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In order to predict properties of asymmetric nuclear matter, we construct a relativistic mean field (RMF) model
consisting of one-meson exchange (OME) terms and point coupling (PC) terms. In order to determine the density
dependent parameters of this model, we use properties of isospin symmetric nuclear matter in combination with
the information on nucleon-nucleon scattering data, which are given in the form of the density dependent G-matrix
derived from Brueckner calculations based on the Tamagaki potential. We show that the medium- and long-range
components of this G-matrix can be described reasonably well by our effective OME interaction. In order to
take into account the short-range part of the nucleon-nucleon interaction, which cannot be described well in this
manner, a point coupling term is added. Its analytical form is taken from a model based on chiral perturbation
theory. It contains only one additional parameter, which does not depend on the density. It is, together with the
parameters of the OME potentials adjusted to the equation of state of symmetric nuclear matter. We apply this
model for the investigation of asymmetric nuclear matter and find that the results for the symmetry energy as
well as for the equation of state of pure neutron matter are in good agreement with either experimental data or
with presently adopted theoretical predictions. In order to test the model at higher density, we use its equation of
state for an investigation of properties of neutron stars.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is the fundamental
theory of strong interaction and in principle also the basis
of the description of nuclei. However, because of the strong
nonperturbative effects of QCD at low energies, it is, so
far, practically impossible to apply it directly for the study
of nuclear properties. On the other hand, in the theory of
nuclear structure one has developed with great success several
more or less phenomenological theories. Density functional
theories (DFT), based on the concept of mean field theory,
provide a nearly quantitative description of many nuclear
properties all over the periodic table, in particular for medium-
heavy and heavy nuclei. Because of the large spin-orbit term
characterizing the nuclear fields, it has become very useful
to take the Lorentz invariance seriously and to start from
covariant density functionals. Such approaches run under the
name relativistic mean field (RMF) models.

In such models introduced originally by Walecka [1,2], the
nucleons are considered as elementary degrees of freedom.
They are expressed in terms of Dirac spinors, and are assumed
to interact with each other through effective boson fields, which
are characterized by the quantum numbers of parity, spin, and
isospin. Within the mean field approximation this interaction
is equivalent to the exchange of various effective mesons with
the corresponding quantum numbers. These mesons are point-
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like and they are characterized by their masses and by the
vertices describing the coupling to the nucleons. Usually these
parameters are determined by a fit to reproduce observables in
finite nuclei and in nuclear matter. Within the RMF models it
is easy to obtain nuclear saturation and they naturally provide
an explanation of the rather strong spin-orbit force [3].

There are two interpretations for the meson included in
RMF models. One is that we identify the mesons of the
models with mesons observed experimentally. The other is
that effects originating from many complicated diagrams in a
more microscopic theory which cannot be treated explicitly
within mean field calculations are renormalized into the
parameters of effective mesons. In this paper, we adopt the
second interpretation. There are two reasons for this. First,
we would like to stay on the level of only one meson exchange
(OME) processes in calculations for actual nuclei because
there are well-known divergences occurring in loop diagrams.
They are difficult to deal with by numerical methods when
we study properties of finite nuclei. This corresponds fully
to the concept of density functional theory, where all these
effects are taken into account in a phenomenological way.
Therefore one expects that the parameters deviate from the
bare values. Second, not all the mesons which we need for
a realistic description of nuclear properties on the tree level
occur in nature as resonances. In order to take into account all
the spin and isospin information by OME processes, we need
to assign one meson to each spin-isospin channel. Therefore,
some mesons occurring in these models do not have an explicit
experimental counterpart in a resonance state. On the other
hand, by considering loop diagrams it is possible to describe all
spin-isospin channels even with a smaller number of mesons.
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For example, in chiral perturbation theory (ChPT), where
only the π meson is taken into account, it is impossible
to reproduce the equation of state (EOS) of nuclear matter
considering only tree diagrams, but it may become possible
by including loop diagrams [4] and by adjusting the necessary
cut-off parameters in a phenomenological way. Compared with
ChPT, RMF models can produce reasonably well the EOS with
tree diagrams with the price that several phenomenological
mesons have to be included.

The simplest model of this category is the σω-model
introduced by Serot and Walecka [2]. In infinite nuclear matter
it contains only two adjustable parameters, determined by the
saturation point, i.e., by two data. In nuclei with neutron or
proton excess one needs at least one additional potential in
the isovector channel and therefore in addition to σ and ω the
ρ meson is included, which carries isospin.

The incompressibility calculated from this model is too
large, about twice as large as the empirical value [5]. This
indicates that the surface properties are not described properly
in this simple model and therefore the model is relatively
useless for a quantitative description of finite nuclei. As
pointed out first by Boguta and Bodmer [6], for a realistic
description of finite nuclei it is important to include a density
dependence and this turned out to be crucial for the success of
these models in finite nuclei.

There are two ways to introduce effective density dependen-
cies. One way is to include nonlinear couplings between the
mesons [6]. In the mean field approximation, these couplings
effectively correspond to density dependent contributions.
A number of RMF effective interactions of this type have
been developed, such as NL1, NL2 [7], NL3 [8], NL-SH
[9], TM1, and TM2 [10]. A part of these higher order
self-interactions can be motivated by vacuum renormaliza-
tion [2,11]. However, in practice, their strength parameters
are determined in a purely phenomenological way. As an
alternative, density-dependent RMF (DDRMF) models have
been proposed in Refs. [12,13] and very successful parameter
sets DD-ME1 [14] and DD-ME2 [15] have been determined
by precision fits to nuclear data. The density dependence of
the coupling constants in these models is motivated by that
of Dirac-Brueckner calculations [16,17]. The strength of the
meson-nucleon-vertices decreases in these DDRMF models
with increasing density more rapidly in the isovector channel
than in the isoscalar channel. Therefore, at higher density, these
models produce weaker repulsion generated by vector mesons
and thus the equation of state (EOS) of DDRMF models is
softer than in other RMF models. Both models have been
extremely successful in the global description of ground-state,
single-particle, and collective properties of nuclei all over the
periodic table [10,18–20].

Comparing with nonrelativistic density functionals, there
are some advantages for using covariant functionals, i.e., RMF
models when studying properties of finite nuclei. An important
example is the relativistic quenching of the isoscalar attraction
in these models, which provides a very simple saturation
mechanism. In nonrelativistic models a phenomenological
contact term has to be introduced, which is strongly density
dependent. Also very important is the fact that the large spin-
orbit splitting in finite nuclei is a relativistic effect and therefore

it is included in relativistic models in a natural way without any
further adjustment of the parameters. Already the simplest σω-
model with only two parameters determined by the saturation
properties of nuclear matter produces a spin-orbit term with the
right sign and the proper size. These advantages are features
which have to be built into nonrelativistic models at the cost
of additional phenomenological parameters.

In all density functionals, relativistic or nonrelativistic,
the effective interactions are determined to a large extent by
observed properties of nuclei in and close to the valley of
stability. Therefore, there remains room for discussions as to
whether the isospin dependence of these effective interactions
is appropriate and also as to whether they can be extrapolated
to nuclei with extreme conditions of isospin and/or density.

In such a situation, Serra et al. [21] proposed in a
fully microscopic investigation to derive the parameters of
DDRMF models directly from the nucleon-nucleon (NN)
interaction. The G-matrix calculated from the bare nucleon-
nucleon interaction of Tamagaki et al [22] was used to derive
the parameters of a RMF model. Independently from the
properties of specific finite nuclei, one is able in this way
to determine not only the density dependence of the meson-
nucleon couplings, but also that of the meson masses in all four
meson channels, scalar/vector as well as isoscalar/isovector.
On the other hand, the density dependence determined in
this fully microscopic way appeared rather similar to that of
phenomenological models obtained by fitting to finite nuclei
[14,15]. This microscopic model is, however, not sufficiently
good to reproduce experimental data in finite nuclei or in
nuclear matter. In particular there is no saturation, because
the model of Serra et al. [21] is not designed to take into
account, to a sufficient accuracy, the behavior of the effective
nucleon-nucleon (NN) forces at short distances.

In this paper, we first construct a DDRMF model along
the same line as proposed by Serra et al. [21]. Since the
short-range behavior of effective forces is determined by
physical processes at higher momentum transfer, we use
a philosophy similar to the one in the chiral perturbation
theory, and introduce phenomenological zero-range forces
so as to describe the short-range behavior. In addition we
adjust the density dependence of our model parameters not
only to the parameter-free G-matrix results obtained from the
NN-potential, as it was done by Serra et al. [21], but also to the
density dependence of the EOS in symmetric nuclear matter.
In this way we obtain a model, which describes not only the
effective nuclear force, but also the density dependence of
symmetric nuclear matter including its saturation properties.
This model is then examined for two applications. First, we
investigate the properties of asymmetric nuclear matter and
find excellent agreement with the microscopic calculations
of Freedman and Phandaripande [23] up to relatively high
densities. Secondly, we use this EOS for the calculation of
neutron stars and the corresponding mass limitations.

The paper is organized as follows. In Sec. II we introduce
the one meson exchange part of our model and we discuss
how the resulting interactions can be compared with the
nonrelativistic G-matrix potentials derived from the bare NN
interaction. In Sec. III we present analytical formulas for the
calculation of the corresponding OME energies expanding up
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to the fourth order in kf /M . The point coupling terms are
introduced in Sec. IV, and in Sec. V we determine the pa-
rameters of the model and discuss their density dependencies.
In Sec. VI we apply our model to the asymmetric nuclear
matter and compare it with other theories on this subject.
As an application of the EOS thus obtained, we consider in
Sec. VII neutron stars and discuss their properties. Section VIII
contains a summary and an outlook to future applications of
this model.

II. THE MESON EXCHANGE POTENTIAL

We first discuss the one-meson exchange part of our model.
Its Lagrangian is given by

LOME = ψ̄(iγ µ∂µ − M)ψ + 1

2

(
∂µσ∂µσ − m2

σ σ 2
)

+ 1

2

(
∂µ�δ∂µ

�δ − m2
δ
�δ2

) + 1

2

(
∂µ �π∂µ �π − m2

π �π2
)

+
[
−1

4
ωµνωµν + 1

2
m2

ωωµωµ

]

+
[
−1

4
�ρµν �ρµν + 1

2
m2

ρ �ρµ �ρµ

]
− gσ ψ̄ψσ − gδψ̄ �τψ �δ

−gωψ̄γ µψωµ − gρψ̄γ µ�τψ �ρµ − fπ

mπ

ψ̄γ5γ
µ�τψ∂µ �π

− fρ

4M
ψ̄

i

2
[γ µ, γ ν]�τψ �ρµν (1)

with

ωµν ≡ ∂µων − ∂νωµ, �ρµν ≡ ∂µ �ρν − ∂ν �ρµ. (2)

This Lagrangian contains an isoscalar scalar σ -field, an
isovector scalar δ-field, an isovector pseudoscalar π -field
(pseudovector coupling), and an isoscalar vector ω-field (only
vector coupling), and an isovector vector ρ-field (vector and
tensor couplings). As compared to many other RMF models
we here include a δ-meson field, a π -meson field with the
pseudovector coupling, and a tensor coupling term for the
ρ-meson.

Since our parameters (masses and coupling constants) are
density dependent, we do not take into account additional
nonlinear self-coupling terms for the σ or ω meson. We also
neglect a tensor coupling of the ω meson although we introduce
a pseudovector coupling of the π meson and a tensor coupling
of the ρ meson. We adopt this “unbalanced” Lagrangian for
two reasons. First, the contribution from the tensor coupling
term of the ω meson is negligible when we use the known
value for fω (fω/gω = −0.12). Second, the contributions from
these two terms turn out to be negligibly small if we allow
the corresponding parameters to be adjusted by a free fit as
discussed below.

The parameters of the OME part are determined by
comparing with the nonrelativistic G-matrix derived from the
bare NN interaction of Tamagaki et al. [22]. For this purpose we
have to perform a nonrelativistic reduction of the RMF terms
in Eq. (1). We choose this reduction because non-relativistic

G-matrix calculations are well under control and therefore
we expect to obtain in this way reliable information on the
properties particularly in the isospin T = 1 channel, which is
difficult to access in phenomenological fits of RMF parameters
based primarily on data of nuclei on or close to the stability
line.

We treat the masses and coupling constants of the mesons
as adjustable parameters. These parameters are determined
by comparing the radial shape of the G-matrix potentials, as
explained below, with that of the OME potentials derived from
the RMF Lagrangian after a nonrelativistic reduction. Since
the results of the G-matrix calculations include medium effects
and depend therefore on the density, we find in this way density
dependent masses and couplings naturally.

Starting from the bare NN interaction of Tamagaki and
Takatsuka [22] which was fitted to reproduce NN scattering
data up to 350 [MeV] and by adopting Brueckner’s G-matrix
formalism [24], we derived a realistic effective interaction in
nuclear matter. The introduction of the G-matrix is necessitated
by the singular nature of the two-body forces at short distances,
namely, the repulsive core and the existence of a strong
noncentral part. Usually the G-matrix is given in terms of
matrix elements in a certain configuration space. The method
of Nagata, Bando, and Akaishi [25] allows us to represent
the G-matrix not only in terms of matrix elements but in a
local approximation also in the form of an effective two-body
potential depending on the relative coordinate r = r1 − r2 as
well as spin and isospin variables. The actual potentials are
represented as appropriate superpositions of various Gaussian
functions centered at the origin. These potentials depend on the
nuclear density. At the densities relevant for this investigation
this local approximation of the G-matrix is in good agreement
with the full G-matrix

Since we are interested, at this point, in the inclusion of
the basic features of realistic interactions at medium and
long distances, it is not necessary to represent the G-matrix
very precisely at short distances. Therefore, the potential
representation scheme in Ref. [25] plays a very essential
role. The bare potential is taken from Ref. [22], though other
realistic potentials could have been used too.

In Figs. 1 and 2, we show the G-matrix potentials (Akaishi
potential [21]) in the 1O, 3O, 1E, and 3E channels as a function
of the internucleon distance. We see that the 3E potential
becomes strongly attractive due to the renormalization of the
bare tensor force. Without it, the 3E potential is less attractive
than the 1E potential by a factor of two. The 3E potential
also has a stronger density dependence than the 1E potential,
and this difference has its origin almost completely in the
renormalization of the bare tensor force. Clearly these two
potentials, 1E and 3E, give the main contribution to the nuclear
binding, because the other terms like the LS interaction are
rather weak on the whole.

Using the projections operators �
σ (τ )
s(t) onto the singlet (s)

and triplet (t) parts of the nucleon two-body wave functions
in spin (σ ) and isospin (τ ) space we decompose the central
potential Vc to the form

Vc(r) = Vte(r)�σ
t �τ

s + Vse(r)�σ
s �τ

t

+Vto(r)�(r)σt �τ
t + Vso(r)�σ

s �τ
s . (3)
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FIG. 1. G-matrix potentials in the 1O, 3O,
and 1E channels. Dashed, solid, and dashed-
dotted lines represent the potentials at the den-
sity, kf = 1.0 fm−1, kf = 1.4 fm−1, and kf =
1.8 fm−1, respectively.

Replacing the projection operators by spin and isospin opera-
tors, Vc can be rewritten as follows:

Vc(r) = V0(r) + Vσ (r)σ · σ + Vτ (r)τ · τ

+Vστ (r)(σ · σ )(τ · τ ). (4)

The potentials, V0,Vσ ,Vτ , and Vστ can be expressed in terms
of the potentials Vte,Vse,Vto, and Vso as

V0 = 1
16 (3Vte + 3Vse + 9Vto + Vso),

Vσ = 1
16 (Vte − 3Vse + 3Vto − Vso),

(5)
Vτ = 1

16 (−3Vte + Vse + 3Vto − Vso),

Vστ = 1
16 (−Vte − Vse + Vto + Vso).

In Fig. 3, the local potentials V0,Vσ ,Vτ ,Vστ , the two-body
LS potential VLS, and the tensor potential VT are plotted as
a function of the relative distance r for three values of the
density.

In order to compare an RMF model with the realistic ef-
fective interaction in the medium, we start with the relativistic
OME amplitudes in momentum space [26]. The Lagrangian in

Eq. (1) leads to the following OME amplitudes:

〈q′λ′
1λ

′
2|V OME

σ,δ |qλ1λ2〉 = − g2
φ

(q′ − q)2 + m2
φ

ū(q′, λ′
1)u(q, λ1)

× ū(−q′, λ′
2)u(−q, λ2),

〈q′λ′
1λ

′
2|V OME

π |qλ1λ2〉 = − (fπ/mπ )2

(q′ − q)2 + m2
φ

ū(q′, λ′
1)γ5γ

µ

× (q ′ − q)µu(q, λ1)ū(−q′, λ′
2)γ5γ

ν(q ′ − q)νu(−q, λ2),

〈q′λ′
1λ

′
2|V OME

ω,ρ |qλ1λ2〉 = 1

(q′ − q)2 + m2
φ

×
[
gφū(q′, λ′

1)γµu(q, λ1) − fφ

2M
ū

× (q′, λ′
1)

1

2
[γµ, γν](q ′ − q)νu(q, λ1)

]

×
[
gφū(−q′, λ′

2)γµu(−q, λ2) + fφ

2M
ū(−q′, λ′

2)

× 1

2
[γµ, γν](q ′ − q)νu(−q, λ2)

]
, (6)
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FIG. 2. G-matrix potential in the 3E channel.
In the left (right) figure, the tensor interac-
tion is excluded (included). Dashed, solid, and
dashed-dotted lines represent the potentials at
the density, kf = 1.0 fm−1, kf = 1.4 fm−1, and
kf = 1.8 fm−1, respectively. In the left figure
they are on top of each other.
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FIG. 3. G-matrix potentials as a function
of the relative distance r . Dashed, solid, and
dashed-dotted lines represent the potentials at
the density, kf = 1.0 fm−1, kf = 1.4 fm−1, and
kf = 1.8 fm−1, respectively.

where λ denotes the helicity. From here on, φ represents the
various mesons (φ = σ, δ, π, ω, ρ) and for simplicity, we do
not write isospin operator τ 1·τ 2 explicitly. In order to simplify
the expressions we use Dirac spinors in the representation

u(q, s) =
(

E + M

2M

)1/2 (
1

σ ·q
E+M

)
χs, (7)

with the Pauli spinor χs . We define two momentum variables
p and k as

p = 1
2 (q′ + q), k = q′ − q. (8)

Using Eq. (7) and expanding in a standard nonrelativistic
reduction in powers of p/M and k/M , we obtain the following
reduced expression in momentum space:

Vσ,δ = − g2
φ

k2 + m2
φ

[
1 − p2

2M2
+ k2

8M2
− i

2M2
S · (k×p)

]
,

Vπ = − f 2
π

m2
π

(σ 1 · k)(σ 2 · k)

k2 + m2
π

,

Vω,ρ = 1

k2 + m2
φ

[
g2

φ

[
1 + 3p2

2M2
− k2

8M2
+ 3i

2M2
S · (k×p)

− σ 1 · σ 2
k2

4M2
+ 1

4M2
(σ 1 · k)(σ 2 · k)

]

+ gφfφ

2M

[
−k2

M
+ i

4M
S · (k×p) − σ 1 · σ 2

k2

M

+ 1

M
(σ 1·k)(σ 2 · k)

]

+ f 2
φ

4M2

[
−σ 1·σ 2k2 + (σ 1 · k)(σ 2 · k)

]]
, (9)

where S = 1
2 (σ 1 + σ 2) is the total spin of the two-nucleon

system. In Eq. (9), nonlocalities arise due to the p and k×p
terms. The p terms provide Y∇ + ∇Y terms in coordinate
space (Y is a Yukawa function) and the k×p terms lead to
the orbital angular momentum operator. Neglecting p terms,
which give only small contributions to the EOS, and contact
interaction terms in coordinate space, a standard Fourier
transformation is performed. We then obtain the nonrelativistic
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OME potentials in coordinate space,

V0 = mω

4π
gω

2

[
1 + 1

2

(mω

M

)2
]

Y (mωr)

− mσ

4π
gσ

2

[
1 − 1

4

(mσ

M

)2
]

Y (mσr),

Vσ = mω

24π
gω

2
(mω

M

)2
Y (mωr),

Vτ = mρ

4π
gρ

2

[
1 + 1

2

(
1 + fρ

gρ

) (mρ

M

)2
]

Y (mρr)

− mδ

4π
gδ

2

[
1 − 1

4

(mδ

M

)2
]

Y (mδr),

Vστ = mρ

24π
gρ

2

(
1 + fρ

gρ

)2 (mρ

M

)2
Y (mρr)

+ mπ

3

(
fπ

2

4π

)
Y (mπr),

VLS = −mσ

8π
gσ

2Z1(mσr) − 3mω

8π
gω

2Z1(mωr)

− mδ

8π
gδ

2Z1(mδr) − 3mρ

8π
gρ

2

(
1 + 4fρ

3gρ

)
Z1(mρr),

VT = − mω

48π
gω

2Z(mωr) −
(

fπ
2

4π

)
mπZ(mπr)

+ 3mρ

48π
gρ

2

(
1 + fρ

gρ

)2

Z(mρr). (10)

Here, we define Y,Z, and Z1 as

Y (mr) ≡ exp[−mr]/mr,

Z(mr) ≡
( m

M

)2
(

1 + 3

mr
+ 3

m2r2

)
Y (mr), (11)

Z1(mr) ≡
( m

M

)2
(

1

mr
+ 1

m2r2

)
Y (mr).

In Eq. (10), V0,Vσ ,Vτ , and Vστ are local potentials and are
defined as the radial part of each channel of the central potential
Vc [see Eq. (4)]. On the other hand, VLS and VT are nonlocal
potentials. The potentials VLS and VT in Eq. (10) are written
in the form projected onto the 3E channel.

III. ENERGIES IN NUCLEAR MATTER

In this section we present a method for calculating the
energy per particle. For a Fermi gas of symmetric nuclear
matter the density ρ and the Fermi momentum kf are related
by

ρ = 2

3π2
k3
f . (12)

For asymmetric nuclear matter, where the densities ρp and
ρn for protons and neutrons and the corresponding Fermi
momenta kp and kn are different, the asymmetry parameter
is usually used

α = ρn − ρp

ρn + ρp

(13)

with the relations

kp = kf (1 − α)1/3 and kn = kf (1 + α)1/3. (14)

Following the notation that φ stands for one of the various
mesons (φ = σ, δ, π, ω, ρ), we introduce the following ab-
breviations:

upφ ≡ kp

mφ

, unφ ≡ kn

mφ

, uφ ≡ kf

mφ

. (15)

In the calculations of nuclear matter with a finite density,
the propagator for a nucleon with the four-momentum pµ =
(p0, p) and the mass M in the nuclear medium takes the form

i

(2π )4
( /p + M)

[
1

p2 − M2 + iε

+ 2iπδ(p2 − M2)θ (p0)θ (kf − |p|)
]
. (16)

It is comprised of the vacuum part and a medium insertion.
Diagrams including no medium insertion lead to an unobserv-
able shift of the vacuum energy. Diagrams including only one
medium insertion just renormalizes the nucleon mass to the
observed value M , because they include one single on-shell
delta function. Therefore, we only calculate diagrams with two
medium insertions.

Equation (16) is applied to isospin-symmetric nuclear
matter. When dealing with isospin-asymmetric nuclear matter,
we have to replace the second part as

θ (kf − |p|) → 1 + τ3

2
θ (kp − |p|) + 1 − τ3

2
θ (kn − |p|). (17)

One of the contributions to the energy per particle

Ē = E

A
(18)

is the kinetic energy of a noninteracting relativistic Fermi gas
of nucleons

Ēkin(kp, kn) = 2

ρ

∑
τ=p,n

∫
p<kτ

d3p

(2π )3

(√
p2 + M2 − M

)
,

(19)

where the index τ in the sum runs over protons and neu-
trons. We apply a nonrelativistic approximation and expand√

M2 + p2 − M in powers of p/M . Integrating over the Fermi
spheres of protons and neutrons, one obtains

Ēkin(kp, kn) = M

u3
pM + u3

nM

[
3

10

(
u5

pM + u5
nM

)

− 3

56

(
u7

pM + u7
nM

)]
. (20)

Here, like Eq. (15) in the case of mesons, we introduce the
abbreviations

upM ≡ kp

M
, unM ≡ kn

M
, uM ≡ kf

M
. (21)

Using the two diagrams in Fig. 4, we calculate the OME
energy per particle in nuclear matter. These are diagrams with
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FIG. 4. One meson exchange Hartree diagram (left) and Fock
diagram (right). Solid and dashed lines represent a nucleon and each
meson (σ, δ, π, ω, ρ), respectively.

two medium insertions. Thus, two-loop integration becomes
the integration in Fermi sphere, and no divergence appears.
Performing an 1/M-expansion of the complete integrand, it
becomes possible to integrate analytically. We then obtain the
OME contributions to the energy per particle

ĒOME(kp, kn) =
∑

φ=σ,δ,ω,ρ,π

Ēφ(kp, kn) (22)

with

Ēφ(kp, kn) =
∑
ττ ′

C
φ

H (ττ ′)Eφ

H (uτ φ, uτ ′φ)

+C
φ

F (ττ ′)Eφ

F (uτ φ, uτ ′φ). (23)

The coefficients, C
φ

H,F (pp) = C
φ

H,F (nn) and C
φ

H,F (pn) are
statistical factors describing the isospin dependence with
actual values being given in Table I. The indices H and F

denote the contribution from Hartree and Fock diagrams from
each meson, respectively.

The energies E
φ

H and E
φ

H are shown explicitly in Eq. (24).
Eπ

H vanishes, because the momentum which π meson carries
is zero,

E
σ,δ
H (upφ, unφ) = − 3g2

φmφ

64π2u3
φ

[
f1(upφ, unφ) −

(
mφ

M

)2

× f2(upφ, unφ) +
(

mφ

M

)4

f5(upφ, unφ)

]
,

E
ω,ρ

H (upφ, unφ) = 3g2
φmφ

64π2u3
φ

f1(upφ, unφ),

E
σ,δ
F (upφ, unφ) = 3g2

φmφ

128π2u3
φ

[
f3(upφ, unφ)

+ 1

4

(
mφ

M

)2

[f1(upφ, unφ)

− f3(upφ, unφ) − 2f4(upφ, unφ)]

− 1

8

(
mφ

M

)4

[2f2(upφ,unφ) −f4(upφ,unφ)]

]
,

TABLE I. Isospin dependent factors C
φ

H (ττ ′) for the Hartree
contribution and C

φ

F (ττ ′) for the Fock one.

C
φ

H (pp) C
φ

H (pn) C
φ

F (pp) C
φ

F (pn)

φ = σ, ω 1 1 1 0
φ = δ, ρ, π 1 −1 1 2

Eω
F (upω, unω) = − 3g2

ωmω

128π2u3
ω

[
f3(upω, unω)

− 1

2

(
mω

M

)2

[f1(upω, unω) − f3(upω, unω)

+ f4(upω, unω)]

+ 1

4

(
mω

M

)4

[2f2(upω, unω)

− f4(upω, unω)]

]
,

E
ρ

F (upρ, unρ) = − 3g2
ρmρ

128π2u3
ρ

[
f3(upρ, unρ)

− 1

2

(
mρ

M

)2

[f1(upρ, unρ)

−f3(upρ,unρ) + f4(upρ,unρ)] + 1

4

(
mρ

M

)4

× [2f2(upρ, unρ) − f4(upρ, unρ)]

]

+ 9gρfρmρ

256π2u3
ρ

[(
mρ

M

)2

[f1(upρ, unρ)

− f3(upρ, unρ)] − 1

2

(
mρ

M

)4

× [2f2(upρ, unρ) − f4(upρ, unρ)]

]

+ 3f 2
ρ mρ

256π2u3
ρ

[(
mρ

M

)2

[f1(upρ, unρ)

− f3(upρ, unρ)] − 1

2

(
mρ

M

)4

× [2f2(upρ, unρ) − f4(upρ, unρ)]

]
,

Eπ
F (upπ , unπ ) = 3f 2

π mπ

128π2u3
π

[
[f1(upπ , unπ ) − f3(upπ , unπ )]

− 1

2

(
mπ

M

)2

[2f2(upπ , unπ )

− f4(upπ , unπ )]

]
. (24)

The functions, f1(upφ, unφ) ∼ f5(upφ, unφ) in Eq. (24) are
defined as

f1(upφ, unφ) ≡ 16
9 u3

pφu3
nφ,

f2(upφ, unφ) ≡ 8
15u3

pφu3
nφ

(
u2

pφ + u2
nφ

)
,
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f3(upφ, unφ) ≡ 2upφunφ

(
u2

pφ + u2
nφ

) − 2
3upφunφ

+ 8
3

(
u3

pφ − u3
nφ

)
tan−1[upφ − unφ]

− 8
3

(
u3

pφ + u3
nφ

)
tan−1[upφ + unφ]

− [
1
2

(
u2

pφ − u2
nφ

)2 − (
u2

pφ + u2
nφ

) − 1
6

]
× [ln[1 + (upφ + unφ)2]

− ln[1 + (upφ − unφ)2]],

f4(upφ, unφ) ≡ 2
9upφunφ

(
9u4

pφ + 2u2
pφu2

pφ + 9u4
nφ

)
− 18

5 upφunφ

(
u2

pφ + u2
nφ

) + 4
15upφunφ

+ [
16
5

(
u5

pφ − u5
nφ

) − 8
3

(
u3

pφ − u3
nφ

)]
× tan−1[upφ − unφ]

+ [ − 16
5

(
u5

pφ + u5
nφ

) + 8
3

(
u3

pφ + u3
nφ

)]
× tan−1

[
upφ + unφ

]
− [

1
2

(
u2

pφ + u2
nφ

)(
u2

pφ − u2
nφ

)2

− 2
(
u4

pφ + u4
nφ

) + 1
2

(
u2

pφ + u2
nφ

) + 1
15

]
× (

ln
[
1 + (

upφ + unφ

)2]
− ln

[
1 + (

upφ − unφ

)2]]
,

f5(upφ, unφ) ≡ u3
pφu3

nφ

(
2
7u4

pφ + 4
25u2

pφu2
nφ + 2

7u4
nφ

)
. (25)

IV. POINT COUPLING TERMS

Based on the expressions (24) for the binding energy
which, so far, includes only OME terms we first tried to
obtain a reasonable EOS using the density-dependent meson
parameters obtained in Ref. [21], which reproduce rather
well the behavior of the G-matrix at intermediate and large
distances. However, within such an approach, it turned out
to be impossible to find satisfactory saturation properties.
Because of the large cancellations between repulsive and
attractive effects from the Lagrangian, there are many sets
of parameters giving almost equal fitting to the G-matrix
potentials but producing different results for other relevant
quantities. Thus, in the next step, we tried to adjust the
parameters of the Lagrangian (1) in such a way that they
reproduce the G-matrix potentials at intermediate distances
and simultaneously an appropriate EOS for symmetric nuclear
matter. Again it remains impossible to obtain satisfactory
saturation properties because of the large uncertainties in the
short-range behavior of the G-matrix potentials. The short-
range part plays an important role in the process of saturation
and it is obviously not reproduced properly by the OME form
of the potentials in our model. When comparing the G-matrix
potentials with OME potentials, we neglect as in Ref. [21] the
region of small distances, typically, r < 0.8 fm. However, in
the calculation of the energy per particle in nuclear matter, the
information originating from this region is included. Therefore
we cannot find a parameter set to reproduce simultaneously
the nuclear matter energy and the G-matrix potentials. In
addition it is not fully clear whether the G-matrix itself

provides a reasonable description of the effective force at short
distances, i.e., for typically r < 0.8 fm.

We therefore introduce the following additional coupling
terms describing the short-range corrections:

LPC = −ασ (ψ̄ψ)2 − αω(ψ̄γ µψ)2

−αδ(ψ̄ �τψ)2 − αρ(ψ̄γ µ�τψ)2 (26)

and add them to the Lagrangian of finite range interactions in
Eq. (1). These terms in Eq. (26) are supposed to represent var-
ious effects at small distances which cannot be renormalized
into the density-dependent OME part of the Lagrangian. The
total Lagrangian thus takes the form

L = LOME + LPC. (27)

Since there is no detailed knowledge about the physical origin
of this short-range part, we use a point coupling ansatz and
adjust it to chiral perturbation theory. In Ref. [4], it has been
shown by chiral perturbation theory (ChPT) that the short-
range contributions to the energy per particle depend mainly
on a cut-off parameter �. The diverging part of the energy per
particle has the form

Ē�(kf , kf ) = 1

12π2

[
(−15A(�) + 3B(�))u3

π

+ (C(�) + D(�))u5
π

]
(28)

for symmetric nuclear matter and

Ē�(0, kn) = 1

12π2

[
(−A(�) − B(�))u3

nπ + C(�)u5
nπ

]
, (29)

for pure neutron matter. The functions A(�), B(�), C(�), and
D(�) are defined as

A(�) = 1

32π2
g4

A

m3
πM�

f 4
π

,

B(�) = 1

64π2

(
3g2

A + 1
)(

g2
A − 1

)m3
π�2

f 4
π

− 1

64π2

(−15g4
A + 6g2

A + 1
)m5

π

f 4
π

ln

[
mπ

2�

]
, (30)

C(�) = 1

320π2

(−13g4
A − 10g2

A − 1
)m5

π

f 4
π

ln

[
mπ

2�

]
,

D(�) = 1

160π2

(
23g4

A − 10g2
A − 1

)m5
π

f 4
π

ln

[
mπ

2�

]
.

Here, gA is the nucleon axial vector coupling constant with
a value, gA = 1.26, and fπ is the weak pion decay constant,
fπ = 92.4 MeV.

The contribution to the energy in nuclear matter calculated
from the Lagrangian (26) has, in a nonrelativistic expansion
up to forth order in kf /M , the form

ĒPC(kp, kn) = m3
π

24π2u3
π

[
(2ασ + 2αω + 2αδ

+ 2αρ)
(
u6

pπ + u6
nπ

)
+ (8ασ + 8αω − 16αδ − 16αρ)u3

pπu3
nπ
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− 3

5

(
mπ

M

)2

(3ασ − 4αω + 3αδ

− 4αρ)
(
u8

pπ + u8
nπ

)
− 3

5

(
mπ

M

)2

(4ασ − 6αδ − 8αρ)u3
pπu3

nπ

× (
u2

pπ + u2
nπ

)]
. (31)

Comparing Eq. (31) with Eqs. (28) and (29), we see that they
become identical, if we choose our parameters as

ασ (�) = 1

m3
π

[
30

7
A − 12

7
B −

(
M

mπ

)2 (
5

6
C − 5

21
D

)]
,

αω(�) = 1

m3
π

[
−81

14
A + 12

7
B +

(
M

mπ

)2 (
5

6
C − 5

21
D

)]
,

αδ(�) = 1

m3
π

[
−32

7
A + 10

7
B +

(
M

mπ

)2 (
5

6
C − 10

21
D

)]
,

αρ(�) = 1

m3
π

[
39

7
A − 27

14
B −

(
M

mπ

)2 (
5

6
C − 10

21
D

)]
.

(32)

In the following, we adopt this choice for the parameters
ασ . . . αρ . Finally we obtain, for the energy derived from the
point coupling Lagrangian (26), the following expression:

ĒPC(kp, kn) = 1

24π2u3
π

[ − (A(�) + B(�))
(
u6

pπ + u6
nπ

)
− (28A(�) − 8B(�))u3

pπu3
nπ

+C
(
�)

(
u8

pπ + u8
nπ

)
+D(�)u3

pπu3
nπ

(
u2

pπ + u2
nπ

)]
. (33)

It contains only one free parameter � which does not depend
on the density. It will be determined by adjusting to the energy
per particle of symmetric nuclear matter as a function of the
density in the next section.

Schiller and Müther [27] used a different way to take into
account the effects of many-body correlations in the nuclear
medium. They decomposed the G-matrix G = V + �G into
the bare interaction V and a term �G, which takes into account
the correlations in the many-body system. �G is parametrized
as a meson-exchange with very heavy mesons by zero range
forces and the coupling constants in the four spin-isospin
channels are adjusted to the G-matrix.

V. THE DETERMINATION OF THE PARAMETERS OF
THE MODEL

In this section, we discuss the choice of the parameters
included in the present model. These are the masses mφ(ρ) and
the coupling constants gφ(ρ) of the four mesons φ = σ, δ, ω,
and ρ, which depend on the density and the cutoff-parameter
� in the point coupling part LPC. Note that � does not depend
on the density. For the pion we adopt the bare values, i.e
mπ = 137.0 MeV and f 2

π /4π = 0.081 for the mass and the

TABLE II. Ranges of the
G-matrix potentials used for the
fitting in units of fm.

V0: 0.8 < r < 2.0
Vσ : 1.2 < r < 2.0
Vτ : 0.8 < r < 2.0
Vστ : 1.1 < r < 2.0
Vls : 0.8 < r < 2.0
Vtensor: 0.6 < r < 2.0

coupling constant. The tensor coupling for the ρ-meson is kept
fix at fρ/gρ = 6.10, a value determined from the ππ→NN̄

partial wave dispersion analysis of Ref. [28].
We determined the parameters mφ(ρ) and the coupling

constants gφ(ρ) at the densities given by the Fermi momenta
kf = 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0 fm−1 by fitting the radial
dependence of the OME-potentials to the G-matrix potentials.
The ranges used for the fit are given in Table II. Table II clearly
indicates that only intermediate- and long-distance properties
of NN interactions are included in the fit. It turns out that the
σ -meson depends very weakly on the density. The parameters
of the δ-meson increase gradually, and those for the ω- and
ρ-meson decrease slowly as the density increases. As dis-
cussed in the previous section, in this work we determine
the meson parameters (and the cutoff parameter �) not
only adjusting to the G-matrix potentials, but also to the
EOS of symmetric nuclear matter. For that purpose we need
an analytic expression for the density dependence of the
meson-parameters. In order to reproduce the features found
in Ref. [21] we choose the following functional form:

gφ(kf ) = a
kf

ln
[
b2k2

f + 1
] + c,

(34)
mφ(kf ) = a

kf
ln

[
b2k2

f + 1
] + c,

which contain for each meson six parameters a, b, and c (three
for the coupling g and three for the mass m). Note that a for
g and a for m are different and independent. Assuming this
form for the density dependence, we adjust the 24 parameters
a, b, c and the density independent cutoff parameter � for
each density in such a way that at each density (kf = 1.0, 1.2,
1.4, 1.6, 1.8, and 2.0 fm−1):

(i) the OME potentials reproduce the radial dependence of
the G-matrix potentials in the ranges given in Table II
and

(ii) the energy per particle for symmetric nuclear matter
calculated with the full Lagrangian (27) reproduces the
value of the EOS calculated with the Gogny force GT2
derived in Refs. [29,30].

The GT2 interaction, which we choose as a guideline,
is an improved Gogny-type interaction with some changes,
e.g., the inclusion of a tensor interaction. The GT2 interaction
reproduces the isospin dependence of shell structures [29,30]
more precisely. Thus this interaction is suitable for the study
of exotic nuclei, while its EOS does not differ from the one
obtained from the D1S interaction [31] for symmetric nuclear
matter. Note that we used GT2 rather than D1S, because the
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TABLE III. Parameters of the present model. The parameters,
a, b, and c describe the density dependence as defined in Eq. (34).

a b c

mσ 62.129 1.3274 420.298
mω −1337.38 0.3083 883.319
mδ 928.809 1.1301 430.616
mρ −1211.25 0.2924 856.712
gσ 39.435 0.0019 10.193
gω −18.774 0.4256 17.692
gδ 50.700 0.3828 3.823
gρ −16305.8 0.0031 2.903
fρ/gρ − − 6.10
mπ − − 137.0
fπ/4π 2 − − 0.081
M − − 939.0
� − − 300.832

former produces a better result for the incompressibility than
the latter.

The parameters a, b, and c in Eq. (34) found in this
investigation are shown in Table III. The parameters,
fρ/gρ,mπ, fπ/4π2, and M are fixed to the values listed
in the table. The cutoff � is treated as a free parameter.
However, it has no density dependence. The results for the
density dependence of the masses and the coupling constants
of the mesons are shown in Figs. 5 and 6. The density
dependencies of the ω and ρ meson mass are very similar.
Both masses decrease with increasing density. This tendency
is consistent with requirements of chiral symmetry and QCD
oriented models [32–34]. What is practical between the present
model and other DDRMF models [13–15] is the fact that the
density dependence of the parameters of the present model
is weaker. The origin for this is the inclusion of the point
coupling interactions. As discussed in Sec. VII, the present
model produces a softer EOS than other RMF models [35]

due to the decrease of the vector meson parameters and the
weak density dependence of the σ meson. The parameters of
the present model are also consistent with other RMF models
at the saturation point. These values at the saturation density
kf 0 = 1.35 fm−1 (which corresponds to ρ0 = 0.165 fm−3) are
listed in Table IV. For comparison we list also the parameters
of some RMF models [7–9], with nonlinear meson-couplings
and with density dependent coupling constants [15]. Many
parameters are almost the same as the corresponding ones
in these RMF models. However, in the present model, gρ is
apparently smaller than that in the other RMF models. The
reason for this difference is that we have included also the δ

meson as well as a tensor term for the ρ meson in the model.
This is not the case in the other models, where the isospin
dependence is carried by the ρ meson alone.

The cutoff parameter � becomes � = 300.8 MeV.
This value is considerably lower than the value of � =
646.3 MeV adopted in the model of Ref. [4] based on chiral
perturbation theory. However, in our calculation, the point
coupling contribution added in the Lagrangian LPC in Eq. (26)
is not necessarily equal to the full short-range contribution. The
short-range contribution from the OME part is rather sizable.
It deviates considerably from the short-range contribution of
the G-matrix and the point coupling part works as a correction
to the short-range contribution of the OME part. This is the
reason for the difference between the cutoff parameter � of
the present model and the cutoff scale of chiral perturbation
theory obtained in Ref. [4].

In Fig. 7 we show the radial dependencies of the OME
for the density with kf = 1.4 fm−1. The results at kf =
1.0 fm−1 and kf = 1.8 fm−1 are vary similar. At each density
the OME potentials are in good agreement with the G-matrix
potentials. It turns out to be very important to introduce the
isovector mesons (π and δ), and the tensor coupling of the
ρ meson in order to reproduce the potentials Vτ (r) and VT (r).
All these terms depend on isospin and therefore we expect
that these terms play a crucial role for the description of

TABLE IV. Comparison for the parameters between the present model and four RMF models [7–9,
15]. The meson masses and the coupling constants are density dependent in our model we therefore give
the values at the point of saturation. The cutoff parameter � does not depend on the density.

Parameter present model NL1 NL-SH NL3 DD-ME2
(kf 0 = 1.35 fm−1)

M [MeV] 939.0 938.0 939.0 939.0 939.0
mσ [MeV] 486.450 492.25 526.059 508.194 550.1238
mδ [MeV] 1257.310 – – – –
mπ [MeV] 137.0 – – – –
mω [MeV] 725.467 795.359 783.0 782.501 783.0
mρ [MeV] 727.128 763.0 763.0 763.0 763.0
gσ 10.193 10.138 10.444 10.217 10.5396
gδ 12.688 – – – –
f 2
π

4π
0.081 – – – –

gω 13.735 13.285 12.945 12.868 13.0189
gρ 2.698 4.976 4.383 4.474 3.6836
fρ

gρ
6.10 – – – –

� [MeV] 300.8 – – – –
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FIG. 5. Density dependence of each meson
mass. From the left to the right and from the
top to the bottom, the pictures represent the
density dependence of mσ , mδ, mω, and mρ ,
respectively.

isospin properties of nuclei far from the valley of stability.
In fact, the importance of these terms has been already
found in a study within the shell model. The significant
change of the shell structures, called shell evolution, has been
presented as a result of the spin-isospin interaction [36–39].
The same scenario can be applied in the case of nonrelativistic
Hartree-Fock calculation [29,30]. From such discussions, it
is very interesting to treat the tensor interaction explicitly. In
the case of RMF models this tensor interaction enters into the
Fock term of the derivative coupling of the π meson and of

the tensor coupling of the ρ meson. Therefore it seems to be
important to take into account these terms in the present model.

VI. NUCLEAR MATTER PROPERTIES

We now apply our model to the calculation of properties
of nuclear matter. First we concentrate on symmetric nuclear
matter. Figure 8 shows the energy per particle as a function of
the density calculated by three different methods. The full line
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FIG. 6. Density dependence of each meson-
nucleon coupling. From left to right and from
top to bottom, the pictures represent the density
dependence of gσ , gδ, gω, and gρ , respectively.
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corresponds to the results derived within the present model
obtained by the method discussed in Sec. III. It is compared
with the energy per particle based on the modified Gogny force
GT2 calculated in Ref. [40] and with results derived from the
G-matrix potentials discussed in Fig. 3. Obviously the latter
case shows no saturation within the given density range. There
are two reasons for this shortcoming. First it is well known,
that in nonrelativistic calculations without three-body forces
the saturation is achieved only at considerably larger densities
[41]. In addition we have taken into account in the G-matrix
only the density dependence arising from the Pauli projector.
We neglected in our calculations the density dependence of
the G-matrix entering through the self-consistent treatment of
the starting energy. At densities relevant for this investigation
this second density dependence is rather weak. However,
it becomes important at large densities, and so its neglect
prevents nuclear saturation in the density region shown in
Fig. 8.

The result for the energy per particle of our present model
is almost identical to that of the Gogny force GT2, because this
case has been used in order to adjust the parameters. However,
it is not trivial and it is, indeed, very important that we
reproduce simultaneously the energy per particle and the radial

dependence of the G-matrix potentials in the range of typically
r > 0.8 fm. The saturation point is kf 0 = 1.35 fm−1 (which
corresponds to ρ0 = 0.165 fm−3), and the saturation energy is
Ē(kf 0, kf 0) = 16.2 MeV. The nuclear incompressibility K is
related to the curvature at the minimum. We find

K = k2
f 0

∂2Ē(kf , kf )

∂k2
f

∣∣∣∣
kf =kf 0

= 241 MeV.

This value is in agreement with the most recent relativistic
and nonrelativistic investigations based on the experimental
breathing mode energies in finite nuclei, which find K =
250±25 MeV [5,42,43].

In Table V we show the contributions to the energy per
particle coming from the various mesons and from the point
coupling part of the Lagrangian at the saturation point. From
this table, we see that it is possible to reproduce G-matrix
potentials and saturation energy simultaneously by models
in which only σ and ω meson are included, if we neglect
the channels which carry isospin. Namely, at the saturation
density, Ēkin + Ēσ + Ēω = −9.8 MeV is in the same order of
magnitude as Ē(kf0 , kf0 ) = −16.2 MeV. On the other hand,
it is difficult to reproduce them simultaneously when we take
into account the channels carrying isospin. The reason for this

TABLE V. Contribution from each meson and point coupling part to the energy of
isospin-symmetric nuclear matter at the saturation density (kf 0 = 1.35 fm−1). The kinetic
energy at the saturation density is Ēkin = 22.2 MeV.

Attraction Repulsion Total

T = 0 Ēσ = −214.4 MeV Ēω = 182.4 MeV −32.0 MeV
T = 0, T = 1 ĒPC = −78.0 MeV Ēδ + Ēπ + Ēρ = 71.6 MeV −6.4 MeV
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TABLE VI. Contributions from Hartree and Fock terms of mesons and from the point
coupling part to the energy per particle in isospin-symmetric nuclear matter at the density
kf = 1.35 fm−1 (ρ = 0.165 fm−3) (left) and kf = 1.80 fm−1 (ρ = 0.394 fm−3) (right). The
energies are given in units of MeV.

kf = 1.35 Hartree Fock Total kf = 1.80 Hartree Fock Total

Ēkin − − 22.2 Ēkin – – 39.3
Ēσ −265.7 51.3 −214.4 Ēσ −614.9 102.6 −512.3
Ēδ 0.0 44.9 44.9 Ēδ 0.0 133.2 133.2
Ēπ 0.0 18.3 18.3 Ēπ 0.0 46.5 46.5
Ēω 227.2 −44.9 182.4 Ēω 537.2 −87.9 449.4
Ēρ 0.0 8.4 8.4 Ēρ 0.0 39.1 39.1
ĒPC −54.6 −23.4 −78.0 ĒPC −130.5 −60.0 −190.5
Total −93.0 54.6 −16.2 Total −208.1 173.5 4.8

difficulty is the too strong repulsion generated by the δ, π , and
ρ mesons which carry isospin. Therefore, it is necessary to
introduce the point coupling terms into the model. As shown
in Table V, there is nearly perfect cancellation of the large
repulsive terms originating from the mesons carrying isospin
and the attractive term resulting from the point coupling
interaction. Therefore it becomes possible to reproduce the
G-matrix potentials and the saturation energy simultaneously,
even with the mesons carrying isospin. Thus, it is necessary
to introduce point coupling terms, when we want to treat
the isospin dependence introduced by the various mesons
correctly.

The contribution to the energy per particle in isospin-
symmetric nuclear matter and pure neutron matter are shown
in Tables VI and VII for Hartree and Fock terms. From these
tables and figures one can deduce a few important facts: First,
we cannot neglect Fock terms. For the σ and ω channels the
Fock terms are smaller than the Hartree terms and there is
also the usual cancellation between attractive σ contributions
and repulsive ω contributions. However for the other three
channels with isospin (δ, π , and ρ) the Hartree term vanishes
because of isospin symmetry and the Fock terms contribute
with the same sign. Therefore, the total contribution from the
Fock terms becomes sizable compared with Hartree terms.
Of course the tensor terms do not contribute in these tables
because of spin-saturation of nuclear matter.

Fock terms become more important with increasing density.
From the tables, we see that the sum of the Fock terms increases
more rapidly than that of the Hartree terms decreases, and the
slope becomes steeper than that of the Hartree contributions.
Therefore, the total energy becomes more repulsive as the
density increases. In the present model, this rapid increase
of Fock terms plays an important role for reproducing the
saturation mechanism.

We also calculate the asymmetry energy in the present
model. Expanding the energy per particle of isospin-
asymmetric nuclear matter Ē(ρ, α) in Eq. (14) in powers of α

around α = 0,

Ē(ρ, α) = Ē(ρ, 0) + α2S2(ρ) + · · · (35)

the asymmetry energy S(ρ) is defined as the coefficient of α2:

S2(ρ) = 1

2

∂2

∂α2
Ē(ρ, α)

∣∣∣∣
α=0

. (36)

Note that the parameter α is equal to (ρn − ρp)/(ρn + ρp) =
(N − Z)/(N + Z). The result is shown in Fig. 9, where we
compare the density dependence of the asymmetry energy of
the present model with that of the G-matrix potential and with
that of the DDRMF model. We find that our model is in nearly
perfect agreement with the curve obtained with the parameter
set DD-ME1 of Ref. [14].

TABLE VII. Contributions from Hartree and Fock terms of mesons and from the point
coupling part to the energy per particle in the pure neutron matter at the density kf = 1.35 fm−1

(ρ = 0.165 fm−3) (left) and kf = 1.80 fm−1 (ρ = 0.394 fm−3) (right). The energies are given
in units of MeV.

kf = 1.35 Hartree Fock Total kf = 1.80 Hartree Fock Total

Ēkin – – 35.0 Ēkin – – 61.4
Ēσ −259.0 89.4 −169.5 Ēσ −589.8 168.1 −421.7
Ēδ −60.1 28.6 −31.5 Ēδ −179.8 82.0 −97.8
Ēπ 0.0 12.9 12.9 Ēπ 0.0 31.1 31.1
Ēω 227.2 −79.2 148.0 Ēω 537.2 −142.4 394.8
Ēρ 8.7 9.6 18.3 Ēρ 21.9 37.0 58.8
ĒPC −9.2 13.8 4.6 ĒPC −22.0 53.7 31.7
Total −92.3 75.1 17.8 Total −232.4 229.4 58.4
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FIG. 8. Energy per particle for isospin-symmetric nuclear matter.
Results of the present model (solid line) are compared with those of
the G-matrix potentials (dashed line) and those of the GT2-interaction
Refs. [29,30] (dashed-dotted line).

The asymmetry energy of the G-matrix potentials shows
deviations, in particular it increases less with density than
the other two curves. We find for the asymmetry energy at
saturation a value of S2(ρsat) ≈ 30 MeV. The close agreement
of the results obtained with our model and with the fully
phenomenologically determined parameter set DD-ME1 is
surprising. This results is not obtained by a fit to experimental
data on nuclei with mass asymmetry. Our fit contains only
information on the scattering data and on the EOS for
symmetric nuclear matter.

The symmetry energy is often approximated by a polyno-
mial around the saturation point

S2(ρ) = a4 + p0

ρ2
sat

(ρ − ρsat) + �K0

18ρ2
sat

(ρ − ρsat)
2 . . . , (37)

where a4 is the asymmetry energy at saturation. We find in
our model a4 = S2(ρsat) = 33.6 MeV. This value is in good
agreement with the empirical value of S2(ρsat) = 33.2 MeV
obtained in Ref. [44] from extensive and elaborate fitting
to nuclear masses. The parameter p0 defines the slope of
the symmetry energy curve at saturation and the parameter
�K0 is the curvature. It contributes to the incompressibility
of asymmetric nuclear matter. In Table VIII we compare
our results for these values with other relativistic models.
The nonlinear effective interactions NL1 and NL3 have
considerably larger values for a4. This has its origin in the
fact that these sets have no density dependence in the channel
carrying isospin, i.e., in the ρ channel. In a recent analysis
of neutron radii in finite nuclei Furnstahl [45] has shown
that the empirical value of rn − rp in 208Pb (0.20 ± 0.04 fm
from proton scattering data [46], and 0.19 ± 0.09 fm from
the alpha scattering excitation of the isovector giant dipole

TABLE VIII. Parameters characterizing the asymmetry S2(ρ) for
various parameter sets DD-ME1 [14], NL1 [7], and NL3 [8].

present model DD-ME1 NL1 NL3

a4 [MeV] 33.6 33.1 43.7 37.9
p0 [MeV fm−3] 3.46 3.26 7.0 5.92
�K0 [MeV] −106.9 −128.5 67.3 52.1
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FIG. 9. Symmetry energy of the present model (solid line)
compared with results of the G-matrix potentials (dashed line) and
with those of the density dependent RMF parameter set DD-ME1 of
Ref. [14] (dashed-double-dotted line).

resonance [47]) places the following constraints on the values
of the parameters of the symmetry energy: a4 ≈ 30–34 MeV,
2 MeV/fm3 � p0 � 4 MeV/fm3, and −200 MeV ��K0 �
−50 MeV. From Table VIII we see that these constraints are
satisfied by our model and by the density-dependent model
DD-ME1, but not by the models NL1 and NL3, which do not
have a density dependence in the isospin ρ channel.

The extreme case of asymmetric nuclear matter is the
pure neutron matter. All existing realistic calculations [23,48–
50] agree that pure neutron matter is unbound and its energy
per particle increases monotonically as the neutron density
increases. The results for the energy per particle of the pure
neutron matter is shown in Fig. 10. It shows also the results
of the many-body calculations of the Urbana group [23]. This
curve should be considered as representative of most of the
existing neutron matter calculations [48–50] which scatter
around it. Our result is in rather good agreement with that
of the Urbana group. The parameter set DD-ME1 reproduces
these results only at smaller densities up to ρ < 0.2 fm−3. At
higher densities it leads to a stiffer EOS for neutron matter.
The GT2 interaction is far from reproducing these results. The
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FIG. 10. Energy per particle of pure neutron matter for the present
model (solid line), the many-body calculation of Freedman and
Phandharipande [23] (dotted line), the density dependent RMF model
DD-ME1 of Ref. [14] (dashed-double-dotted line), the modified
Gogny interaction of Refs. [29,30] (dashed-dotted line), the pure
G-matrix potential (dashed line with + signs), and the G-matrix
containing in addition contributions form three-body forces (dashed
line with × signs, explained in the text), respectively.
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slope of the energy curve of the GT2 interaction becomes neg-
ative roughly above saturation density of symmetric nuclear
matter.

The results obtained with the G-matrix (dashed curve with
+ signs in Fig. 10) are also far from the results of the Urbana
group, because they do not contain three-body forces. They are,
however, in reasonable agreement with the results obtained by
the Urbana group for pure two-body interactions shown in
Ref. [23]. If one replaces the three-body force used by the
Urbana group by an effective two-body interaction [51] one
finds a strong repulsive central term for short distances and
a tensor term, which causes attraction in symmetric nuclear
matter. In pure neutron matter (T = 1) this tensor term is
very small and the repulsive central term dominates. We have
calculated these contributions of the three-body force and after
adding them to the results of the pure G-matrix we find the
dashed line with × signs in Fig. 10. It is in agreement with the
results of the Urbana group (dotted line).

The contribution of Hartree and Fock terms of the OME
potentials and of the point coupling part to the energy per
particle in the pure neutron matter are shown in Table VII.
We see that the energy per particle becomes more repulsive as
the density increases by the same mechanism as in the case of
isospin-symmetric nuclear matter, namely the rapid increase of
the Fock terms. Comparing with the case of isospin-symmetric
nuclear matter, the most apparent difference is the sign of the
point coupling contribution. They are opposite for symmetric
matter and neutron matter. In the case of symmetric matter, the
point coupling contribution is attractive. On the other hand,
it becomes repulsive in the case of the pure neutron matter.
Because of this difference, pure neutron matter becomes
unbound at any density while there appears saturation in
isospin-symmetric nuclear matter. Therefore, we see that
the point coupling part plays an important role for intro-
ducing the appropriate isospin dependence into the present
model.

In Fig. 11 we show the energy per particle as a function
of the density for various values of the asymmetry parameter,
given by the Z/N ratio. We find saturation up to rather small
proton values of Z/N . However, the saturation density is
considerably reduces a smaller values of Z/N . Below a critical
values between 10 and 20% protons nuclear matter is no longer
bound.
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FIG. 11. Energy per particle of nuclear matter as a function of the
density for various values of the asymmetry indicated by the Z/N

ratio.

VII. APPLICATION TO NEUTRON STARS

In the previous section, we have shown that the present
model works well up to ρ < 3ρ0. In this section, we test this
model at higher density, applying it directly to densities up
to ρ < 10ρ0. For this purpose, we calculate the behavior of
neutron stars in the framework of the present model.

A neutron star consists of almost pure neutron matter, and
its central density is greater than that of nuclei. Therefore the
investigation of its behavior can serve as a test for models
studying the properties of dense and relativistic many-body
systems.

A. The neutron star model

The structure of a static spherical star is determined by
the Oppenheimer-Volkoff-Tolman (OVT) equation [52,53] of
general relativity. It has the form

dP

dr
= −GMε

r2

(
1 + P

ε

)(
1 + 4πr3P

M

)/(
1 − 2GM

r

)
,

(38)

dM
dr

= 4πr2ε.

Here, G is the gravitational constant, M(r) is the mass
contained in a sphere of radius r and P (r) is the pressure at
the radius r . The mass can be expressed by the energy density
ε(r)

M(r) =
∫ r

0
dx4πx2ε(x). (39)

The first of the OVT equations describes hydrostatic equi-
librium, the second corresponds to the mass balance. The
Newtonian form of the first equation is illusive since the
space-time is curved. The system of Eqs. (38) is not closed. It
needs to be supplemented by an EOS, ε = ε(ρ). Considering
that the pressure is given as P = ρdε/dρ − ε, we have a
closed system of equations for the functions P (r), ρ(r), and
M(r), which can be solved with the boundary condition, that
the pressure vanishes at the surface of the neutron star

P (R) = 0. (40)

Thus, the EOS is a crucial input for structure calculation of
neutron stars. In this paper, we use the EOS derived from
the present model and apply it directly to the calculation of a
neutron star. In the neutron star, P > 0 and dP/dr < 0. This
allows us to determine the total gravitational mass of the star,
M(R).

When calculating neutron star properties, it is necessary to
consider not only nucleons but also leptons. Charge-neutral
neutron stars include not only neutrons and protons, but
also leptons, mainly e− and µ− in equal number to protons.
Hyperons can also appear at high density. In this section, we
neglect hyperons. Nucleons, e−, and µ− are taken into account.
The Lagrangian for the neutron star has therefore a nuclear part
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FIG. 12. Neutron star mass is drawn as a
function of the central density (left) and the
radius (right) of a neutron star.

LN given by Eq. (27) and leptonic parts Lλ:

LNS = LN +
∑

λ=e−,µ−
Lλ,

(41)
Lλ = ψ̄λ(iγ µ∂µ − mλ)ψλ.

In order to determine the density of the various particles, we
can use the conditions of chemical equilibrium:

µp + µe = µn,
(42)

µµ = µe,

where µp,µn, µe, and µµ are chemical potentials of proton,
neutron, electron, and µ−, respectively. The chemical poten-
tials of free leptons, µλ, are the solutions of their equations of
motion:

µλ =
√

k2
λ + m2

λ, (43)

where kλ is the Fermi momentum of each lepton and the density
of it is expressed as

ρλ = k3
λ

3π2
. (44)

Equation (42) expresses that at low density, neutron star matter
is composed mostly of neutrons with a few percent admixture
of equal number of protons and electrons. If the Fermi energy
of electrons exceeds the muon rest energy, mµ = 105.7 MeV,
replaces a fraction of electrons in order to minimize the total
energy of the system. In addition baryon number conservation
and charge-neutrality conditions are given by

ρ =
∑

τ=p,n

ρτ =
∑

τ=p,n

k3
τ

3π2
,

(45)

Q = Qp +
∑

λ=e−,µ−
Qλ = k3

p

3π2
−

∑
λ=e−,µ−

k3
λ

3π2
= 0.

Here ρp,λ and Qp,λ represent the density and the electric charge
of each particle, and Q is the total electric charge. Using
Eqs. (38), (41), (42), and (45), we can calculate the mass and
the radius of a neutron star. The result is shown in the next
section.

B. Mass and radius of a neutron star

With the present model, we calculate the mass and the
radius of a neutron star. Here, we assume that the neutron star

matter can be described by the EOS of matter composed of
protons, neutron, electrons and muons. We neglect hyperons.
In addition, we assume zero temperature and beta equilibrium
without trapped neutrinos.

The result for the neutron star mass is drawn in Fig. 12
as a function of the central density ρc and as a function of
the radius R of a neutron star. The right-hand-side of the first
OVT equation describes the gravitational attraction acting on
a unit proper-volume of matter. The gravitational pull is given
by a Newtonian-like term, −GMε/r2, multiplied by three
relativistic factors in brackets. As the neutron star mass M(R)
increases, all three factors amplify the attraction compared
with the Newtonian case. The increase of M(R) with an
increase of the central pressure Pc = P (0) becomes larger.
Therefore, independently of the form of the adopted EOS,
there exists always an upper bound on the neutron star mass
M(R) as a consequence of general relativity. In our case we
find for the maximal mass

Mmax = 1.59M
 with R = 10.29 km. (46)

The central density for this maximal mass is ρc = 0.832 fm−3

(∼5.0 ρ0). As the central density increases, the mass of the
neutron star increases to the maximum mass configuration
and then decreases at densities above this point. In the region
of ∂M(R)/∂ε(0) < 0, the neutron star is unstable against a
collapse leading to a black hole.

The present model produces an EOS softer than many other
RMF models [35]. The neutron star EOS derived from the
present model is shown in Fig. 13. Due to the softer EOS, the
present model produces a maximum mass which is smaller
than that derived from other RMF models. There are two
reasons, why our EOS is softer.
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FIG. 13. Equation of state of npeµ neutron star matter.
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(i) The parameters of the vector mesons included in the
present model are slowly decreasing with increasing density.
Since the vector mesons ω and ρ produce repulsion, their
decreasing tendency implies that the repulsion coming from
the exchange of vector mesons is weaker in the present
model than in the density-independent RMF models. This
feature is common to all density-dependent RMF models
[13,14,35]. They have a softer EOS than density-independent
RMF models. However, the EOS of the present model is even
softer than other density-dependent RMF models.

(ii) Our model contains also a point coupling interaction.
Therefore short-range correction is included and the param-
eters of the mesons are not forced to reproduce energies
and/or other physical quantities. Thus, the parameters of the
OME potentials are almost fully determined by the long and
intermediate range of the G-matrix potentials. As a result,
the density dependence of the parameters is different in the
present model and the density-dependent models without point
coupling interactions. In the present model, the parameters
of the vector mesons decrease more gradually than in other
DDRMF models. Hence, the present model produces stronger
repulsion. However, the σ meson parameters of the present
model hardly change while those of DDRMF models decrease.
Thus, the attraction of the present model produced by σ meson
exchange is also stronger. Summing them up, the repulsion of
the present model at high density is weaker than that of the
DDRMF models without point coupling terms.

In this calculation, hyperons are not taken into account
because there is a large uncertainty in hyperon interactions.
Nevertheless we now discuss qualitatively the effect of the
inclusion of hyperons. When hyperons appear in the EOS of
neutron star matter, �− is expected to be the first hyperon
to appear in dense matter at a certain threshold density. The
second hyperon expected to appear at higher threshold density
is �0. Hyperons appear due to the strangeness-changing weak
processes. At the densities we are dealing with the inclusion of
hyperons lowers the pressure of matter significantly compared
with that of npeµ matter, because the neutrons with highest
energy are replaced by low energy hyperons. As a result, EOS
becomes considerably softer and the mass of the neutron star
decreases by 0.3–0.6M
 by the inclusion of hyperons [54–
56]. The deviation depends on the EOS of npeµ matter we
adopt and on the hyperon-hyperon interaction introducing a
large uncertainty in the effect of hyperons on Mmax due to the
lack of the knowledge of this interaction.

The EOS of dense matter has to explain the measured
neutron star masses. At least, those EOS’s which predict
Mmax lower than the neutron star mass measured most
accurately must be excluded (because all compact objects with
M > Mmax are necessarily black holes). Namely, the heaviest
measured neutron star mass M(max)

obs implies the observational
constraint:

Mmax(EOS) > M(max)
obs , (47)

where Mmax(EOS) is the maximum mass derived from the
adopted EOS.

Thus, we focus our attention on the neutron stars with
the heaviest measured masses. The present value is around

1.4M
∼ 1.5M
. From the analysis of Vela X-1 [57], it
has been found that Vela X-1 is at the 2σ confidence level
M(2σ ) > 1.54M
. Comparing with this value, the present
model is not excluded by measurements. There is a candidate
which could push up the value of M(max)

obs and exclude the
present model. From the analysis of the mass of the neutron
star in an X-ray binary, Cyg X-2, one finds at the 2σ

confidence level M(2σ ) = 1.78±0.46M
 (i.e., M(2σ ) >

1.32M
), and the simultaneously determined mass of the
companion star in Cyg X-2 is Mc = 0.60±0.13M
 [58].
With an additional constraint on the companion mass, resulting
from the theoretical models (MX > 0.75M
), Casares et al.
obtain M > 1.88M
 [59]. This would exclude the present
model as far as the EOS is concerned. However, because of
the additional assumptions and the strong model dependence,
this cannot be used as a clean measurement of the neutron
star mass. Therefore, the present model still survives. We can
point out that the maximum mass Mmax = 1.59 M
 is very
close to the measured values of neutron star masses, which are
around 1.4 M
, while those derived from other RMF models
are distributed above Mmax = 2.0 M
 [35].

VIII. SUMMARY

The goal of this paper was to investigate and to predict
isospin properties of the nuclear many-body system on the
basis of our knowledge of bare NN-interaction and the EOS
of symmetric nuclear matter. We therefore constructed a RMF
model with density dependent parameters consisting of one
meson exchange terms and point coupling terms.

Starting from the bare NN interaction of Tamagaki and
Takatsuka [22] which was determined so as to reproduce
scattering data up to 350 MeV and by adopting the Brueckner
formalism, we have derived a local approximation to the
realistic effective G-matrix interaction in nuclear matter. It
is represented in r-space. This interaction depends on the
density of the medium. In the next step we introduced
a covariant density functional, i.e., an effective relativistic
Lagrangian with meson exchange terms in the four spin
and isospin channels σ (I = 0, T = 0), ω (I = 1, T = 0),
δ (I = 0, T = 1), and ρ (I = 1, T = 1) and the corresponding
point coupling terms. The parameters of the meson exchange
part were deduced by a fit of the corresponding nonrelativistic
OME potentials to the radial shape of the G-matrix potentials
at large and intermediate distances.

The density dependence of masses and couplings derived
with the method discussed above is qualitatively consistent
with some other relativistic models. The decreasing tendency
of the meson masses mρ and mω and their mutual similarity
are consistent with requirements of chiral symmetry and
QCD oriented models [32–34]. They are also consistent with
parameters adopted in other RMF models.

The short-range part of the effective interaction cannot be
reproduced properly by effective meson exchange potentials.
Therefore we introduced point-coupling terms in the four spin-
isospin channels. They do not depend on the density and they
contain only one adjustable parameter �. The form of these
point coupling terms and in particular their isospin dependence
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was taken from models based on chiral perturbation theory
[4]. The parameter � has been adjusted together with the
density dependent meson parameters to reproduce the EOS of
symmetric nuclear matter.

In this way we derived a model based only on information
on the properties of the free NN interaction and on the
EOS of the symmetric nuclear matter without using any data
concerning the isospin properties of the correlated system.
It allows us to derive and predict not only properties of
asymmetric nuclear matter close to the symmetric system as
the asymmetry energy and its density dependence, but also
the EOS for systems with arbitrary asymmetry parameter
up to pure neutron matter. The predicted properties for
asymmetry energy, such as the parameters a4 = 33.6 MeV,
p0 = 3.46 MeV fm−3 and �K0 = −106.9 MeV are in a very
good agreement with the empirical value of a4 = 33.2 MeV
[44] and with calculated results based on very successful
phenomenological RMF parametrizations [14,15].

The results for pure neutron matter are in excellent
agreement with non-relativistic many-body calculations of
the Urbana group [23] up to rather high densities ρ � 3ρ0.
Therefore we hope that the predicted isospin properties of our
model are reliable. We therefore apply it also to the calculation
of neutron stars and find agreement with empirical or observed
data.

In particular we find that Fock terms play a crucial role
for reproducing the saturation of isospin-symmetric nuclear
matter. The EOS derived from the present model is softer than

those of other RMF models, in particular at higher density. We
have calculated the EOS in a neutron star and its configuration
with maximal mass: Mmax = 1.59M
, R = 10.29 km. This
maximum mass is less than that derived from other RMF
models, but appears rather consistent with measurements.

We would like to point out that the method we have
proposed here allows us to determine isospin properties of the
nuclear system with a realistic effective interaction, depending
only on scattering data, while phenomenological RMF models
use effective forces which are determined to a large extent
by properties of nuclei in and close to the valley of stability.
Therefore the present model can be expected to give us a
wider range of applicability for the description of finite nuclei
including very exotic nuclei.
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