
Changes in the levels of intracellular calcium (Ca2+) 
provide dynamic and highly versatile signals that 
control a plethora of cellular processes1, although their 
importance is perhaps most strikingly exemplified by 
their role in life-and-death decisions. Consequently, 
Ca2+ needs to be used in an appropriate manner to 
determine cell fate; if this balancing act is compromised, 
pathology may ensue.

Tumorigenesis occurs as a result of mutations that 
confer a set of cancer-specific hallmarks, including 
self-sufficiency in growth signals and evasion of 
apoptosis2. Many cancer-causing genes encode protein 
kinases; indeed, the protein kinase domain is the most 
commonly found functional domain in known cancer 
genes3. As protein kinases occupy apical positions in 
signal-transduction cascades, integrate with many 
other signalling pathways and regulate the activity or 
abundance of transcription factors, the cellular effects of 
aberrant protein kinase activity are wide-ranging.

The same is true of Ca2+ signalling, which integrates 
with other signal-transduction cascades to control a 
variety of processes including gene expression4–6. Ca2+ 
signalling is required for cell proliferation in all eukaryote 
cells, but some transformed cells and tumour cell lines 
exhibit a reduced dependency on Ca2+ to maintain 
proliferation7,8. Recent years have seen a growing 
appreciation of the extent to which components of 
Ca2+ signalling pathways are remodelled or deregulated 
in cancer (BOX 1). Whether these changes are drivers9,10 
that are required to sustain the transformed phenotype 

remains to be established. Here, we review the core 
components of the Ca2+ signalling system (the Ca2+ 
toolkit), focus on the role of Ca2+ in two crucial aspects 
of the cancer phenotype — control of cell proliferation 
and cell death — and consider examples of how the Ca2+ 
toolkit is remodelled in tumour cells and the significance 
this has for the maintenance of the cancer phenotype. 
Finally, we consider whether any therapeutic opportuni-
ties are afforded by the remodelling of Ca2+ signalling 
in cancer.

The Ca2+ toolkit
Every cell expresses a unique complement of components 
from a Ca2+ signalling toolkit that enables it to generate 
intracellular Ca2+ signals of a particular amplitude, time 
course and intracellular location11,12 (FIG. 1). This Ca2+ 
signalling fingerprint encodes information that allows 
Ca2+ to control diverse cellular processes in a specific 
manner. In resting cells, the cytosolic free Ca2+ concentra-
tion ([Ca2+]i) is maintained at approximately 100 nM, but 
through mobilization from intracellular stores (such as 
endoplasmic reticulum (ER), Golgi or lysosomes13–15) or 
entry across the plasma membrane, [Ca2+]i can increase 
to >1 µM1,11,13,16. The Ca2+ toolkit is extensive and includes 
environmental sensors (for example, plasma membrane 
receptors that detect changes in the level of circulating 
hormones); signal transducers (such as G proteins and 
phospholipase C isoforms (PLCs)17); signal-generating 
channels such as inositol 1,4,5-trisphosphate receptors 
(InsP3Rs) on intracellular stores18 and store-operated 
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Driver mutation
A mutation that contributes 
intimately to tumorigenesis 
and is selected for during 
tumour evolution, as opposed 
to a passenger mutation, which 
confers no selective advantage 
and is ‘along for the ride’.
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Abstract | Increases in cytosolic free Ca2+ ([Ca2+]i) represent a ubiquitous signalling 
mechanism that controls a variety of cellular processes, including proliferation, 
metabolism and gene transcription, yet under certain conditions increases in 
intracellular Ca2+ are cytotoxic. Thus, in using Ca2+ as a messenger, cells walk a tightrope 
in which [Ca2+]i is strictly maintained within defined boundaries. To adhere to these 
boundaries and to sustain their modified phenotype, many cancer cells remodel the 
expression or activity of their Ca2+ signalling apparatus. Here, we review the role of Ca2+ 
in promoting cell proliferation and cell death, how these processes are remodelled in 
cancer and the opportunities this might provide for therapeutic intervention.
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or second messenger-operated channels on the plasma 
membrane (for example, ORAI1 and transient receptor 
potential (TRP) channels respectively)1,16,19; ER-localized  
Ca2+ storage proteins (such as calreticulin, GRP78 
(also known as heat-shock protein 5 (HSPA5)) and 
calsequestrin); signal terminators that serve to return 
intracellular Ca2+ levels to pre-stimulation levels, such 
as the ER- and plasma membrane-localized Ca2+ pumps 
(SERCA and PMCA, respectively), plasma membrane 
exchangers (Na+–Ca2+ exchanger (also known as 
SLC8A1)), mitochondria and cytosolic buffer proteins; 
and Ca2+ sensors and effectors such as calmodulin 
(CaM) and its downstream targets, including CaM 
kinase (CaMK)20 and calcineurin (otherwise known as 
protein phosphatase 2B)21 and protein kinase C (PKC). 
Specificity in decoding Ca2+ signals can be provided by 
the affinity of the Ca2+ sensor as well as its intracellular 
location22. In this way, the duration, amplitude and intra-
cellular location of a particular Ca2+ signal can specifically 
regulate cell function11. A cell’s complement of these 
proteins will reflect its unique physiological requirements 
and role, but this may change as cells undergo phenotypic 
changes, such as those experienced during growth and  
proliferation11.

Ca2+ and cell proliferation
Ca2+ has an important role throughout the mammalian 
cell cycle and is especially important early in G1, at 
the G1/S and G2/M transitions (BOX 2, FIG. 2). Indeed, 
changes in [Ca2+]i have been detected as a cell passes 
through G1, G1/S and mitosis23. The requirement 
for Ca2+ signals is illustrated by the cessation of cell 
proliferation when extracellular Ca2+ is lowered from 
1 mM to 0.1 mM24. Cells are most sensitive to depletion 
of extracellular Ca2+ in G1, in which Ca2+ is important 
for the expression of immediate-early genes, such 
as FOS, JUN and MYC, and later towards the G1/S 
boundary where Ca2+ is required for retinoblastoma 
(RB1) phosphorylation25. CaM is required for cell cycle 
progression through G1 and mitosis26, and CaM antago-
nists or CaMK inhibitors block cell-cycle progression 
early or late in G1, whereas cells are much less sensi-
tive after RB1 phosphorylation24. Inhibition of CaMK 
causes loss of cyclin D1 (CCND1) expression, increased 
expression of p27 (encoded by CDKN1B), inhibition of 

cyclin-dependent kinase 4 (CDK4) and CDK2, and G1 
arrest27–29 (FIG. 3).

Calcineurin also has a major role in the progression 
through G1 and S phases. Inhibition of calcineurin by 
cyclosporin A suppresses CDK2 activity by increasing 
expression of p21 (encoded by CDKN1A)30, or reducing 
cyclin E (CCNE1) and cyclin A (CCNA2) levels31. In 
addition, calcineurin might be required for cyclin D1 
expression during G1 (REF 32). Calcineurin also 
regulates the transcription factors that control the G1/S 
transition, including cAMP-responsive element binding 
protein 1 (CREB1), which binds to the cyclin D1 
promoter33 and the nuclear factor of activated T cells 
(NFAT). NFATs reside within the cytoplasm in an 
inactive, phosphorylated state but, following an increase 
in [Ca2+]i, activated calcineurin dephosphorylates 
NFAT proteins, allowing them to enter the nucleus and 
regulate expression of their target genes34. Although 
Ca2+ signals arising from either intracellular stores 
or the extracellular space can activate calcineurin, 
by supporting sustained signals, Ca2+ influx through 
plasma membrane channels such as the store-operated 
channel ORAI1 is principally responsible for engaging 
the NFAT pathway and inducing changes in gene 
expression35. TRPC6 and TRPV6 (TRP vanilloid family 
member 6) have both been shown to mediate NFAT-
dependent gene transcription in primary and cultured 
prostate cancer cell lines36,37. Interestingly, TRPV6 is 
highly expressed in high-grade prostate cancer and is a 
marker of prognosis38. As TRPV6 is a constitutively 
active channel that is regulated by expression and 
cellular distribution, the increased expression observed 
in cancers will result in greater Ca2+ entry and therefore 
enhanced NFAT activation39. Links between NFAT 
and the cell-cycle machinery are starting to emerge. 
For example, overexpression of a constitutively active 
NFATC1 mutant in 3T3-L1 fibroblasts was sufficient to 
induce expression of MYC, cyclins D1 and D2 (CCND2) 
and a transformed phenotype40, and NFATC1 has been 
shown to bind directly to an NFAT site in the MYC 
promoter41. As cyclin E and E2F are transcriptional 
targets of MYC, the NFAT–MYC connection provides 
a link between Ca2+ and calcineurin and the cell cycle.

Ca2+ and centrosome duplication. In addition to activa-
tion of CDKs, Ca2+ and CaMKII also control centrosome 
duplication and separation, allowing distribution of 
replicated chromosomes to daughter cells. Defects 
in this process can lead to aberrant mitotic spindles, 
genetic instability, aneuploidy and cancer. Centrosome 
duplication commences as cells exit G1 and enter S phase 
(FIG. 2), and cyclin E–CDK2 has a key role in the process, 
by activating ROCK2 (Rho-associated, coiled-coil 
containing protein kinase 2)42 and monopolar spindle 1 
(MPS1)43, two protein kinases involved in centrosome 
duplication. The polo-like kinases and Aurora kinases 
are also involved in the centrosome cycle44.

Ca2+ oscillations occur at the G1/S boundary 
(centrosome duplication) and the G2/M transition 
(centrosome separation), during which CaMKII local-
izes to centrosomes45. Indeed, chelation of intracellular  

 At a glance

• Changes in Ca2+ levels are versatile and dynamic signalling events that control 
diverse cellular events over a wide range of timescales.

• Tumour cells are characterized by their acquisition of different physiological traits 
that allow them to proliferate independently of growth signals and avoid 
appropriate cell death.

• The Ca2+ signalling ‘toolkit’ — that is, the proteins involved in regulating Ca2+ 
signalling — is often remodelled in tumour cells to sustain proliferation and avoid 
cell death.

• Ca2+ signalling proteins and organelles are emerging as additional cellular targets 
of oncogenes and tumour suppressors.

• Ca2+ signalling pathways remodelled in cancer provide novel opportunities for 
therapeutic intervention.
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T-type Ca2+ channel
Voltage-operated Ca2+ channel 
that is activated at relatively 
negative membrane potential 
and exhibits a short-lasting 
(transient) opening.

Ca2+ or inhibition of CaMKII blocks centrosome  
duplication in Xenopus laevis egg extracts indepen
dently of CDK2 (Ref. 46). CP110, a centrosomal protein 
and CDK2 substrate, promotes centrosome duplica-
tion and inhibits centrosome separation, suggesting 
an important role in coordination of the centrosome 
cycle47. CP110 is found together with the Ca2+-binding 
proteins CaM and centrin (CETN1) in vivo48 and 
studies have revealed an intrinsic role for Ca2+, CaM and 
CaM-binding proteins (including CaMKII and CP110) 
in control of the normal centrosome cycle48. To what 
extent this role for Ca2+ is deregulated or remodelled  
in cancer remains to be seen.

In summary, it is evident that Ca2+ is required for 
progression through G1 and entry into S phase. Ca2+ 
operates upstream of the cell-cycle machinery by 
regulating the expression, activity and/or location of 
the transcription factors that control expression of the 
G1 cyclins (FOS, JUN, MYC, CREB–ATF1 (activating 
transcription factor 1) and NFAT), but also acts more 
directly on the cyclins, CDKs and/or their small protein 
inhibitors to regulate the assembly and activation of 
CDK complexes (FIG. 3).

Do tumour cells require Ca2+ for cell-cycle progression? 
Conventional wisdom suggests that transformed or 
malignant cells exhibit a greatly relaxed requirement 
for Ca2+ during cell proliferation. This view stems from 
landmark studies from the early 1970s onwards, in 
which it was demonstrated that cellular transformation 
by SRC49, KRAS50, SV40 (Ref. 51), adenovirus (AdV)52 
or human papillomavirus (HPV)53 conferred the ability 
to proliferate at low extracellular Ca2+ levels, leading to 
the suggestion that loss of proliferative Ca2+ dependency 
was an indicator of tumorigenicity7,54.

For a long time it was not obvious what properties 
Ras, SV40, HPV and AdV shared that could circum-
vent the cellular requirement for Ca2+. However, it is 
now known that they all inactivate RB1, though they 
achieve this by quite different mechanisms: Ras, acting 
through extracellular regulated kinases 1 and 2 (ERK1 
and ERK2; also known as mitogen-activated protein 
kinases 3 and 1 (MAPK3 and MAPK1)) and protein 
kinase B (PKB; also known as AKT1), promotes the 
activation of CDK4 and CDK2 and phosphoryla-
tion of RB1, whereas SV40, HPV or AdV all encode 
oncoproteins that sequester or degrade RB1. As Ca2+ 
and Ras are both required for phosphorylation of 
RB1 during the G1/S transition in normal cells, it has 
been suggested that the relaxed requirement for Ca2+ 
in tumour cell proliferation might simply reflect the 
fact that such cells have frequently lost RB1 function8. 
Certainly, cells that have lost RB1 are much less 
sensitive to inhibition of Ras55 or the ERK1–ERK2 
pathway56. Although this attractive hypothesis fits 
with the role of Ca2+ in RB1 inactivation25, it needs 
to be tested with isogenic cell lines from wild-type, 
Rb1-null, Cdkn1b-null or Cdkn2a (which encodes 
p16)-null mice or investigated by determining 
whether overexpression of cyclin D1 or CDK4 can 
confer resistance to Ca2+ chelation during cell cycle 
re-entry.

Irrespective of this, the notion that tumour cells 
are independent of Ca2+ for proliferation is starting to 
be questioned. For example, the proliferation of the 
prostate cancer cell line LNCaP is acutely tuned to 
the expression of SERCA2 (sarcoplasmic reticulum Ca2+ 
ATPase 2, also known as ATP2A2) and the content of 
the ER Ca2+ store, [Ca2+]ER (Ref. 57). Moreover, inhibition 
of SERCA2 with thapsigargin inhibits proliferation. In 
addition, an increasing number of studies are demon-
strating the requirement for Ca2+ influx for tumour 
cell proliferation. For example, proliferation of human 
U87 MG glioma and murine N1E-115 neuroblastoma 
cell lines is inhibited by the T-type Ca2+ channel blocker 
mibefradil and stimulated by retroviral overexpression 
of the α1H subunit of the channel58,59. Indeed a require-
ment for T-type Ca2+ channels for proliferation has been 
reported in breast, colorectal, gastric and prostate cancer 
cells58, and TRPV6 expression was recently shown to be 
required for proliferation in a prostate cancer cell line36. 
There is not enough space here to list all such examples 
and readers are referred to recent reviews58,60.

So, what explains the disparity between recent 
studies and those of the early 1970s? Notably, the more 

 Box 1 | Ca2+ and the hallmarks of cancer

Tumour cells exhibit distinct hallmarks or acquired traits that lead to changes in 
their physiology and distinguish them from non-malignant cells2. These are the 
means by which tumour cells overcome inherent anticancer defence mechanisms 
and the genetic diversity found in human tumours represents different solutions 
to the selection pressure to acquire these traits. Changes in Ca2+ handling are 
relevant to or are involved in many of these cancer traits. In the text we consider 
the role of Ca2+ as a cell proliferation signal and the remodelling of survival 
pathways that this necessitates. Examples of other traits not covered in the main 
text are given below:

• Insensitivity to anti-growth signals. Ca2+ is crucial for controlling the balance of 
proliferation and differentiation of some cells. Normal keratinocytes 
differentiate as Ca2+ levels increase whereas transformed keratinocytes show 
little differentiation at any Ca2+ concentration185. Even transforming growth 
factor β, a growth inhibitor for many epithelial cells, requires the Ca2+-binding 
protein S100A11 for inhibition of keratinocyte growth186.

• Limitless replicative potential. Telomere erosion through successive cycles of 
replication normally leads to cellular senescence. To maintain their telomeres, 
cancer cells typically upregulate telomerase expression. The Ca2+-binding 
protein S100A8 has been shown to mediate Ca2+-induced inhibition of 
telomerase187, suggesting that remodelling of Ca2+ signalling, in particular a 
reduced dependency on Ca2+ for cell-cycle progression, might be important in 
tumour cell immortality.

• Sustained angiogenesis. Tumours must acquire a blood supply to grow. Ca2+ is 
required for hypoxia-induced activation of hypoxia-inducible factor 1 (HIF1), 
the transcription factor that promotes expression of vascular endothelial 
growth factor (VEGF)188 and for VEGF-dependent endothelial cell 
proliferation189. In addition, secretion of thrombospondin-1 (THBS1), an 
angiogenesis inhibitor, is controlled by Ca2+ entry through the TRPC4 (transient 
receptor potential ion channel 4) Ca2+ channel. Renal cell carcinomas exhibit a 
profound decrease in TRPC4 expression, impaired Ca2+ intake and diminished 
secretion of THBS1, thus enabling an angiogenic switch during carcinoma 
progression190.

• Tissue invasion and metastasis. Intracellular Ca2+ signals appear to be important 
determinants of metastasis. T-type Ca2+ channel blockers inhibit Ca2+ spikes and 
cell motility and invasion in HT1080 fibrosarcoma cells191. The Ca2+ binding 
protein S100A13 is associated with a more aggressive invasive phenotype in 
lung cancer in vitro192.
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recent work has been with bona fide human tumour cell 
lines, whereas much of the early work was on virally 
transformed fibroblasts. It is possible that tumour cells 
and transformed fibroblasts simply exhibit fundamental 
differences in cell physiology and that the acquisition 
of Ca2+ independency during the evolution of a tumour 
is not a trait that can be faithfully recapitulated by the 
simple heterologous expression of a single oncoprotein. 
In this sense, there is a case for systematically investi-
gating which tumour types are indeed Ca2+-dependent 
for proliferation using more sophisticated tools, human 
tumour cell lines and genetically modified mice that are 
now available.

Remodelling Ca2+ signalling in cancer
Ca2+-dependent signalling mechanisms are frequently 
remodelled or deregulated in cancer cells. However, to 
date only mutations in ATP2A2 (which results in changes 
to SERCA2 expression) have been described as occur-
ring in or promoting cancer61,62. The paucity of studies 
reporting mutations in genes associated with the Ca2+ 
toolkit suggests that many of the changes that underpin 
remodelling of Ca2+ signalling reflect epigenetic changes 
in gene expression and/or post-translational changes in 
the properties of existing signalling components. This 
remodelling is a two-way process in which oncogene-
dependent pathways can remodel Ca2+ signals and Ca2+ 
can refine oncogene-regulated signalling.

Oncogene-dependent remodelling of Ca2+ signalling. 
There are many reports describing changes in Ca2+ 
signalling in cells transformed by oncogenes such as Ras 
and SRC. The mechanisms underlying the amplification 
of Ca2+ mobilization in Ras-transformed cells remained 
elusive for many years63–65, but the recent demonstration 
that PLCε binds Ras and is activated upon expression of 
Ras provides a direct link between Ras activation and 
generation of InsP3 (Ref. 66). SRC can also amplify InsP3 
and Ca2+ signalling by promoting the tyrosine phospho-
rylation of the Gq α-subunit, which increases its ability 
to stimulate PLC67.

In addition to post-translational mechanisms, 
oncogenes cause striking changes in the expression of 
components of the Ca2+ toolkit. Expression of a MYC 
transgene can stimulate B-cell proliferation in part 
by decreasing expression of PMCA4b (also known as 
ATP2B4) Ca2+ efflux pump, resulting in more sustained 
increases in [Ca2+]i and enhanced nuclear accumulation 
of NFATC1 (Ref. 68). In other cases, such as SERCA2 
(Ref. 69), PMCA1 (also known as ATP2B1)70 and the 
T-type channel CACNA1G71, reduction in expression 
is due to silencing by promoter methylation. Microarray 
technologies have greatly enhanced our appreciation of 
the extent and variation of Ca2+ toolkit remodelling. For 
example, transformation by ERBB2, Ras, RAF, JUN, 
MYC or SV40 can all cause striking, but quite different, 
changes in expression of CaM, CaMK and various Ca2+ 
binding proteins72–74. Some of these changes ‘make 
sense’ or fit with our ideas of how Ca2+ is deregulated in 
tumours. For example, reduced expression of PMCA1 
(Ref. 70) or amplification of the type 2 InsP3R

75 could 
both enhance growth factor-dependent increase in 
[Ca2+]i, whereas overexpression of CaMKII72,74 could 

Figure 1 | The Ca2+ signalsome. In response to a change in their environment, 
intracellular Ca2+ levels increase and induce changes in cell physiology. Ca2+ signals are 
generated as a result of influx from the extracellular space through channels located at 
the plasma membrane (receptor-operated channels (ROCs), voltage-operated channels 
(VOCs), second-messenger-operated channels (SMOCs) and store-operated channels 
(SOCs)) or via release from intracellular stores, predominantly through inositol 1,4,5-
trisphosphate receptors (InsP3Rs) or ryanodine receptors (RyRs). Ca2+ channels and 
pumps are also functionally expressed in lysosomes and the Golgi. Ca2+ signals  
return to pre-stimulated levels through the concerted action of cytosolic Ca2+ buffer 
proteins (CaBPs), mitochondria, ATP-dependent pumps on the intracellular Ca2+ stores 
(SERCA) and plasma membrane (PMCA), as well as through the Na+–Ca2+ exchanger 
(NCX). Ca2+ is stored within the endoplasmic reticulum bound to the low-affinity, high-
capacity Ca2+ storage protein calreticulin (CRT). DAG, diacylglycerol; GPCR, G-protein 
coupled receptor; PIP2, phosphatidylinositol bisphosphate; PLC, phospholipase C; 
RTK, receptor tyrosine kinase; VDAC, voltage-dependent anion channel.

 Box 2 | G1/S progression

Progression of cells through G1 into S phase requires expression of the G1 cyclins (cyclins D & E), activation of the 
cyclin-dependent kinases (CDK4 and CDK2), phosphorylation and inactivation of the retinoblastoma protein (RB1) and 
the derepression and release of the E2F transcription factors193. CDKs are also subject to negative regulation by CDK 
inhibitor proteins such as p21 (a p53 target gene) and p27. The de novo expression of D-type cyclins and the destruction 
of p27 are mitogen-regulated events that are controlled by Ras-regulated signals194,195. Activation of the extracellular 
signal-regulated kinase (ERK1–ERK2) pathway can promote the expression of cyclin D196, and protein kinase B (PKB)  
can stabilize the mature cyclin D1 protein197. Similarly, both ERK and PKB can reduce p27 levels, albeit by different 
mechanisms. Indeed, inhibition of the ERK1–ERK2 or PKB pathways causes a G1 arrest characterized by loss of cyclin 
D1 and accumulation of p27 and/or p21.
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enhance the coupling of Ca2+ signals to the G1 CDKs. 
The significance of other changes is less clear. For 
example, the S100 proteins are frequently deregulated 
in cancer and some are excellent biomarkers and 
prognostic indicators76, but only in a few cases has a 
functional significance been proposed. For example, 
S100A2 is downregulated in some tumours by CpG 
methylation and its forced re-expression inhibits cell 
motility, suggesting it has a role in suppressing metas-
tases77. By contrast, S100A4 expression is increased in 
many cancers and this might relate to its ability to bind 
to and inhibit wild-type p53 (Ref. 76). Other than these 
examples, the functions of S100 proteins appear to be 
many and varied and readers are referred to a recent 
review76.

Ca2+-dependent remodelling of oncogene signalling. 
There is an emerging role for Ca2+ in influencing the Ras 
pathway8,78. Activation of Ras is controlled by guanine 
nucleotide exchange factors (GEFs), which promote the 
release of GDP, allowing GTP to bind79, and GTPase-
activating proteins (GAPs), which catalyse the hydrolysis 
of GTP to GDP80. The recruitment of SOS (a Ras GEF) to 
receptor tyrosine kinases (RTKs) stimulates Ras, whereas 
recruitment of p120GAP (also known as RASA1) inacti-
vates Ras (FIG. 4a). There is a growing appreciation of the 
importance of Ca2+-regulated Ras GEFs and GAPs. The 
Ca2+-regulated Ras GEFs include Ras guanine nucleotide-
releasing factors 1 and 2 (RASGRF1 and RASGRF2) and 
Ras guanyl-releasing proteins 1 and 2 (RASGRP1 and 
RASGRP2)78. Among the GAP1 proteins, CAPRI (also 
known as RASA4) and RASAL1 are recruited to the 
plasma membrane to inactivate RAS in a Ca2+-dependent 
fashion81,82. Remarkably, they respond to qualitatively 
different Ca2+ signals; CAPRI senses the amplitude of the 
Ca2+ signal, whereas RASAL responds to the frequency 
of Ca2+ oscillations83 (FIG. 4b). Thus, CAPRI and RASAL 
translate discrete Ca2+ signals into changes in the kinetics 
and amplitude of RAS activation.

An activated Ras oncogene is expressed in 20–30% 
of human tumours84 but neurofibromin 1, the gene 
mutated in neurofibromatosis type 1 (NF1), is the only 
Ras GAP that has been defined as a tumour suppressor 
gene85, although rare nonsense mutations in RASA1 
had been reported86. However, recent studies have also 
suggested that CAPRI and RASAL might be tumour 
suppressor genes87,88. The case is most compelling for 
RASAL. First, suppression of RASAL increased fibro
blast transformation in an RNA interference screen89. 
More importantly, RASAL has now been shown to 
be downregulated in human tumours by epigenetic 
silencing through CpG island methylation90 (FIG. 4b). 
RASAL silencing was observed in both cell lines and 
tumour tissue from multiple tumour types including 
nasopharyngeal, oesophageal, hepatocellular and breast 
carcinoma; tumour types noted for their low incidence 
of Ras mutations. Thus, silencing of the Ca2+-regulated 
Ras GAPs is an alternative mechanism for Ras activation 
in certain tumours.

Ca2+ may influence cell-cycle progression by 
modulating the activity of pathways downstream of Ras. A 
moderate level of ERK1 or ERK2 activation appears to be 
required to promote cell-cycle progression, whereas exces-
sive, sustained activation of ERK1 or ERK2 can promote 
cell-cycle arrest or senescence91–93. Ca2+ can remodel or 
fine-tune the ERK1 and ERK2 pathway in a number of 
ways: CaM appears to negatively regulate the pathway 
and might help to set a threshold of ERK activity suitable 
for proliferation94,95, and Ca2+-dependent upregulation of 
dual-specificity phosphatases (DUSPs, which inactivate 
MAPKs and stress-activated protein kinases (SAPKs)) 
might control the magnitude and duration of ERK 
activation96.

Ca2+-dependent effects on oncogene function are 
not confined to signalling proteins. Prostate cancer 
cells overexpress NFATC1, resulting in the strong Ca2+- 
and calcineurin-dependent upregulation of MYC and 

Figure 2 | Ca2+ and the cell cycle. Ca2+ signalling is required at various key stages of 
the cell cycle (shown in yellow). An early burst of Ca2+ signalling is required early in G1 
as cells re-enter the cell cycle for activation and/or expression of transcription factors 
of the AP1 (FOS and JUN), cAMP-responsive element binding protein (CREB) and 
nuclear factor of activated T-cells (NFAT) families. These factors coordinate the 
expression of cell-cycle regulators, notably the D-type cyclins, which are required for 
activation of cyclin D–CDK4 (cyclin-dependent kinase 4) complexes (D–K4). Ca2+ is also 
required for correct assembly and activation of D–K4 and E–K2 complexes later in G1 
to ensure phosphorylation and inactivation of retinoblastoma (RB) and entry into S 
phase. Ca2+ oscillations at the G1/S and G2/M transitions are thought to be important 
for the centrosome cycle. Ca2+ acts in concert with calmodulin (CaM), CaM kinase II 
and CP110, a centrosomal protein and CDK2 substrate, to initiate centrosome 
duplication at the G1/S transition. CP110 also inhibits centrosome separation allowing 
temporal coordination of the centrosome cycle by Ca2+.
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AP1
A transcription factor that is 
composed of JUN, FOS, MAF 
and ATF proteins in various 
combinations.

enhanced malignant potential41. Ca2+ is also involved 
in the stabilization of JUN as calcineurin promotes the 
dephosphorylation of JUN at Ser243, a site normally 
involved in JUN degradation97. In addition, JUN was 
identified in a functional genomics screen for genes 
that could bypass the block in cell proliferation that is 
induced by Ca2+ channel blockers such as nifedipine98. 
The cysteine–glutamate exchanger-encoding gene 
(xCT; also known as SLC7A11), which carries out 
a rate-limiting step in glutathione synthesis, was 

identified in the same screen and cells overexpressing 
xCT exhibited increased expression of JUN (a redox-
regulated transcription factor) and AP1 transcrip-
tional activity following growth factor stimulation. 
These results emphasize the close link between Ca2+ 
homeostasis and redox balance (see below) and 
suggest that these processes cooperate to regulate AP1 
during the cell cycle. Given the frequent deregulation 
of Ca2+ and glutathione99 in tumours, it might be worth 
exploring this link further in tumour cell lines.

Figure 3 | Ca2+-dependent signalling pathways controlling the G1/S transition. Progression through G1 and into S phase 
requires activation of the cyclin-dependent kinases CDK4 and CDK2, which phosphorylate retinoblastoma 1 (RB1), thereby 
de-repressing and releasing the E2F transcription factors. Activation of the CDKs requires expression of their cognate 
cyclins, which is regulated by growth factor-dependent signalling pathways, most notably those controlled by the Ras 
GTPases. Growth factors binding to receptor tyrosine kinases (RTKs; for example, epidermal growth factor receptor (EGFR)) 
or G-protein coupled receptors (GPCRs; for example, lysophosphatidic acid (LPA) receptor) can activate Ras and Ras 
effectors (for example, RAF, phosphatidylinositol 3-kinase (PI3K) and Ral guanine nucleotide dissociation stimulator 
(RALGDS)). The RAF–MEK–ERK1 (extracellular signal-regulated kinase 1)–ERK2 pathway activates AP1 and ETS 
transcription factors, driving expression of cyclin D1 and activation of CDK4. Subsequent E2F-dependent expression of 
cyclin E activates CDK2. Ca2+ is also required for CDK activation and G1/S transition. Plasma membrane receptors activate 
phospholipase C (PLCβ by GPCRs; PLCγ by RTKs) to promote the generation of inositol-1,4,5-trisphosphate (InsP3) and 
release of Ca2+ from the endoplasmic reticulum (ER) into the cytosol. Ca2+ entry across the plasma membrane is also required 
for cell proliferation and might enter by store-operated capacitative Ca2+ entry (SOCE) through the ORAI1 channel, through 
voltage-operated channels (VOCs), second messenger-operated Ca2+ channels (SMOCs; for example, TRPC6) or the 
constitutively active TRPV6, the expression of which is enhanced in certain cancers. The increase in [Ca2+]i promotes the 
activation of Ca2+-dependent signalling enzymes such as calmodulin kinase (CaMK) and the Ca2+-dependent phosphatase 
PP2B or calcineurin (CN). Ca2+–CaMK is required for expression of cyclin D1 and might act by regulating the expression or 
activity of transcription factors such as FOS, JUN and cAMP-responsive element binding protein (CREB) or by enhancing the 
translation of CCND1 mRNA. Calcineurin promotes the de-phosphorylation and nuclear entry of NFATC1 (nuclear factor of 
activated T cells, cytoplasmic, calcineurin-dependent 1); in this way Ca2+ mobilization can be linked to expression of MYC, 
cyclin E and E2F. In addition, CaMK and calcineurin are required for repression of the CDK inhibitor proteins p27KIP1 and 
p21CIP1 as their expression increases upon treatment of cells with CaMK or calcineurin inhibitors. Stimulation or inhibition of 
activity or expression are denoted by + and –. POLα, DNA polymerase α.
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Ca2+ signalling and cell death
Cancer cells acquire their increased capacity to survive 
in the face of death-inducing stimuli or conditions2,100 by 
commandeering pro-survival signalling pathways (BOX 3) 
and anti-apoptotic proteins (such as the anti-apoptotic 
BCL2 family members, BOX 4) to suppress or neutralize 
death signals101,102. Evidence generated over the past 
10 years has demonstrated the importance of Ca2+ in 
the activation and execution of cell death103. Indeed, 
[Ca2+]i increases have been observed during apoptotic 
cell death104–107 and have been shown to be required for 
apoptosis to take place104,106,108.

The ER–mitochondria Ca2+ flux. The ER and mitochon-
dria are the principal locations for signalling cell fate 
choices and are crucial nodes at which intracellular Ca2+ 
fluxes are governed. Indeed, despite controlling many 

processes essential for life, Ca2+ arising from the ER can be 
a potent death-inducing signal109–111 (FIG. 5a). For example, 
cells in which InsP3R expression has been ablated or 
reduced exhibit significantly less apoptosis112,113. Moreover, 
reduction in basal InsP3 levels also prevents apoptosis104. A 
direct link between InsP3R activity and the induction of cell 
death is provided by the enhanced Ca2+ flux and apoptosis 
resulting from cytochrome c binding to the InsP3R or its 
cleavage by caspases107,114,115. Ryanodine receptors exhibit a 
capacity to generate apoptotic Ca2+ signals116 similar to that  
of InsP3Rs.

A proximal target of Ca2+ signals arising from the 
ER is the mitochondrial network117–121. Several observa-
tions underline the significance of the role of this ER– 
mitochondrial Ca2+ flux in stimulating apoptosis. First, 
low Ca2+ within the ER store decreases the apoptotic 
effect of ceramide110 and underlies the lack of sensitivity 

Figure 4 | Ca2+-dependent activation and inactivation of Ras. a | The canonical receptor tyrosine kinase (RTK) paradigm 
for signal-regulated activation and inactivation of Ras. Activation of growth factor RTKs (for example, epidermal growth 
factor receptor (EGFR)) results in auto-phosphorylation of the receptor, providing binding sites for the recruitment of the 
adaptor protein GRB2 (growth factor receptor-bound protein 2) and SOS1, a Ras guanine nucleotide exchange factor 
(GEF), which promotes dissociation of GDP from Ras, allowing binding of GTP. In this active GTP-liganded state Ras 
activates downstream signalling effectors such as RAF, phosphatidyl inositol 3-kinase (PI3K), RALGEF, phospholipase Cε 
(PLCε) and T-cell lymphoma invasion and metastasis 1 (TIAM1) to transduce its cellular effects. Inactivation of Ras can also 
be achieved by RTK-based signalling; the recruitment of p120 GAP to activated receptors allows for hydrolysis of GTP and 
inactivation of Ras. GTP hydrolysis and inactivation of Ras is also promoted by neurofibromin (NF1) GAP, a tumour 
suppressor gene in Von Recklinghausen type I neurofibromatosis. b | Mobilization of intracellular Ca2+ can also regulate the 
activation status of Ras. A family of Ca2+-regulated Ras GEFs includes the Ras guanine nucleotide-releasing factors (GRFs) 
and Ras guanyl releasing proteins (GRPs) and can be activated in response to Ca2+ mobilization arising from activation of  
G-protein-coupled receptors (GPCRs), ion channels and antigen receptors. In addition, CAPRI and Ras protein activator-
like 1 (RASAL) are two Ca2+-regulated Ras GAPs. They are both recruited to the plasma membrane in a Ca2+-dependent 
fashion to inactivate Ras, but respond to different types of Ca2+ signals. CAPRI senses the amplitude or magnitude of the 
Ca2+ signal (amplitude modulation) whereas RASAL translocates on and off the plasma membrane in response to repetitive 
Ca2+ oscillations (frequency modulation). Cell-culture studies suggest that both CAPRI and RASAL can behave as tumour 
suppressor genes and RASAL has recently been shown to be silenced by methylation (represented by ‘Me’) in certain 
tumour types that are noted for their low frequency of Ras mutations. Thus, epigenetic inactivation of RASAL might 
represent a novel, non-canonical pathway for Ras activation in tumours. ERK, extracellular signal-regulated kinase; InsP3, 
inositol 1,4,5-trisphosphate; PDK1, 3-phosphoinositide-dependent protein kinase 1.
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BAX/BAK knockout cells
Cells that do not express the 
pro-apoptotic proteins BAX 
and BAK are resistant to many 
cell death stimuli.

Reactive oxygen species
Highly unstable oxygen-
containing chemical entities 
(such as O2

– and H2O2) that 
have both a role in pathology 
and cell signalling.

to apoptotic stimuli in BAX/BAK knockout cells111. Second, 
InsP3 application enhances the death-inducing effects of 
ceramide122. Third, metabolism of basal InsP3 reduces 
the pro-apoptotic effect of reactive oxygen species (ROS; 
for example, O2

– and H2O2)
104. Fourth, InsP3Rs have 

been localized to sites of ER–mitochondrial interaction 
(mitochondrial associated ER membranes) where 
their activity is regulated by chaperoning through 
the activity of SIGMA receptors and GRP75 (also 
known as HSPA9)123,124. At mitochondrial associated 
ER membranes, InsP3Rs are juxtaposed to the Ca2+-
conducting voltage-dependent anion channel of the 
outer mitochondrial membrane, VDAC1 (Ref. 123). 
Overexpression of VDAC1 increases mitochondrial Ca2+ 
accumulation and cell death125. It is likely that chaperones 
at this ‘ER–mitochondrial synapse’ can act as gatekeepers 
to regulate flux of Ca2+ to the mitochondria. This ability 
of mitochondria to acutely sense Ca2+ release from 
the ER might allow them to act as cellular sentinels of  
ER-mediated apoptotic signals.

The ability of Ca2+ flux into the mitochondria to 
stimulate both respiration and cell death is paradoxical. 
As increased ROS generated by the Ca2+-accelerated 
respiratory chain promotes death, it is likely that regula-
tion of the rate of electron transport or ROS production 
is crucial for avoiding cell death and tumorigenesis126. 
Mitochondrially localized p66Shc (also known as SHC1) 
has been proposed to be the mitochondrial source of 
ROS, accepting electrons from cytochrome c127, and 
is regulated in a Ca2+-dependent manner by PKC128. 
Within mitochondria, ROS damages DNA, facilitates 
Ca2+-induced permeability transition pore opening, 
inhibits respiration and peroxidates cardiolipin, causing 
it to dissociate from cytochrome c, which then exits the 
mitochondria to activate the intrinsic apoptotic pathway126. 
ROS have many other cellular targets, including cellular 
membranes, genomic DNA, ion channels and kinase 
cascades. For example, ROS-dependent inactivation of 
protein phosphatases amplifies signalling by receptor 
tyrosine kinases (RTKs), including PLCγ activation and 
InsP3 production129. ROS promotes mobilization of Ca2+ 

from intracellular Ca2+ release channels130,131 and allows 
Ca2+ entry by activating the melastatin subfamily of TRP 
channels132. The phosphoinositide 3-kinase (PI3K)–PKB 
survival pathway is targeted in both positive and negative 
ways by ROS. ROS can induce cleavage and inactivation 
of PKB133, yet under certain acute conditions, they can 
enhance PKB activity through oxidative inactivation 
of the phosphatidylinositol (3,4,5)-trisphosphate 
phosphatase PTEN134.

ER stress-associated cell death and Ca2+. ER stress, as 
a result of chronic depletion of Ca2+ from the ER, is 
also a signal for cell death135,136. Calnexin, an integral 
membrane protein chaperone of the ER, is important 
in transducing this signal by creating a scaffold for 
B-cell receptor-associated protein 31 (BAP31, also 
known as BCAP31) cleavage by caspase 8 (Ref. 137). The 
BAP31 cleavage product, BAP20, subsequently causes 
Ca2+ release from the ER, which is then taken up by 
mitochondria, sensitizing them to apoptotic stimuli135,138. 
ER stress also induces cell death by activating the SAPKs. 
SAPKs are stimulated following the oligomerization of 
IRE1 (also known as ER to nucleus signalling 2 (ERN2)), 
which induces the formation of a complex involving 
TNF receptor-associated factor 2 (TRAF2) and ASK1 
(also known as MAP3K5), a MAP3K that can activate 
JUN N-terminal kinase (JNK, also known as MAPK8) 
and p38 (also known as MAPK14)139. The ASK1 pathway 
is also activated in a CaMKII-dependent manner140.

Other Ca2+-dependent cell-death pathways. Despite 
many of the initiating events occurring at intracellular 
membranes, increases in [Ca2+]i can also activate death 
effectors in the cytosol, including calpains, which 
are potent amplifiers and initiators of death signal-
ling141–143. Calpains can engage apoptotic pathways by 
processing and activating caspases141–143. Additionally, 
calpain-mediated proteolysis of BCL2 decreases its 
ability to protect cells from death and may promote 
mitochondrial permeabilization and cytochrome c 
release144. Deregulated Ca2+ mobilization can also engage 
directly with the BCL2 protein family (BOX 4), most 
notably through the dephosphorylation of the BCL2 
homology 3 (BH3)-only protein BAD by calcineurin, 
resulting in its dissociation from 14-3-3, translocation 
to the mitochondria and cell death145.

Ca2+-dependent apoptosis can also proceed through 
activation of apoptosis-linked gene 2 (ALG2, also known 
as programmed cell death 6 (PDCD6)). This penta-EF 
hand-containing protein, which binds Ca2+ within the 
normal physiological range, was discovered in a screen 
for proteins that could affect apoptosis induction. The 
precise functions of ALG2 are unclear, but it is established 
that coordination of Ca2+ causes ALG2 to translocate 
within cells, and alters its interaction with a number of 
target proteins including ASK1 and the receptor CD95 
(also known as FAS). Although it was originally identi-
fied as an inducer of apoptosis, ALG2 has also been 
shown to have an anti-apoptotic function, depending on 
the prevailing cellular conditions. Interestingly, ALG2 
expression is upregulated in a variety of tumour cells146.

 Box 3 | Survival signalling pathways in cancer cells

Foremost among the survival pathways activated in cancers is the phosphatidyl inositol 
3-kinase (PI3K)–PKB (protein kinase B) axis10. PI3K catalyses the formation of phosphati-
dylinositol-3,4,5-trisphosphate (PIP3)

198, which recruits phosphoinositide-dependent 
kinase 1 (PDK1) and PKB through their pleckstrin homology (PH) domains to the plasma 
membrane199,200. PKB is then activated by phosphorylation catalysed by PDK1 and the 
recently described complex comprising mammalian target of rapamycin (mTOR, also 
known as FRAP1) and RICTOR (rapamycin-insensitive companion of mTOR)201–203. PKB 
exerts its pro-survival role through the phosphorylation of numerous downstream 
targets204,205, including BCL2 proteins (for example, BAD)206, the tuberous sclerosis 1 
and 2 (TSC1 and TSC2) regulators of the mTOR pathway207 and transcription factors 
(such as forkhead box O3 (FOXO3)208. In cancer, the PI3K–PKB pathway is engaged as a 
result of activating mutations in receptors (epidermal growth factor receptor (EGFR)), 
Ras, the PI3K catalytic subunit (PI3KCA) and PKB, or inactivating mutations or deletion 
of the PTEN tumour suppressor, which serves as a PIP3 phosphatase. All of these lesions 
can lead to increased PIP3 levels and/or PKB activity209. In addition, PDK1 can also 
phosphorylate and activate p70S6K, a protein kinase that phosphorylates the S6 
ribosomal protein, thereby regulating protein translation210.
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Remodelling Ca2+ signalling for survival
A tumour cell must harness the Ca2+ signalling machinery 
to promote proliferation yet protect itself from apoptosis. 
Owing to their principal roles in the control of cell death 
and Ca2+ signalling, the ER and mitochondria are at the 
frontline of this battle during oncogenic transformation, 
and are thus sites where significant remodelling of Ca2+ 
signalling apparatus occurs to limit death-inducing Ca2+ 
signals during cancer (FIG. 5b).

Regulation of Ca2+ flux by the BCL2 proteins. Virtually 
all cancer cells exhibit an increase in the expression of 
anti-apoptotic members of the BCL2 family of proteins, 
or decreased expression of the pro-apoptotic BH3-only 
proteins or BAX or BAK147. It has become apparent that 
the anti-apoptotic proteins BCL2 and BCL-XL (also 
known as BCL2-like 1 (BCL2L1)) can inhibit apoptosis 
by modulating intracellular Ca2+ signals109,111,148–151. BCL2 
diminishes the magnitude of Ca2+ fluxes emanating from 
the ER by either binding to and inhibiting InsP3Rs or by 
decreasing Ca2+ levels in the ER lumen149–151. Reduced 
ER Ca2+ levels and Ca2+ signals have also been reported 
in apoptosis-resistant Bax- and Bak-knockout mouse 
embryonic fibroblasts111. Interestingly, increasing ER 
Ca2+ levels in these cells by ectopic expression of SERCA2 
rescues their sensitivity to death stimuli, demonstrating 
the significance of BCL2 proteins in regulating the 
ER–mitochondrial Ca2+ gateway and cell death111. BCL2 
has also been reported to reduce ER Ca2+ by inhibition 
of SERCA2152. A consequence of chronically reduced ER 
Ca2+ levels mediated by BCL2 is a reduction in SOCE, 
which is downregulated as a result of its sustained activa-
tion151,153. Not all the effects of BCL2 on Ca2+ signalling 
are at the level of the ER; it appears to decrease the 
sensitivity of the mitochondrial uptake process as well 
as increasing their capacity to accumulate more Ca2+ 
(Refs 148,154). Thus, BCL2 can prevent Ca2+ uptake 

into the mitochondria from sources other than the 
mitochondria. Under certain conditions, both BCL2 
and BCL-XL also appear to enhance physiological Ca2+ 
signals, including Ca2+ oscillations, thus promoting cell 
proliferation and survival155,156. However, it remains to 
be determined how these pleiotropic proteins are able 
to control Ca2+ signals in such a way.

Ca2+ flux from the ER is also reduced by other mecha-
nisms that serve to diminish ER Ca2+ levels. For example, 
some cancers exhibit reduced SERCA2 expression, either 
as a result of mutation or promoter methylation61,69. This 
oncogenic effect is recapitulated in Serca1+/– mice, which 
have an increased propensity to develop spontaneous 
tumours157. Squamous cell tumours also arise in mice as 
a result of deletion of one allele of the Golgi Ca2+/Mn3+ 
pump Spca1 (also known as Atp2c1)158. In humans, 
however, loss of one functional copy of this gene causes 
Hailey–Hailey disease, a skin disorder characterized by 
recurrent vesicles and erosions in the flexural areas159. 
The importance of Ca2+ pumps in cancer is described in 
greater detail elsewhere60.

Regulation of InsP3R by PKB. The InsP3R is also regulated 
by the pro-survival PKB pathway104. The consensus 
site for phosphorylation by PKB has been identified at 
the carboxyl terminus of all three mammalian InsP3R 
isoforms and is conserved from mammals to flies104,160. 
This site is phosphorylated by PKB in vitro and in a 
PKB-dependent manner in cells following growth factor 
stimulation as well as under normal growth conditions. 
This phosphorylation event decreases InsP3-stimulated  
Ca2+ release from the ER and so diminishes flux 
of Ca2+ to the mitochondria following stimulation with 
pro-apoptotic agonists, thereby reducing apoptosis104. 
Both LnCaP prostate cancer and U87 glioblastoma cell 
lines, which have deletions in PTEN and augmented 
PKB activity161,162, exhibit increased PKB-dependent 

Box 4 | The BCL2 family

The anti-apoptotic action of members of the BCL2 family of proteins is important in oncogenic transformation211,212. The 
BCL2 family are divided into three classes: the anti-apoptotic BCL2 family members that include BCL2, BCL-XL, BCL-W, 
BCL2A1 and myeloid cell leukaemia 1 (MCL1), the multi-domain pro-apoptotic proteins BCL2-associated X protein 
(BAX) and BCL2-antagonist/killer (BAK), and the ‘BH3 (BCL2 homology 3)-only proteins’, such as BIM (also known 
as BCL2L11), BH3-interacting domain death agonist (BID), BCL2-antagonist of cell death (BAD), NOXA (also known as 
PMAIP1) and PUMA (also known as BCL2 binding component 3 (BBC3))101. In viable cells, BAX and BAK are restrained by 
their binding to pro-survival BCL2 proteins. Two models for the role of BH3-only proteins have been proposed. The first 
‘passive model’ involves the BH3-only proteins binding to BCL2 proteins, releasing BAX and BAK to promote cell death. 
The second, ‘active model’ suggests certain BH3-only proteins can also bind and activate BAX and BAK following their 
dissociation from BCL2 proteins213–215. The different BH3-only proteins respond to distinct forms of cellular stress and are 
subject to regulation at both the transcriptional and post-translational level145,213,215,216. The principal targets of BAX and 
BAK are the endoplasmic reticulum and mitochondria, which they permeabilize causing the release of pro-apoptotic 
proteins and ions147. Apoptosis is also initiated by extrinsic stimuli, which engage death receptors on the plasma 
membrane100,217. As a result, caspase 8 is activated, promoting activation of downstream executioner caspases100. This 
death receptor-initiated apoptotic pathway can also converge on the intrinsic mitochondrial apoptotic pathway 
through caspase 8 cleavage of BID to tBID, which then inserts into mitochondrial membranes causing release of 
mitochondrial pro-apoptotic factors217.

BCL2 might also protect cells from death by modulating redox conditions, although the mechanism by which this is 
achieved is unclear218. This effect of BCL2 on cellular redox is consistent with the need of the cancer cell to control the 
generation of deleterious reactive oxygen species (ROS; for example, O2

– and H2O2). Indeed, antioxidant enzymes such as 
glutathione S-transferase and thioredoxin are frequently upregulated in transformed cells99. Through these mechanisms 
cancer cells can perhaps harness the beneficial aspects of ROS and avoid their death-inducing qualities.
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phosphorylation of InsP3Rs104,160. Indeed, as well as 
the increased PKB-dependent phosphorylation of 
InsP3Rs, U87 cells exhibit decreased flux of Ca2+ from 
the ER to the mitochondria and decreased apoptosis 
compared with their isogenic derivatives in which 
PTEN is re-expressed104 (FIG. 5b). These data suggest that 
this functional interaction between PKB and InsP3Rs is 
retained in tumour cells, endowing them with a signifi-
cant survival advantage by limiting Ca2+-dependent 
death signalling.

Remodelling of metabolic pathways can mitigate the 
cytotoxicity of Ca2+. Normal cells produce most of 
their ATP from glucose through mitochondrial oxida-
tive phosphorylation (Ox Phos), whereas tumour 
cells remodel their metabolome to use glycolysis with 
reduced Ox Phos, a phenomenon known as the Warburg 
effect163. The driver for this might be the increased 
glycolytic flux in proliferating cells coupled with the 
hypoxic environment of the tumour. The glycolytic shift 
might arise from somatic mutations in respiratory chain 
components or, more frequently, oncogene-dependent 
reprogramming of key metabolic enzymes. For example, 
loss of p53 and concomitant downregulation of synthesis 

of cytochrome c oxidase 2 (SCO2) impairs assembly of 
the COXII cytochrome c oxidase complex155. The glyco-
lytic shift as a result of MYC-induced transformation 
might reflect direct transcriptional activation of lactate 
dehydrogenase by MYC, whereas cancers in which the 
PKB pathway is hyperactive exhibit changes in expression  
of glycolytic enzymes164,165.

Given the decreased efficiency of ATP generation per 
glucose molecule (2 molecules for glycolysis versus 24 
for Ox Phos), the shift to glycolysis must provide distinct 
advantages and these have been well documented 
elsewhere164. In the context of Ca2+ signalling and cell 
death a reduction in mitochondrial respiration is highly 
desirable during tumour progression. On the one hand, 
physiological levels of Ca2+ can stimulate substrate oxida-
tion and phosphorylation in the mitochondria and this 
could be enhanced in tumour cells exhibiting increased 
Ca2+ signalling. However, mitochondrial ROS production 
arising from this facilitates Ca2+-induced permeability 
transition pore opening, driving cytochrome c release, 
activation of the apoptosome and caspase-dependent 
cell death. In addition, ROS can promote further Ca2+ 
mobilization including Ca2+ entry (see above). Thus, a 
consequence of the glycolytic shift and reduction in ROS 

Figure 5 | Apoptotic signals that induce endoplasmic reticulum (ER)–mitochondrial Ca2+ flux and their remodelling 
during cancer. a | The transfer of Ca2+ from the ER to the mitochondria is a potent signal for death. A conduit for this Ca2+ 
transfer from the ER is the inositol 1,4,5-trisphosphate receptor (InsP3R). InsP3Rs are sensitized by phosphorylation (cell 
division cycle 2 (CDC2)–cyclin B), reactive oxygen species (ROS) and Ca2+. InsP3Rs are deregulated by caspase, calpain 
cleavage and/or binding of cytochrome c (CytC). As mitochondria release many of these InsP3R regulatory factors, a feed-
forward loop is set up to amplify death signalling. b | Suppression of InsP3R–mitochondrial Ca2+ flux during cancer. In 
naturally dividing cells experiencing normal levels of growth factor stimulation, InsP3Rs are tonically inhibited as a result of 
protein kinase B (PKB) phosphorylation and/or binding of BCL-XL. Reduction of growth factors or cell stress causes 
decreased PKB activity and the induction of BH3 (BCL2 homology 3)-only proteins. As a result, InsP3Rs are no longer 
phosphorylated by PKB and the interaction with BCL-XL is lost. Under these conditions, Ca2+ flux to the mitochondria is 
enhanced and cell death ensues. During cancer, BCL-XL expression and/or PKB expression and/or activity are increased, 
resulting in greater inhibition of InsP3R activity and mitochondrial Ca2+ accumulation. Thus, cell death is prevented and 
oncogenesis progresses. Reversing the remodelling that occurs during cancer to suppress Ca2+ flux to the mitochondria 
might be a therapeutic opportunity. Indeed, this might be achieved with BH3 mimetics or PKB inhibitors.
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production is a lower driving force for mitochondrial 
Ca2+ accumulation, resulting in reduced sensitivity to 
death-inducing signals. Furthermore, this mitigation 
of Ca2+-induced toxicity mechanisms might allow the 
pro-survival effects of Ca2+ to be manifest, leading to 
enhanced tumour cell survival. For example, glioblas-
toma cells selectively upregulate Ca2+-permeable AMPA 
receptor isoforms166,167 and use glutamate-stimulated Ca2+ 
entry to activate PKB in a PI3K-independent manner. 
CaMK might be responsible for this PI3K-independent 
Ca2+-induced activation of PKB168.

Therapeutic opportunities
In this article, we have reviewed the role of Ca2+ as a 
key mediator of cell proliferation and an arbitrator of 
cell survival or death. To what extent can therapeutic 
strategies exploit these Ca2+-regulated processes? 
Control of cancer cell proliferation by inhibitors of 
plasma membrane Ca2+ channels has received much 
attention and remains a potential strategy60,166,167,169,170. 
Inhibition of CaMKs could also prove to be a viable 
strategy for some tumour types. In MCF-7 breast cancer 
cells, pharmacological or molecular genetic inhibition 
of CaMKI inhibited growth, causing a G1 arrest171, and 
inhibition of CaMKII inhibited the growth of osteo
sarcoma cells172. Inhibition of CaMK-dependent survival 
signalling might also prove to be effective in combination 
with certain other therapies. For example, the discovery 
that ROS could activate certain CaMK isoforms173 led 
to the demonstration that CaMK inhibition augmented 
tumour cell death in response to cancer therapies that 
increase ROS (such as doxorubicin, ionizing radiation 
or photodynamic therapy)174. These studies indicate that 
while CaMK inhibition alone may be anti-proliferative, 
it might be more effective in tumour cell killing as an 
adjunct to other therapies.

Other approaches exploit the interface between Ca2+ 
signalling and apoptosis. Inhibition of the mitochondrial 
Na+–Ca2+ exchanger by the benzothiazepin CGP-37157, 
to cause mitochondrial Ca2+ overload, did not induce 
cell death on its own but increased cell death 25-fold 
when used in combination with TNF-related apoptosis-
inducing ligand (TRAIL, also known as TNFSF10)175. 
The BH3-mimetic ABT-737 binds to BCL2, BCL-XL and 
BCL-W (also known as BCL2L2) with sub-nanomolar 
affinity, thereby inhibiting them176. Its efficacy as a single 
agent is limited, but combination with stressors that 
induce ER Ca2+ release or promote ER store loading might 
exploit the link between BCL2, BCL-XL and InsP3R

109 
by promoting Ca2+-dependent cell death. Similarly, 
PKB-dependent phosphorylation of InsP3R

104 might be 
exploited by combining ER stressors that induce Ca2+ 
release with newly emerging PI3K inhibitors177 (FIG. 5b).

The single biggest impediment to the success of such 
approaches is still a lack of understanding of which key 
Ca2+ channels or enzymes to inhibit in specific tumour 
types. For example, the Ca2+ channel blockers that are 
being considered for cancer therapy (such as mibefradil) 
were developed for other indications or have been 
identified in screens for inhibition of proliferation in 
normal cells and then applied to cancer cells. This means 

that, although there is already a rich pharmacology to 
tap into, there is no reason to believe these drugs are 
targeting Ca2+ channels or Ca2+-regulated enzymes that 
are actually required for tumour maintenance because 
the identification of these drugs was not predicated on 
such considerations.

The ‘oncogene addiction’ hypothesis178 suggests 
that among the array of genetic changes accumulated 
during tumour progression, tumour cells evolve an 
unusual dependence upon certain key mutations to 
maintain their malignant state. For example, the fact 
that deletion of activated KRAS in tumour cells renders 
them non-tumorigenic179 or that restoration of wild-type 
p53 causes tumour regression180,181 tells us that inhibition 
of the KRAS pathway and restoration of p53 function 
are attractive therapeutic strategies. This addiction 
or acquired dependency upon particular oncogenes  
and/or pathways often reflects a loss of pathway redun-
dancy in the tumour cell compared with normal cells, 
providing a therapeutic window. We need to know 
precisely which components of the Ca2+ toolkit are upreg-
ulated or downregulated in which tumour types; which of 
these are ‘drivers’, which we might want to inhibit, rather 
than ‘passengers’, and which are validated as rate-limiting 
for tumour growth or survival (that is, have the tumours 
acquired an addiction to these Ca2+ signalling compo-
nents). This information will allow development of assays 
to inhibit the appropriate targets, and it is this strategy 
that has led to the recent success stories in cancer therapy. 
For example, notwithstanding acquired resistance, 
imatinib was discovered and has proved successful 
because BCR–ABL is a driver mutation to which chronic 
myeloid leukaemia cells are addicted182.

Closing remarks
Cellular transformation is supported on the one hand 
by Ca2+-stimulated proliferation yet limited on the 
other by Ca2+-dependent cell death. This might seem 
paradoxical but the examples of MYC and E2F, which 
also have effects on cell life and death, show that such 
contradictions are emerging as the norm and drive vital 
remodelling of tumour cell physiology. Indeed, the Ca2+ 
signalling proteome might be remodelled in cancer 
to sustain the malignant phenotype. For example, a 
relatively under-appreciated consequence of the Warburg 
glycolytic shift will be to reduce Ca2+-dependent ROS 
production and resultant toxicity, allowing the pro-
survival and pro-proliferative effects of Ca2+ signalling 
to be manifest. The extent to which transformed cells 
become addicted to this sort of remodelling remains 
to be fully appreciated. However, this is an important 
consideration as it will determine which components 
are prime targets for therapeutic intervention. In 
this sense, there are a variety of challenges ahead that 
require a coordinated approach. The use of ever more 
sophisticated Ca2+ imaging techniques should provide 
a more thorough spatial resolution of Ca2+ signalling in 
tumour cells. This can guide the expression of targeted 
Ca2+-binding proteins, such as calbindin183,184, to specific 
organelles to buffer discrete subcellular Ca2+ signals, 
and should tell us precisely which Ca2+ signals in which 
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