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ABSTRACT

We present a phoneme confusion analysis that models the
impact of reverberation on automatic speech recognition per-
formance by formulating the problem in a Bayesian frame-
work. Our analysis under reverberant conditions shows the
relative robustness to reverberation of each phoneme and
also indicates that substitutions and deletions correspond to
the most common errors in a phoneme recognition task. Fi-
nally, a model is proposed to estimate the confusability of
each phoneme depending on the reverberation level which is
evaluated using two independent data sets.
Index Terms: phone recognition, reverberation, confusabil-
ity factor.

1. INTRODUCTION

Reverberant speech is created in confined spaces by multi-
path sound propagation from source to receiver which creates
multiple delayed and attenuated replicas of the original sound
[1]. This acoustic distortion significantly decreases automatic
speech recognition (ASR) performance in distant-talking sce-
narios [2] [3]. Hence it is important to analyse this distortion
in more detail.
Phoneme intelligibility degradation for humans due to rever-
beration was investigated in [4] where the authors showed
how reverberation degrades human intelligibility and that
errors obtained have the same distribution compared to non-
reverberant environments. ASR performance also degrades
in the presence of reverberation although the behaviour com-
pared to human intelligibility seems to be different: the
indicative error rate is higher in ASR compared to human
listeners [5] [6]. In [7] the performance of a digit recognizer
is analysed for different reverberation levels obtained by
carefully modifying the room impulse response (RIR). The
authors demonstrated that the first 50 ms of the RIR barely
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affect ASR performance whereas the remainder of the RIR
has a significant detrimental impact. Tsilfidis et al. [8] in-
vestigated the reverberation impact on phoneme recognition
showing the performance achieved for the different reverber-
ation levels considered.
We propose to analyse the impact of reverberation on phoneme
recognition for numerous reverberant conditions, with a spe-
cial focus on the confusion found between phonemes. This
paper shows the ASR robustness of each phoneme for dif-
ferent reverberation levels. Furthermore, a model to estimate
the confusability of each phoneme depending on the rever-
beration level is derived from an analysis of the confusion
matrices.
The paper is organised as follows: Section 2 presents the
experimental set up used to obtain different results. An anal-
ysis of the impact of reverberation on phoneme recognition is
described in Section 3. In Section 4 a method is proposed to
compute the confusability of a phoneme depending on the re-
verberation level. The results obtained are detailed in Section
5 and finally, in Section 6 the conclusions are drawn.

2. EXPERIMENTAL SET UP

In all the experiments performed in this paper we use TIMIT
database [9]. This database is phonetically tagged and it
contains a good phonetic coverage of American English
[10] providing a rich contextual phoneme diversity [11].
These characteristics provide an ideal framework to analyse
the reverberation impact per phoneme since each of these
phonemes appears in many different contexts.
Two different speech recognizer are implemented to analyse
the effect of reverberation in phoneme recognition. First, a
HTK [12] context-independent GMM-HMM phoneme rec-
ognizer (CI-HTK) is trained following the recipe suggested
in [8]. Second, we build an alternative context-independent
(CI-KALDI) and context-dependent (CD-KALDI) GMM-
HMM phone recognizer using Kaldi toolkit and its recipe
s5 [13]. In all cases, a single-pass decoding without lattice
re-scoring or feature transformation is performed in order
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to reduce the computational cost. The motivation for using
a phoneme recognition in this analysis is to avoid potential
impact of language model or dictionary rules in the recogni-
tion performance and therefore analyse the impact of acoustic
distortions more specifically.
The whole TIMIT test set, excluding the 2 dialect sentences
(SA), is divided into two independent sets: development
(ClnDev) and evaluation set (ClnEval). The latter comprises
the TIMIT core test (192 utterances) and the former includes
the remaining test recordings (1152 utterances). The initial
61 phonemes in both test sets are collapsed into a set of 39
phonemes [14]. ClnDev is convolved with 140 simulated
RIRs, which are flat distributed with C50 values from -3 dB
to 40 dB as shown in [15], to create the reverberant develop-
ment set (RevDev). The reverberant evaluation set (RevEval)
is generated by convolving ClnEval with 28 simulated RIRs
spanning the C50 interval [-3dB, 40 dB] and with all real
impulse responses (72 RIRs) from MARDY database [16].
The resulting reverberant sets, RevDev and RevEval, are ap-
proximately 138 hours and 16 hours long respectively, which
cover a wide range of reverberant scenarios.
The parameter used to measure the reverberation level is C50

[17] as it has been shown to be highly correlated with ASR
performance [15] [8]. C50 is computed from the RIR as the
ratio of energy in the first 50 ms to the energy after 50 ms
using as time reference the arrival time of the direct path [18].

3. IMPACT OF REVERBERATION ON ASR
PERFORMANCE

In this section we show the performance of phoneme recog-
nition for a broad range of reverberation levels as well as the
phoneme misclassification for clean and reverberant environ-
ments. The ASR performance is computed in this paper as
follows,

PER =
D + I + S

N

(1)

where N is the total number of phones recognized, D is the
number of deletions, S is the number of substitutions and I

the number of insertions.
The PER achieved with ClnDev and RevDev for different
ASR configurations is displayed in table 1, which shows a
clear ASR performance reduction due to the presence of re-
verberation. Figure 1 describes in more detail the relative
phoneme error degradation r�PER obtained for different re-
verberation levels following

r�PER(%) =
PERRevDev � PERClnDev

100� PERClnDev
· 100. (2)

In the case of low reverberation levels (i.e. C50⇡40 dB) the
performance of the different phoneme recognizer is scarcely
affected. However, an increment of the reverberation level
clearly leads to a significant degradation which shows the im-
portance of understanding the reverberation impact on ASR.

CI-HTK CI-KALDI CD-KALDI
ClnDev 40.2% 35.52% 33.59%
RevDev 66.8% 62.28% 59.45%

Table 1. Phoneme error rate achieved with ClnDev and
RevDev.
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Fig. 1. Relative phoneme error rate degradation r�PER vs.
reverberation level C50.

The performance of each phoneme in reverberant environ-
ments is prensented in Fig. 2 which plots the confusion
matrix obtained with ClnDev and RevDev. These matrices
are obtained with the ASR system that provides the best per-
formance in these experiments: CD-KALDI. The matrices
are normalized horizontally consequently each cell, for in-
stance row k starting from top and column l starting from
left, represents the likelihood of recognizing the phoneme Rl

given true phoneme Tk. As a result, the main diagonals in
the matrices represent the likelihood of correctly recognizing
the given phoneme that is P (Rk|Tk) where k is the phoneme
index. The /sil/ label represents a pause. In addition to the 39
phonemes a new label /blk/ representing a blank is included in
the matrices to take into account the deletions and insertions.
Therefore the last row represents the insertions and the last
column the deletions.
Figure 2 provides some insights into the ASR performance
under reverberation. Firstly, the correct classification rate per
phoneme (main diagonal of the confusion matrices) clearly
shows that the correct recognition rate significantly drops
when reverberation is present, especially with pauses (/sil/)
due to the time smearing of previous phonemes into these
low energy gaps. Secondly, the distribution of the insertions
(i.e. last row in Fig. 2) is almost equally distributed for all
phonemes and is similar under non-reverberant and reverber-
ant conditions. Thirdly, a considerable increase of deletions
appear in RevDev as compared to ClnDev owing to time
smearing which makes some phonemes to be recognized as
the previous one. Finally, some phonemes are confused many
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Fig. 2. Phoneme confusion matrix obtained with ClnDev (left plot) and RevDev (right plot).

times, as for example phoneme /hh/, which is shown in the
confusion matrix with vertical patterns of high values. This
observation is in accordance with the conclusion presented in
[19].
Table 2 displays the relative difference (r�) of correctly rec-
ognized (H/N), inserted (I/N), deleted (D/N) and substituted
(S/N) phoneme rate between ClnDev and RevDev computed
as,

r�X =
XClnDev �XRevDev

XClnDev
, (3)

where X can be H/N, I/N, D/N or S/N.
As expected, the rate of correctly recognized phonemes de-
creases whereas deletions and substitutions are considerably
increased under reverberation. However the insertion rate is
slightly reduced. Table 2 indicates that ASR performance
degradation is mainly caused by deletions and substitutions.

r� H/N r� I/N r� D/N r� S/N
CI HTK 0.41 0.24 -2.37 -0.57
CI Kaldi 0.47 0.66 -2.88 -0.26
CD Kaldi 0.44 0.56 -4.38 -0.54

Table 2. Relative difference of phonemes recognition rates
between ClnDev and RevDev.

It is clear that reverberation affects phoneme recognition
differently depending on the reverberation level and the
phoneme. We aim to model the phoneme errors at the output
of the ASR using the confusion matrix which depends on the
reverberation level. Such a model would be useful for pre-
dicting possible errors or for assigning confidence values to

the phonemes derived from the confusability factor. In prac-
tice, C50 can be blindly estimated applying different methods
[20].

4. CONFUSABILITY FACTOR IN A BAYESIAN
FRAMEWORK

In this section we present a parameter to measure the con-
fusion between phonemes using a Bayesian framework. Let
Tk denote the true phoneme and Rk the recognized phoneme
where k represents the phoneme label index. In this paper we
consider a set of P = 39 phonemes. We propose to compute
the confusability factor CF(Tk, Rk,C50) based on the prob-
ability of correctly recognized phoneme index k for a given
reverberation level (C50), as follows,

CF(Tk, Rk,C50) = 1� p(Tk|Rk,C50) =

= 1� p(Rk|Tk,C50)·p(Tk)PP+1
i=1 p(Rk|Ti,C50)·p(Ti)

,

(4)

where the prior probability of the phoneme label Tk is
p(Tk) =

PP+1
i=1 NTkRiPP+1

i=1

PP+1
j=1 NTiRj

, the likelihood of classifying

the phoneme Rk given the phoneme label Tk and the re-
verberation level C50 is p(Rk|Tk,C50) =

NTkRkPP+1
i=1 NTkRi

, and
NTkRi represents the number of times the phoneme label Tk

is classified as Ri for a given C50. It can be shown that the
confusability factor presented in (4) can be computed directly
from the confusion matrix as follows,

CF(Tk, Rk,C50) = 1� NTkRkPP+1
l=1 NTlRk

. (5)
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It is worth noting that the phoneme indexes cover the range
from 1 to P + 1 for the purpose of including, in addition
to the substitution errors, the insertions and deletions in the
computation of the confusability factor.

5. RESULTS

In this section we present the results of the confusability
factor for RevDev and we assess repeatability of the results
utilizing RevEval.
Figure 3 illustrates the confusability factor presented in (5)
with CD-KALDI for each recognized phoneme Rk (rows)
at different levels of reverberation as measured using C50

(columns). It shows that the phoneme confusion is different
for each phoneme and strongly depends on the reverberation
level. In all cases, the confusability factor tends to increase
when reverberation level increases however the rate of change
varies significantly between phonemes. Similar behaviour of
the confusability factor was observed for CI-HTK and CI-
KALDI.
Combining the confusability factors achieved for each of
the 39 phonemes into broad classes of phonemes based on
production manner [21] shows that weak fricative phonemes
(/th,v,hh,f,dh/) are the most confused class. On the contrary,
silence broad phone class, which includes only /sil/ (pause)
preserves a low confusability value amongst different rever-
beration levels. This lower confusion is due to the lack of
energy of this phoneme.
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Fig. 3. Confusability factor CF(Tk, Rk,C50) of the 39
phonemes for CD-KALDI with RevDev.

In order to assess the repeatability of these results we compare
CF(Tk, Rk,C50) computed from unseen RevEval data to a

polynomial function fitted to RevDev. Therefore, we fitted a
third order polynomial function to CF(Tk, Rk,C50) for each
phoneme k. Hence, one polynomial function is computed
for each phoneme or broad phone class and this function
depends only on the C50 value. The degree of polynomial
was chosen such that the function minimizes the root mean
square deviation (RMSD) in RevDev. RMSD is computed as
follows,

RMSD =

sPNC

n=1(yn � xn)2

NC
dB, (6)

where NC is the number of different reverberant condi-
tions (i.e. different C50 values considered in the reverberant
sets), and yn and xn are the fitted function output and the
CF(Tk, Rk,C50) respectively for a given phoneme index k

and reverberant condition C50.
Table 3 presents the RMSD for RevDev and RevEval of a
third order polynomial fitted to RevDev. It shows consid-
erably low deviations for the three ASR configurations. As
expected, the error in RevDev is lower because the polyno-
mial function is fitted to this data but the error in RevEval still
remains significantly low.

CI HTK CI Kaldi CD Kaldi
RevDev 0.030 0.037 0.035
RevEval 0.060 0.075 0.079

Table 3. Average of RMSD achieved with a third order poly-
nomial.

Since RevEval comprises a completely independent set of
RIRs (including mostly real impulses responses) and record-
ings from RevDev, it is possible to conclude that a set of
functions can be used to estimate a confusability factor of
the recognized class under completely new reverberant en-
vironments. This model depends on C50, apart from the
ASR output Rk, which can be estimated employing external
methods [20].

6. CONCLUSIONS

In this paper we have analyzed the degradation in phoneme
recognition under reverberation with different speech recog-
nition toolkits (HTK and Kaldi). We have demonstrated that,
for ASR, phonemes vary in their robustness to reverberation.
The confusion matrix presented indicates the ASR robustness
of each phoneme to different levels of reverberation. We have
also shown that the main errors in our tests are deletions and
substitutions. Motivated by these observations, we have de-
signed a metric that characterizes the confusion of recogniz-
ing the phoneme in a Bayesian framework. Finally, the results
of the experiments have demonstrated that for a strongly re-
verberant scenario with C50=6 dB, the most robust phoneme
is /r/ whereas the most fragile phonemes are the class of weak
fricatives (e.g. TIMIT phonetic label /hh,th,v/).
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