensen, J. Swevers,
and M. Diehl, “Real-time Nonlinear MPC and MHE for a Large-scale Mechatronic
Application,” 2015. (submitted to Control Engineering Practice). pages 11

M. Morari and J. Lee, “Model predictive control: past, present and future,”
Computers and Chemical Engineering, vol. 23, pp. 667-682, 1999. pages 13

E. Allgower and A. Zheng, Nonlinear Predictive Control, vol. 26 of Progress in Systems
Theory. Basel Boston Berlin: Birkhaduser, 2000. pages 13

J. Rawlings and D. Mayne, Model Predictive Control: Theory and Design. Nob Hill,
2009. pages 13,14, 33

S. Qin and T. Badgwell, “A survey of industrial model predictive control
technology,” Control Engineering Practice, vol. 11, pp. 733-764, 2003. pages 13

J. Rawlings, “Optimal dynamic operation of chemical processes: Assessment of the
last 20 years and current research opportunities.” Talk at K.U. Leuven, Belgium,
June 2009. pages 13

BIBLIOGRAPHY 179

(22]

(23]

[24]

(25]

[26]

[27]

R. Lopez-Negrete, F.]. D’Amato, L. T. Biegler, and A. Kumar, “Fast nonlinear model
predictive control: Formulation and industrial process applications,” Computers &
Chemical Engineering, vol. 51, pp. 55-64, 2013. pages 13

A. Bemporad, M. Morari, V. Dua, and E. Pistikopoulos, “The explicit linear
quadratic regulator for constrained systems,” Automatica, vol. 38, pp. 3-20, 2002.
pages 13

H.J. Ferreau, H. G. Bock, and M. Diehl, “An online active set strategy to overcome
the limitations of explicit MPC,” International Journal of Robust and Nonlinear Control,
vol. 18, no. 8, pp. 816-830, 2008. pages 13, 41, 43, 75, 101

J. Mattingley, Y. Wang, and S. Boyd, “Code generation for receding horizon control,”
in Proceedings of the IEEE International Symposium on Computer-Aided Control System
Design, (Yokohama, Japan), 2010. pages 13

A. Wills, D. Bates, A. Fleming, B. Ninness, and S. Moheimani, “Application of MPC
to an active structure using sampling rates up to 25kHz,” 44th IEEE Conference
on Decision and Control and European Control Conference ECC’05, Seville, 2005.
pages 13

L. Van den Broeck, J. Swevers, and M. Diehl, “Experimental validation of Time
Optimal MPC on a linear drive system,” in Proceedings of the 11th International
Workshop on Advanced Motion Control, (Nagaoka, Japan), pp. 355-360, 2010. pages
13

L. Biegler and J. Rawlings, “Optimization approaches to nonlinear model
predictive control,” in Proc. 4th International Conference on Chemical Process Control -
CPC IV (W. Ray and Y. Arkun, eds.), pp. 543-571, AIChE, CACHE, 1991. pages 13

L. T. Biegler, “A survey on sensitivity-based nonlinear model predictive control,”
in 10th IFAC International Symposium on Dynamics and Control of Process Systems,
Mumbai, India, The International Federation of Automatic Control, 2013. pages 14

M. Alamir, “Fast nmpc: A reality-steered paradigm: Key properties of fast nmpc
algorithms,” in Control Conference (ECC), 2014 European, pp. 2472-2477, IEEE, 2014.
pages 14

K. Muske, J. Rawlings, and J. Lee, “Receding Horizon Recursive State Estimation,”
in American Control Conference, (San Francisco), pp. 900-904, 1993. pages 14

D. Robertson, Development and Statistical Interpretation of Tools for Nonlinear
Estimation. PhD thesis, Auburn University, 1996. pages 14, 31, 32, 33

C. V. Rao, J. B. Rawlings, and D. Q. Mayne, “Constrained state estimation for
nonlinear discrete-time systems: Stability and moving horizon approximations,”
IEEE Transactions on Automatic Control, vol. 48, no. 2, pp. 246-258, 2003. pages 14,
31,71,151

E. Hairer, S. Norsett, and G. Wanner, Solving Ordinary Differential Equations 11 — Stiff
and Differential-Algebraic Problems. Springer Series in Computational Mathematics,
Berlin: Springer, 2nd ed., 1996. pages 15, 37

180

BIBLIOGRAPHY

(35]

(36]

[40]

[41]

[42]

[46]

[47]

M. Diehl, Real-Time Optimization for Large Scale Nonlinear Processes. PhD thesis,
Universitat Heidelberg, 2001. pages 17, 25, 126

M. Diehl, I. Usluy, R. Findeisen, S. Schwarzkopf, F. Allgower, H. Bock, T. Biirner,
E. Gilles, A. Kienle, J. Schléder, and E. Stein, “Real-Time Optimization for Large
Scale Processes: Nonlinear Model Predictive Control of a High Purity Distillation
Column,” in Online Optimization of Large Scale Systems: State of the Art (M. Grétschel,
S. O. Krumke, and J. Rambau, eds.), pp. 363-384, Springer, 2001. down-
load at: http:/ /www.zib.de/dfg-echtzeit/Publikationen/Preprints /Preprint-01-
16.html. pages 17

D. Leineweber, 1. Bauer, A. Schéfer, H. Bock, and J. Schloder, “An Efficient
Multiple Shooting Based Reduced SQP Strategy for Large-Scale Dynamic Process
Optimization (Parts I and II),” Computers and Chemical Engineering, vol. 27, pp. 157-
174, 2003. pages 17

R. Bellman, Dynamic programming. Princeton University Press, 1957. pages 17

L. Pontryagin, V. Boltyanski, R. Gamkrelidze, and E. Miscenko, The Mathematical
Theory of Optimal Processes. Chichester: Wiley, 1962. pages 17

L. T. Biegler, Nonlinear Programming. MOS-SIAM Series on Optimization, SIAM,
2010. pages 17, 22

J. Betts, Practical Methods for Optimal Control and Estimation Using Nonlinear
Programming. SIAM, 2nd ed., 2010. pages 17

H. Bock and K. Plitt, “A multiple shooting algorithm for direct solution of optimal
control problems,” in Proceedings 9th IFAC World Congress Budapest, pp. 242-247,
Pergamon Press, 1984. pages 18, 25, 41, 45, 47

D. Leineweber, Efficient reduced SQP methods for the optimization of chemical processes
described by large sparse DAE models, vol. 613 of Fortschritt-Berichte VDI Reihe 3,
Verfahrenstechnik. Diisseldorf: VDI Verlag, 1999. pages 19, 23, 47, 52

R. Quirynen, “Automatic code generation of Implicit Runge-Kutta integrators
with continuous output for fast embedded optimization,” Master’s thesis, KU
Leuven, 2012. pages 20, 32, 37, 100

W. Karush, “Minima of Functions of Several Variables with Inequalities as Side
Conditions,” Master’s thesis, Department of Mathematics, University of Chicago,
1939. pages 21

H. Kuhn and A. Tucker, “Nonlinear programming,” in Proceedings of the Second
Berkeley Symposium on Mathematical Statistics and Probability (J. Neyman, ed.),
(Berkeley), University of California Press, 1951. pages 21

J. Nocedal and S. Wright, Numerical Optimization. Springer Series in Operations
Research and Financial Engineering, Springer, 2 ed., 2006. pages 22, 37, 41, 42, 43,
44,71

BIBLIOGRAPHY 181

(48]

[55]

[60]

[61]

H. Bock, “Recent advances in parameter identification techniques for ODE,”
in Numerical Treatment of Inverse Problems in Differential and Integral Equations
(P. Deuflhard and E. Hairer, eds.), Boston: Birkhéuser, 1983. pages 23, 25

S. Wright, Primal-Dual Interior-Point Methods. Philadelphia: SIAM Publications,
1997. pages 23,70, 71

A. Wichter and L. Biegler, “On the Implementation of a Primal-Dual Interior
Point Filter Line Search Algorithm for Large-Scale Nonlinear Programming,”
Mathematical Programming, vol. 106, no. 1, pp. 25-57, 2006. pages 23

T. Ohtsuka, “A Continuation/ GMRES Method for Fast Computation of Nonlinear
Receding Horizon Control,” Automatica, vol. 40, no. 4, pp. 563-574, 2004. pages 25

V. M. Zavala and L. Biegler, “The Advanced Step NMPC Controller: Optimality,
Stability and Robustness,” Automatica, vol. 45, pp. 86-93, 2009. pages 25

M. Diehl, R. Findeisen, and F. Allgéwer, “A Stabilizing Real-time Implementation
of Nonlinear Model Predictive Control,” in Real-Time and Online PDE-Constrained
Optimization (L. Biegler, O. Ghattas, M. Heinkenschloss, D. Keyes, and B. van
Bloemen Waanders, eds.), pp. 23-52, SIAM, 2007. pages 25

E. Allgéwer, T. Badgwell, J. Qin, J. Rawlings, and S. Wright, “Nonlinear Predictive
Control and Moving Horizon Estimation — An Introductory Overview,” in
Advances in Control, Highlights of ECC’99 (P. M. Frank, ed.), pp. 391449, Springer,
1999. pages 25

M. Diehl, Real-Time Optimization for Large Scale Nonlinear Processes, vol. 920 of
Fortschr.-Ber. VDI Reihe 8, Mefs-, Steuerungs- und Regelungstechnik. Diisseldorf: VDI
Verlag, 2002. Download also at: http:/ /www.ub.uni-heidelberg.de/archiv/1659/.
pages 26

J. V. Frasch, Parallel Algorithms for Optimization of Dynamic Systems in Real-Time.
PhD thesis, KU Leuven and University of Magdeburg, 2014. pages 26, 36

R. Kalman, “A New Approach to Linear Filtering and Prediction Problems,”
Transactions of the ASME—Journal of Basic Engineering, vol. 82, pp. 3545, 1960.
pages 29

A. Gelb, Applied Optimal Estimation. MIT Press, 1974. pages 29

V. Becerra, P. Roberts, and G. Griffiths, “Applying the extended Kalman Filter
to systems described by nonlinear differential-algebraic equations,” Control
Engineering Practice, vol. 9, pp. 267-281, 2001. pages 29

P. Park and T. Kailath, “New Square-Root Algorithms for Kalman Filtering,” IEEE
Transactions on Automatic Control, vol. 40, no. 5, pp. 895-899, 1995. pages 29

M. Verhaegen and P. Van Dooren, “Numerical aspects of different Kalman filter
implementations,” IEEE Transactions on Automatic Control, vol. 31, no. 10, pp. 907-
917, 1986. pages 29

182

BIBLIOGRAPHY

[62]

[63]

[64]

[65]

[66]

(71]

S. Julier, J. Uhlmann, and H. Durrant-Whyte, “A new method for the nonlinear
transformation of means and covariances in filters and estimators,” IEEE
Transactions on Automatic Control, vol. 45, pp. 477-482, 2000. pages 29

A. Doucet, N. D. Freitas, and N. Gordon, Sequential Monte Carlo methods in practice.
Springer, 2001. pages 29

F. Daum, “Nonlinear Filters: Beyond the Kalman Filter,” Aerospace and Electronic
Systems Magazine, IEEE, vol. 20, no. 8, pp. 57-69, 2005. pages 29

J. Rawlings and B. Bakshi, “Particle filtering and moving horizon estimation,”
Computers and Chemical Engineering, vol. 30, pp. 1529-1541, 2006. pages 29

C.Rao and]. Rawlings, “Nonlinear Moving Horizon State Estimation,” in Nonlinear
Predictive Control (F. Allgéwer and A. Zheng, eds.), (Basel Boston Berlin), pp. 45-69,
Birkhéuser, 2000. pages 30

S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge: University Press,
2004. pages 32

B. Nicholson, R. L6pez-Negrete, and L. T. Biegler, “On-line state estimation of
nonlinear dynamic systems with gross errors,” Computers & Chemical Engineering,
2013. pages 32

R. Lépez-Negrete, Nonlinear Programming Sensitivity Based Methods for Constrained
State Estimation. PhD thesis, Carnegie Mellon University, 2011. pages 32

R. Quirynen, S. Gros, and M. Diehl, “Fast auto generated ACADO integrators and
application to MHE with multi-rate measurements,” in Proceedings of the European
Control Conference, 2013. pages 32, 100

R. L6épez-Negrete and L. T. Biegler, “A moving horizon estimator for processes
with multi-rate measurements: A nonlinear programming sensitivity approach,”
Journal of Process Control, vol. 22, no. 4, pp. 677-688, 2012. pages 32

H. Michalska and D. Q. Mayne, “Moving horizon observers and observer-based
control,” IEEE Transactions on Automatic Control, vol. 40, no. 6, pp. 995-1006, 1995.
pages 32

P. Kiihl, M. Diehl, T. Kraus, J. P. Schléder, and H. G. Bock, “A real-time algorithm

for moving horizon state and parameter estimation,” Computers & Chemical
Engineering, vol. 35, no. 1, pp. 71-83, 2011. pages 33, 100, 104

T. Kraus, P. Kiihl, L. Wirsching, H. G. Bock, and M. Diehl, “A Moving Horizon
State Estimation algorithm applied to the Tennessee Eastman Benchmark Process,”
in Proc. of IEEE Robotics and Automation Society conference on Multisensor Fusion and
Integration for Intelligent Systems, 2006. pages 33

A. Wynn, M. Vukov, and M. Diehl, “Convergence guarantees for moving horizon
estimation based on the real-time iteration scheme,” 2014. pages 33

BIBLIOGRAPHY 183

[76]

J. V. Frasch, S. Sager, and M. Diehl, “A Parallel Quadratic Programming Method
for Dynamic Optimization Problems,” Mathematical Programming Computations,
2013. pages 36, 72, 74,75, 102

A. Griewank, Evaluating Derivatives, Principles and Techniques of Algorithmic
Differentiation. No. 19 in Frontiers in Appl. Math., Philadelphia: STAM, 2000.
pages 37

J. Andersson, A General-Purpose Software Framework for Dynamic Optimization.
PhD thesis, Arenberg Doctoral School, KU Leuven, Department of Electrical
Engineering (ESAT/SCD) and Optimization in Engineering Center, Kasteelpark
Arenberg 10, 3001-Heverlee, Belgium, October 2013. pages 37, 47, 59, 61

E. Hairer, S. Norsett, and G. Wanner, Solving Ordinary Differential Equations I.
Springer Series in Computational Mathematics, Berlin: Springer, 2nd ed., 1993.
pages 37

R. Quirynen, M. Vukov, and M. Diehl, “Auto Generation of Implicit Integrators
for Embedded NMPC with Microsecond Sampling Times,” in Proceedings of the
4th IFAC Nonlinear Model Predictive Control Conference (M. Lazar and F. Allgower,
eds.), 2012. pages 37, 100

C. Kirches, H. G. Bock, J. P. Schléder, and S. Sager, “A factorization with update
procedures for a KKT matrix arising in direct optimal control,” Mathematical
Programming Computation, vol. 3, no. 4, pp. 319-348, 2011. pages 41

H. Ferreau, A. Kozma, and M. Diehl, “A parallel active-set strategy to solve sparse
parametric quadratic programs arising in MPC,” in Proceedings of the 4th IFAC
Nonlinear Model Predictive Control Conference, Noordwijkerhout, The Netherlands, 2012.
pages 41,72,74,75

R. Fletcher, Practical Methods of Optimization. Chichester: Wiley, 2nd ed., 1987.
pages 42,43

H. Ferreau, “An Online Active Set Strategy for Fast Solution of Parametric

Quadratic Programs with Applications to Predictive Engine Control,” Master’s
thesis, University of Heidelberg, 2006. pages 43, 44, 45

M. Herceg, C. N. Jones, and M. Morari, “Dominant speed factors of active set
methods for fast MPC,” Optimal Control Applications and Methods, 2014. pages 43

P. Gill, G. Golub, W. Murray, and M. A. Saunders, “Methods for Modifying Matrix
Factorizations,” Mathematics of Computation, vol. 28, no. 126, pp. 505-535, 1974.
pages 44

C. Kirches, H. Bock, J. Schloder, and S. Sager, “Block structured quadratic
programming for the direct multiple shooting method for optimal control,”
Optimization Methods and Software, vol. 26, pp. 239-257, April 2010. pages 44,
47

184 BIBLIOGRAPHY

[88] P.Gill, N. Gould, W. Murray, M. Saunders, and M. Wright, “A Weighted Gram-
Schmidt Method for Convex Quadratic Programming,” Mathematical Programming,
vol. 30, pp. 176-195, 1984. pages 44

[89] C.Kirches, L. Wirsching, S. Sager, and H. Bock, “Efficient numerics for nonlinear
model predictive control,” in Recent Advances in Optimization and its Applications
in Engineering (M. Diehl, F. F. Glineur, and E. J. W. Michiels, eds.), pp. 339-357,
Springer, 2010. pages 44

[90] “qpOASES.” http://www.qpOASES.org, 2007-2015. [Online; accessed 3-April-2015].
pages 45, 76,99, 101

[91] A. Wills, “QPC homepage.” http:/ /sigpromu.org/quadprog/, 2006-2011. pages
45

[92] C. Kirches, L. Wirsching, H. Bock, and J. Schloder, “Efficient Direct Multiple
Shooting for Nonlinear Model Predictive Control on Long Horizons,” Journal of
Process Control, vol. 22, no. 3, pp. 540-550, 2012. pages 47

[93] D. Axehill and M. Morari, “An alternative use of the riccati recursion for efficient
optimization,” Systems & Control Letters, vol. 61, no. 1, pp. 3740, 2012. pages 47

[94] G. Frison, “Numerical methods for model predictive control,” Master’s thesis,
Department of Informatics and Mathematical Modelling, Technical University of
Denmark, Kgs. Lyngby, Denmark, 2012. pages 47

[95] G. Frison and]. Jergensen, “A Fast Condensing Method for Solution of Linear-
Quadratic Control Problems,” in Proceedings of the 52nd IEEE Conference on Decision
and Control, 2013. pages 47, 66

[96] G. Frison and]. Jergensen, “Efficient implementation of the riccati recursion for
solving linear-quadratic control problems,” in IEEE Multi-conference on Systems
and Control (MSC), pp. 1117-1122, IEEE, 2013. pages 56, 72, 102

[97] Y. Wang and S. Boyd, “Fast model predictive control using online optimization,”
IEEE Transactions on Control Systems Technology, vol. 18, no. 2, pp. 267-278, 2010.
pages 70, 72

[98] S. Mehrotra, “On the Implementation of a Primal-Dual Interior Point Method,”
SIAM Journal on Optimization, vol. 2, no. 4, pp. 575-601, 1992. pages 70

[99] A.Domahidi, A. Zgraggen, M. Zeilinger, M. Morari, and C. Jones, “Efficient Interior
Point Methods for Multistage Problems Arising in Receding Horizon Control,”
in IEEE Conference on Decision and Control (CDC), (Maui, HI, USA), pp. 668 — 674,
Dec. 2012. pages 70, 72,101

[100] G. Frison, H. B. Serensen, B. Dammann, and J. Jergensen, “High-performance
small-scale solvers for linear model predictive control,” in IEEE European Control
Conference (ECC), pp. 128-133, IEEE, 2014. pages 70, 72, 102

http://www.qpOASES.org

BIBLIOGRAPHY 185

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

G. Frison, L. Sokoler, and J. Jergensen, “A family of high-performance solvers for
linear model predictive control,” in IFAC World Congress, pp. 3074-3079, IFAC,
2014. pages 72

G. Frison, D. Kufualor, L. Imsland, and J. Jergensen, “Efficient implementation
of solvers for linear model predictive control on embedded devices,” in IEEE
Multi-conference on Systems and Control (MSC), pp. 1954-1959, IEEE, 2014. pages 72

A. Shahzad, E. Kerrigan, and G. Constantinides, “A warm-start interior-point
method for predictive control,” tech. rep., Imperial College London, 2010. pages
72

A. Shahzad and P. Goulart, “A new hot-start interior-point method for model
predictive control,” in Proceedings of the IFAC World Congress, 2011. pages 72

J. V. Frasch, M. Vukov, H. Ferreau, and M. Diehl, “A new quadratic programming
strategy for efficient sparsity exploitation in SQP- based nonlinear MPC and MHE,”
in Proceedings of the 19th IFAC World Congress, 2014. pages 72, 83, 102

W. Li and]. Swetits, “A new algorithm for solving strictly convex quadratic
programs,” SIAM Journal of Optimization, vol. 7, no. 3, pp. 595-619, 1997. pages 72,
74

Y.-H. Dai and R. Fletcher, “New algorithms for singly linearly constrained
quadratic programs subject to low and upper bounds,” Mathematical Programming,
vol. 106, no. 3, pp. 403421, 2006. pages 72

“FORCES - fast optimization for real-time control on embedded systems.” http:
//http://forces.ethz.ch/, 2012. pages 76, 99, 101

“qpDUNES - a dual newton strategy for convex quadratic programming.” http:
//http://github.com/jfrasch/qpDUNES, 2013. pages 76, 99, 102

“HPMPC - library for high-performance implementation of solvers for mpc.”
http://github.com/giaf/hpmpc, 2014. pages 76, 99, 102

L. Wirsching, H. G. Bock, and M. Diehl, “Fast NMPC of a chain of masses connected
by springs,” in Proceedings of the IEEE International Conference on Control Applications,
Munich, pp. 591-596, 2006. pages 77,78

K. Graichen, M. Treuer, and M. Zeitz, “Swing-up of the double pendulum on a cart
by feedforward and feedback control with experimental validation,” Automatica,
vol. 43, no. 1, pp. 63 - 71, 2007. pages 79

T. Glueck, A. Eder, and A. Kugi, “Swing-up control of a triple pendulum on a
cart with experimental validation,” Automatica, vol. 49, no. 3, pp. 801 — 808, 2013.
pages 79

E. Dolan and J. Moré, “Benchmarking optimization software with performance
profiles,” Mathematical Programming., vol. 91, pp. 201-213, 2002. pages 81

http://http://forces.ethz.ch/
http://http://forces.ethz.ch/
http://http://github.com/jfrasch/qpDUNES
http://http://github.com/jfrasch/qpDUNES
http://github.com/giaf/hpmpc

186

BIBLIOGRAPHY

[115]

[116]

[117]

[118]

[119]

[120]

[121

[u—

[122]

[123]

[124]

[125]

[126]

[127]

[128]

D. Mayne, J. Rawlings, C. Rao, and P. Scokaert, “Constrained model predictive
control: stability and optimality,” Automatica, vol. 26, no. 6, pp. 789-814, 2000.
pages 84

L. Griine, “NMPC Without Terminal Constraints,” in Proceedings of the IFAC
Conference on Nonlinear Model Predictive Control 2012, 2012. pages 84

E. Anderson, Z. B. C., Bischof, S. Blackford,]. Demmel, J. Dongarra, J. D. Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’
Guide. Philadelphia, PA: SIAM, third ed., 1999. pages 92

R. Quirynen, M. Vukov, M. Zanon, and M. Diehl, “Autogenerating Microsecond
Solvers for Nonlinear MPC: a Tutorial Using ACADO Integrators,” Optimal Control
Applications and Methods, 2014. pages 98

R. Quirynen, M. Vukov, and M. Diehl, Contributions in Mathematical and
Computational Sciences, ch. Multiple Shooting in a Microsecond. Springer, 2014.
Submitted. pages 98

B. Houska, H. Ferreau, and M. Diehl, “ACADO Toolkit - An Open Source
Framework for Automatic Control and Dynamic Optimization,” Optimal Control
Applications and Methods, vol. 32, no. 3, pp. 298-312, 2011. pages 98

J. Mattingley and S. Boyd, Convex Optimization in Signal Processing and Commu-
nications, ch. Automatic Code Generation for Real-Time Convex Optimization.
Cambridge University Press, 2009. pages 98

H. Seguchi and T. Ohtsuka, “Nonlinear Receding Horizon Control of an
Underactuated Hovercraft,” International Journal of Robust and Nonlinear Control,
vol. 13, no. 34, pp. 381-398, 2003. pages 98

“RAWESOME - the airborne wind energy simulation, optimization and modeling
environment.” https://github.com/ghorn/rawesome. [Online; accessed 10-
October-2013]. pages 98, 103, 142, 154

H. Ferreau, B. Houska, M. Vukov, and R. Quirynen, “ACADO Code Generation
User’s Manual.” http:/ /www.acadotoolkit.org, 2011. pages 99

R. Quirynen, B. Houska, M. Vallerio, D. Telen, F. Logist,]. Van Impe, and M. Diehl,
“Symmetric Algorithmic Differentiation Based Exact Hessian SQP Method and
Software for Economic MPC,” in Conference on Decision and Control, 2014. pages
100, 175

R. Quirynen, S. Gros, and M. Diehl, “Efficient NMPC for nonlinear models with
linear subsystems,” in Proceedings of the 52nd IEEE Conference on Decision and
Control, 2013. pages 100

J. Mattingley and S. Boyd, “CVXGEN webage.” http:/ /cvxgen.com, 2008-2011.
pages 101

C. Rao, J. Rawlings, and J. Lee, “Constrained linear state estimation - a moving
horizon approach,” Automatica, vol. 37, no. 2, pp. 1619-1628, 2001. pages 102

https://github.com/ghorn/rawesome

BIBLIOGRAPHY 187

[129]

[130

—

[131]

[132]

[133

—_

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

T. Kraus, H. J. Ferreau, E. Kayacan, H. Ramon,]J. De Baerdemaeker, M. Diehl, and
W. Saeys, “Moving horizon estimation and nonlinear model predictive control
for autonomous agricultural vehicles,” Computers and Electronics in Agriculture,
vol. 98, pp. 25-33, October 2013. pages 103, 104

D. Frick, A. Domahidi, M. Vukov, S. Mariéthoz, M. Diehl, and M. Morari, “Moving
Horizon Estimation for Induction Motors,” in IEEE International Symposium on
Sensorless Controls for Electrical Drives, (Milwaukee, WI, USA), pp. 1-6, Sept. 2012.
pages 103

E. Kayacan, E. Kayacan, H. Ramon, and W. Saeys, “Distributed nonlinear model
predictive control of an autonomous tractor-trailer system,” Mechatronics, vol. 24,
no. 8, pp. 926 — 933, 2014. pages 104

T. Faulwasser, J. Matschek, P. Zometa, and R. Findeisen, “Predictive path-
following control: Concept and implementation for an industrial robot,” in Control
Applications (CCA), 2013 IEEE International Conference on, pp. 128-133, IEEE, 2013.
pages 104

J. Huber, C. Gruber, and M. Hofbaur, “Online trajectory optimization for nonlinear
systems by the concept of a model control loop - applied to the reaction wheel
pendulum,” in Control Applications (CCA), 2013 IEEE International Conference on,
pp- 935-940, Aug 2013. pages 104

R. Verschueren, S. D. Bruyne, M. Zanon, J. V. Frasch, and M. Diehl, “Towards Time-
Optimal Race Car Driving using Nonlinear MPC in Real-Time,” in Proceedings of
the 53rd Conference on Decision and Control (CDC), 2014. pages 104

D. Schindele and H. Aschemann, “Fast nonlinear MPC for an overhead travelling
crane,” in Proceedings of the IFAC World Congress, 2011. pages 105

L. Van den Broeck, M. Diehl, and]J. Swevers, “Experimental validation of Time
Optimal MPC on a flexible motion system,” in Proceedings of the 2011 American
Control Conference, (San Francisco, USA), pp. 4749-4754, 2011. pages 105

B. Képernick and K. Graichen, “PLC implementation of a nonlinear model
predictive controller,” in Proceedings of the 19th IFAC World Congress, (Cape Town,
South Africa), pp. 1892-1897, 2014. pages 105

Orocos, “Orocos - Open Robot Control Software project.,” September 2011. pages
107

M. Fliess, J. Lévine, and P. Rouchon, “Flatness and defect of nonlinear systems:
Introductory theory and examples,” International Journal of Control, vol. 61, pp. 1327-
1361, 1995. pages 107

J. Schoukens and R. Pintelon, Identification of Linear Systems: A Practical Guide to
Accurate Modeling. Pergamon Press, 1991. pages 108

M. Loyd, “Crosswind Kite Power,” Journal of Energy, vol. 4, pp. 106-111, July 1980.
pages 127

188 BIBLIOGRAPHY

[142] A.Ilzhoefer, B. Houska, and M. Diehl, “Nonlinear MPC of kites under varying
wind conditions for a new class of large scale wind power generators,” International
Journal of Robust and Nonlinear Control, vol. 17, no. 17, pp. 1590-1599, 2007. pages
127

[143] B. Houska and M. Diehl, “Optimal Control for Power Generating Kites,” in Proc.
9th European Control Conference, (Kos, Greece,), pp. 3560-3567, 2007. (CD-ROM).
pages 127

[144] M. Diehl, “Airborne wind energy: Basic concepts and physical foundations,” in
Airborne Wind Energy, Springer, 2013. pages 127

[145] Ampyx Power, “Technology Concept.” http://wuw.ampyxpower.com/0verview.
html, 2015. pages 128

[146] M. Diehl and B. Houska, “Windenergienutzung mit schnell fliegenden
Flugdrachen: eine Herausforderung fiir die Optimierung und Regelung - Wind
Power via Fast Flying Kites: a Challenge for Optimization and Control,” at-
automatisierungstechnik, vol. 57, no. 10, pp. 525-533, 2009. pages 128

[147] M. Clinckemaillie, “An experimental set-up for energy generation using balanced
kites,” Master’s thesis, KU Leuven, 2012. pages 128

[148] K. Geebelen and J. Gillis, “Modelling and control of rotational start-up phase of
tethered aeroplanes for wind energy harvesting,” Master’s thesis, KU Leuven,
June 2010. pages 130, 132

[149] D. Cosaert, K. Elst, K. Geebelen, M. Diehl,]. Swevers, and D. Vandepitte, “Design
of a winch for modeling and control of the tethered flight of a model airplane,”
Master’s thesis, KU Leuven, 2011. pages 130, 133

[150] K. Geebelen, H. Ahmad, M. Vukov, S. Gros,]J. Swevers, and M. Diehl, “An
experimental test set-up for launch/recovery of an Airborne Wind Energy (AWE)
system,” in Proceedings of the 2012 American Control Conference, 2012. pages 132

[151] Ebox, “E-box project page.” http://cstwiki.wtb.tue.nl/index.php?title=E-box,
2013. pages 132

[152] “RT-PREEMPT Patch.” https://rt.wiki.kernel.org/index.php/RT_PREEMPT_
HOWTO. [Online; accessed 29-12-2014]. pages 135

[153] H. Bruyninckx, “Open robot control software: the OROCOS project,” in Robotics
and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on, vol. 3,
pp. 2523-2528, IEEE, 2001. pages 136

[154] “CasADi.” http://casadi.org, 2013. [Online; accessed 10-October-2013]. pages
142, 148

[155] S. Gros and M. Diehl, Airborne Wind Energy, ch. Modeling of Airborne Wind
Energy Systems in Natural Coordinates. Springer, 2013. pages 143, 144, 145

http://www.ampyxpower.com/Overview.html
http://www.ampyxpower.com/Overview.html
https://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO
https://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO
http://casadi.org

BIBLIOGRAPHY 189

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

S. Gros, M. Zanon, M. Vukov, and M. Diehl, “Nonlinear MPC and MHE for
Mechanical Multi-Body Systems with Application to Fast Tethered Airplanes,”
in Proceedings of the 4th IFAC Nonlinear Model Predictive Control Conference,
Noordwijkerhout, The Netherlands, 2012. pages 143, 144

M. Zanon, S. Gros, and M. Diehl, “Rotational Start-up of Tethered Airplanes Based
on Nonlinear MPC and MHE,” in Proceedings of the European Control Conference,
2013. pages 143, 145, 154, 171

M. Zanon, S. Gros, and M. Diehl, “Model Predictive Control of Rigid-Airfoil
Airborne Wind Energy Systems,” in Airborne Wind Energy (U. Ahrens, M. Diehl,
and R. Schmehl, eds.), Springer, 2013. pages 143, 145, 146, 154, 171

K. Geebelen, M. Vukov, S. Gros, J. Swevers, and M. Diehl, “Comparison of
moving horizon estimators with kinematic and dynamic models based on tethered
flight experiments,” 2015. (submitted to IEEE Transactions on Control Systems
Technology). pages 143, 146, 150, 151

J. Gillis, G. Horn, and M. Diehl, “Joint design of stochastically safe setpoints
and controllers for nonlinear constrained systems by means of optimization,” in
Proceedings of the 19th IFAC World Congress, August 2014. pages 147, 148

J. Sternberg, S. Gros, B. Houska, and M. Diehl, “Approximate Robust Optimal
Control of Periodic Systems with Invariants and High-Index Differential Algebraic
Systems,” in In Proceedings of the 7th IFAC Symposium on Robust Control Design,
pp- 678-683, 2012. pages 147

A. Wichter and L. Biegler, “IPOPT - an Interior Point OPTimizer.”
https:/ /projects.coin-or.org /Ipopt, 2009. pages 156

S. Gros, H. Ahmad, K. Geebelen, and M. Diehl, “In-flight estimation of the
aerodynamic roll damping and trim angle for a tethered aircraft based on multiple-
shooting,” in System Identification Conference, 2012. pages 170

S. Gros, M. Zanon, and M. Diehl, “Control of Airborne Wind Energy Systems
Based on Nonlinear Model Predictive Control & Moving Horizon Estimation,” in
European Control Conference, 2013. pages 171

E. D. Dolan, J. . Moré, and T. S. Munson, “Optimality measures for performance
profiles,” SIAM Journal on Optimization, vol. 16, pp. 891-909, Mar. 2006. pages 175

J. Jerez, P. Goulart, S. Richter, G. Constantinides, E. Kerrigan, and M. Morari,
“Embedded Predictive Control on an FPGA using the Fast Gradient Method,”
in European Control Conference, (Zurich, Switzerland), pp. 3614 — 3620, July 2013.
pages 175

H. Peyrl, A. Zanarini, T. Besselmann, J. Liu, and M.-A. Boéchat, “Parallel
implementations of the fast gradient method for high-speed MPC,” Control
Engineering Practice, vol. 33, pp. 22-34, 2014. pages 175

190 BIBLIOGRAPHY

[168]]. Jerez, P. Goulart, S. Richter, G. Constantinides, E. Kerrigan, and M. Morari,
“Embedded Online Optimization for Model Predictive Control at Megahertz Rates,”
IEEE Transactions on Automatic Control, Apr. 2014. pages 175

[169] G.Knagge, A. Wills, A. Mills, and B. Ninness, “ASIC and FPGA Implementation
Strategies for Model Predictive Control,” in European Control Conference (ECC),
aug 2009. pages 176

[170] A.]Joos and W. Fichter, “Parallel Implementation of Constrained Nonlinear Model
Predictive Controller for an FPGA-based Onboard Flight Computer,” in Advances
in Aerospace Guidance, Navigation and Control (F. Holzapfel and S. Theil, eds.),
pp- 273-286, Springer Berlin Heidelberg, 2011. pages 176

[171] B. Képernick, S. Sub, E. Schubert, and K. Graichen, “A synthesis strategy for
nonlinear model predictive controller on FPGA,” in Control (CONTROL), 2014
UKACC International Conference on, pp. 662—-667, July 2014. pages 176

Curriculum Vitae

Milan Vukov was born in Vr3ac, Serbia, in 1983. He received the M.S. degree in
electrical engineering from the University of Belgrade, Serbia, in 2008. After
graduation, he joined the Laboratory for Digital Control of Electrical Drives at
the same faculty. His work in the laboratory was related to control of AC drives,
robotics and fast real-time monitoring systems for mechatronics applications.
In early 2010, Milan moved to the Robotics Laboratory at the Mihailo Pupin
Institute. Since December 2010, Milan has been a PhD student at the Department
of Electrical Engineering (ESAT) at KU Leuven, under the supervision of
Professor Moritz Diehl. His research is focused on fast implementations of
the algorithms for nonlinear model predictive control (NMPC) and moving
horizon estimation (MHE), and their applications to fast mechatronics systems.

191

List of Publications

Journal papers

1. R. Quirynen, M. Vukov, M. Zanon, and M. Diehl, “Autogenerating Microsecond
Solvers for Nonlinear MPC: a Tutorial Using ACADO Integrators,” Optimal Control
Applications and Methods, 2014.

2. A. Wynn, M. Vukov, and M. Diehl, “Convergence guarantees for moving horizon

estimation based on the real-time iteration scheme,” IEEE Transactions on Automatic
Control, 2014.

3. K. Geebelen, M. Vukov, S. Gros, J. Swevers, and M. Diehl, “Comparison of
moving horizon estimators with kinematic and dynamic models based on tethered
flight experiments,” 2015. (submitted to IEEE Transactions on Control Systems
Technology).

4. M. Vukov, S. Gros, G. Horn, G. Frison, K. Geebelen, J. B. Jorgensen, J. Swevers,
and M. Diehl, “Real-time Nonlinear MPC and MHE for a Large-scale Mechatronic
Application,” 2015. (submitted to Control Engineering Practice).

Book chapters

1. K. Geebelen, M. Vukov, A. Wagner, H. Ahmad, M. Zanon, S. Gros, D. Vandepitte,
J. Swevers, and M. Diehl, “An experimental test setup for advanced estimation and
control of an airborne wind energy systems,” in Airborne Wind Energy (U. Ahrens,
M. Diehl, and R. Schmehl, eds.), Springer, 2013.

2. R. Quirynen, M. Vukov, and M. Diehl, Contributions in Mathematical and Computa-
tional Sciences, ch. Multiple Shooting in a Microsecond. Springer, 2014. Submitted.

3. M. Zanon,]J. V. Frasch, M. Vukov, S. Sager, and M. Diehl, “Model Predictive
Control of Autonomous Vehicles,” in Proceedings of the Workshop on Optimization
and Optimal Control of Automotive Systems, 2014.

193

194

LIST OF PUBLICATIONS

Conference papers

1.

10.

H. Ferreau, T. Kraus, M. Vukov, W. Saeys, and M. Diehl, “High-speed moving
horizon estimation based on automatic code generation,” in Proceedings of the 51th
IEEE Conference on Decision and Control (CDC 2012), 2012.

. D. Frick, A. Domahidi, M. Vukov, S. Mariéthoz, M. Diehl, and M. Morari, “Moving

Horizon Estimation for Induction Motors,” in IEEE International Symposium on
Sensorless Controls for Electrical Drives, (Milwaukee, WI, USA), pp. 1-6, Sept. 2012.

. K. Geebelen, H. Ahmad, M. Vukov, S. Gros,]J. Swevers, and M. Diehl, “An

experimental test set-up for launch/recovery of an Airborne Wind Energy (AWE)
system,” in Proceedings of the 2012 American Control Conference, 2012.

. S. Gros, M. Zanon, M. Vukov, and M. Diehl, “Nonlinear MPC and MHE for

Mechanical Multi-Body Systems with Application to Fast Tethered Airplanes,”
in Proceedings of the 4th IFAC Nonlinear Model Predictive Control Conference,
Noordwijkerhout, The Netherlands, 2012.

. R. Quirynen, M. Vukov, and M. Diehl, “Auto Generation of Implicit Integrators

for Embedded NMPC with Microsecond Sampling Times,” in Proceedings of the
4th IFAC Nonlinear Model Predictive Control Conference (M. Lazar and F. Allgower,
eds.), 2012.

. M. Vukov, W. V. Loock, B. Houska, H. Ferreau, J. Swevers, and M. Diehl,

“Experimental Validation of Nonlinear MPC on an Overhead Crane using
Automatic Code Generation,” in The 2012 American Control Conference, Montreal,
Canada., 2012.

. S. Gros, M. Vukov, and M. Diehl, “A Real-time MHE and NMPC Scheme for the

Control of Multi-Mega Watts Wind Turbines,” in Conference on Decision and Control,
2013.

. M. Vukov, A. Domahidi, H.]. Ferreau, M. Morari, and M. Diehl, “Auto-generated

Algorithms for Nonlinear Model Predicitive Control on Long and on Short
Horizons,” in Proceedings of the 52nd Conference on Decision and Control (CDC),
2013.

. E. Debrouwere, M. Vukov, R. Quirynen, M. Diehl, and J. Swevers, “Experimental

Validation of Combined Nonlinear Optimal Control and Estimation of an
Overhead Crane,” in Proceedings of the 19th World Congress of the International
Federation of Automatic Control, 2014.

J. V. Frasch, M. Vukov, H. Ferreau, and M. Diehl, “A new quadratic programming
strategy for efficient sparsity exploitation in SQP- based nonlinear MPC and MHE,”
in Proceedings of the 19th IFAC World Congress, 2014.

FACULTY OF ENGINEERING SCIENCE

DEPARTMENT OF ELECTRICAL ENGINEERING (ESAT)

STADIUS CENTER FOR DYNAMICAL SYSTEMS, SIGNAL PROCESSING AND DATA ANALYTICS
Kasteelpark Arenberg 10

B-3001 Heverlee

Persist.

	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Contributions and Overview

	Fast Nonlinear Model Based Predictive Control and Estimation
	Preliminaries
	Methods for Discretization of Optimal Control Problems
	Nonlinear Programming

	Fast Nonlinear Model Predictive Control
	Real-time Iterations for Nonlinear MPC

	Fast Nonlinear Moving Horizon Estimation
	Problem Formulation
	Real-time iterations for Nonlinear MHE

	The Big Picture: Real-time Iterations in Closed Loop with Nonlinear MPC and MHE
	Building Blocks for Fast Nonlinear MPC and MHE

	Tailored Quadratic Programming Solvers
	Active-set Quadratic Programming Solvers
	Condensing Procedures
	Classical Condensing
	O(N^2) Condensing
	O(N^2) Factorization of the Condensed Hessian

	Structure Exploiting Interior Point Method Solvers
	The Dual Newton Strategy
	Numerical Simulations
	Chain of Masses Connected by Springs
	Double and Triple Pendulums
	Performance Profiles
	Results

	Conclusions

	The ACADO Code Generation Tool
	Features
	Interfaces to QP solvers
	Structure of the Exported Solver
	Real-world Applications

	Real-time Control of an Overhead Crane
	Experimental setup and Dynamic Model
	Experimental Setup
	Dynamic Model

	Control Architectures
	Scenario 1
	Scenario 2

	Experimental Results
	Scenario 1
	Scenario 2

	Conclusions

	Real-time Control of an Airborne Wind Energy System
	Experimental Setup
	Hardware
	Software

	Control Architecture
	Modeling
	Estimator
	Controller

	Experimental Results
	Conclusions

	Conclusions and Outlook
	Directions for Future Research

	Bibliography
	Curriculum Vitae
	List of Publications

