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Prof. Dr. Federico Echenique California Institute of Technology

Prof. Dr. Michel Regenwetter University of Illinois

Prof. Dr. Gerhard Woeginger Technische Universiteit Eindhoven

Daar de proefschriften in de reeks van de Faculteit Economie en

Bedrijfswetenschappen het persoonlijk werk zijn van hun auteurs, zijn

alleen deze laatsten daarvoor verantwoordelijk.

i





Acknowledgments

Many people have helped me over the past few years. Some were directly

involved with the writing of this thesis. The influence of others was more

indirect, by making my time as a Phd-student thoroughly enjoyable. I would

like to thank all of these people. In the next couple of pages I will attempt

to do so. I hope I will not forget anyone.

It is tradition to mention the Phd-advisor first in these acknowledgements.

Even if this were not the case, there is no doubt Frits Spieksma deserves this

place of honour. Frits, I have gotten to know you as a kind and intelligent

mentor. Whenever I needed advice, support, or simply a second opinion on

anything, you found the time to help. There is hardly a page in this text

which was not improved by your suggestions. I also greatly appreciate the

freedom you gave me, to pursue any research question I found interesting,

and the freedom to let me set my own pace. This combination of support

and freedom you offer your students is a luxury and I can not thank you

enough for it.

Naturally, the advisor is followed by the co-advisors, Laurens Cherchye and

Bram De Rock. To find interesting Operations Research questions for this

thesis, we ventured into the land of Economics. Laurens and Bram, you

were excellent guides for these expeditions, I wonder where I might have

ended up without your help. I am indebted to you for introducing me to

these fascinating topics and thank you for all the support you have given

me.

iii



iv Acknowledgments

Next, I have to thank Mike Regenwetter. I’m still a bit surprised about

what our short meeting in Berlin led to. My stay in Urbana-Champaign

was one of the high points of the last few years. I am very grateful for all

the work you did to arrange the visit and even more so for the hospitality

you showed while I was in Illinois. I also thank you for the thorough reading

of my thesis, and the many comments and suggestions you made.

I would also like to thank the other members of my doctoral committee,

Yves Crama, Federico Echenique and Gerhard Woeginger. I appreciate the

effort you all put into reading my thesis. Your remarks have improved this

text a lot.

There are two more persons who were directly involved with my thesis.

First, Fabrice Talla Nobibon, in the first few years I was in Leuven, you

seemed to be an extra advisor. I owe you a great deal of thanks for the

time you took to discuss things with me. It was always a pleasure to work

together with you and I hope we’ll be able to do so again in the future.

Finally, Clintin Davis-Stober, our meetings so far were short, but they have

led to some of my favourite sections in this thesis.

Having thanked all of the people who helped shape this text, it is now time

to thank all the people who shaped my time as a PhD student, the co-

workers, friends and family. Two of these have been especially important

for my academic life: Roel Leus, the advisor of my Masters thesis, and Kris

Coolen, the assistant advisor. The work on my Masters thesis convinced me

I wanted to pursue a PhD and this is partially due to your support. Thank

you both !

Now let us move on to the other colleagues. When I arrived at the Hogen-

heuvelcollege, I found a group of friends, who were more than willing to

welcome new students into their midst. Over the years some left, others

joined. The atmosphere however, stayed the same. We shared soup, cake,

lunch or simply coffee breaks, post-seminar dinners, evenings in Leuven,

sports and many other things. The EURO conference in Rome ranks pretty

high on my list of favourite trips. It’s been a fun couple of years, and I want



Acknowledgments v

to thank all of you for that. I will begin with my fellow ‘nerds’ of the fifth

floor: Ward, Annette, Bart (II), Dries, Vikram, Sofie and Wenchao. We

know there is no shame in enjoying an np-completeness proof. Some of

the following fourth floor people do think it’s a bit weird, but I like them

all the same: Mieke, Yannick, Ann, Stefan, Jeroen, Pieter, Jorne, Michael,

Dennis, Gert, Patricio, Morteza, Carla, Räısa, Hamed, Valeri, Joeri and
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Chapter 1

Literature Overview

1.1 Introduction

We live in a world full of choices. Before we step outside the door in

the morning, we have already chosen what to eat for breakfast and which

clothes to wear. For the morning commute, we decide how to travel, by

what route, and whether we’ll pick up coffee along the way. Dozens of

small choices are made before it’s even time for lunch, and then there are

the less frequent, but more important decisions like buying a car, moving

to a new home or setting up retirement savings. It is no wonder that

decision making is a popular research topic. Within neoclassical economics,

it is hypothesized that choices are made so as to maximize utility. Given

this hypothesis, it follows that each choice tells us something about the

decision maker, it reveals information about her underlying utility function

and preferences. As we observe a decision maker over time, we can piece

together more and more information. Given this information, a number of

questions naturally arise:

i) Does there exist a utility function which is consistent with all the

information we have ?

ii) If such a utility function exists, is it of a specific class ?

1



2 Literature Overview

iii) If no such utility function exists, how close is the information to being

consistent ?

We look at revealed preference theory to answer these questions, i.e., we

are interested in characterizations of the models of behaviour that do not

rely on any functional specification. This approach allows for direct tests

of the decision models, without the risk that functional misspecifications

lead to rejections of the model. Revealed preference characterizations are

defined as conditions on the observed choices of decision makers. In this

chapter, we focus on the computational aspects of revealed preference tests.

In particular, we look at computational methods, i.e., algorithms that test

whether data satisfies the revealed preference conditions. We also look

at the tractability, i.e., the computational complexity of answering these

questions, and we focus on the worst-case time-bounds of algorithms for

such questions. Thus we are interested in whether a particular question is

easy (solvable in polynomial time) or hard (np-complete), and what the

best-known method is for answering such a question. For two other recent

overviews on revealed preference, we refer to Varian (2006) and Crawford

and De Rock (2014).

Let us proceed by first motivating this computational point of view. In a

very general way, it is clear that computation has become more important

in all aspects of science, and economics is no exception. This is reflected

in the scientific literature where computational challenges are explicitly

mentioned. We illustrate this view with three quotes from recent papers.

Echenique et al. (2011)

“Given [that calculating money pump costs can be a huge com-

putational task], we check only for violations of garp that in-

volve cycles of limited length: lengths 2, 3, and 4.”

Choi et al. (2014) (In the online appendix)
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“Since the algorithm is computationally very intensive, for a

small number of subjects we report upper bounds on the con-

sistent set.”

Kitamura and Stoye (2014)

“It is computationally prohibitive to test stochastic rationality

on 25 periods at once. We work with all possible sets of eight

consecutive periods, a problem size that can be very comfort-

ably computed.”

Another trend that supports computation in the domain of revealed pref-

erence is the ever-increasing size of datasets. It is becoming more and more

common to track purchases of individual consumers/households, which can

give researchers datasets far beyond the size laboratory experiments can

provide. This only reinforces the need for efficient methods, such that con-

clusions can be drawn from such datasets.

Because of such issues, there is a quickly growing body of work on com-

putation and economics. In this chapter, we wish to give an overview

specifically of computation and revealed preference. To make this work

broadly accessible, we will begin this survey by briefly introducing both

revealed preference in Section 1.1.1 and some key concepts from complexity

theory in Section 1.1.2. The main part of this text will then be a tour of the

areas in which revealed preference methods have been applied. To begin,

we will look at the classic revealed preference setting, with a single deci-

sion maker in Section 1.2. We include a subsection on goodness-of-fit and

power measures, which respectively quantify the severity of violations and

give a measure of how stringent the tests are. Next, we explore collective

settings, where the observed choices are the result of a joint decision (Sec-

tion 1.3). Furthermore, we look at stochastic preferences. In this setting,

the decision maker still chooses so as to maximize utility, but preferences

are not fixed. Instead, the decision maker has a number of different utility
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functions, and which of these utility functions she maximizes at any given

time is probabilistic. We handle this setting in section 1.4.

To close this subsection, we wish to make a note on the use of the words

dataset and data throughout this thesis. Within social sciences, these

terms usually refer to empirical observations of behaviour. While the main

goal of this thesis is to study methods for analysing observed behaviour,

we will use a broader definition of data. Since from an algorithmic point

of view, it does not matter whether the input reflects actual observed

behaviour or is constructed in some other way, we refer to all input of

algorithms as ‘data’, no matter the origin.

1.1.1 Revealed Preference

Let us now introduce the basic ideas of revealed preference, by looking

at revealed preference in the simple setting of a person making purchases.

Specifically, suppose we are in a world with m different goods, whose prices

are denoted by the vector p ∈ Rm++. Given these prices and a budget, the

decision maker buys a bundle of goods, given by the vector q ∈ Rm+ . (It

is generally assumed the budget available to the decision maker is equal

to p × q. In what follows we will shorten this product to pq.) Observing

these prices and quantities at n different points in time gives a dataset

S = {(pi, qi)|i ∈ N} with N = {1, . . . , n}. We use the word observation

to denote the information (pi, qi), i ∈ N . If we now suppose the decision

maker has a well-behaved (concave, continuous and strictly monotone)

utility function u(q) : Rm+ → R+, which she attempts to maximize, then

knowledge of an observation (pi, qi) gives a lot of information about u. For

example, we know that the bundle qi must give her at least as much utility

as any other bundle with an equal or lower cost given prices pi. If not,

she is not maximizing her utility. Then, in terms of revealed preference,

we will say she prefers the chosen alternative over the other alternatives,

formalized by the direct revealed preference relation.

Definition 1.1.1. Direct Revealed Preference Relation
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For any pair of observations i, j ∈ N , if piqi ≥ piqj, we say that qi is

revealed preferred over qj, or qi R0 qj.

It is important to note that if a person chooses a bundle qi while an alter-

native qj was available for the same price, she does not necessarily think

qi gives her more utility than qj . It may also be the case that she is in-

different between the two. However, if the bundle qi is more expensive

than the bundle qj (at prices pi), then choosing qi gives more information.

Since saving money also has positive utility, the decision maker thinks qi

will give her more utility than qj , in other words, that qi is strictly better

than qj . This is formalized in the strict direct revealed preference relation.

Definition 1.1.2. Direct Strict Revealed Preference Relation

For any pair of observations i, j ∈ N , if piqi > piqj, we say that qi is

strictly revealed preferred over qj, or qi P0 qj.

Because of the nature of utility and preferences, it is also important to take

transitivity into account. Indeed, if a person at one point in time makes a

choice revealing she values qi more than qj , and at another point in time

she reveals to prefer qj over qk, then if she has a consistent utility function,

she should also value qi over qk. As such, we define the revealed preference

relation.

Definition 1.1.3. Revealed Preference Relation

For any set of bundles qi, qj , . . . , qk, i, j, . . . , k ∈ N , if qi R0 qj R0 . . . R0 qk,

we say that qi is revealed preferred over qk and we write qi R qk.

We have now shown what kind of information can be learned from ob-

serving choices by a decision maker. Now suppose we have a dataset of

purchasing decisions S = {(pi, qi)|i = 1, . . . , n}, from which we extract all

of these revealed preference relations. A question then arises: is there some

utility function u(q), such that the bundles bought maximize this function

for all observations ? This is the rationalizability question.

Definition 1.1.4. Rationalizability

A dataset S is rationalizable by a utility function, if and only if there exists
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a utility function u(q), such that the observations present in the dataset are

consistent with maximizing u(q) under budget constraints.

A main goal of a revealed preference approach is to find conditions on

the dataset such that it is rationalizable. For example, a necessary and

sufficient condition for rationalizability by a well-behaved utility function

is given by the general axiom of revealed preference (garp).

Definition 1.1.5. General Axiom of Revealed Preference (garp)

A dataset S satisfies garp if and only if for each pair of distinct bundles,

qi, qj, i, j ∈ N , if qi R qj, then it is not the case that qj P0 qi.

To conclude this section, we note that this rationalizability question is

not limited to general utility functions. Datasets can also be rationalized

by utility functions of a specific form, such as separable utility functions.

Likewise, they can be rationalized by different forms of collective decision

making, stochastic utility functions, or even heuristic choices.

1.1.2 Computational Complexity

We will close this introduction with a short and informal primer on com-

putational complexity. We refer to Garey and Johnson (1979) or Cormen

et al. (2001) for a more thorough introduction. We will look at two impor-

tant topics in complexity. First, we consider the analysis of algorithms, in

particular their worst-case complexity. Second, we will look at the theo-

retical complexity of computational problems.

It is clear that an algorithm for a computational problem performs a num-

ber of elementary operations such as addition, multiplication, comparison,

etc. Also, it is clear that the larger an instance of a problem, the more

of these operations will be needed to solve the problem. Thus, we see the

number of operations needed by the algorithm as a function of the size

of the input. In our case, the input consists of a dataset S, whose size is
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measured in the number of observations n. (There is also the number of

goods m, but this is rarely an important factor in computation time, and

as such is usually ignored.) Next, we let the worst-case time-complexity of

an algorithm be the maximum number of operations the algorithm needs

to solve the problem for any dataset of size n. We will use Big O notation

to describe this time-complexity of an algorithm (Cormen et al., 2001).

Big O notation characterizes functions by their growth rate, leaving out

constant factors and smaller terms. For example, if we are given a dataset

S consisting of n observations, we might have an algorithm which needs

at most 3n3 + n2 operations to test whether garp holds. Since both the

n2 term and the factor 3 have a negligible impact on the increase in com-

putation time as n increases, we will say this algorithm has a worst-case

time-complexity of O(n3).

The previous paragraph describes how to express the complexity of an al-

gorithm. One can also speak of the complexity of a (decision) problem.

A problem is a decision problem if an instance of this problem has a yes

or no answer. The complexity of a decision problem depends, to some

extent, on the time-complexity functions of algorithms solving the prob-

lem. For instances, if a decision problem can be solved by an algorithm

whose time-complexity function is polynomial, then the problem is said to

be in the class p. Informally, we will call these efficiently solvable or easy

problems; the computation time needed for such a problem rises relatively

slowly with the size of the instance, and as such even large instances can

usually be handled. p is a subclass of the class np, which can be defined

informally as follows: if an instance of a problem in the class np has a

yes-answer, then a polynomial size proof of this exists, which can be ef-

ficiently checked. For example, consider the following problem: given a

dataset S, is garp violated? This question is in np, because if there is

a violation, the sequence of at most n revealed preference relations which

constitute the violation can be given as a proof. While testing garp is

easy (in p), the class np also contains seemingly more difficult problems,
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for which no polynomial time algorithms are known. However, as of today

a proof that no polynomial time algorithms can exist for these problems

is lacking. This has led to the notion of np-Completeness: a problem is

np-Complete if it is in np and at least as difficult as any other problem

in np. This is usually proven by reducing another known np-Complete

problem to it, thereby showing that if a polynomial time algorithm for the

problem exists, this can be used to solve the other np-Complete prob-

lem, (and thus all np-Complete problems) in polynomial time. Since this

is unlikely, proving a problem to be np-Complete is a strong indication

that the problem is in fact difficult. We will also refer to np-Hardness in

the remainder of the text, problems that are np-Hard are not necessarily

in np, but are at least as difficult as the np-Complete problems.

To conclude this section, we would like to note that for np-Complete or

np-Hard problems, it can be the case that some special cases are easy,

because of structure in the dataset. This may be relevant for much of the

revealed preference literature, as almost all of the hardness results we will

see are for the general case of these problems. In a recent paper, Deb and

Pai (2013) show that if the number of goods in a dataset is small enough,

some structure will appear. So far, we are unaware of any papers describing

what kind of structure instances with low numbers of goods have, or how

to exploit that structure.

1.2 Single Decision Maker

In the previous section, we have already given a quick introduction into

revealed preference. In this section, we will begin by stepping back and

exploring some of the history of revealed preference theory. We will start

with the seminal paper by Samuelson (1938). Here, a decision maker is

faced with purchasing decisions (indexed by i). Given prices, represented

by the vectors pi ∈ Rm++, she will buy a bundle of goods qi ∈ Rm+ , provid-

ing a dataset of n observations, S = {(pi, qi)|i = 1, . . . , n}. As we have
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seen in the previous section, all of these decisions will provide us with re-

vealed preference relations. Using the direct revealed preference relation,

Samuelson formulated the Weak Axiom of Revealed Preference.

Definition 1.2.1. Weak Axiom of Revealed Preference (warp)

A dataset S satisfies warp if and only if for each pair of distinct bundles,

qi, qj, i, j ∈ N , if qiR0qj, then it is not the case that qjR0qi.

warp is the first rationalizability condition described in the literature and

requires the revealed preference relation to be asymmetric. As the axiom

does not require transitivity, satisfying it is only a necessary condition for

rationalizability by a single-valued utility function. A single-valued utility

functions is such that, for every combination of prices and expenditures,

there is only a single bundle of goods which maximizes utility. In the special

case in which the dataset contains only two goods, warp is a necessary and

sufficient condition for rationalizability by a single-valued utility function

(Samuelson, 1948; Little, 1949). The work of Samuelson was followed by

Houthakker (1950), who extended warp to incorporate transitivity. Using

indirect revealed preference relations, he formulated the Strong Axiom of

Revealed Preference.

Definition 1.2.2. Strong Axiom of Revealed Preference (sarp)

A dataset S satisfies sarp if and only if for each pair of distinct bundles,

qi, qj, i, j ∈ N , if qi R qj, then it is not the case that qjR0qi.

sarp is a necessary and sufficient condition for rationalizability by a single-

valued utility function for any number of goods. Rose (1958) formally

proved the equivalence of warp and sarp for two goods. Conditions for

a general utility function were provided by Afriat (1967b), in the form of

what is now known as the Afriat Inequalities, a linear programming for-

mulation, and the Cyclical Consistency condition. Diewert (1973) clarified

these results further and provided another linear programming formula-

tion. Finding both the linear programs and cyclical consistency hard to

test directly, Varian (1982) sought and found a condition similar to sarp
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which does allow for multiple utility-maximizing bundles, garp. As shown

in the previous section, for GARP, strict preference relations are identified,

and indifference is allowed if the revealed preference relations are not strict.

Having defined these core axioms of revealed preference, let us look at the

computational difficulty of testing whether they are satisfied. First, warp

allows for a straightforward O(n2) test, since testing each pair of obser-

vations for a violation is sufficient. Next we turn to sarp, for which a

first attempt at providing a test was made by Koo (1963). Using a matrix

representation of the direct revealed preference relations, he describes a

sufficient condition for consistency with sarp. Dobell (1965) was the first

to describe conditions which are both necessary and sufficient. Dobell’s

test is also based on the matrix representation of direct revealed prefer-

ence relations. He proposed checking whether every square submatrix of

the direct revealed preference matrix contains at least one row and one col-

umn consisting completely of 0 elements. Due to the fact that there exist

an exponential number of such submatrices, this test runs in exponential

time. Koo (1971) later published another paper which is the basis for the

most efficient test of sarp consistency. In it, he describes a digraph rep-

resentation of revealed preference relations. In this graph, there is a node

for each bundle qi in the dataset. An arc from node i to j exists if and

only if piqi ≥ piqj and qi 6= qj . Thus, to each dataset S we can associate

its revealed preference graph GS . Any cycle within the graph GS points

to a violation of sarp in the dataset S. Since testing whether a graph is

acyclic can be done in O(n2), this is the most efficient known algorithm

for testing consistency with sarp.

Rationalizability tests for general utility functions, or equivalently for con-

sistency of datasets with garp, have also gone through a number of stages,

though in this case efficient and correct tests were known from the start.

Afriat (1967b) provides a linear program, the Afriat Inequalities, which is

polynomially solvable, although it is interesting to note that no polyno-
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mial time algorithms for solving linear problems were known at the time

Afriat published his work. Diewert (1973) then published a further linear

program. Varian’s formulation of garp (Varian, 1982) provides another

algorithm for testing rationalizability. This formulation shows rational-

izability can be tested by computing the transitive closure of the matrix

of direct revealed preference relations. This transitive closure gives all

revealed preference relations, direct and indirect. Given the transitive

closure, garp can be tested by checking, for each pair of bundles qi, qj ,

i, j ∈ N , whether both qi R qj and qj P0 qi. The bottleneck in this

procedure is the computation of the transitive closure. For its ease of im-

plementation, Varian suggests using Warshall’s algorithm (Warshall, 1962)

to do so, which has a worst-case bound of O(n3). Varian also noted faster

algorithms did exist based on matrix multiplication, which at the time

reached O(n2.74) (Munro, 1971). By now, these algorithms have improved,

the best known algorithms for general matrices reaching O(n2.373) (Cop-

persmith and Winograd, 1990; Williams, 2012; Gall, 2014). In Chapter 2,

we describe an algorithm with a lower worst-case bound of O(n2), based

on the graph representation of Koo and the computation of strongly con-

nected components. We also prove a lower bound on testing garp, showing

no algorithm can exist that is faster than O(n log n) time.

To finish our overview on rationalizability by a general utility function, we

note recent work on indivisible goods and non-linear budget sets. Fujishige

and Yang (2012) and Polisson and Quah (2013) extend the revealed pref-

erence results to the case with indivisible goods. They find that garp is a

necessary and sufficient test for rationalizability, given a suitable adapta-

tion of the revealed preference relations for their setting. Forges and Minelli

(2009) give a revealed preference characterization for non-linear budgets,

for which garp is a sufficient and necessary condition for rationalizabil-

ity by a locally non-satiated utility function. Cherchye et al. (2014a) give

a characterization for an increasing, concave and continuous utility func-

tion for the setting with non-linear budgets in the form of a set of linear
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equalities. Cosaert and Demuynck (2013) look at choice sets which are

non-linear and have a finite number of choice alternatives. They provide

revealed preference characterizations for weakly monotone, strongly mono-

tone, weakly monotone and concave, and strongly monotone and concave

utility functions, all of which are easy to test, either by some variant of

garp or a system of linear inequalities.

Besides the basic tests discussed in the previous paragraphs, conditions

and tests have been derived for testing rationalizability by various spe-

cific forms of utility functions. First, we look at weakly separable utility

functions. A utility function u(q) is separable, if the vector of goods q

can be split into at least two subvectors q1 and q2 and a subutility func-

tion f(q2) exists, such that u(q) = ū(q1, f(q2)). Following his paper on

general utility functions, Afriat also wrote an unpublished work on sep-

arable utility functions (Afriat, 1967a). Varian (1983) built further on

this, giving a non-linear system of inequalities, for which the existence of

a solution is a necessary and sufficient condition for rationalizability by

a concave weakly separable utility function. Diewert and Parkan (1985)

extended this result to multiple separable subsets. Unfortunately, the non-

linear systems resulting from Varian’s and Diewert and Parkan’s work are

difficult to test. An implementation by Varian attempts to overcome the

computational difficulties by finding a solution to the linear part of the sys-

tem of inequalities and then fixing variables based on this solution, which

linearises the remainder of the inequalities. This implementation can be

too restrictive, as the variables are usually fixed with values making the

system infeasible, even if a solution exists, as shown by Barnett and Choi

(1989). Fleissig and Whitney (2003) take a similar approach, but improve

on it by fixing variables with values that are more likely to allow solutions

to the rest of the system of equalities. Exact tests of (adaptations of)

Varian’s inequalities are described in Swofford and Whitney (1994) and

Fleissig and Whitney (2008). Both use non-linear programming packages

to find solutions and are limited in the size of datasets they can handle.
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The difficulty of the problem is established by Cherchye et al. (2014b),

who prove np-Hardness of the rationalizability question. Additionally,

they provide an integer programming formulation which is equivalent to

Varian’s non-linear set of inequalities. Closely related, Echenique (2014)

proves rationalizability is also np-Hard for weakly separable utility func-

tions when dropping the concavity assumption and even if the dataset is

limited to 9 goods. Quah (2012) provides a testing algorithm for weakly

separable utility functions without concavity assumption. Other works on

weakly separable utility functions include Swofford and Whitney (1994),

who modify the system of inequalities of Varian to account for consumers

needing time to adjust their spending.

For strong or additive separability (u(q1, q2) = f1(q1) + f2(q2)), Varian

(1983) gives a linear programming formulation, allowing for tests in poly-

nomial time. Furthermore, a number of results have been published on ho-

mothetic utility functions. These functions are of the form u(q) = f(l(q)),

with l a homogeneous function and f monotonically increasing. In ef-

fect, if for two bundles qi, qj , u(qi) ≥ u(qj), then for any constant α > 0,

u(αqi) ≥ u(αqj). Afriat (1972) was the first to provide a system of linear

inequalities for which the existence of a solution is a necessary and sufficient

condition for rationalizability by a homothetic utility function. In this for-

mulation, the number of inequalities is exponential. Varian (1983) proposes

an alternative test, which is equivalent to finding a negative length cycle

in a graph (this is not the graph GS described earlier). In the same paper

he also provides a test for homothetic, separable utility functions, which is

again a difficult-to-solve system of non-linear inequalities. Finally, utility

maximization in case of rationing (i.e., there are additional constraints on

the bundles which can be bought, on top of the budget constraint) is also

handled by Varian. He provides a linear system of inequalities, for which

the existence of a feasible solutions is a necessary and sufficient condition

for rationalizability.
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As we have seen, various forms of utility functions usually have an associ-

ated system of inequalities, for which the existence of a solution is a neces-

sary and sufficient condition for rationalizability by such a utility function.

The difficulty of these rationalizability tests generally depends on whether

these systems have linear or non-linear inequalities. General, single-valued

and strongly separable utility functions are easy to rationalize, as their as-

sociated systems of inequalities are linear. The same holds true for utility

maximization by a general utility function under rationing constraints. For

general and single-valued utility functions, more straightforward tests were

developed. A polynomial test also exists for rationalizability by a homoth-

etic utility function. For utility functions for which the associated system

of inequalities are non-linear, weakly separable and homothetic separable

functions, no efficient tests are known. For weakly separable utility, for-

mal np-Hardness results exist. For homothetic separable functions, this

remains an open question.

1.2.1 Goodness-of-Fit and Power Measures

An often cited limitation of rationalizability tests is that they are binary

tests: either the dataset is rationalizable or it is not. Thus, if violations

of rationalizability conditions are found, there is no indication of how se-

vere they are. Likewise, if the rationalizability conditions are satisfied, this

could be because the choices faced by the decision maker make it unlikely

that violations would occur. To get this information, so-called goodness-

of-fit measures and power measures have been proposed in the literature.

Goodness-of-fit measures quantify the severity of violations, while power

measures give a measure of how far removed the choices are from violating

rationalizability conditions.
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Goodness-of-Fit Measures

A first class of goodness-of-fit measures are based on the systems of in-

equalities which are used to describe rationalizability conditions for many

different forms of utility functions, as described earlier in this section. Ex-

tra slack variables are added to these systems, which relaxes the constraints

on the data. An optimization problem can be defined, for which the objec-

tive function is the minimization of the value of the slack variables, under

the constraint that the system of equalities is satisfied. The goodness-of-fit

measure is then equal to the value of the optimal solution to this optimiza-

tion problem. Such an approach was first described by Diewert (1973) and

has since been used in a number of different papers for various forms of

utility functions (See Diewert and Parkan (1985); Fleissig and Whitney

(2005, 2008) for weak separability, Fleissig and Whitney (2007) for addi-

tive separability). Minimizing these slack variables is easy if the system

of inequalities is linear, which is the case for general utility functions and

additive separable utility functions. In the case of non-linear systems of

inequalities, minimizing the slack variables is at least as hard as finding a

solution to the system without slack variables. Since this is already np-

Hard for weakly separable utility functions, the hardness result remains

valid for the problem of minimizing the slack variables.

A second class of goodness-of-fit measures is due to work by Afriat (1973),

and is based on relaxations of the revealed preference relations. In this

relaxation, revealed preference relations are used if the difference in price

between the chosen bundle and an another affordable bundle is big enough.

This is done by adding efficiency indices 0 ≤ ei ≤ 1 for each observation

i ∈ N , and defining the revealed preference relations as follows.

For all i, j ∈ N , if eipiqi ≥ piqj , then qi R0(ei)qj . (1.1)

Obviously, if ei = 1, conditions (1.1) are the same revealed preference rela-

tions as those described in Definition 1.1.1; if ei < 1, this can be interpreted

as having a revealed preference relation between two bundles if the price

difference between bundles exceeds a certain fraction of the budget. As a
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result, there will be fewer revealed preference relations, and axioms such as

warp, sarp and garp will be easier to satisfy. A goodness-of-fit measure

is then to maximize the sum of ei values, under the constraint that a given

axiom of revealed preference is satisfied. Goodness-of-fit measures based on

this idea have been described by Afriat (1973), Varian (1990) and Houtman

and Maks (1985). Of these three, Afriat’s index is the simplest, as the value

ei is constrained to be equal for every observation (e1 = e2 = . . . = en).

This makes it easy to compute, even though for a long time the only pub-

lished algorithm was an approximation algorithm due to Varian (1990).

Varian’s index allows ei values to differ between observations. This makes

computation less straightforward and the computation was thus perceived

to be hard. This led to work on heuristic algorithms for computing Var-

ian’s index by by Varian himself (Varian, 1990), Tsur (1989) and more

recently by Alcantud et al. (2010). Finally, Houtman and Maks (1985)

proposed to constrain the ei values to either 0 or 1. In effect, this means

removing the minimum number of observations such that the remaining

dataset is rationalizable. Houtman and Maks established a link between

the known np-Hard problem of feedback vertex set and their index for the

strong axiom of revealed preference, showing its difficulty. Dean and Mar-

tin (2010) propose a weighted variant of Houtman and Maks’ index. To be

able to compute these measures for larger datasets, Dean and Martin make

use of an equivalence to set covering problems. While this problem is also

np-Hard, it is well studied and good algorithms exist. We establish the

complexity of computing all three of these indices in Chapter 3, providing

polynomial time algorithms to calculate Afriat’s index for various axioms

of revealed preference. Varian’s and Houtman and Maks’ index are shown

to be np-Hard and even stronger, it is shown that no constant-factor ap-

proximation algorithms running in polynomial time exist unless p = np.

Furthermore, we distinguish a third approach introduced by Varian (1985).

If a dataset fails to satisfy the rationalizability conditions, their goal is to

find a dataset which does satisfy the conditions and is only minimally dif-
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ferent from the observed dataset. The problem of finding these minimally

different satisfying datasets is a non-linear optimization problem, which,

in general, are hard problems to solve. To avoid having to solve large scale

non-linear problems, De Peretti (2005) approaches this problem with an

iterative procedure. Working on garp, his algorithm tackles violations one

at a time, also perturbing only one observation at a time. If a preference

cycle exists between two bundles of goods qi and qj , i, j ∈ N , he computes

the minimal perturbation necessary to remove the violation both for the

case in which qi R0 qj (in which case qi is perturbed) and for the case in

which qj R0 qi (in which case qj is perturbed). The smallest perturbation

of the two is then used to update the dataset, and the updated dataset is

checked for new garp violations. While this does not guarantee an opti-

mal solution, it does allow for handling larger datasets, especially if the

number of violations is small.

Showing the continuing interest in goodness-of-fit measures, a number of

recent papers introduce new goodness-of-fit measures. Echenique et al.

(2011) define the mean and median money pump indices. In this paper,

the severity of violations of rationality is measured by the amount of money

which an arbitrageur could extract from the decision maker by exploiting

her irrational choices. This is reflected by a money pump index for every

violation of rationality. Echenique et al. propose to calculate the money

pump index of the mean and median violation as a measure of the ir-

rationality of the decision maker. In Chapter 4, we show that computing

these measures is np-Hard, but that computing the money pump index for

the most and least severe violation can be done in polynomial time. Fur-

thermore, Apesteguia and Ballester (2014) introduce the minimal swaps

index. Informally, the swaps index of a given preference ordering over the

alternatives is calculated by counting how many better alternatives (ac-

cording to the preference order) were not chosen over all choice situations.

The minimal swaps index is then the the swaps index of the preference

order for which this index is minimal. Apesteguia and Ballester show that

computing the minimal swaps index is equivalent to the np-Hard linear
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ordering problem.

Power Measures

Power measures were first introduced by Bronars (1987). Informally, the

goal of power measures is to quantify how unlikely it is that choices gener-

ated by an alternative model of behaviour satisfy rationalizability condi-

tions for utility maximization. The more likely this is, the lower the power

of the test. Indeed, suppose we have a large number of datasets for which

we know that choices were not made to maximize a utility function. If

these datasets can often be rationalized by a utility function, then it is

obvious that the test is not good at discriminating between utility maxi-

mizing and other behaviour. Bronars proposes to use random choices as

an alternative model. The likelihood of this alternative model satisfying

the conditions is determined by Monte Carlo simulation. Andreoni and

Miller (2002) use a similar approach, they generate synthetic datasets by

bootstrapping from observed choices, and use these to establish the power

of their test.

Bronars’s Monte Carlo approach has also been applied to goodness-of-

fit measures. The value of a Goodness-of-fit measures is hard to inter-

pret without context. There is no natural level which, if crossed, indi-

cates a large deviation from rational behaviour. Furthermore, the values

of goodness-of-fit indices which point to large deviations may vary from

dataset to dataset, as the choices faced by a decision maker may or may

not allow large violations of rationalizability. One way to establish what

values are significant, is to use a Monte Carlo approach and calculate the

goodness-of-fit measures for these generated datasets. This gives a dis-

tribution of the values of goodness-of-fit measures for datasets of random

choices. It can then be checked whether the goodness-of-fit measures found

for the actual decision makers are significantly different. For example,
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Choi et al. (2007) and Heufer (2012) use this approach. As this approach

requires the goodness-of-fit measures to be calculated a large number of

times, there is a strong incentive to use efficient algorithms and measures

which are easy to calculate.

Beatty and Crawford (2011) propose measuring the power of a test by

calculating the proportion of possible choices which would satisfy the con-

ditions. Finally, we refer to Andreoni et al. (2013), who give an overview

of power measures and indices and introduce a number themselves. The

measures they introduce are adaptations of goodness-of-fit measures. For

example, they introduce a Jittering index, which is the minimum pertur-

bation of the data so the rationalizability conditions are no longer satisfied,

in line with of the work of Varian (1985). They also introduce an Afriat

Power Index, which is the reverse of the Afriat’s goodness-of-fit measure,

i.e., instead of finding the minimum e value such that the dataset no longer

satisfies the considered axiom of revealed preference, it is the maximum e

value such that the dataset does not satisfy the conditions.

1.3 Collective Choices

In the preceding section, data were analysed as if a single person bought

or chose goods, to maximize her own utility function. However, in many

cases purchasing decisions are observed at the household level. Analysing

these data calls for collective models, which account for individually ra-

tional household members, and some decision process for splitting up the

budget. The initial revealed preference contributions on this subject were

published by Chiappori (1988), for the labour supply setting. Leisure time

is observed for each member in the household, as well as the aggregated

consumption. The behaviour of this household is then rationalizable if the

consumption can be split up such that the resulting individual datasets

of leisure and consumption are rationalizable for all household members.
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Chiappori provides conditions for rationalizability, both for the cases with

and without externalities of private consumption. For both cases, these

take the form of non-linear systems of inequalities, making testing hard.

Snyder (2000) provides a reformulation of Chiappori’s conditions and uses

it in empirical tests. Testing her reformulation in a straightforward method

requires a linear integer program. Whether a polynomial test for the labour

supply setting exists remains an open question.

The work by Chiappori was generalized by Cherchye et al. (2007). Leaving

the labour supply setting, they provide conditions for an arbitrary number

of goods and without any prior allocation of goods, as was the case with

leisure time in Chiappori’s work. Cherchye et al. derive separate necessary

and sufficient conditions for collective rationalizability by concave utility

functions. In a later paper, Cherchye et al. (2010) show that the necessary

condition given in their earlier work is both necessary and sufficient, when

dropping the assumption of concave utility functions. However, testing this

condition is np-Hard, as shown by Talla Nobibon and Spieksma (2010).

Due to the hardness of rationalizability in collective settings, a number of

papers have appeared on how to test this problem. An integer program-

ming formulation is given by Cherchye et al. (2008) and an enumerative

approach is provided by Cherchye et al. (2009). Talla Nobibon et al. (2011)

take a different approach, giving a heuristic algorithm. The goal of this

algorithm is to quickly test whether the rationalizability conditions are

satisfied. If this heuristic can not prove the conditions are satisfied, an

exact test is used. Using this heuristic pre-test, many computationally de-

manding exact tests can be avoided. Deb (2010) strengthens the hardness

results by proving that a special case of this problem, the situation depen-

dent dictatorship setting, is also np-Hard. In this setting, the household

decision process is such that each purchasing decision is made by a sin-

gle household member, the dictator. At different points in time, different

household members can be the dictator, the goal is thus to partition the

observations into datasets, so that each dataset is consistent with (unitary)
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garp. Crawford and Pendakur (2013) also consider this problem in the

context of preference heterogeneity, they provide algorithms for computing

upper and lower bounds on the number of ‘dictators’. In Chapter 6, we

give further hardness results for a collective version of warp: we find that

dropping transitivity makes the test easy for households of 2 members, but

the problem remains open for 3 or more.

Another branch of the literature returns to Chiappori’s setting, in the sense

that observers know whether specific goods are either publicly or privately

consumed. Given this information, rationalizability is tested by checking

whether there exists a split of prices (for public goods) or quantities (for

private goods), such that the datasets of personalized prices and quantities

for each household member satisfies garp. This model, for an arbitrary

number of goods, is first described by Cherchye et al. (2011); these authors

also give a integer programming formulation. Talla Nobibon et al. (2013)

provide a large number of practical and theoretical computational results

for this problem. First, they prove it is np-Hard. Furthermore, they

describe a more compact integer programming formulation, and provide

a simulated annealing based meta-heuristic. They compare the compu-

tational results of these different integer programming formulations and

heuristics and find that the heuristic approach is capable of tackling larger

datasets and seldom fails to find a feasible split if one exists. In contrast

to the result in the general case, our results in Chapter 6 show that, even

when dropping transitivity, the test remains np-Hard.

1.4 Revealed Stochastic Preference

In the previous sections, we looked at methods that decide whether a set

of observations can be rationalized by one or more decision makers, using

different forms of utility functions, or different ways in which the deci-

sion making process can be split over different decision makers. However,

we assumed that utility functions and preferences remained constant. As



22 Literature Overview

a result, if a choice situation repeats itself, we expect that the decision

maker chooses the same alternative. However, it is commonly observed in

experiments on choice behaviour that if a person is given the same choice

situation multiple times, the choice she makes changes. One possible way

of explaining this behaviour is by stochastic preferences, as pioneered by

Block and Marschak (1960). Theories of stochastic preferences state that,

while at any point in time a decision maker has a preference ordering over

all alternatives, these preferences are not constant over time. Observed

behaviour is rationalizable by stochastic preferences, if and only if there

exists a set of utility functions and a probability distribution over those

utility functions, such that the frequency that an alternative is chosen

in a choice situation is equal to the probability that this alternative has

the highest utility in that situation. We also note that many results on

stochastic preferences are for the case of finite choice sets, as opposed to

the consumption setting, where there exist an infinite number of bundles

that can be bought for a expenditure level and prices. For an overview,

we refer to McFadden (2005).

A very general result was given by McFadden and Richter (1990), the ax-

iom of revealed stochastic preference (arsp), which gives a necessary and

sufficient condition for rationalizability by stochastic preferences. The gen-

erality of this axiom allows it to be used for any form of choice situation,

and all classes of decision rules. Besides the axiom, McFadden and Richter

also provide a linear programming problem for which the existence of a

solution is a necessary and sufficient condition for rationalizability. Both

are not straightforward to operationalize, since arsp places a condition on

every possible subset of observations, which gives an exponential number

of conditions in the number of observations. Furthermore, each condi-

tion requires finding a decision rule from all allowed decision rules which

maximizes some function, which can in itself be an np-Hard problem (for

example when the class of decision rules being tested are decisions based on

linear preference orders, as this means solving an np-Hard linear ordering
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problem (Karp, 1972)). The linear program on the other hand contains

one variable for every possible decision rule within a class of decision rules,

a number which is often exponential in the number of choice alternatives.

We will now look at some rationalizability tests for specific classes of deci-

sion rules and specific choice settings.

Binary choice settings have attracted considerable attention within the lit-

erature on stochastic preferences. In such a setting, decision makers are

faced with only two options in each choice situation. Block and Marschak

(1960) work with this setting and search for conditions for rationalizability

by stochastic strict linear preferences. Using the observed frequency with

which alternatives are chosen over other alternatives, they find two sim-

ple classes of inequalities which are necessary conditions, and they prove

sufficiency for datasets containing three choice alternatives. It was con-

jectured that these conditions are also sufficient for any number of choice

alternatives, until a counter-example by Megiddo (1977) showed this was

not the case for thirteen alternatives. Dridi (1980) closed the discussion by

proving the conditions were sufficient for five alternatives and by providing

a counterexample for six. Later, Suck (1992) showed that the necessary

and sufficient conditions were equivalent to a membership test of the linear

ordering polytope. This proves np-hardness of the rationalizability test,

and thus that no polynomial size system of linear conditions exists unless

p = np. Research on the linear ordering polytope has provided a full facet

description for up to seven alternatives (Mart́ı and Reinelt, 2011), which

already contains over 87,000 constraints. For eight alternatives, this rises

to above 480 million. As a result, current tests restrict themselves to about

5 choice alternatives in the dataset (Regenwetter et al., 2011; Regenwetter

and Davis-Stober, 2012). In Chapter 7, we propose using column genera-

tion on McFadden and Richter’s linear program for testing rationalizability

for datasets containing a larger number of choice alternatives.

We are aware of two classes of decision rules for which stochastic rational-



24 Literature Overview

izability is easy to test. Davis-Stober (2012) provides a polynomial number

of conditions which are necessary and sufficient for stochastic rationaliz-

ability by a simple heuristic decision rule. In Davis-Stober’s setting, choice

alternatives have two attributes. The levels of these two attributes are such

that, if the attributes are ranked according to the level of the attributes,

the ranking according to the first attribute is the reverse of the ranking by

the second. When faced with a choice, decision makers first set a difference

threshold for the first attribute. For each alternative, the level of the first

attribute is compared to the maximum level of this attribute in the choice

set. Only alternatives for which this difference is below the threshold are

considered in the second step. In this second step, the alternative with

the highest level of the second attribute is chosen. In Chapter 8, we give

a polynomial number of conditions which are necessary and sufficient for

single-peaked preferences, a special case of strict linear preferences. In this

setting, all alternatives are ranked along an axis. A single-peaked prefer-

ence order then has a peak, which is the most preferred alternative, and

for any pair of alternatives on the same side of the peak, the alternative

closest to the peak is always preferred to the one further away.

Returning to the setting of consumer purchases (and thus infinite choice

sets), Bandyopadhyay et al. (1999) formulate the weak axiom of stochastic

revealed preference (warsp). This axiom provides a necessary condition

for rationalizability by stochastic preferences. Analogue to warp, warsp

compares pairs of choice situations. Since the condition placed on these

pairs is easy to test, warsp allows a polynomial time test. Heufer (2011)

and Kawaguchi (2014) build further on this work. Heufer provides a suf-

ficient condition for rationalizability in terms of stochastic preferences.

Kawaguchi (2014) constructs the strong axiom of revealed stochastic pref-

erence (sarsp), a necessary condition for rationalizability by stochastic

preferences. Both of these conditions seem difficult to test, requiring in the

case of Heufer a feasible solution to a linear program with an exponential

number of constraints and variables. Kawaguchi’s sarsp likewise requires
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checking an exponential number of inequalities. Despite these challenges,

Kitamura and Stoye (2014) develop a test which can be used to test ra-

tionalizability by stochastic preferences on consumption data, though for

relatively small datasets. A key element in their approach is discretizing

the dataset, to return to a setting with a finite number of choice options.

1.5 Conclusion

In this chapter, we surveyed some areas where revealed preference theory

has been applied. We looked at unitary, collective and stochastic models

of choice behaviour, with a focus on the computational aspects of testing

these models. In the remainder of this thesis, we will present work on

models in all three of these groups. Chapter 2 presents a short note on a

more efficient algorithm for testing garp and we also derive a lower bound

on the computation time for warp, sarp and garp. Next, we look at

goodness-of-fit measures. In Chapter 3 we present complexity results for

Afriat’s, Varian’s and Houtman and Maks’ index, showing the latter two

are hard to compute, while for Afriat’s index we present a polynomial time

algorithm. Chapter 4 then looks at the Money Pump Index, showing that

computing the MPI of an ‘average’ (mean or median) violation is difficult,

but that the minimum or maximum MPI can be computed efficiently. In

the next two chapters, we look at collective models. Chapter 5 investigates

the (non)-equivalence between collective versions of warp and sarp. In

Chapter 6, we look at the computational complexity of collective versions

of warp, showing that most of these are already hard for 2 decision makers.

However, for the most general model, where goods are not known to be

private or public, the test for 2 decision makers is still easy. The final two

chapters of this thesis handle stochastic preferences. Chapter 7 presents

a model of stochastic strict preferences orderings. Testing this model is

np-Hard, we present an algorithm based on column generation to test

it. Finally, Chapter 8 presents a stochastic model, where preferences are

restricted to single-peaked preferences and we show this model is easy to
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test.



Chapter 2

Testing the Axioms of Revealed

Preference

2.1 Introduction

In this chapter, we investigate the computational complexity of testing

three well-known axioms of revealed preference: the weak, strong and gen-

eralized axioms of revealed preference (warp, sarp and garp). As far as

we are aware, each known method for testing garp relies on computing

the transitive closure of a directed graph. A straightforward algorithm for

computing the transitive closure runs in O(n3) time, with n the number

of observations in the dataset. Algorithms based on matrix multiplica-

tion have better worst-case bounds of O(nα), with α ≈ 2.37. The main

contribution of this chapter is the description of an O(n2) time algorithm

for testing garp, based on computing strongly connected components, for

testing garp. Furthermore, we also argue that any algorithm for testing

warp, sarp or garp will need at least O(n log n) number of operations.

This chapter is organized as follows. In Section 2.2, we describe a graph

This chapter is the result of a collaboration with Fabrice Talla Nobibon and Frits

C.R. Spieksma. A paper corresponding to this chapter will appear in the Journal of

Optimization Theory and Applications (Talla Nobibon et al., 2014).
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representation of the revealed preference relations and warp, sarp and

garp. In Section 2.4, we present an O(n2) time algorithm for testing

garp. Finally, in Section 2.5 we prove the lower bound on any algorithm

for testing warp, sarp or garp and we conclude in Section 2.6.

2.2 Notation and Definitions

Consider a unitary household acting in an economy with m goods and

suppose that we have observed n (non-negative) consumption quantity

bundles qi ∈ Rm+ with corresponding positive prices pi ∈ Rm++, for i =

1, . . . , n. We denote the set of observations by S = {(pi, qi) : i ∈ N}
(N = {1, . . . , n}). A bundle qi is revealed preferred over another bundle

qj , denoted by qi R0 qj , if and only if piqi ≥ piqj (and qi 6= qj). For

every dataset S, there exists an associated graph G(S) = (V,A), defined

as follows. For every observation i in the dataset, there exists a vertex

i ∈ V . For every pair of vertices i, j, an arc (i, j) ∈ A exists if there is a

direct revealed preference relation qi R0 qj and qi 6= qj . The length of an

arc, denoted by `(i, j), is given by piqj − piqi. This means that the length

of an arc is either exactly 0, or negative. We now define warp, sarp or

garp in terms of this graph G(S).

Definition 2.2.1. A dataset S satisfies warp if and only if the associated

graph G(S) contains no cycles consisting of 2 arcs.

Definition 2.2.2. A dataset S satisfies sarp if and only if the associated

graph G(S) contains no cycles.

Definition 2.2.3. A dataset S satisfies garp if and only if the associated

graph G(S) contains no cycles of negative length.

The equivalence with the definitions given in Chapter 1 is straightforward.

A cycle consisting of 2 arcs will only exist if and only if there is a pair

of observations such that qi R0 qj and qj R0 qi, which is a violation of

warp. A cycle of any length is likewise only possible if there is a sequence
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of bundles i, j, . . . , k, such that qi R0 qj R0 . . . R0 qk R0 qi, which is a

violation of sarp. A cycle of negative length implies at least one of the

direct revealed preference relations in the previous sequence is strict; a

violation of garp.

In this chapter, we are interested in the following decision problems.

Problem 2.2.1. Testing garp (warp, sarp)

Instance: A dataset S.

Question: Does S satisfy garp?
(
warp, sarp

)

2.3 The current State-of-the-art concerning warp,

sarp and garp

The question of testing whether a given dataset S satisfies warp, sarp

or garp can be answered in polynomial time. We now give an informal

sketch of the procedures used (see Varian (2006)). Using G(S), warp

can be tested by checking for each pair of vertices i, j ∈ V , whether both

(i, j) ∈ A and (j, i) ∈ A; warp is violated if and only this is the case.

Because building the graph G(S) can be done in O(n2), and we perform

O(n2) comparisons in total, we infer that testing warp can be done in

O(n2) time. For testing sarp, the graph G(S) is tested for acyclicity.

Checking whether G(S) is acyclic is done in time O(n2) using, for example,

a topological ordering algorithm. Thus, testing sarp can be done in O(n2)

time.

The current algorithm for testing garp is based on computing the tran-

sitive closure of the graph G(S) (Varian, 1982, 2006) and proceeds as fol-

lows. Given G(S) = (V,A), its transitive closure is represented by the

graph GC(S) = (V,AC). The set of arcs AC is constructed as follows, if

there is an arc (i, j) ∈ A, then there is an arc (i, j) ∈ AC , with length

`(i, j) = piqj − piqi. If there is no arc (v0, vt) ∈ A, but there is a sequence

of vertices [v0, v1, . . . , vt], such that (vi−1, vi) ∈ A for all i = 1, . . . , t, i.e.,
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there is a path from v0 to vt in G(S), then there is an arc (v0, vt) ∈ AC ,

with `(v0, vt) = 0. For this graph GC(S) it can then be tested whether

there exists a pair of vertices i, j ∈ V , such that both (i, j) ∈ AC and

(j, i) ∈ AC and either `(i, j) < 0, `(j, i) < 0 or both. The bottleneck of

this procedure is the computation of the transitive closure graph GC(S).

Varian (1982) uses the O(n3)-algorithm proposed by Warshall (1962) and

mentions the possibility of computing the transitive closure using matrix

multiplication. In the literature, the best-known algorithms for matrix

multiplication on general matrices runs in time O(n2.376) (Coppersmith

and Winograd, 1990), some recent papers improve this bound to O(n2.373)

(Williams, 2012; Gall, 2014).

2.4 The Algorithm

The algorithm we present in this section is based on the computation of

strongly connected components of the graph G(S) = (V,A). A strongly

connected component of a graph is a maximal (sub)set of vertices Vk ⊆ V ,

such that for every pair of vertices i, j ∈ Vk, there is a path from i to j

and vice versa (Tutte, 1961). Notice that for every pair of distinct strongly

connected components Vk, Vl (k 6= l), it is the case that Vk∩Vl = ∅. Indeed,

if this were not the case, there exists a vertex i ∈ (Vk ∩ Vl), and for every

vertex a ∈ Vk and every vertex b ∈ Vl, there is a path from a, through i, to b

and a path from b, through i, to a. Thus, the set Vk∪Vl is a single strongly

connected component. We now define the graph GSCC(S) = (V,ASCC) as

follows. If there exist an arc (i, j) ∈ A, and vertices i and j are in the

same strongly connected component, then (i, j) ∈ ASCC . If i and j are

in different strongly connected components, then (i, j) /∈ ASCC . We now

state the following result.

Lemma 2.4.1. A dataset S satisfies garp if and only if, for every arc

(i, j) ∈ ASCC , `(i, j) = 0.

Proof. ⇒
)

Suppose that the dataset S satisfies garp. In this case, the
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graph G(S) has no cycles of negative length. Now consider the graph

GSCC(S). By construction, any arc (i, j) ∈ A, which is part of a cycle in

G(S), is included in ASCC . This is straightforward, since if there is a cycle

involving the arc (i, j), by definition there is a path from i to j and from j

to i and i and j are in the same strongly connected component. Also, for

any arc (i, j) ∈ A which is not part of any cycle, (i, j) /∈ ASCC , since there

is no path from j to i, and the two vertices are in different components.

Given that for each arc `(i, j) ≤ 0, the existence of any arc in a cycle with

`(i, j) < 0 implies a cycle of negative length. Now suppose there is an arc

(i, j) ∈ ASCC with `(i, j) < 0. By the previous arguments, there is a cycle

of negative length in G(S).

⇐
)

Now suppose that for every arc (i, j) ∈ ASCC , `(i, j) = 0. By con-

struction, for each arc (k, l) ∈ A involved in a cycle in G(S), it is also the

case that (k, l) ∈ ASCC . Since there is no arc (i, j) ∈ ASCC with `(i, j) < 0,

this implies there are no arcs of negative length involved in any cycle in

G(S) and thus garp is satisfied.

We propose the following algorithm for testing garp. In step 1, graph

G(S) is built from the dataset S. The second step involves computing the

strongly connected components of G(S). We will be basing our complexity

result on Tarjan’s algorithm (Tarjan, 1972), which achieves a strong worst-

case bound and is relatively simple. This algorithm uses a depth-first

search, sequentially labelling all vertices in a graph while following the

arcs. When previously labelled nodes are encountered a cycle exists, and

the algorithm works backwards towards a root node of the corresponding

strongly connected component. Given the strongly connected components,

we build the graph GSCC(S) = (V,ASCC). Given this graph and its set

of arcs, we can test whether all arcs in ASCC have a length of 0. The

main difference between Algorithm 1 and the current procedure (see Varian

(2006)) for testing garp stems from the fact that the former algorithm

computes the strongly connected components of a directed graph whereas

the latter computes the transitive closure of a matrix.
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Algorithm 1 An algorithm for testing garp

1: Build the graph G(S)

2: Compute the strongly connected components of G(S)

3: Build the graph GSCC(S) = (V,ASCC)

4: if every arc (i, j) present in ASCC has `(i, j) = 0 then return garp

satisfied

5: else return garp violated

Theorem 2.4.1. Algorithm 1 tests garp in time O(n2).

Proof. The correctness of the algorithm results from Lemma 2.4.1. Let

us now analyse its complexity. The first step of the algorithm, building

the directed graph G(S), can be done in time O(n2) because we check

piqj − piqi for every pair of observations. The second step, computing

the strongly connected components, is completed in time O(n2) when im-

plemented using Tarjan’s algorithm (Tarjan, 1972). Given the strongly

connected components, building GSCC(S) = (V,ASCC) also takes O(n2)

time, since for every pair of nodes we test whether they are in the same

strongly connected component. Finally, the last step (the if loop) has a

running time of O(n2). Therefore, the overall running time of the algo-

rithm is bounded from above by 4×O(n2) = O(n2).

2.5 Lower Bounds

Of course, a valid question is whether the O(n2) algorithms for warp, sarp

and garp can be sped up even further. We note that, in the discussion so

far, the number of goods, m, is seen as fixed. However, if the number of

goods is part of the input, our algorithm becomes a O(n2m) method. Of

course, in that case reading the data takes O(nm) time, and can be seen

as a lower bound for any algorithm testing warp, sarp and garp. In this

section, we derive a lower bound for testing these problems that does not

rely on the effort needed to read the data. We will show that, even when
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the data are known implicitly, an Ω(n log n) lower bound still applies. More

precise, we derive a lower bound of Ω(n log n) on testing warp, sarp and

garp under an algebraic computation tree model of computation. This is

achieved by using a reduction from the Element Distinctness problem (Ben-

Or, 1983; Yao, 1991).

Problem 2.5.1. Element Distinctness

Instance: A set x1, x2, . . . , xk of k positive integers.

Question: Are the integers xi, i = 1, . . . , k, pairwise distinct?

Using a topological method, Yao (1991) proves that any algebraic com-

putation tree that solves the k-Element Distinctness problem has a lower

bound complexity of Ω(k log k). We next show that this lower bound is

valid for warp, sarp and garp by arguing that an algorithm for testing

these can also be used for determining whether k integers are pairwise

distinct.

Given an instance x1, x2, . . . , xk of the Element Distinctness problem,

we build a dataset S as follows. We assume that there are k goods. To

describe the prices and the quantities of all goods for each observation we

make use of a ‘default’ price (quantity) for each good. The vector of default

prices is (x1 − 0.1, x2 − 0.1, . . . , xk − 0.1) whereas the vector of default

quantities is (0, 0, . . . , 0). Notice that to describe these default vectors, we

need O(k) operations. We consider a dataset S with k observations where

an observation is identified by the index of a good. This index means that

for the considered observation, that particular good, let us say j, has the

price of xj + 0.1 (instead of xj − 0.1 as in the default vector) whereas

the quantity of that good is now 1 (instead of 0 in the default quantity

vector). The price (respectively the quantity) of each remaining good is

exactly its default price (respectively its default quantity). Notice that all

the quantities in S are pairwise distinct. Also, observe that this second

part of our reduction requires O(k) operations because given the default

price and quantity vectors, we need exactly O(k) numbers to describe the

dataset S. We now prove that the dataset S satisfies warp, sarp or garp



34 Testing the Axioms of Revealed Preference

if and only if the considered instance of the Element distinctness problem

is a yes instance.

Consider the directed graph G(S) built from S and observe that there is

an arc from i to j if and only if piqi ≥ piqj ; that is xi + 0.1 ≥ xj − 0.1,

as xi and xj are integers, this is equivalent to xi ≥ xj . As a result, if

there is a cycle (s, u), (u, v), . . . , (z, t)(t, s) then the two-cycles (s, u)(u, s),

(u, v), (v, u), . . . , and (t, s)(s, t) are all present. This observation implies

that if the graph does not contain any two-cycle then it does not contain

any cycle and vice-versa. As a result, S satisfies warp if and only if S

satisfies sarp. Another remark is that for all pair of observations i and

j we have piqi = xi + 0.1 6= xj − 0.1 = piqj , because xi and xj are

integers. This means that for any pair of observations i and j we have

piqi 6= piqj . These inequalities imply that S satisfies garp if and only if

S satisfies sarp. Thus, for this particular dataset S, testing sarp, warp

or garp is equivalent. Observe now that a two-cycle (i, j), (j, i) is present

in our graph if and only if xi = xj ; in other words, there is a two-cycle

in our graph if and only if the two elements xi and xj are identical. It

immediately follows that the dataset S satisfies warp, sarp and garp if

and only if the considered instance of the Element Distinctness problem is

a yes-instance. This proves that any algorithm for solving warp, sarp or

garp can be used to solve the Element Distinctness problem. Therefore,

the lower bound of Ω(k log k) for solving the Element Distinctness problem

is directly applicable to any algorithm for solving warp, sarp or garp.

We formalize this result in the following theorem.

Theorem 2.5.1. Any algorithm for testing either warp, sarp or garp

on a dataset S with n observations has a running time bounded from below

by Ω(n log n).
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2.6 Conclusions

This chapter presents an O(n2) algorithm testing garp, which improves

upon the best known complexity for algorithms for testing garp. Fur-

thermore, we show that the element distinctness problem can be seen as a

special case of testing warp, sarp or garp. As it has been proven that

element distinctness cannot be tested in less than Ω(n log n) time, this

provides a lower bound of the computational complexity of tests for these

axioms.





Chapter 3

Goodness-of-fit Measures for

Revealed Preference Tests

3.1 Introduction

As we noted in Chapter 1, tests of the axioms of revealed preference are

‘sharp’ tests: they only tell us whether or not observed behaviour is con-

sistent with the revealed preference axiom that is being tested. When the

dataset does not pass the test, there is no indication concerning the severity

or the number of violations. To deal with this, a number of goodness-of-

fit measures have been proposed in the literature to express how close a

dataset is to satisfying rationality. In this chapter, we will focus on some

classical goodness-of-fit measures, which are often used in applied work.

In particular, we look at Afriat’s index (ai) (Afriat, 1973), Houtman and

Maks’ index (hi) (Houtman and Maks, 1985) and Varian’s index (vi) (Var-

ian, 1990). These goodness-of-fit measures can be computed for different

This chapter is the result of a collaboration with Laurens Cherchye, Bram De Rock

and Frits C.R. Spieksma. An article based on parts of this chapter has been pub-

lished in Transactions on Economics and Computation (Smeulders et al., 2014b). We

gratefully acknowledge helpful discussions with Gerhard Woeginger and Fabrice Talla

Nobibon and interesting comments by the referees.
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axioms of revealed preference. In the previous chapters, we looked at the

weak, strong and general axioms of revealed preferences (warp, sarp and

garp). In this Chapter, we will also consider the homothetic axiom of

revealed preference (harp). Section 3.2 provides a precise description of

this axiom and the different goodness-of-fit measures.

These revealed preference axioms and goodness-of-fit measures have been

used intensively in the literature. The first tests of the axioms of revealed

preference go back to the sixties and seventies. Aggregated household

consumption data was used in tests of sarp by Koo (1963, 1971), Koo and

Hasenkamp (1972), Mossin (1972) and Landsburg (1981). Varian (1982)

tested garp using similar data. Only Koo tried to measure the severity of

the rejections by focusing on the number of violations and using a measure

similar to hi. Over the last decade, the goodness-of-fit measures have been

used more and more often. Sippel (1997) tests relaxations of warp, sarp

and garp related to ai. ai and garp are used in papers by Mattei (2000),

Harbaugh et al. (2001), Andreoni and Miller (2002), Février and Visser

(2004), Choi et al. (2007, 2014), Dean and Martin (2010) and Burghart

et al. (2013); the last four papers also use hi. vi and garp appears in

Cox (1997), Mattei (2000), Choi et al. (2007, 2014) and Dean and Martin

(2010). For warp, all three indices appear in Choi et al. (2007). To

the best of our knowledge, there do not exist any studies that compute

goodness-of-fit measures for harp, although there exist papers in which

harp is tested (see for example Manser and McDonald (1988)).

It is generally thought that calculating ai is easy. However, to our knowl-

edge, no exact algorithm is described in the literature. Varian (1990)

provides an approximation algorithm, which comes within an additive er-

ror of
(

1
2

)m
of the true index-value in m garp tests. As for the other

two indices (hi and vi), it has been empirically recognized that computing

them is computationally intensive. For instance, Varian (1990) writes:

“Computing the set of efficiency indices [vi] that are as close

as possible to 1 in some norm is substantially more difficult . . .
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This approach is significantly more difficult from a computa-

tional perspective.”

Similarly, Choi et al. (2014)1 state:

“All indices [vi and hi] are computationally intensive for even

moderately large datasets.”

In fact, because of the apparent difficulty to exactly calculate VI, some au-

thors have focused on designing approximate heuristics, see, for example

Varian (1993), Tsur (1989) and Alcantud et al. (2010).

The goal of the current chapter is to give a theoretical foundation for these

practical observations and to strengthen the existing results. As far as we

are aware, explicit complexity results are known only for index HI. More

specifically, Houtman and Maks establish a link between their index for

sarp and feedback vertex sets on a digraph, which implies NP-Hardness.

Next, Dean and Martin (2010) state that hi for garp is also NP-hard.

We establish the computational complexity for every combination of the

three goodness-of-fit measures (ai, vi and hi) and the four revealed pref-

erence axioms (garp, sarp, warp and harp) mentioned above. We will

refer to these problems as {a,v,h}i-{g,s,w,h}arp, where choosing a sym-

bol from the set {a,v,h} and a symbol from the set {g,s,w,h} identifies

the particular problem. For example, ai-garp is the problem of computing

the maximum index ai such that the dataset satisfies a relaxation of garp.

Our main results are summarized in Table 1, where a column corresponds

to a specific axiom and a row to a specific measure, and where n stands for

the number of observations. ‘Inapproximable’ stands for: no polynomial-

time algorithm can achieve a constant-factor approximation unless p =

np.

1 This quote is found in a working paper version (January 2011) of this article.
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ai (sec 3.6) vi (sec 3.4) hi (sec 3.5)

warp n2 Inapproximable Inapproximable

sarp n2 log n Inapproximable Inapproximable

garp n2 log n Inapproximable Inapproximable

harp n3 Inapproximable Inapproximable

Table 3.1: Overview of Results

The rest of this chapter unfolds as follows. The next section sets the stage

by introducing harp and the considered goodness-of-fit measures in more

detail. Section 3.3 provides a statement of the computational problems we

focus on. Sections 3.4 and 3.5 present our results on the computational

complexity for the indices vi and hi. Section 3.6 contains a polynomial

time algorithm for ai. Section 3.7 concludes.

3.2 Revealed preference concepts

We start by stating the homothetic axiom of revealed preference in 3.2.1.

For the exact definitions of the other axioms of revealed preference, we

refer to Chapter 1. Subsequently, we present the different goodness-of-fit

measures in 3.2.2.

3.2.1 The Homothetic Axiom of Revealed Preference

As before, our analysis starts from a dataset S = {(pi, qi)|i ∈ N}, (N =

{1, . . . , n}) where pi ∈ Rm++ and qi ∈ Rm+ correspond to observations i =

1, . . . , n. In this chapter, we will assume, without loss of generality, that

prices are normalized such that piqi = 1 for every observation i. Using this

normalization, Varian (1983) gives the following definition of harp.

Definition 3.2.1. A normalized dataset S satisfies harp if and only if

for every sequence of observations, i, j, k, . . . , l: (piqj)(pjqk) . . . (plqi) ≥ 1.
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This definition can be rewritten in the following way, which we will use

throughout this chapter.

Definition 3.2.2. A normalized dataset S satisfies harp if and only if,

for every sequence of observations, i, j, k, . . . , l: log(piqj)+log(pjqk)+ . . .+

log(plqi) ≥ 0.

As is the case with warp, sarp and garp, there also exists a graph rep-

resentation of harp, which is convenient to test the axiom. We will refer

to this graph as GH(S) = (V,AH). In this graph, nodes are defined in the

same way as for the graph G(S), i.e., there is a node for every observa-

tion. However, unlike the graph G(S), there exists an arc (i, j) ∈ AH and

(j, i) ∈ AH for every pair of nodes i, j ∈ V , i.e. the graph GH(S) is com-

plete. The length of an arc (i, j) is equal to log piqj for each (i, j) ∈ AH .

Note that unlike the graph G(S) used for the other axioms of revealed

preference, the length of arcs can be strictly positive in the graph GH(S).

In terms of this graph, harp can be defined as follows.

Definition 3.2.3. A normalized dataset S satisfies harp if and only if

the associated graph GH(S) contains no cycles of negative length.

The main differences between the alternative axioms we consider in this

chapter can be summarized as follows (see Varian (2006) for a more exten-

sive discussion on the meaning of the axioms). Data consistency with warp

implies that the direct revealed preference relation R0 is asymmetric. By

construction this direct revealed preference relation is not transitive since

qiR0qj and qj R0 qk does not need to imply qi R0 qk. This is no longer

the case for the revealed preference relation R, which is the transitive clo-

sure of R0. Data consistency with warp is a necessary condition for data

consistency with sarp and implies that the revealed preference relation is

asymmetric (and transitive).

Next, data consistency with sarp means that consumption behaviour can

be described as maximizing a utility function that generates single-valued
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demand. Similarly, data consistency with garp means that consumption

behaviour can be described as maximizing a utility function that generates

multi-valued demand. As such, garp is a generalization of sarp and data

consistency with garp still makes the revealed preference relation R an

asymmetric and transitive relation. Finally, data consistency with harp

means that consumption behaviour can be described as maximizing a util-

ity function that is homothetic. This implies that garp is a necessary

condition for harp and that the revealed preference relation is asymmet-

ric and transitive. Figure 3.1 illustrates the relations between the different

axioms of revealed preference.

Figure 3.1: Relations of the axioms of revealed preference

3.2.2 Goodness-of-Fit Measures

In practice, direct application of any of the above revealed preference ax-

ioms to some given dataset effectively obtains a ‘sharp’ test: a dataset

either satisfies the axiom or it does not. In other words, such a test allows

us to conclude whether or not observed behaviour is ‘exactly’ consistent

with the hypothesis of utility maximization (of a particular form, depend-

ing on whether we consider warp, sarp, garp or harp). However, a

dataset that is not exactly consistent may actually be very close to consis-
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tency. For example, there may be only a limited number of observations

that cause the observed violations of the axiom that is subject to testing.

Or, the violations may be very insignificant in that small adjustments of

the observations’ expenditures (i.e. prices times quantities) may suffice to

obtain consistency. Generally, it is interesting to quantify the degree to

which a given dataset is close to consistency (see Varian (1990) for exten-

sive motivation).

To account for these considerations, a number of goodness-of-fit measures

have been described in the literature. Three often used measures are

Afriat’s efficiency index (ai), Varian’s efficiency vector index (vi) and the

Houtman and Maks index (hi). Essentially, the indices ai and vi look for

minimal expenditure perturbations to obtain consistency with the revealed

preference axiom under evaluation: the ai index applies a common pertur-

bation to all observations, while the vi index allows a different perturbation

for each individual observation. Next, the index hi identifies the largest

subset of observations that are consistent with the axiom. Essentially, this

quantifies the degree of violation in terms of the number of observations

that are involved in a violation of the revealed preference axiom that is

tested. We refer to Varian (2006) for a more detailed discussion of the

different goodness-of-fit measures we evaluate.

To formally introduce our goodness-of-fit measures, we make use of the

vector e = (e1, e2, . . . , en), with 0 ≤ ei ≤ 1. This vector introduces an

index ei for each observation i ∈ N , which relaxes the revealed preference

relations R0 and P0 as follows:

if ei(= eipiqi) ≥ piqj then qiR0(e)qj ,

if ei(= eipiqi) > piqj then qiP0(e)qj .

R(e) and P (e) represent the transitive closures of R0(e) and P0(e). These

newly defined relations R0(e), P0(e), R(e) and P (e) give rise to relaxed

versions of the earlier axioms of revealed preference, which are defined for

a given vector e. Clearly these axioms comply with the original versions

of warp, sarp, garp and harp as soon as ei = 1 for all i ∈ N .
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Definition 3.2.4. For a given e = (e1, e2, . . . , en), with 0 ≤ ei ≤ 1, a

normalized dataset S satisfies

• warp(e): If and only if, for each pair of distinct bundles, qi, qj: if

qi R0(e) qj then it is not the case that qj R0(e) qi.

• sarp(e): If and only if, for each pair of distinct bundles, qi, qj: if

qi R(e) qj then it is not the case that qj R0(e) qi.

• garp(e): If and only if, for each pair of distinct bundles, qi, qj: if

qi R(e) qj then it is not the case that qj P0(e) qi.

• harp(e): If and only if, for every sequence of observations, i, j, k, . . . , l(=

1, . . . , n): log(piqj) + log(pjqk) + . . .+ log(plqi) ≥ log(ei) + log(ej) +

. . .+ log(el).

To define the Afriat Index (ai), we assume that e1 = · · · = en, which

does indeed comply with a common perturbation for all observations. The

index ai equals the supremum over all values for which the data is consis-

tent with the tested revealed preference axiom. More precisely, if e = 1,

then the data is consistent with the tested axiom, while if e < 1, then this

indicates that we need to pertubate the data to make it consistent with

the revealed preference axiom under study. The smaller the number e is,

the higher the perturbation or, alternatively, the more severe the rejection

of the axiom. Finally, we notice that e is well-defined. If for a given e

the data is consistent with, for example, warp(e), then the same holds for

all e′ < e. Indeed, by construction we have that the revealed preference

relations in terms of e′ are always a subset of the ones in terms of e (e.g.

R0(e′) ⊆ R0(e)).

The Varian Index (vi) differs from the index ai by allowing for observation

specific perturbations. The index vi equals the vector e that is closest to

1, for some given norm, such that the data satisfies the revealed preference

axiom under study. For example, if we use the quadratic norm, then vi
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should minimize
∑

i(1− ei)2 such that, for example, warp(e) is satisfied.

Further, the index vi is subject to the same qualifications as the index ai.

Finally, the Houtman and Maks index (hi) equals the size of the largest

subset of observations which satisfy the axioms of revealed preference.

Formally, this complies with restricting the possible values of ei so that

ei ∈ {0, 1}.

Graph representation

In order to verify whether a dataset actually satisfies some revealed pref-

erence axiom for a given vector e, it is natural to adapt the graphs G(S)

and GH(S). For a given dataset S and vector e, we construct the asso-

ciated graph Ge(S) as follows. In this graph, there is a node for every

observation. Next, for each pair of observations i, j (qi 6= qj), there is an

arc from node i to node j when ei ≥ piqj . The length of this arc is equal

to piqj − ei. The graph Ge(S) will be used to test warp, sarp and garp.

To test harp, we make use of another graph GHe (S). In this graph, nodes

are defined in the same way as for the graph Ge(S), i.e., there is a node for

every observation. Furthermore, for every pair of nodes (i, j), there exists

an arc from i to j and an arc from j to i. The lengths of these arcs are

given by log(piqj)− log(ei).

The axioms of revealed preference can then be formulated as follows:

Definition 3.2.5. For a given e = (e1, e2, . . . , en), with 0 ≤ ei ≤ 1, the

dataset S satisfies

• warp(e): If and only if each cycle consisting of 2 arcs in the graph

Ge(S) involves observations that have identical bundles.

• sarp(e): If and only if each cycle in the graph Ge(S) contains only

observations with identical bundles.
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• garp(e): If and only if the graph Ge(S) does not contain any cycles

of negative length.

• harp(e): If and only if the graph GHe (S) does not contain any cycles

of negative length.

3.3 Problem statement

In this section we introduce the tools that we need to prove the results

announced in Table 3.1. Using the graph representation described in Sec-

tion 3.2.2, we are now in a position to define an optimization problem that

measures how close a given dataset is to satisfying a particular axiom of

revealed preference. This leads to twelve different optimization problems.

For example, for sarp(e) we obtain the problems ai-sarp, vi-sarp and hi-

sarp, each corresponding to a specific index. Straightforward adaptations

define the problems ai-{w,g,h}arp, vi-{w,g,h}arp and hi-{w,g,h}arp.

For compactness, we only state the optimization problems with respect

to sarp; the optimization problems corresponding to {w,g,h}-arp are

defined analogously.

Problem 3.3.1. vi-sarp

Given a dataset S, maximize
∑n

i=1 ei, with 0 ≤ ei ≤ 1 for each i, while S

satisfies sarp(e).

Clearly, objective functions other than
∑n

i=1 ei are possible. We will come

back to this issue in Section 3.4.

Problem 3.3.2. hi-sarp

Given a dataset S, maximize
∑n

i=1 ei, with ei ∈ {0, 1} for each i, while S

satisfies sarp(e).

Results concerning this problem will be given in Section 3.5.

Problem 3.3.3. ai-sarp

Given a dataset S, maximize e, with 0 ≤ e ≤ 1, while S satisfies sarp(e).
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3.4 Varian’s Index

Clearly, when given a vector e = (e1, . . . , en), there are different ways to

specify an objective function measuring the quality of e. Obvious can-

didates are minimize
∑n

i=1 (1− ei), minimize
∑n

i=1 (1− ei)2 or minimize

maxi (1 − ei). In fact, all these objective functions can be captured by

considering minimize
∑n

i=1 (1− ei)ρ for ρ ≥ 1. Observe that, since min-

imize limρ→∞
∑n

i=1 (1− ei)ρ is equivalent to minimize maxi (1 − ei), the

Afriat index arises when ρ → ∞. The results in this section are phrased

for ρ = 1, i.e., for the case where we minimize
∑n

i=1 (1− ei) or equiva-

lently maximize
∑n

i=1 ei. At the end of the section we point out that the

reduction remains valid for every fixed ρ ≥ 1. Notice that for every fixed

ρ the problem is hard, while for ρ→∞ the problem becomes easy.

Let us now consider the following decision problem associated with vi-

sarp (vi-sarpd):

Problem 3.4.1. vi-sarpd

Instance: A dataset S and a number Z.

Question: Do there exist n numbers ei, with 0 ≤ ei ≤ 1, such that

(i) The dataset S satisfies sarp(e), and

(ii)
∑n

i=1 ei ≥ Z?

Obviously, being able to solve Problem 3.3.1 from Section 3.3, i.e., being

able to solve vi-sarp, in polynomial time implies that vi-sarpd can be

solved in polynomial time. That, however, is unlikely, as witnessed by our

next result:

Theorem 3.4.1. vi-sarpd is NP-complete.

Proof. First, we show that the vi-sarpd is in NP, i.e., we show that for

every Yes-Instance, there is a ‘short’ certificate. Suppose an instance of

vi-sarpd is a Yes-Instance, and (e1, e2, . . . , en) is a solution, then there
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exists a solution (e′1, e
′
2, . . . , e

′
n) which can be described as a function of

the p and q vectors and Z. Indeed, since an ei value basically determines

the presence or absence of arcs emanating from the node corresponding to

observation i, only O(n) breakpoint values of ei are relevant (and these

can be described as piqj/piqi). Thus if (e1, e2, . . . , en) is a solution, we can

increase an individual ei value until it meets a breakpoint value (bpi). At

this breakpoint value, sarp may no longer be satisfied, since the newly

appearing arc(s) can lead to a violation. However, for any value of ei

below this breakpoint, no new arcs appear and sarp is satisfied. We set

e′i = bpi − (
∑n

k=1 bpk − Z)/n, for all i ∈ N . Notice that (e′1, e
′
2, . . . , e

′
n) is

feasible, since

n∑
i=1

e′i =

n∑
i=1

(bpi − (

n∑
k=1

(bpi)− Z)/n) = Z. (3.1)

Also notice that (e′1, e
′
2, . . . , e

′
n) is a short certificate, which can be com-

pletely described in a polynomial number of bits in regards to the inputs,

p, q and Z. Given this certificate, calculating
∑n

i=1 e
′
i, building the graph

Ge′(S) and testing it for acyclicity can be done in polynomial time, thus

the problem is in np.

Next, we prove that vi-sarpd is NP-hard by a reduction from the well-

known NP-hard independent set problem Karp (1972), which is formulated

as follows:

Problem 3.4.2. independent set

Instance: A graph G = (V,E) and a number k.

Question: Does there exist a subset V ′ ⊆ V of at least k vertices, such that

for every pair of vertices i, j ∈ V ′, the edge (i, j) is not in E?

Given an instance of IS we now construct the following instance of vi-

sarpd. For every node i ∈ V , there is an observation in vi-sarpd: n := |V |.
The vectors pi = (pi,1, . . . , pi,n), qi = (qi,1, . . . , qi,n) are created as follows.
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We set, for i = 1, . . . , n, qi,i := 1, all remaining qi,j := 0. Further, we set

pi,i := 1, for i = 1, . . . , n. If there is an edge between node i and node

j in G, i.e., if {i, j} ∈ E, then pi,j := ε (for some 0 < ε < 1
n), other-

wise pi,j := 2. Finally, we set Z := k. This completes the description of

the instance of vi-sarpd. Notice that this construction implies that if an

edge exists between i and j in G, then piqj = pjqi = ε, else piqj = pjqi = 2.

We now argue the equivalence between IS and vi-sarpd. Suppose the in-

stance of independent set is a yes-instance, i.e., an independent set of size

at least k exists. For every vertex in that independent set, set ei = 1 and for

every other vertex set ei = 0. It is clear that
∑
ei ≥ Z. Consider the graph

Ge(S), and recall that an arc is present from i to j if and only if piqj ≤ ei.
We claim that the graph Ge(S) is acyclic. Indeed, notice that vertices out-

side the independent set will not have any outgoing arcs in Ge(S) since for

each such vertex i: piqj − ei = piqj > 0. Also notice that no arc connects

two observations corresponding to nodes in the independent set, since for

a pair of such observations i, j we have piqj − ei = pjqi − ej = 2 − 1 > 0.

Thus, arcs in Ge(S) only exist from vertices in the independent set to ver-

tices outside the independent set. It follows that the graph is acyclic.

Now, suppose that the instance of vi-sarpd is a yes-instance, so
∑
ei ≥

Z = k. Then for at least k observations ei > ε; if not, at most k − 1 ei-

values exceed ε; since ei ≤ 1,
∑
ei is then bounded by k−1+(n−k+1)ε <

k − 1 + 1 = k, which contradicts the requirements for a yes-instance. We

will call such an ei value large. We claim that the vertices with large ei-

values constitute an independent set in G. Indeed, consider two vertices

i and j with large values ei and ej . If i and j are connected in G, then

piqj = pjqi = ε, implying that there is an arc in the graph Ge(S) from i to

j and from j to i, which is a cycle. Therefore i and j are not connected in

G. Thus, the set of vertices with large ei is an independent set of size at

least k.
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We now proceed with vi-garp; its corresponding decision problem is vi-

garpd:

Problem 3.4.3. vi-garpd

Instance: A dataset S and a number Z.

Question: Do there exist n numbers ei, with 0 ≤ ei ≤ 1, such that

(i) The dataset S satisfies garp(e), and

(ii)
∑n

i=1 ei ≥ Z?

Theorem 3.4.2. vi-garpd is NP-complete.

Proof. This proof is an adaptation of the proof of Theorem 3.4.1. Observe

that we are now interested in the question whether there exists a cycle in

the graph Ge(S) that has negative length (see Definition 3.2.5).

Again, vi-garpd is easily seen to be in NP. The certificate is the same,

calculating
∑n

i=1 ei, building the graph Ge(S) and testing Definition 3.2.5

can all be done in polynomial time.

The instance that we build using independent set is exactly the same as in

the proof of Theorem 3.4.1. We now show the equivalence. From the proof

of Theorem 3.4.1, we know that if an independent set of size k exists, we

can find a vector e for which
∑
ei ≥ Z = k and sarp(e) is satisfied. As

garp(e) is a relaxation of sarp(e), garp(e) holds as well.

Vice versa, we now argue that a yes-instance of vi-garpd corresponds with

an independent set of size at least k. Consider two nodes in G, i and j,

and assume that both ei and ej are large. If i and j are connected in G,

then an arc from i to j, and an arc from j to i, both with negative length

are present in Ge(S). This however, is impossible since the instance of
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vi-garpd is a yes-instance. Thus, since there are at least k observations

with a large e-value, an independent set of size at least k exists in G.

Next we consider the problem vi-warp and its corresponding decision

problem vi-warpd:

Problem 3.4.4. vi-warpd

Instance: A dataset S and a number Z.

Question: Do there exist n numbers ei, with 0 ≤ ei ≤ 1, such that

(i) The dataset S satisfies warp(e), and

(ii)
∑n

i=1 ei ≥ Z?

Theorem 3.4.3. vi-warpd is NP-complete.

Proof. For vi-warpd, the proof of Theorem 3.4.1 is also easily adapted.

Again no changes are made to the graph construction, the only difference

compared to vi-sarpd is that cycles are now allowed, as long as they in-

volve more than 2 vertices (see Definition 3.2.5). Clearly, vi-warpd is in

np.

From the proof of Theorem 3.4.1, we know that if an independent set of

size k exists, we can find a vector e for which
∑
ei ≥ Z = k and the graph

Ge(S) is acyclic. As it is acyclic, clearly no cycles involving only two ver-

tices exist and warp(e) is satisfied.

Finally, if the instance of vi-warpd is a yes-instance, we claim that an

independent set of size k exists. As shown before, the observations for

which the ei value is large are not connected in the graph G, so they form

an independent set.
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We end this section with the problem vi-harp; here is the corresponding

decision version:

Problem 3.4.5. vi-harpd

Instance: A dataset S and a number Z.

Question: Do there exist n numbers ei, with 0 ≤ ei ≤ 1, such that

(i) The dataset S satisfies harp(e), and

(ii)
∑n

i=1 ei ≥ Z?

Theorem 3.4.4. vi-harpd is NP-complete.

Proof. As with the other axioms, vi-harpd is in NP since the certificate

consists of the ei values. Testing the graph for Definition 3.2.5 can be done

using a minimum cycle mean algorithm. This algorithm identifies the cycle

for which the mean weight of its arcs is the minimum mean weight of all

cycles in the graph. If the mean weight of the arcs of this cycle is positive,

harp(e) is satisfied.

An instance of vi-harpd is built in the same way as the instances in the

proofs of the previous Theorems. Consider now the equivalence. If an

independent set of size k exists in G, we choose ei = 1 for observations

corresponding to nodes in the independent set and ei = εn+1 for the other

nodes. Observe that the resulting graph GHe (S) has the following proper-

ties:

(i) an arc in GHe (S) emanating from an observation corresponding to a

node not in the independent set has a length of either log ε− log εn+1,

if there exists an edge between both nodes in G or log 2 − log εn+1

otherwise.

(ii) an arc in GHe (S) emanating from an observation corresponding to a

node in the independent set has a length of either log ε−log 1, if there

exists an edge between both nodes in G or log 2− log 1 otherwise.
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Any cycle that contains only observations corresponding to nodes within

the independent set has positive length, since the length of each arc equals

log 2. Further, a cycle in GHe (S) going through an observation correspond-

ing to a node not in the independent set contains an arc with length at

least log ε − log εn+1. Hence, the length of this cycle is at least log ε −
log εn+1 + n log ε = (n + 1) log ε − log εn+1 = 0. Thus each cycle has non-

negative length and the instance is a yes-instance of vi-harpd.

Consider now a yes-instance of vi-harpd. Clearly, there will be at least

k observations with a large ei value. Consider two nodes in G, each cor-

responding to an observation with a large e-value. If these two nodes are

connected in G arcs of length log ε − log ei and log ε − log ej are present,

yielding a negative cycle. Thus, two observations with large e-values can

not correspond to nodes that are connected in G.

From the NP-completeness of the decisions problems, it follows that the

optimization problems vi-{w,s,g,h}arp are NP-hard. Next, we show that

not only is computing Varian’s Index NP-hard, but also that approximat-

ing it in polynomial time is difficult, unless p = np.

Theorem 3.4.5. For each fixed δ > 0, the existence of a polynomial time

approximation algorithm vi-{w,s,g,h}arp achieving a ratio of O(n1−δ)

implies p = np.

Proof. Consider an instance of Independent Set, and the corresponding

instance of vi-{w,s,g,h}arp as constructed in Theorem 3.4.1. Clearly,

if the optimum value of the vi-{w,s,g,h}arp instance equals z, then the

optimum value for the IS instance equals bzc (if not, then then there exists

an independent set of size bzc+ 1, and by the previous reduction, we can

find e so that
∑n

i=1 ei ≥ bzc+ 1). Now, let z represent the optimum value

of the instance of vi-{w,s,g,h}arp, and let us assume that we have a

polynomial time approximation algorithm for vi-{w,s,g,h}arp achieving
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a ratio O(n1−δ). Thus, more concrete, assume that we can compute in

polynomial time a vector index e such that
∑n

i=1 ei ≥
2z
n1−δ . Given this

vector-index we can find an independent set of size max(1, b 2z
n1−δ c). Since

n1−δ ×max(1, b 2z
n1−δ c) ≥ n1−δ ×b 2z

n1−δ c ≥ n1−δ × b2zc
n1−δ+1

≥ n1−δ × b2zc
2n1−δ ≥

b2zc
2 ≥ bzc, we conclude:

max(1, b 2z

n1−δ c) ≥
bzc
n1−δ

It follows that we have a polynomial time algorithm achieving a ratio n1−δ

for IS. H̊astad (1999) and Zuckerman (2006), have shown that an approx-

imation algorithm for IS that runs in polynomial time can not guarantee

a ratio of n1−δ, unless p = np. Our result follows.

Let us now return to the general objective function
∑n

i=1 (1− ei)ρ (with

ρ ≥ 1) given at the start of this section. We now consider the following

problem:

Problem 3.4.6.

Instance: A dataset S and a number Z.

Question: Do there exist n numbers ei, with 0 ≤ ei ≤ 1, such that

(i) The dataset S satisfies sarp(e), and

(ii)
∑n

i=1 (1− ei)ρ ≤ Z?

Theorem 3.4.6. Computing Varian’s Index is NP-hard for objective func-

tions of the form
∑n

i=1 (1− ei)ρ, for any fixed ρ ≥ 1.

Proof. Given an instance of Independent Set, create an instance of vi-

{w,s,g,h}arp as in the proof of their respective theorems with the follow-

ing differences. Set Z := n− k and let 0 < ε < 1− ( n−k
n−k+1)(1/ρ). It can be

easily checked that the equivalence holds.
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3.5 Houtman and Maks’ Index

In this section, we consider the problems hi-{w,s,g,h}arp. We give the

problem hi-sarp, all other problems are analogous, differing only in the

axiom of revealed preference to be satisfied. Notice that, in their origi-

nal paper, Houtman and Maks (1985) already showed hi-sarp is an np-

complete problem, through a reduction from feedback vertex set, see also

Dean and Martin (2010).

Problem 3.5.1. hi-{w,s,g,h}arpd
Instance: A dataset S and a number Z.

Question: Do there exist n numbers ei, with ei ∈ {0, 1}, such that

(i) The dataset S satisfies {w,s,g,h}arp(e), and

(ii)
∑n

i=1 ei ≥ Z?

Theorem 3.5.1. hi-{w,s,g,h}arpd is NP-complete.

Proof. Note that this result has been proven for hi-sarpd by Houtman

and Maks (1985). For the other axioms of revealed preference, the proofs

of NP-completeness for VI are easily extended to HI. As the choice of ei

is now limited to either zero or one, it is clear that every large ei = 1 and

every other ei = 0, i ∈ N .

The NP-hardness of the optimization problems follows from the NP-completeness

of the decision problems.

Theorem 3.5.2. For each fixed δ > 0, the existence of a polynomial time

approximation algorithm hi-{w,s,g,h} achieving a ratio of n1−δ implies p

= np.
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Proof. Consider an instance of Independent Set, and the corresponding

instance of hi-sarp as constructed in Theorem 3.4.1. Clearly, if the op-

timum value of the hi-sarp instance equals z, then the optimum value

for the IS instance also equals z (if not, then then there exists an inde-

pendent set of size z + 1, and by the previous reduction, we can find e so

that
∑n

i=1 ei ≥ z + 1). Now assume that there exists a polynomial time

approximation algorithm achieving a ratio of n1−δ for hi-sarp, then we

can find a vector-index so that
∑n

i=1 ei ≥
z

n1−δ . Given this vector-index

we can find an independent set of size d z
n1−δ e as follows, for every i for

which ei = 1 add the vertex i to the independent set. This would give us

a n1−δ-approximation for IS in polynomial time. Relying on the same re-

sults as in Theorem 3.4.5, this provides the bound of Houtman and Maks’

index.

3.6 Afriat’s index

3.6.1 Introductory observations

As with the previous indices, it is our goal to find the maximum value

of e (e1 = e2 = . . . = eT = e), such that a given dataset still passes

{w,s,g,h}arp. However, such a maximum value frequently does not exist.

For example, consider the following matrix of the values piqj (for two

observations), i, j = 1, 2: (
1 0.50

0.60 1

)
.

As long as e ∈ [0; 0.6[, all axioms of revealed preference will be satisfied,

but for e ≥ 0.6 a cycle of negative length exists between the two vertices

in both Ge(S) and GHe (S) and, thus, the axioms are violated. Since there

is no maximum feasible value for e, we look for the value e∗ that is the

supremum of the values of e for which the axioms of revealed preference

are satisfied. Varian (1990) describes an approximation algorithm which
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approximates e∗ to within (1/2)t by testing t times the axiom under e. In

an overview paper, Varian (2006) mentions that it is also easy to calcu-

late e∗ exactly and exact values are calculated for ai-garp in a number

of papers, see for instance Choi et al. (2007). However, to the best of

our knowledge, no exact polynomial algorithm has been described in the

literature. In the next section we provide such a polynomial time exact

algorithm for ai-{w,s,g,h}arp and a separate algorithm for ai-harp.

3.6.2 Complexity results

Consider the following algorithm for ai-warp.

Algorithm 2 ai-warp, (input: S = {(pi, qi)|i ∈ N}; output e∗)

1: Set e∗ := 1.

2: for all pairs i, j ∈ N do

3: if piqj < e∗ and pjqi < e∗ then

4: Set e∗ := max{piqj , pjqi}.
5: end if

6: end for

Theorem 3.6.1. Algorithm 3 solves ai-warp in O(n2) time.

Proof. We first argue that Algorithm 2 is correct. Clearly, there is a vio-

lation of warp(e) if and only if there exists a pair of observations i, j ∈ N
(qi 6= qj), such that both piqj ≤ e and pjqi ≤ e. By construction, the

Algorithm ensures that for every pair of observations k, l ∈ N (qk 6= ql)

either pkql ≥ e∗ or plqk ≥ e∗ or both. It follows that for any e < e∗, it is

the case that either pkql > e or plqk > e and thus warp(e) is satisfied. It

follows that Algorithm 2 is correct.

The complexity of this Algorithm is straightforward, there exist O(n2) pair

of observations i, j ∈ N . For each of these pairs, piqj and pjqi are calculated

and compared against e∗, which is done in constant time. Depending on
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the outcome of these comparisons, at most one variable is changed, again

in constant time. The total number of operations in the Algorithm is thus

determined by the number of pairs, O(n2).

Next, we consider an algorithm for ai-sarp.

Algorithm 3 ai-sarp, (input: S = {(pi, qi)|i ∈ N}; output e∗)

1: Initialization: Construct an array A of all values piqj ≤ 1, i 6= j and

add an element with value equal to 1. Sort all values in ascending

order, and let x be the median value in A.

2: Test sarp(x). If sarp(x) is satisfied, remove all values lower than or

equal to x from A, otherwise remove all higher values.

3: If more than one element remains in the array, repeat step 2; otherwise

x is the remaining value in A. Set e∗ = x

Theorem 3.6.2. Algorithm 3 solves ai-sarp in O(n2 log n) time.

Proof. We first argue that Algorithm 3 is correct. Clearly, if the dataset

satisfies sarp(e), then it satisfies sarp(e’) for all e′ ≤ e. Moreover, the

dataset satisfies sarp(0). Thus, for an increasing e, sarp(e) becomes vi-

olated at some value e∗. This can only happen when an arc, completing

a cycle, is added to the graph Ge(S), i.e., at some value piqj . If there is

no value e < 1 for which sarp(e) is violated, then e∗ = 1. It follows that

Algorithm 3 is correct.

Next we analyse the complexity of this algorithm. To construct A, piqj

must be calculated for all pairs of observations, which takes O(n2) time. In

the worst case, this array is of size O(n2), so sorting is done in O(n2 log n).

In the second step of the algorithm, sarp(e) is tested for different values

of e. As the array is halved in each iteration, at most O(log(n2)) such tests

are needed and each such test can be done in O(n2) using, for example, a

topological ordering algorithm (Ahuja et al., 1993). This gives a total time

complexity for the second step of O(n2 log n). The total time complexity
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is thus determined by the sorting of the array and the second step and is

O(n2 log n).

Algorithm 4 ai-garp, (input: S = {(pi, qi)|i ∈ N}; output e∗)

1: Initialization: Construct an array A of all values piqj ≤ 1, i 6= j and

add an element with value equal to 1. Sort all values in ascending

order, and let x be the median value in A.

2: Test garp(x). If garp(x) is satisfied, remove all values lower than x

from A, otherwise remove all higher values.

3: If more than two element remains in array A, repeat step 2.

4: Let the lowest of the two remaining values be x1 and the highest x2.

Test garp(e) for e = x1, and for e = x2. Then

i. If garp(x1) and garp(x2) are satisfied, test garp(x2+ε), (where

ε > 0 is an arbitrarily small number). If garp(x2 +ε) is satisfied,

then e∗ = 1 otherwise e∗ = x2.

ii. If both are not satisfied, e∗ = x1.

iii. If garp(x1) is satisfied and garp(x2) is not, test garp(x1 + ε).

If garp(x1 + ε) is satisfied, e∗ = x2, otherwise e∗ = x1.

In the case of ai-sarp and ai-warp, an e∗ value is computed that corre-

sponds to some arc appearing in the graph, at which point a cycle appears.

In garp(e) however, a cycle does not necessarily indicate a violation since

the length of the cycle may be 0. Therefore, we need a subtle change as

can be seen in in Algorithm 4.

Theorem 3.6.3. Algorithm 4 solves ai-garp in O(n2 log n) time.

Proof. We first notice that the value e∗ can be feasible for garp(e), if for

that value a cycle of length 0 exists in the graph G(S). Therefore, we

consider Algorithm 4, which does not discard the highest known feasible

value of e.
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The time complexity of this algorithm is similar to that for ai-sarp.

Throughout most of the algorithm, the only difference is the testing of

garp(e) instead of sarp(e). In the final step, garp(e) is tested twice,

which has no impact on the overall bound. Since testing garp can be

done in O(n2) time, as shown in Chapter 2, the overall complexity is thus

O(n2 log n).

Finally, we provide a polynomial time algorithm for ai-harp. In this al-

gorithm we need to compute the minimum cycle mean: the cycle with the

shortest average arc length.

Algorithm 5 ai-harp, (input: S = {(pi, qi)|i ∈ N}; output e∗)

1: Initialization: Construct the graph GH1 (S).

2: Calculate the minimum cycle mean (MCM), which is the shortest av-

erage length of the arcs in any cycle in the graph GH1 (S).

3: Calculate e∗ as follows: e∗ = exp (MCM).

Theorem 3.6.4. Algorithm 5 solves ai-harp in O(n3) time.

Proof. We will show that computing the minimum cycle mean (MCM) of

GH1 (S) is sufficient to find e∗. harp(e) is satisfied if there are no cycles

of negative length in GHe (S). Thus, if such a cycle exists, we need to re-

move it by lowering e. A decrease in e will lengthen every arc in the graph

by the same amount, as the length of an arc is log(piqj) − log(e). It is

clear that the if we set the value of e∗ so that the cycle with the shortest

average arc length has a length of zero, the average arc length of every

other cycle will be non-negative and no cycles of negative length will re-

main. Indeed, by setting e∗ := exp(MCM), the length of each arc becomes

log(piqj)− log(exp(MCM)) = log(piqj)− MCM.

The time complexity of this algorithm is polynomial as there exist algo-

rithms for finding the MCM in O(nm) time (Karp, 1978), with m being the
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number of arcs in the graph. In GH1 (S) there will be n2 arcs, as there exist

arcs from every vertex to every other vertex in the graph. The building

of the graph in the initialization step takes O(n2) time. The overall time

bound of the algorithm is thus O(n2 log n+ n3) = O(n3) time.

3.7 Conclusion

Motivated by the increasing availability of large scale consumption datasets,

and by the observed empirical difficulty of computing goodness-of-fit mea-

sures, we have investigated the computational complexity of testing the

utility maximization hypothesis in revealed preference terms. In partic-

ular, we have focused on three goodness-of-fit measures for four different

revealed preference axioms (i.e. warp, sarp, garp and harp). We have

demonstrated that, for all four axioms, both Varian’s and Houtman and

Maks’ index is inapproximable. Next, we have shown that these conclu-

sions do not apply to Afriat’s index, and we have presented exact poly-

nomial algorithms for computing this index (for every revealed preference

axiom that we considered).

There are different avenues for further research. Clearly, when insisting on

optimal solutions for one of the indices considered here (except Afriat), one

needs to accept long running times. It is therefore interesting to develop

bounds: not only heuristics should be defined and tested, but also the

design of good upper bounds for the indices is an interesting (and largely

unexplored) issue. Another direction is to consider datasets or utility max-

imizations models that are in some way restricted. Essentially this may

ensure that the graphs built in our analysis simplify such that computation

of the respective indices becomes easier.





Chapter 4

Goodness-of-fit Measures: The

Money Pump Index

4.1 Introduction

In the previous chapter, we considered a number of classical goodness-

of-fit measures for revealed preference tests. As we noted in Chapter 1,

there is continuing interest in these measures. In particular, a number of

new goodness-of-fit measures have been proposed in the literature over the

past few years. In this chapter, we will look at one of these measures, the

Money Pump Index (MPI), proposed by Echenique et al. (2011). The MPI

is based on the idea that irrational behavior makes consumers vulnerable,

as it allows arbitrageurs to “pump money” from them. In particular, ar-

bitrageurs can extract money from irrational consumers by following an

opposite purchasing strategy. Echenique et al. (2011) propose to use the

amount of money a consumer can lose in this way as a measure of the

irrationality of his behaviour.

This chapter is the result of a collaboration with Laurens Cherchye, Bram De Rock

and Frits C.R. Spieksma. An article based on parts of this chapter has been pub-

lished in The Journal of Political Economy (Smeulders et al., 2013). We gratefully

acknowledge helpful remarks from Federico Echenique.

63



64 The Money Pump Index

This chapter is concerned with the practical computation of the MPI. As

we will explain below, if a consumer violates rationality, then typically

there will be multiple purchase observations implying such a violation. In

principle, we can compute a money pump cost for each violation. This

calls for an aggregate MPI that summarizes these money pump costs into

a single metric. In their original contribution, Echenique et al. (2011)

propose the mean and median money pump cost as such aggregate MPIs.

Obviously, these Mean and Median MPIs have an intuitive interpretation

in terms of the money lost by the consumer due to irrational behaviour.

A first contribution of this note is that we show that computing the Mean

and Median MPIs is a #p-complete problem. As a polynomial time

algorithm for a #p-complete problem would imply p = np, this result

provides a formal statement of the fact that it is computationally challeng-

ing to compute these measures in practice, in particular for datasets with

large numbers of observations.

Notable examples of such large datasets are household-level “scanner”

datasets, which Echenique et al. (2011) also considered in their empir-

ical application. Scanner datasets contain information on household-level

purchases collected at checkout scanners in supermarkets. They typically

consist of multiple purchase observations for many households. Such large

datasets are increasingly available, and Echenique et al. provide a particu-

larly convincing case on the usefulness of their MPI concept in combination

with scanner data. At this point, however, it is worth emphasizing that

they also extensively discussed the computational complexity of the MPI

for their own scanner dataset (see in particular their Remark 1 on p. 1207).

To mitigate the computational burden, they therefore suggested as a prac-

tical method to compute approximations of the Mean and Median MPIs.

Essentially, these approximations focus on violations of revealed preference

axioms that involve only a small number of observations (see Section 4.4

for more details).

Because of the computational difficulties associated with the Mean and

Median MPIs, our second contribution is that we propose the Maximum
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and Minimum MPIs as easy-to-apply alternatives. The Maximum MPI

gives the percentage of money lost in the most severe violation of rational-

ity, while the Minimum MPI does the same for the least severe violation.

Clearly, these measures preserve the intuition underlying the Mean and

Median MPIs. In particular, they figure as natural bounds on the amounts

of money that an arbitrageur can extract from irrational consumers.

Importantly, our newly proposed Maximum and Minimum MPIs have clear

practical usefulness. We show that the Maximum and Minimum MPIs can

be computed efficiently (i.e. in polynomial time), which makes them easily

applicable to large (e.g. scanner) datasets. We also indicate how such com-

putation can proceed in practice. Next, we use the dataset of (Echenique

et al., 2011) to demonstrate the application of the Maximum and Mini-

mum MPIs. Here, our particular focus is on assessing the performance

of these measures relative to the Mean and Median MPIs. In addition,

we show that comparing the values of the Maximum and Minimum MPIs

can reveal interesting information to the empirical analyst. This makes

us believe that our results may contribute to the further dissemination of

the intuitive MPI concept in empirical analyses of (ir)rational consumer

behaviour.

The rest of this note unfolds as follows. Section 4.2 introduces the MPI

concept and the associated notions of Mean and Median MPI. Section

4.3 contains our core results, it introduces Maximum and Minimum MPI

and defines the computational complexity of the different MPIs that we

consider. Section 4.4 shows the practical usefulness of our results through

an application to the scanner dataset of Echenique et al. Section 4.5,

finally, concludes.

4.2 Money Pump Index

As in previous chapters, we consider a dataset S = {(pi, qi)|i ∈ N}, of n

observed purchases by a consumer, with prices pi ∈ Rm++ and quantities
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qi ∈ Rm+ for every observation i = 1, . . . , n. We denote by qi,j (pi,j) the

quantity (price) of the j-th good in observation t.

As explained by Echenique et al. (2011), if garp is violated, a money

pump cost (MPC) can be calculated for every violation. This MPC is

the amount of money an arbitrageur could gain from the consumer by

following an appropriate trading strategy. More precisely, suppose that

we have two observations i and j for which piqi ≥ piqj and pjqj > pjqi.

This implies a violation of garp that involves the observations i and j.

Then, the arbitrageur can make money by buying bundle qi at prices pj

and reselling it at pi, and by buying qj at prices pi and reselling it at pj .

The total profit following from these transactions gives the corresponding

MPC, which equals

pi(qi − qj) + pj(qj − qi). (4.1)

Generalizing this argument, we can compute the MPC associated with a

garp violation involving a sequence of observations v1, v2, . . . , vk as follows

MPC =
k∑
j=1

pvj (qvj − qvj+1), (4.2)

with qvk+1
= qv1 .

To be able to make meaningful comparisons between garp violations in-

volving different sequences, the Money Pump Index (MPI) of a violation

is calculated by dividing the associated MPC by the total budget of the

observations that are involved in the violation. That is

MPI =

∑k
j=1 pvj (qvj − qvj+1)∑k

j=1 pvjqvj
, (4.3)

with again qvk+1
= qv1 .

If a dataset for a given consumer violates garp, then there are typically

several sequences of observations that are involved in a violation. There-

fore, Echenique et al. (2011) introduce the Mean and Median MPI of con-

sumers as measures of consumer irrationality. More precisely, each viola-

tion gives rise to an MPI value (as defined in (4.3)). The Mean MPI is then
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defined as the mean of these MPI values, while the Median MPI equals the

median of these values. These measures indeed have an intuitive meaning

as quantifying the severity of consumer irrationality.

4.2.1 Graph Representation

As in previous chapters, we will represent the graph associated with a

dataset S by G(S) = (V,A). There exists a vertex i ∈ V for every obser-

vation i = 1, . . . , n in the dataset S. An arc (i, j) ∈ A exists if and only

if piqi ≥ piqj . The length of an arc `(i, j), is given by piqi − piqj . Beside

a length, arcs are now also given a weight w(i, j) = piqi, which is equal

to the expenditures in observation i. If there is a sequence of observa-

tions v1, v2, . . . , vk, such that there is a cycle (v1, v2), (v2, v3), . . . , (vk, v1),

we call this a cycle in the graph, and denote it by C. By construction, the

following holds.

MPI =

∑k
j=1 pvj (qvj − qvj+1)∑k

j=1 pvjqvj
=

∑
j:vj∈C `(vj , vj+1)∑
j:vj∈C w(vj , vj+1)

(4.4)

In what follows, we will denote the MPI of a given violation or cycle by

MPI(C).

4.3 Complexity results

In their original contribution, Echenique et al. already argued that com-

puting the Mean and Median MPI is a challenging task and, therefore,

they propose to approximate these MPIs in practical applications (see also

Section 4.4). In what follows, we will formally state that computing the

Mean and Median MPI is indeed a #p-complete problem.

To demonstrate that the Mean and Median MPI are computationally hard,

we derive a reduction from the #Cycle problem. We first give the defini-

tion of this problem.
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Problem 4.3.1. #Cycle

Instance: A graph G = (V,A).

Question: How many cycles are contained in the graph G ?

Valiant (1979) shows that the #Cycle problem is #p-complete. Thus,

our reduction implies that computing the Mean and Median MPIs is also

#p-complete, as such, a polynomial time algorithm for these problems

implies p = np.

Theorem 4.3.1. Calculating the Mean MPI is a #p-complete problem.

Proof. Consider an instance of the problem #Cycle, that is we have a

directed graph G = (V,A), |V | = n with the question: how many directed

cycles exist in G ? We will answer the question by computing the Mean

MPI of two specially constructed sets of consumer data S1 and S2. Both

datasets consist of n+2 observations and m+2 goods. In fact, observations

1, 2, . . . , n are identical for S1 and S2 and can be described as follows.

For each vertex i ∈ V , we construct a price vector pi with pi,j = ε for

i 6= j (ε < 1
2n) and pi,i = 1. For every vertex i we create a quantity

vector qi with qi,i = 1, qi,j = 0 if there is an arc from j to i in G (for

i 6= j), and qi,j = 2 if there is no arc (again for i 6= j). Observe that an

arc in G corresponds to an arc in the graph representation of the dataset

consisting of these n observations, and vice versa. We will denote this part

of the dataset by S̄. We now finish the description of S1, by specifying

observations n+ 1 and n+ 2 as follows. Let pn+1 = (2, 1, 1, . . . , 1), pn+2 =

(1, 2, 1, . . . , 1), qn+1 = (3, 2, 2, . . . , 2) and qn+2 = (2, 3, 2, . . . , 2). Notice

that no observation {1, 2, . . . , n} is preferred over observation n + 1 and

n + 2. Further notice that observation n + 1 is preferred over n + 2, and

vice versa. Hence, the number of cycles in G(S1) is 1+ the number of

cycles in G, or 1+ #Cycle for short. In particular, we can easily verify

that the MPI (see (4.3)) of the additional cycle equals 1
2n+4 . Let us write

MPI(C) for the value of the MPI corresponding to a cycle C in the graph

representation of the dataset S. Then, the mean MPI of dataset S can be

written as:
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MPI =

∑
C∈G(S1)MPI(C)

#Cycle+ 1
= MPI =

∑
C∈G(S̄)MPI(C) + 2

2n+4

#Cycle+ 1
(4.5)

Now, we finish the description of dataset S2 by specifying observations

n + 1 and n + 2 as follows: pn+1 = (2, 1, 1, . . . , 1), pn+2 = (1, 2, 1, . . . , 1),

qn+1 = (4, 2, 2, . . . , 2) and qn+2 = (2, 4, 2, . . . , 2). As in dataset S1 there is

one additional cycle between nodes n+ 1 and n+ 2, which has MPI equal

to 2
2n+6 . Thus, the mean MPI of dataset S2 can be written as.

MPI =

∑
C∈G(S1)MPI(C)

#Cycle+ 1
= MPI =

∑
C∈G(S̄)MPI(C) + 2

2n+6

#Cycle+ 1
(4.6)

Now suppose we have a polynomial time algorithm for finding the mean

MPI of a dataset, then we can find the mean MPI for S1 and S2, compute

the difference and with the knowledge that this difference is
2

2n+6
− 1

2n+4

#Cycle+1 find

#Cycle. This implies that we would have a polynomial time algorithm

for solving #Cycle, which in turn implies the Mean MPI problem is #p-

complete.

Theorem 4.3.2. Calculating the Median MPI is a #p-complete prob-

lem.

Proof. Consider an instance of the problem #Cycle. We will solve this

problem by computing the median MPI of a polynomial number (n log(n))

of specially constructed sets of consumer data. First, number the vertices

of G from 1 to n. We will then construct a dataset S− with n observations

and n goods as follows. For every vertex i ≤ n we construct a price vector

pi with pi,j = ε for j 6= i (ε < 1
2n2 ), pi,i = 1. For every vertex i we create

a quantity vector qi with qi,i = 1, qi,j = 0 if there is an arc from j to i

in G (for i 6= j), and qji = 2 if there is no arc (again for i 6= j). It can

be easily checked that the graph representation of S− has the same set of

arcs as the original graph G. It follows that both have the same number
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of cycles. Given the construction, we can compute upper bounds on the

budgets and lower bounds on the arc lengths. The budget is maximized

if, for observation i, qi,i = 1 and qi,j = 2, (i 6= j); the budget then becomes

1 + 2(n − 1)ε < 1 + 2(n−1)
2n2 . A lower bound on the arc lengths is given

by the combination of a lower bound on piqi, which is easily seen to be

1, and an upper bound on piqj . This upper bound on piqj is reached if

qj,j = 1, qj,k = 2, (i 6= k 6= j) and since the arc (i, j) exists, qj,i = 0.

The upper bound on piqj then equals 2(n − 2)ε + ε, which, in turn, is

bounded from above by 1
n −

1
n2 . A lower bound on the arc lengths is then

1 − ( 1
n + 1

n2 ). Given these bounds, for any given arc (i, j), it is the case

that `(i,j)
w(i,j) = n2−(n−1)

n2+n−1
> 0.5 and thus n2−n+1

n2+n−1
> 0.5 is also a lower bound

on the MPI of any given cycle. Finally, this is also a lower bound on the

minimum MPI of the dataset S−.

We now add 2 more observations and 2 goods to S−, creating S. For every

observation i < n + 1, pi,n+1 = pi,n+2 = 2 and qi,n+1 = qi,n+2 = 0. Set

pn+1 = (ε, . . . , ε, 1, 0.5), pn+1 = (ε, . . . , ε, 0.5, 1), qn+1 = (0, . . . , 0, 1, 0) and

qn+1 = (0, . . . , 0, 0, 1). It is clear that n + 1 and n + 2 are preferred over

every other observation and that no observation i < n is preferred over

either n + 1 or n + 2. In this way, one more violation is added, with an

MPI of 0.5. It follows that the minimum MPI of dataset S has a value of

0.5 and that there is one unique violation that has this MPI.

Now, consider that we add additional goods and observations, denoted by

D, to the dataset S, creating S∪D = S+. For these new goods and obser-

vations, the prices and quantities are so that all existing violations remain,

and have the same MPIs, while a known number of new violations are cre-

ated, and the MPIs of these new violations are smaller than the minimum

MPI of violations in S. It is clear that if the Median MPI of S+ is equal

to the minimum MPI of S, then the number of new violations created in

S+ is equal to the number of violations in D and thus one more than the

number of cycles in G. We will now show that we can efficiently add new

goods and observations to S to create a known number of extra violations
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in S+, and that creating a polynomial number of datasets is sufficient for

finding a S+ for which the median MPI is equal to the minimum MPI of S.

First, we notice that G has less than O(n×n!) < O(nn+1) cycles. A binary

search over this number can be done in O(log(nn+1)) = O((n+ 1) log(n))

time. At each step in this binary search, we add a componentD to S so that

S∪D = S+. This component is created as follows. Let f(k) be the number

of cycles in a fully connected digraph with k nodes. Now assume x arcs

must be added to S to form S+, then find maxk(f(k) < x) and add
⌊

x
f(k)

⌋
subcomponents of k observations to D. The prices and quantities of these

observations are set such that all observations within one subcomponent

are preferred over all other observations in that subcomponent, and so that

the MPIs of these violations are smaller than the minimum MPI of S and

so that no cycles that include observations of multiple subcomponent exist.

This is done as follows; we use a number of goods equal to the number

of observations, and rank all the subcomponents. For every observation

i added, set qi,i = 1, qi,j = 0 otherwise. Set pi,i = 1, pi,j = 0.75 if j

is associated with another observation in the same subcomponent, and

if j is associated with an observation in a higher-ranked subcomponent

pi,j = 2. Finally, if j is associated with an observation in a lower-ranked

subcomponent or D, set pi,j = ε. It is easy to see that for a given x we can

efficiently find the groups to be added and, as (2k + 1)× f(k) > f(k + 1),

the number of subcomponents is polynomial.

In conclusion, the #Cycle problem for a graph G can be solved by calcu-

lating the Median MPI of at most O((n+ 1) log(n)) graphs, which can be

constructed in polynomial time and have a size that is polynomial in the

size of the graph G. As such, a polynomial time algorithm for the Median

MPI would mean a polynomial time algorithm for #Cycle, which in turn

implies the Median MPI problem is #p-complete.

In these proofs, the number of goods, m, is not bounded by a constant.

Hence, it remains an open question whether or not polynomial-time algo-
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rithms exist when the number of goods is fixed. Recent results by Deb

and Pai (2013) show that, given a large number of observations compared

to the number of goods, some structure will appear in the preference rela-

tions. It is possible that this structure can be exploited to find polynomial

time algorithms in these cases.

We suggest using the Maximum and Minimum MPIs as easy-to-apply alter-

native measures of irrationality. These measures are calculated as, respec-

tively, the maximum and minimum MPI values defined over all violations.

Interestingly, we can prove that these Maximum and Minimum MPIs can

be computed in polynomial time, which makes them particularly attractive

from an empirical point of view.

Theorem 4.3.3. The time required to compute the Maximum MPI and

the Minimum MPI is polynomial in the number of observations.

Proof. The proof of this theorem follows directly from the graph repre-

sentation. Given the length and weights assigned to arcs, the problem of

finding a Maximum MPI is equivalent to the known Minimum Cycle Ra-

tio problem. (See Ahuja et al. (1993), notice that every arc has negative

length, and the worst violation, the maximum MPI, thus corresponds to

the cycle with the minimum cycle ratio.) Since constructing the graph is

possible in O(n2) time, and Megiddo (1979) showed that computing the

Minimum Ratio Cycle has a time complexity of O(n3 log n), the theorem

follows. The Minimum MPI can likewise be found in polynomial time, by

choosing the length of the arcs to be piqj − piqi.

4.4 Empirical application: deterministic test re-

sults

We next compute the newly proposed Maximum and Minimum MPIs for

the dataset reported in Echenique et al. (2011). This dataset contains

494 households (i.e. 494 consumers), with 26 purchase observations per
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household. Out of these 494 households, there are 396 that violate garp.

The numbers reported in Table 4.1 pertain to this subset of households.

To compute our results for the Maximum and Minimum MPIs, we im-

plemented an algorithm described in Ahuja et al. (1993) for solving the

Minimum Cycle Ratio problem. This algorithm is very quick in practice:

we needed only a few seconds to compute the results for all 494 households.

Table 1 presents summary statistics on the different MPIs under consid-

eration. Let us first consider our findings for the maximum and minimum

MPIs. As indicated in the Introduction, we believe these results reveal

interesting information, as they give the maximum and minimum amounts

of money that an arbitrageur can extract from irrational consumers. We

find that the average Maximum MPI equals 9.35%, while the average Min-

imum MPI amounts to 3.41%. However, the corresponding standard de-

viations also reveal that these numbers hide quite some variation across

households. Next, we observe that the range between the Maximum and

Minimum MPIs is on average 5.95%, and that this range also varies quite

substantially across households. In this respect, however, it is also worth

noting that the range turns out to be zero for no less than 74 households,

i.e. for about one-fifth of the 396 households exhibiting violations of garp,

we obtain that the Maximum MPI exactly equals the Minimum MPI.

As a final base of comparison, we compare our results to the ones reported

by Echenique et al. (2011). As indicated above, these authors recognized

the complex nature of computing the Mean and Median MPIs and therefore

resorted to computing approximations of these MPIs in their empirical ap-

plication. In particular, they approximated the Mean and Median MPIs by

focusing on short violations only, i.e. violations consisting of at most four

observations. Table 1 reports the associated descriptive statistics. When

comparing Echenique et al.’s results for the Mean and Median MPIs to the

ones for our Maximum and Minimum MPIs, we conclude that, in many

cases, these last two “extreme” MPIs spread symmetrically around the first

two “central” MPIs. This suggests that the average of the Maximum and
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Minimum MPIs may actually provide relevant information. In particular,

these numbers can be used to obtain a good estimate of the Mean and

Median MPIs.

4.5 Conclusion

We have shown that the Mean and Median MPIs originally proposed by

Echenique et al. (2011) are generally difficult to compute (#p-complete),

which makes them impractical in the case of large datasets. As alternatives,

we therefore proposed the Maximum and Minimum MPIs. These MPIs can

be computed efficiently (i.e. in polynomial time) and preserve the attrac-

tive interpretation of the Mean and Medium MPI. We also demonstrated

the practical usefulness of these Maximum and Minimum MPIs through

an application to the scanner dataset which Echenique et al. also studied.

We hope that our results will contribute to the further dissemination of

the intuitive MPI concept in empirical analyses of (ir)rational consumer

behaviour.
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Chapter 5

Transitive Preferences in

Multi-Member Households

5.1 Introduction

In the previous chapters, we studied rationalizability by unitary decision

makers. In this chapter and the next, we change focus and study con-

sumption decisions (including labour supply decisions) of multi-member

households. By now, it is well established that the collective model of Chi-

appori (1988) is both conceptually and empirically attractive for analyzing

consumption behavior (see, for example, Vermeulen (2002) for an overview

of the relevant literature). This collective model assumes that the differ-

ent household members are endowed with individual preferences defined

over privately and publicly consumed goods (inside the household). These

members enter into a decision process of which the outcome is assumed to

obtain a Pareto optimal allocation (of the aggregate household budget). In

what follows, we say that multi-person household behavior is collectively

rational if it is consistent with the collective model, see Section 5.2.

This chapter is the result of a collaboration with Laurens Cherchye, Bram De Rock,

Fabrice Talla Nobibon and Frits C.R. Spieksma. An article based on this chapter is

accepted for publication in Economic Theory Bulletin (Smeulders et al., 2014a).

77
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In the tradition of Afriat (1967b) and Varian (1982), we are interested

in the revealed preference characterization of collective models. Such a

revealed preference characterization does not rely on any functional speci-

fication regarding the household consumption process, and starts directly

from the observed finite set of prices and quantities. Varian (1982) intro-

duced the revealed preference axioms that summarize the empirical impli-

cations of theoretical consumption models for single-member households,

while Cherchye et al. (2011) provided a revealed preference characteriza-

tion of collective models for multi-member households. See also Peters

and Wakker (1994), Varian (2006), Cherchye et al. (2007), Cherchye et al.

(2010) and Cherchye et al. (2013) for more discussion.

Our following analysis focuses on two popular revealed preference axioms:

the Weak Axiom of Revealed Preferences (warp) introduced by Samuelson

(1938), and the Strong Axiom of Revealed Preferences (sarp) introduced

by Houthakker (1950). For single-person households, these axioms summa-

rize the testable implications of rational (i.e. utility maximizing) consump-

tion behavior. Essentially, sarp extends warp by requiring preferences to

be transitive. In this respect, a classical result due to Rose (1958) shows

that warp and sarp are empirically equivalent in a setting with 2 goods.

In other words, transitivity has no empirical bite if the analysis includes

only 2 goods. Because warp is generally easier to test than sarp, this

result can considerably facilitate the empirical analysis.

In what follows, we investigate the possibility to extend the result of Rose

(1958) towards multi-member households. Therefore, we define the con-

cepts of L-warp and L-sarp, which capture the testable implications of

collectively rational (i.e. Pareto efficient) consumption behavior in the

case of L household members. In a first instance, we assume a general set-

ting in which we only observe the aggregate household consumption, i.e.

no information is available on the intrahousehold allocation of the private

goods. Here, we obtain two main results. First, we show that L-warp and

L-sarp are empirically vacuous (i.e. non-rejectable) if there are no more

than L goods. Next, and more importantly, we show that warp and sarp
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are not equivalent if L > 1 and there are at least L+1 goods. Thus, Rose’s

conclusion does not generalize to L-member households (even with as few

as four observations). Transitivity of individual preferences is a testable

requirement even if there are only L+ 1 goods for L household members.

Finally, we also study a more restricted setting where we exclusively assign

a single good to each different household member, i.e. L (out of L+1) goods

are exclusive. Thus, in contrast to the general setting, this restricted set-

ting assumes that we observe the intrahousehold allocation of L goods. We

call this a “labour supply” setting as it formally coincides with Chiappori’s

original labour supply model, in which each household member exclusively

consumes his/her (observed) leisure while the remaining consumption is

captured by a Hicksian aggregate (that is to be shared among the house-

hold members) (Chiappori, 1988). Interestingly, we can show that L-warp

and L-sarp do become equivalent under these empirical conditions (with

L+ 1 goods). Thus, the empirical analysis need not explicitly account for

transitivity, which can substantially alleviate the computational burden in

practical applications.

The rest of the chapter unfolds as follows. In Section 5.2 we introduce

the collective model and the corresponding revealed preference axioms. In

Section 5.3 we investigate the equivalence between L-warp and L-sarp for

both the general setting and the restricted labour supply setting. Section

5.4 concludes.

5.2 Notation and Definitions

We consider an L-member household that consumes m1 private goods and

m2 public goods (with L,m1,m2 ∈ N0). The vector q ∈ Rm1
+ represents

the quantities that are privately consumed by the household, i.e., these

goods are assigned to members of the household, and only the amount

assigned to an individual member has an effect on the member’s utility.

p ∈ Rm1
+ stands for the corresponding price vector. Similarly, the vector
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Q ∈ Rm2
+ represents the publicly consumed quantities, these goods are not

allocated to individual members, rather they have an effect on the util-

ity of every household member. P ∈ Rm2
+ gives the price vector for the

public goods. Next, the vector q` ∈ Rm1
+ contains the privately consumed

quantities for each individual member `, with
∑L

`=1 q` = q. The collective

model of household consumption explicitly recognizes the individual pref-

erences of the household members. These preferences may depend on the

private quantities, the public quantities, or both. Throughout, we assume

that preferences of member ` can be represented by a well-behaved (i.e.

continuous, positive monotonic and concave) utility function U `(q`,Q),

` = 1, . . . , L.

Our analysis starts from the dataset S = {(pt,Pt; qt,Qt) , t = 1, ..., n},
which contains n household choices that are characterized by prices pt,Pt

and quantities qt,Qt. In our general setting, we do not know which quan-

tities are privately consumed by which member, i.e. q`t is unobserved.

Therefore, we need to introduce (unobserved) feasible personalized quan-

tities that comply with the (observed) aggregate quantities qt. That is, we

consider all possible decompositions q`t ∈ RN+ that satisfy
∑L

`=1 q`t = qt.

In what follows, our main focus will be on this general setting. However, as

indicated in the previous section, we will also consider a restricted (labour

supply) setting that is characterized by exclusive goods. An exclusive good

is a private good that is exclusively consumed by a given member. Evi-

dently, this setting implies extra information on q`t.

A collective rationalization of a set of observations S requires the exis-

tence of member-specific utility functions for which each observed quantity

bundle can be characterized as Pareto efficient. The following definition

provides a formal statement.

Definition 5.2.1. Let S = {(pt,Pt; qt,Qt) , t = 1, ..., n} be a set of obser-

vations. Then, the utility functions U1, . . . , UL provide a collective ratio-

nalization of S if, for each observation t, there exist feasible personalized

quantities q`t such that:
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1.
L∑̀
=1

q`t = qt.

2. For all possible quantities z`,Z with
L∑̀
=1

ptq
`
t + PtQt ≥

L∑̀
=1

ptz
` + PtZ,

if there exists a member ` for whom U `(z`,Z) > U `(q`t,Qt) then there

is some member m for which Um(zm,Z) < Um(qmt ,Qt).

Our revealed preference characterizations of collectively rational behav-

ior make use of the concepts L-warp and L-sarp, which provide multi-

member extensions of the warp and sarp concepts that apply to single-

member households. To formally define L-warp and L-sarp, we need

the concept of feasible personalized prices. These are prices P` ∈ Rm2
+

such that
∑L

`=1 P` = P. Intuitively, these personalized prices capture the

fractions of the household prices for the public goods that are borne by

the individual members `. Given the Pareto efficiency assumption that

underlies the collective consumption model, these prices can also be inter-

preted as Lindahl prices. We refer to Cherchye et al. (2011) for a detailed

discussion.

Assume that we observe a dataset S = {(pt,Pt; qt,Qt) , t = 1, ..., n}, and

consider a given specification of feasible personalized quantities q`t and

prices P`
t. Then, for household member `, we say that the consumption

allocation s is directly revealed preferred over another allocation t (denoted

sR`0t) if psq
`
s+P`

sQs ≥ psq
`
t+P`

sQt. The transitive closure of this relation

is denoted by R`. Essentially, the relation R` extends R`0 by exploiting

transitivity of individual preferences. We can now define our concepts

L-warp and L-sarp.

Definition 5.2.2. Let S = {(pt,Pt; qt,Qt) , t = 1, ..., n} be a set of obser-

vations.

1. S satisfies L-warp if and only if there exist, for all ` = 1, . . . , L

and for all pairs of observations s, t = 1, ..., n, feasible personalized

quantities q`t and feasible prices P`
t, such that tR`0s implies either

psq
`
s + P`

sQs < psq
`
t + P`

sQt or (q`t = q`s and Qt = Qs).
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2. S satisfies L-sarp if and only if there exist, for all ` = 1, . . . , L

and for all pairs of observations s, t = 1, ..., n, feasible personalized

quantities q`t and feasible prices P`
t, such that tR`s implies either

psq
`
s + P`

sQs < psq
`
t + P`

sQt or (q`t = q`s and Qt = Qs).

If L = 1, Definition 5.2.2 reduces to the standard definition of warp and

sarp in Varian (1982). When L ≥ 2, then this definition states that,

for the given specification of feasible personalized quantities and prices, S

satisfies L-warp if and only if, for each member `, the feasible personal-

ized prices and quantities satisfy warp. A directly similar interpretation

applies to L-sarp, except that this concept also accounts for (indirect)

revealed preference relations that are induced by transitivity.

As discussed extensively in Varian (1982) and Varian (2006), warp defines

a necessary condition for the existence of a well-behaved utility function for

single-member households. In general, however, warp is not sufficient be-

cause it does not impose transitivity. By contrast, sarp defines a necessary

as well as sufficient condition. These insights extend to the multi-member

setting that we consider here. In particular, the results of Cherchye et al.

(2011) are easily adapted to show that there exist utility functions that pro-

vide a collective rationalization of S if and only if at least one specification

of feasible personalized quantities and feasible personalized prices satisfies

L-sarp. Again, L-warp provides a corresponding necessary condition by

not requiring transitivity of the individual preferences.

5.3 Is L-warp equivalent to L-sarp?

In this section, we compare the testable implications of L-warp and L-

sarp. We start by showing that L-warp and L-sarp are empirically vacu-

ous conditions if there are no more than L goods in subsection 5.3.1. Sub-

sequently, we demonstrate that, for L+1 goods (or more), the equivalence

between L-warp and L-sarp breaks down for the general setting (without

exclusive goods) in subsection 5.3.2. Finally, in subsection 5.3.3 we also
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show that L-warp and L-sarp do become equivalent for the restricted

labour supply setting (where L out of the L+ 1 goods are exclusive).

5.3.1 At most L goods

Before presenting our results, let us first recall that for single-member

households warp and sarp are idle conditions if there is only a single

good. Indeed, in that case t R0 s is equivalent to qt ≥ qs (with qt, qs ∈ R+

and s, t = 1, ..., n), which implies that we can never reject either warp or

sarp. This non-testability result can be extended to L-warp and L-sarp,

as follows.

Proposition 5.3.1. Let S = {(pt,Pt; qt,Qt) , t = 1, ..., n} be a set of

observations. Then L-warp and L-sarp are vacuous conditions as soon

as L ≥ m1 +m2.

Proof. To show this result, we consider the following specification of feasi-

ble personalized quantities and prices. For all t = 1, . . . , n, i = 1, . . . ,m1, j =

1, . . . , L:

Pi
t,j = 0,qit,i = qt,i and qit,j = 0 if i 6= j;

for all t = 1, . . . , n, i = m1 + 1, . . . ,m1 +m2, j = 1, . . . , L:

qit,j = 0,Pi
t,i = Pt,i and Pi

t,j = 0 if i 6= j;

and, if L > m1 + m2, for all t = 1, . . . , n, i = m1 + m2 + 1, . . . , L, j =

1, . . . , L:

Pi
t,j = 0 and qit,j = 0.

For this specification, one can easily verify that for each ` = 1, . . . L, there

is at most one good in the warp (respectively sarp) test. This shows that

L-warp (respectively L-sarp) is a vacuous condition in this setting.

Proposition 5.3.1 implies that we can only meaningfully check consistency

with L-warp and L-sarp if the number of goods m1 +m2 is strictly larger
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than L. Next, it is possible to generalize Example 5.3.1 of Cherchye et al.

(2007) to show that both L-warp and L-sarp can be rejected as soon

as there are L + 1 goods. Given this, a natural next question is whether

L-warp and L-sarp are equivalent for L+1 goods. This would generalize

the result of Rose (1958) (which shows equivalence for L = 1) towards

L ≥ 2.

5.3.2 L-warp and L-sarp are not equivalent.

For the general setting, the answer to this equivalence question is negative.

We can show this for L = 2 by means of the dataset in Example 1.

Example 5.3.1. Let us consider a dataset consisting of the four observa-

tions presented in Table 5.1.

q1 = (5, 0, 0) p1 = (7.5, 0.5, 0.5)

q2 = (0, 5, 0) p2 = (1, 2, 0.9)

q3 = (0, 0, 5) p3 = (0.2, 2.02, 2)

q4 = (4, 3, 1) p4 = (1, 1, 5)

Table 5.1: Example dataset.

We use this dataset to consider two cases. In the “private case” there is

only private consumption, i.e. qt = qt and Qt = 0 for t = 1, 2, 3, 4. By

contrast, in the “public case” there is only public consumption, i.e. Qt = qt

and qt = 0 for t = 1, 2, 3, 4.

For this specific dataset we obtain the following result.

Lemma 5.3.1.

1. For both the private and the public case, the dataset in Example 5.3.1

does not satisfy 2-sarp.

2. For both the private and the public case, the dataset in Example 5.3.1

does satisfy 2-warp.
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Proof. To prove part 1 of the lemma, we make us of the scalar products in

Table 5.2.

p1q1 = 37.5 p2q2 = 10 p3q3 = 10 p4q4 = 11

p2q4 = 10.9 p3q2 = 10.1 p4q3 = 25

p1 (q2 + q3 + q4) = 37 p2 (q1 + q3) = 9.5 p3 (q1 + q4) = 9.86 p4 (q1 + q2) = 10

Table 5.2: Some relevant scalar products.

The numbers of Table 5.2 show that the following inequalities hold: p1q1 ≥
p1(q2+q3+q4), p2q2 ≥ p2(q1+q3), p3q3 ≥ p3(q1+q4), and p4q4 ≥ p4(q1+q2).

Assume that all consumption is private and consider any specification of

feasible personalized quantities q1
t and q2

t . Then, p1q1 ≥ p1(q2 + q3 + q4)

implies that there always exists at least one ` for which p1q
`
1 ≥ p1(q`1 +

q`2 + q`3). Indeed, assume this is not the case, i.e. p1q
`
1 < p1(q`1 + q`2 + q`3)

for both ` = 1 and ` = 2. Adding up these last two inequalities then

gives a contradiction: p1q1 = p1q
1
1 + p1q

2
1 < p1(q1

1 + q1
2 + q1

3) + p1(q2
1 +

q2
2 + q2

3) = p1(q2 + q3 + q4). Without losing generality, let us assume that

p1q
1
1 ≥ p1(q1

1 + q1
2 + q1

3).

A similar reasoning applies to p2q2 ≥ p2 (q1 + q3) and p3q3 ≥ p3 (q1 + q4).

However, since p1q
1
1 ≥ p1(q1

1 +q1
2 +q1

3), we can now conclude that it must

be that p2q
2
2 ≥ p2(q2

1 +q2
3) and p3q

2
3 ≥ p3(q2

1 +q2
4). Indeed, otherwise we

would have feasible personalized quantities that lead to a sarp rejection

for ` = 1. Note that these inequalities imply that 2R2
03 and 3R2

04, meaning

that 2R24.

Finally, using the same argument once more for p4q4 ≥ p4 (q1 + q2), we can

conclude that any specification of feasible personalized quantities leads to

a rejection of 2-sarp. We always obtain a rejection of sarp for either ` = 1

or ` = 2. To finish the proof of part 1, we have to note that exactly the

same reasoning holds if all goods are public (or even any intermediate case

with both private and public goods).
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To prove part 2 of the lemma, we need to give one specification of feasible

personalized quantities that satisfies 2-warp, and another specification of

feasible personalized prices that satisfies 2-warp.

For the private case, let us consider the specification of feasible personalized

quantities in Table 5.3.

q1
1 = (5, 0, 0) q2

1 = (0, 0, 0)

q1
2 = (0, 0, 0) q2

2 = (0, 5, 0)

q1
3 = (0, 0, 0) q2

3 = (0, 0, 5)

q1
4 = (0, 0, 0) q2

4 = (4, 3, 1)

Table 5.3: Values of q1
t and q2

t for t = 1, 2, 3, 4.

For this specification we obtain the scalar products in Table 5.4, which

allow us to conclude that 2-warp is satisfied.

p1q
1
1 = 37.5 p2q

1
1 = 5 p3q

1
1 = 1 p4q

1
1 = 5

p1q
1
2 = 0 p2q

1
2 = 0 p3q

1
2 = 0 p4q

1
2 = 0

p1q
1
3 = 0 p2q

1
3 = 0 p3q

1
3 = 0 p4q

1
3 = 0

p1q
1
4 = 0 p2q

1
4 = 0 p3q

1
4 = 0 p4q

1
4 = 0

p1q
2
1 = 0 p2q

2
1 = 0 p3q

2
1 = 0 p4q

2
1 = 0

p1q
2
2 = 2.5 p2q

2
2 = 10 p3q

2
2 = 10.1 p4q

2
2 = 5

p1q
2
3 = 2.5 p2q

2
3 = 4.5 p3q

2
3 = 10 p4q

2
3 = 20

p1q
2
4 = 32 p2q

2
4 = 10.9 p3q

2
4 = 8.86 p4q

2
4 = 11

Table 5.4: Scalar products for the private case.

Similarly, for the public case, we consider the specification of feasible per-

sonalized prices in Table 5.5.

For this specification we obtain the scalar products in Table 5.6, which

allow us to conclude that 2-warp is satisfied.

The next non-equivalence conclusion follows directly from Lemma 5.3.1.
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P1
1 = (7.5, 0, 0) P2

1 = (0, 0.5, 0.5)

P1
2 = (0.2, 0.1, 0.2) P2

2 = (0.8, 1.9, 0.7)

P1
3 = (0.2, 0.1, 0.1) P2

3 = (0, 1.92, 1.9)

P1
4 = (1, 0, 0) P2

4 = (0, 1, 5)

Table 5.5: Values of P1
t and P2

t for t = 1, 2, 3, 4.

P1
1Q1 = 37.5 P1

2Q1 = 1 P1
3Q1 = 1 P1

4Q1 = 5

P1
1Q2 = 0 P1

2Q2 = 0.5 P1
3Q2 = 0.5 P1

4Q2 = 0

P1
1Q3 = 0 P1

2Q3 = 1 P1
3Q3 = 0.5 P1

4Q3 = 0

P1
1Q4 = 30 P1

2Q4 = 1.3 P1
3Q4 = 1.2 P1

4Q4 = 4

P2
1Q1 = 0 P2

2Q1 = 4 P2
3Q1 = 0 P2

4Q1 = 0

P2
1Q2 = 2.5 P2

2Q2 = 9.5 P2
3Q2 = 9.6 P2

4Q2 = 5

P2
1Q3 = 2.5 P2

2Q3 = 3.5 P2
3Q3 = 9.5 P2

4Q3 = 25

P2
1Q4 = 2 P2

2Q4 = 9.6 P2
3Q4 = 7.66 P2

4Q4 = 8

Table 5.6: Scalar products for the public case.

Proposition 5.3.2. There exists a dataset S with only 3 goods that sat-

isfies 2-warp but not 2-sarp. In general, this implies that 2-warp is not

equivalent to 2-sarp for N + K = 3. This non-equivalence conclusion is

independent of the public or private nature of the goods.

It is possible to construct datasets (similar to the one in Example 5.3.1) to

obtain exactly the same conclusion in a setting with L household members

and L+ 1 goods. The following proposition states the general result.

Proposition 5.3.3. Let L ≥ 2. There exists a dataset S consisting of

four observations, and with only L+1 goods, that satisfies L-warp but not

L-sarp. In general, this implies that L-warp is not equivalent to L-sarp

for N +K = L+ 1. This non-equivalence conclusion is independent of the

public or private nature of the goods.

Proof. Take L ≥ 3. We start with the dataset S from example 5.3.1

and we add goods 4, 5, . . . , L + 1 and observations 5, 6, . . . , L + 2 to it.
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The quantities for goods 4, 5, . . . , L + 1 are 0 in observations 1, 2, 3 and 4

and the corresponding prices in these observations are ε < 0.14
L . It can be

checked that in this case the following inequalities hold: p1q1 > p1(q2+. . .+

qL+2), p2q2 > p2(q1+q3+q5+. . .+qL+2), p3q3 > p3(q1+q4+q5+. . .+qL+2)

and p4q4 > p4(q1 + q2 + q5 + . . .+ qL+2).

For each observation t = 5, 6, . . . , L+2, it is the case that qt = (0, . . . , 0, 1, 0,

. . . , 0), with the non-zero quantity for the (t− 1)th good. The correspond-

ing prices are pt = (ε, . . . , ε, 1, ε, . . . , ε). Again, it can be checked that

ptqt > pt(q1 + . . .+ qt−1 + qt+1 + qL+2).

A similar reasoning as in Lemma 5.3.1 then shows that this dataset does not

satisfy L-sarp. Personalized quantities or prices can be found as follows.

Assign all goods (prices) of observations 1, 2, 3 and 4 to members 1 and

2 as in the original examples. Furthermore, assign all goods (prices) of

observation k ≥ 5 to member k − 2, k = 5, . . . , L+ 2.

5.3.3 Labour supply setting

Let us now turn to the restricted labour supply setting. More precisely,

we consider a household with L members in which there is only private

consumption of the L + 1 goods. The first L goods represent leisure and

are exclusively consumed by individual members. The (L + 1)-th good is

a Hicksian aggregate. We will treat this Hicksian good as a private good

for which we do not observe the intrahousehold allocation. As indicated

in Section 5.1, this restricted setting corresponds to the labour supply

model of Chiappori (1988), which is widely used in empirical analyses of

collective consumption behavior. Importantly, while we treat the Hicksian

aggregate as a private good to facilitate our discussion (and for the analogy

with Chiappori’s original model), our following results actually also hold

if the Hicksian aggregate were a public good.1

To formally explain the relation between this restricted setting and the gen-

1 The proof of Proposition 5.3.4 is easily adapted.
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eral setting that we discussed before, assume a dataset S = {(pt, 0; qt, 0) , t =

1, ..., n} that contains L+ 1 private goods. Then the first L entries of the

feasible personalized quantities q`t pertain to the exclusive goods, and are

defined as follows for all t = 1, . . . , n and `, j = 1, . . . , L:

q`t,` = qt,`, and q`t,j = 0 if ` 6= j,

Thus, each member ` consumes only two goods: the exclusive `-th good (of

which the individual consumption is observed by construction) and a share

of the (L+1)-th non-exclusive good (of which the individual consumption is

not observed). Our proof of Proposition 4 exploits this two-goods feature.

In particular, we can build on the original result of Rose (1958) to obtain

the following conclusion.

Proposition 5.3.4. Let S = {(pt, 0; qt, 0) , t = 1, ..., n} be a set of obser-

vations with L+1 goods. Assume households with L members of which each

member consumes exclusively one of the goods. Then L-warp is equivalent

to L-sarp.

Proof. Clearly, if S is a dataset that satisfies L-sarp, then it also needs

to satisfy L-warp. So we only need to prove the reverse statement. Let

S be a dataset that satisfies L-warp. This means that there exist fea-

sible personalized quantities q`t such that for each ` = 1, . . . , L the data

{(pt,q`t), t =, 1, . . . , n} satisfies warp. By construction, all entries of q`t
are zero except for the `-th and L+1-th entries. Clearly, all the zero entries

are irrelevant for checking consistency with warp. Therefore, we can use

Rose’s result to conclude that, for each member `, the corresponding sarp

condition is met, and thus that S satisfies L-sarp.

Thus, if L (out of L+1) goods are exclusive, then transitivity of individual

preferences does not have empirical bite. As a result, the empirical analy-

sis of multi-member consumption behavior need not explicitly account for

transitivity, which can substantially alleviate the computational burden in

practical applications. For instance, Cherchye et al. (2011) introduced an
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integer programming method to check consistency of a dataset S with re-

vealed preference axioms of collective consumption models.2 When using

this method for the L-sarp condition that we consider here, the equiva-

lence result in Proposition 5.3.4 implies that we can drop n3 transitivity

constraints without affecting the conclusions of the analysis. Given that

integer programming is often time consuming, this may considerably facil-

itate the empirical analysis when n gets large.

5.4 Conclusion

We showed that, in general, the equivalence between warp and sarp for 2

goods does not generalize to L-warp and L-sarp for L+1 goods. The im-

plication is that transitivity of preferences does have testable implications.

By contrast, the equivalence between L-warp and L-sarp does hold for

L+ 1 goods if each of the L household members is the exclusive consumer

of one good (as in the collective labour supply setting of Chiappori (1988)).

In that case, transitivity does not generate empirical bite. This can sub-

stantially facilitate the empirical revealed preference analysis in practical

applications.

2 Actually, Cherchye et al. (2011) consider the Generalized Axiom of Revealed Prefer-

ences (garp) rather than sarp in their analysis. However, the integer programming

problem for L-sarp is directly analogous to the one based on garp. For compactness,

we do not include it here.



Chapter 6

The Weak Axiom of Revealed

Preference for Collective

Households

6.1 Introduction

In the previous chapter, we investigated the possibility of equivalence be-

tween collective models with (L-sarp) and without (L-warp) transitivity.

Our main findings is that transitivity does have testable implications in

collective models, as soon as there are more goods than household members

(If there exist fewer goods, both models are trivially satisfied). However, it

turns out that in practical applications they often have identical empirical

implications, i.e. most data that satisfy warp also satisfy sarp. Putting

it differently, in empirical work transitivity usually plays little role when

testing data consistency with revealed preference axioms. This observation

is an important one in view of practical tests of the collective models, as

tests of collective versions of sarp are known to be difficult to test. Most

This chapter is the result of a collaboration with Laurens Cherchye, Bram De Rock,

Fabrice Talla Nobibon and Frits C.R. Spieksma. An article based on this chapter has

been submitted for publication.

91



92 The Weak Axiom for Collective Households

notably, it has been shown that testing the sarp conditions for collective

models is np-complete, even for households with only two members Deb

(2010); Talla Nobibon et al. (2013); Talla Nobibon and Spieksma (2010).

This directly motivates the purpose of the current chapter, which focuses

on the computational complexity of the collective warp conditions. Es-

sentially, we will evaluate whether the computational hardness of the col-

lective revealed preference conditions can be mitigated by dropping the

transitivity requirement. In particular, our following analysis will consider

the warp characterization of three collective consumption settings: (i) the

private setting where all goods are consumed privately without externali-

ties, (ii) the public setting, where all goods are publicly consumed inside

the household, and (iii) a general setting where no information on the

(private or public nature) of the goods is available.

Our main findings can be summarized as follows. A first “negative” conclu-

sion will be that testing the collective warp conditions is computationally

difficult (i.e. np-complete) for the private and public settings. In these

cases, dropping transitivity does not solve the hardness problem associ-

ated with the collective sarp conditions. However, as a second “positive”

conclusion, we also show that testing collective warp for two members

is computationally easy for the general setting. Here, we can effectively

test consistency with the collective consumption model in an efficient way

(i.e. in polynomial time) if we omit transitivity. (As we will indicate, for

this general setting the complexity in the case of three or more member

remains an open question.)

The remainder of the chapter unfolds as follows. Section 6.2 presents our

basic set-up. Sections 6.3, 6.4 and 6.5 contain our main complexity results

(for, respectively, the private, public and general settings). Section 6.6

concludes.
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6.2 Notation

We consider multi-member households that take consumption decisions

over m goods. These goods can be consumed either privately (with or

without externalities) or publicly. More precisely, private consumption of

a good means that the consumption by one household member affects the

supply available for the other household members (e.g. drinking water can

only be consumed privately). Next, consumption externalities refer to the

fact that one household member gets utility from another household mem-

ber’s private consumption (e.g. a wife enjoys her husband’s nice clothes).

Finally, public consumption of a good means that consumption of that

good by one household member does not affect the supply available for the

other household members, and no one can be excluded from consuming

the good (e.g. the rent of a shared house represents public consumption).

The collective models of household consumption explicitly recognize the

individual preferences of the household members. These preferences may

depend on the private quantities (with or without externalities), the pub-

lic quantities, or both. Throughout, we assume that preferences of the

household members can be represented by a well-behaved (i.e. continuous,

positive monotonic and concave) utility function. The following sections

will define explicit specifications of these member-specific utility functions

for alternative collective consumption models.

We assume a setting in which the empirical analyst observes n household

decisions resulting in consumption quantity bundles qi := (qi,1, . . . , qi,m) ∈
Rm+ , with corresponding prices pt := (pt,1, . . . , pt,m) ∈ Rm++, t = 1, . . . , n.

The component qt,j (respectively pt,j), for j = 1, . . . ,m, corresponds to

the quantity of good j bought by the household (respectively, the unit

price of good j) at the time of observation t. Note that the pq represents

the total cost of the bundle q ∈ Rm+ at the prices p ∈ Rm++. We denote

the set of observations by S := {(pt, qt) : t ∈ N}, where N := {1, . . . , n},
and we refer to S as the dataset. For ease of exposition, throughout this

chapter, we use t ∈ N to refer to the observation (pt, qt).
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6.3 The collective consumption model with only

private consumption and no externalities

In the first collective consumption model that we study, we assume that

all goods are consumed privately without externalities. In other words,

the member-specific utility functions only depend on the private goods

consumed by that member. To facilitate our discussion, we will mainly

focus on two-member households in what follows. However, as we will

also indicate in Theorem 2, our np-completeness result for two-member

households can easily be generalized to households with L members (L ≥
2).

Because a typical dataset only contains information on consumption quan-

tities that apply to the aggregate household level, we have to deal with

the fact that we do not know which fraction of the observed bundle qt

is consumed by each individual household member. To this end, we con-

sider, for each observation t ∈ N , a feasible personalized quantity vector

(q1
t , q

2
t ), which describes the division of the goods over the two household

members. Since the true split up of qt is unobserved, we clearly need

to consider all possible feasible personalized quantity vectors.1 For each

member ` (` = 1, 2) we define the personalized consumption dataset by

S` = {
(
pt, q

`
t

)
: t ∈ N}.

The extension of warp to this collective consumption model is then as

follows.

Definition 6.3.1. private 2-warp

Let S = {(pt, qt) : t ∈ N} be a dataset of a two-member household. We

say that S is consistent with private 2-warp if and only if:

(i) For each t ∈ N there exist q1
t , q2

t ∈ Rm+ such that qt = q1
t + q2

t , and

1 In some datasets we have some information on how consumption is shared. This is

called assignable information or exclusive goods in the literature. Such information

can easily be integrated in our analysis and would not change our results.
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(ii) For each member ` ∈ {1, 2}, the set S` = {
(
pt, q

`
t

)
: t ∈ N} satisfies

warp.

This problem can be rephrased as the following decision problem:

Problem 6.3.1. private 2-warp

Instance: A dataset S = {(pt, qt) : t ∈ N}.
Question: Do there exist q1

t , q2
t ∈ Rm+ satisfying qt = q1

t +q2
t for each t ∈ N

such that for ` = 1, 2, the set S` = {
(
pt, q

`
t

)
: t ∈ N} satisfies warp?

It turns out that answering this question is np-complete.

Theorem 6.3.1. Testing private 2-warp is np-complete.

Proof. We use a reduction from Monotone not-all-equal 3-sat, which

is known to be np-complete (Garey and Johnson, 1979) and is defined

as follows.

Problem 6.3.2. Monotone not-all-equal 3-sat

Instance: A set of variables X = {x1, x2, . . . , xn} and a set of clauses

C = {c1, c2, . . . , cm} with each clause consisting of 3 non-negated literals.

Question: Does there exist a truth-assignment so that for each clause, ei-

ther one or two of the literals are true?

It is not difficult to see that private 2-warp belongs to the class NP.

The rest of this proof is structured as follows: given an arbitrary instance

of mnae 3-sat, we first build an instance of private 2-warp and next,

we prove that we have a yes instance of mnae 3-sat if and only if the

constructed instance of private 2-warp is a yes instance.

Consider an arbitrary instanceX = {x1, x2, . . . , xn} and C = {c1, c2, . . . , cm}
of mnae 3-sat. We build an instance of private 2-warp using 3n+4 goods

and 2n+2m+3 observations. We next describe the quantity and the price

of goods for each observation. We use ε = 1
4n and M = n + 1. The first



96 The Weak Axiom for Collective Households

block of 2n observations corresponds to the variables and is given in table

6.1

The second block of 2m observations corresponds to the clauses. For each

clause ca = {xi, xj , xk}, we have the observations 2n + a and 2n + m + a

(a = 1, . . . ,m). The prices and quantities are given in table 6.2. The

prices of the goods corresponding to variables xi, xj and xk equal 1, and

the prices of the goods corresponding to other variables equal ε. Finally,

we have observations 2n+ 2m+ 1, 2n+ 2m+ 2, 2n+ 2m+ 3, given in table

6.3.

We have now described the dataset S. Before embarking further on the

proof, let us describe the main idea. Consider the n goods, 5, 6, 7, . . . , n+4

in observation 2n+ 2m+ 3. Each of these goods corresponds to a variable

in the instance of mnae-3sat. We will argue that each of these n goods

is allocated for a large part (i.e. ≥ 3
4) to some member ` ∈ {1, 2}. This is

akin to setting the corresponding variable to true (if the good goes for the

larger part to member 1), or to false (if the good goes for the larger part

to member 2). Of course it remains to show that this is a satisfying truth

assignment. Recall that we say that for member ` ∈ {1, 2} q`a is directly

revealed preferred to q`b, when we have paq
`
a ≥ paq`b with a, b ∈ S.

Claim 6.3.1. If paqa ≥ paqb for some a, b ∈ S, a 6= b, then there exists an

` ∈ {1, 2} for which q`a is directly revealed preferred to q`b

Proof. Consider any split of qa into q1
a, q

2
a, and qb into q1

b , q
2
b , i.e., let q1

a +

q2
a = qa and q1

b + q2
b = qb. Since paqa ≥ paqb, it follows that pa(q

1
a + q2

a) ≥
pa(q

1
b + q2

b ). Hence, either paq
1
a ≥ paq1

b or paq
2
a ≥ paq2

b (or both).

Notice that, apart from bundle q2n+2m+3, all other bundles are unit vectors.

We will use qi,j (pi,j) to denote the quantity (price) of good j in observation

i, i = 1, . . . , 2n+ 2m+ 3, j = 1, . . . , 3n+ 4. We now exhibit a trick that we

will use throughout the proof. Consider a hypothetical dataset, containing

the observations a and b as follows:
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qa = (1, 0), pa = (1, ε)

qb = (0, 1), pb = (ε, 1)

We say that the split of a bundle is extreme if each unit good of that bundle

goes to one (of the two) members with fraction at least 1− ε.

Claim 6.3.2. In any feasible solution to private 2-warp of some dataset

containing observations a and b, the split of bundles qa and qb is extreme.

Proof. Clearly, we have both paqa > paqb and pbqb > pbqa. So using Claim

1, it follows that for one member ` we have that q`a is directly revealed

preferred to q`b and simultaneously for one member `′ q`
′
b is directly revealed

preferred to q`
′
a . Thus in any feasible solution ` and `′ must be different

(otherwise private 2-warp is violated). Let us assume, without loss of

generality, that for member 1 we have that q1
a is directly revealed preferred

to q1
b and q1

b is not directly revealed preferred to q1
a. Let α be the fraction

of bundle a allocated to member 1, and β the fraction of bundle b allocated

to this member. We then have that

pbq
1
b < pbq

1
a ⇒ β < εα.

Since α ≤ 1, we conclude β < ε = 1
4n . Likewise, since for member 2 we

have that q2
a is not directly revealed preferred to q2

b , we find:

paq
2
a < paq

2
b ⇒ 1− α < ε(1− β)⇒ α > 1− ε =

4n− 1

4n
.

Claim 6.3.2 follows.

Clearly, Claim 6.3.2 is applicable to any pair of observations involving bun-

dles that are unit vectors, and price vectors that feature price ε and price

1. When applying this claim further on in our proof, some price vectors

also include price M . However, whenever this is the case, the quantity of

the goods will be 0 in both bundles, so the M prices can be ignored in
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these situations.

We now proceed to show that when the constructed instance of private

2-warp is a yes-instances, a satisfying truth assignment exists.

Claim 6.3.3. In any feasible solution to this instance of private 2-warp,

we have for ` = 1, 2: p2n+2m+3q
`
2n+2m+3 > 1.

Proof. Observe that Claim 6.3.2 is applicable to observations 2n+ 2m+ 1

and 2n+ 2m+ 2. Thus the split of the bundles q2n+2m+1 and q2n+2m+2 is

extreme. Let us assume, without loss of generality, that good 3 is allocated

to member 1 with fraction at least 1−ε, while good 4 is allocated to member

2 with fraction 1− ε. Thus:

p2n+2m+1q
1
2n+2m+1 ≥ 1− ε =

4n− 1

4n
≥ 1

4

= n
1

4n
= nε ≥ p2n+2m+1q2n+2m+3. (6.1)

It follows that for member 1, in any feasible solution, observation q1
2n+2m+1

is revealed preferred over q1
2n+2m+3. Then, in order to satisfy private 2-

warp, we must have:

p2n+2m+3q
1
2n+2m+3 < p2n+2m+3q

1
2n+2m+1 ≤ p2n+2m+3q2n+2m+1

⇒
n∑
i=1

q1
2n+2m+3,4+i < n− 1. (6.2)

Since, for a ∈ S, q2
a = qa − q1

a, we derive, using (6.2):

n∑
i=1

q2
2n+2m+3,4+i = n−

n∑
i=1

q1
2n+2m+3,4+i > 1. (6.3)

Finally, since p2n+2m+3,i = 1 for i = 5, 6, . . . , n + 4, it follows that (6.3)

can be written as:

p2n+2m+3q
2
2n+2m+3 > 1.
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A similar reasoning involving member 2 and observations 2n+ 2m+ 2 and

2n+ 2m+ 3 leads to:

p2n+2m+3q
1
2n+2m+3 > 1.

To proceed, let us consider observation i, (1 ≤ i ≤ n), and observation

2n+ 2m+ 3. Using Claim 3, we observe:

p2n+2m+3q
`
2n+2m+3 > 1 > p2n+2m+3qi for ` = 1, 2, 1 ≤ i ≤ n. (6.4)

Thus, no matter the split of qi into q1
i and q2

i , for both members 1 and

member 2 we have that q1
2n+2m+3 (resp. q2

2n+2m+3) is directly revealed

preferred over observation q1
i (resp. q2

i ), with i = 1, . . . , n. Since we have

a yes-instance of 2-warp, we know that then, for ` = 1, 2:

piq
`
i < piq

`
2n+2m+3. (6.5)

Observe that Claim 6.3.2 is applicable to observations i and n + i. Thus,

the split of qi and qn+i is extreme. Hence, there is a member ` for which:

piq
`
i ≥ 1− ε. (6.6)

Inequalities (6.5) and (6.6) imply that the split of q2n+2m+3 is such that:

piq
`
2n+2m+3 > 1− ε. (6.7)

Consider the vectors pi and q2n+2m+3, 1 ≤ i ≤ n. It follows that:

piq
`
2n+2m+3 = ε

n+4∑
j=5,j 6=4+i

q`2n+2m+3,j + q`2n+2m+3,4+i. (6.8)
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Also:

n+4∑
j=5,j 6=4+i

q`2n+2m+3,j ≤
n+4∑

j=5,j 6=4+i

q2n+2m+3,j = n− 1. (6.9)

Rewriting (6.8), and using inequalities (6.7) and (6.9) gives for each i =

1, . . . , n:

q`2n+2m+3,4+i = piq
`
2n+2m+3 − ε

n+4∑
j=5,j 6=4+i

q`2n+2m+3,j

> 1− ε− ε(n− 1) = 1− n

4n
=

3

4
. (6.10)

Concluding, each good i = 5, 6, . . . , n + 4 in observation 2n + 2m + 3 is

allocated for over 3
4 to some member ` ∈ {1, 2}.

Finally, we look at the two observations corresponding to each clause

j = 1, . . . ,m. It is clear that for each member ` we have that q`2n+2m+3 is

directly revealed preferred over both observations q`2n+j and q`2n+m+j . Ob-

serve also that Claim 2 is applicable to observations 2n+j and 2n+2m+j.

Thus, in order not to have a violation of private 2-warp, we should have

for member ` q`2n+j is not directly revealed preferred over q`2n+2m+3. Thus,

for each ` = 1, 2:

p2n+jq
`
2n+j < p2n+jq

`
2n+2m+3. (6.11)

Since (without loss of generality), for member 1, we have p2n+jq
1
2n+j ≥ 1−ε,

and thus we have using (6.11):

p2n+jq
1
2n+2m+3 > 1− ε. (6.12)
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This means that one of the three goods associated to clause j is allocated

over 3
4 to member 1. We argue by contradiction. Indeed, in case none of

the three goods of clause j are allocated over 3
4 to member 1, then they

are allocated for at most 1
4 to member 1. Then,

p2n+jq
1
2n+2m+3 ≤ 3

1

4
+ (n− 3)ε =

3

4
+
n− 3

4n
=

4n− 3

4n
<

4n− 1

4n
. (6.13)

Thus we would have p2n+jq
1
2n+2m+3 < 1 − ε, contradicting (6.12). There-

fore, at least one of the goods associated with j is allocated over 3
4 to

member 1. Clearly, a similar reasoning involving 2n+ 2m+ j and member

2 implies that one of these three goods must be allocated over 3
4 to member

2.

In conclusion, we now know the following about any valid allocation of

observation 2n+ 2m+ 3 which satisfies private 2-warp. First, that each

good is split up in a large and a small allocation for the different mem-

bers. Secondly, that for each clause and each member, there is at least one

of the goods associated with the variables that has a large allocation. A

valid truth assignment for mnae 3-sat can now be found as follows. If,

in observations 2n + 2m + 3 a good is largely allocated to member 1, the

variable is set to true, if a good is largely allocated to member 2, the

variable is false.

If we have a Yes-instance of mnae 3-sat, an allocation of goods which

satisfies private 2-warp exists. For observation 2n+ 2m+ 3, fully assign

each good associated with a true variable to member 1, and each good

associated with a false variable to member 2. Likewise, fully assign the

bundle i to member 1 if xi is true and to member 2 if it is false. Fur-

thermore, for all j = 1, . . . ,m, fully assign bundles 2n+j to member 1 and

all 2n+m+ j to member 2. Finally, fully assign 2n+ 2m+ 1 to member

1 and 2n + 2m + 2 to member 2. It can be easily checked that such an
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allocation satisfies private 2-warp.

The following argument generalizes our NP-completeness results for pri-

vate 2-warp towards private L-warp for any fixed L ≥ 2.2

Theorem 6.3.2. Testing private L-warp is np-complete for any fixed

L ≥ 2.

Proof. NP-Completeness for private L-warp, L > 2 can also be proven

through a reduction from Monotone Not-all-equal 3-SAT. We briefly

sketch this reduction. The dataset constructed is the same as for L =

2, except that for any additional member beyond the second, one extra

observation and one extra good is added. There are now 2n+2m+3+(L−2)

observations and 3n + 4 + (L − 2) goods. Observation 2n + 2m + 3 + i

consists of only one unit of good 3n + 4 + i, which has price 1 and all

other prices equal to ε. In all other observations, good 3n + 4 + i has

price ε. Using an argument similar to the proof of Claim 6.3.2, it is clear

that, in any feasible solution, allocations are extreme, i.e., any member `

who is allocated more than a small fraction of good 3n+ 4 + i will prefer

q`2n+2m+3+i over all other bundles and any member who is allocated more

than a fraction of a bundle in other observations prefers that bundle over

q2n+2m+3+i. Any feasible split will thus have the goods 3n + 4 + i in the

extra observations almost completely allocated to the members 3, 4, . . .,

while all of the bundles present in the proof for L = 2 must still be split

over two members.

2 The definition of private L-warp is trivially analogous to the one of private 2-warp.

For compactness, we do not include it here.
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6.4 The collective consumption model with only

public goods

We next turn to the collective model with all goods publicly consumed in

the household. In this case all member-specific utility functions are defined

for the same bundle of public goods. For ease of exposition, we again

mainly focus on households consisting of two members. But, like before,

our findings for this case are easily extended to L-member households (with

L ≥ 2).

For this public setting, we formalize the idea that household members have

individual-specific (unobserved) willingness-to-pay for the public goods

(bought at prices pt). To do so, for each observation t ∈ N , we define

a feasible personalized price vector (p1
t , p

2
t ). Intuitively, these feasible per-

sonalized prices capture the fractions of the household prices for the public

goods that are borne by the individual members `. Given the Pareto effi-

ciency assumption that underlies the collective consumption model, these

prices can also be interpreted as Lindahl prices. We refer to Cherchye et al.

(2011) for a detailed discussion.

Similar to before, for each member ` (` = 1, 2) we consider personalized

consumption datasets by S` = {
(
p`t, qt

)
: t ∈ N}. The extension of warp

to this collective consumption model is then as follows.

Definition 6.4.1. public 2-warp

Let S = {(pt, qt) : t ∈ N} be a dataset of a two-member household. We

say that S is consistent with public 2-warp if and only if:

(i) For each t ∈ N there exist p1
t , p

2
t ∈ Rm+ such that pt = p1

t + p2
t , and

(ii) For each member ` ∈ {1, 2}, the set S` = {
(
p`t, qt

)
: t ∈ N} satisfies

warp.

This problem can be rephrased as the following decision problem:
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Problem 6.4.1. public 2-warp

Instance: A dataset S = {(pt, qt) : t ∈ N}.
Question: Do there exist p1

t , p
2
t ∈ Rm+ satisfying pt = p1

t +p2
t for each t ∈ N

such that for ` = 1, 2, the set S` = {
(
p`t, qt

)
: t ∈ N} satisfies warp?

It turns out that answering this question also implies solving an np-complete

problem.

Theorem 6.4.1. Testing public 2-warp is np-complete.

Proof. We again use a reduction from Monotone Not-all-equal 3-

sat, as defined by problem 6.3.2

Instance: A set of variables X = {x1, x2, . . . , xn} and a set of clauses

C = {c1, c2, . . . , cm} with each clause consisting of 3 non-negated literals.

Question: Does there exist a truth-assignment so that for each clause, ei-

ther one or two of the literals are true?

It is not difficult to see that public 2-warp belongs to the class NP. The

rest of this proof is structured as follows: given an arbitrary instance of

mnae 3-sat, we first build an instance of public 2-warp and next, we

prove that we have a yes instance of mnae 3-sat if and only if the con-

structed instance of public 2-warp is a yes instance.

Consider an arbitrary instanceX = {x1, x2, . . . , xn} and C = {c1, c2, . . . , cm}
of mnae 3-sat. We build an instance of public 2-warp using 3n+2 goods

and 2n+m+ 2 observations. We next describe the quantity and the price

of the goods for each observation. We use ε = 1
4n and M = n + 1. The

first block of 2n observations corresponds to the variables and is given by:
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q1 = (2, 0, . . . , 0, |0, . . . , 0, |1, 0, . . . , 0, |0, 0); p1 = (1, ε, . . . , ε, |ε, . . . , ε, |ε,M, . . . ,M, |M,M)

q2 = (0, 2, . . . , 0, |0, . . . , 0, |0, 1, . . . , 0, |0, 0); p2 = (ε, 1, . . . , ε, |ε, . . . , ε, |M, ε, . . . ,M, |M,M)

...

qn = (0, 0, . . . , 2, |0, . . . , 0, |0, 0, . . . , 1, |0, 0); pn = (ε, ε, . . . , 1, |ε, . . . , ε, |M,M, . . . , ε, |M,M)

qn+1 = (0, . . . , 0, |1, 0, . . . , 0, |1, 0, . . . , 0, |0, 0); pn+1 = (ε, . . . , ε, |1, ε, . . . , ε, |ε,M, . . . ,M, |M,M)

.

..

q2n = (0, . . . , 0, |0, 0, . . . , 1, |0, 0, . . . , 1, |0, 0); p2n = (ε, . . . , ε, |ε, ε, . . . , 1, |M,M, . . . , ε, |M,M)

Notice that each entry i in both a price-vector and a quantity-vector cor-

respond to good i, i = 1, . . . , 3n+ 2. The second block of m observations

corresponds to the clauses. For each clause ca = {xi, xj , xk}, we have the

observation 2n+ a (a = 1, . . . ,m).

q2n+1 = ({0, 1}|0, . . . , 0|0, . . . , 0|0, 0); p2n+1 = ({M, 1}|M, . . . ,M |ε, . . . , ε|2, 2)

q2n+2 = ({0, 1}|0, . . . , 0|0, . . . , 0|0, 0); p2n+2 = ({M, 1}|M, . . . ,M |ε, . . . , ε|2, 2)

...

q2n+m = ({0, 1}|0, . . . , 0|0, . . . , 0|0, 0); p2n+m = ({M, 1}|M, . . . ,M |ε, . . . , ε|2, 2)

In the observations corresponding to a given clause ca, a = 1, . . . ,m, the

quantity of good i is 1 if the variable xi is part of the clause ca, and 0

otherwise. As for the prices, the price of good i is 1 if variable xi is in

clause ca, M otherwise. Finally, we have observations 2n + m + 1 and

2n+m+ 2:

q2n+m+1 = (0, . . . , 0, |0, . . . , 0, |0, . . . , 0|1, 0); p2n+m+1 = (ε, . . . , ε, |ε, . . . , ε, |M, . . . ,M |1, ε)

q2n+m+2 = (0, . . . , 0, |0, . . . , 0, |0, . . . , 0|0, 1); p2n+m+2 = (ε, . . . , ε, |ε, . . . , ε, |M, . . . ,M |ε, 1)

This concludes the description of the instance of public 2-warp. The

main idea used to argue the equivalence between Monotone Not-all-

equal 3-SAT and public 2-warp is as follows. The first n goods, 1, . . . , n

represent the variables considered. We will argue that the (unit) prices of
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each of these n goods in these first n observations is allocated for a large

part (i.e. ≥ 1− ε) to some member ` ∈ {1, 2}. This corresponds to setting

the variable to true (if the price goes for the larger part to member 1),

or to false (if the price goes for the larger part to member 2). The proof

will show that this is a satisfying truth assignment.

We first show that the trick used in the proof for private goods can be

reused similarly in the context of public goods. Consider a hypothetical

dataset, containing the observations a and b as follows:

qa = (1, 0), pa = (1, ε)

qb = (0, 1), pb = (ε, 1)

We say that the split of the prices of a bundle is extreme if the unit prices

of goods present in the bundle are allocated to one of the two members

with amount at least 1− ε.

Claim 6.4.1. In any feasible solution to public 2-warp of some dataset

containing observations a and b as above, the split of the price vector is

extreme.

Proof. Clearly, we have both paqa > paqb and pbqb > pbqa. In this case,

we have for one member ` qa is directly revealed preferred over qb, and

for one member `′ qb is directly revealed preferred over qa. Thus in any

feasible solution ` and `′ must be different (otherwise public 2-warp is

violated). Let us assume, without loss of generality, that for member 1

qb is directly revealed preferred over qa, while qa is not directly revealed

preferred over qb. Let α be the part of the price of product 1 in bundle a

allocated to member 1, and β the part of the price of product 2 allocated

to this member.We then have

p1
aqa < p1

aqb ⇒ α < β
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Since β ≤ ε, we conclude α < ε = 1
4n . This implies the price of the first

good of a is allocated for more than 1 − ε to member 2. By the same

argument, the price of the second good in observation b is allocated for

more than 1− ε to member 1. Claim 6.4.1 follows.

Claim 6.4.2. In any feasible solution, the decomposition of p2n+m+1 is

such that for some member ` we have that q2n+m+1 is directly revealed

preferred over all bundles q2n+i, with i = 1, . . . ,m, while for the other

member `′ 6= ` q2n+m+2 is directly revealed preferred over all q2n+i.

Proof. It is clear that Claim 6.4.1 may be directly applied to observations

2n+m+ 1 and 2n+m+ 2. Without loss of generality, we assume that in

any feasible solution, the price of good 3n+ 1 in observation 2n+m+ 1 is

allocated almost completely to member 1, while the price of good 3n + 2

in observations 2n + m + 2 is allocated to member 2. It can easily be

checked that p1
2n+m+1q2n+m+1 > 1 − ε, while p1

2n+m+1q2n+i ≤ 3ε for all

i = 1, . . . ,m. A similar analysis for member 2 proves the claim.

This claim allows us to find a condition on the split of the prices in the

observations associated with the clauses.

Claim 6.4.3. In any feasible solution, for any observation 2n + i and

any member `, the split of the corresponding prices must be so that 1 <

p`2n+iq2n+i < 2.

Proof. By Claim 6.4.2, for any member `, we have that either q2n+m+1

is directly revealed preferred to q2n+i or q2n+m+2 is directly revealed pre-

ferred to q2n+i. Without loss of generality, we assume q2n+m+1 is directly

revealed preferred to q2n+i. In any feasible solution, it is then the case that

p`2n+iq2n+i < p`2n+iq2n+m+1. It can be easily checked that p`2n+iq2n+m+1 is

at most 2. As p2n+iq2n+i = 3 and p1
2n+i + p2

2n+i = p2n+i, p
`
2n+iq2n+i > 1

follows immediately.
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Consider now a pair of observations i and n+ i, i = 1, . . . , n. While these

prices and quantities do not coincide with those in Claim 6.4.1 exactly,

it can be easily seen that the split of price i in observation i is extreme.

Next, notice that the member ` to whom more than 1− ε of the price of i

is allocated, will have p`iqi > p`iq2n+a, with a = 1, . . . ,m. This brings us to

the following claim

Claim 6.4.4. In any feasible solution to public 2-warp, if there exists

some clause ca, a = 1, . . . ,m with variables xi, xj , xk, it can not be the case

that for some member `, the prices of i, j and k in respectively observations

i, j and k are allocated for more than 1− ε to `.

Proof. We argue by contradiction. Suppose that in a feasible solution to

public 2-warp some member ` is allocated almost completely the prices

of goods i, j, k occurring in some clause ca in respective observations i, j, k.

The following inequalities follow: p`iqi > p`iq2n+a, p
`
iqi > p`iq2n+a, p

`
iqi >

p`iq2n+a. Hence, in order not to violate warp for member `, we must have:

p`2n+aq2n+a < p`2n+aqi (6.14)

p`2n+aq2n+a < p`2n+aqj (6.15)

p`2n+aq2n+a < p`2n+aqk (6.16)

As Claim 6.4.3 shows that p`2n+cq2n+c > 1, we must have p`2n+cqi > 1. This

can be rewritten as 2 × p`2n+c,i + p`2n+c,2n+i > 1, for convenience, we will

ignore p`2n+c,2n+i as it is negligeable in the following analysis. We now have

p`2n+c,i >
1
2 . However, this must hold for all three prices associated with

i, j, k, which gives the following p`2n+cq2n+c = p`2n+c,i+p
`
2n+c,j+p

`
2n+c,k >

3
2 .

In this case, p`2n+c,i >
1
2 is no longer sufficient, as 2×p`2n+c,i+p

`
2n+c,2n+i >

3
2

is required. By the same argument, we obtain that p`2n+c,i >
3
4 . However,

in this case p`2n+c,i + p`2n+c,j + p`2n+c,k >
9
4 . However, by Claim 6.4.3 this

can not be the case for a feasible solution. By contradiction, Claim 6.4.4

is thus proven.

Now, it has become easy to show that a yes-instance of public 2-warp
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problem corresponds to a satisfying truth assignment in mnae-3-sat, and

vice versa. It is clear that - if a feasible solution to public 2-warp exists

- the prices of good i in observation i, i = 1, . . . , n are always allocated

with an extreme split. If the price of good i in observation i is almost

completely allocated to member 1, we set the corresponding variable xi to

true, otherwise we set it to false. By Claim 6.4.4, we know that if a

feasible solution to public warp exists, and goods i, j, k are in a clause, no

member will have the prices of all 3 goods allocated to him/her. Thus, a

solution to public 2-warp corresponds to a satisfying truth assignment

in mnae-3-sat. The other direction, i.e., finding a solution to public 2-

warp when a satisfying truth assignment in mnae-3-sat is given is easy:

simply allocate almost completely good i in observation i to member 1 if xi

is true, else allocate good i almost completely to member 2, i = 1, . . . , n.

For observations n + i and goods n + 1, the reverse is done. 2n + m + 1

and 2n + m + 2 are respectively allocated to member 1 and 2. All other

prices may be split evenly between the members. This will satisfy public

2-warp.

Similar to the private setting, we can extend our np-completeness results

for public 2-warp to public L-warp for any fixed L ≥ 2.3

Theorem 6.4.2. Testing public L-warp is np-complete for any fixed

L ≥ 2.

Proof. The proof for this Theorem is analogous to the proof of Theorem

6.3.2.

6.5 The general collective consumption model

The final collective consumption model that we consider is the most gen-

eral one. It does not make any assumption regarding the nature of the

3 Again, the definition of public L-warp is directly analogous to the one of public

2-warp and, therefore, we do not include it here.
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consumed goods. That is, every good can be privately or publicly con-

sumed, and the private goods may generate externalities. If a dataset S

is a yes-instance to either public or private 2-warp, it is thus also a yes-

instance to general 2-warp. Clearly, the converse is not necessarily true.

As before, we only observe data at the aggregate household level.

Differing from before, we no longer use the notions of feasible personalized

prices and quantities to characterize this general collective model. Instead,

we follow the approach developed in Cherchye et al. (2007, 2012), which

defines a revealed preference characterization in terms of hypothetical pref-

erence relations. More precisely, for some member `, we denote by H`
0 the

hypothetical preference of that member. The expression “qsH
`
0 qt” means

that we hypothesize that member ` directly prefers the bundle qs over the

bundle qt (for s, t ∈ N). In Cherchye et al. (2007) these hypothetical re-

lations are then used to derive necessary conditions that the data need to

satisfy in order to be compatible with the general collective consumption

model. We refer to Cherchye et al. (2007, 2012) for a detailed discussion.

Given our specific objective, we consider an extension of warp to 2-member

households that makes use of this notion of hypothetical preferences. This

extension is derived from the revealed preference characterization in Propo-

sition 2 of Cherchye et al. (2007), by essentially dropping the transitivity

requirement.

Definition 6.5.1. general 2-warp

Let S = {(pt, qt) : t ∈ N} be a dataset of a two-member household. We

say that S is consistent with general 2-warp if and only if there exist

hypothetical preferences H1
0 , H

2
0 that satisfy:

(a) For each pair of distinct observations s, t ∈ N : if psqs ≥ psqt, then

qsH
1
0 qt or qsH

2
0 qt;

(b) For each pair of distinct observations s, t ∈ N : if psqs ≥ psqt, qtH`
0 qs

and qt 6= qs, then qsH
r
0 qt, with `, r ∈ {1, 2} and ` 6= r;

(c) For each three distinct observations s, t, u ∈ N : if psqs ≥ ps (qt + qu)
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and qtH
`
0 qs, then qsH

r
0 qu with `, r ∈ {1, 2} and ` 6= r;

(d) For each pair of distinct observations s, t ∈ N : if qsH
1
0qt, qsH

2
0qt and

qt 6= qs, then ptqt < ptqs;

(e) For each three distinct observations s, t, u ∈ N : if qsH
1
0qt and quH

2
0qt,

then ptqt < pt(qs + qu).

In what follows, we will show that it is possible to check this general 2-

warp condition efficiently (i.e. in polynomial time), which contrasts with

our results for the private and public settings in the previous sections.

Importantly, we will only show this complexity result for the two-member

case. Differing from before, the result is not straightforwardly generalized

towards the general case with L household members (L ≥ 2). We leave

the study of this L-member case for future research.4

As a first step towards formulating the decision problem corresponding to

our definition of general 2-warp, we define a simplification of the above

definition that is easier to use. Specifically, we replace condition (b) with

a closely similar, but somewhat more stringent condition, and we drop

conditions (d) and (e).

Definition 6.5.2. general 2-warp

Let S = {(pt, qt) : t ∈ N} be a dataset of a two-member household. We

say that S is consistent with general 2-warp if and only if there exist

hypothetical preferences H1
0 , H

2
0 that satisfy:

(i) For each pair of distinct observations s, t ∈ N : if psqs ≥ psqt, then

qsH
1
0 qt or qsH

2
0 qt;

(ii) For each pair of distinct observations s, t ∈ N : if psqs ≥ psqt, qtH`
0 qs

and qt 6= qs, then ¬(qsH
`
0 qt), with ` ∈ {1, 2};

4 In this respect, we note that existing applications of the collective model usually

consider households with only two decision makers (e.g. husband and wife, with

expenses on children treated as public consumption). Therefore, we may safely argue

that the two-member case is the most relevant one from a practical perspective.
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(iii) For each three distinct observations s, t, u ∈ N : if psqs ≥ ps (qt + qu)

and qtH
`
0 qs, then qsH

r
0 qu with `, r ∈ {1, 2} and ` 6= r;

Claim 6.5.1. Definitions 6.5.1 and 6.5.2 are equivalent.

Proof. ⇒) Assume that there exists hypothetical relations for which con-

ditions (a)-(e) in Definition 6.5.1 are satisfied. It is clear that conditions (i)

and (iii) are then also satisfied, as these are identical to (a) and (c). Now

suppose the hypothetical relations include a violation of (ii), i.e., there ex-

ist distinct observations s, t ∈ N , for which psqs ≥ psqt, qtH
1
0 qs, qsH

1
0 qt

and qt 6= qs. We then have to consider two scenarios: either ptqt ≥ ptqs

or ptqt < ptqs. If ptqt < ptqs, then there is no need to specify qtH
1
0 qs

and thus condition (ii) is by construction satisfied. In the alternative sce-

nario, ptqt ≥ ptqs, then qsH
1
0 qt implies that qtH

2
0 qs (since condition (b)

is satisfied). But this entails a violation of condition (d), since psqs ≥ psqt,
qtH

1
0 qs and qtH

2
0 qs. This gives us the desired contradiction.

⇐) Next assume there exist hypothetical relations for which Conditions

(i)-(iii) in Definition 6.5.2 are satisfied. Again, conditions (a) and (c) are

identical to (i) and (iii) and are satisfied. Next, if (b) is violated, there

exist s, t ∈ N such that psqs ≥ psqt, qtH
1
0 qs, qt 6= qs, and ¬(qsH

2
0 qt).

Since condition (i) requires either qsH
1
0 qt or qsH

2
0 qt, it must be the case

that qsH
1
0 qt, which violates (ii), thus there is violation of (b) if (i)-(iii)

is satisfied. Now suppose (d) is violated. Then qsH
1
0 qt, qsH

2
0 qt and

ptqt ≥ ptqs. By rule (i), it must then be the case that qtH
1
0 qq or qtH

2
0 qq,

either of which again violates (ii). Finally, a violation of (e) implies qsH
1
0qt,

quH
2
0qt and ptqt ≥ pt(qs+qu). To satisfy condition (iii), if ptqt ≥ pt(qs+qu)

and qsH
1
0qt, it must be the case that qtH

2
0qu, since we also have quH

2
0qt,

either (ii) or (iii) must be violated if (e) is violated.

The problem of testing whether a collective rationalization of S exists is

then formulated as the following decision problem:

Problem 6.5.1. general 2-warp
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Instance: A dataset S := {(pt, qt) : t ∈ N}.
Question: Do there exist hypothetical preferences H1

0 , H
2
0 , such that condi-

tions (i) - (iii) in Definition 6.5.2 hold?

Before studying this decision problem more in detail, we want to make

the following remarks. If the dataset S contains only three observations,

let us say s, t, and u, then the answer to the decision problem is No

if and only if the following three inequalities hold: psqs ≥ ps(qt + qu),

ptqt ≥ pt(qs + qu), and puqu ≥ pu(qs + qt). For datasets containing more

than three observations, however, the presence of these three inequalities

is not necessary to have a No answer. Indeed, the reader can check that

the following inequalities involving four observations, let us say s, t, u, and

v, also leads to a No answer to 2-warp: psqs ≥ psqt, ptqt ≥ pt(qs + qu),

ptqt ≥ pt(qs+qv), puqu ≥ pu(qt+qv), and pvqv ≥ pv(qt+qu). Furthermore,

we mention that if there is no inequality of the form psqs ≥ ps(qt + qu) for

all triples s, t, and u in N then we have a yes instance of 2-warp.

6.5.1 A graph interpretation of 2-warp

We translate conditions (i) to (iii) into a directed graph setting (see Talla No-

bibon et al. (2011) for a related construction). We build a directed graph

G = (V,A) from the dataset S := {(pt, qt) : t ∈ N} as follows. A pair of

distinct observations (s, t) with s, t ∈ N represents a vertex in V if and

only if both psqs ≥ psqt and ptqt ≥ ptqs. Notice that V contains O(n2)

vertices and if the vertex (s, t) exists then the vertex (t, s) also exists. The

set of arcs A is defined in two steps as follows:

1: First, there is an arc from a vertex (s, t) to a vertex (u, v) whenever

t = u.

2: Second, for any three distinct observations s, t, u ∈ N satisfying

psqs ≥ ps(qt + qu), ptqt ≥ ptqs, puqu ≥ puqs, we have an arc from

(s, u) to (t, s), and from (s, t) to (u, s).
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Notice that Step 1 ensures that there is an arc from node (s, t) to node

(t, s) and vice versa. This graph construction differs from the one used

when checking whether a dataset of a unitary household satisfies warp:

in that case, a directed graph is built where a vertex corresponds with an

observation and there is an arc from s to t if and only if psqs ≥ psqt. That

approach is not considered because it is not quite clear how to deal with

inequalities of the form psqs ≥ ps(qt + qu).

Given the directed graph G = (V,A) built above, we define the 2-undirected

graph G2 = (V,E) associated withG as the undirected graph obtained from

G by transforming any pair of arcs forming a cycle of length 2 into a single

edge (undirected arc); more precisely, {v1, v2} ∈ E if and only if v1v2 ∈ A
and v2v1 ∈ A.

As an illustration of the graph construction, consider a dataset with three

observations satisfying: p1q1 ≥ p1(q2 + q3), p2q2 ≥ p2(q1 + q3) and p3q3 ≥
p3(q1 + q2). This implies the existence of the vertices depicted in Fig-

ure 6.1(a). The arcs stemming from Step 1 appear in Figure 6.1(b), and

the final graph is depicted in Figure 6.1(c), where the dashed arcs are de-

rived from Step 2. Finally, the 2-undirected graph G2 associated with G

is depicted in Figure 6.1(d). We have the following result.

Theorem 6.5.1. S is a yes instance of 2-warp if and only if the 2-

undirected graph G2 associated with G is bipartite.

Proof. ⇐) Suppose that G2 is bipartite. Thus, the set of vertices V can

be partitioned into two subsets V1 and V2 such that each subset induces an

independent set. In other words, V = V1∪V2, V1∩V2 = ∅, and there is no

edge between two vertices of V1 and no edge between two vertices of V2. We

build the hypothetical preferences H1
0 and H2

0 as follows: for every vertex

(s, t) ∈ V1 (respectively (s, t) ∈ V2) we have qsH
1
0 qt

(
respectively qsH

2
0 qt
)
.

Furthermore, for two distinct observations s and t such that psqs ≥ psqt

and (s, t) /∈ V , we set qsH
1
0 qt and qsH

2
0 qt. This completes the definition

of H1
0 and H2

0 . Notice that there is no distinct pair of observations s, t for

which we set qsH
`
0qt and qtH

`
0qs for some ` ∈ {1, 2}. We now argue that
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(1,2) (2,1) 

(3,2) 

(2,3) (1,3) 

(3,1) 

(a) Existing vertices

(1,2) (2,1)

(3,2)

(2,3)(1,3)

(3,1)

(b) First set of arcs

(1,2) (2,1) 

(3,2) 

(2,3) (1,3) 

(3,1) 

(c) Final graph G

(1,2) (2,1) 

(3,2) 

(2,3) (1,3) 

(3,1) 

(d) 2-undirected graph G2

Figure 6.1: Illustration of the construction of G and the associated 2-undirected

graph G2

H1
0 and H2

0 satisfy conditions (i) to (iii).

Condition (i): Let s, t ∈ N be two distinct observations such that

psqs ≥ psqt. On the one hand, if (s, t) /∈ V then, by construction, qsH
1
0 qt

and qsH
2
0 qt. On the other hand, if (s, t) ∈ V = V1 ∪ V2 then (s, t) ∈ V1 or

(s, t) ∈ V2, and hence qsH
1
0 qt or qsH

2
0 qt. Thus condition (i) is satisfied.

Condition (ii): As described above, there is no distinct pair of obser-

vations s, t ∈ N for which we set qsH
`
0qt and qtH

`
0qs for some ` ∈ {1, 2}.

Thus condition (ii) is satisfied.
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Condition (iii): Let s, t, u ∈ N be three distinct observations such that

psqs ≥ ps(qt+qu) and qtH
1
0 qs. There are two cases: (1) if puqu < puqs then

(s, u) /∈ V and, since psqs ≥ psqu, we have by construction of H`
0, qsH

1
0 qu

and qsH
2
0 qu, and we are done; (2) if puqu ≥ puqs then (s, u) ∈ V . Let

us now argue by contradiction that (t, s) ∈ V . Indeed, if (t, s) /∈ V , then

(s, t) /∈ V . That however, is impossible since psqs ≥ psqt, and we would

have had by construction qsH
1
0 qt and qsH

2
0 qt, which cannot be reconciled

with qtH
1
0 qs. Thus (t, s) ∈ V , and in fact, since qtH

1
0 qs, (t, s) ∈ V1.

Following the construction of G, we have an arc from (t, s) to (s, u) and

an arc from (s, u) to (t, s) (because psqs ≥ ps(qt + qu), ptqt ≥ ptqs, puqu ≥
puqs). Therefore, there is an edge between the vertices (t, s) and (s, u) in

G2, and we conclude that (s, u) ∈ V2, which implies that qsH
2
0 qu. This

completes the verification of condition (iii).

⇒) Now, we suppose that S is a yes instance of 2-warp; there exist H1
0

and H2
0 satisfying conditions (i) to (iii). We want to show that the 2-

undirected graph G2 is bipartite. In other words, we want to partition V

into two subsets V1 and V2 such that there is no edge between two vertices

of V1 and no edge between two vertices of V2.

Given H1
0 and H2

0 we set the vertices in V1 (respectively in V2) as follows: a

vertex (s, t) ∈ V belongs to V1 (respectively to V2) if qsH
1
0 qt

(
respectively

qsH
2
0 qt
)
. It is not difficult to see that V1 ∩ V2 = ∅ and that any vertex in

V is either in V1 or in V2. Hence, V1 and V2 constitute a valid partition of

V . We argue, by contradiction, that V1 and V2 induce independent sets.

Without loss of generality, suppose V1 is not an independent set. There

exist two vertices (s, t) and (u, v) in V1 with an edge between them in G2.

Thus, in the graph G there is an arc from (s, t) to (u, v), and from (u, v)

to (s, t). If both arcs originate from Step 1, we have u = t and v = s,

which implies (s, t) ∈ V1, and (t, s) ∈ V1 which can only happen if qsH
1
0 qt

and qtH
1
0 qs; this, however, contradicts condition (ii) for H1

0 . If both arcs

originate from Step 2, we also have u = t and v = s, and the same argument

applies. Hence, one arc originates from Step 1 and one arc originates from
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Step 2. Without loss of generality, we can assume that the arc from (s, t) to

(u, v) comes from Step 1, while the arc from (u, v) to (s, t) comes from Step

2. This implies that u = t, and apparently ptqt ≥ pt(qs+qv). Since qsH
1
0 qt,

condition (iii) implies that qtH
2
0 qv. By hypothesis, we have qtH

1
0 qv and

pvqv ≥ pvqt (because (t, v) ∈ V1). From condition (i) we know that qvH
1
0 qt

or qvH
2
0 qt. This, together with qtH

1
0 qv and qtH

2
0 qv, implies that either

qtH
1
0 qv and qvH

1
0 qt or qtH

2
0 qv and qvH

2
0 qt. In the first case, H1

0 violates

condition (ii) whereas in the second case H2
0 violates condition (ii). In

both cases, we have a contradiction with condition (ii). This concludes the

proof of Theorem 6.5.1.

6.5.2 An Algorithm for 2-warp

We present an algorithm for 2-warp that is based on Theorem 6.5.1. The

pseudocode is described by Algorithm 6.

Algorithm 6 Algorithm for 2-warp

1: build the directed graph G from the dataset S

2: build the 2-undirected graph G2 associated with G

3: if G2 is bipartite then return yes, else return no

It is clear that each of the three steps of Algorithm 6 can be done in

polynomial time. Thus, we have the following result:

Theorem 6.5.2. Algorithm 6 solves 2-warp in polynomial time.

6.6 Conclusion

We studied three alternative extensions of the weak axiom of revealed pref-

erence (warp) that apply to the collective consumption model. We proved

that for the private and public settings, the corresponding testing prob-

lem is np-complete even for two (but also for more) household members.
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However, for the general setting, testing 2-warp can be done in polynomial

time for households consisting of two members. When there are three or

more household members, the complexity of the testing problem for this

general setting remains an open question.





Chapter 7

Testing Stochastic Models of

Preference

7.1 Introduction

A major challenge for testing theories of choice behaviour comes from the

fact that decision makers often show inconsistent behaviour when faced

with repetitions of the same choice situations. Even when faced with rel-

atively simple choices, such as binary choices between two alternatives,

and short time spans between repetitions, it is fairly common to observe

a decision maker switching between choice alternatives. Such inconsisten-

cies are often explained in two different ways. The first way is that even

though decision makers have deterministic preferences over alternatives,

the choices they actually make are probabilistic. Under this model the de-

cision maker is thought to sometimes make errors, choosing a less preferred

alternative by mistake. A second theory is that the decision maker does

choose according to his preferences, but that these preferences themselves

are probabilistic. In other words, the decision maker does not make errors,

she just changes her mind according to some underlying probability func-

This chapter is the result of a collaboration with Clintin Davis-Stober, Michel Regen-

wetter and Frits C.R. Spieksma.
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tion. In this paper, we will be working with the second of these models,

which we will refer to as mixture models (Regenwetter et al., 2010, 2011).

Compared to previous chapters, there will be some differences in the set-

ting. There is a finite set of choice alternatives over which the decision

maker has preferences, rather than a continuum of bundles over which

there is a utility function. Every observed decision situation will also be

binary, the decision maker is given only two alternatives from the set and

will be asked to choose one or the other. In this chapter, we will allow any

strict linear order over the alternatives, i.e., there are no restrictions on

the preferences a decision maker can have. The model we will test is thus

a mixture model of strict linear preferences, for ease of reading, we will

just refer to it as a mixture model. An important result for testing this

model is given by Suck (1992), he shows that testing this mixture model

is equivalent to testing membership of the linear ordering polytope. It is

shown by Grötschel et al. (1981, 1993) that a polynomial time algorithm

for membership implies a polynomial time algorithm for optimization over

the polytope. Since optimization over this polytope corresponds to the

well known np-hard linear ordering problem, the result by Suck im-

plies that testing whether data are consistent with the mixture model is

np-hard.

Our contribution in this chapter is a column generation based algorithm

to test the mixture model. Such an algorithm is interesting, not only for

the problem at hand, but also in general, as it can be easily adapted for

tests of different mixture models with other forms of preferences. The rest

of this chapter will unfold as follows. In Section 7.2, we lay out the no-

tation and definitions used and we present the setting and model in more

detail. Section 7.3 will consist of a basic description of the column gen-

eration algorithm. The implementation and results of this algorithm will

be discussed in Section 7.4. Section 7.5 handles Bayes factor calculation.

The Bayes factor is a measure for the likelihood that observed choices are

the result of an underlying stochastic choice process. Finally, Section 7.6

concludes.
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7.2 Notation and Definitions

Consider a set A, consisting of n alternatives. For each ordered pair of

distinct alternatives (i, j) ∈ A2, we consider a non-negative number pij ≤ 1.

These numbers represent the probability that i is chosen over j. As we

assume strict preferences, pij+pji = 1 for each pair of distinct i, j ∈ A. We

refer to the set of numbers pij as the data. Preference orderings over the

alternatives are represented by the relation �, with i � j if i is preferred

over j. These relations are strict, complete and transitive. We will use

the index m to denote a particular preference ordering. The set of all

preference orderings is O. We further consider the subsets Oij , for which

m ∈ Oij if i �m j. A mixture model of preference assumes that when a

decision maker is faced with a choice, each preference ordering has a certain

probability of being used to make the choice. When these probabilities are

consistent with the numbers pij , we say that the model rationalizes the

observed data.

Definition 7.2.1. Data can be rationalized by a mixture model of strict

linear preferences if and only if there exists a probability 0 ≤ xm ≤ 1,∀m ∈
O for which: ∑

m∈Oij

xm = pij , ∀(i, j) ∈ A2, i 6= j (7.1)

A straightforward test of the mixture model is thus to check whether a

solution exists to the system of equalities (7.1). However, this system of

equalities has a variable for every possible linear order over the alterna-

tives, of which there exist n!. For even moderate numbers of alternatives,

it is computationally intensive to solve this system. Suck’s result that test-

ing this mixture model is equivalent to a membership problem of the linear

ordering polytope, suggests a second approach. A polytope can also be de-

scribed by facet defining inequalities. This means that, if and only if the pij

values satisfy all facet defining inequalities of the linear ordering polytope,

the mixture model is satisfied. However, the problem of finding a violated
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facet defining inequality is also np-hard for several known classes of these

inequalities. Furthermore, the number of classes rises exponentially with

the number of alternatives. The largest number of alternatives for which

all classes of facet defining inequalities of the linear ordering polytope are

known is 7 (Mart́ı and Reinelt, 2011). The goal of this chapter is to present

a test of the mixture model that is capable of handling datasets for which

both testing the system of equalities (7.1) or checking the facet defining

inequalities is possible, which we will do in the next section.

7.3 Column Generation

In this section, we will describe an algorithm based on column generation

to test the mixture model. The advantage of using column generation, is

that it avoids having to consider all of the variables at once. Given the

exponential number of these variables, this will allow us to handle datasets

of sizes for which solving (7.1) directly is impractical. To be able to use a

column generation approach, we will first reformulate the system (7.1) into

a linear programming problem. For this linear program, we can then find

the dual formulation and, using both of these problems, devise a column

generation algorithm.

7.3.1 Linear Programming Formulation

In the previous section, we provided a system of equalities, which are both

necessary and sufficient for the data to be rationalizable by a model of

stochastic strict linear ordering preferences. This system can be easily

rewritten as a linear programming problem as follows.
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Minimize z (7.2)

Subject to ∑
m∈Oij

xm + z ≥ pij ∀(i, j) ∈ A2, i 6= j (7.3)

∑
m∈O

xm ≤ 1 (7.4)

xm, z ≥ 0 ∀m ∈ O (7.5)

Claim 7.3.1. The optimal solution value of (7.2)-(7.5) is equal to 0 if and

only if a solution exists to the system of equalities (7.1).

Proof. The claim can be easily checked as follows. First, we show that if

there exists a solution with z = 0, the values of the xm variables also form

a solution to (7.1). Finally, we show that any solution to (7.1) is also a

solution to (7.2)-(7.5), with z = 0.

Suppose we have a solution to (7.2)-(7.5) with solution value 0. As 1 ≥∑
m∈O xm =

∑
m∈Oij xm+

∑
m∈Oji xm = 1, we must have

∑
m∈Oij xm = pij

and
∑

m∈Oji xm = pji. The values xm are thus a solution to (7.1). Finally,

suppose we have a solution to the system of equalities (7.1). The values

of xm can then be put into the linear programming problem. As for each

ordered pair (i, j), we have
∑

m∈Oij xm = pij and
∑

m∈O xm = 1, it is clear

that the constraints (7.3) are met with z = 0.

Clearly this LP-formulation still has the same large number of variables

(n!) as (7.1). However, this formulation has a relatively small number

of constraints (n2). Since an optimal solution to an LP can be found

with a number of non-zero variables less than or equal to the number of

constraints, it is clear that not all variables are needed (Chvátal, 1983).

We will therefore use a column generation approach. In this context, we

will refer to the linear problem (7.2)-(7.5) as the primal or master problem.



126 Testing Stochastic Models of Preference

7.3.2 The Pricing Problem

For each linear programming problem, there exists an associated dual prob-

lem. The dual problem associated with (7.2)-(7.5) is as follows.

Maximize
∑

(i,j)∈A2,i 6=j

pijyij − c (7.6)

Subject o ∑
(i,j):m∈Oij

yij − c ≤ 0 ∀m ∈ O (7.7)

∑
(i,j)∈A2,i 6=j

yij ≤ 1 (7.8)

yij , c ≥ 0 ∀(i, j) ∈ A2, i 6= j (7.9)

An informal description of a column generation approach tailored to solv-

ing (7.2)-(7.5) is as follows. Suppose we have a feasible solution (x, z) to

the primal problem as well as an associated dual solution (y, c). It is well-

known that feasibility of this dual solution (y, c) is equivalent to optimality

of the primal solution (x, z). In other words, if (x, z) is the optimal so-

lution to the master problem, then the associated dual solution (y, c) will

be feasible and vice versa. Thus, if we want to test optimality of (x, z),

we may test whether (y, c) satisfies (7.7), (7.8) and (7.9). In a column

generation approach, we consider a restricted master, that is, many of the

primal variables from (7.2)-(7.5) are not considered explicitly. Solving this

restricted master gives a feasible primal solution (x, z), as well as a corre-

spoding dual solution (y, c). If this dual solution is feasible, then this is

proof that the solution to the restricted master problem is also an optimal

solution to the master problem. Otherwise, a violated dual constraint is

identified which gives rise to a primal variable that should be included in

the restricted master.

Checking whether the solution (y, c) is a feasible solution to the dual prob-

lem is done by solving a pricing problem. In this case, there exists a

violated inequality if and only if there exists a linear order m ∈ O, for
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which
∑

ij:m∈Oij yij > c. This gives us the following pricing problem. The

variables bij represent preference relations for an ordered pair of distinct

alternatives, (i, j) ∈ A2: if bij = 1, then i is preferred over j.

Maximize
∑

(i,j)∈A2,i 6=j

yijbij (7.10)

Subject to

bij + bji = 1 ∀(i, j) ∈ A2, i 6= j (7.11)

bij + bjk + bki ≤ 2 ∀(i, j, k) ∈ A3, i 6= j 6= k 6= i (7.12)

bij ∈ {0, 1} ∀(i, j) ∈ A2, i 6= j (7.13)

A solution of the problem consists of the bij variables, which given the

constraints (7.11) - (7.13) encode a strict linear order. Any such solution for

which the objective value (7.10) is greater than c, corresponds to a violated

inequality (7.7) of the dual. This violated inequality directly corresponds to

a primal variable, which when added to the restricted master problem will

improve its solution. We notice that this pricing problem is the well known

linear ordering problem (see Mart́ı and Reinelt (2011)). This problem is

known to be NP-Hard (Garey and Johnson, 1979).

7.3.3 Column Generation Algorithm

We are now in a position to describe the full column generation algorithm,

as shown in Algorithm 7. The general idea is as follows. Initially, we solve

a restricted master problem. This problem only contains a subset of all

variables of the full master. Given a solution to the restricted master,

we test whether this solution is optimal for the full master problem, by

checking whether there exist violated constraints in the dual problem. This

is done by solving the pricing problem. If the pricing problem identifies no

violated constraints, this means the optimal solution to the master problem

has been reached. If a violated constraint is identified, the associated
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variable is added to the restricted master, which is then resolved. Since it

is clear that there can be no solution to the master problem with z < 0,

the column generation algorithm can also terminate as soon as z = 0.

Algorithm 7 Column Generation Algorithm

1: Solve Restricted Master Problem.

2: if z = 0 then

3: Optimal solution found: stop

4: else

5: Update Pricing Problem with values yij .

6: Solve Pricing Problem

7: if Value Pricing Solution ≤ c then

8: Optimal solution found: stop

9: else

10: Add variable corresponding to the linear order found to the Re-

stricted Master Problem

11: goto Line 1

12: end if

13: end if

7.3.4 Stopping Condition

To finish this section on Column Generation, we note that we are not

interested in finding an optimal solution to the master problem. We are

only interested in the decision problem, whether or not a feasible solution to

the master problem exists in which z = 0 (and as a result, every constraint

is met with equality). This subtle difference allows us to use an extra

stopping condition, based on the objective value of the pricing solutions.

Theorem 7.3.1. Given numbers yij for all pairs (i, j) ∈ A2 (i 6= j), there

is a solution to the system (7.1) only if there exists a linear order m ∈ O,
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such that: ∑
(i,j)∈A2:i�mj

yij ≥
∑

(i,j)∈A2,i 6=j

yijpij (7.14)

Proof. We argue by contradiction. Suppose that there exists a feasible

solution (7.1), while for each m ∈ O:∑
(i,j)∈A2:i�mj

yij <
∑

(i,j)∈A2,i 6=j

yijpij . (7.15)

Thus, since xm ≥ 0 and
∑

m∈O xm = 1:∑
m∈O

(xm
∑

(i,j)∈A2:i�mj

yij) <
∑

(i,j)∈A2,i 6=j

yijpij . (7.16)

The left hand side is equal to:∑
m∈O

(xm
∑

(i,j)∈A2:i�mj

yij) =
∑

(i,j)∈A2

∑
m∈Oij

xmyij . (7.17)

Thus we have derived the validity of the following inequality:∑
(i,j)∈A2,i 6=j

∑
m∈Oij

yijxm <
∑

(i,j)∈A2,i 6=j

yijpij (7.18)

Now, since (7.1) is satisfied, we have for each ordered pair (i, j) ∈ A2, i 6= j

that: ∑
m∈Oij

xm = pij . (7.19)

Multiplying both sides by yij preserves the equality, thus for each ordered

pair (i, j) ∈ A2, i 6= j we have∑
m∈Oij

yijxm = yijpij . (7.20)

And summing over all ordered pairs gives∑
(i,j)∈A2,i 6=j

∑
m∈Oij

yijxm =
∑

(i,j)∈A2,i 6=j

yijpij , (7.21)

which contradicts (7.18)
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This result allows us to end the column generation algorithm if there is no

linear order m ∈ O for which
∑

(i,j)∈A2:i�mj yij >
∑

(i,j)∈A2,i 6=j yijpij . It

can easily be seen that this stopping condition is stronger than standard

column generation stopping condition, which is ending the algorithm if

there is no linear order m ∈ O for which
∑

(i,j)∈A2:i�mj yij > c. Indeed,

each dual solution (y, c) will satisfy
∑

(i,j)∈A2,i 6=j pijyij > c, since the value

of the objective function of the restricted master (z) is equal to the value

of the objective function of the dual problem (
∑

(i,j)∈A2,i 6=j pijyij − c). As

long as z > 0, it is thus the case that
∑

(i,j)∈A2,i 6=j pijyij > c.

We note that this result can be seen as an application of Farkas’ Lemma.

Indeed, consider this slight rephrasing of the original system of equalities,

in which we make the convexity constraint explicit.∑
m∈Oij

xm = pij ∀(i, j) ∈ A2, i 6= j (7.22)

∑
m∈O

xm = 1 (7.23)

xm ≥ 0 ∀m ∈ O (7.24)

Then Farkas’ Lemma states this system has a solution if and only if there

does not exist a solution (fij , g) to the following system of inequalities.∑
i,j∈O:i�mj

fij + g < 0 ∀m ∈ O (7.25)

∑
(i,j)∈A2,i 6=j

pijfij + g ≥ 0 (7.26)

However, given a dual solution (yij , c) for which condition (7.14) does not

hold, i.e., for which no linear order m ∈ O exists satisfying (7.14), it is

clear that a solution exists to (7.25-7.26). Indeed, let fij = yij , then for

each m ∈ O, it is the case that∑
i,j∈O:i�mj

fij <
∑

(i,j)∈A2,i 6=j

pijfij . (7.27)
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Given this, there must exist some g, such that∑
i,j∈O:i�mj

fij + g < 0 ≤
∑

(i,j)∈A2,i 6=j

pijfij + g. (7.28)

Furthermore, if condition (7.14) does not hold, Theorem 7.3.1 in effect

states that there is a lower bound z′ > 0 on the optimal solution z∗ of the

master problem. In general, the convexity constraint on the xm variables

allows us to derive a lower bound on the master problem in every iteration

of the column generation algorithm as follows (See Bazaraa et al. (2011),

Lübbecke and Desrosiers (2005)). Let z̄ be the objective value of an optimal

solution to the restricted master problem, and bij the optimal solution to

the pricing problem. Then it is the case that

z̄ − (
∑

(i,j)∈A2

(bijyij)− c) ≤ z∗. (7.29)

Since

z̄ =
∑

(i,j)∈A2,i 6=j

(pijyij)− c, (7.30)

we have ∑
(i,j)∈A2,i 6=j

(pijyij)−
∑

(i,j)∈A2,i 6=j

(bijyij) ≤ z∗. (7.31)

7.4 Implementation

In this section we discuss the implementation of the column generation

algorithm. Obviously, we can run Algorithm 7 by making use of standard

linear and integer program solvers. However, as suboptimal solutions to

the pricing problem may also identify violated inequalities of the dual,

we also use fast heuristic approaches to solve the pricing problem. We

describe these heuristic algorithms in subsection 7.4.1. Subsection 7.4.2

then contains descriptions of our datasets. Finally, subsection 7.4.3 gives

results on computation times for the various algorithms and datasets.
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7.4.1 Heuristic Algorithms

As the linear ordering problem is a well-known and well-studied np-hard

problem, an extensive literature exists on heuristics. In this section, we

describe our implementation based on best insertion constructive and in-

sertion local search algorithms (Laguna et al., 1999). In the literature, it

has been observed that these perform well when compared to other simple

heuristics (See Mart́ı and Reinelt (2011)). We use multi-start procedures,

varying the order in which alternatives are added in the insertion heuris-

tics. In this way, we have multiple solutions to compare against each other.

These multiple solutions can be used to either pick the best solution, or to

identify multiple variables to add to the restricted master in the column

generation. Furthermore, we describe an algorithm for adjusting solutions

to the pricing problem, such that the resulting linear orders more closely

resemble the observed preferences.

Best Insertion Heuristics

We describe a constructive heuristic called Best Insertion (Algorithm 8);

and a local search method based on a ‘move’ neighbourhood. The descrip-

tions of these algorithms are based on Mart́ı and Reinelt (2011) The Best

Insertion algorithm creates an initial ranking of the alternatives, by itera-

tively placing alternatives in an ordering over a (sub)set of the alternatives.

In the local search method, the position of alternatives in this ordering can

be changed by local moves. Initially, we consider a set of all alternatives

A. For every ordered pair of alternatives, (i, j) ∈ A2, the value of placing

i before j is given by yij . A linear order is denoted by 〈a, b, . . .〉.

In our implementation of Algorithm 8, the choice of alternatives i ∈ A in

line 7 is made as follows. If, initially, an alternative j ∈ A is chosen in

step 2, we pick alternatives j+1, . . . , n, 1, . . . , j−1, in that order, in step 7.

For the local search algorithm, let v(a) be the objective value associated
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Algorithm 8 Best Insertion Heuristic

1: INPUT: Set A and numbers yij for each ordered pair (i, j) ∈ A2, i 6= j.

2: Select an alternative i ∈ A and set A := A\{i}.
3: Create an ordering 〈i〉.
4: Set k := 1

5: while A 6= ∅ do

6: Let 〈a1, a2, . . . , ak〉 denote the current ordering.

7: Choose an alternative i ∈ A.

8: For each t = 1, . . . , k + 1, compute qt =
∑t−1

j=1 yaj ,i +
∑k

j=t yi,aj .

9: Let r = arg maxt=1,...,k+1 qt.

10: Set j := k + 1

11: while j > r + 1 do

12: aj := aj−1

13: j := j − 1

14: end while

15: ar := i

16: A := A\{i}
17: end while

18: OUTPUT: A linear order a = 〈a1, a2, . . . , an〉
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with a linear order 〈a1, a2, . . . , an〉. Furthermore, let v(a, i, j), be the value

of the order that results when the object in position i is moved to position

j. Algorithm 9 gives the full pseudo-code for the local search.

Algorithm 9 Insertion Local Search

1: INPUT: A linear order a = 〈a1, a2, . . . , an〉 and values yij for all ordered

pairs (i, j) ∈ A2.

2: Set i := 1.

3: while i < n+ 1 do

4: if maxj=1,...,n+1 v(a, i, j) > v(a) then

5: Set a := 〈. . . , aj−1, ai, aj , . . .〉.
6: Set i := 1.

7: else

8: Set i := i+ 1.

9: end if

10: end while

11: OUTPUT: A linear order a = 〈a1, a2, . . . , an〉

In this local search heuristic, the neighbourhood of an order is defined

as all orders that can be constructed from the current order by moving a

single alternative to a different position. For a given alternative, all possible

moves are evaluated. If the best possible move for this alternative improves

the objective value, this move is made and the ordering updated. The

algorithm terminates if there are no more improvements possible through

moving a single alternative.

In Algorithm 10, we show how we combine the algorithms described so far.

We denote the best ordering found so far by ā.

This implementation combines the constructive best insertion and local

search insertion algorithms to quickly find linear orders which are good

solutions to the pricing problem. Since the outcome of the constructive

heuristic depends strongly on the order in which alternatives are added

to the linear order, we use a multi-start procedure. For each alternative

i ∈ A, we run the algorithm once, inserting i first. From these multiple
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Algorithm 10 Pricing Problem

1: INPUT: A set of alternatives A and values yij for all ordered pairs

(i, j) ∈ A2.

2: for i ∈ A do

3: Run Algorithm 8, starting with the insertion of alternative i.

4: Run local search Algorithm 9 with starting solution a.

5: If v(a) > v(ā), set ā := a.

6: end for

7: If v(ā) ≤ 0, run CPLEX for an optimal solution to the pricing problem.

8: OUTPUT: ā

runs, we save the best solution to the pricing problem, and if this solution

can be used to add a variable to the restricted master problem, we do

so. If the objective value found through the heuristics is lower than or

equal to 0, we have not found any variables to add to the master problem.

However, this does not mean no such variables exist. We therefore use an

exact solver as a back-up, which either finds a new variable, if one exists,

or provides us with proof that such a variable does not exist. In this way,

we are still guaranteed a correct test of the mixture model.

To further speed up the column generation algorithm, we look for multiple

solutions to our pricing problem. By adding additional variables in a single

iteration, we hope to get larger improvements in our master problem. In

our implementation, we keep using the multi-start best insertion heuristics,

saving every solution that provides an improving variable (and is different

from already saved solutions). We denote the multiple saved solutions by

a1, a2, . . ..

Adjusting pricing solutions

As a final addition to the column generation algorithm in our implementa-

tion, we propose a way to adjust a solution to the pricing problem slightly,

so that they match the data as closely as possible. The intuition of the
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Algorithm 11 Adding multiple columns

1: INPUT: A set of alternatives A and and values yij for all ordered pairs

(i, j) ∈ A2.

2: for all i ∈ A do

3: Run Algorithm 8, starting with the insertion of alternative i.

4: Run local search Algorithm 9 with starting solution a.

5: If v(a) > 0 and a 6= ak, for all saved ak, save a as ak+1.

6: end for

7: If there does not exist ak, with v(ak) ≤ 0, run CPLEX for an optimal

solution to the pricing problem, else skip this step.

8: OUTPUT: All orders ak.

adjustment we propose is as follows. Suppose a linear order with i � j

is found as a solution to the pricing program, which can be added to the

master problem as an improving column. However, if yij = yji = 0, then a

linear order with j � i could have the same objective value in the pricing

problem. Now suppose pji = 1. If this is the case, it is clear that an

order with i � j will never be used in the eventual solution to our mas-

ter problem, and we should add an order with j � i instead. A similar

reasoning can be used if pji > 0.5. It may not be the case that a variable

with i � j will never be used, but is likely that the eventual solution will

use more variables corresponding to orders with j � i. We therefore add

the steps outlined in Algorithm 12 at the end of our heuristic pricing al-

gorithms. The yij values of the pricing problem are changed, and another

local search algorithm is run, with the goal of placing alternatives i ∈ A
with large pij values higher within the linear ordering. In particular, for

every pair of alternatives (i, j) ∈ A2 for which the ranking within the linear

order has no effect on the value of the pricing solution (yij = yji = 0), we

set yij := pij and yji := pji. To ensure the value of the solution to the pric-

ing solution is not lowered, every relation in the linear ordering solution

which adds any value to the objective function is assigned an arbitrarily

high yij value.
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Algorithm 12 Adjusting the pricing problem solution

1: INPUT: A set of alternatives A, an order a and a number yij .

2: for all (i, j) ∈ A2, i 6= j do

3: If i � j in a and yij > 0, set yij := 1000

4: If yij = yji = 0, set yij := pij and yji := pji

5: end for

6: Run local search Algorithm 9, with starting solution a.

7: OUTPUT: An order a.

7.4.2 Datasets

We generated four distinct classes of datasets, which we will describe in

this section.

The first two of these classes (Inside Easy (IE) and Inside Hard (IH)) were

generated so as to satisfy the mixture model in the following way. First,

for a given number n of alternatives, t linear orders over these alternatives

were randomly generated. For the easy datasets, t = 20, while t = 5 for

the hard datasets. Next, t − 1 random numbers (qm) between zero and

one were drawn and ranked from small to large. There are then t intervals

[0, q1], [q1, q2], . . . , [qt−1, 1], which define t numbers qi − qi−1 (with q0 = 0

and qt = 1). Each of these t number corresponds to a different generated

linear order, i.e., we set xm = qm − qm−1 for m = 1, . . . , t. The pij values

are then set as follows, pij =
∑t

m∈Oij xm.

The two other classes were generated so that they are unlikely to satisfy

the mixture model, these are called Outside Easy (OE) and Outside Hard

(OH). Outside Easy is generated in a simple fashion. For every pair of

alternatives (i, j) ∈ A2, with i > j, a number pij is drawn from a uniform

distribution between zero and one and pji = 1− pij . While the generation

process does not guarantee non-rationalizability, it turned out that all of

these datasets do violate the mixture model. This is due to the restrictive

nature of these models. Monte Carlo simulation shows only about 5% of

datasets containing 5 alternatives generated in this manner satisfy the mix-
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ture model, and that this percentage decreases with an increasing number

of alternatives (Regenwetter et al., 2010). For Outside Hard, initial pij

values are drawn using the same procedure. These numbers are the input

to an optimization problem, which minimizes the changes in the pij values,

under the constraint that for every triple of alternatives, i, j, k ∈ A, the

inequality pij + pjk + pki ≤ 2.01 (pij + pjk + pki ≤ 2 is a necessary con-

dition for rationalizability). In this way, the resulting dataset is generally

much closer to satisfying the mixture model than the pij values drawn from

uniform distributions. Notice however, that a dataset which violates the

conditions for rationalizability, will still violate these conditions after the

procedure.

7.4.3 Results

In this section, we will discuss some results on computation times for mix-

ture model tests. We will compare the different algorithms as described

in Section 7.4.1, tested on the datasets described in 7.4.2. All datasets

were generated for n = 20, and averages are reported over 5 datasets per

generation method. All computation times reported in this chapter were

obtained on a dual core 2.5 GHz computer with 4 GB RAM. The master

problem is solved using CPLEX 12.4, as is the pricing problem for exact

solutions.

Let us first look at a comparison of computation times using an exact in-

teger programming solver for the pricing problem, and implementations

using the best insertion heuristics. For this case, we include both the algo-

rithm for adding the best heuristic solution found (BI), and the algorithm

where all improving columns were added (BIM).

We note that the computation times decrease substantially by using heuris-

tic methods for the pricing problem. Generally, these methods are able to

find improving columns in most iterations of the pricing problem, allow-

ing the computationally expensive exact pricing problems to be skipped.

1 Computation time exceeded 2 hours (7200s) for 4 out of 5 datasets



7.4. Implementation 139

Datasets Exact BI BIM

Inside Easy 47.32s 10.21s 5.41s

Inside Hard 2598.48s 175.94s 182.33s

Outside Easy 20.46s 1.39s 1.15s

Outside Hard No Results1 3483.82s 3287.98s

Table 7.1: Computational results for exact pricing problem and simple heuristics.

For many satisfying datasets, the mixture model test can be done without

having to run any exact tests. For the datasets with violations, at least

one exact test is necessary for a guarantee that no improving columns ex-

ist. For the outside easy datasets, no extra exact pricing problems are

necessary. For the outside hard datasets however, most of the runtime

is linked to exact pricing problems. Furthermore, we note the similar re-

sults for the heuristic algorithm with one and multiple added columns. An

interesting observation is that while overall computation times are simi-

lar, the division over different parts of the algorithm is different. When

adding multiple columns in each pricing iteration, the number of pricing

iterations that are necessary decreases significantly (depending on the class

of dataset, between 70% and 90%). However, the total number of added

columns is much larger, which increases the time needed in updating and

running the master problem.

Next we look at the impact of the adjustment of pricing solutions, given in

Table 7.2. BIA represents the BI algorithm with adjustments, while BIMA

represents BIM with adjustments. Adjusting the pricing solutions has a

positive impact on computation times for all datasets. This reduction in

computation time is, depending on the basic algorithm, due to two effects.

In the simple best insertion algorithms, the adjustment of pricing solutions

leads to a large decrease in the number of iterations the column generation

algorithm requires. In the variant with multiple added variables in each

iteration, the improvement is due to a smaller number of variables being

added in each iteration.
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Datasets BI BIA BIM BIMA

IE 10.21s 7.69s 5.41s 5.37s

IH 175.94s 87.41s 182.33s 181.84s

OE 1.39s 1.30s 1.15s 0.71s

OH 3483.82s 3028.06s 3287.98s 2873.71s

Table 7.2: Computational results including adjustments to the pricing solutions.

Finally, we look at including the stronger stopping condition (BIA SC

and BIMA SC) discussed in Section 7.3.4 and report results for the hard

non-consistent datasets in Table 7.3. Clearly, this more stringent stopping

condition quickly identifies datasets which can not be consistent with the

mixture model, cutting computation times from almost one hour to less

than one minute on average. Due to the stronger stopping condition for

pricing problem solutions, the proof that the mixture model cannot be

satisfied is usually obtained in the first iteration that uses exact methods.

Datasets BIA BIA SC BIMA BIMA SC

OH 3028.06s 52.63s 2873.71s 33.56s

Table 7.3: Computational results including adjustments to the pricing solutions.

7.5 Bayes Factor Calculation

As we noted in several previous chapters, tests of models of behaviour are

generally sharp. Either the data satisfy the model or they don’t. The same

is true for the model we test in the current chapter. However, given that

we assume stochastic decision making, such sharp tests create additional

difficulties. Indeed, suppose we observe that an alternative i is chosen

over another alternative j only 1 out of 10 times. If we test the mixture

model on the data, we can use pij = 0.1 and we may find the model is
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rejected. However, suppose that for pij ≥ 0.15 the model is satisfied. If

the decision maker prefers i over j 15% of the time, then it is still likely that

he only picks i once over 10 trials and we “observe” a violation. Observed

behaviour can thus fail to satisfy Condition (7.1) even though the decision

maker satisfies the model.

In this section, we will look at the Bayes Factor as a way for account-

ing for this problem (Klugkist and Hoijtink, 2007). Informally speaking,

given observed behaviour, a posterior distribution can be calculated, which

represents how likely specific choice probabilities are to generate the ob-

served data. From this posterior distribution, we draw samples and test

whether these satisfy the mixture model. The percentage of such sam-

pled datasets which satisfy the mixture model (out of the total number

of tested samples), provides an approximation of the posterior probability

that the decision maker satisfies the mixture model, given the observed

choices. To be able to compare models, this posterior probability can be

compared against the percentage of samples from a prior distribution that

are consistent.

In line with Cavagnaro and Davis-Stober (2014), we take the prior distri-

bution of a pij value to be a uniform distribution between 0 and 1. The

percentage of samples consistent with the mixture model is then equal to

the volume of the linear ordering polytope compared to the unit hyper-

cube. We are mainly interested in computing the posterior probability.

The posterior distributions of the pij values is given by Beta distributions.

In particular, let qij be the number of times i is observed chosen in a choice

between i and j. Then, for every pair of alternatives (i, j) ∈ A2, the distri-

bution of pij is given by Beta = (qij +1, qji+1). Given a sampled pij value

for every pair, we have a synthetic dataset for which the mixture model

can be tested.

To estimate the posterior probability as closely as possible, large numbers

of these synthetic datasets must be tested for consistency with the mixture

model. However, since all datasets are sampled from the same distribution,
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these datasets are usually quite similar. In this section, we will look at

some ways the column generation procedure described in this chapter can

exploit these similarities to quickly test many datasets. First, we will look

at how re-using the columns generated in one test as a starting set for

new datasets speeds up these tests in subsection 7.5.1. Next, in subsection

7.5.2 we show that the objective function of the final pricing problem of a

rejected dataset provides inequalities, which are necessary conditions for

rationalizability by the mixture model. These inequalities can be used to

quickly test whether datasets violate the mixture model.

7.5.1 Starting Sets

As all generated datasets are fairly similar, it is likely that the optimal so-

lutions to the linear programs (7.2-7.5) for these datasets use many of the

same variables. By testing the points sequentially and using the variables

generated while testing previous datasets as a starting set for new samples,

we attempt to minimize the number of pricing iterations needed. Table 7.4

demonstrates that this is indeed works. For a given dataset of observed

choices with 10 alternatives, we calculated the posterior Beta distribu-

tions. From samples from these distributions, we created 10000 simulated

datasets. Of these datasets, approximately 10% satisfy the mixture model.

The table clearly shows that when testing these datasets, tests of the first

datasets require a large number of variables to be generated. More than

20% of the total number of variables is generated in the first 1% of the tests.

The number of variables generated then quickly tails off, as the starting

sets for later tests are generally sufficient to prove (non-)consistency with

the mixture model.

Sampled Dataset 1 2 10 100 1000 2500 5000 10000

Total # Variables 66 113 172 430 986 1275 1587 1892

Table 7.4: Cumulative number of variables.
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The re-use of variables also has a large effect on the necessary computation

times. For this test, we used only exact algorithms for the pricing problem.

Using these exact algorithms, testing a single point from a minimal starting

set generally takes around 10 seconds. Most of this computation time is due

to the pricing problems. Given a starting set with all variables necessary for

an optimal solution to the master problem, this time drops to either about

0.05 seconds (in the case of satisfying datasets) or 0.15 (in the case of non-

satisfying datasets). The longer time needed for non-satisfying datasets is

due to the fact that these datasets require at least one pricing problem to

be solved to prove that an optimal solution to the master problem has been

found. All 10000 generated datasets could be tested in 2333.61 seconds, or

about 0.25 seconds on average.

7.5.2 Valid Inequality Pool

Using the starting sets as described in the previous subsection offers sig-

nificant speed-ups for testing many similar datasets, but one problem that

remains is that for each non-satisfying dataset, a pricing problem must be

run to prove that the optimal solution to the master problem has been

reached. Since pricing problems are a significant factor in overall compu-

tation times, we wish to avoid this if possible. One way to do so is as

follows. In case the pricing problem fails to find a new variable for the

master problem, we have identified an inequality that must be satisfied

by any dataset consistent with the mixture model. Thus, from every non-

rationalizable dataset we obtain an inequality. Before using the column

generation algorithm on further datasets, we can first test whether these

datasets violate any of the known inequalities. If violations are found, we

can conclude the dataset does not satisfy the mixture model and no test

using column generation is necessary.

Theorem 7.5.1. Suppose there exist numbers yij for all (i, j) ∈ A2, i 6= j,

and a number c, such that there does not exist a linear order m ∈ O for

which
∑

ij:i�mj yij > c. Then there exists no dataset with numbers pij
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for all (i, j) ∈ A2, i 6= j, that satisfies the mixture model and for which∑
i,j∈A yijpij > c.

Proof. This proof is analogous to the proof for Theorem 7.3.1.

Using these valid inequalities, the total computation time of the 10000 gen-

erated datasets drops from 2333.6 seconds to 408.4 seconds. This decrease

in computation time is mainly due to the number of pricing problems that

we avoid. In total, 9030 datasets are non-rationalizable, but only 119 of

these datasets required solving pricing problems to prove this. The other

8911 datasets violated one (or more) of the valid inequalities identified

solving earlier datasets. Since checking the list of valid inequalities usually

takes less than 0.001 second, this is a large improvement compared to the

0.15 seconds for solving an average pricing problem.

7.6 Conclusion

In this chapter, we have presented an algorithm for testing models of

stochastic preferences (mixture models), based on column generation. This

algorithm is capable of handling datasets of such size that the number of

linear orders over all alternatives, and thus the number of variables in

(7.1) would make the system of equalities prohibitive to solve. We propose

several ways of speeding up the algorithm, by making use of heuristics,

particular choices about the variables to be added if there are multiple

candidates and by proving the pricing solutions must reach certain thresh-

olds for the system of equalities (7.1) to be satisfied. Furthermore, we

show that the column generation algorithm is well-suited for testing large

numbers of similar datasets, as variables can be re-used and the pricing

objective function provides valid inequalities.



Chapter 8

Recognizing Single-Peaked

Preferences on Aggregated Choice

Data

8.1 Introduction

In the previous chapter, we studied a stochastic model of general prefer-

ences, i.e., for a set of alternatives, a decision maker can hold any preference

ordering. In this chapter, we will study a special case of this model, where

preferences are restricted in some sense. An important such restriction is

given by single-peakedness, introduced by Black (1948). Suppose a linear

ordering exists, that ranks all alternatives along a line. An agent’s pref-

erences are then single-peaked if she has a most preferred alternative, the

peak, and when comparing two alternatives that are both on the same side

of the peak, the alternative closest to the peak is preferred. This restriction

is very natural when considering a situation where a single attribute of the

alternatives drives the choice, for example, an election where candidates

range from left wing to right wing, or choices over budgets of various sizes.

Given these examples, it is no wonder that this restriction has gained cen-

tral importance in the areas of political science and social choice. Apart

145
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from being an appealing model in these areas, the assumption of single-

peaked preferences has led to interesting theoretical results. For example,

aggregation of single-peaked preferences avoids the Condorcet-paradox.

Within a social choice context, single-peaked preferences (and closely re-

lated preference restrictions), have been studied extensively. In contrast

to our setting however, this literature does not use aggregated preference

data, instead assuming the full preference profiles of decision makers are

known. We note work by Bartholdi III and Trick (1986), who provide a

polynomial time algorithm to test whether the observed preference pro-

files are single-peaked with respect to some ordering of the alternatives

and to identify this ordering. Escoffier et al. (2008) provide a different

algorithm for the same problem with a better worst-case bound. Ballester

and Haeringer (2011) give two forbidden substructures, whose absence is a

necessary and sufficient condition for the given preference profile to be con-

sistent with single-peakedness. Furthermore, Trick (1989) provides an algo-

rithm for recognizing single-peakedness on trees, which again runs in poly-

nomial time. Finally, Doignon and Falmagne (1994), Knoblauch (2010)

and Elkind and Faliszewski (2014) investigate a closely related preference

restriction, one-dimensional Euclidean preference profiles, and all provide

polynomial time algorithms.

The main contributions of this chapter are as follows.

• Given an ordering of the alternatives, we provide necessary and suf-

ficient conditions for testing whether aggregated preferences are con-

sistent with a mixture model of single-peaked preferences. These

conditions can be tested in polynomial time.

• We provide a polynomial time algorithm which given the aggregated

preferences, provides an ordering of the alternatives for which a mix-

ture model of single-peaked preferences is satisfied (if such an order-

ing exists).
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The rest of this chapter is organized as follows. In section 8.2, we fur-

ther define single-peaked preferences and the mixture model. Section 8.3

contains our main result, necessary and sufficient conditions for a mixture

model of single-peaked preferences to hold. Next, section 8.4 provides fur-

ther results, specifically two algorithms to identify the underlying ordering

of the alternatives. Finally, section 8.5 concludes.

8.2 Notation and Definitions

Consider a set A, consisting of n alternatives, and a dataset P = {pij ≥
0,∀(i, j) ∈ A2, i 6= j}. The values pij represent the probability that i is

chosen over j. As we assume strict preferences, pij + pji = 1. We also

consider a (given) ordering of alternatives in A. This ordering is complete,

asymmetric and transitive and is denoted by�. Furthermore, we consider

preference orderings over all alternatives. We will use the index m to

denote a particular preference ordering. If for a given preference ordering

m, an alternative i is preferred over another alternative j, we denote this

by i �m j.

Definition 8.2.1. A preference ordering m is single-peaked with respect

to a given ordering of the alternatives � if and only if for every triple

(i, j, k) ∈ A3 we have:

if (i� j � k and i �m j) then i �m k. (8.1)

if (i� j � k and k �m j) then k �m i. (8.2)

The set of all preference orderings that are single-peaked with respect to

an ordering � is denoted by O�. We further consider the subsets O�ij ,

defined as follows: m ∈ O�ij if both m ∈ O� and i �m j. A mixture model

of preference assumes that, a decision maker has a number of different

preference orderings, each with an associated probability. When faced

with a choice between alternatives i and j, the probability that the decision

maker chooses i is equal to the sum of the probabilities of all preference

orderings in which i is preferred over j.
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Definition 8.2.2. A dataset P can be rationalized by a mixture model of

single-peaked linear ordering preferences with respect to a given ordering

of alternatives � if and only if there exist numbers xm ≥ 0, ∀m ∈ O� for

which: ∑
m∈O�ij

xm = pij , ∀(i, j) ∈ A2, i 6= j. (8.3)

8.3 Consistency conditions

We claim that the existence of a solution to the system of equalities (8.3)

can be checked easily by verifying a condition on the pij values. We will

prove both the sufficiency and necessity of this condition, and then finish

this section by showing that the condition may be tested in polynomial

time.

Theorem 8.3.1. A dataset P can be rationalized by a mixture model of

single-peaked preferences with respect to a given ordering � if and only if

for every triple (i, j, k) ∈ A3 we have:

if i� j � k then pij ≤ pik and pkj ≤ pki. (8.4)

Before embarking on a proof of this theorem, let us first make a couple of

observations. First, we note that the condition (8.4) is similar, but subtly

different from the conditions for Robinsonian dissimilarities (Robinson,

1951). The main differences are as follows, for dissimilarities the values

pij are symmetric, i.e, pij = pji (and there is no constraint on pij + pji).

Furthermore, a dissimilarity is Robinsonian with respect to an order if and

only if for every triple (i, j, k) ∈ A3, with i � j � k, it must be the

case that pij ≤ pik and pjk ≤ pik. We also note that condition (8.4) is

a reformulation of conditions (8.1)-(8.2) for the setting with aggregated

preferences. While we will formally argue the necessity later on, it is clear

that if condition (8.4) is violated, at least part of the population has to

hold preferences that violate either condition (8.1) or (8.2). However, the
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sufficiency of this condition is not so straightforward. Indeed, if we look at

mixture models with general preferences, we find that the list of necessary

and sufficient conditions is exponential in the number of alternatives1. This

is the case, even though general preference orderings are constrained only

by transitivity, which can also be defined by a condition over all triples. To

prove the sufficiency of condition (8.4) we will proceed as follows. First, we

will describe an algorithm whose goal it is to find single-peaked preference

orders m ∈ O� and associated values xm satisfying (8.3). We will show

this algorithm is able to do so if the dataset P satisfies condition (8.4).

The complete pseudo-code is given in Algorithm 13, here we will give a

short overview. The main idea is that if we know the aggregated pref-

erences of (a part of) a population, we wish to identify a single-peaked

preference order held by a part of that population, explaining a portion

of the observed preferences. This usually leaves some part of the data

unexplained, captured in the algorithm by the variables p̃ij . For this un-

explained data, another single-peaked preference order is then found, and

so on. These orders are constructed by iteratively adding alternatives,

starting from the most preferred to the least preferred. To do this, we first

identify the set of alternatives which can be added to the order (I). We

define the set M as the set of alternatives which have already been added

to the order, obviously if i ∈M , then i /∈ I, as alternatives can only be in

the order once. Furthermore, if there exists an alternative i /∈M , for which

there is some other alternative j /∈M such that p̃ij = 0, this alternative i

can not be added to the order before j is, as no member of the population

can hold such a preference ordering, thus i /∈ I. From this set I, we then

choose the alternative which is first in the underlying ordering � and add

1 Suck shows that testing the mixture model for strict linear preferences is equivalent to

testing membership of the linear ordering polytope (Suck, 1992). A full facet descrip-

tion of this polytope thus gives necessary and sufficient conditions for the mixture

model of strict linear preferences. However, since separation over this polytope is

NP-Hard, the facet description is exponential in the number of alternatives. Full de-

scriptions are only known for small number of alternatives (Fiorini, 2006; Mart́ı and

Reinelt, 2011)
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it to the ordering �m. These steps are repeated until all alternatives are

ranked.

The process of constructing single-peaked linear orders is the key part of

the algorithm and is found in the loop (4-10). For this loop we will prove

four properties, which all depend on the condition (8.4) being satisfied for

p̃ij . First, that the loop always runs to completion, i.e. it outputs a strict

linear order �m. Second, that �m is single-peaked with regards to �.

Third, that this �m can be given a weight xm, and for all (i, j) ∈ A2 for

which i �m j, we have xm ≤ p̃ij and that there exist some i, j ∈ A for

which i �m j and xm = p̃ij . Finally, at the end of each loop, the values

of p̃ij satisfy condition (8.4). Given these four properties, we will be able

to prove that the algorithm provides single-peaked linear orders m ∈ O�

and values xm that satisfy (8.3).

Algorithm 13 Finding Single-Peaked Preferences

1: INPUT: pij for all (i, j) ∈ A2 and �.

2: Set p̃ij := pij for all distinct i, j ∈ A, m := 1 and create �m:= ∅,

M := ∅ and I := ∅.

3: while p̃ij + p̃ji > 0 for all distinct i, j ∈ A do

4: for |M | < |A| do

5: Set I := {i ∈ A\M : p̃ij 6= 0,∀j ∈ A\M, j 6= i}
6: If I = ∅, STOP.

7: Set i∗ := i with i ∈ I for which ∀j ∈ I, j 6= i : i� j.

8: ∀j ∈M , set j �m i∗

9: Set M := M ∪ {i∗}
10: end for

11: Set xm := mini,j∈A:i�mj p̃ij .

12: Set p̃ij := p̃ij − xm,∀i, j ∈ A for which i �m j.

13: Set m := m+ 1

14: Set M := ∅
15: end while

16: OUTPUT: For all i ∈ {1, . . . ,m} a value xi and order �i.
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Claim 8.3.1. If the values p̃ij meet condition (8.4), the loop (4-10) will

return a linear order.

Proof. If for some M there does not exist an i ∈ A\M such that p̃ij >

0,∀j ∈ A\M , the algorithm will halt in line 6 without constructing an

order. We argue by contradiction : suppose this is the case and the condi-

tion (8.4) is satisfied. Now consider i ∈ A\M with i� j for all j ∈ A\M .

There is some j for which i� j and p̃ij = 0. Now let i′ be the immediate

neighbour of i, i.e., there is no k ∈ A\M such that i � k � i′. Then by

condition (8.4), we have p̃ii′ = 0. As p̃ii′ + p̃i′i > 0 and thus, p̃i′i > 0, (8.4)

further implies p̃i′l > 0,∀l ∈ A\M for some l � i′. Furthermore, for i′,

there also exists some j ∈ A\M for which p̃i′j = 0, this j must have i′ � j.

By the same argument as for i, we can see that p̃i′i′′ = 0 and so on until

we reach the alternative n, for which j � n,∀j ∈ A\M . This alternative

n has pnj > 0,∀j ∈ A\M , a contradiction. Given that condition 8.4 holds,

there must exist an alternative which can be added to M in each step of

the for loop, and the algorithm finds a strict linear order.

Claim 8.3.2. If the values p̃ij meet condition (8.4), the linear order re-

turned by the loop (4-10) is single-peaked with respect to �.

Proof. First, we note that the set I has the following property. For each

pair of alternatives i, j ∈ I, there does not exist a k /∈ I and k ∈ A\M , for

which i � k � j. This can be argued by contradiction. Suppose such a

k exists, then there also exists an alternative l ∈ A\M for which p̃kl = 0.

Without loss of generality we assume l� k. By conditions (8.4), p̃lj ≥ p̃lk
and thus also p̃jl = 0 in which case j /∈ I.

Furthermore, consider an alternative j. In a given iteration of the loop, we

have j ∈ A\M , j /∈ I, and j � i for all i ∈ I. Only if there does not exist

an alternative j′ ∈ A\M , j′ /∈ I, and j � j′ � i, is j ∈ I possible in the

next iteration. Again we argue by contradiction, if j /∈ I in one iteration

and j ∈ I in the next, an alternative i ∈ I with p̃ji = 0 was added to M .
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If j′ exists, condition (8.4) implies 0 = p̃ji > p̃jj′ and j can not be added

to I. The same argument applies for i� j

From these two observations the claim easily follows. Suppose i ∈ A is the

first alternative set for order m. For every pair of alternatives j, k ∈ A,

for which j � k � i, k is added to the order m before j, as the iteration

in which j ∈ I must be after the iteration in which k ∈ I and k will be

added to the order immediately when k ∈ I. For every pair of alternatives

h, l ∈ A, for which i � h � l, h is added to the order before l as l ∈ I
implies h ∈ I and if both l, h ∈ I, l can not be chosen as h � l by

construction in line 7

Claim 8.3.3. In line 11, xm is set such that xm ≤ p̃ij for all (i, j) ∈ A2

for which m ∈ O�ij and there exists some i, j ∈ A for which m ∈ O�ij , such

that xm = p̃ij and xm > 0.

Proof. This is true by construction, an alternative i is only added to M if

∀j ∈ A\M, p̃ij > 0. As i �m j is only the case if j was added to M after

i, then all p̃ij over which the minimization are done are strictly positive.

By nature of the minimization, there is also at least one p̃ij to which xm

is equal and xm is no larger than any of the p̃ij .

Claim 8.3.4. If condition (8.4) is satisfied at the beginning of the loop

(3-15), the p̃ij values will satisfy condition (8.4) at the end of the loop.

Proof. In this proof, we will denote the value p̃ij + p̃ji by y. Throughout,

we will assume that condition (8.4) is satisfied in line 3. First, let us con-

sider the situation i � j � k, as (8.4) holds, p̃ij ≤ p̃ik. Only if an order

m exists such that j �m i �m k is found, will p̃ik, but not p̃ij , decrease

in line 11. If both i, j ∈ I, i will be added to m first due to line 7. Thus,

j �m i implies that there exists l ∈ A, such that p̃il = 0 and p̃jl > 0. We

will consider three distinct situations. First, l � i, then j � l and finally

i� l� j. Let us consider l� i. As p̃il = 0, p̃li = y, which implies p̃lj = y

and p̃jl = 0 as l � i � j demands p̃li ≤ p̃lj . Therefore, l would prevent
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both i and j from being added to I and m. As soon as l was added to

M , both i ∈ I and j ∈ I are possible, and again i would be added to m

before j. l� i thus can not lead to j �m i. In the case of j � l, it is clear

that because p̃il = 0, we must also have p̃ij = 0, therefore p̃ij ≤ p̃ik can

not be violated. Finally, if i � l � j, we must have j �m l, if this were

not the case i could be added to m after l but before j. By the earlier

arguments in this paragraph j �m l while l� j is only possible if there is

some other alternative l′ ∈ A, with l� l′ and p̃ll′ = 0. j � l′ gives p̃lj = 0

and therefore p̃ij = 0. If on the other hand l � l′ � j, we can repeat

the same argument until we find some l′′ with i � l′′ � j and p̃jl′′ = y,

implying p̃ji = y and p̃ij = 0. In conclusion, if i � j � k, we can only

have j �m i �m k if p̃ij = 0. If this is the case, then p̃ij ≤ p̃ik is satisfied,

as p̃ik ≥ 0.

The second situation is k � j � i, in which case we also have p̃ij ≤ p̃ik.

Here, only an order with j �m i �m k can lead to the condition being

violated in line 15. In the previous paragraph, we established that if a� b

and the algorithm places b �m a, we have p̃ab = 0. Here, k � i and

i �m k, so p̃ki = 0. As p̃ki = 0, it must be the case that p̃ik = y and thus

p̃ij ≤ y = p̃ik = y.

We are now in a position to prove Theorem 8.3.1.

Proof. First, we prove sufficiency of the condition. We have shown, by

combining claims 8.3.1 and 8.3.2, that given a set of values p̃ij which sat-

isfy condition (8.4), we can find a strict single-peaked linear order. By

claim 8.3.3 we have also seen that we can attach a weight to this order

which is non-negative. Even stronger, we have shown that this weight

is equal or less than the value p̃ij for some pair (i, j) ∈ A2, for which

xm ∈ O�ij . As the final step of the loop will decrease these p̃ij values, at

least one of these values is set to zero in each run. After at most O(n2)

iterations of the loop, each value p̃ij will then be zero. It can be easily
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checked that at this point, the values xm form a solution to (8.3). As this

proof requires the loop to be run multiple times, and the loop requires

condition (8.4) to hold, claim 8.3.4 is crucial, as it shows that if the input

of the loop satisfies the condition, the output will as well.

Next, we turn to the necessity of condition (8.4). This can easily be verified

by a three alternative example. Suppose (i, j, k) ∈ A3, with i � j � k.

By definition of single-peaked linear orders, each order for which i � j

also has i � k. This means O�ij ⊂ O�ik and
∑

m∈O�ij
xm ≤

∑
m∈O�ik

xm.

A solution to (8.3) requires pij =
∑

m∈O�ij
xm and pik =

∑
m∈O�ik

xm, and

this proves pij ≤ pik. The same argument can be used for pkj ≤ pki. This

shows necessity of the condition.

Theorem 8.3.2. For a given dataset P and ordering �, Condition (8.4)

can be checked in time O(n2).

Proof. It can be easily seen that this condition may be checked in polyno-

mial time. As written, two inequalities must be checked for each triplet of

alternatives, giving an obvious O(n3) time test. This can be improved upon

by noting that when using a matrix of pij values, with rows and columns

ranked according to the ordering �, values above the diagonal must be

non-decreasing in the rows and the columns. Conversely, as pij + pji = 1,

values below the diagonal are non-increasing in both rows and diagonals

(In fact, the lower triangle of the matrix is double graded). As such, each

pij value must be compared with only two other values, providing an O(n2)

test.

8.4 Recognizing single-peaked orderings

In the previous section, we have given necessary and sufficient conditions

for the data to be consistent with a mixture model of single-peaked pref-

erences with respect to an order �. In this section, we investigate the
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case where this order is not given a priori. We show that, if there do ex-

ist orderings � for which the dataset P satisfies the mixture model, we

can identify these. We note that there also exist algorithms for recogniz-

ing Robinsonian dissimilarities, which is a problem similar to the one we

handle in this section. Préa and Fortin (2014) describe an algorithm to

recognize Robinsonian dissimilarities in O(n2) time.

We define the set of orders LP , with �∈ LP if and only if P satisfies

condition (8.4) with respect to �. In this section, we will prove that we

can identify LP . Note that if an order �∈ LP , the reverse order �∈ LP .

This can be easily checked because the condition (8.4) depends on the

relative ordering of alternatives, but not its orientation. i � j � k and

i � j � k lead to the same constraints on P . Initially, we make the

assumption that there is no subset A′ ⊂ A with |A′| > 1, for which the

following holds: ∀i, j ∈ A′, k ∈ A\A′, pik = pjk. In words, this means

that there is no subset of A with two or more items for which all items

seem identical when compared to items outside of this subset. We will call

these Nearly-Identical Alternative Subsets (NIA Subsets) and show how to

recognize and handle such subsets in subsection 8.4.1.

We start with the special case without any NIA subsets and proceed as

follows. First, we derive a number of necessary conditions for all �∈ LP .

If satisfied, the second and third of these conditions, given in Claim 8.4.2

and 8.4.3, can be used to identify an extreme alternative, ā, which is either

the first or last element of any ordering �∈ LP . This extreme alternative

is then used as input for Algorithm 14 and we will show that, if LP 6= ∅,

this algorithm has an ordering �∈ LP as output. We begin by deriving

another necessary condition on the pij values, which we will use in further

proofs.

Claim 8.4.1. For any�∈ LP and each triple of alternatives (i, j, k) ∈ A3:

if i� j � k then pij ≤ pjk (8.5)
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Proof. Suppose this is not the case and pjk < pij . Due to condition (8.4),

we further have pjk < pij ≤ pik and pkj ≤ pki. Equivalently, 1−pjk ≤ 1−pik
or pjk ≥ pik, which violates condition (8.4).

The next claim gives a further necessary condition for LP to be non-empty.

Specifically, LP can only be non-empty if all alternatives are indistinguish-

able from each other (8.6), or if there exists an extreme alternative ā which

is a Condorcet-loser (8.7).

Claim 8.4.2. Suppose there exists an ordering � ∈ LP . Then either

pij = 0.5, ∀(i, j) ∈ A2, i 6= j, (8.6)

or

∃ā : {pāi ≤ 0.5,∀i ∈ A and ∃j ∈ A : pāj < 0.5} . (8.7)

Proof. First, suppose there is no extreme alternative ā for which for all

i ∈ A pāi ≤ 0.5. Without loss of generality, we say pa1i > 0.5. Then,

because a1 � i � an and condition (8.4), we have pa1an > 0.5, thus

pana1 < 0.5 and again by condition (8.4), we have for all j ∈ A, panj < 0.5.

Thus, there is certainly at least one extreme alternative for which for all

i ∈ A, pāi ≤ 0.5.

Now suppose an extreme alternative ā exists for which for all i ∈ A, pāi ≤
0.5, but there exists no extreme alternative for which there exists an i ∈ A
for which pāi < 0.5. Without loss of generality we assume that this is the

case for a1, thus for all i ∈ A, pa1i = 0.5. This includes pa1an = 0.5, so

by condition (8.4), we also have pani ≤ 0.5 for all i ∈ A. As we assume

there is no extreme alternative for which there exists an i ∈ A for which

pāi < 0.5, we also have pani = 0.5 for all i ∈ A. Now consider i, j ∈ A, with

a1 � i � j � an. Then condition (8.5) and pa1i = 0.5 imply pij ≥ 0.5

and the same condition and panj = 0.5 imply pji ≥ 0.5. As a result, for

each pair i, j ∈ A, we have pij = 0.5.
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Condition (8.7) shows a way to identify an extreme alternative ā for any

ordering �∈ LP . However, it remains to be shown that no non-extreme

alternatives share this characteristic, which we do in the next Claim.

Claim 8.4.3. For any ordering �∈ LP , there is no non-extreme alterna-

tive a for which for all i ∈ A, pai ≤ 0.5 holds and there exists j ∈ A for

which paj < 0.5.

Proof. Suppose such an alternative exists. Without loss of generality, sup-

pose a1 is an extreme alternative satisfying the condition in Claim 8.4.2

and a1 � a � an. Then pa1a = 0.5 and pana ≥ 0.5. By condition 8.5, we

then have for all i ∈ A for which a1 � a� i, pai ≥ pa1a = 0.5 and for all

j ∈ A for which j � a � an, pai ≥ pana ≥ 0.5. Thus, such an alternative

cannot exist.

We are now in a position to describe our algorithm for identifying the or-

ders �∈ LP . As an initial step, we will check the conditions described in

Claim 8.4.2. If neither (8.6) nor (8.7) holds, LP = ∅. Furthermore, it is

easy to see that if condition (8.6) holds, P satisfies the mixture model with

respect to any ordering�. In other words, LP is the set of all linear orders

over the alternatives. Finally, if an alternative a ∈ A matching condition

(8.7) is found, Claims 8.4.2 and 8.4.3 prove it is an extreme alternative

ā for any �∈ LP . With ā as input, Algorithm 14 can now be used to

identify a complete ordering �∈ LP , provided such an ordering exists.

The main idea of Algorithm 14 is as follows. Given an extreme alternative

ā and two alternatives i, j ∈ A for which pāi 6= pāj , the relative ordering of

i and j is determined, such that Condition (8.4) is satisfied for the triple

ā, i, j. When this is done for every pair of alternatives, this results in a

(partial) order of the alternatives. For any pair of alternatives, for which

pāi = pāj , a third alternative k ∈ A is sought, which in the partial order

has k � i, j or k � i, j and for which pki 6= pkj . In this way, the partial

order is refined until a full ordering of the alternatives is found.
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Algorithm 14 Ordering Algorithm

1: Input: Dataset P , set A, extreme alternative a1.

2: Create ordering �.

3: For every i ∈ A\{a1}, set a1 � i.

4: For each pair i, j ∈ A, for which pa1j > pa1i, set i� j.

5: Divide all i ∈ A into sets A1, A2, . . ., such that for all i, j ∈ Ak neither

i� j or i� j.

6: repeat

7: Find a set Ak with |Ak| > 1, for which there exist i ∈ A\Ak and

j, j′ ∈ Ak such that pij > pij′ .

8: if i� j then

9: For each pair j, j′ ∈ Ak for which pij > pij′ , set j′ � j.

10: else

11: For each pair j, j′ ∈ Ak for which pij > pij′ , set j � j′.

12: end if

13: if There exists a pair j, j′ ∈ Ak, j � j′ and i ∈ A\Ak, for which

Condition (8.4) is violated then

14: Stop.

15: end if

16: Divide all i ∈ A into sets A1, A2, . . ., such that for all i, j ∈ Ak

neither i� j or i� j.

17: until For all i = 1, . . . , n,
∣∣Ai∣∣ = 1.

18: OUTPUT: An ordering of the alternatives �.
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Claim 8.4.4. If there are no Nearly-Identical Alternative Subsets, Algo-

rithm 14 terminates.

Proof. First, note that if there exists a set Ak with |Ak| > 1, for which

there exist i ∈ A\Ak and j, j′ ∈ Ak such that pij > pij′ , a (partial) ordering

is made of the alternatives in this set and Ak is thus further split up in

line (16). As a result, if such a set is always found at the start of the

loop (6-17), the stopping condition for this loop (line 17) is reached in a

finite number of iterations. Now suppose Algorithm 14 does not terminate,

then there is a set Ak with |Ak| > 1, and there exists no i ∈ A\Ak, such

that there exist j, j′ ∈ Ak for which pij 6= pij′ . By definition, this set is a

nearly-identical alternative subset.

Claim 8.4.5. If there are no Nearly-Identical Alternative Subsets, an or-

dering �∈ LP exists and the alternative a1 is an extreme alternative of

this ordering, then Algorithm 14 terminates with output � and �∈ LP .

Proof. Given that an ordering �∈ LP exists and a1 is an extreme al-

ternative, it must be the case that a1 � i for all i ∈ A. Furthermore,

it can be easily checked than whenever the relative ordering of two al-

ternatives i, j ∈ A is fixed in relation to a third alternative k ∈ A (say

k � i � j), whether in line (4) or the loop (6-17), the opposite relative

ordering k � j � i would violate Condition (8.4).

Claim 8.4.6. If there are no Nearly-Identical Alternative Subsets and there

exists an ordering �∈ LP |LP | = 2

Proof. This follows immediately from the previous result. If no NIA Sub-

sets exist, Algorithm 14 terminates with output �∈ LP , and whenever a

relative ordering of two alternatives is fixed, the opposite ordering would

violate Condition (8.4). However, if �∈ LP , it can be easily checked that

the reverse order �∈ LP , thus LP = {�,�}.
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8.4.1 Nearly-Identical Alternative Subsets

We have now shown how to identify the ordering �, for which the data

satisfy a mixture model of single-peaked preferences, under the assumption

that there are no NIA subsets. In this subsection, we will show how to

handle such subsets.

As a starting point, we will again look at Algorithm 14. If NIA subsets

are present, at some point it will be impossible to find a subset |Ak| > 1

in line (7) to split up in the loop (6-17). Without loss of generality, let

us assume there is a single subset |A′| > 1, then there is a partial order-

ing of the alternatives a1 � . . . � a− � A′ � a+ � . . . � an. It can

be easily proven, by a similar argument as for claim 8.4.5, that for any

triple i, j, k ∈ A\A′ and any triple i, j ∈ A\A′, k ∈ A′, Condition (8.4) is

satisfied. What remains to be shown is that we can extend �, such that

Condition (8.4)is satisfied for any triple i ∈ A\A′, j, k ∈ A′ and any triple

i, j, k ∈ A′.

Consider a pair (i, j) ∈ A′×A′, such that maxr,s∈A′ (prs) = pij . There are

now 3 cases we can distinguish.

1. If pij > pia− and pij > pia+ , it is clear that no � ∈ LP exists, as

both a− � j � i � a+ and a− � i � j � a+ violate Condition

(8.4).

2. If (without loss of generality) pij > pia− , but pij ≤ pia+ , it must

be the case that a− � i � j. Furthermore, there is no k ∈ A′,

maxr,s∈A′ (prs) 6= pik such that a− � i � j � k, as this would also

violate Condition (8.4). As a result, for all j ∈ A′, for which there

exists i ∈ A′, maxr,s∈A′ (prs) = pij and all k ∈ A′ for which there

does not exist i ∈ A′, maxr,s∈A′ (prs) = pik, it must be the case that

k � j. At this point, the subset A′ is split into two subsets, and

Algorithm 14 can be resumed.
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3. If both pij ≤ pia− and pij ≤ pia+ , there can be no violation of

Condition (8.4) for any triple r ∈ A\A′, s, t ∈ A′. Now, the question

is whether there exists an ordering�′∈ LP ′ . This question can again

be answered using Algorithm 14. If such an order is found, then both

�′ and its reverse �′ can be used to complete the partial order �,

in other words, the ordering a1 � . . .� a′1 �′ . . .�′ a′n � . . .� an

and a1 � . . .� a′n �′ . . .�′ a′1 � . . .� an are in LP .

We finish this chapter with the following Theorem.

Theorem 8.4.1. If LP 6= ∅, then an ordering �∈ LP can be found in

polynomial time.

Proof. We will structure this proof as follows. First, we show that the

theorem holds if there are no NIA subsets. Next, we show that it also

holds in the case where such subsets do exist.

First, notice that by combining Claim 8.4.2 and Claim 8.4.3, we show that

we can identify an extreme alternative of the ordering � using condition

(8.7). It is easy to see that given this condition, the extreme alternative can

be found by checking all pij values, of which there are only O(n2). Next,

Claim 8.4.5 then shows that given this extreme alternative, the ordering

� can be found by using Algorithm 14. We will show that this algorithm

runs in polynomial time. The main part of this algorithm is the loop (6-

17). In each iteration of this loop, the ordering � is refined by splitting

up one subset Ak into two or more subsets. Since the loop terminates if

there are n such subsets, there are at most O(n) iterations for this loop.

Within this loop, step 7 may take O(n3) steps, since for each triple of

alternatives i, j, j′ a comparison of pij and pij′ can be done. This gives a

total worst-case bound on the loop and the algorithm as a whole of O(n4).

Let us now look at NIA subsets. In a given iteration of a loop, it may be

the case that no subset Ak can be split up using Algorithm 14. In this case,

we pick one subset A′ and we must figure out which of the 3 situations

distinguished before is relevant. This requires finding the maximum pij
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with i, j ∈ A′, which can be done in O(n2) steps and as such does not

impact the total complexity of the loop (since this is already bounded by

O(n3). Case 1 terminates the algorithm. Case 2 splits the subset in O(n2)

time and we can return to the main algorithm, also without affecting the

overall complexity. Finally, we consider Case 3 and suppose ‖A′‖ = z.

Notice that this implies Algorithm 14 terminated after n− z iterations of

the main loop. If Case 3 occurs, an ordering over the subset of alternatives

A′ must be found. First, an extreme alternative of A′ is identified (or if

no such alternative exists, any ordering over A′ is permissible) in O(n2)

time. Notice that this means the set A′ is split into two subsets. Given this

extreme alternative, Algorithm 14 can be run on A′, taking O(z4) time.

The complete computation time is then bounded by O((n− z)n3 + z4) =

O(n4) and an ordering �∈ LP is identified in polynomial time.

8.5 Conclusion

In this chapter, we presented a mixture model from the choice behaviour

literature and applied it to a well-known choice domain from the social

choice literature. Necessary and sufficient conditions are derived for the

mixture model to hold for single-peaked preferences and a given ordering

of the alternatives. Furthermore, we showed that these conditions are

easy to check in polynomial time, in contrast to the mixture model for

general preferences. Furthermore, a polynomial time algorithm is provided

to identify whether or not there exists some ordering of the alternatives

for which the mixture model is satisfied.
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