

Available online at www.sciencedirect.com



Journal of Molecular and Cellular Cardiology

Journal of Molecular and Cellular Cardiology 45 (2008) 128-147

www.elsevier.com/locate/yjmcc

### Emerging roles of inositol 1,4,5-trisphosphate signaling in cardiac myocytes

**Review** article

Jens Kockskämper<sup>a,\*</sup>, Aleksey V. Zima<sup>b</sup>, H. Llewelyn Roderick<sup>c,d</sup>, Burkert Pieske<sup>a</sup>, Lothar A. Blatter<sup>b</sup>, Martin D. Bootman<sup>c</sup>

<sup>a</sup> Division of Cardiology, Medical University of Graz,, Auenbruggerplatz 15, A-8036 Graz, Austria

<sup>b</sup> Department of Molecular Biophysics & Physiology, Rush University, 1750 W. Harrison St., Chicago, IL 60612, USA

<sup>c</sup> Laboratory of Molecular Signalling, Babraham Institute, Cambridge CB2 4AT, UK

<sup>d</sup> Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1 PD, UK

Received 3 April 2008; received in revised form 20 May 2008; accepted 21 May 2008 Available online 15 June 2008

#### Abstract

Inositol 1,4,5-trisphosphate (IP<sub>3</sub>) is a ubiquitous intracellular messenger regulating diverse functions in almost all mammalian cell types. It is generated by membrane receptors that couple to phospholipase C (PLC), an enzyme which liberates IP<sub>3</sub> from phosphatidylinositol 4,5bisphosphate (PIP<sub>2</sub>). The major action of IP<sub>3</sub>, which is hydrophilic and thus translocates from the membrane into the cytoplasm, is to induce  $Ca^{2+}$  release from endogenous stores through IP<sub>3</sub> receptors (IP<sub>3</sub>Rs). Cardiac excitation–contraction coupling relies largely on ryanodine receptor (RyR)induced  $Ca^{2+}$  release from the sarcoplasmic reticulum. Myocytes express a significantly larger number of RyRs compared to IP<sub>3</sub>Rs (~100:1), and furthermore they experience substantial fluxes of  $Ca^{2+}$  with each heartbeat. Therefore, the role of IP<sub>3</sub> and IP<sub>3</sub>-mediated  $Ca^{2+}$  signaling in cardiac myocytes has long been enigmatic. Recent evidence, however, indicates that despite their paucity cardiac IP<sub>3</sub>Rs may play crucial roles in regulating diverse cardiac functions. Strategic localization of IP<sub>3</sub>Rs in cytoplasmic compartments and the nucleus enables them to participate in subsarcolemmal, bulk cytoplasmic and nuclear  $Ca^{2+}$  signaling in embryonic stem cell-derived and neonatal cardiomyocytes, and in adult cardiac myocytes from the atria and ventricles. Intriguingly, expression of both IP<sub>3</sub>Rs and membrane receptors that couple to PLC/IP<sub>3</sub> signaling is altered in cardiac disease such as atrial fibrillation or heart failure, suggesting the involvement of IP<sub>3</sub> signaling in the pathology of these diseases. Thus, IP<sub>3</sub> exerts important physiological and pathological functions in the heart, ranging from the regulation of pacemaking, excitation–contraction and excitation–transcription coupling to the initiation and/or progression of arrhythmias, hypertrophy and heart failure. © 2008 Elsevier Inc. All rights reserved.

Keywords: Inositol 1,4,5-trisphosphate; Cardiac myocyte; Calcium; Inotropy; Arrhythmias; Nucleus; Hypertrophy

#### Contents

| 1.  | The discovery of IP <sub>3</sub>                                                          | 129 |
|-----|-------------------------------------------------------------------------------------------|-----|
| 2.  | The ABC of IP <sub>3</sub> : where does it come from and where does it go?                | 129 |
| 3.  | Tools to study cardiac IP <sub>3</sub> signaling                                          | 131 |
| 4.  | The dilemma of cardiac IP <sub>3</sub> receptors: lost in an ocean of ryanodine receptors | 132 |
| 5.  | General considerations on $IP_3$ and intracellular $Ca^{2+}$ homeostasis                  | 132 |
| 6.  | Elementary IP <sub>3</sub> -induced $Ca^{2+}$ release events in cardiac myocytes          | 133 |
| 7.  | IP <sub>3</sub> signaling in cardiac development                                          | 133 |
| 8.  | IP <sub>3</sub> signaling in atrial myocytes                                              | 135 |
| 9.  | IP <sub>3</sub> signaling in ventricular myocytes                                         | 137 |
| 10. | IP <sub>3</sub> Rs in other cardiac cells                                                 | 138 |

\* Corresponding author. *E-mail address:* jens.kockskaemper@meduni-graz.at (J. Kockskämper).

<sup>0022-2828/</sup>\$ - see front matter © 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.yjmcc.2008.05.014

| 11.                                             | Is nucle | ar Ca <sup>2+</sup> regulated independently from cytoplasmic Ca <sup>2+</sup> ? Putative relevance of IP <sub>3</sub> -dependent nuclear Ca <sup>2+</sup> signaling | dependent nuclear Ca <sup>2+</sup> signaling |  |  |
|-------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--|--|
|                                                 | for exc  | tation-transcription coupling                                                                                                                                       | ;9                                           |  |  |
| 12.                                             | Patholo  | gical relevance of IP <sub>3</sub> signaling                                                                                                                        | 10                                           |  |  |
|                                                 | 12.1.    | Atrial fibrillation                                                                                                                                                 | 10                                           |  |  |
|                                                 | 12.2.    | Reperfusion arrhythmias                                                                                                                                             | 10                                           |  |  |
|                                                 | 12.3.    | Arrhythmias related to ankyrin-B mutations                                                                                                                          | 1                                            |  |  |
|                                                 | 12.4.    | Diabetic cardiomyopathy.                                                                                                                                            | 1                                            |  |  |
|                                                 | 12.5.    | Hypertrophy and heart failure                                                                                                                                       | 1                                            |  |  |
| 13. Unresolved questions and future perspective |          | ved questions and future perspectives                                                                                                                               | 12                                           |  |  |
| Ackn                                            | owledgn  | ents                                                                                                                                                                | 12                                           |  |  |
| Refer                                           | ences    |                                                                                                                                                                     | 12                                           |  |  |
|                                                 |          |                                                                                                                                                                     |                                              |  |  |

#### 1. The discovery of IP<sub>3</sub>

A quarter of a century ago it was shown that D-myo inositol 1,4,5-trisphosphate (IP<sub>3</sub>) releases  $Ca^{2+}$  from a non-mitochondrial internal  $Ca^{2+}$  store [1]. Since this hallmark discovery, IP<sub>3</sub> has emerged as a ubiquitous intracellular messenger, releasing Ca<sup>2+</sup> from stores through activation of IP<sub>3</sub> receptors (IP<sub>3</sub>Rs) in almost all eukaryotic cells. The major IP<sub>3</sub>-sensitive intracellular Ca<sup>2+</sup> store is the endoplasmic reticulum. However, IP<sub>3</sub> has also been shown to release Ca<sup>2+</sup> stored in other compartments, such as the Golgi and the nuclear envelope [2]. In addition, IP<sub>3</sub>Rs are present on the plasma membrane of some cell types, where they can gate  $Ca^{2+}$  influx [3]. A crucial role for IP<sub>3</sub>-dependent Ca<sup>2+</sup> release has been demonstrated in many mammalian cell types, ranging from tiny platelets, where it initiates blood clotting, to the impressive dendritic trees of cerebellar Purkinje neurons, where it is involved in the regulation of motor function. In the cardiovascular system, IP<sub>3</sub>-induced Ca<sup>2+</sup> release from the sarcoplasmic reticulum (SR) plays a key role in pharmacomechanical coupling in smooth muscle cells of the vasculature, and thus in the regulation of peripheral resistance and blood pressure. Despite being recognized as a potential messenger in cardiac myocytes nearly two decades ago, the role of IP<sub>3</sub> has been enigmatic. However, a number of recent reports have begun to unravel the physiological and potentially pathological actions of IP<sub>3</sub> within the heart.

## 2. The ABC of $IP_3$ : where does it come from and where does it go?

IP<sub>3</sub> is generated by hydrolysis of phosphatidylinositol 4,5bisphosphate (PIP<sub>2</sub>) through phosphoinositide-specific phospholipase C (PLC). PIP<sub>2</sub> is a relatively minor phospholipid (~1% of total anionic phospholipids), but it is the main polyphosphoinositide in the sarcolemma. Its concentration in myocardium is in the range of 10–30 µM or 150–450 pmol/mg protein [4,5]. PIP<sub>2</sub> itself serves important signaling functions, including the regulation of ion channels and transporters and the anchoring of cytoskeletal proteins at the membrane [6,7]. Furthermore, it is the precursor of phosphatidylinositol 3,4,5trisphosphate (PIP<sub>3</sub>), a phosphoinositide involved in cell signaling. There are at least 13 phosphoinositide-specific PLC isoforms grouped into six subfamilies:  $\beta$ ,  $\gamma$ ,  $\delta$ ,  $\varepsilon$ ,  $\eta$  and  $\zeta$  [8,9]. Members of the  $\beta$ ,  $\gamma$ ,  $\delta$  and  $\varepsilon$  subfamilies are expressed in cardiac myocytes. PLCs may be activated by heptahelical G protein-coupled receptors (PLCB), receptor tyrosine kinases (PLC $\gamma$ ), PIP<sub>2</sub> and Ca<sup>2+</sup> (PLC $\delta$ ) or Ras (PLC $\varepsilon$ ). Consequently, many transmitters, neurohormonal factors, hormones and other stimuli (e.g. stretch) may increase IP<sub>3</sub> concentration and activate IP<sub>3</sub>-induced Ca<sup>2+</sup> release in cardiac myocytes downstream of PLC activation. Upon stimulation, intracellular IP<sub>3</sub>, or inositol phosphate concentration in general, has been shown to increase by a factor of > 12 [10]. However, it should be pointed out that most of these data were determined from assays of measuring total inositol phosphate accumulation over time (in the presence of the inositol monophosphatase inhibitor Li<sup>+</sup>). Such measurements do not reflect the in vivo steady-state IP3 increase, which is likely to be quite modest. Recently, the concentration of free IP<sub>3</sub> was estimated directly using a novel FRET-based biosensor. Following maximal stimulation of  $\alpha$ -adrenergic and endothelin receptors, free IP<sub>3</sub> in cardiac myocytes increased to  $\sim 30$  nM [11]. While such biosensors are useful for detecting genuine increases in IP<sub>3</sub> concentration, they are less helpful in revealing the kinetics of IP<sub>3</sub> turnover, since binding of IP<sub>3</sub> to the probe buffers the molecule and protects it from hydrolyzing enzymes. Based on modeling studies, it was estimated that stimulation of atrial myocytes with endothelin transiently increases IP<sub>3</sub> concentration from a basal value of ~15 nM to a maximal value of  $\sim 35$  nM within  $\sim 400$  s, after which the IP<sub>3</sub> level gradually declines and returns to baseline within tens of minutes [12]. A note of caution as to the quantitative results obtained with isolated myocytes is warranted though, since careful studies indicate that PIP<sub>2</sub> and inositol phosphate levels drop dramatically during the isolation procedure [13,14].

Because IP<sub>3</sub> is hydrophilic, it translocates from the sarcolemma to the cytoplasm upon formation from PIP<sub>2</sub>. The main cytoplasmic target of IP<sub>3</sub> is IP<sub>3</sub>Rs in the membrane of the ER/SR. There are three IP<sub>3</sub>R isoforms, denoted type 1, type 2 and type 3. Current evidence suggests that the heart expresses all three IP<sub>3</sub>R isoforms, although there is some inconsistency in the literature regarding their relative ratios in different cardiac cells. It has been proposed that type 1 IP<sub>3</sub>Rs are dominant in human atrial and rat Purkinje myocytes [15,16], whereas atrial and ventricular myocytes from most other animal species express predominantly type 2 IP<sub>3</sub>R and, to a lesser extent, type 3 IP<sub>3</sub>R (e.g. [17,18]). Overall, the majority of studies have concluded that the most prevalent IP<sub>3</sub>R isoform within contractile cardiomyocytes is type 2 (see Table 1). The few reports describing

Table 1 Expression of IP3R isoforms in adult myocardium

| Species     | IP <sub>3</sub> R isoform | Specimen                                | Methods                                                                       | Confirmed in myocytes?     | Findings                                                                                                                                  | Reference |
|-------------|---------------------------|-----------------------------------------|-------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Bovine      | 1                         | A, V, CS                                | WB, IHC, IP <sub>3</sub> binding                                              | Yes                        | IP <sub>3</sub> R1: P>AV>>A, V                                                                                                            | [16]      |
| Canine      | 1, 2                      | LA tissue, myocytes                     | RT-PCR, WB, IHC                                                               | Yes                        | IP <sub>3</sub> R1 in cyto; IP <sub>3</sub> R2 in cyto, NE,<br>ID; IP <sub>3</sub> R1,2 up in AF                                          | [170]     |
| Ferret, Rat | 1, 2, 3                   | Heart, V myocytes                       | RNA analyses, IP <sub>3</sub><br>binding, IP <sub>3</sub> R<br>reconstitution | Yes (IP <sub>3</sub> R2,3) | IP <sub>3</sub> R1 predominant in myocardium,<br>but absent in myocytes; IP <sub>3</sub> R2,3<br>predominant in myocytes<br>(85% vs. 14%) | [57]      |
| Human       | 1                         | LV, RV, Septum                          | NB, <i>in situ</i> hybridization                                              | Yes                        | IP <sub>3</sub> R1 up in HF                                                                                                               | [19]      |
| Human       | 1                         | RA tissue                               | RT-PCR, WB, IHC                                                               | Yes                        | IP <sub>3</sub> R1 in cyto, NE; IP <sub>3</sub> R1 up in AF                                                                               | [15]      |
| Human       | 1                         | RA tissue                               | RT-PCR                                                                        | No                         | IP <sub>3</sub> R1 up in AF                                                                                                               | [169]     |
| Human       | 1, 2, 3                   | RA tissue                               | RT-PCR                                                                        | No                         | $IP_3R1.2.3$ down in diabetes                                                                                                             | [184]     |
| Mouse       | n.d.                      | Heart; V myocytes                       | WB, ICC                                                                       | Yes                        | Striated pattern in cyto                                                                                                                  | [142]     |
| Mouse       | n.d.                      | Heart; V myocytes                       | WB, ICC                                                                       | Yes                        | Striated pattern in cyto; colocalization with NCX                                                                                         | [179]     |
| Mouse       | 1, 2                      | Heart                                   | WB                                                                            | No                         | No changes in diabetes                                                                                                                    | [183]     |
| Mouse       | 1, 2, 3                   | A, V                                    | WB                                                                            | No                         | $IP_3R2 \gg IP_3R1,3; IP_3R2: A>V$                                                                                                        | [17]      |
| Rabbit      | 2                         | LV myocytes                             | WB                                                                            | Yes                        | IP <sub>3</sub> R2 up in HF                                                                                                               | [202]     |
| Rabbit      | 2, 3                      | A, V myocytes                           | WB                                                                            | Yes                        | $IP_3R2,3: A>V$                                                                                                                           | [41]      |
| Rat         | n.d.                      | Heart, A, V                             | WB, IHC, EM                                                                   | Yes                        | IP <sub>3</sub> R in ID in A, V                                                                                                           | [203]     |
| Rat         | n.d.                      | Heart, A, V                             | RNA analyses, WB,<br>IHC, <i>in situ</i><br>hybridization                     | Yes                        | $IP_3R$ expression in cardiomyocytes<br>(RyR:IP_3R $\approx$ 50:1)                                                                        | [54]      |
| Rat         | n.d.                      | Heart, A, V, CS                         | RNA analyses, <i>in situ</i> hybridization                                    | Yes                        | IP <sub>3</sub> R: CS>A=V; Senescence: A>V                                                                                                | [204]     |
| Rat         | 1, 2, 3                   | A, V, Purkinje                          | RT-PCR, WB, ICC, IP <sub>3</sub> binding                                      | Yes (IP <sub>3</sub> R2)   | A>V; IP <sub>3</sub> R2 in A myocytes in subsarcolemmal SR                                                                                | [58]      |
| Rat         | 2                         | A myocytes                              | ICC                                                                           | Yes                        | IP <sub>3</sub> R2 colocalizes with RyR in subsarcolemmal SR                                                                              | [63]      |
| Rat         | 1, 2                      | A, V                                    | RT-PCR WB                                                                     | No                         | IP <sub>3</sub> R1,2: LA>RA $\gg$ LV=RV;<br>IP <sub>3</sub> R1,2 up by stress in<br>glucocorticoid-dependent manner                       | [138]     |
| Rat         | 2                         | Heart (nuclear fraction),<br>V myocytes | WB, ICC                                                                       | Yes                        | IP <sub>3</sub> R2 predominant in NE                                                                                                      | [18]      |
| Rat         | 1                         | LA, LV                                  | RT-PCR, WB                                                                    | No                         | IP <sub>3</sub> R1 down after depletion of catecholamines                                                                                 | [205]     |
| Rat         | 2                         | Heart                                   | RT-PCR, WB                                                                    | No                         | IP <sub>3</sub> R2 down in diabetes                                                                                                       | [185]     |
| Rat         | 1, 2, 3                   | LA, LV, RA, RV                          | RT-PCR, WB                                                                    | No                         | IP <sub>3</sub> R1,2 up with aging                                                                                                        | [168]     |

Abbreviations: A, atrium; AF, atrial fibrillation; AV, atrio-ventricular; CS, conduction system; cyto, cytoplasm; EM, electron microscopy; HF, heart failure; ICC, immunocytochemistry; ID, intercalated discs; IHC, immunohistochemistry; L, left; NCX, Na<sup>+</sup>/Ca<sup>2+</sup> exchanger; NB, Northern blotting; n.d., not determined; NE, nuclear envelope; P, Purkinje; R, right; RT-PCR, reverse transcription or real time polymerase chain reaction; V, ventricle; WB, Western blotting.

type 1 IP<sub>3</sub>Rs being more abundant [15,16,19] could indicate differences in IP<sub>3</sub>R expression between species, or that the probes employed lacked specificity.

The IP<sub>3</sub>R isoforms vary with respect to IP<sub>3</sub> affinity, activation and inactivation by Ca<sup>2+</sup>, regulation by ATP, phosphorylation and other modulatory factors (e.g. [20,21]). It is believed that subtle variations in the sensitivity of the three IP<sub>3</sub>R isoforms to such allosteric regulators can modulate the biophysical properties of the channels. Thus, depending on the expression and subcellular distribution of particular IP<sub>3</sub>R isoforms, cells may respond to alterations in IP<sub>3</sub>, Ca<sup>2+</sup> and other modulators quite differently. Furthermore, IP<sub>3</sub>Rs form macromolecular signaling complexes with other proteins including ankyrin B, chromogranin A and B, cytochrome *c*, ERp44, Homer, IP<sub>3</sub>R-binding protein released with IP<sub>3</sub> (IRBIT), the Na<sup>+</sup>/K<sup>+</sup> pump, protein phosphatases 1 and 2A, receptor for activated C kinase 1 (RACK1) and others (for reviews, see [22–24]). The interaction of specific accessory proteins has been demonstrated to either positively or negatively regulate IP<sub>3</sub>R opening, with consequent alteration of cellular Ca<sup>2+</sup> signals (e.g. [25,26]). Although most of the data exploring IP<sub>3</sub>R-binding proteins has been derived from studies of neuronal IP<sub>3</sub>Rs, it is likely that cardiac IP<sub>3</sub>Rs form similar macromolecular complexes. As yet, only Ca<sup>2+</sup> and calmodulin-dependent protein kinase II (CaMKII) has been identified as an accessory protein of cardiac IP<sub>3</sub>Rs [18].

An intriguing aspect of IP<sub>3</sub> signaling is the presence of the entire phosphoinositide signaling network in the nucleus [27]. In addition, many receptors that act as signal transducers at the cell membrane are also found in the nuclear envelope (e.g.  $ET_A$  and  $ET_B$  receptors [28]) where they might activate a nuclear PIP<sub>2</sub>-PLC-IP<sub>3</sub> cascade. The mechanism for stimulation of nuclear hormone receptors is not entirely clear, although it has been suggested that activated receptors can be internalized from the surface of cells and translocated to the nucleus where they engage signaling pathways. It is therefore plausible that nuclei may locally generate their own IP<sub>3</sub>. Alternatively, given that IP<sub>3</sub>

signals in the regulation of kinases (e.g. nuclear CaMKII),

transcription and nuclear pores. This concept is discussed in

more detail below. It is important to realize that the PIP<sub>2</sub>-PLC-IP<sub>3</sub> cascade is just a small part of a much larger signaling network, the inositide metabolome, which encompasses more than 80 gene products involved in the regulation of phosphatidylinositol phosphates and inositol phosphates. The inositide metabolome includes lipid kinases and phosphatases, lipases, inositol phosphate kinases and phosphatases (reviewed in [30]). Inositol polyphosphates derived from IP<sub>3</sub> may be signaling molecules in their own right. In particular, IP<sub>4</sub>, IP<sub>5</sub> and IP<sub>6</sub> have been implicated in the regulation of nuclear functions (gene expression, chromatin remodeling, mRNA export and RNA editing). This adds to the complexity of IP<sub>3</sub> signaling and suggests that the potential roles of IP<sub>3</sub> go beyond the release of  $Ca^{2+}$  from internal stores. Higher inositol polyphosphates, including IP<sub>4</sub>, IP<sub>5</sub> and IP<sub>6</sub>, have been detected in the heart [31], as well as high affinity binding sites for  $IP_4$  and  $IP_6$  [32,33]. However, their physiological functions in cardiac myocytes remain poorly understood.

#### 3. Tools to study cardiac IP<sub>3</sub> signaling

Numerous tools are available to study cellular  $IP_3$  signaling. They can be grouped into (A) methods to measure intracellular  $IP_3$  levels, (B) pharmacological tools to manipulate  $IP_3$  levels,  $IP_3$  production and degradation, and the  $IP_3$  receptor, and most recently (C) approaches that involve genetic manipulation of the intracellular  $IP_3$  signaling cascade and the generation of transgenic animals with an altered  $IP_3$  second messenger system.

(A) Of great interest for many years has been the quantitative determination of intracellular IP<sub>3</sub> levels. Until very recently, the real-time study of IP<sub>3</sub> formation, concentration dynamics and spatial distribution at the level of single living cells has not been possible. Instead, measurements have relied upon destructive methodologies [34-37]. These assays essentially rely on whole cell extracts for mass analysis by competition binding, gas chromatography/mass spectrometry and ion exchange chromatography, or metabolic measurements of radio-labeled IP<sub>3</sub> precursors and degradation products. While these methods have generated important insights into cellular IP<sub>3</sub> dynamics, they are rather limited in deciphering the spatiotemporal organization of the IP<sub>3</sub> second messenger system at the cellular and subcellular level. Recent developments, however, have seen the arrival of novel fluorescent probes to study intracellular IP<sub>3</sub> dynamics. For example, a biosensor derived from the IP<sub>3</sub> binding domain of type-3 IP<sub>3</sub>R, termed 'LIBRA', was employed to measure IP<sub>3</sub> concentrations in living cells [38]. Similarly, the intracellular translocation of a pleckstrin homology domain from phospholipase  $C_{\partial 1}$  fused to GFP was used to estimate [IP<sub>3</sub>] [39], and to measure agonist-induced oscillatory changes of IP<sub>3</sub> concentration [40]. A recent study reported the construction and characterization of prototypic fluorescent biosensors that allow quantitative measurements of cellular IP<sub>3</sub> levels in a living cell with temporal and spatial resolution [11]. These sensors (termed FIRE-1 and -3, for 'Fluorescent IP<sub>3</sub> Responsive Element' type-1 and -3) utilized the IP<sub>3</sub>R type-1 and type-3 ligand-binding domains expressed as chimeras terminally linked to CFP and YFP, and which could be used as FRET indicators of IP<sub>3</sub>. These constructs have been successfully employed to measure [IP<sub>3</sub>] in neonatal and adult ventricular myocytes with high temporal and subcellular spatial resolution. For example, in FIRE-1-expressing ventricular myocytes, the agonists endothelin-1, phenylephrine and angiotensin II all produced rapid and spatially resolved increases of IP<sub>3</sub> concentration, with free IP<sub>3</sub> levels rising to 30 nM. A point source of IP<sub>3</sub>, experimentally achieved by membrane rupture with a patch pipette containing IP<sub>3</sub>, allowed detailed spatiotemporal monitoring of intracellular IP<sub>3</sub> diffusion, revealing that IP3 diffusion into the nucleus occurred with a delay, and that the elevation of nuclear IP<sub>3</sub> concentration had a blunted rise compared to that in the cytoplasm. Furthermore, stimulation with endothelin-1 (100 nM) caused [IP<sub>3</sub>] to rise more rapidly and to higher levels in the cytoplasm as compared with the nucleus. Average data indicate that the amplitude of rise in nuclear [IP<sub>3</sub>] was  $70\pm9\%$  of that in the cytoplasm, and the  $t_{1/2}$  was about twice as long (1.3 min vs. 0.7 min) [11]. Clearly, these new biosensors are exciting and promising novel tools to study IP<sub>3</sub> dynamics at high temporal and spatial resolution in intact living cells, although their potential to buffer IP<sub>3</sub> has to be taken into account.

(B) More conventional, but nonetheless invaluable tools for the study of IP<sub>3</sub> signaling are pharmacological agents that interfere with the IP<sub>3</sub> signaling cascade. Some commonly used reagents are blockers of IP<sub>3</sub> formation (e.g. the PLC inhibitor U73122 and its negative control U73343), or antagonists of the IP<sub>3</sub> receptor (e.g. heparin, 2 aminoethoxydiphenyl borate (2-APB), xestospongins, curcumin). Like many pharmacological inhibitors, these tools all suffer from variable degrees of specificity, have numerous intracellular targets and unwanted side effects or lack membrane permeability (for discussion see [41–43]). Recently developed membrane-permeable forms of IP<sub>3</sub>R agonists [44] and IP<sub>3</sub> species that can be activated photolytically [45,46] have further expanded the repertoire of tools for studying IP<sub>3</sub> signaling.

(C) Molecular technologies are also beginning to be employed to explore cardiac IP<sub>3</sub> function. In particular, the generation of animals or cells with genetically altered IP<sub>3</sub> signaling pathways, and the development of transgenic animals. Due to the inherent nature of the rapid developments in this field, we will limit our review to two exemplary reports. The adenoviral-mediated expression of an IP<sub>3</sub> affinity trap (which consisted of the ligand-binding domain of the rat type-1 IP<sub>3</sub>R; also known as an 'IP<sub>3</sub> sponge') has been successfully used to abolish IP<sub>3</sub>-evoked effects on Ca<sup>2+</sup> signaling in rabbit ventricular myocytes [41]. The IP<sub>3</sub> sponge represents an experimental tool that can complement or replace pharmacological IP<sub>3</sub>R blockers, and specifically attenuate IP<sub>3</sub> signaling. Potentially even better than the IP<sub>3</sub> sponge would be the introduction of an IP<sub>3</sub> metabolizing enzyme (e.g. the IP<sub>3</sub> 5' phosphatase), which does not necessarily have to be present at 1:1 stoichiometry to completely clamp IP<sub>3</sub> signaling. With respect to transgenic animals, it has been shown that the positive inotropic and pro-arrhythmic effects of endothelin-1 were completely abolished in mouse atrial cells lacking the IP<sub>3</sub>R type-2 isoform [17]. This loss of response to endothlelin-1 was specifically coupled to the absence of IP<sub>3</sub>Rs, since the myocytes retained a normal positive inotropic response to  $\beta$ -adrenergic stimulation.

## 4. The dilemma of cardiac IP<sub>3</sub> receptors: lost in an ocean of ryanodine receptors

The evidence for IP<sub>3</sub>R expression in the heart is indisputable. Numerous laboratories using a variety of techniques have established that cardiac myocytes possess these Ca<sup>2+</sup> channels. Indeed, the notion that IP<sub>3</sub> mediates Ca<sup>2+</sup> release in the heart is not new, and has been established by studies spanning the last two decades. The very earliest studies on cardiac IP<sub>3</sub> signaling found evidence for functional IP<sub>3</sub>Rs capable of releasing Ca<sup>2+</sup> from the SR [47–51]. However, compared with Ca<sup>2+</sup>-induced Ca<sup>2+</sup> release through RyRs, though, the IP<sub>3</sub>-induced Ca<sup>2+</sup> release was slow and small. These data indicated that a major contribution of IP<sub>3</sub>-induced Ca<sup>2+</sup> release to cardiac excitation– contraction coupling was highly unlikely. As a result, IP<sub>3</sub>Rs have been largely overlooked, and often regarded as making a minor contribution, if any, to cardiac Ca<sup>2+</sup> signaling.

Cardiac excitation-contraction coupling relies principally on Ca<sup>2+</sup>-induced Ca<sup>2+</sup> release through type 2 RyRs. Expression of RyRs, as the major SR Ca<sup>2+</sup> release channel in cardiac myocytes, is large, amounting to ~500-1000 fmol/mg total protein in ventricular myocytes from various mammalian species [52]. This converts to  $\sim 1.5-3.5$  million RyRs in a typical ~30 pl ventricular myocyte [53]. Direct comparison of the expression of RyRs and IP<sub>3</sub>Rs in ventricular myocytes revealed that RyRs outnumber IP<sub>3</sub>Rs by a factor between 50:1 and 100:1 [54]. Microsomal preparations from hearts of various species, including human, exhibit a much larger density of RyRs than IP<sub>3</sub>Rs. For example, RyR densities amounted to  $\sim$  3–4 pmol/mg protein in human ventricle [55,56] and to  $\sim$  5.5–7 pmol/mg protein in dog, mouse, rabbit and rat ventricle [56].  $IP_3R$  densities, on the other hand, were ~0.09 pmol/mg protein in bovine ventricle [16], 0.66 pmol/mg protein in canine ventricle [32], 0.46 pmol/mg protein in ferret ventricle [57] and 0.35 pmol/mg protein in rat ventricle [58]. Thus, on average there appear to be  $\sim 5-80$  times less IP<sub>3</sub>Rs than RyRs in ventricular SR. These data indicate that cardiac IP3Rs face a serious problem; they have to generate a detectable Ca<sup>2+</sup> signal against a large background of RyR-induced Ca<sup>2+</sup> release. How can so few IP<sub>3</sub>Rs have an impact on cardiac Ca<sup>2+</sup> signaling, which is clearly dominated by RyRs? Or, put another way, how can cardiac myocytes decipher and make use of a small hormone-evoked IP<sub>3</sub>-induced Ca<sup>2+</sup> signal amidst the large action potential-evoked RyR-induced Ca<sup>2+</sup> transients?

RyRs require cytoplasmic  $Ca^{2+}$  increases for their activation, and are thereby tuned to the opening of voltage-activated  $Ca^{2+}$  channels during each action potential [59]. IP<sub>3</sub>Rs are opened by a combination of IP<sub>3</sub> and  $Ca^{2+}$  binding [60,61]. It is generally understood that binding of IP<sub>3</sub> allows IP<sub>3</sub>Rs to be activated by  $Ca^{2+}$  [23]. The need for synergistic binding of both IP<sub>3</sub> and  $Ca^{2+}$ explains why IP<sub>3</sub>Rs can contribute to systolic Ca<sup>2+</sup> transients they can sit with IP<sub>3</sub> bound and wait for an activating Ca<sup>2+</sup> signal to arise from voltage-activated channels or neighboring RyRs. However, IP<sub>3</sub> binding not only allows IP<sub>3</sub>Rs to be activated by Ca<sup>2+</sup>, it also increases their sensitivity to Ca<sup>2+</sup>. So, with substantial increases of intracellular IP<sub>3</sub> concentrations as may occur following stimulation of cardiomyocytes with G<sub>a</sub> protein-coupled agonists, IP<sub>3</sub>Rs can become activated at normal diastolic  $Ca^{2+}$  levels, or during the recovery of a stimulated  $Ca^{2+}$  transient [62]. The promiscuous opening of IP<sub>3</sub>Rs during the otherwise quiescent diastolic period under these conditions is therefore the cause of arrhythmic Ca<sup>2+</sup> transients and their associated electrical activity [63,64].

## 5. General considerations on IP<sub>3</sub> and intracellular Ca<sup>2+</sup> homeostasis

Since  ${\rm IP}_3$  releases  ${\rm Ca}^{2+}$  from  ${\rm Ca}^{2+}$  stores within cardiac myocytes, it affects cellular Ca2+ homeostasis. Cellular Ca2+ homeostasis is governed by influx and efflux of Ca<sup>2+</sup> into and out of the cell, respectively, by intracellular Ca<sup>2+</sup> buffering as well as by  $Ca^{2+}$  storage in, distribution between and release from intracellular compartments. The major Ca<sup>2+</sup> store in cardiac myocytes is the SR. Depending on species and experimental conditions, SR  $Ca^{2+}$  release contributes ~50–90% of  $Ca^{2+}$  to the electrically stimulated (action potential-induced) global Ca<sup>2+</sup> transient [53]. For sustained increases of  $Ca^{2+}$  transients to occur, SR  $Ca^{2+}$  load and hence the amount of  $Ca^{2+}$  released from the SR during an action potential have to increase. SR Ca<sup>2+</sup> load is governed by the balance between Ca<sup>2+</sup> release or "leak" from the SR and  $Ca^{2+}$  uptake into the SR. The former is mediated mainly by SR  $Ca^{2+}$  release channels, i.e. RyR2 and IP<sub>3</sub>Rs, the latter by the SR Ca<sup>2+</sup> pump (SERCA2a), which is regulated by phospholamban. Elegant quantitative studies have shown that it is not sufficient to enhance SR Ca<sup>2+</sup> release alone to arrive at a sustained increase of the Ca<sup>2+</sup> transient. Rather, uptake has to be increased in parallel (as occurs, for example, during  $\beta$ adrenergic stimulation), because of SR Ca<sup>2+</sup> autoregulation [65,66]. For example, when RyR2 open probability is increased selectively (through application of low concentrations of caffeine), global Ca<sup>2+</sup> transients are enhanced at first, but then decline to reach steady-state amplitudes that are identical to the pre-caffeine amplitudes [67]. This is because some of the extra Ca<sup>2+</sup> released from the SR is exported from the cell through sarcolemmal mechanisms (i.e. largely NCX), which reduces SR Ca<sup>2+</sup> load. Reduced SR Ca<sup>2+</sup> load, in turn, limits SR Ca<sup>2+</sup> release because of the steep dependence of release on load [68], which is ultimately caused by the dependence of RyR2 open probability on SR luminal  $Ca^{2+}$  concentration [69]. A similar situation might arise when IP<sub>3</sub> concentration is elevated (e.g. by G<sub>a</sub> protein-coupled agonists like endothelin-1). Under these conditions, the global  $Ca^{2+}$  transient is expected to increase because of the extra Ca<sup>2+</sup> released from the SR by activated IP<sub>3</sub>Rs. Because of the larger  $Ca^{2+}$  transients, there will be a net loss of Ca<sup>2+</sup> from the cell via sarcolemmal NCX. This should reduce SR Ca<sup>2+</sup> load and hence limit the steady-state amplitude of the Ca<sup>2+</sup> transient to the amplitude reached before elevation of  $IP_3$  concentration took place. This is, however, not what is observed experimentally. As outlined below, exposure of cardiac myocytes to Gq protein-coupled agonists or membrane-permeable analogues of IP<sub>3</sub> causes a sustained increase in global Ca<sup>2+</sup> transients, e.g. [63,70-72], with SR Ca<sup>2+</sup> load staying unchanged or even tending to decrease [72]. Thus, IP<sub>3</sub> uniquely alters cardiac excitation-contraction coupling in that it increases Ca<sup>2+</sup> transients and fractional SR Ca<sup>2+</sup> release at largely unaltered SR Ca<sup>2+</sup> load. This finding implies that, in addition to increasing SR  $Ca^{2+}$  release during systole through activation of IP<sub>3</sub>Rs, IP<sub>3</sub> affects cellular  $Ca^{2+}$  homeostasis in yet another way. In fact,  $G_{\alpha}$ protein-coupled agonists or IP3 may also increase diastolic cytoplasmic  $Ca^{2+}$  concentration [17,70] and alter the kinetics of the cytoplasmic  $Ca^{2+}$  transient with a prolongation of the rising phase and an acceleration of the decay [72]. Clearly, future studies should aim at analyzing IP<sub>3</sub> effects on cellular Ca<sup>2+</sup> fluxes in a more quantitative way, which will help gain more insight into the actions of IP<sub>3</sub> on cellular  $Ca^{2+}$  homeostasis.

## 6. Elementary $IP_3$ -induced $Ca^{2+}$ release events in cardiac myocytes

Discrete, non-propagating elementary  $Ca^{2+}$  release events have been characterized in a variety of excitable and nonexcitable cell types (for reviews see [73,74]), for both RyRs ('Ca<sup>2+</sup> sparks'; [75–78]) and IP<sub>3</sub>Rs [70,79,80]. Ca<sup>2+</sup> sparks represent Ca<sup>2+</sup> release from a restricted number of clustered RyRs opening in concert [81]. It is well established that Ca<sup>2+</sup> sparks represent the elementary Ca<sup>2+</sup> release events that spatially and temporally summate to produce the global Ca<sup>2+</sup> transient during cardiac excitation–contraction coupling.

 $IP_3R$ -dependent elementary  $Ca^{2+}$  release events, termed 'Ca<sup>2+</sup> blips' (single channel event) and 'Ca<sup>2+</sup> puffs' (multichannel event originating from a group of IP<sub>3</sub>Rs), have been observed in non-excitable cells such as oocytes [79], HeLa [82] and vascular endothelial cells [80].  $Ca^{2+}$  puffs differ from RyR-mediated Ca<sup>2+</sup> sparks in having significantly slower kinetics. Despite the growing evidence that IP<sub>3</sub>R-evoked Ca<sup>2+</sup> release occurs in cardiac cells, reports of elementary Ca2+ signals arising from IP<sub>3</sub>Rs in cardiac myocytes have been scarce. This is likely related to the significantly lower density of IP<sub>3</sub>Rs, which practically means that Ca<sup>2+</sup> puffs are difficult to discern in the 'Ca<sup>2+</sup> noise' from RyR-dominated Ca<sup>2+</sup> release. A recent report showed that this problem could be circumvented experimentally by eliminating Ca<sup>2+</sup> release via RyRs pharmacologically [70]. This is illustrated in Fig. 1. Permeabilized cat atrial myocytes displaying spontaneous Ca<sup>2+</sup> release activity were treated with the RyR inhibitor tetracaine [83], to block  $Ca^{2+}$  sparks. The cells were then exposed to IP<sub>3</sub>, which resulted in the appearance of localized non-propagating  $Ca^{2+}$  elevations that were completely abolished by the IP<sub>3</sub>R blocker heparin. In comparison to typical Ca<sup>2+</sup> sparks, the IP<sub>3</sub>evoked Ca<sup>2+</sup> puffs had amplitudes which were 75-80% smaller

and were about 3 times longer-lasting, and their rise time was prolonged approximately twofold. The spatial spread of the RvR- and IP<sub>3</sub>R-mediated elementary events did not differ significantly (for average numbers see Fig. 1D). However, the underlying Ca<sup>2+</sup> release flux was clearly smaller for Ca<sup>2+</sup> puffs compared to  $Ca^{2+}$  sparks and the declining phase of  $[Ca^{2+}]$  was prolonged (Fig. 1C). In summary, the IP<sub>3</sub>-dependent elementary Ca<sup>2+</sup> release events in permeabilized atrial myocytes were distinctly different from Ca2+ sparks and were reminiscent of Ca<sup>2+</sup> puffs typically observed in non-excitable tissue where IP<sub>3</sub>-dependent  $Ca^{2+}$  signaling is predominant [79,80,82,84]. These data are consistent with the notion that IP<sub>3</sub>Rs provide a significantly smaller Ca<sup>2+</sup> release pathway compared to RyRs. However, their relative paucity does not eliminate their potential to affect cardiac Ca<sup>2+</sup> signaling. It is plausible that IP<sub>3</sub>R-dependent Ca<sup>2+</sup> puffs can summate with RyR-mediated  $Ca^{2+}$  sparks to increase the amplitudes of electrically-evoked  $Ca^{2+}$  transients. In addition,  $Ca^{2+}$  puffs may activate neighboring RyRs via  $Ca^{2+}$ -induced  $Ca^{2+}$  release and thereby amplify SR Ca<sup>2+</sup> release. Alternatively, IP<sub>3</sub>-mediated Ca<sup>2+</sup> signals may have distinct functions of their own due to spatial separation from the machinery underlying excitation-contraction coupling. These possibilities are discussed further below.

#### 7. IP<sub>3</sub> signaling in cardiac development

The heart is one of the first organs to develop in a growing embryo. As the heart is formed, its cells acquire the abilities to generate pulsatile  $Ca^{2+}$  signals, to become electrically active and to contract. A number of studies, using either pre-natal cardiac cells or embryonic stem cell-derived myocytes, have indicated that IP<sub>3</sub>Rs may play a significant role in the development of the heart by contributing to the initiation of pacemaking activity, and thereby promote cardiogenesis. Spontaneous  $Ca^{2+}$  oscillations begin as soon as the heart tube is created. These  $Ca^{2+}$ signals are necessary to drive contraction, as well as appropriate gene transcription and structural arrangement of the nascent cardiomyocytes [85]. Indeed, inhibition of the  $Ca^{2+}$  oscillations or buffering the  $Ca^{2+}$  changes prevents development of the heart [86].

As described above, type 2 RyRs underlie the release of  $Ca^{2+}$ during systole in adult and neonatal cells. Mice lacking type 2 RyRs die as embryos around E10 with major cardiac defects [87] because the excitation–contraction coupling system cannot mature. However, repetitive  $Ca^{2+}$  signals and rhythmic contractions occur in these RyR-deficient animals at E7–9.5 [87,88]. In addition, the  $Ca^{2+}$  signals in young embryonic heart cells are insensitive to experimental maneuvers that inhibit voltageactivated  $Ca^{2+}$  channels or  $Na^+/Ca^{2+}$  exchange, but are affected by agents that deplete intracellular  $Ca^{2+}$  stores [89] (but see [90] for an alternative view). Taken together, these data indicate that periodic  $Ca^{2+}$  release from intracellular stores occurs in young embryonic heart cells, and that the channels involved are not RyRs.

There is accumulating evidence that  $IP_3Rs$  may be responsible for the early cycling of  $Ca^{2+}$  in developing myocytes prior to the maturation of excitation–contraction coupling. For example, the spontaneous  $Ca^{2+}$  oscillations in murine



Fig. 1. Elementary IP<sub>3</sub>-induced  $Ca^{2+}$  release events in cardiac myocytes. (A) Confocal linescan image of  $Ca^{2+}$  sparks in a permeabilized cat atrial myocyte (control). Tetracaine (Tetrac) abolishes  $Ca^{2+}$  sparks. Addition of IP<sub>3</sub> elevates baseline  $Ca^{2+}$  concentration and causes the appearance of smaller  $Ca^{2+}$  release events, i.e.  $Ca^{2+}$  puffs, which are suppressed by heparin. (B) Averaged  $Ca^{2+}$  spark and  $Ca^{2+}$  puff. (C) Normalized  $Ca^{2+}$  spark (black) and  $Ca^{2+}$  puff (red) (top) and first derivative thereof (bottom), a measure for the underlying  $Ca^{2+}$  release flux. The  $Ca^{2+}$  puff exhibits slower kinetics and lower  $Ca^{2+}$  release flux than the  $Ca^{2+}$  spark. (D) Surface plots of averaged linescan images of  $Ca^{2+}$  sparks and  $Ca^{2+}$  puff displays lower amplitude, longer rise time and duration, and similar width as compared to the  $Ca^{2+}$  spark. Modified from [70]. Copyright of the Journal of Physiology; used by kind permission.

embryonic cells were sensitive to application of 2-APB (an IP<sub>3</sub>R antagonist [42]) [89]. Furthermore, IP<sub>3</sub>Rs are expressed in the inner mass of embryos at E5.5, and are clearly evident within the developing heart tube at E8.5 [91]. In contrast, RyRs are not abundant until E8.5 or later [91]. These data indicate that IP<sub>3</sub>Rs are expressed earlier than RyRs in the developing heart, and the timing of their expression correlates closely with the on-set of Ca<sup>2+</sup> oscillations.

Stem cell-derived myocytes grown *in vitro* can recapitulate the development and differentiation of cardiomyocytes very closely [92–94]. The accessibility of these cells and the relative ease by which they can be genetically manipulated (compared to myocytes in early embryos) has led them to be used for many studies of cardiac development. It is established that these cells express IP<sub>3</sub>Rs when they are in either a proliferative state or during differentiation into cardiomyocytes [95]. Similar to their *in vivo* counterparts, stem cell-derived myocytes start to show spontaneous Ca<sup>2+</sup> oscillations, membrane depolarizations and contractions long before the cells have terminally differentiated. The mechanism underlying the acquisition of spontaneous activity in these cells is not fully clear. Likely candidates could be the hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels that are responsible for pacemaking currents ( $I_f$ ) in adult tissue [96]. However, the spontaneous Ca<sup>2+</sup> oscillations appear to precede the appearance of substantial HCN-mediated currents, and the activity persists in the presence of  $I_f$  inhibitors [97]. Furthermore, repetitive  $Ca^{2+}$  transients could still be observed in cells that were fully depolarized (using  $K^+$  application), thereby precluding the involvement of membrane potential oscillations [98]. In contrast, transfection of early stem cell-derived myocytes with antisense cDNA to reduce expression of type 1 IP<sub>3</sub>Rs, or application of an IP<sub>3</sub>R antagonist, significantly reduced the spontaneous beating [92,97]. The effect of antagonizing IP<sub>3</sub>Rs diminishes over time [99], suggesting that IP<sub>3</sub>-driven signals progressively give way to other mechanisms that generate  $Ca^{2+}$  oscillations [100]. As expected of a pacemaking messenger, stimulating IP<sub>3</sub> production in stem cell-derived myocytes using hormonal agonists had a positive chronotropic effect, which was antagonized by either IP<sub>3</sub>R or phospholipase C inhibitors [101].

The studies described above suggest a fundamental role of  $IP_3Rs$  in triggering the first few days of  $Ca^{2+}$  cycling within the developing heart, and consequently allowing the cardiac cells to differentiate appropriately. After a short while, the  $Ca^{2+}$ cycling switches to a reliance on  $I_{\rm f}$ , voltage-activated Ca<sup>2+</sup> channels and RyRs. However, IP3Rs are not entirely lost during fetal development. Indeed, neonatal animals have a relatively high expression of IP<sub>3</sub>Rs (compared to adult cells), and the channels are demonstrably functional. For example, addition of IP<sub>3</sub> to permeabilized cells, or uncaging of photoreleasable IP<sub>3</sub>, has directly demonstrated the presence of active IP<sub>3</sub>Rs in situ within neonatal myocytes [102,103]. Furthermore, neonatal cardiac myocytes respond to several agonists (e.g. endothelin-1, angiotensin II, phenylephrine, ATP, prostaglandins, IGF-1) with IP<sub>3</sub> production and  $Ca^{2+}$  mobilization [102,104]. These same agonists also promote hypertrophic growth of neonatal cardiac myocytes [104,105]. Studies using immunostaining, Western blotting and analysis of mRNA have suggested that IP<sub>3</sub>R types 1, 2 and 3 are expressed in neonatal cells [102.103.106].

A consistent message from the investigations of neonatal myocytes is that IP<sub>3</sub> causes perinuclear  $Ca^{2+}$  release. Almost all studies that examined either the distribution of IP<sub>3</sub>Rs, or the spatial pattern of IP<sub>3</sub>-evoked  $Ca^{2+}$  signals, have reported that the channels are largely expressed in close proximity to the nucleus in neonatal cells [102,103,106–108]. This is unlike RyRs, which have a more widespread expression pattern in neonatal cells [102]. The perinuclear release of IP<sub>3</sub>-sensitive  $Ca^{2+}$  stores can impact specifically on nucleoplasmic  $Ca^{2+}$  levels [103] and thereby promote hypertrophic gene transcription [109].

The overall picture that emerges from the studies of embryonic tissues and stem cell-derived cardiomyocytes is that  $IP_3Rs$  are expressed in cardiac precursor cells, and are relatively abundant at the very earliest stages of heart development when they may play a critical role in development. Their expression declines as the cells differentiate and other Ca<sup>2+</sup>-handling systems are put into place. However,  $IP_3Rs$  are not completely lost. They are retained in the heart for the duration of fetal development and can be readily demonstrated in neonatal cardiac myocytes, and their expression persists into adulthood.

It should be noted that mice deficient in cardiac expression of type 2 IP<sub>3</sub>Rs are viable and do not have any apparent cardiac defects [17]. Furthermore, complete single deletion of type 1, type 2 or type 3 IP<sub>3</sub>Rs in mice, or combined knockout of types 2 and 3 IP<sub>3</sub>Rs, does not prevent the murine heart (or whole animal) from developing [110,111]. These data could indicate that IP<sub>3</sub>Rs are not essential for cardiogenesis. However, it is possible that there is functional redundancy between IP<sub>3</sub>R isoforms, such that the presence of any one of the three isoforms will do. Alternatively, another Ca<sup>2+</sup> signaling mechanism could compensate for the normally undertaken by IP<sub>3</sub>Rs. Although knockout of types 2 and 3 IP<sub>3</sub>Rs appears to be benign, mice not expressing type 1 IP<sub>3</sub>Rs mostly die in utero [110]. It would be interesting to know if a lack of cardiac development was partially responsible for the increased mortality of these animals.

#### 8. IP<sub>3</sub> signaling in atrial myocytes

There is substantial evidence for IP<sub>3</sub>-mediated  $Ca^{2+}$  signaling in atrial cells. The atrial myocardium expresses numerous receptors coupling to the PIP<sub>2</sub>-PLC-IP<sub>3</sub> cascade. Increased phosphoinositide breakdown and inositol phosphate generation in atrium is mediated by receptors for acetylcholine (muscarinic,  $M_1$  and  $M_3$ ), angiotensin II (AT<sub>1</sub>), endothelin (ET<sub>A</sub>), histamine (H<sub>1</sub>), 5-hydroxytryptamine (5-HT<sub>2</sub>), norepinephrine  $(\alpha_1)$  and vasopressin in various species including cat, chick, guinea-pig, mouse, rat and human [10,112–125]. Furthermore, expression of IP<sub>3</sub>Rs in atrial myocytes has been demonstrated at mRNA and protein levels in various organisms, including mouse, rabbit, rat and human [15,17,41,58]. Myocytes from animal atrium are particularly rich in type 2 IP<sub>3</sub>Rs and may also express type 3 IP<sub>3</sub>Rs [41]. Human atrial myocytes, on the other hand, have been suggested to express predominantly type 1 IP<sub>3</sub>R [15], although this requires further clarification.

Early evidence for an involvement of IP<sub>3</sub> in the regulation of atrial contraction came from the observation that phosphoinositide breakdown and inositol phosphate generation were accompanied by a positive inotropic effect [114–117,119– 121]. Direct application of IP<sub>3</sub> to permeabilized atrial muscle [50], photorelease of IP<sub>3</sub> [126] and, more recently, exposure of isolated atrial myocytes to a membrane permeable analogue of IP<sub>3</sub> [58,63,127,128] provided definitive proof that IP<sub>3</sub> induces a positive inotropic effect in atrium. Thus, an important action of IP<sub>3</sub> in atrium is to increase the force of contraction.

Interestingly, receptor-mediated inositol phosphate production and expression of IP<sub>3</sub>Rs are larger in atrium than in ventricle [10,17,41,58,113]. For example, maximal muscarinic receptor-mediated inositol phosphate accumulation was >12fold in guinea-pig atrial myocytes but only 7-fold in ventricular myocytes [10]. Similarly, in cat myocardium, muscarinic receptor stimulation induced larger increases in phosphatidylinositol breakdown in atria than in ventricles [113]. In rat and rabbit myocytes, expression of IP<sub>3</sub>Rs is ~3.5–10 times larger in atrial as compared to ventricular myocytes [41,58]. Microsomal preparations from human and sheep atrium displayed RyR densities of ~0.3-0.7 pmol/mg protein [129,130]. In contrast, IP<sub>3</sub>R density amounted to 1.8 pmol/mg protein in rat atrium [58]. Thus, atrial SR contains more IP<sub>3</sub>Rs, but less RyRs, than ventricular SR, suggesting that SR Ca<sup>2+</sup> release in atrial myocytes is more dependent on IP<sub>3</sub> signaling than in ventricular myocytes. In line with this notion, direct application of  $IP_3$  to permeabilized rat myocytes revealed a ~5 times larger global  $Ca^{2+}$  increase in atrial than in ventricular myocytes [58]. Taken together, these data might explain, at least in part, why many transmitters and hormones coupling to the PIP<sub>2</sub>-PLC-IP<sub>3</sub> cascade exert comparatively large positive inotropic effects in the atrium but only small or no positive inotropic effects in the ventricle (e.g. angiotensin II [131] or 5-hydroxytryptamine [124]).

 $IP_3$  does not alter myofilament  $Ca^{2+}$  responsiveness [48]. Rather, the positive inotropic effect of  $IP_3$  in atrial myocardium is mediated by enhanced  $Ca^{2+}$  release from the SR. The extra component of  $Ca^{2+}$  mobilization from  $IP_3Rs$  adds to the action potential-induced RyR-mediated Ca<sup>2+</sup> release, and thereby increases the Ca<sup>2+</sup> transient underlying contraction. Potentiation of Ca<sup>2+</sup> transients following activation of IP<sub>3</sub>Rs has been observed during stimulation of cat, mouse, rabbit and rat atrial myocytes with endothelin-1 or a membrane-permeant form of IP<sub>3</sub> (IP<sub>3</sub>BM) [17,63,70–72,127,128]. The increase in the electrically-stimulated Ca<sup>2+</sup> transient occurred without alteration of the Ca<sup>2+</sup> load within the SR [72]. Thus, IP<sub>3</sub> increased fractional Ca<sup>2+</sup> release from the SR (by ~13%) and did not affect SR Ca<sup>2+</sup> storage *per se* [17,72].

IP<sub>3</sub>-induced Ca<sup>2+</sup> release may also lead to arrhythmogenic alterations in atrial Ca<sup>2+</sup> signaling. In cat and rabbit atrial myocytes, endothelin-1 induced Ca<sup>2+</sup> alternans [70,132], which may degenerate into arrhythmogenic Ca<sup>2+</sup> waves [133]. Furthermore, endothelin-1 or IP<sub>3</sub>BM elicited spontaneous Ca<sup>2+</sup> release events during diastole in cat, mouse, rabbit and rat atrial myocytes. These spontaneous signals ranged from spark-like events and Ca<sup>2+</sup> waves to extra action potentialderived global Ca<sup>2+</sup> transients [63,70,71,128,132]. Similarly, in human atrial myocardium, endothelin-1 induced arrhythmic extra contractions mediated by activation of PLC and IP<sub>3</sub>Rs [134,135] and in isolated human atrial myocytes angiotensin II, another agonist coupling to PLC–IP<sub>3</sub> signaling, increased the frequency of spontaneous Ca<sup>2+</sup> sparks without altering SR Ca<sup>2+</sup> load [136].

IP<sub>3</sub>-induced arrhythmogenic Ca<sup>2+</sup> release likely involves the recruitment of RyRs via Ca<sup>2+</sup>-induced Ca<sup>2+</sup> release. In rat atrial myocytes, some IP<sub>3</sub>Rs and RyRs are colocalized in the subsarcolemmal area closely apposed to the sarcolemmal Na<sup>+/</sup> Ca<sup>2+</sup> exchanger (NCX), as illustrated in Fig. 2. The proximity of the two types of Ca<sup>2+</sup> channels makes it likely that activation of IP<sub>3</sub>Rs will provoke RyR opening. The consequent Ca<sup>2+</sup> signal would then activate the nearby NCX, thereby generating a depolarizing current. Recruitment of multiple IP<sub>3</sub>R/RyR clusters, during hormonal stimulation, can lead to sufficient NCX activation for a full depolarization of the cell. In turn, cellular depolarization will evoke a global diastolic Ca<sup>2+</sup> transient. In support of this scheme, it has been demonstrated that the spontaneous diastolic action potential-evoked Ca<sup>2+</sup>

transients observed during endothelin-1 or IP3BM application are preceded by subsarcolemmal Ca<sup>2+</sup> release events (probably  $IP_3R$ -activated Ca<sup>2+</sup> sparks: [63]). Furthermore, in human atrial myocardium, inhibition of RyRs suppressed endothelin-1induced arrhythmias. These data suggest that the relatively few IP<sub>3</sub>Rs in the atrium can cause a disproportionately large  $Ca^{2+}$  release due to amplification from nearby RyRs, and thereby induce NCX-triggered arrhythmias. Since reduction of SR Ca<sup>2+</sup> load did not affect the arrhythmias [135] and, moreover, endothelin-1 did not alter the SR luminal Ca2+ content [17,72], SR  $Ca^{2+}$  overload can be ruled out as a causative factor [135]. Thus, atrial arrhythmias elicited by  $IP_3$  appear to be distinctly different from classical triggered arrhythmias as may occur following digitalis exposure or excessive *β*-adrenergic stimulation. Although both are initiated by diastolic SR Ca<sup>2+</sup> release and subsequent activation of NCX, in the former case  $Ca^{2+}$  release occurs at *normal* SR  $Ca^{2+}$  load whereas in the latter case  $Ca^{2+}$  release is the result of SR  $Ca^{2+}$  *overload*.

IP<sub>3</sub>Rs are distributed not only in the subsarcolemmal/ cytoplasmic compartment of atrial cells, but also in the perinuclear area, giving rise to the notion that they might control nuclear Ca<sup>2+</sup>. Direct functional evidence for this has been obtained recently in cat, rabbit and rat atrial myocytes [71,72,137]. In permeabilized cat atrial myocytes (Fig. 3A), IP<sub>3</sub> or adenophostin elicited increases in nuclear Ca<sup>2+</sup> that could be blocked by IP<sub>3</sub>R antagonists [137]. In isolated nuclei (from whole hearts, Fig. 3B), this IP<sub>3</sub>-induced  $Ca^{2+}$  release was observed both at the outer and inner face of the nuclei suggesting that functional IP<sub>3</sub>Rs may be expressed at the outer and inner sides of the nuclear envelope facing the cytoplasm and the nucleoplasm, respectively [137]. Conversely, when the nuclear envelope was loaded with the low affinity  $Ca^{2+}$  dye fluo-5N to measure nuclear envelope  $Ca^{2+}$  concentration directly (Fig. 3C), IP<sub>3</sub> reduced the  $Ca^{2+}$  stored in the nuclear envelope [137]. Consistent with these findings from permeabilized myocytes and isolated nuclei, in electrically stimulated intact atrial myocytes, endothelin-1 augmented nuclear Ca<sup>2+</sup> transients through IP<sub>3</sub> signaling beyond the increase seen in the cytoplasm [71,72]. At threshold concentrations, endothelin-1



Fig. 2. Colocalization of subsarcolemmal IP<sub>3</sub>Rs and RyRs in atrial myocytes. (A) Confocal image of a rat atrial myocyte immunostained for the expression of IP<sub>3</sub>Rs (red) and RyRs (green). *N* denotes the nucleus. The area marked by the dashed white rectangular is shown enlarged in (B). Colocalization of IP<sub>3</sub>Rs and RyRs (yellow) occurs in some areas underneath the sarcolemma. (C) Schematic illustration of colocalization of subsarcolemmal IP<sub>3</sub>Rs and RyRs. Modified from [63]. Copyright of the Journal of Physiology; used by kind permission.



Fig. 3. IP<sub>3</sub>-dependent nuclear Ca<sup>2+</sup> signaling in cardiac myocytes. (A) Confocal images of a permeabilized cat atrial myocyte. In the presence of 0.7 mM tetracaine, IP<sub>3</sub> increases nuclear Ca<sup>2+</sup> concentration. The IP<sub>3</sub>-induced nuclear Ca<sup>2+</sup> increase is partly reversed by the addition of heparin (Hep). (B) Confocal images of an isolated rat cardiac nucleus. The nucleus and the solution surrounding the nucleus contained fluo-4 dextran. Fluorescence changes from the regions marked by the dashed black line (nucleus) and the area delimited by the nuclear border and the dashed white line ('cytoplasm') are shown below. The IP<sub>3</sub>-induced Ca<sup>2+</sup> increase is larger in the nucleus (black) than in the adjacent cytoplasm (red). (C) Confocal images of an isolated rat cardiac nucleus. The nuclear envelope (NE) has been loaded with the low affinity Ca<sup>2+</sup> dye fluo-5N. Addition of IP<sub>3</sub> causes a reduction of Ca<sup>2+</sup> stored in the NE. The Ca<sup>2+</sup> ionophore A23187 further depletes NE Ca<sup>2+</sup>. Modified from [137]. Copyright of the Journal of Physiology; used by kind permission.

even induced a selective increase in nuclear  $Ca^{2+}$  transients [72].

Collectively, these data show that in atrium  $IP_3$  may not only increase contractility via elevated  $Ca^{2+}$  transients, but that it also may induce arrhythmias and alter nuclear  $Ca^{2+}$  signaling to promote remodeling and regulate excitation-transcription coupling. Thus, it appears as if the adverse actions of atrial  $IP_3$  signaling outweigh the beneficial effects. Clearly, further work is required to define more precisely the physiological and pathological roles of  $IP_3$  signaling in atrial myocardium.

#### 9. IP<sub>3</sub> signaling in ventricular myocytes

There is abundant evidence that IP<sub>3</sub>Rs are expressed in mammalian ventricular myocytes [19,58,138]. IP<sub>3</sub>R expression has been qualified using real-time PCR [58], Northern blotting [19,91], Western blotting [17,41,58], immunofluorescence [18,41,139] and IP<sub>3</sub> binding [58,139]. A number of studies have shown that ventricular myocyte IP<sub>3</sub>Rs are functional and have access to replete Ca<sup>2+</sup> stores *in situ*. For example, IP<sub>3</sub> has been shown to directly release Ca<sup>2+</sup> from permeabilized/ fractionated ventricular cells [41,140,141]. In addition, IP<sub>3</sub>Rs have been purified from ventricular myocytes, incorporated into lipid membranes and shown to open after addition of IP<sub>3</sub> [57]. Although published data have suggested that all three IP<sub>3</sub>R isoforms are expressed in ventricular myocytes, the majority of recent reports concur that type 2 IP<sub>3</sub>Rs constitute the predominant channel isoform [17,18,41,58].

Despite the numerous lines of evidence for their expression and activity, the functional roles of ventricular IP<sub>3</sub>Rs are still unclear. Although it is apparent that IP<sub>3</sub>Rs can mobilize Ca<sup>2+</sup> from stores within ventricular myocytes [41,140], it is not yet clear what and where these stores are. Furthermore, it is striking that IP<sub>3</sub>Rs could have any significant effect on myocyte behavior in midst of the large Ca<sup>2+</sup> fluxes that occur from RyRs during each heartbeat. Ventricular myocyte IP<sub>3</sub>Rs are ~5 times less abundant than in atrial cells [17,41,58], and it is generally estimated that IP<sub>3</sub>Rs are outnumbered by RyRs by a ratio of ~100:1.

The most obvious function for IP<sub>3</sub>Rs would be to act as an inotropic support for the ventricles by boosting the amplitude of systolic Ca<sup>2+</sup> transients, and thereby increasing contractile force. Consistent with this notion, IP3Rs have been localized close to the dyadic junctions where excitation-contraction coupling is initiated [142], and direct activation of IP<sub>3</sub>Rs was found to enhance Ca<sup>2+</sup> spark occurrence throughout ventricular cells [41]. Furthermore, application of hormones that activate the production of IP<sub>3</sub> inside ventricular myocytes, such as endothelin-1 [11], enhances systolic Ca<sup>2+</sup> signals in rat and rabbit cells [41, 128, 143]. IP<sub>3</sub> can therefore be considered as a bona fide inotropic agent in some mammalian ventricular myocytes (but perhaps not all; see [41]). However, while positive inotropy is a beneficial effect of IP<sub>3</sub>R activation, the situation is not that straightforward. Rather than reinforcing their positive contribution to inotropy, the overwhelming majority of studies that have examined the consequence of activating IP<sub>3</sub>Rs in ventricular myocytes have concluded that the predominant effect is to stimulate arrhythmias [62,143]. Indeed, IP<sub>3</sub>R activity has been suggested to underlie ventricular arrhythmias resulting from hormonal stimulation [143], reperfusion [144,145], engagement of cytotoxic T-lymphocytes [146] and FAS receptor activation [147]. These data suggest that Ca<sup>2+</sup> flux through the relatively few IP<sub>3</sub>Rs in ventricular myocytes is perhaps more dangerous than beneficial, similar to the situation discussed above for atrial cells.

An intriguing clue to another possibly significant physiological/pathological function of IP<sub>3</sub>Rs in ventricular myocytes is their localization close to the nucleus. A substantial proportion of IP<sub>3</sub>Rs in adult ventricular cells is expressed on unspecified membranes close to the nucleus, or indeed on the nuclear envelope [18,148]. Furthermore, it has been shown that IP<sub>3</sub> can release  $Ca^{2+}$  from the ventricular myocyte nuclear envelope (and also probably from adjacent connected membrane compartments) [140,141]. This strategic positioning of a population of nucleus-associated IP<sub>3</sub>Rs potentially allows the generation of autonomous nuclear  $Ca^{2+}$  signals, which may have a significant role in regulating cardiac gene transcription, and plausibly controlling processes such as cardiac hypertrophy. Indeed, it has been demonstrated that the release of perinuclear IP<sub>3</sub>-sensitive Ca<sup>2+</sup> stores promotes a CaMKII-dependent phosphorylation of histone deacetylase 5 (HDAC5) thereby causing it to be exported out of the nucleus [140]. Thus, perinuclear IP<sub>3</sub>-evoked Ca<sup>2+</sup> signals can derepress the expression of genes that underlie hypertrophic growth, such as those under the control of MEF2c [149]. It is well known that stimulation of myocytes with hormones that activate IP<sub>3</sub> production, e.g. ET-1, can promote hypertrophy [150–154]. What is not fully understood, however, is how such hormones can affect subtle changes in Ca<sup>2+</sup>-dependent gene transcription inside cells that experience periodic surges of Ca<sup>2+</sup> during excitation-contraction coupling [155]. Perinuclear IP<sub>3</sub>Rs may provide a resolution to this conundrum by providing a source of Ca<sup>2+</sup> signals that can be spatially and temporally dissociated from those that regulate contraction [156]. Consistent with this model, it has been demonstrated that activation of IP<sub>3</sub>Rs in rat neonatal ventricular myocytes using a membrane-permeant IP<sub>3</sub> analogue or an  $\alpha_1$ -adrenergic agonist causes perinuclear  $Ca^{2+}$  release events, and that blocking IP<sub>3</sub>R opening decreases hypertrophic growth in response to phenylephrine stimulation [109]. Similar findings were made using mouse neonatal cells stimulated with ET-1 and phenylephrine; nuclear-associated IP<sub>3</sub>Rs triggered nucleoplasmic Ca<sup>2+</sup> signals and hypertrophic gene transcription [157]. Further work is required to establish whether this scheme is relevant in vivo. However, the concept that IP<sub>3</sub>Rs impact specifically on nuclear Ca2+ signaling is gaining momentum. Numerous recent reports examining Ca<sup>2+</sup> signaling in neonatal [103,108,109,157], atrial [71,72,137] and ventricular myocytes [140] have demonstrated specific effects of IP<sub>3</sub>-generating agonists or IP<sub>3</sub> itself on nucleoplasmic Ca<sup>2+</sup> signals. Coupling these data with the observations that IP<sub>3</sub> is necessary for some forms of hypertrophy [109,157,158] raises the possibility that IP<sub>3</sub>Rs are key regulators of cardiac myocyte gene transcription and fate.

#### 10. IP<sub>3</sub>Rs in other cardiac cells

The majority of studies examining cardiac IP<sub>3</sub>R expression and function have focused on developing embryonic/neonatal cells, or adult atrial and ventricular myocytes. However, there are reports suggesting that IP<sub>3</sub>Rs are also expressed in other cardiac regions/cell types, such as papillary muscle [48,159]. It

has also been proposed that IP<sub>3</sub>Rs are functional in nodal cells within the developing atria. Isolation of atrial cells from E14.5 mouse embryos revealed a minor population of spontaneously active myocytes (presumed to be pacemaking cells). Transfection of an enzyme that metabolizes IP<sub>3</sub>, and thereby prevents its Ca<sup>2+</sup>-mobilising action, or an anti-IP<sub>3</sub>R antibody, inhibited the spontaneous activity [97]. In the sinus node of the adult mammalian heart, spontaneously active pacemaker cells make use of cyclic subsarcolemmal RyR-mediated SR Ca<sup>2+</sup> release to activate depolarizing NCX current, which contributes to diastolic depolarization and pacemaker activity (for review see [160]). This 'intracellular  $Ca^{2+}$  clock' is fueled by high, cAMP-dependent Ca<sup>2+</sup> turnover. Increases and decreases, respectively, in intracellular cAMP levels modulate cycle length, i.e. heart rate, in part by alterations in PKA-dependent phosphorylation of phospholamban (and hence SR Ca<sup>2+</sup> load and release). Because of this  $Ca^{2+}$  dependence of pacemaker activity, it appears feasible that IP<sub>3</sub>R-mediated SR Ca<sup>2+</sup> release might also modulate pacemaker activity in myocytes from adult sinus node. Direct evidence for an involvement of IP<sub>3</sub> signaling in the regulation of heart rate, however, is lacking. Angiotensin II and endothelin-1 (depending on species and experimental conditions), which are known to increase IP<sub>3</sub> in supraventricular tissue, exert positive chronotropic effects in mammalian heart via activation of AT<sub>1</sub> and ET<sub>B</sub> receptors, respectively (e.g. [161,162]). Whether PLC-IP<sub>3</sub> signaling is involved in the positive chronotropic effects of angiotensin II and endothelin-1 is not known at present. Evidence from amphibian sinus venosus, however, suggests that PLC-IP<sub>3</sub> signaling and IP<sub>3</sub>R-mediated SR Ca<sup>2+</sup> release depolarize the membrane potential of pacemaker cells thereby increasing heart rate [163].

Purkinje cells also express IP<sub>3</sub>Rs [164], seemingly to a greater extent than either atrial or ventricular myocytes [16]. The physiological function of IP<sub>3</sub>Rs in these cells is unclear, but they may plausibly underlie the increased automaticity of Purkinje fibers during adrenergic stimulation [165] or following infarct [166]. Purkinje cells from infarcted hearts show proarrhythmic propagating Ca<sup>2+</sup> waves that are reduced in frequency and amplitude by 2-APB. Also consistent with the notion of IP<sub>3</sub>Rs regulating automaticity of Purkinje fibers, reduction of IP<sub>3</sub> production using a phospholipase C inhibitor was demonstrated to inhibit their autonomous Ca<sup>2+</sup> spiking [102].

An overview on the expression of  $IP_3R$  isoforms in various regions of adult myocardium and the involvement of  $IP_3$ signaling in excitation–contraction coupling, excitation–transcription coupling and arrhythmogenesis is provided in Table 1 and Fig. 4, respectively. Table 1 also lists evidence in favor of altered  $IP_3$  expression in various cardiac diseases (for a more detailed discussion on this issue see below). It should be noted that, unlike RyR2,  $IP_3Rs$  are also expressed to a significant amount in non-myocytes in cardiac tissue (e.g. fibroblasts, endothelial and smooth muscle cells). Therefore, ideally expression of  $IP_3Rs$  and alterations thereof in cardiac disease should be confirmed in cardiac myocytes. Otherwise, the possibility exists that the findings are obscured by  $IP_3R$ 



Fig. 4. Overview on IP<sub>3</sub> signaling and its involvement in excitation-contraction coupling, excitation-transcription coupling and arrhythmias in adult cardiac myocytes. Schematic drawing of an adult cardiac myocyte showing parts of the sarcolemma, the nucleus, the SR and the myofilaments. G protein-coupled receptors (GPCR), e.g. for angiotensin II, endothelin-1 or phenylephrine, as well as growth factor receptors (GFR) increase cytoplasmic IP<sub>3</sub> concentration via activation of phospholipase C (PLC). IP<sub>3</sub>Rs are found in the SR (in atrial myocytes both in the subsarcolemmal and central SR) and in the nuclear envelope, where they face both the cytoplasm and the nucleoplasm. By contrast, RyR2s are found predominantly in the SR. IP<sub>3</sub> signaling is involved in excitation-contraction coupling, in excitation-transcription coupling and in the generation of arrhythmias. Excitation-contraction coupling is mediated by  $Ca^{2+}$ -induced  $Ca^{2+}$  release (CICR) from the SR through RyR2. Cytoplasmic  $Ca^{2+}$ binds to the myofilaments and initiates contraction. IP<sub>3</sub>-induced  $Ca^{2+}$  release from the SR through IP<sub>3</sub>Rs may contribute to excitation-contraction coupling by increasing the Ca<sup>2+</sup> transient and thus contraction. On the other hand, IP<sub>3</sub>-induced Ca<sup>2+</sup> release from (subsarcolemmal) SR may trigger further Ca<sup>2+</sup> release through neighboring RvR2 with subsequent activation of sarcolemmal NCX. This induces arrhythmias via generation of delayed afterdepolarizations and triggered activity. IP<sub>3</sub>induced SR  $Ca^{2+}$  release also generates pro-arrhythmic  $Ca^{2+}$  alternans. Finally, IP<sub>3</sub> is involved in excitation-transcription coupling via modulation of nuclear  $Ca^{2+}$ concentration. Nuclear  $Ca^{2+}$  may be increased by IP<sub>3</sub> in three ways: (1) IP<sub>3</sub> may increase the cytoplasmic  $Ca^{2+}$  transient. Cytoplasmic  $Ca^{2+}$  then diffuses through the nuclear pores into the nucleoplasm to elicit a delayed nuclear Ca<sup>2+</sup> transient. (2) Cytoplasmic IP<sub>3</sub> may itself diffuse through the nuclear pores into the nucleus to activate nuclear IP<sub>3</sub>Rs facing the nucleoplasm.  $Ca^{2+}$  release from the nuclear envelope, a  $Ca^{2+}$  store continuous with the SR, into the nucleoplasm then increases the nuclear  $Ca^{2+}$ concentration directly. (3) Finally, IP<sub>3</sub> may also activate IP<sub>3</sub>Rs on the nuclear envelope facing the cytoplasm. Ca<sup>2+</sup> release from the nuclear envelope into the cytoplasm may then increase nuclear Ca<sup>2+</sup> concentration indirectly via cytoplasmic Ca<sup>2+</sup> diffusing into the nucleus through nuclear pores. A fourth alternative (not shown in the cartoon) is the generation of IP<sub>3</sub> in the nucleus via nuclear GPCR coupling to the nuclear PLC-IP<sub>3</sub> cascade. Abbreviations: CICR, Ca<sup>2+</sup>-induced Ca<sup>2+</sup> release; GFR, growth factor receptor; GPCR, G protein-coupled receptor; LTCC, L-type Ca<sup>2+</sup> channel; NPC, nuclear pore complex; NCX, Na<sup>+</sup>/Ca<sup>2+</sup> exchanger; PLC, phospholipase C.

expression from non-myocytes. For example, rat heart contains all three IP<sub>3</sub>R isoforms with the IP<sub>3</sub>R type 1 being the most abundant isoform (more than 60% of total IP<sub>3</sub>R mRNA). Ventricular myocytes, however, do not contain IP<sub>3</sub>R type 1 (less than 2% of total IP<sub>3</sub>R mRNA), but rather express the type 2 (85%) and 3 (14%) IP<sub>3</sub>R [57]. Thus, we have also indicated in Table 1 whether or not IP<sub>3</sub>R expression was confirmed in cardiac myocytes.

# 11. Is nuclear $Ca^{2+}$ regulated independently from cytoplasmic $Ca^{2+}$ ? Putative relevance of IP<sub>3</sub>-dependent nuclear $Ca^{2+}$ signaling for excitation-transcription coupling

As outlined above, there is clear evidence for regulation of nuclear Ca<sup>2+</sup> concentration by IP<sub>3</sub> signaling. The question arises, however, whether nuclear Ca<sup>2+</sup> in beating cardiomyocytes can be regulated independently from cytoplasmic Ca<sup>2+</sup>, which undergoes large changes (from ~100 nM in diastole to >1  $\mu$ M in systole) during each heartbeat. The nuclear pores, which traverse the nuclear envelope, represent a direct connection between cytoplasm and nucleoplasm through

which Ca<sup>2+</sup> can permeate. Consequently, increases in cytoplasmic Ca<sup>2+</sup> during systole also result in increases in nuclear  $Ca^{2+}$  (see pathway #1 in Fig. 4). Due to a diffusional delay, the nuclear Ca<sup>2+</sup> transient lags behind the cytoplasmic Ca<sup>2+</sup> transient, as visualized by confocal  $Ca^{2+}$  imaging [71,72,167]. Hormone-independent increases in cytoplasmic Ca<sup>2+</sup> transients (elicited by elevation of extracellular  $Ca^{2+}$ ) are followed by increases in nuclear Ca<sup>2+</sup> transients of similar magnitude [72]. Thus, cytoplasmic Ca<sup>2+</sup> is an important determinant of nuclear  $Ca^{2+}$  arguing that nuclear  $Ca^{2+}$  in cardiac myocytes cannot be regulated entirely independently from cytoplasmic Ca<sup>2+</sup>. IP<sub>3</sub> signaling, however, is able to *alter* nuclear  $Ca^{2+}$  selectively (see pathway #2 in Fig. 4). IP<sub>3</sub> can release  $Ca^{2+}$  from the nuclear envelope directly into the nucleoplasm through activation of IP<sub>3</sub>Rs located at the inner face of the nuclear envelope [137]. This IP<sub>3</sub>-induced Ca<sup>2+</sup> release into the nucleus may be very local [140]. It can cause selective increases in the nuclear  $Ca^{2+}$ transient [72], as illustrated in Fig. 5, and activate nuclear CaMKII $\delta_{\rm B}$  to promote phosphorylation of HDACs and, thereby, transcription [140]. In this way, IP<sub>3</sub> can regulate nuclear  $Ca^{2+}$ dependent processes like transcription independently from



Fig. 5. Endothelin-1 enhances nuclear  $Ca^{2+}$  transients in atrial myocytes. (A) Two-dimensional confocal images of a rabbit atrial myocyte during an electricallystimulated  $Ca^{2+}$  transient before (Control) and after the addition of 10 nM endothelin-1. The nucleus is visible as the oval area in the cell center with a delayed  $Ca^{2+}$ increase during the rising phase and with a delayed  $Ca^{2+}$  decrease during the decaying phase of the  $Ca^{2+}$  transient. (B)  $Ca^{2+}$  transients (from the cell shown in A) obtained from the entire cytoplasm (black) and the nucleus (red). Addition of 10 nM endothelin-1 (ET-1) increases the cytoplasmic and, even more pronounced, the nuclear  $Ca^{2+}$  transient. When a threshold concentration of 0.1 nM endothelin-1 is applied (right; different cell), the cytoplasmic  $Ca^{2+}$  transient remains unaltered, whereas the nuclear  $Ca^{2+}$  transient is augmented selectively. Modified from [72]. Copyright of the Journal of Cell Science; used by kind permission.d

cytoplasmic  $Ca^{2+}$ -dependent processes by selective elevation of nuclear  $Ca^{2+}$  concentration.

#### 12. Pathological relevance of IP<sub>3</sub> signaling

 $IP_3$ -induced  $Ca^{2+}$  release from the SR and the nuclear envelope may initiate arrhythmias and alter gene expression to induce hypertrophy and heart failure, as discussed above. In line with this notion, many signaling systems, most notably the sympathetic, the renin–angiotensin and the endothelin system, are activated during cardiac diseases associated with arrhythmias, hypertrophy and heart failure along with alterations in the expression of cardiac IP<sub>3</sub>Rs. Substantive evidence suggests that IP<sub>3</sub> signaling may be involved in the development and/or maintenance of atrial fibrillation, reperfusion arrhythmias, ankyrin-B-related arrhythmias, diabetic cardiomyopathy, hypertrophy and heart failure.

#### 12.1. Atrial fibrillation

Atrial fibrillation (AF) is the most common arrhythmia. Its incidence increases with age, as does the expression of the  $IP_3R$  in the heart [168]. Expression of the  $IP_3R$  is augmented in a dog model of AF and in human AF [15,169,170]. Furthermore, cardiac tissue levels of endothelin and angiotensin II are elevated in cardiac diseases associated with AF. Both endothelin and angiotensin II increase  $IP_3$  generation [122,123] and elicit arrhythmias in isolated human atrial myocardium [134,135].

Thus, endothelin- and angiotensin II-induced IP<sub>3</sub> signaling may be involved in the initiation and progression of AF. While endothelin receptor antagonists have not yet been tested for their therapeutic potential against AF, several recent clinical trials suggest that ACE inhibition and AT<sub>1</sub> receptor blockade reduce the incidence of AF in patients at risk of developing the arrhythmia (reviewed in [171]). Furthermore, mutations in the adaptor protein ankyrin-B, which is required for post-translational stability and SR targeting of IP<sub>3</sub>Rs, are associated with AF (see below).

#### 12.2. Reperfusion arrhythmias

Ischemia and reperfusion can cause arrhythmias and sudden cardiac death. Upon reperfusion after an ischemic insult, there is a surge of IP<sub>3</sub> concentration in cardiac myocytes. The transient increase in IP<sub>3</sub> concentration is the result of  $\alpha_1$ -adrenergic receptor stimulation by norepinephrine, which is released from sympathetic nerve endings within the heart. The increase in IP<sub>3</sub> concentration correlates with the induction of arrhythmias, ventricular tachycardia and ventricular fibrillation [145]. Substances able to inhibit the IP<sub>3</sub> increase prevent the arrhythmias [145,172,173]. Inhibition of the Na<sup>+</sup>/H<sup>+</sup> exchanger (NHE) and NCX is also effective against the development of the arrhythmias [174,175]. This suggests that Na<sup>+</sup> influx through NHE, followed by Na<sup>+</sup> exit and Ca<sup>2+</sup> influx through reverse mode NCX leads to an increase in SR Ca<sup>2+</sup> load. IP<sub>3</sub>-induced SR Ca<sup>2+</sup> release with subsequent activation of forward mode NCX may then trigger the arrhythmias. Reperfusion-induced increase in  $IP_3$  concentration has been observed in atria and ventricles from both rat and human hearts following stimulation with either norepinephrine or thrombin (e.g. [4,173,176,177]).

#### 12.3. Arrhythmias related to ankyrin-B mutations

Ankyrin-B is a 220 kDa adaptor protein that directly interacts with the IP<sub>3</sub>R in cardiac myocytes. High affinity interaction between ankyrin-B and IP<sub>3</sub>R is required for post-translational stability and targeting of the IP<sub>3</sub>R to SR microdomains closely opposed to neighboring T tubules [178,179]. Loss-of-function mutations in ankyrin-B cause reduction of IP<sub>3</sub>Rs in specialized SR-T tubule junctions (distinct from the classical dyads) in cardiac myocytes and are associated with arrhythmias ranging from bradycardia, sinus arrhythmia, atrial fibrillation and catecholaminergic polymorphic ventricular tachycardia to ventricular fibrillation both in humans and in mice heterozygous for a null mutation in ankyrin-B (ankyrin- $B^{+/-}$  mice) [142,180]. In patients affected by ankyrin-B mutations, emotional or physical stress may lead to syncopes and sudden death. The cellular mechanisms underlying the ankyrin-B-related arrhythmias may involve altered  $Na^+$  and  $Ca^{2+}$  homeostasis. The macromolecular complex in the SR-T tubule junctions is composed of ankyrin-B, IP<sub>3</sub>R and the Na<sup>+</sup>-dependent transporters NCX and  $Na^+/K^+$  pump. Loss-of-function mutations in ankyrin-B disrupt this macromolecular complex. Cardiac myocytes from ankyrin- $B^{+/-}$  mice exhibit normal resting  $[Ca^{2+}]$  levels and unaltered L-type  $Ca^{2+}$  currents but increased Ca<sup>2+</sup> transients and an increased propensity toward catecholamine-induced arrhythmogenic SR Ca<sup>2+</sup> release [142] pointing to SR Ca<sup>2+</sup> overload as a causative factor. It has been suggested that IP<sub>3</sub>Rs act as "Ca<sup>2+</sup> pressure valves" releasing Ca<sup>2+</sup> from the SR, which is subsequently eliminated by the nearby NCX [179]. Thus, ankyrin-B-related arrhythmias represent another example for the importance of the subcellular distribution of the IP<sub>3</sub>R for cardiac function.

An interesting feature of the above hypothesis is that loss-offunction of IP<sub>3</sub>Rs (or mis-targeting) appears to be responsible for the ankyrin-B-related arrhythmias, which may ultimately be triggered by RyR-mediated SR Ca<sup>2+</sup> release due to SR Ca<sup>2+</sup> overload. This is in striking contrast to the arrhythmias triggered directly by activation of IP<sub>3</sub>Rs and IP<sub>3</sub>R-induced SR Ca<sup>2+</sup> release at normal SR Ca<sup>2+</sup> load. Thus, both activation and lossof-function of IP<sub>3</sub>Rs may be involved in the generation of cardiac arrhythmias.

#### 12.4. Diabetic cardiomyopathy

Diabetic cardiomyopathy is now recognized as a distinct clinical entity with characteristic structural and functional changes of the heart. Ca<sup>2+</sup> homeostasis is altered in myocytes from diabetic hearts such that electrically stimulated Ca<sup>2+</sup> transients are reduced and prolonged. These alterations are the result of changes in the expression and function of SR Ca<sup>2+</sup> handling proteins; SERCA2a, NCX and RyR expressions are reduced, whereas phospholamban expression is increased and

its phosphorylation decreased. As a consequence, SR Ca<sup>2+</sup> load is reduced, and SR Ca<sup>2+</sup> release and re-uptake are impaired [181,182]. Interestingly, an increased propensity toward arrhythmogenic afterdepolarizations has been observed in diabetic cardiomyocytes [182]. Insulin increases IP<sub>3</sub> concentration and triggers arrhythmic Ca<sup>2+</sup> release events in myocytes from diabetic *ob/ob* mice – but not from wild-type mice – and this effect is mediated via IP<sub>3</sub> signaling [183]. IP<sub>3</sub>R expression (type 1 and type 2 IP<sub>3</sub>Rs) is unaltered in ventricles from ob/obmice [183], but decreased in a diabetes model in the rat and in atrium from diabetic patients [184,185]. Both increased and decreased IP<sub>3</sub> production in response to  $\alpha$ -adrenergic stimulation has been reported in diabetes [186, 187]. PIP<sub>2</sub> levels and the expression and activities of PLC isoenzymes are reduced [188]. Taken together, these data indicate that altered receptor-PLC coupling, IP<sub>3</sub> generation and IP<sub>3</sub>-induced SR Ca<sup>2+</sup> release may contribute to impaired Ca<sup>2+</sup> handling and arrhythmogenesis in diabetic cardiomyopathy.

#### 12.5. Hypertrophy and heart failure

Many agonists of  $G_q$  protein-coupled receptors induce cardiac hypertrophy that eventually may deteriorate into heart failure. The best studied and, possibly, clinically most relevant examples include angiotensin II, endothelin-1 and norepinephrine acting predominantly via AT<sub>1</sub>, ET<sub>A</sub> and  $\alpha_1$ -adrenergic receptors, respectively. Plasma and tissue levels of angiotensin II, endothelin-1 and norepinephrine and receptor densities are often increased in hypertrophy. However, a direct role for IP<sub>3</sub> signaling in cardiac hypertrophy has remained elusive until most recently, since the respective receptors couple to various signaling pathways each of which may culminate into hypertrophy.

Early evidence suggested that IP<sub>3</sub> signaling in hypertrophy may be unaltered or even impaired [189,190]. More recent studies, however, collectively point toward an important role of PLC-IP<sub>3</sub> signaling in the development and progression of hypertrophy. For example, in pressure overload-induced hypertrophy, PLC activity was elevated and norepinephrineinduced generation of IP<sub>3</sub> was increased [191]. Moreover, IP<sub>3</sub>induced Ca<sup>2+</sup> release from the SR was larger in myocytes from hypertensive rats than from control rats [192]. In volume overload-induced hypertrophy, sarcolemmal PIP<sub>2</sub> levels were decreased, whereas PLCB1 and PLCy1 expression and activities and IP<sub>3</sub> levels were increased [193]. Furthermore, in hypertrophy induced by transient overexpression of a constitutively active  $G_{q\alpha},\ PLC\beta1$  and  $PLC\beta3$  expressions were elevated [194]. Thus, PLC-IP<sub>3</sub> signaling and IP<sub>3</sub>-induced Ca<sup>2+</sup> release are enhanced in cardiac hypertrophy. These findings also provide an explanation for the progressive nature of cardiac hypertrophy: initiation of increased gene expression through nuclear IP<sub>3</sub>-induced  $Ca^{2+}$  release appears to contribute to increased expression of the very machinery responsible for the generation of IP<sub>3</sub>, thereby creating a positive feedback loop [195].

Heart failure is accompanied by neurohormonal activation, including the sympathetic nervous system, the renin–angiotensin system and the endothelin system. Cardiac tissue levels of

norepinephrine, angiotensin II and endothelin are elevated. Expression of the respective receptors (which couple to  $IP_3$ ) formation) is altered. In human heart failure, expression of  $\alpha_1$ adrenergic receptors is unchanged (but their relative expression is increased due to a large downregulation of the predominating  $\beta_1$ -adrenergic receptors) [196], AT<sub>1</sub> receptors are downregulated (presumably due to increased angiotensin II levels [197]) and ET<sub>A</sub> receptors are upregulated [198,199]. In animal models of heart failure, changes in phosphoinositide metabolism occur, including alterations in the abundance, expression and/or activity of PIP<sub>2</sub>, PI-4 kinase, PIP-5 kinase, PLC isoforms and inositol phosphates [200,201]. Expression of IP<sub>3</sub>Rs is increased in both human and animal heart failure, whereas RyR levels are reduced, indicating a shift toward more  $IP_3R$ -mediated  $Ca^{2+}$  release in the failing heart [19,202]. These data indicate that, in heart failure, there are complex changes in the transmitter and receptor systems coupling to IP<sub>3</sub> formation as well as in the regulation of IP<sub>3</sub>Rs suggesting that IP<sub>3</sub>-induced Ca<sup>2+</sup> release is involved in the development and/or progression of the disease.

#### 13. Unresolved questions and future perspectives

Recent years have seen tremendous advances in our understanding of IP3 signaling in cardiac myocytes. There is no longer any doubt that IP<sub>3</sub> plays important physiological and pathological roles in the heart. These roles, however, are incompletely understood and remain to be defined more precisely. A puzzling aspect of IP<sub>3</sub> signaling in adult cardiac myocytes is that apparently it exerts more adverse than beneficial effects. Is IP<sub>3</sub> signaling in adult myocardium a mere remnant of the developing heart or does it serve unique functions beyond arrhythmogenesis and induction of (maladaptive) remodeling? Further important but still largely unresolved questions are: Why do cardiac myocytes express different IP<sub>3</sub>R isoforms? How is expression of IP<sub>3</sub>Rs regulated? What is the composition, subcellular distribution and functional role of IP<sub>3</sub>R macromolecular complexes in cardiac myocytes? Which kinases and phosphatases regulate cardiac IP<sub>3</sub>R phosphorylation and what is the functional impact of this regulation? By what other means is IP<sub>3</sub>R function regulated? How exactly is IP<sub>3</sub> signaling involved in the development and progression of cardiac diseases? Future studies should aim at answering these questions. Clearly, IP<sub>3</sub> signaling in cardiac myocytes will continue being an important topic in cardiac physiology as well as cardiology. It certainly holds the promise for further surprises and excitement.

#### Acknowledgments

The authors' work was supported by grants from the Deutsche Forschungsgemeinschaft (DFG–PI414/1 and PI414/2, KFO 155, to BP & JK), the National Institutes of Health (NIH–HL80101 and HL62231 to LAB), the American Heart Association (AHA–AHA0530309Z to AVZ) and the British Heart Foundation and the BBSRC (to MDB and HLR). HLR is a Royal Society University Research Fellow.

#### References

- Streb H, Irvine RF, Berridge MJ, Schulz I. Release of Ca<sup>2+</sup> from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 1983;306:67–9.
- [2] Rizzuto R, Pozzan T. Microdomains of intracellular Ca<sup>2+</sup>: molecular determinants and functional consequences. Physiol Rev 2006;86: 369–408.
- [3] Vazquez G, Wedel BJ, Bird GS, Joseph SK, Putney JW. An inositol 1,4,5trisphosphate receptor-dependent cation entry pathway in DT40 B lymphocytes. Embo J 2002;21:4531–8.
- [4] Woodcock EA, Lambert KA, Phan T, Jacobsen AN. Inositol phosphate metabolism during myocardial ischemia. J Mol Cell Cardiol 1997;29: 449–60.
- [5] Nasuhoglu C, Feng S, Mao Y, Shammat I, Yamamato M, Earnest S, et al. Modulation of cardiac PIP<sub>2</sub> by cardioactive hormones and other physiologically relevant interventions. Am J Physiol Cell Physiol 2002; 283:C223–34.
- [6] Hilgemann DW, Feng S, Nasuhoglu C. The complex and intriguing lives of PIP<sub>2</sub> with ion channels and transporters. Sci STKE 2001;2001:RE19.
- [7] Fukami K, Endo T, Imamura M, Takenawa T. Alpha-actinin and vinculin are PIP<sub>2</sub>-binding proteins involved in signaling by tyrosine kinase. J Biol Chem 1994;269:1518–22.
- [8] Rhee SG. Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem 2001;70:281–312.
- [9] Cockcroft S. The latest phospholipase C, PLCeta, is implicated in neuronal function. Trends Biochem Sci 2006;31:4–7.
- [10] Leung E, Johnston CI, Woodcock EA. Stimulation of phosphatidylinositol metabolism in atrial and ventricular myocytes. Life Sci 1986;39: 2215–20.
- [11] Remus TP, Zima AV, Bossuyt J, Bare DJ, Martin JL, Blatter LA, et al. Biosensors to measure inositol 1,4,5-trisphosphate concentration in living cells with spatiotemporal resolution. J Biol Chem 2006;281:608–16.
- [12] Cooling M, Hunter P, Crampin EJ. Modeling hypertrophic IP<sub>3</sub> transients in the cardiac myocyte. Biophys J 2007;93:3421–33.
- [13] Nasuhoglu C, Feng S, Mao J, Yamamoto M, Yin HL, Earnest S, et al. Nonradioactive analysis of phosphatidylinositides and other anionic phospholipids by anion-exchange high-performance liquid chromatography with suppressed conductivity detection. Anal Biochem 2002;301: 243–54.
- [14] Woodcock EA, Lambert KA. Acute effects of cell isolation on InsP profiles in adult rat cardiomyocytes. J Mol Cell Cardiol 1997;29: 3275–83.
- [15] Yamada J, Ohkusa T, Nao T, Ueyama T, Yano M, Kobayashi S, et al. Upregulation of inositol 1,4,5 trisphosphate receptor expression in atrial tissue in patients with chronic atrial fibrillation. J Am Coll Cardiol 2001; 37:1111–9.
- [16] Gorza L, Schiaffino S, Volpe P. Inositol 1,4,5-trisphosphate receptor in heart: evidence for its concentration in Purkinje myocytes of the conduction system. J Cell Biol 1993;121:345–53.
- [17] Li X, Zima AV, Sheikh F, Blatter LA, Chen J. Endothelin-1-induced arrhythmogenic Ca<sup>2+</sup> signaling is abolished in atrial myocytes of inositol-1,4,5-trisphosphate(IP<sub>3</sub>)-receptor type 2-deficient mice. Circ Res 2005; 96:1274–81.
- [18] Bare DJ, Kettlun CS, Liang M, Bers DM, Mignery GA. Cardiac type 2 inositol 1,4,5-trisphosphate receptor: interaction and modulation by calcium/calmodulin-dependent protein kinase II. J Biol Chem 2005;280: 15912–20.
- [19] Go LO, Moschella MC, Watras J, Handa KK, Fyfe BS, Marks AR. Differential regulation of two types of intracellular calcium release channels during end-stage heart failure. J Clin Invest 1995;95:888–94.
- [20] Bultynck G, Sienaert I, Parys JB, Callewaert G, De Smedt H, Boens N, et al. Pharmacology of inositol trisphosphate receptors. Pflugers Arch 2003;445:629–42.
- [21] Bezprozvanny I. The inositol 1,4,5-trisphosphate receptors. Cell Calcium 2005;38:261–72.
- [22] Mikoshiba K. IP<sub>3</sub> receptor/Ca<sup>2+</sup> channel: from discovery to new signaling concepts. J Neurochem 2007;102:1426–46.

- [23] Foskett JK, White C, Cheung KH, Mak DO. Inositol trisphosphate receptor Ca<sup>2+</sup> release channels. Physiol Rev 2007;87:593–658.
- [24] Roderick HL, Bootman MD. Bi-directional signalling from the InsP<sub>3</sub> receptor: regulation by calcium and accessory factors. Biochem Soc Trans 2003;31:950–3.
- [25] Szado T, Vanderheyden V, Parys JB, De Smedt H, Rietdorf K, Kotelevets L, et al. Phosphorylation of inositol 1,4,5-trisphosphate receptors by protein kinase B/Akt inhibits Ca<sup>2+</sup> release and apoptosis. Proc Natl Acad Sci U S A 2008.
- [26] Tang TS, Tu H, Wang Z, Bezprozvanny I. Modulation of type 1 inositol (1,4,5)-trisphosphate receptor function by protein kinase a and protein phosphatase 1alpha. J Neurosci 2003;23:403–15.
- [27] Gomes DA, Leite MF, Bennett AM, Nathanson MH. Calcium signaling in the nucleus. Can J Physiol Pharmacol 2006;84:325–32.
- [28] Boivin B, Chevalier D, Villeneuve LR, Rousseau E, Allen BG. Functional endothelin receptors are present on nuclei in cardiac ventricular myocytes. J Biol Chem 2003;278:29153–63.
- [29] Allbritton NL, Meyer T, Stryer L. Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science 1992;258:1812–5.
- [30] York JD. Regulation of nuclear processes by inositol polyphosphates. Biochim Biophys Acta 2006;1761:552–9.
- [31] Scholz J, Troll U, Sandig P, Schmitz W, Scholz H, Schulte Am Esch J. Existence and alpha 1-adrenergic stimulation of inositol polyphosphates in mammalian heart. Mol Pharmacol 1992;42:134–40.
- [32] Kijima Y, Fleischer S. Two types of inositol trisphosphate binding in cardiac microsomes. Biochem Biophys Res Commun 1992;189:728–35.
- [33] Rowley KG, Gundlach AL, Cincotta M, Louis WJ. Inositol hexakisphosphate binding sites in rat heart and brain. Br J Pharmacol 1996;118: 1615–20.
- [34] Dean NM, Beaven MA. Methods for the analysis of inositol phosphates. Anal Biochem 1989;183:199–209.
- [35] Challiss RA, Chilvers ER, Willcocks AL, Nahorski SR. Heterogeneity of [<sup>3</sup>H]inositol 1,4,5-trisphosphate binding sites in adrenal–cortical membranes. Characterization and validation of a radioreceptor assay. Biochem J 1990;265:421–7.
- [36] Woodcock EA. Analysis of inositol phosphates in heart tissue using anion-exchange high-performance liquid chromatography. Mol Cell Biochem 1997;172:121–7.
- [37] Nahorski SR, Young KW, John Challiss RA, Nash MS. Visualizing phosphoinositide signalling in single neurons gets a green light. Trends Neurosci 2003;26:444–52.
- [38] Tanimura A, Nezu A, Morita T, Turner RJ, Tojyo Y. Fluorescent biosensor for quantitative real-time measurements of inositol 1,4,5trisphosphate in single living cells. J Biol Chem 2004;279:38095–8.
- [39] Sugimoto K, Nishida M, Otsuka M, Makino K, Ohkubo K, Mori Y, et al. Novel real-time sensors to quantitatively assess in vivo inositol 1,4,5trisphosphate production in intact cells. Chem Biol 2004;11:475–85.
- [40] Bartlett PJ, Young KW, Nahorski SR, Challiss RA. Single cell analysis and temporal profiling of agonist-mediated inositol 1,4,5-trisphosphate, Ca<sup>2+</sup>, diacylglycerol, and protein kinase C signaling using fluorescent biosensors. J Biol Chem 2005;280:21837–46.
- [41] Domeier TL, Zima AV, Maxwell JT, Huke S, Mignery GA, Blatter LA. IP<sub>3</sub> receptor-dependent Ca<sup>2+</sup> release modulates excitation–contraction coupling in rabbit ventricular myocytes. Am J Physiol Heart Circ Physiol 2008;294:H596–604.
- [42] Bootman MD, Collins TJ, Mackenzie L, Roderick HL, Berridge MJ, Peppiatt CM. 2-aminoethoxydiphenyl borate (2-APB) is a reliable blocker of store-operated Ca<sup>2+</sup> entry but an inconsistent inhibitor of InsP<sub>3</sub>-induced Ca<sup>2+</sup> release. Faseb J 2002;16:1145–50.
- [43] Taylor CW, Broad LM. Pharmacological analysis of intracellular Ca<sup>2+</sup> signalling: problems and pitfalls. Trends Pharmacol Sci 1998;19: 370–5.
- [44] Thomas D, Lipp P, Tovey SC, Berridge MJ, Li W, Tsien RY, et al. Microscopic properties of elementary Ca<sup>2+</sup> release sites in non-excitable cells. Curr Biol 2000;10:8–15.
- [45] Li W, Llopis J, Whitney M, Zlokarnik G, Tsien RY. Cell-permeant caged InsP<sub>3</sub> ester shows that Ca<sup>2+</sup> spike frequency can optimize gene expression. Nature 1998;392:936–41.

- [46] Kantevari S, Hoang CJ, Ogrodnik J, Egger M, Niggli E, Ellis-Davies GC. Synthesis and two-photon photolysis of 6-(ortho-nitroveratryl)-caged IP<sub>3</sub> in living cells. Chembiochem 2006;7:174–80.
- [47] Hirata M, Suematsu E, Hashimoto T, Hamachi T, Koga T. Release of Ca<sup>2+</sup> from a non-mitochondrial store site in peritoneal macrophages treated with saponin by inositol 1,4,5-trisphosphate. Biochem J 1984;223: 229–36.
- [48] Nosek TM, Williams MF, Zeigler ST, Godt RE. Inositol trisphosphate enhances calcium release in skinned cardiac and skeletal muscle. Am J Physiol 1986;250:C807–11.
- [49] Kentish JC, Barsotti RJ, Lea TJ, Mulligan IP, Patel JR, Ferenczi MA. Calcium release from cardiac sarcoplasmic reticulum induced by photorelease of calcium or Ins(1,4,5)P<sub>3</sub>. Am J Physiol 1990;258:H610–5.
- [50] Vites AM, Pappano A. Inositol 1,4,5-trisphosphate releases intracellular Ca<sup>2+</sup> in permeabilized chick atria. Am J Physiol 1990;258:H1745–52.
- [51] Fabiato A. Two kinds of calcium-induced release of calcium from the sarcoplasmic reticulum of skinned cardiac cells. Adv Exp Med Biol 1992; 311:245–62.
- [52] Bers DM, Stiffel VM. Ratio of ryanodine to dihydropyridine receptors in cardiac and skeletal muscle and implications for E–C coupling. Am J Physiol 1993;264:C1587–93.
- [53] Bers DM. Excitation-contraction coupling and cardiac contractile force. 2nd ed. Dordrecht: Kluwer Academic Publishers; 2001.
- [54] Moschella MC, Marks AR. Inositol 1,4,5-trisphosphate receptor expression in cardiac myocytes. J Cell Biol 1993;120:1137–46.
- [55] Nimer LR, Needleman DH, Hamilton SL, Krall J, Movsesian MA. Effect of ryanodine on sarcoplasmic reticulum Ca<sup>2+</sup> accumulation in nonfailing and failing human myocardium. Circulation 1995;92:2504–10.
- [56] Jeyakumar LH, Ballester L, Cheng DS, McIntyre JO, Chang P, Olivey HE, et al. FKBP binding characteristics of cardiac microsomes from diverse vertebrates. Biochem Biophys Res Commun 2001;281:979–86.
- [57] Perez PJ, Ramos-Franco J, Fill M, Mignery GA. Identification and functional reconstitution of the type 2 inositol 1,4,5-trisphosphate receptor from ventricular cardiac myocytes. J Biol Chem 1997;272: 23961–9.
- [58] Lipp P, Laine M, Tovey SC, Burrell KM, Berridge MJ, Li W, et al. Functional InsP<sub>3</sub> receptors that may modulate excitation–contraction coupling in the heart. Curr Biol 2000;10:939–42.
- [59] Bers DM. Cardiac excitation-contraction coupling. Nature 2002;415: 198–205.
- [60] Missiaen L, De Smedt H, Parys JB, Casteels R. Co-activation of inositol trisphosphate-induced Ca<sup>2+</sup> release by cytosolic Ca<sup>2+</sup> is loadingdependent. J Biol Chem 1994;269:7238–42.
- [61] Bootman MD, Missiaen L, Parys JB, De Smedt H, Casteels R. Control of inositol 1,4,5-trisphosphate-induced Ca<sup>2+</sup> release by cytosolic Ca<sup>2+</sup>. Biochem J 1995;306:445–51.
- [62] Gilbert JC, Shirayama T, Pappano AJ. Inositol trisphosphate promotes Na-Ca exchange current by releasing calcium from sarcoplasmic reticulum in cardiac myocytes. Circ Res 1991;69:1632–9.
- [63] Mackenzie L, Bootman MD, Laine M, Berridge MJ, Thuring J, Holmes A, et al. The role of inositol 1,4,5-trisphosphate receptors in Ca<sup>2+</sup> signalling and the generation of arrhythmias in rat atrial myocytes. J Physiol 2002;541:395–409.
- [64] Ter Keurs HE, Boyden PA. Calcium and arrhythmogenesis. Physiol Rev 2007;87:457–506.
- [65] Eisner DA, Trafford AW, Diaz ME, Overend CL, O'Neill SC. The control of Ca release from the cardiac sarcoplasmic reticulum: regulation versus autoregulation. Cardiovasc Res 1998;38:589–604.
- [66] Eisner DA, Choi HS, Diaz ME, O'Neill SC, Trafford AW. Integrative analysis of calcium cycling in cardiac muscle. Circ Res 2000;87: 1087–94.
- [67] Trafford AW, Diaz ME, Eisner DA. Stimulation of Ca-induced Ca release only transiently increases the systolic Ca transient: measurements of Ca fluxes and sarcoplasmic reticulum Ca. Cardiovasc Res 1998;37:710–7.
- [68] Bassani JW, Bassani RA, Bers DM. Twitch-dependent SR Ca accumulation and release in rabbit ventricular myocytes. Am J Physiol 1993;265: C533-40.
- [69] Gyorke I, Gyorke S. Regulation of the cardiac ryanodine receptor channel

by luminal  $Ca^{2+}$  involves luminal  $Ca^{2+}$  sensing sites. Biophys J 1998;75: 2801–10.

- [70] Zima AV, Blatter LA. Inositol-1,4,5-trisphosphate-dependent Ca<sup>2+</sup> signalling in cat atrial excitation–contraction coupling and arrhythmias. J Physiol 2004;555:607–15.
- [71] Bootman MD, Harzheim D, Smyrnias I, Conway SJ, Roderick HL. Temporal changes in atrial EC-coupling during prolonged stimulation with endothelin-1. Cell Calcium 2007;42:489–501.
- [72] Kockskamper J, Seidlmayer L, Walther S, Hellenkamp K, Maier LS, Pieske B. Endothelin-1 enhances nuclear Ca<sup>2+</sup> transients in atrial myocytes through Ins(1,4,5)P<sub>3</sub>-dependent Ca<sup>2+</sup> release from perinuclear Ca<sup>2+</sup> stores. J Cell Sci 2008;121:186–95.
- [73] Berridge MJ. Elementary and global aspects of calcium signalling. J Exp Biol 1997;200:315–9.
- [74] Bootman MD, Lipp P, Berridge MJ. The organisation and functions of local Ca<sup>2+</sup> signals. J Cell Sci 2001;114:2213–22.
- [75] Cheng H, Lederer WJ, Cannell MB. Calcium sparks: elementary events underlying excitation–contraction coupling in heart muscle. Science 1993;262:740–4.
- [76] Lopez-Lopez JR, Shacklock PS, Balke CW, Wier WG. Local, stochastic release of Ca<sup>2+</sup> in voltage-clamped rat heart cells: visualization with confocal microscopy. J Physiol 1994;480:21–9.
- [77] Tsugorka A, Rios E, Blatter LA. Imaging elementary events of calcium release in skeletal muscle cells. Science 1995;269:1723–6.
- [78] Huser J, Lipsius SL, Blatter LA. Calcium gradients during excitation– contraction coupling in cat atrial myocytes. J Physiol 1996;494:641–51.
- [79] Parker I, Choi J, Yao Y. Elementary events of InsP<sub>3</sub>-induced Ca<sup>2+</sup> liberation in *Xenopus* oocytes: hot spots, puffs and blips. Cell Calcium 1996;20:105–21.
- [80] Huser J, Blatter LA. Elementary events of agonist-induced Ca<sup>2+</sup> release in vascular endothelial cells. Am J Physiol 1997;273:C1775–82.
- [81] Blatter LA, Huser J, Rios E. Sarcoplasmic reticulum Ca<sup>2+</sup> release flux underlying Ca<sup>2+</sup> sparks in cardiac muscle. Proc Natl Acad Sci U S A 1997;94:4176–81.
- [82] Bootman M, Niggli E, Berridge M, Lipp P. Imaging the hierarchical Ca<sup>2+</sup> signalling system in HeLa cells. J Physiol 1997;499:307–14.
- [83] Gyorke S, Lukyanenko V, Gyorke I. Dual effects of tetracaine on spontaneous calcium release in rat ventricular myocytes. J Physiol 1997; 500:297–309.
- [84] Berridge MJ. Elementary and global aspects of calcium signalling. J Physiol 1997;499:291–306.
- [85] Fu JD, Yang HT. Developmental regulation of intracellular calcium homeostasis in early cardiac myocytes. Sheng Li Xue Bao 2006;58: 95–103.
- [86] Puceat M, Jaconi M. Ca<sup>2+</sup> signalling in cardiogenesis. Cell Calcium 2005; 38:383–9.
- [87] Takeshima H, Komazaki S, Hirose K, Nishi M, Noda T, Iino M. Embryonic lethality and abnormal cardiac myocytes in mice lacking ryanodine receptor type 2. Embo J 1998;17:3309–16.
- [88] Yang HT, Tweedie D, Wang S, Guia A, Vinogradova T, Bogdanov K, et al. The ryanodine receptor modulates the spontaneous beating rate of cardiomyocytes during development. Proc Natl Acad Sci U S A 2002;99: 9225–30.
- [89] Sasse P, Zhang J, Cleemann L, Morad M, Hescheler J, Fleischmann BK. Intracellular Ca<sup>2+</sup> oscillations, a potential pacemaking mechanism in early embryonic heart cells. J Gen Physiol 2007;130:133–44.
- [90] Liu W, Yasui K, Opthof T, Ishiki R, Lee JK, Kamiya K, et al. Developmental changes of Ca<sup>2+</sup> handling in mouse ventricular cells from early embryo to adulthood. Life Sci 2002;71:1279–92.
- [91] Rosemblit N, Moschella MC, Ondriasa E, Gutstein DE, Ondrias K, Marks AR. Intracellular calcium release channel expression during embryogenesis. Dev Biol 1999;206:163–77.
- [92] Schroder EA, Wei Y, Satin J. The developing cardiac myocyte: maturation of excitability and excitation–contraction coupling. Ann N Y Acad Sci 2006;1080:63–75.
- [93] Sachinidis A, Fleischmann BK, Kolossov E, Wartenberg M, Sauer H, Hescheler J. Cardiac specific differentiation of mouse embryonic stem cells. Cardiovasc Res 2003;58:278–91.

- [94] Banach K, Halbach MD, Hu P, Hescheler J, Egert U. Development of electrical activity in cardiac myocyte aggregates derived from mouse embryonic stem cells. Am J Physiol Heart Circ Physiol 2003;284: H2114-23.
- [95] Kolossov E, Fleischmann BK, Liu Q, Bloch W, Viatchenko-Karpinski S, Manzke O, et al. Functional characteristics of ES cell-derived cardiac precursor cells identified by tissue-specific expression of the green fluorescent protein. J Cell Biol 1998;143:2045–56.
- [96] Yasui K, Liu W, Opthof T, Kada K, Lee JK, Kamiya K, et al. I<sub>f</sub> current and spontaneous activity in mouse embryonic ventricular myocytes. Circ Res 2001;88:536–42.
- [97] Mery A, Aimond F, Menard C, Mikoshiba K, Michalak M, Puceat M. Initiation of embryonic cardiac pacemaker activity by inositol 1,4,5trisphosphate-dependent calcium signaling. Mol Biol Cell 2005;16: 2414–23.
- [98] Viatchenko-Karpinski S, Fleischmann BK, Liu Q, Sauer H, Gryshchenko O, Ji GJ, et al. Intracellular Ca<sup>2+</sup> oscillations drive spontaneous contractions in cardiomyocytes during early development. Proc Natl Acad Sci U S A 1999;96:8259–64.
- [99] Fu JD, Yu HM, Wang R, Liang J, Yang HT. Developmental regulation of intracellular calcium transients during cardiomyocyte differentiation of mouse embryonic stem cells. Acta Pharmacol Sin 2006;27:901–10.
- [100] Sauer H, Theben T, Hescheler J, Lindner M, Brandt MC, Wartenberg M. Characteristics of calcium sparks in cardiomyocytes derived from embryonic stem cells. Am J Physiol Heart Circ Physiol 2001;281: H411–21.
- [101] Kapur N, Banach K. Inositol-1,4,5-trisphosphate-mediated spontaneous activity in mouse embryonic stem cell-derived cardiomyocytes. J Physiol 2007;581:1113–27.
- [102] Jaconi M, Bony C, Richards SM, Terzic A, Arnaudeau S, Vassort G, et al. Inositol 1,4,5-trisphosphate directs Ca<sup>2+</sup> flow between mitochondria and the endoplasmic/sarcoplasmic reticulum: a role in regulating cardiac autonomic Ca<sup>2+</sup> spiking. Mol Biol Cell 2000;11:1845–58.
- [103] Luo D, Yang D, Lan X, Li K, Li X, Chen J, et al. Nuclear Ca<sup>2+</sup> sparks and waves mediated by inositol 1,4,5-trisphosphate receptors in neonatal rat cardiomyocytes. Cell Calcium 2008;43:165–74.
- [104] Shubeita HE, McDonough PM, Harris AN, Knowlton KU, Glembotski CC, Brown JH, et al. Endothelin induction of inositol phospholipid hydrolysis, sarcomere assembly, and cardiac gene expression in ventricular myocytes. A paracrine mechanism for myocardial cell hypertrophy. J Biol Chem 1990;265:20555–62.
- [105] Iwaki K, Sukhatme VP, Shubeita HE, Chien KR. Alpha- and betaadrenergic stimulation induces distinct patterns of immediate early gene expression in neonatal rat myocardial cells. fos/jun expression is associated with sarcomere assembly; Egr-1 induction is primarily an alpha 1-mediated response. J Biol Chem 1990;265:13809–17.
- [106] Ibarra C, Estrada M, Carrasco L, Chiong M, Liberona JL, Cardenas C, et al. Insulin-like growth factor-1 induces an inositol 1,4,5-trisphosphatedependent increase in nuclear and cytosolic calcium in cultured rat cardiac myocytes. J Biol Chem 2004;279:7554–65.
- [107] Janowski E, Cleemann L, Sasse P, Morad M. Diversity of Ca<sup>2+</sup> signaling in developing cardiac cells. Ann N Y Acad Sci 2006;1080:154–64.
- [108] Guatimosim S, Amaya MJ, Guerra MT, Aguiar CJ, Goes AM, Gomez-Viquez NL, et al. Nuclear Ca<sup>2+</sup> regulates cardiomyocyte function. Cell Calcium 2008 Jan 15.
- [109] Luo DL, Gao J, Lan XM, Wang G, Wei S, Xiao RP, et al. Role of inositol 1,4,5-trisphosphate receptors in alpha1-adrenergic receptorinduced cardiomyocyte hypertrophy. Acta Pharmacol Sin 2006;27: 895–900.
- [110] Matsumoto M, Nakagawa T, Inoue T, Nagata E, Tanaka K, Takano H, et al. Ataxia and epileptic seizures in mice lacking type 1 inositol 1,4,5trisphosphate receptor. Nature 1996;379:168–71.
- [111] Futatsugi A, Nakamura T, Yamada MK, Ebisui E, Nakamura K, Uchida K, et al. IP<sub>3</sub> receptor types 2 and 3 mediate exocrine secretion underlying energy metabolism. Science 2005;309:2232–4.
- [112] Brown SL, Brown JH. Muscarinic stimulation of phosphatidylinositol metabolism in atria. Mol Pharmacol 1983;24:351–6.
- [113] Ransnas L, Gjorstrup P, Hjalmarson A, Sjogren CG, Jacobsson B.

Muscarinic receptors in mammalian myocardium: effects of atrial and ventricular receptors on phosphatidylinositol metabolism and adenylate cyclase. J Mol Cell Cardiol 1986;18:807–14.

- [114] Tajima T, Tsuji Y, Brown JH, Pappano AJ. Pertussis toxin-insensitive phosphoinositide hydrolysis, membrane depolarization, and positive inotropic effect of carbachol in chick atria. Circ Res 1987;61:436–45.
- [115] Imai S, Ohta H. Positive inotropic effects induced by carbachol in rat atria treated with islet-activating protein (IAP)—association with phosphatidylinositol breakdown. Br J Pharmacol 1988;94:347–54.
- [116] Sakuma I, Gross SS, Levi R. Positive inotropic effect of histamine on guinea pig left atrium: H<sub>1</sub>-receptor-induced stimulation of phosphoinositide turnover. J Pharmacol Exp Ther 1988;247:466–72.
- [117] Scholz J, Schaefer B, Schmitz W, Scholz H, Steinfath M, Lohse M, et al. Alpha-1 adrenoceptor-mediated positive inotropic effect and inositol trisphosphate increase in mammalian heart. J Pharmacol Exp Ther 1988; 245:327–35.
- [118] Baker KM, Singer HA. Identification and characterization of guinea pig angiotensin II ventricular and atrial receptors: coupling to inositol phosphate production. Circ Res 1988;62:896–904.
- [119] Baker KM, Aceto JA. Characterization of avian angiotensin II cardiac receptors: coupling to mechanical activity and phosphoinositide metabolism. J Mol Cell Cardiol 1989;21:375–82.
- [120] Vigne P, Lazdunski M, Frelin C. The inotropic effect of endothelin-1 on rat atria involves hydrolysis of phosphatidylinositol. FEBS Lett 1989; 249:143–6.
- [121] Kohl C, Schmitz W, Scholz H. Positive inotropic effect of carbachol and inositol phosphate levels in mammalian atria after pretreatment with pertussis toxin. J Pharmacol Exp Ther 1990;254:894–9.
- [122] Zerkowski HR, Broede A, Kunde K, Hillemann S, Schafer E, Vogelsang M, et al. Comparison of the positive inotropic effects of serotonin, histamine, angiotensin II, endothelin and isoprenaline in the isolated human right atrium. Naunyn Schmiedebergs Arch Pharmacol 1993;347:347–52.
- [123] Vogelsang M, Broede-Sitz A, Schafer E, Zerkowski HR, Brodde OE. Endothelin ET<sub>A</sub>-receptors couple to inositol phosphate formation and inhibition of adenylate cyclase in human right atrium. J Cardiovasc Pharmacol 1994;23:344–7.
- [124] Laer S, Remmers F, Scholz H, Stein B, Muller FU, Neumann J. Receptor mechanisms involved in the 5-HT-induced inotropic action in the rat isolated atrium. Br J Pharmacol 1998;123:1182–8.
- [125] Willmy-Matthes P, Leineweber K, Wangemann T, Silber RE, Brodde OE. Existence of functional M<sub>3</sub>-muscarinic receptors in the human heart. Naunyn Schmiedebergs Arch Pharmacol 2003;368:316–9.
- [126] Vites AM, Pappano AJ. Regulation of InsP<sub>3</sub>-induced contractions by myoplasmic calcium in permeabilized atrial muscle. Cardiovasc Res 1995;30:905–14.
- [127] Mackenzie L, Roderick HL, Berridge MJ, Conway SJ, Bootman MD. The spatial pattern of atrial cardiomyocyte calcium signalling modulates contraction. J Cell Sci 2004;117:6327–37.
- [128] Mackenzie L, Roderick HL, Proven A, Conway SJ, Bootman MD. Inositol 1,4,5-trisphosphate receptors in the heart. Biol Res 2004;37: 553–7.
- [129] Cote K, Proteau S, Teijeira J, Rousseau E. Characterization of the sarcoplasmic reticulum K<sup>+</sup> and Ca<sup>2+</sup>-release channel-ryanodine receptorin human atrial cells. J Mol Cell Cardiol 2000;32:2051–63.
- [130] Picard L, Cote K, Teijeira J, Greentree D, Rousseau E. Sarcoplasmic reticulum K<sup>+</sup> channels from human and sheep atrial cells display a specific electro-pharmacological profile. J Mol Cell Cardiol 2002;34: 1163–72.
- [131] Holubarsch C, Hasenfuss G, Schmidt-Schweda S, Knorr A, Pieske B, Ruf T, et al. Angiotensin I and II exert inotropic effects in atrial but not in ventricular human myocardium. An in vitro study under physiological experimental conditions. Circulation 1993;88:1228–37.
- [132] Kockskamper J, Sigirci E, Pieske B, Endothelin-1 elicits direct arrhythmogenic effects in rabbit and human atrial myocardium. Pflugers Arch 2004;447:P26–33 [Abstract].
- [133] Pieske B, Kockskamper J. Alternans goes subcellular: a "disease" of the ryanodine receptor? Circ Res 2002;91:553–5.

- [134] Burrell KM, Molenaar P, Dawson PJ, Kaumann AJ. Contractile and arrhythmic effects of endothelin receptor agonists in human heart in vitro: blockade with SB 209670. J Pharmacol Exp Ther 2000;292: 449–59.
- [135] Kockskämper J, Sigirci E, Rübertus SU, Pieske B. Endothelin-1 elicits arrhythmias in human atrium via modulation of intracellular calcium release. Circulation 2004;110:163 [Abstract].
- [136] Gassanov N, Brandt MC, Michels G, Lindner M, Er F, Hoppe UC. Angiotensin II-induced changes of calcium sparks and ionic currents in human atrial myocytes: potential role for early remodeling in atrial fibrillation. Cell Calcium 2006;39:175–86.
- [137] Zima AV, Bare DJ, Mignery GA, Blatter LA. IP<sub>3</sub>-dependent nuclear Ca<sup>2+</sup> signalling in the mammalian heart. J Physiol 2007;584:601–11.
- [138] Lencesova L, Ondrias K, Micutkova L, Filipenko M, Kvetnansky R, Krizanova O. Immobilization stress elevates IP<sub>3</sub> receptor mRNA in adult rat hearts in a glucocorticoid-dependent manner. FEBS Lett 2002;531: 432–6.
- [139] Mohler PJ, Yoon W, Bennett V. Ankyrin-B targets beta2-spectrin to an intracellular compartment in neonatal cardiomyocytes. J Biol Chem 2004;279:40185–93.
- [140] Wu X, Zhang T, Bossuyt J, Li X, McKinsey TA, Dedman JR, et al. Local InsP<sub>3</sub>-dependent perinuclear Ca<sup>2+</sup> signaling in cardiac myocyte excitation-transcription coupling. J Clin Invest 2006;116:675–82.
- [141] Wu X, Bers DM. Sarcoplasmic reticulum and nuclear envelope are one highly interconnected Ca<sup>2+</sup> store throughout cardiac myocyte. Circ Res 2006;99:283–91.
- [142] Mohler PJ, Schott JJ, Gramolini AO, Dilly KW, Guatimosim S, duBell WH, et al. Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature 2003;421:634–9.
- [143] Proven A, Roderick HL, Conway SJ, Berridge MJ, Horton JK, Capper SJ, et al. Inositol 1,4,5-trisphosphate supports the arrhythmogenic action of endothelin-1 on ventricular cardiac myocytes. J Cell Sci 2006;119: 3363–75.
- [144] Amirahmadi F, Turnbull L, Du XJ, Graham RM, Woodcock EA. Heightened alpha1A-adrenergic receptor activity suppresses ischaemia/ reperfusion-induced Ins(1,4,5)P<sub>3</sub> generation in the mouse heart: a comparison with ischaemic preconditioning. Clin Sci (Lond) 2008;114: 157–64.
- [145] Woodcock EA, Arthur JF, Matkovich SJ. Inositol 1,4,5-trisphosphate and reperfusion arrhythmias. Clin Exp Pharmacol Physiol 2000;27:734–7.
- [146] Felzen B, Shilkrut M, Less H, Sarapov I, Maor G, Coleman R, et al. Fas (CD95/Apo-1)-mediated damage to ventricular myocytes induced by cytotoxic T lymphocytes from perforin-deficient mice: a major role for inositol 1,4,5-trisphosphate. Circ Res 1998;82:438–50.
- [147] Binah O, Shilkrut M, Yaniv G, Larisch S. The Fas receptor-1,4,5-IP<sub>3</sub> cascade: a potential target for treating heart failure and arrhythmias. Ann N Y Acad Sci 2004;1015:338–50.
- [148] Liu J, He ZY, Xu SM, Liu FY, Wang PY. Inositol 1,4,5-triphosphate receptors (IP<sub>3</sub>Rs) in myocardial nuclei involved in pressure overloadinduced hypertrophy of rat heart. Sheng Li Xue Bao 2001;53:281–5.
- [149] Bossuyt J, Helmstadter K, Wu X, Clements-Jewery H, Haworth RS, Avkiran M, et al. Ca<sup>2+</sup>/calmodulin-dependent protein kinase II {delta} and protein kinase D overexpression reinforce the histone deacetylase 5 redistribution in heart failure. Circ Res 2008;102:695–702.
- [150] Sugden PH, Clerk A. Endothelin signalling in the cardiac myocyte and its pathophysiological relevance. Curr Vasc Pharmacol 2005;3:343–51.
- [151] Beghetti M, Black SM, Fineman JR. Endothelin-1 in congenital heart disease. Pediatr Res 2005;57:16R–20R.
- [152] Singal T, Dhalla NS, Tappia PS. Phospholipase C may be involved in norepinephrine-induced cardiac hypertrophy. Biochem Biophys Res Commun 2004;320:1015–9.
- [153] Akhter SA, Luttrell LM, Rockman HA, Iaccarino G, Lefkowitz RJ, Koch WJ. Targeting the receptor-G<sub>q</sub> interface to inhibit in vivo pressure overload myocardial hypertrophy. Science 1998;280:574–7.
- [154] Ito H, Hirata Y, Hiroe M, Tsujino M, Adachi S, Takamoto T, et al. Endothelin-1 induces hypertrophy with enhanced expression of musclespecific genes in cultured neonatal rat cardiomyocytes. Circ Res 1991;69: 209–15.

- [155] Roderick HL, Higazi DR, Smyrnias I, Fearnley C, Harzheim D, Bootman MD. Calcium in the heart: when it's good, it's very very good, but when it's bad, it's horrid. Biochem Soc Trans 2007;35:957–61.
- [156] Molkentin JD. Dichotomy of Ca<sup>2+</sup> in the heart: contraction versus intracellular signaling. J Clin Invest 2006;116:623–6.
- [157] Garcia KD, Shah T, Garcia J. Immunolocalization of type 2 inositol 1,4,5trisphosphate receptors in cardiac myocytes from newborn mice. Am J Physiol Cell Physiol 2004;287:C1048–57.
- [158] Barac YD, Zeevi-Levin N, Yaniv G, Reiter I, Milman F, Shilkrut M, et al. The 1,4,5-inositol trisphosphate pathway is a key component in Fasmediated hypertrophy in neonatal rat ventricular myocytes. Cardiovasc Res 2005;68:75–86.
- [159] Zhu Y, Nosek TM. Inositol trisphosphate enhances Ca<sup>2+</sup> oscillations but not Ca<sup>2+</sup>-induced Ca<sup>2+</sup> release from cardiac sarcoplasmic reticulum. Pflugers Arch 1991;418:1–6.
- [160] Maltsev VA, Lakatta EG. Normal heart rhythm is initiated and regulated by an intracellular calcium clock within pacemaker cells. Heart Lung Circ 2007;16:335–48.
- [161] Mori T, Hashimoto A. Direct positive chronotropic action by angiotensin II in the isolated mouse atrium. Life Sci 2006;79:637–40.
- [162] Ono K, Sakamoto A, Masaki T, Satake M. Desensitization of ET<sub>A</sub> endothelin receptor-mediated negative chronotropic response in right atria–species difference and intracellular mechanisms. Br J Pharmacol 1998;125:787–97.
- [163] Bramich NJ, Cousins HM, Edwards FR, Hirst GD. Parallel metabotropic pathways in the heart of the toad, *Bufo marinus*. Am J Physiol Heart Circ Physiol 2001;281:H1771–7.
- [164] Stuyvers BD, Dun W, Matkovich S, Sorrentino V, Boyden PA, ter Keurs HE.  $Ca^{2+}$  sparks and waves in canine purkinje cells: a triple layered system of  $Ca^{2+}$  activation. Circ Res 2005;97:35–43.
- [165] Viamonte VM, Steinberg SF, Chow YK, Legato MJ, Robinson RB, Rosen MR. Phospholipase C modulates automaticity of canine cardiac Purkinje fibers. J Pharmacol Exp Ther 1990;252:886–93.
- [166] Boyden PA, Dun W, Barbhaiya C, Ter Keurs HE. 2APB- and JTV519 (K201)-sensitive micro Ca<sup>2+</sup> waves in arrhythmogenic Purkinje cells that survive in infarcted canine heart. Heart Rhythm 2004;1:218–26.
- [167] Genka C, Ishida H, Ichimori K, Hirota Y, Tanaami T, Nakazawa H. Visualization of biphasic Ca<sup>2+</sup> diffusion from cytosol to nucleus in contracting adult rat cardiac myocytes with an ultra-fast confocal imaging system. Cell Calcium 1999;25:199–208.
- [168] Kaplan P, Jurkovicova D, Babusikova E, Hudecova S, Racay P, Sirova M, et al. Effect of aging on the expression of intracellular Ca<sup>2+</sup> transport proteins in a rat heart. Mol Cell Biochem 2007;301:219–26.
- [169] Cao K, Xia X, Shan Q, Chen Z, Chen X, Huang Y. Changes of sarcoplamic reticular Ca<sup>2+</sup>-ATPase and IP<sub>3</sub>-I receptor mRNA expression in patients with atrial fibrillation. Chin Med J (Engl) 2002;115:664–7.
- [170] Zhao ZH, Zhang HC, Xu Y, Zhang P, Li XB, Liu YS, et al. Inositol-1,4,5trisphosphate and ryanodine-dependent Ca<sup>2+</sup> signaling in a chronic dog model of atrial fibrillation. Cardiology 2007;107:269–76.
- [171] Ehrlich JR, Hohnloser SH, Nattel S. Role of angiotensin system and effects of its inhibition in atrial fibrillation: clinical and experimental evidence. Eur Heart J 2006;27:512–8.
- [172] Du XJ, Anderson KE, Jacobsen A, Woodcock EA, Dart AM. Suppression of ventricular arrhythmias during ischemia-reperfusion by agents inhibiting Ins(1,4,5)P<sub>3</sub> release. Circulation 1995;91:2712–6.
- [173] Jacobsen AN, Du XJ, Lambert KA, Dart AM, Woodcock EA. Arrhythmogenic action of thrombin during myocardial reperfusion via release of inositol 1,4,5-triphosphate. Circulation 1996;93:23–6.
- [174] Harrison SN, Du XJ, Arthur JF, Woodcock EA. Activation of the Na<sup>+</sup>/H<sup>+</sup> exchanger is required for reperfusion-induced Ins(1,4,5)P<sub>3</sub> generation. J Mol Cell Cardiol 2000;32:1851–8.
- [176] Anderson KE, Dart AM, Woodcock EA. Inositol phosphate release and metabolism during myocardial ischemia and reperfusion in rat heart. Circ Res 1995;76:261–8.
- [177] Woodcock EA, Lambert KA, Du XJ. Ins(1,4,5)P<sub>3</sub> during myocardial

ischemia and its relationship to the development of arrhythmias. J Mol Cell Cardiol 1996;28:2129–38.

- [178] Mohler PJ, Davis JQ, Davis LH, Hoffman JA, Michaely P, Bennett V. Inositol 1,4,5-trisphosphate receptor localization and stability in neonatal cardiomyocytes requires interaction with ankyrin-B. J Biol Chem 2004; 279:12980–7.
- [179] Mohler PJ, Davis JQ, Bennett V. Ankyrin-B coordinates the Na/K ATPase, Na/Ca exchanger, and InsP<sub>3</sub> receptor in a cardiac T-tubule/SR microdomain. PLoS Biol 2005;3:e423:2158–67.
- [180] Mohler PJ, Splawski I, Napolitano C, Bottelli G, Sharpe L, Timothy K, et al. A cardiac arrhythmia syndrome caused by loss of ankyrin-B function. Proc Natl Acad Sci U S A 2004;101:9137–42.
- [181] Choi KM, Zhong Y, Hoit BD, Grupp IL, Hahn H, Dilly KW, et al. Defective intracellular Ca<sup>2+</sup> signaling contributes to cardiomyopathy in Type 1 diabetic rats. Am J Physiol Heart Circ Physiol 2002;283: H1398–408.
- [182] Lacombe VA, Viatchenko-Karpinski S, Terentyev D, Sridhar A, Emani S, Bonagura JD, et al. Mechanisms of impaired calcium handling underlying subclinical diastolic dysfunction in diabetes. Am J Physiol Regul Integr Comp Physiol 2007;293:R1787–97.
- [183] Fauconnier J, Lanner JT, Zhang SJ, Tavi P, Bruton JD, Katz A, et al. Insulin and inositol 1,4,5-trisphosphate trigger abnormal cytosolic Ca<sup>2+</sup> transients and reveal mitochondrial Ca<sup>2+</sup> handling defects in cardiomyocytes of ob/ob mice. Diabetes 2005;54:2375–81.
- [184] Guner S, Arioglu E, Tay A, Tasdelen A, Aslamaci S, Bidasee KR, et al. Diabetes decreases mRNA levels of calcium-release channels in human atrial appendage. Mol Cell Biochem 2004;263:143–50.
- [185] Zhou BQ, Hu SJ, Wang GB. The analysis of ultrastructure and gene expression of sarco/endoplasmic reticulum calcium handling proteins in alloxan-induced diabetic rat myocardium. Acta Cardiol 2006;61:21–7.
- [186] Xiang H, McNeill JH. Alpha 1-adrenoceptor-mediated phosphoinositide breakdown and inotropic responses in diabetic hearts. Am J Physiol 1991; 260:H557–62.
- [187] Tanaka Y, Kashiwagi A, Saeki Y, Shigeta Y. Abnormalities in cardiac alpha 1-adrenoceptor and its signal transduction in streptozocin-induced diabetic rats. Am J Physiol 1992;263:E425–9.
- [188] Tappia PS, Asemu G, Aroutiounova N, Dhalla NS. Defective sarcolemmal phospholipase C signaling in diabetic cardiomyopathy. Mol Cell Biochem 2004;261:193–9.
- [189] Furukawa N, Bassett AL, Furukawa T, Myerburg RJ, Kimura S. Hypertrophy alters effect of Ins(1,4,5)P<sub>3</sub> on Ca<sup>2+</sup> release in skinned rat heart muscle. Am J Physiol 1991;260:H1612–8.
- [190] Rowley KG, Tung LH, Hodsman GP, Howes LG, Jarrott B, Beart PM, et al. Altered alpha 1-adrenoceptor-mediated responses in atria of rats with chronic left ventricular infarction. J Cardiovasc Pharmacol 1991; 17:474–9.
- [191] Kawaguchi H, Sano H, Iizuka K, Okada H, Kudo T, Kageyama K, et al. Phosphatidylinositol metabolism in hypertrophic rat heart. Circ Res 1993; 72:966–72.
- [192] Kawaguchi H, Sano H, Okada H, Iizuka K, Okamoto H, Kudo T, et al. Increased calcium release from sarcoplasmic reticulum stimulated by inositol trisphosphate in spontaneously hypertensive rat heart cells. Mol Cell Biochem 1993;119:51–7.
- [193] Dent MR, Dhalla NS, Tappia PS. Phospholipase C gene expression, protein content, and activities in cardiac hypertrophy and heart failure due to volume overload. Am J Physiol Heart Circ Physiol 2004;287: H719–27.
- [194] Mende U, Kagen A, Meister M, Neer EJ. Signal transduction in atria and ventricles of mice with transient cardiac expression of activated G protein alpha(q). Circ Res 1999;85:1085–91.
- [195] Berridge MJ. Cardiac calcium signalling. Biochem Soc Trans 2003;31: 930–3.
- [196] Bristow MR, Minobe W, Rasmussen R, Hershberger RE, Hoffman BB. Alpha-1 adrenergic receptors in the nonfailing and failing human heart. J Pharmacol Exp Ther 1988;247:1039–45.
- [197] Regitz-Zagrosek V, Fielitz J, Fleck E. Myocardial angiotensin receptors in human hearts. Basic Res Cardiol 1998;93(Suppl 2):37–42.
- [198] Pieske B, Beyermann B, Breu V, Loffler BM, Schlotthauer K, Maier LS,

et al. Functional effects of endothelin and regulation of endothelin receptors in isolated human nonfailing and failing myocardium. Circulation 1999;99:1802–9.

- [199] Zolk O, Quattek J, Sitzler G, Schrader T, Nickenig G, Schnabel P, et al. Expression of endothelin-1, endothelin-converting enzyme, and endothelin receptors in chronic heart failure. Circulation 1999;99:2118–23.
- [200] Tappia PS, Liu SY, Shatadal S, Takeda N, Dhalla NS, Panagia V. Changes in sarcolemmal PLC isoenzymes in postinfarct congestive heart failure: partial correction by imidapril. Am J Physiol 1999;277:H40–9.
- [201] Ziegelhoffer A, Tappia PS, Mesaeli N, Sahi N, Dhalla NS, Panagia V. Low level of sarcolemmal phosphatidylinositol 4,5-bisphosphate in cardiomyopathic hamster (UM-X7.1) heart. Cardiovasc Res 2001;49:118–26.
- [202] Ai X, Curran JW, Shannon TR, Bers DM, Pogwizd SM. Ca2+/

calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca<sup>2+</sup> leak in heart failure. Circ Res 2005;97:1314–22.

- [203] Kijima Y, Saito A, Jetton TL, Magnuson MA, Fleischer S. Different intracellular localization of inositol 1,4,5-trisphosphate and ryanodine receptors in cardiomyocytes. J Biol Chem 1993;268:3499–506.
- [204] Gorza L, Vettore S, Tessaro A, Sorrentino V, Vitadello M. Regional and age-related differences in mRNA composition of intracellular Ca<sup>2+</sup>release channels of rat cardiac myocytes. J Mol Cell Cardiol 1997;29: 1023–36.
- [205] Jurkovicova D, Kubovcakova L, Hudecova S, Kvetnansky R, Krizanova O. Adrenergic modulation of the type 1 IP<sub>3</sub> receptors in the rat heart. Biochim Biophys Acta 2006;1763:18–24.