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JAK3 mutants transform hematopoietic cells through JAK1 activation causing T-cell 

acute lymphoblastic leukemia in a bone marrow transplant mouse model. 
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KEY POINTS 

• JAK3 pseudokinase mutants require JAK1 for their transforming potential. 

• JAK3 mutants cause T-ALL in a mouse bone marrow transplant model and respond to 

tofacitinib, a JAK3 selective inhibitor. 

 

 

ABSTRACT 

JAK3 is a tyrosine kinase that associates with the common gamma chain of cytokine 

receptors and is recurrently mutated in T-cell acute lymphoblastic leukemia (T-ALL). We 

tested the transforming properties of JAK3 pseudokinase and kinase domain mutants using 

in vitro and in vivo assays. Most, but not all, JAK3 mutants transformed cytokine dependent 

Ba/F3 or MOHITO cell lines to cytokine independent proliferation. JAK3 pseudokinase 

mutants were dependent on Jak1 kinase activity for cellular transformation, whilst the JAK3 

kinase domain mutant could transform cells in a Jak1 kinase independent manner. 

Reconstitution of the IL7 receptor signaling complex in 293T cells showed that JAK3 mutants 

required receptor binding to mediate downstream STAT5 phosphorylation. Mice transplanted 

with bone marrow progenitor cells expressing JAK3 mutants developed a long latency 

transplantable T-ALL like disease, characterized by an accumulation of immature CD8 

positive T-cells. In vivo treatment of leukemic mice with the JAK3 selective inhibitor tofacitinib 

reduced the white blood cell count and caused leukemic cell apoptosis. Our data show that 

JAK3 mutations are drivers of T-ALL and require the cytokine receptor complex for 

transformation. These results warrant further investigation of JAK1/JAK3 inhibitors for the 

treatment of T-ALL. 
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INTRODUCTION 

The JAK kinases (JAK1, JAK2, JAK3, TYK2) are a family of cytosolic tyrosine kinases that 

are essential for the signaling of cytokine receptors. All four JAK kinases share a common 

structure with receptor binding domains at the N-terminus and a regulatory pseudokinase 

domain and catalytic active kinase domains at the C-terminus. The two JAK kinase family 

members JAK1 and JAK3 are essential components of the heterodimeric interleukin-7 (IL7) 

receptor, in which the IL7Ralpha chain is bound by JAK1 and the common gamma chain 

(IL2RG) is bound by JAK3. Activation of the receptor by its ligand results in phosphorylation 

of both JAK1 and JAK3, with subsequent phosphorylation of STAT5 that translocates to the 

nucleus to regulate gene expression.1 It is now well established that the correct activation of 

this IL7 receptor signaling pathway via JAK1 and JAK3 is critically important for the 

development of both B- and T-cells. Loss-of-function mutations in IL2RG, IL7R or JAK3 leads 

to severe immune deficiency.2 Conversely, activating mutations in JAK1, JAK3 or IL7R have 

been reported in both B- and T-cell acute lymphoblastic leukemia (ALL) with mutations in any 

one of these genes found in up to 25% of T-ALL cases.3-5 

 

Of the JAK family kinase mutations identified in hematological malignancies, JAK1 mutations 

are rare in childhood ALL, but are more frequent in adult ALL cases.6,7 JAK3 mutations on 

the other hand have been identified in acute megakaryoblastic leukemia (AMKL), T-cell 

prolymphocytic leukemia and more recently in juvenile myelomonocytic leukemia (JMML) 

and natural killer T-cell lymphoma (NK/T-lymphoma).8-13 The transformative potential of these 

JAK3 mutations has been confirmed in cell based assays in vitro, and the JAK3 A572V 

mutation identified in AMKL was also shown to confer features of megakaryoblastic leukemia 

and transform murine lymphoid cells in vivo.10,14 However, systematic studies using both in 

vitro and in vivo models of newly identified JAK3 mutations are lacking, as too is knowledge 

on their potential mechanism of transformation. 

 

In this work, twelve JAK3 pseudo-kinase and kinase domain mutations identified in T-ALL 

from massive parallel sequencing projects were studied using in vitro and in vivo 

experiments to assess their transformation potential. We report that the majority of these 

JAK3 mutants transform cells to cytokine independent growth in vitro, and that JAK1 kinase 

activity is required downstream of most JAK3 mutants. Moreover, we show that expression of 

JAK3 mutants in hematopoietic stem/progenitor cells leads to the development of a T-ALL 

like disease in a mouse bone marrow transplant model. We finally demonstrate that the use 

of tofacitinib, a JAK3 selective inhibitor, can reduce the leukemic burden within our in vivo 

bone marrow transplant model.  
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MATERIALS & METHODS 

 

Expression plasmids 

JAK3 wild type and mutant sequences were synthesized by GenScript. Kinase deficient 

JAK1 was provided by Dr. Haan.15 The IL2RG expression plasmid was provided by Dr. 

Barata. JAK1 and IL7R constructs were described before.16 All constructs were cloned into 

the MSCV-GFP or MSCV-puro vectors. 

 

Cell culture, virus production, and retroviral transduction 

293T cells were cultured in DMEM medium with 10% fetal calf serum (FCS). Virus production 

and retroviral transduction were performed as previously described.17 Ba/F3 and MOHITO18 

cells were cultured in RPMI-1640 with 10-20% FCS and IL3 (10 ng/�L, Peprotech), IL-2 (25 

ng/�L, Peprotech), and IL7 (50 ng/�L, Peprotech), respectively. For electroporation, 1.5x106 

Ba/F3 cells were resuspended in 400 �L of serum-free medium containing 200 nmol siRNA 

duplexes and then transferred to 4-mm cuvettes (Biorad). The electroporated cells were 

transferred to 12-well plates containing 2 mL of pre-warmed RPMI supplemented with 10% 

FCS. Growth reduction was analysed using the guava easyCyte Flow Cytometer (Millipore) 

1h and 48h after electroporation. Human T-ALL cells were cultured as described.19 Ethical 

approval and informed consent was obtained for the use of human T-ALL cells. 

 

Western blotting  

Cells were lysed in cold lysis buffer containing 5 mM NA3VO4 and protease inhibitors 

(Complete, Roche). The proteins were separated on NuPAGE NOVEX Bis-Tris 4%–12% 

gels (Invitrogen). Western blot analysis was performed using antibodies against JAK1, anti-

phospho-tyrosine(4G10) (Millipore); AKT, phospho-AKT, phospho-ERK, JAK3, phospho-

JAK3, STAT1, phospho-STAT1, STAT3, phospho-STAT3 phospho-STAT5, SRC, phospho-

SRC (Cell Signaling); ERK, phospho-JAK1, STAT5 (Santa Cruz); and beta-actin (Sigma); 

secondary antibodies conjugated with horseradish peroxidase (GEHealthcare). Anti-

phospho-JAK1 antibody was used to detect phosphorylated JAK1 and JAK3. Bands were 

visualized using a cooled charge-coupled device camera (ImageQuant LAS-4000, GEHealth 

Care). 

 

Murine bone marrow transplantation 

BALB/c mice were purchased from Charles River Laboratories. Male BALB/c mice were 

sacrificed and bone marrow cells were harvested from femur and tibia. Lineage negative 

cells were enriched (STEMCELL Technologies) and cultured in RPMI with 20% FCS, IL3 

(10ng/mL, Peprotech), IL6 (10ng/mL, Peprotech), SCF (50ng/mL, Peprotech), and penicillin-
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streptomycin. 1x106 cells were transduced by spinoculation (90 min at 2500rpm; 8 μg/mL 

polybrene). Cells were washed in PBS and injected (1×106 cells/0.3 mL) into the lateral tail 

vein of sub-lethally irradiated (5 Gy) female BALB/c mice. Mice were housed in IVC cages 

and monitored daily. Approval of the local ethics committee was obtained. 

 

Inhibitor experiments 

Ba/F3 or MOHITO cells were seeded in 96-well plates (1x105 cells/ml) and treated with 

tofacitinib, ruxolitinib, or vehicle (DMSO). A quantitative evaluation of proliferation was done 

after 24h using ATPlite (PerkinElmer) and measured on the VICTOR X4 Reader 

(PerkinElmer). For in vivo experiments BALB/c mice were treated through oral gavage with 

tofacitinib (20-40mg/kg/day) or vehicle. 

 

Flow cytometry analyses 

Single-cell suspensions were prepared from peripheral blood, bone marrow, spleen, thymus 

and lymph nodes. Cells were analysed on a FACSCanto flow cytometer (BD Bio-sciences). 

Data were analysed with the FlowJo software (Tree Star). 

 

 

RESULTS 

 

1. JAK3 mutants identified in T-ALL transform Ba/F3 and MOHITO cells to cytokine 

independent growth 

We recently reported the results from exome, transcriptome and targeted re-sequencing of 

89 patients with T-ALL.4,20,21 In this cohort of patients, we identified 12 mutations affecting the 

JAK3 protein in 10 of 89 diagnostic samples. To determine if JAK3 mutations identified in T-

ALL are oncogenic driver mutations, we selected twelve mutants to study in vitro using the 

cytokine dependent Ba/F3 and MOHITO cell lines. These mutations included FERM/SH2 

domain mutations (R272H, R403H), pseudokinase domain mutations (M511I, A572T, 

A573V, R657W, R657Q, V674A, V678M) and kinase domain mutations (L857Q, R925S, 

E1106G) (Figure 1A, Table S1). 

 

The Ba/F3 and MOHITO cells were transduced by retroviral vectors encoding either JAK3 

wild type or JAK3 mutants that co-express GFP. In all cases transduction efficiency 

exceeded 80% as measured by GFP expression. Of the JAK3 mutations screened, eight out 

of twelve were able to transform the Ba/F3 cells to IL-3 independent growth (Figure 1B). Of 

these eight JAK3 mutants, two mutants (V678M and A572T) were weaker in their ability to 

transform Ba/F3 cells to IL-3 independent growth. The remaining four JAK3 mutants, 
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including two kinase domain mutations (R925S and E1106G), and two FERM/SH2 domain 

mutants (R272H, R403H) did not transform Ba/F3 cells. Similarly, JAK3 wild type and the 

empty vector transduced cells were not able to induce autonomous cell growth. Similar 

results were observed in the MOHITO cell line, as the same JAK3 mutants were able to 

stimulate the proliferation and survival of the cells in the absence of IL-2 and IL-7 cytokines 

(Figure 1C). Transformation was further demonstrated by the fact that the transformed 

MOHITO cells outcompeted the non-transduced cells, as only GFP positive cells were able 

to grow in the absence of cytokines (data not shown). 

 

2. JAK3 mutants activate JAK1, STAT5 and ERK 

We next sought to identify the downstream signaling pathways activated by JAK3 mutants in 

the transformed Ba/F3 cell lines. We first analyzed the levels of JAK3 phosphorylation by 

Western blot using a phospho-JAK antibody raised against JAK1 Tyr1022/1023 but 

recognizes both pJAK1 and pJAK3. This showed JAK3 phosphorylation was variable 

between the different JAK3 mutants with some mutants (i.e. R657Q, L857Q) showing a clear 

phosphorylation of JAK3 whilst other mutants showed only weak JAK3 phosphorylation 

(Figure 2A). To determine whether other tyrosine residues were potentially phosphorylated, a 

JAK3 immunoprecipitation followed by immunoblot detection with a general anti-

phosphotyrosine antibody was carried out. This confirmed that all JAK3 mutants had 

phosphorylated tyrosine residues present, with strong tyrosine phosphorylation evident for 

A573V, R657Q, moderate for V674A, L857Q, V678M, and weak for A572T and M511I 

mutants (Figure 2B).  

 

We also observed that JAK1 phosphorylation was present in Ba/F3 cells expressing the 

different JAK3 mutants. Although the level of JAK1 phosphorylation was lower in the JAK3 

mutant transformed cells compared to cells transformed by the constitutively active JAK1 

A634D mutant (Figure 2A). In addition, phosphorylation of STAT5 and ERK was detected in 

all Ba/F3 cells expressing JAK3 mutants (Figure 2C). Notably, we did not observe 

phosphorylation of STAT1, STAT3 or AKT in any of the transformed Ba/F3 cells expressing 

JAK3 mutants (Figure S1). These results were also confirmed in the MOHITO cell line (data 

not shown). Taken together, these results show that cytokine independent growth of Ba/F3 or 

MOHITO expressing JAK3 mutants was concomitant with increased phosphorylation of 

JAK1, STAT5 and ERK. 
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3. JAK1 is essential for the transforming properties of JAK3 pseudokinase domain 

mutants 

We then investigated whether the transforming capacity of JAK3 mutants was dependent on 

the presence of the cytokine receptor complex (e.g. IL7R complex). To test this, we used 

293T cells that lack endogenous cytokine receptor expression. Cells transfected with JAK3 

mutants alone did not result in JAK3 phosphorylation (Figure 3A). Co-expression of JAK3 

mutants with IL2RG was sufficient to obtain JAK3 phosphorylation (Figure 3B, 3C), while 

activation of STAT5 required the co-expression of JAK3 mutants with IL2RG and JAK1 

(Figure 3B) or IL2RG and IL7R (Figure 3C). The reconstitution of the entire receptor complex 

yielded the strongest activation of both JAK3 and STAT5. These data indicate that JAK3 

mutants cannot function in the absence of additional receptor components. For wild type 

JAK3, co-expression of the complete receptor complex (IL7R, IL2RG, JAK1, JAK3) with IL7 

ligand stimulation was required to obtain STAT5 phosphorylation (Figure 3C). Those JAK3 

mutants unable to transform Ba/F3 cells, did not cause JAK1 or JAK3 phosphorylation in 

293T cells and were predicted as ‘neutral’ variants using PROVEAN22 analysis (Figure S2), 

adding support that the R925S and E1106G are non-transforming passenger mutations.  

 

To confirm the essential role of JAK1 for the signaling of the JAK3 mutants, we 

downregulated the expression of endogenous murine Jak1 or Jak2 in the Ba/F3 cells. 

Knockdown of Jak expression was confirmed by qPCR and consistently showed knockdown 

efficiency of >90% (Figure 3D). For the pseudokinase domain mutants, siRNA mediated 

knockdown of Jak1 expression resulted in a >90% decrease in cell proliferation. This was not 

the case for cells transformed by the kinase domain JAK3 L857Q mutant where loss of JAK1 

did not significantly alter cell proliferation. For both pseudokinase and kinase domain 

mutants, loss of endogenous Jak2 expression did not affect cell proliferation (Figure 3D).  

 

To determine if the observed dependence on Jak1 was due to the complete loss of Jak1 

protein or only Jak1 kinase activity, we performed rescue experiments with either wild type 

human JAK1 or a kinase-dead JAK1 mutant. Expression of the siRNA resistant human JAK1 

but not the kinase dead JAK1 could rescue the block in proliferation upon Jak1 knockdown 

(Figure 3D). Taken together, these results indicate that JAK1 kinase activity is essential for 

the transforming capacity of JAK3 pseudokinase domain mutants, but not for the kinase 

domain mutant L857Q. 

 

4. JAK3 mutant transformed cells are sensitive to JAK kinase inhibitors 

To determine the sensitivity of the different JAK3 mutants to JAK kinase inhibitors, and to 

further confirm the requirement of JAK1, we treated the transformed Ba/F3 and MOHITO 
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cells with tofacitinib, a JAK3 selective inhibitor23, or ruxolitinib, a JAK2/JAK1 selective 

inhibitor.24 Cells were first treated with increasing concentrations of the JAK3 selective 

inhibitor tofacitinib or vehicle (DMSO) with a quantitative evaluation of proliferation performed 

at 24h post-treatment. All Ba/F3 cells transformed by JAK3 mutants were sensitive to 

tofacitinib treatment, with IC50 values ranging between 246 nM and 408 nM (Figure 4A). 

Wild type Ba/F3 cells which are dependent on IL3/JAK2 signaling had a significantly higher 

IC50 of 1400 nM with these high concentrations speculated to also have an inhibitory effect 

on JAK2 kinase activity. The proliferation of cells transformed by FLT3-ITD kinase, which are 

independent of JAK activity, was not affected by tofacitinib treatment. Similar results were 

obtained for transformed MOHITO cells (Figure S3-S4). 

 

Confirmation that JAK1 is required for the transforming capacities of JAK3 mutant proteins 

was also evident after cells were treated with the JAK1 selective inhibitor ruxolitinib. Ba/F3 

cells dependent on the expression of JAK3 pseudokinase domain mutants were sensitive for 

low doses of ruxolitnib treatment, with IC50 values ranging from 120 nM to 398 nM. This is in 

agreement with our earlier results, where all pseudokinase domain mutants require JAK1 

kinase activity for their transforming capacities. The cells expressing the JAK3 L857Q kinase 

domain mutant were less sensitive with an IC50 value of 855 nM confirming JAK3 L857Q is 

less dependent on JAK1 kinase activity. The inhibitory effects observed at higher ruxolitinib 

concentration in the L857Q cells is speculated to be due to inhibition of the JAK3 kinase by 

ruxolitinib.24 Similar results were obtained for transformed MOHITO cells (Figure S5-S6). 

Finally, we also treated the Ba/F3 cells with low doses of tofacitinib, ruxolitinib or a 

combination of both drugs. This resulted in the synergistic inhibition of cells dependent on 

JAK1 cells but not in cells independent of JAK1 activity (e.g. L857Q mutant) (Figure S7), 

confirming again that pseudokinase domain mutants are dependent on JAK1 activity. 

 

To determine whether treatment of JAK3 mutant transformed Ba/F3 cells also decreases 

downstream signaling, cells were treated with increasing concentration of tofacitinib (300, 

600, 1200nM), ruxolitinib (125, 500, 2000nM) or vehicle (DMSO) for 90 minutes before cell 

lysis. In all cases STAT5 phosphorylation significantly decreased with increasing tofacitinib 

concentration (Figure 4C). Once again, changes in STAT5 phosphorylation for the kinase 

domain mutant L857Q were less marked after ruxolitinib treatment and confirm that this 

mutant can signal to STAT5 independent of Jak1 (Figure 4D). We used here STAT5 

phosphorylation as read-out, as effects on JAK1/JAK3 phosphorylation by JAK kinase 

inhibitors are generally modest, as also previously described.25 In primary human T-ALL cells 

with the JAK3 M511I mutation we observed inhibition of STAT5 phosphorylation upon 

treatment with tofacitinib or ruxolitinib, but no effect was seen on phosphorylation of ERK 
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(Figure 5A). This may be due to the presence of other mutations in the T-ALL sample, which 

leads to the activation of the ERK pathway in a JAK independent manner. These data are 

also in line with our observation that the proliferation of the JAK3 M511I mutant T-ALL cells 

was inhibited by tofacitinib or ruxolitinib, while the proliferation of human T-ALL cells that did 

not express mutant JAK3 were not affected by the presence of JAK inhibitors (Figure 5B). 

 

5. JAK3 mutants cause T-cell acute lymphoblastic leukemia in a bone marrow 

transplant mouse model 

Having established that the JAK3 mutants could transform cells in vitro, we used a mouse 

bone marrow transplant model to determine whether they were also transforming in vivo. Our 

initial assessment focused on the JAK3 M511I pseudokinase domain mutation because it 

was the most common JAK3 mutation identified in T-ALL. In this model, hematopoietic 

progenitor cells transduced with retroviral constructs expressing JAK3 M511I and GFP were 

injected in the tail vein of irradiated female recipient BALB/c animals. Animals initially 

developed a lymphoproliferative disease over the first 12 weeks characterized by moderate 

increased white blood cell (WBC) counts (range: 10,000 and 20,000/microliter) (Figure 6A). 

After this initial lymphoproliferative stage, all animals expressing JAK3 M511I progressed to 

an acute phase. The acute phase was fatal and was characterized by a rapid rise in WBC 

counts (range: 50,000 to 300,000/microliter) between 14 to 28 weeks post-transplant. Mice 

transplanted with wild type JAK3 expressing cells did not develop any disease (Figure 6A,B). 

 

All mice showed accumulation of CD8 single positive cells in the peripheral blood with the 

majority of mice succumbing to the disease between 100-200 days post-transplant (Figure 

6B). At end stage disease there was a significant increase in spleen and thymus weight 

(Figure 6C). Spleen, thymus, lymph nodes and bone marrow were infiltrated by TdT positive 

immature T-cells (Figure 6D). GFP positive blast cells in all organs also had variable 

expression of TCRβ and CD3. Specific phenotypic analysis of the bone marrow showed that 

5 out of 16 mice had more than 50% blasts that were CD8 single positive whilst 11 out of 16 

mice the bone marrow contained a CD4/CD8 double negative population (Figure 6E), 

corresponding to an accumulation of more immature T-cells. Mouse leukemia cells showed 

phosphorylation of JAK1/JAK3, STAT5 and ERK (Figure S8). 

 

Notably, the leukemic cells were also transplantable, and caused a rapid development of T-

ALL and earlier onset of disease in the secondary and tertiary transplanted animals (Figure 

6B). In four out of seven JAK3 M511I secondary transplant experiments, recipient mice 

developed an acute leukemia within 100 days post transplant. All secondary transplanted 

mice had an accumulation of TCRβ/CD3 negative cells, indicating that the acute phase seen 
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in primary transplant experiments was associated with loss of differentiation and 

accumulation of more immature T-cells (Figure S9-S12). Leukemic cells with high TCRβ 

expression failed to induce leukemia in recipient mice, indicating that more differentiated 

cells are not able to induce leukemia in a secondary transplant. Analysis of TCRβ 

rearrangement showed oligoclonal origin of the primary leukemias, while TCRβ was not 

rearranged in secondary leukemias, in agreement with the immunophenotyping (Figure S11-

S13). Three heterozygous mutations (Notch1 L1668P, Notch1 indel(R2361), Pten G165E) 

were identified in primary leukemias (Figure S13). Together, these data support a clonal 

nature of the mouse leukemias. 

 

In addition to JAK3 M511I, other JAK3 mutations (A573V, L857Q, V674A and R657Q) were 

tested in the BALB/c bone marrow transplant model. Mice transplanted with cells expressing 

JAK3 A573V or V674A showed a gradual increase of the WBC count and developed a 

similar T-ALL like disease as observed for the JAK3 M511I mutant. In contrast to JAK3 

A573V and V674A, mice transplanted with cells expressing JAK3 L857Q or R657Q showed 

no increase in WBC count compared to the control mice, but did present with severe 

splenomegaly and lymphadenopathy. Expression of JAK3 L857Q caused severe thymus 

hyperplasia, while the JAK3 R657Q mutant caused B-cell leukemia. Detailed results are 

presented in supplement (Figure S14). 

 

6. JAK3 M511I mutant cells respond to tofacitinib treatment in vivo 

Our in vitro data showed that tofacitinib, a selective JAK3 inhibitor, potently inhibited all 

tested JAK3 mutants in cell based assays. Tofacitinib does not show potent activity against 

JAK2, and was recently approved by the FDA for the treatment of rheumatoid arthritis. We 

therefore selected tofacitinib to determine the in vivo response of JAK3 driven leukemia to 

JAK inhibitor treatment. We used the primary JAK3 M511I transplant model and the 

secondary JAK3 M511I transplant model, and treated those animals by oral gavage.  

 

In a first experiment, primary transplanted animals were treated with tofacitinib (30 

mg/kg/day) for 6 consecutive days. Treatment started 82 days after transplantation, at the 

time the mice had increased WBC counts. All mice showed a decrease in WBC count during 

treatment, and again an increase in WBC count after treatment was stopped, demonstrating 

a clear effect of tofacitinib on the proliferation of the leukemia cells in vivo (Figure 7A). In a 

second experiment, primary transplanted mice were treated with tofacitinib (40 mg/kg/day; 

n=5) or placebo (n=6) for 5 weeks. Treatment started 48 weeks after bone marrow 

transplant, at which time WBC values had already increased. Mice receiving tofacitinib 

treatment showed a decrease in WBC count at the end of the experiment, while WBC counts 
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of placebo treated mice were all increased (Figure 7B).  

 

In a third experiment, secondary transplanted mice were treated for 14 days with tofacitinib 

(20 mg/kg/day; n=5) or placebo (n=5). The WBC count of placebo treated mice increased 

significantly during the 14 days of treatment, while the overall increase in WBC count for 

tofacitinib treated mice was lower compared to the placebo treated mice (Figure 7C), 

indicating that tofacitinib has an inhibitory effect on the leukemia cells. In addition, mice 

treated with tofacitinib showed reduced spleen and thymus weight compared to mice treated 

with placebo (Figure 7D). Histopathological analysis of spleen and thymus documented clear 

induction of apoptosis in the tofacitinib treated animals, as observed by anti-cleaved caspase 

3 staining and the typical ‘starry sky’ pattern in H&E stained tissue sections caused by the 

increased number of macrophages clearing the apoptotic cells (Figure 7E). 

 

 

DISCUSSION 

 

Protein tyrosine kinases are attractive targets for therapy in oncology, as these proteins are 

often mutated and activated in cancer, and the tumor cells become addicted to these 

activated signaling pathways for their proliferation and survival. Also in leukemia, tyrosine 

kinases such as ABL1, FLT3, PDGFR and JAK2 have been extensively studied as possible 

targets for therapy, with the successful application of kinase inhibitors for the treatment of 

CML as one of the most important breakthroughs in this area.26 

 

The JAK3 tyrosine kinase was recently found to be recurrently mutated in JMML, NK cell 

lymphoma and T-ALL, with mutations mainly clustering in the pseudokinase and kinase 

domains. Earlier studies had also reported rare mutations of JAK3 in AML. Together, these 

studies identify JAK3 as a possible new target for therapy in various hematological 

malignancies. To further study the role of JAK3 as a possible therapeutic target, we 

performed a detailed analysis of the in vitro and in vivo transforming properties of a selection 

of 12 JAK3 mutations identified in T-ALL.  

 

Using in vitro and in vivo models, we have shown that most JAK3 mutants identified in T-ALL 

patient samples were capable of conferring cytokine independent growth to cell lines in vitro 

and to cause leukemia in vivo. Few of the mutants were lacking transforming potential in 

these experiments, illustrating that results from sequencing always need to be confirmed by 

functional assays to distinguish driver mutations from passenger mutations. 
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Based on the Ba/F3 and MOHITO data we can also distinguish strong JAK3 mutants from 

weaker transforming mutants such as the A572T and V678M mutants. It is of interest to note 

that these two weaker alleles were identified together with a strong JAK3 mutation M511I or 

L857Q, respectively (supplementary table 1). The fact that some T-ALL cases harbor two 

transforming JAK3 mutations suggests that T-ALL leukemia cells that are dependent on a 

JAK3 mutation can obtain an additional proliferation advantage by mutating the second JAK3 

allele, similar as to what has been observed for the JAK2 V617F mutation in 

myeloproliferative neoplasms.27 

 

Several lines of evidence suggest that JAK1 is an essential kinase required downstream of 

JAK3 mutants. Indeed, a close relationship exists between JAK1 and JAK3 at the normal IL7 

receptor (and other type I cytokine receptors), where both kinases phosphorylate and 

activated each other upon stimulation of the receptor. We observed that in the Ba/F3 cells 

transformed by JAK3 mutants, JAK1 was always phosphorylated, and that transformation by 

JAK3 mutants was lost upon knock-down of Jak1. Remarkably, the dependency on JAK1 

was observed for all pseudokinase domain JAK3 mutants, but not for the JAK3 kinase 

domain mutant (L857Q). These observations are also in line with the data obtained with JAK 

kinase inhibitors, which show that the JAK3 pseudokinase mutants are more sensitive to 

ruxolitinib, a kinase inhibitor targeting JAK2 and JAK1, than the JAK3 kinase domain mutant 

(L857Q).24 In contrast, all JAK3 mutants showed equal sensitivity to tofacitinib, a JAK3 

selective inhibitor.23 These findings indicate that different JAK3 mutations may have different 

signaling properties, which may affect their sensitivity to JAK kinase inhibitors. 

 

Several JAK kinase inhibitors are currently under development for the treatment of 

myeloproliferative neoplasms with JAK2 mutation or for the treatment of auto-immune 

diseases. Our data show that both JAK1 selective and JAK3 selective inhibitors can have 

inhibitory effects on JAK3 mutation positive leukemias, but that different JAK3 mutants show 

different signaling properties that affects their sensitivity to the various JAK inhibitors. Further 

pre-clinical and clinical studies are warranted and may bring new treatment opportunities for 

hematological malignancies with JAK3 mutation.11,13,20,28,29  
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Figure legends 

 
Figure 1. JAK3 mutants transform Ba/F3 and MOHITO cells to cytokine independent 
growth. (A) Schematic representation of JAK3 protein and its main domains; the Four-point-
one, Ezrin, Radixin, Moesin (FERM) domain, the Src homology-2 (SH2) domain, the 
pseudokinase and kinase domain. Mutations which are studied in this work are shown. (B,C) 
Proliferation curve of Ba/F3 (B) or MOHITO (C) cells expressing various JAK3 mutants, 
JAK3 wild type or empty vector, in the absence of cytokines. Mutations that did not stimulate 
proliferation more than wild type JAK3 were considered as not transforming mutants and are 
indicated with asterisk (*). 

Figure 2. JAK3 mutants signal through JAK1, STAT5 and ERK in a cytokine 
independent way. (A) Western blot analysis of whole cell lysates of Ba/F3 cells transformed 
by JAK3 mutants. Phosphorylation of JAK1 was detected for all JAK3 mutants. JAK3 
phosphorylation was clearly detected for some, but not all JAK3 mutant proteins, most likely 
due to the specificity of the used antibody. JAK3 protein expression was detected with a 
human specific antibody, not recognizing the endogenous JAK3 expression. (B) JAK3 
phosphorylation could be detected for all JAK3 mutants after immunoprecipitation and 
detection with a phospho-tyrosine antibody (4G10). (C) All transforming JAK3 mutants were 
able to phosphorylate downstream signaling components STAT5 and ERK. 
 
Figure 3. JAK1 kinase activity is essential for the transforming properties of JAK3 
mutants. (A) Western blot detection of JAK3 mutants expressed in 293T cells. (B,C) 
Western blot analysis of whole cell lysates after reconstitution of the IL7 receptor signaling 
complex in 293T cells. The 293T cells were transiently transfected with the constructs as 
indicated. (D) Graph shows relative proliferation of Ba/F3 cells expressing JAK3 M511I, 
R657Q or L857Q 48 hours after knockdown of endogenous Jak1 or Jak2 compared to 
scrambled siRNA. (E,F) Rescue of the Jak1 knockdown, through the expression of human 
JAK1 (E) or kinase dead JAK1 (F). Relative proliferation is shown 48 hours after knockdown 
of endogenous Jak1. Knock down efficiency was determined by qPCR for all cell lines, 
results are shown for one cell line, but is representative for all cell lines. 
 
Figure 4. Cells dependent on JAK3 mutants are sensitive to JAK3 and JAK1 inhibition. 
(A,B) Relative proliferation of Ba/F3 cells transformed by JAK3 mutants or FLT3 ITD or wild 
type Ba/F3 cells stimulated with IL3 after treatment with tofacitinib or ruxolitinib, respectively. 
Proliferation was compared to proliferation of cells after vehicle (DMSO) treatment. Full dose 
response curves for all JAK3 mutants are shown in supplement. (C,D) Western blot analysis 
of Ba/F3 cells expressing JAK3 mutants after 90 minutes treatment with tofacitinib or 
ruxolitinib.  
 
Figure 5. Ex vivo treatment of primary human T-ALL cells with JAK3 M511I mutation. 
(A) Western blot analysis of xenograft derived cells which express JAK3 M511I were cultured 
ex vivo and treated for 90 minutes with tofacitinib, ruxolitinib or vehicle (DMSO). (B) Graph 
shows relative proliferation after 48 hours treatment with JAK inhibitors of human T-ALL 
xenograft derived cells. 
 
Figure 6. Expression of JAK3 M511I in bone marrow cells of Balb/c mice cause a T-
lymphoproliferative disease that progress to T-ALL. (A) Evolution of the white blood cell 
(WBC) count in JAK3 M511I animals. WBC was measured every two weeks. The upper limit 
of normal WBC count (10,000/mm3) is indicated by a dashed line. (B) Kaplan Meier survival 
curve of BALB/c mice receiving a bone marrow transplantion of lineage negative cells 
expressing JAK3 M511I. Mice transplanted with cells expressing wild type JAK3 did not 
develop any hematological abnormalities nor signs of disease (C) Spleen and thymus weight 
of mice transplanted with cells expressing JAK3 M511I compared to mice transplanted with 
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JAK3 wild type cells. Significance was determined by t-test. (D) H&E staining of spleen, bone 
marrow, thymus and lymph node. TdT staining of thymus and lymph node. Scale bar 
indicates 100 micrometer. (E) Analysis of the bone marrow cells of diseased animals by flow 
cytometry with anti-CD4 and anti-CD8 antibodies. Pathology images were obtained using a 
Leica DM2500 microscope and a Leica DFC290HD camera and analyzed using the Leica 
Application suite LAS v4.1 software. Images were processed with Adobe Photoshop CS5. 
 
Figure 7. JAK3 M511I cells are sensitive to the JAK3 inhibitor tofacitinib in vivo. (A) 4 
BALB/c mice which received a primary transplant of cells expressing JAK3 M511I, were 
treated for 6 days with tofacitinib, two times a day with a total concentration of 30mg/kg/day. 
WBC count was determined before, during and after treatment. Graph shows WBC count 
over time, indicating days post transplant. (B) 11 BALB/C mice received a primary transplant 
of cells expressing JAK3 M511I. Mice were randomly divided into two groups. One group 
was treated with tofacitinib for 5 weeks, twice daily, with a total concentration of 
40mg/kg/day. The other group received vehicle (DMSO) treatment. WBC count was 
determined at the start and the end of treatment. Graph shows difference in WBC count over 
the 5 weeks of treatment. (C) 10 BALB/c mice received a secondary transplant of cells 
expressing JAK3 M511I. Afterwards, mice were randomly divided into two groups. Both 
groups were treated for a period of 14 days, one group with tofacitinib, the second group with 
vehicle (DMSO). Treatment was performed two times a day with a total concentration of 
20mg/kg/day. WBC count was determined at the start and the end of the experiment. Graph 
shows the difference in WBC count over the 14 days of treatment. (D) Graphs shows spleen, 
thymus and lymph node weight of secondary transplanted mice with JAK3 M511I, after 18 
days of treatment with tofacitinib or vehicle. Significance was determined by T-test. (E) 
Cleaved caspase 3 staining of spleen and thymus samples retrieved from the experiment 
shown in panel C. H&E staining of thymus after treatment with placebo or tofacitinib. Scale 
bars indicate 100 micrometer. Pathology images were obtained using a Leica DM2500 
microscope and a Leica DFC290HD camera and analyzed using the Leica Application suite 
LAS v4.1 software. Images were processed with Adobe Photoshop CS5. 
 

 
















