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Abstract. Consider a symmetric matrix A(v) € R™*™ depending on a vector v € R™ and
satisfying the property A(av) = A(v) for any a € R\{0}. We will here study the problem of
finding (A, v) € R x R™\{0} such that (\,v) is an eigenpair of the matrix A(v) and we propose a
generalization of inverse iteration for eigenvalue problems with this type of eigenvector nonlinearity.
The convergence of the proposed method is studied and several convergence properties are shown
to be analogous to inverse iteration for standard eigenvalue problems, including local convergence
properties. The algorithm is also shown to be equivalent to a particular discretization of an associated
ordinary differential equation, if the shift is chosen in a particular way. The algorithm is adapted
to a variant of the Schrédinger equation known as the Gross—Pitaevskii equation. We use numerical
simulations to illustrate the convergence properties, as well as the efficiency of the algorithm and the
adaption.
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1. Introduction. Let A : R™ — R™*™ be a symmetric matrix depending on a
vector. We will consider the corresponding nonlinear eigenvalue problem where the
vector-valued parameter of A, denoted v € R™, equals an eigenvector of the symmetric
matrix A(v). That is, we wish to find (A,v) € R x R*"\{0} such that

(1.1) A(v)v = M,

and we will call A an eigenvalue, v an eigenvector, and (A, v) an eigenpair of (1.1). In

this work we will assume that A is three times continuously differentiable with respect

to v for any v # 0. Note that we have assumed that A(v) is symmetric in order to

work in real formulation. By separating real and imaginary parts, we will, however,

in the examples, show that we can approach hermitian complex problems.
Moreover, we shall assume that A satisfies

(1.2) A(av) = A(v) for any « € R\{0},

such that the solution is independent of the scaling of v, i.e., if (\,v) is a solution
to (1.1), then (A, awv) is also a solution for any o € R\{0}. If a problem does not
have property (1.2), but instead satisfies a normalization constraint, we can often
transform it to an equivalent problem with property (1.2). For instance, consider
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TABLE 1
Applicability of the convergence characterizations in this paper.

Shift o Error ||vp — v«|| | Characterization

Section 3 | arbitrary [lop — v« € 1 One step of (1.3) satisfies the
first-order expansion (1.5)

Section 4 o< A« arbitrary One step of (1.3) approximates the
trajectory of the ODE (1.6)

A(-) which is symmetric with respect to v, i.e., A(v) = A(—v). Also suppose A does
not satisfy (1.2). The problem to find a normalized vector € R™, i.e., ||z] = 1, such
that A(z)z = Az is equivalent to (1.1) if we define A(v) := A(v/||v||) such that A
does satisfy (1.2).

In this paper we propose a new algorithm for (1.1), which is a generalization of
inverse iteration for standard linear eigenvalue problems. More precisely, we consider
the iteration,

(1.3) Vkg1 = ar(J(vp) — o) "oy,

where oy, = 1/|(J(vr) — o)~ vg|| and J is the Jacobian of the left-hand side of (1.1)
with respect to v, i.e.,

(1.4) J() = 2

= %(A(v)v) e R™*™,

The scalar ¢ € R is called the shift and can be used to control to which eigenvalue
the iteration converges, and has great influence on the speed of convergence.

The iteration (1.3) can be interpreted as a generalization of inverse iteration,
which is one of the most used algorithms for eigenvalue computations. Convergence
analysis can be found in [27, 14] and in the studies of Rayleigh quotient iteration in
the classical series of works of Ostrowski, e.g., [26]. There are also inexact versions of
inverse iteration and its variant Rayleigh quotient iteration, e.g., [28, 9]. These results
are often used in combination with preconditioning techniques for inverse iteration
[24, 23, 17]. Inverse iteration has also been generalized to eigenvalue problems with
eigenvalue nonlinearities, e.g., [22, 20, 29] for which convergence has been studied in
[15, 16]. There is an algorithm for problems with eigenvector nonlinearities and based
on solving linear systems in [21]. See also the results on eigenvector nonlinearities in
[7]. To our knowledge, the iteration (1.3) for problems of the type (1.1) has not been
presented or analyzed in the literature.

We characterize the convergence of the iteration (1.3) in two ways, which lead to
conclusions for the behavior in two situations; when the error ||vy — v, is small or
when the shift satisfies 0 < \,; see Table 1.

In particular, in the local convergence analysis (in section 3) we show the following.
For any eigenpair (A, v,) of (1.1), the iteration satisfies

(1.5) Ukl £ Ve = [ M — 0| Fe(vp — vs) + O(JJug — vs]?),

where the sign depends on sign(A, — o), and we derive an expression for F, € R"*".
If the shift is sufficiently close to the eigenvalue, the iteration is locally convergent.
The convergence is in general linear and the convergence factor is proportional to
the distance between the shift and the eigenvalue. We also briefly discuss updating
strategies for the shift and connections with Newton’s method.
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We also provide a characterization of (1.3) by deriving a relation with an ODE
applicable in the situation when o < A,. In particular, in section 4 we show the
following. One step of (1.3) is equivalent to a particular type of discretization of the
ODE

(1.6) y'(t) = p(y()y(t) — Aly(®)y(?),
where p is the Rayleigh quotient

_ Yy AWy
(L.7) p(y) : Ty
if the shift is chosen such that o < A.. The stationary solutions of (1.6) are solutions
o (1.1). A small step length in the discretization corresponds to o < A, implying
that one step of (1.3) approximates the trajectory of (1.6) if o is chosen sufficiently
negative. In the linear case A(v) = B, when the matrix B has one simple dominant
eigenvalue (eigenvalue closest to —oo), the ODE only has one stable stationary point
(which corresponds to the dominant eigenvalue) and it is convergent for any starting
value. If a similar situation occurs for the nonlinear case, i.e., the ODE (1.6) is con-
vergent and only has one stable stationary point, then the iteration (1.3) is expected
to converge to this solution for sufficiently negative o and the convergence is expected
to be independent of the starting vector. In particular, if the problem is close to
linear, the iteration is expected to converge to the dominant eigenvalue.

The idea we use in section 4, basing the reasoning on interpreting the iterative
method as a discretization or realization of an ODE, has been used in a number
of other settings for eigenvalue problems before, e.g., for the QR-method [30, 31,
6], preconditioning techniques [17], and characterizations of the Rayleigh quotient
iteration [19]. In fact, the ODE (4.1) is a nonlinear variant of the Oja flow [32]. See
also the collection [3] and the description of iterations on manifolds in [8].

The algorithm is illustrated by showing how it can be adapted to the Gross—
Pitaevskii equation (GPE) in section 5. The GPE is a standard model for particles
in the state of matter called the Bose-Einstein condensate. See [18] and references
in [1] for literature on the GPE. We discretize the GPE and transform it to the form
(1.1). We also show how the solution to the linear system (J(vg) — o)~ lvy, can be
found efficiently using the Sherman—Morrison—Woodbury formula. It turns out that in
this setting, the ODE (1.6) is directly related to the technique called imaginary time
integration [1]. This connection allows us to use results known for imaginary time
integration, in particular, that the ODE always converges to a stationary solution
and the experience presented in results in the literature indicate that this is often a
physically relevant solution, e.g., the ground state. We further study the ODE and
derive a heuristic choice of the step length h or, equivalently, a heuristic choice for
the shift o, which follows the trajectory of the ODE to sufficient accuracy, and still
maintains a fast asymptotic convergence rate.

Although we are not aware of algorithms for (1.1), a number of successful algo-
rithms do exist for the specific application we have in mind, i.e., the GPE in section 5.
Besides the aforementioned methods based on imaginary time integration, there are
methods for the GPE based on minimization [2, 4] as well as a Newton—Rhapson ap-
proach [5]. Our approach is different in character since the reasoning stems from an
eigenvalue algorithm (inverse iteration), and it has a different generality setting. It
can be interpreted as a discretization of the ODE, but with an integration scheme and
step length which we believe has not been used for the imaginary time integration of

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 03/17/15 to 134.58.46.142. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

AN INVERSE ITERATION FOR EIGENVECTOR NONLINEARITY A1981

the GPE. For completeness we also present results for another generalization of the
algorithm which turns out to be essentially equivalent to an approach presented in [1]
and can be seen as (1.3) where J is replaced by A.

The notation in this paper is mostly standard. We use a%q(v) to denote the
Jacobian of a vector or scalar g, i.e., if v € R" and ¢(v) € R¥, then %q(v) =
(a%lq(v), N %q(v)) € RF*". We use the notation (-),—, to denote substitution of
x with y for the formula inside the parenthesis. As usual, the expression || Z]| denotes
the Euclidean norm if Z is a vector and the spectral norm if Z is a matrix. The set of
eigenvalues of a matrix B € R™*" will be denoted A(B) and a dominant eigenvalue will
be used to refer to an eigenvalue u € A(B) for which all other eigenvalues have larger
(or equal) real part, i.e., if 4 € A(B) is a dominant eigenvalue, then any ps € A(B)
satisfies Re (1) < Re (u2).

2. Preliminaries and fixed point formulation. Throughout this paper we
will in several situations use the following consequences of the scaling invariance prop-
erty (1.2).

LEMMA 2.1 (scaling invariance). Consider a scaling invariant function @ : R™ —
R¥* e, Q(av) = Q(v) for any a € R\{0}. Then, for any vectors u € R, v € R",

(2.1) (a%(@(v)u)) v=0.

In particular, given A : R™ — R™™ satisfying the scaling invariance (1.2) and J
defined by (1.4), we have

(2.2) J(w)u = A(u)u

for any uw € R™. Moreover, if u = v, when (A, vs) is an eigenpair of (1.1), then A,
is an eigenvalue of J(v.) with eigenvector v..
Proof. The left-hand side of (2.1) can be interpreted as a directional derivative
in the direction of v. We have
QU1+ e)v)u — Q(v)u

0 o Quteu-Quu )
<%(Q(U)U)) v := lim = lim =0,

e—0 £ e—0 €

which shows (2.1). The identinty (2.2) follows from the chain rule. O
The iteration can naturally be represented in a fixed point form

Vg1 = @(vg),

where
1
(2.3) p(v) = m%b(v)
and
(2.4) Y(v) = (J(v) — o) o.

Obviously, vkt+1 = ¢(vg) when vy is given by (1.3). It also turns out that the fixed
points of ¢ are solutions to (1.1). However, the converse is not true. We shall now
show that if o > A, we have p(v.) = —v,, implying that the iterates vy alternate
between v, and —wv, if vg = v.. An equivalence with the solutions to (1.1) and the
vectors that satisfy ¢(vs) = fwv,, for some choice of the sign, can be achieved if we
take the alternation into account, as can be seen as follows.
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PROPOSITION 2.2 (equivalence of fixed points and eigenvectors).
(a) Suppose (Ai,vs) is a solution to (1.1) with ||vi|| = 1 and suppose o # A..
Then, the fired point map ¢ satisfies

(2.5) p(vs) = L.

The sign in (2.5) should be chosen positive if o < A«, otherwise negative.
(b) Suppose v = p(vs) or v = —p(vs). Then, (A, vs) s a solution to (1.1)
with

1 T Al
(J(vs) — o)~ Lo, = v, A(vi ) s

(2.6) A =0 % H

Proof. In order to show (a), suppose (A, v.) is an eigenpair and note that from
Lemma 2.1 we have that

MV = A(0)0s = J (04 )0x.

By subtracting ov, from both sides and subsequently multiplying both sides from the

left by 1= (J(vs) —oI)~! we can simplify ¢ (v.) = (J(vi) —0I) v, = 5., and

we consequently find that

1 1
@7 el = Joeorons - ok

Hence, ¢ evaluated at v = v, is explicitly

1 A — o]
o(0) = —— gy ==

P(va) T (v4) A=
In order to show (b), suppose that v, is such that p(v.) = £v,. Equation (2.3) leads
to

Uy = F0,.

+1

V) =D = Gy — e e

From Lemma 2.1 it follows that J(v.)v. = A(v.)v, and we finally have that

.= (o oy ) o

and the formula (2.6) follows by multiplying from the left with v7. O
3. Local convergence properties.

3.1. First-order behavior and convergence factor. From Proposition 2.2
we can directly conclude that if we at some point in the iteration have vy = v,, where
v, is an eigenvector, then every subsequent iterate v, j > k, will also be an eigenvector
corresponding to the same eigenvalue, but v; can possibly alternate between +v,. We
will now study the case where vy, is close but not equal to an eigenvector. In order to
understand this local convergence behavior, we also need to take the alternation into
account. The error is to first order given by the following result.

THEOREM 3.1 (local convergence). Suppose (A, vs) is a solution to (1.1) with

||lve|| = 1. Let o € R be any shift such that J(vy) — ol is nonsingular, in particular
o # M. Then,
(3.1) @ (02) = s — ol(T = 0a0T) (J(02) = o1) .
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Moreover, suppose the iterates vy generated by (1.3) are such that J(vg) — ol is
nonsingular for any k. Then, the iterates satisfy

(3.2) Vi F 0n = ¢ (0) (0 — 0.) + Ol — . ?).

The sign in (3.2) should be chosen negative if o < A, otherwise positive.
Proof. By using the Taylor expansion and the fixed point characterization in
Proposition 2.2, we have that the left-hand side of (3.2) satisfies

Ukt F U = Ukt — (F02) = @(vr) — 9(vi) = ¢ (v2) (0 — 0.) + O|[vr — s 7).

It remains to derive the formula ¢’(v,) given by (3.1).
We will need the derivative of the two-norm, which can be expressed as the row
vector

33 GV = 5 HOT0) = ey ) = ) ),

since p(v)" = ¥(v)" /[P (v)]|2.
From the definition (2.3) of ¢ we have the relation ¢(v)||¥(v)]] = ¥(v), whose
Jacobian can be computed with the product rule and (3.3),

&' )Pl + @v)pv) ¥ (v) = ¢'(v).
Hence,
1
Ol
T _

Now recall (from Proposition 2.2) that ¢(v.) = +v. and consequently p(v.)p(vi)* =
v,vl. This fact combined with the formula for the norm (2.7) leads to a simplification
of (3.4) when we evaluate at v = vy,

(3.4) ¢'(v) = 0 (I = p)p(v)") V' (v).

(3.5) @ (02) = [\ — o] (I = v.0T) ¥/ (1),

It remains to establish a formula for the Jacobian of ¢ evaluated at v = v,. By
differentiation of (2.4) multiplied by J(v) — oI, we have

39) (500 -anu@)  + U0 - oD@ =1
and
B W) =0 - oD (FI0NE)) 4G —an

Moreover, note that ¥(v.) = ||[¢(vi)|lp(ve) = £||(J(vs) — oI) " toy||v.. We will now
show that the first term in (3.7) vanishes identically by showing that all columns of

(B%J(v)v*)vzv* vanish. Let the jth column be denoted

(3.8) cj = <%J(U)v*> ej = ;1_%% (J (v +e€j)ve — J(v5)04) .

V=V
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Lemma 2.1, and in particular the identity J(u)u = A(u)u for any v € R™, implies
that

J(vs + gej)vie — J (Vi) Vs
= J(vie +eej)(ve +eej) —eJ(ve +eej)e; — J(vi)vs
= A(vi +eej)(vi +eej) —eJ (v +cej)e; — J(vi)vy
= A )ve +eJ(vi)ej — eJ(vi +gej)ej — J(vi)vs + O(e?),

where we used a Taylor expansion of A(v, + ee;) (v +ce;) = A(vi)vi + J(vs)(ce;) +
O(£?) in the last step. Hence, by again applying Lemma 2.1 now giving A(v.)v, =
J (04 )y, we have

¢j = lim (J(vi)e; — J(ve 4+ €¢j)ej + O(e)) = 0.

e—0

We have shown that ¢; = 0 for any j = 1,...,n which implies that

8 nxn

(3.9) <%J(v)v*>v_v* =0eR
such that the first term in (3.7) vanishes and the proof is complete. a

Note again that the iteration (1.3) is a fixed point iteration. Hence, the con-
vergence factor is generically given by the spectral radius of the linearized map, i.e.,
¢’ (vs) (if the sign is appropriately taken into account). We will now explicitly charac-
terize the spectral radius of ¢’(v,) by deriving formulas for the eigenvalues of ¢ (v,).
The eigenvalues of ¢'(v,) can be explicitly found by multiplying from the left with
left eigenvectors of J(v.). Suppose A, is a simple eigenvalue of J(v.) and suppose
wl'J(ve) = pwT, where p # A.. The fact that a left eigenvector is orthogonal to the

right eigenvectors corresponding to all other eigenvalues, we have that w”v, = 0 and
As —
W7 (02) = A — ol (J(0) — o)t = 2e=lyr
w—o

Under the condition that A, is a simple eigenvalue of J(v,), this provides an explicit
formula for n — 1 eigenvalues of J(v.). The final eigenvalue is 0 and the largest
eigenvalue in modulus, i.e., the spectral radius, is

L

(3.10) 7= ple(ve)) = ;
2 — o]
where s € C is the eigenvalue of J(v,) closest to o, but not equal to A, i.e.,

o= argmin |u—ol
HEAI (B )\ (e}

Consequently, a sequence {Uk}zozo that converges to v, satisfies

kg E o
3.11 1 _ =
(3.11) Koo [0 £ vs]]

under generic conditions. A formalization of this statement can be done with the
concepts of R-convergence and Q-convergence in [25, NR 10.1-5].
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3.2. Similarities and differences with inverse iteration for linear prob-
lems. The iteration (1.3) is clearly a generalization of inverse iteration when A(v) =
Ay is constant, and a behavior similar to (linear) inverse iteration is expected when
the problem is close to linear. More importantly, from the theory above we can con-
clude that the iteration possesses many properties similar to inverse iteration also in
a situation when the problem is not close to linear.

e The convergence is in general linear.

e The convergence factor is asymptotically proportional to eigenvalue shift dis-
tance when the distance is small.

e The convergence factor (3.10) is in general determined by a quotient involving
the eigenvalue shift distance in the numerator. Unlike the linear case, the de-
nominator is the distance between the shift and the second closest eigenvalue
of J(vy).

e Unlike the linear case, for a given shift, several eigenvectors can be attractive
fixed points. Conversely, for a given shift, the iteration may not have any
attraction points.

In order to further illustrate the value of these properties we will in this work also
briefly study another generalization of inverse iteration. Inverse iteration for standard
eigenvalue problems consists of shifting, inverting, and normalizing, and it is from this
perspective natural to consider the generalization vi+1 = @a(vk),

1 —1
(3.12) pa(v) == mwm), Ya(v) = (A(v) —ol)" 0.

We will call this the A-version of inverse iteration.

We can derive a description of the first-order behavior similar to Theorem 3.1.
Note that ¢4 (v.) is considerably more complicated than ¢'(v.) and most of the bullets
above do not apply to this version, most importantly, the convergence factor is not
necessarily small if the shift is close to the eigenvalue.

3.3. Illustration of local convergence. Several properties of the algorithm,
including the local convergence above, can be observed when applied to the example

Bv

(T
A(v) = Ag + sin ( Ty ) A

The Jacobian is given by

_ 9 _ COS(U:T]?JU) T NTp (T T
J() = aUA(v)v—A(v)—I—Z W) Arv((v' v)v' B — (v' Bv)v').

We selected Ag, A1, and B in a random way. In order to make the numerical simula-
tions reproducible, we will fix Ag, A1, and B as follows:

10 21 13 16 20 28 12 32
A L2t 26 24 2| - B|28 4 14 6
71013 24 —20 37 [P 10|12 14 32 34|’
6 2 371 —4 32 6 34 16
—14 16 -4 15
g L1 10 15 -9
0] -4 15 16 6 |

15 -9 6 -6

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 03/17/15 to 134.58.46.142. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

A1986 ELIAS JARLEBRING, SIMEN KVAAL, AND WIM MICHIELS

10 T
) :
9 N
5 :
107 1@
e
@
= e - =
Tx 10"0 % .......................... ?x
= D =
= > =
]
107‘5 ,,,,,, % ........................
]
107%° : : : 107%° : . : :
0 10 20 30 40 50 0 10 20 30 40 50
Iteration k Iteration k
(a) S =0.01, 0 =X« +0.3 (b) B =0.1,0 =X« +0.3
10°
: +  J-version
" 100 feoooo i AV§r5|on
¥ : : :
+ :
= "; = 10"0 R AR RRRREERERERTRRRRE:
_ : >
7,107 '0; ........................ g
> . —
= "; = 10 £l S P S PP
+
107 T S AP a0
4+ 10 T LS AR
107%° : . . : 107 . . : .
0 10 20 30 40 50 0 10 20 30 40 50
Iteration k Iteration k
(¢) B=1,0 =X +0.3 (d)B=10=XA

Fic. 1. Convergence for the example in section 3.3 using (1.3), i.e., the J-version of inverse
iteration, and the A-version of inverse iteration (3.12).

2 T - 2 T
+  J-version : +  J-version |
O  A-version : O  A-version [
15 Equation (3.10) [~ ": """ 1.5f[ —— Equation (3.10) [ "1+
_—_h : P ¥ [
- L - |
3 E 3
a B a

o : : :
-20 -15 -10 -5

Fic. 2. FEstimated convergence factor for the J-version and A-version of iteration, where es-
timation is done with the quotient ||vgy1 £+ vi||/||ve £ v ||, where vk is a very accurate solution.
Clearly, when o — A\« the convergence factor for the J-version approaches zero, unlike the A-version.
When o — —oo the convergence factors coincide. We have selected § = 0.5.

where we carry out simulations for a number of different 5. Note that the problem is
linear when = 0.

Simulations of the inverse iterations for different S are given in Figures 1 and 2.
In Figure 1 we clearly observe linear convergence, for the A-version as well as the
J-version. Moreover, for small 3, i.e., when the problem is close to linear, we see

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 03/17/15 to 134.58.46.142. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

AN INVERSE ITERATION FOR EIGENVECTOR NONLINEARITY A1987

the performance of the A-version is essentially as good as for the J-version. The J-
version is clearly less dependent on 3. As the nonlinearity parameter (8 increases, the
performance of the A-version worsens whereas the convergence of the J-version is not
greatly affected by an increase of 8. We see in Figure 1(d) that the slow convergence of
the A-version can not always be compensated for by moving o closer to the eigenvalue
A«. In this case the A-version is not even locally convergent when o = A, whereas
the J-version exhibits quadratic convergence. Note that for 0 = A, the fixed point
maps ¢(vs) and @4 (vs) involve inverses of singular matrices, implying that they do
formally not have fixed points v,. Similar to inverse iteration for standard eigenvalue
problems the J-version still works in practice when subject to rounding errors.

In Figure 2 we visualize the convergence factor predicted by formula (3.10) with
an experimental convergence factor determined by starting the iteration very close to
the eigenvector. We see that the convergence factor of the J-version approaches zero
when o — A, as predicted by (3.11). The convergence factor for the A-version does
clearly not vanish when o is close to ..

3.4. Updating shift and connection with Newton’s method. A standard
approach to accelerate local convergence of inverse-iteration-type methods consists of
updating the shift, based on the eigenvector approximation. In what follows we derive
an updating strategy, having an interpretation in terms of Newton’s method.

Given a vector £ € R", an application of Newton’s methods to the following
system of equations,

(o=

leads to the iteration

J(vk) = Al =g Vg1 — vk | _ | (A(or) = Ael)vk
éT 0 /\k+1 — )\k ET’U]C -1

By using Lemma 2.1 we find that

Vi1 = (M1 — M) (J(vg) — M) Loy,
ZT’U]C+1 =1.

Consequently, the iteration

(3.14) Vkg1 = Br(J(vg) — opd) Lo

with B = 1/¢%(J(vy) — oxI) "oy and the update law
Ok+1 = O + B,

is equivalent to Newton’s method applied to (3.13). As a consequence, quadratic
convergence is guaranteed for the case of a simple solution. Note that due to the scale
invariance of J, i.e., J(av) = J(v), inherited from the scale invariance of A, iteration
(3.14) is essentially the same as iteration (1.1). The change in normalization allows us
to express the update of the shift in a simple way. We also note that as an alternative
update strategy, the Rayleigh quotient can be used, i.e., ox+1 = p(vi+1), with p given
by (1.7).
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4. Interpretation as the discretization of an ODE.

4.1. The normalized ODE associated with (1.1). In order to provide fur-
ther insight into the nonlocal behavior of the iteration, we will consider the following
ODE:

(4.1) 2(t) = —A(=()= ()

and the function corresponding to the normalization of the solution

(4.2) y(t) := q(t)z(t), where q(t) := IEGIR

The function y also satisfies an ODE, which does not involve z. This can be seen from
the following reasoning. Note that

) P —— S ] ()

EETEEIE (0T A(0)2(0) = aDy(B)T AO)ye).

I2()1I°

By applying the product rule to (4.2), we have

Y () = a(t)2'(t) + ' ()2(t) = — q()A(2(1)2(t) + a(t) (y(H)T Aly()y(t))=(t).

Hence, the normalized function y(t) satisfies the differential equation

(4.3) y'(t) = p(y()y(t) — Aly(t))y(t),

where p(y(t)) is the Rayleigh quotient defined by (1.7). The ODE (4.3) will be used
as a tool to understand the iteration (1.3). For this reason several properties of the
ODE and some of its relations with the nonlinear eigenvalue problem (1.1) will be
particularly important.

THEOREM 4.1 (ODE properties). Consider the ODE (4.3) with initial condition
y(0) = yo with ||yo|| = 1. The ODE and its solution have the following properties.
(a) The norm ||y(t)|| =1 independent of t.

(b) Any stationary point of the ODE (4.3) is a normalized eigenvector of (1.1).

c) Any normalized eigenvector of (1.1) is a stationary point of the ODE (4.3).
d) Let y, be a stationary point of the ODE (4.3). The stationary point is stable
if the eigenvalue A = p(y.) is a simple dominant eigenvalue of J(y.), i.e., if
A« 18 a simple eigenvalue of J(y.) and

A <Re (p) for any p e M(J(y))\{A}-

(e) Lety. be a stationary point of the ODE (4.3). The stationary point is unstable
if there is an eigenvalue p of J(y«) such that

Re (1) < A = p(ys)-

Proof. The statements (a)—(c) follow directly from the derivation of (4.3). In
order to study the stability of the stationary point y., let A(t) := y(¢) —y. denote the
deviation from the stationary solution. Then, by Taylor expansion of (4.3) we have

py()y(t)=Aly )y (t) = Py +yap' () — T ()] A1) +O(A(?)).

>
~
—~
~
~—
|
<
~
—
~
~—
|
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We can now insert p(y.) = A« and p'(y:) = y7 (J(y.) — A1) since ||y« = ||lvoll = 1.
Hence, the behavior is, to first order, given by

(4.4) N (t) = F(y.)A(t),
where

F(ya) = AT 4+ 4yl (J(y) = Ad) = J(y) = (I — gyl )T = J(y)).

Since F'(y.) is singular, at least one eigenvalue is zero. The other eigenvalues can be
determined by multiplying F'(y.) from the left with left eigenvectors of w. Suppose w
is a left eigenvector corresponding to any eigenvalue p # A, of J(yx«). Due to the fact
that a left eigenvector is orthogonal to the right eigenvectors corresponding to other
eigenvalues we have that w’y, = 0 and w? F(y.) = wT (I — gyl )(\d — J(ys)) =
wl(A\d — J(ys)) = (A« — p)w?. Hence, all of the nonzero eigenvalues of F(y.) have
the form A, — u, where p is an eigenvalue of J(y.), but not equal to A\.. The ODE
(4.4) is unstable if F(y,) has eigenvalues with positive real part, and the ODE (4.4)
is stable if all eigenvalues have negative real part. The statements (d)—(e) follow from
the sign of Re (A« —p) = A\ —Re (), which, provided it is not zero, gives a conclusion
about the local stability of (4.4) and (4.3). O

4.2. Discretization of the ODE and equivalence with inverse iteration.
In the previous subsection we saw how the ODE (4.3) was related to the nonlinear
eigenvalue problem (1.1); in particular we showed that the stationary solutions were
equivalent to the eigenvectors of (1.1). We will now show how this connection can be
used by showing that the proposed version of inverse iteration (1.3) can be interpreted
as a discretization of the ODE, allowing us to study the general behavior of the
iteration by studying the ODE.

Consider first the Rosenbrock—Euler method [12, Chapter IV.7], i.e., the backward
FEuler method where the nonlinear system is solved with one step of Newton—-Rhapson’s
method. The backward Euler method with step length h applied to (4.3) is

Uht1 — Uk N _ . ~
(4.5) % ~ p(Ukt1)Uk+1 — A(Ukt1) U1

We approximate the first term in (4.5) by its linearization,

POr+1) k1 = p(Tk) Tk + 0" Ge) Tk + 2(Gk) 1 — Tr) = P(Tr)Tr+1,

where we denoted p'(z) := %p(z) € R We also used that p'(2)z = 0 for any
z which follows from Lemma 2.1 since p(z) is scaling invariant. The second term in
(4.5) is now also approximated by its linearization. By combining the approximation
with (2.2), we have

A1) U1 = AGe) Tk + J (k) (Grt1 — Ik) = J(Gr) Trt1-

Hence, the Rosenbrock—Euler method applied to (4.3) is equivalent to

(U1 — Tx) = P() k1 — J (Tr)Trr1

> =

and also

(4.6) (<% —p@k)) I+ J(ﬂk)) Jr+1 = %ﬂk
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The ODE (4.3) has, according to Theorem 4.1, a solution with constant norm.
Despite this, the discretization g does not have constant norm, due to the approx-
imation error introduced in the stepping scheme. This issue can be addressed by
carrying out a standard projection described, e.g., in [11, Algorithm IV.4.2], which is
a common procedure for incorporating normalization constraints. In this case, it re-
duces to subsequently normalizing the iterate, i.e., setting yi4+1 := mgk+1. Since
p and J are scaling invariant, we have p(gx) = p(yx) and J(§r) = J(yx), and we can
express one step of the integration scheme as

(4.7) Yk1 = Qi ((% —p(yk)) I+ J(Z/k)) h Yk,

where i, = 1/[[((% = p(y))T + () uil.

The main result in this section is based on the observation that (4.7) is equivalent
to the proposed version of inverse iteration (1.3) if the shift o and step length & are
related in a particular way. This connection is summarized in the following theorem.

THEOREM 4.2 (ODE discretization equivalence). Let the sequences {yi}7>, and
{ve}32, be generated in the following way.

(a) Let v be the iterates generated by inverse iteration with (1.3) with a given

shift o € R.
(b) Let yi be the discretization of (4.3) using
e the Rosenbrock—Fuler method,
e q standard projection step which imposes the normalization, and
e the step length

1

(4.8) hy = p(on) — o

where o is the shift used to generate vy.
Moreover, suppose they are started in the same way, i.e., let yo = vg. Then,

Uk = Yk

for all k € N.
We summarize some immediate consequences.

e The iteration (1.3) is an approximation of the trajectory of the ODE (4.3) if
h is chosen sufficiently small, i.e., if o is chosen sufficiently negative.

e Suppose the ODE converges to a stationary solution, which indeed is the
case for several examples, and can in particular be proven for the example in
section 5. In this situation the stationary solution is a solution to the ODE,
and the iteration will converge to an eigenvector for sufficiently negative o.

e For the linear case, i.e., A(v) = B, we can explicitly write down the solution
to (4.1) using the Jordan form, and thereby study (4.3) which will converge to
the dominant eigenvalue unless y(0) is chosen in a particular way. Moreover,
Theorem 4.1(d)—(e) shows that if the dominant eigenvalue is simple, it will be
the only stable solution. Analogously, for nonlinear problems which resemble
the linear case in the sense that the ODE (4.3) only has one stable stationary
solution and the ODE is convergent (unless started in a particular way), the
iteration will converge to that solution for sufficiently negative o.

Remark 4.3 (ODE interpretation for A-version). The A-version (3.12) can be
interpreted as a discretization of the ODE (4.3), but where J is approximated by
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starting vectors.

Fi1c. 3. Convergence of the ODE (sine ezample) to the dominant eigenvector.

A and h is chosen according to (4.8). In fact, when the A-version is applied to the
example in section 5 it is equivalent to an approach available in the literature; more
precisely, the discretization of the normalized gradient flow given in [1, equations
(2.20)—(2.21)].

4.3. Illustration and numerical justification of ODE discretization. Con-
sider a situation where we do not have any approximation of any eigenvalue of the
example in section 3.3. To characterize this situation we carry out a number of simu-
lations with random starting vectors for different shifts. Such a statistical simulation
is shown in Figure 3a. We observe that for ¢ < —5, the iteration appears to always
converge to the dominant solution. This property can be explained using the devel-
oped theory. When o < A, we can apply Theorem 4.2 and when |0 — \.| < 1 we can
apply the local convergence theorem (Theorem 3.1).

We computed the solution for the ODE (4.3) for this example using a stan-
dard ODE integrator, with a random starting value. The trajectory is shown in
Figures 3(b)—(c). Clearly, the ODE converges to the dominant eigenvector. Similarly,
in Figure 4 we have shown the computed approximate trajectories using (1.3) (J-
version) and (3.12) (A-version). We see in accordance with the interpretation of o as
a particular choice of step length (via (4.8)) that the iteration follows the trajectories
better if o is more negative. Moreover, with the J-version we can take larger steps
than with the A-version, as the A-version does not follow the ODE in Figure 4(a).

The experience with the ODE (1.3) for this particular example indicates that
the ODE converges to a stationary solution for all 8 € [0,1]. Moreover, for several
choices of 8, among all eigenvectors, there appears to be only one situation where \,
is the dominant eigenvalue of J(v,). This can be seen in Figure 5. From Theorem 4.1
we consequently know that the ODE (1.3) only has one stable stationary solution.
Combined with the convergence observation, the ODE will always converge to this
solution. Hence, Theorem 4.2 implies that for sufficiently negative o, the iteration will
follow the trajectory of the ODE and eventually converge to the dominant eigenvector.

5. Application to the Gross—Pitaevskii equation.

5.1. Discretization and reformulation to the form (1.1). To achieve the
physical phenomeon of Bose-Einstein condensation, weakly interacting particles (such
as *He atoms) are trapped and cooled down to very low temperatures, thereby under-
going a phase transition into a Bose—Finstein condensate (BEC), a superfluid phase
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===y

—+— invit J-version

—©— invit A-version|
eigenvector

(b) o = —10 (¢) o = —20 (d) o = —50

F1G. 4. The J-version is better in the sense that it follows the ODE also for larger h than for
the A-version. The dominant eigenvalue is A« ~ —6.01.

| X OO o |

-10 0 10 20

| O ® O o |

-10 0 10 20

| X OO O | | X O O | | oox o |

-10 0 10 20 -10 0 10 20 -10 0 10 20

| 0O xRO O | | 0O x0O o | | o oox |

-10 0 10 20 -10 0 10 20 -10 0 10 20

| Oo0oxR O | | O oo | | 00X o |

-10 0 10 20 -10 0 10 20 -10 0 10 20

| Ooo0oo0 ® | | o oo = | | o oo = |

-10 0 10 20 -10 0 10 20 -10 0 10 20
(a) =0 (b) =05 (c) =1

F1G. 5. The eigenvalues of J(v«) for the example discussed in section 4.3. In every subfigure, O
denotes the eigenvalues of J(vs) for an eigenpair (A, vs) of (1.1) and A« is denoted by X. In this
notation, a stable stationary solution described by Theorem 4.1(d)—(e) corresponds to a situation
where X is to the left of all OJ.

of collective quantum mechanical motion. A standard model for a BEC is the GPE,
a nonlinear partial differential eigenvalue equation. This equation exhibits interesting
topological behavior. In particular, it reproduces experimentally observed quantized
vortices in a BEC within a rotating trap, the hallmark of superfluidity.
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Upon discretization, the GPE becomes an eigenvalue problem of the form (1.1),
and to illustrate the iteration (1.3) we will consider the case of a rotating BEC on the
domain D = (—L,L) x (—L, L) in two dimensions, whose GPE reads
(5.1)

(~38 =105 + V@) ) + Hole ) Pies) = Ablap). - (@0) €D

where ¥(x,y) is the condensate wave function (not to be confused with ¢ in (2.4))
such that |1 (z,y)|? is proportional to the particle density at (x,y), and where a% is
the angular derivative given by

(5.2) oyl L

The function V(z,y) is the external potential function which describes the shape
of the particle trap. Here, we choose an asymmetric harmonic oscillator potential
V(z,y) = (2 + 1.2y%)/2. We are mostly interested in those solutions to (5.1) which
are physically important, e.g., the ground state.

The boundary condition is chosen as ¥ (x,y) = 0 on (z,y) € dD. Moreover, 1
is normalized such that ||¢|| 2y = 1. The physical constant b controls the strength
of the interactions between the bosons, and 2 the angular velocity of the rotation,
which are here selected as b = 200 and {2 = 0.85, respectively.

The domain is discretized with N + 2 equidistant grid points in each physical
direction leading to n. = N? interior grid points with spacing Az in both directions.
For completeness we provide the matrices resulting from the discretization. We use
the approximations of A and 9/9¢,

Ly =Don®@I+1® Dy N, Lyn =diag(ys,...,yn)® Dy — Dy ®@diag(z1,...,zN),

where Dy and Dy y are the central difference approximations of the derivative and
the second derivative, respectively. Moreover, we let

V= (V(xlayl)a sy V($N7yl)7 V($17y2)7 sy V(xNayQ)a cee V(ﬁNayN)) € R™.

Then, with
~ 1 . . ~
Ay = —§LN —iQLy N + diag(V)

the discretized problem is

(5.3) A(z)z = Az,
where
(5.4) A(2) = Ay + Bdiag(|2])%,

and to be consistent with [|[¢]|z2m) = 1 we must have ¥(z;,yx) = (Az) ' 2nk-1)4;
and 3 = (Az)~2b.
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The problem (5.3) is a complex problem of dimension n., not satisfying the scaling
invariance (1.2). In order to transform this problem to the form (1.1) we introduce
the following notation:

Re A —wtive ) _py 4 (_ubivs
wv;fvl+v§v2 \/val+v;v2

Im A [ ——adive Re A | —=utiva
\/UT’UlJrU;’UQ \/UTU1+U§1}2

. Re AO —Im AO i
N (Im Ay Re A ) + vTvB(v)’

Av) =

and

B o <diag(v1)2—(|)—diag(v2)2 St e (W), o= (2).

With this definition of the matrix A(v) we have transformed A(z) by treating the real
and imaginary parts of z as separate variables. Consequently, the complex problem
(5.3) of dimension n. is equivalent to the real problem

(5.5) A(v)v = M

of dimension n = 2n, which does satisfy (1.2).

5.2. Jacobian and exploitation of Jacobian structure. The resulting ma-
trix A(v) in (5.5) is a sparse matrix for any v due to the finite-difference discretization.
In order to carry out (1.3) we need the Jacobian J(v) and we need to be able to ef-
ficiently solve the corresponding shifted linear system of equations. It turns out that
the Jacobian is in general a full matrix, making the direct application of sparse solvers
inefficient. Fortunately, the linear system involving the Jacobian can be decomposed
into two linear systems of equations involving a matrix which is sparse. The deriva-
tion is based on the fact that the Jacobian is the sum of a sparse matrix and a
rank-one matrix. For such structures the Sherman—Morrison-Woodbury formula [10,
section 2.1.3] is a standard technique.

THEOREM 5.1 (the Jacobian associated with the GPE). The Jacobian for the
nonlinear eigenvalue problem (5.5) corresponding to the GPE is given by

o =g = (i )

n B { <3 diag(v1)? + diag(vs)? 2 diag(v; ) diag(va) )

T 2 diag(vq) diag(ve) diag(v1)? + 3 diag(v2)?
2
-~ B T
Bl |
where v7 = (v, vd) with vy, vy € R™2. Moreover, suppose vTv =1 and let

Im A() Re AO

+5 3diag(v1)? + diag(ve)? 2 diag(vy) diag(v2) ol
2 diag(vy ) diag(v2) diag(v1)? + 3 diag(v2)?

C = <R€ AO —Im A0>
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and suppose C' is nonsingular. Then, the solution to the linear system (J(v)—ol)~ v
can be expressed as

(5.7) (J(v) —ol) " v = uy + us,
where
u =C
and
vTuy

Ug w with w=2BC~'B(v)v.

"1 oTw
Proof. The formula for the Jacobian (5.6) follows from several applications of the
product rule. More precisely, we have

o) 9 ((Re Ay —Im 4 B
81/4(“)” - Ov ((Im Ao Re Ag > vt UTUB(U)U)

ReAdy —-ImA b
- (In? Ag Re AOO) + ﬁ (vTv (%B(v)v> - 2B(U)UUT) .

The term involving the Jacobian of B(v)v can now be simplified,

a% Blv)v = % (diag(v)% + (? é) diag(v)? (? é) ”)
— 3 diag(v)? + (? é) diag(v)’ (? é)

42 (? é) diag(v) (? é) diag(v) (? é)
= B(v) + 2diag(v)? + 2 (? é) diag(v) (? é) diag(v) (? é) :

The relation (5.6) follows from expanding and combining the three terms.

The formula for (5.7) follows from the fact that the last term in (5.6) is a
rank-one term and we can apply the Sherman—Morrison-Woodbury formula [10, sec-
tion 2.1.3]. O

5.3. Specialized ODE interpretation and step-length heuristics. We will
now use the following important observation. The ODE (4.3) is equivalent to the
ODE representing a flow in the technique known as imaginary time propagation or
normalized gradient flow in, e.g., [1]. In particular, (4.3) is equivalent to [1, equations
(2.15)—(2.16)]. This connection allows us to directly reach conclusions about the ODE
(4.3) for the GPE. We conclude from [1, Remark 2.6] that the ODE will converge to
a stationary solution. It can equivalently be shown to converge by constructing a
Lyapunov function and applying a variant of Lyapunov’s second method (see [13,
Chapter 3] for Lyapunov’s second method). Moreover, the imaginary time propa-
gation technique is for physical reasons known to converge to a physically relevant
solution (there may be several), e.g., the ground state or metastable configuration of
the system.

In light of the equivalence with imaginary time propagation, it is natural to follow
the true flow as closely as possible during the iteration, while at the same time taking
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time steps as long as possible to minimize computation time. Therefore, we propose
the following heuristic for the step length h or equivalently a choice of o.

Suppose that we have computed an approximation yy = y(tx), and we now need
to determine an appropriate h to compute yry1 =~ y(tr + h). A step-length choice
for the Rosenbrock—Euler method is given in Appendix A and, in particular, formula
(A.2), for a given fixed local error . Note that for our case, i.e., the ODE (4.3),
f) =p)v— A and f'(v) = —(I —voT)(J(v) —p(v)I) +vvT (A(v) — p(v)I) such
that

Fl)fw) =T =)= () f(v) +p(v) f(v) + voT (A(v) = p(v)]) f(v).

We will now see that this expression can be efficiently computed before each step of
the iterative method. This leads us to the choice of the shift o we propose to use in
this work:

e Compute fi := f(vr) = p(ve)vr — A(vk)y;
compute gy = J(v) fi;
compute ey, := (I —vpv])(—ex + p(vg) fi) + vivi (A(v) — p(or)]) fi;
compute hy, := (2¢/||ex||)'/? using a desired tolerance ¢;
if A > hmax set Ar = Amax;

e set o = p(vg) — 1/hk according to (4.8).
The choice to make sure that hi < hpax is to avoid taking too large steps, for which
the reasoning for step length above is not supported.

Note that we do not need form the matrices I — vl or J(vx) explicitly when we
apply it to the GPE. It is more efficient to instead compute the vectors fx, gx, and ey,
by forming products between vectors and matrix vector multiplications with sparse
matrices since, e.g., J(vg) is given as the sum of a matrix and a rank-one matrix in
Theorem 5.1.

5.4. Conclusions from computational results. We carried out the inverse it-
eration algorithm with the heuristic choice of o proposed in section 5.3, for a number of
different choices of parameters. We selected b = 200, L = 15, and 2 = 0.85. The num-
ber of grid points is N = 300, i.e., the eigenvalue problem (1.1) is of size n = 180000.
The step-length heuristic was chosen with parameters ¢ = 2 and hyax = 10* (except
where otherwise stated). An initial guess was chosen as a random superposition of
Gaussians, such that its length scale is independent of the interior grid size N. The
simulation was completed in 1.2-10% seconds with an implementation of the algorithm
in MATLAB running on an Apple MacBook Pro with a 2.6 GHz Intel i7 quad-core
processor.

The results of the numerical simulations are presented in Figures 6-10. In these
figures 1, denotes the approximate solution to (5.1) after k iterations, and K denotes
the total number of iterations.

The convergence is visualized in Figure 7. As expected from the ODE interpreta-
tion in section 4 and the fact that the GPE ODE converges, we eventually reach a solu-
tion. Moreover, the asymptotic convergence is fast as the step length is larger when the
solution is accurate. The approximations of the solution at different iterates are given
in Figure 8, showing the shape of the function as it evolves and converges. Clearly, the
random initial condition turns into a physically meaningful approximation after only
a few iterations, and the final iterations mostly change the position of the vortices.

We can also observe the local convergence properties presented in section 3 in this
application. Note first that when A = hp,ax, We can see that o is almost constant. This
can be observed in Figure 10. It is also expected from the fact that the error behaves
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|\4/K(x,y)|2 with phase

FIG. 6. Left: visualization of the paricle density | (x,y)|? of the computed solution. The
contour levels are selected as 0.05-1073, 0.10-1073,...,0.30-10~3; the outer contours have smaller
values. Right: visualization colored according to density and phase. The color hue is chosen from
the standard color wheel based on the phase angle —ilog(vVk /|YK|). The corresponding eigenvalue
approzimation 1s A = 6.469449. The solution exhibits several vortices arranged in a regular pattern,
as expected for a rotating BEC.

like ||lvg —vk]| = ||y(tr) —y«|| o< C exp(—aty) in an asymptotic regime. This can indeed
be confirmed in Figure 7. The estimate clearly indicates that ||vi+1 — vk ||/||ve — vi||
should converge when ty+1 = tx + hmax. Hence, with the assumption that o is
approximately constant in the regime where we take step length hy.x we have o =
Ax — 1/hmax. We can compute the theoretical convergence factor for this o by using
(3.11) and computing po with the Arnoldi method (and a matrix-vector product from
Theorem 5.1). The theoretical convergence factor is visualized together with the
estimated convergence factor ||vg+1 — vi||/||vr — vk || in Figure 9. The theoretical
convergence factor is confirmed for two different choices of Ay ax.

The heuristic choice of ¢ is visualized in Figure 9. With the crude estimation of
the relation (4.8), h = 1/(\. — o), we see that the step length in the beginning is
chosen large, in an intermediate phase it is chosen around the order of magnitude 10,
and in the final phase it is chosen larger, and o is again eventually almost constant.

6. Concluding remarks. The favorable convergence properties of the cele-
brated inverse iteration algorithm for the standard eigenvalue problem are well under-
stood. An important point in this paper is that the generalization we have presented
has many of the favorable properties that are present in the inverse iteration algorithm
for standard eigenvalue problems. This holds in particular for local convergence and
the interpretation as an ODE. We have also illustrated the usefulness of the algorithm
by adapting it to a variant of the Schrodinger equation.

The connection between the GPE and the use of inverse iteration presented in
this paper has further indirect value. For instance, the tremendous amount of under-
standing that is available for inverse iteration (for the standard eigenvalue problem)
now has the potential to be exploited or adapted to this type of nonlinearity.

Appendix A. Derivation of local error and step length for a variant of
Rosenbrock—Euler. The error of the Rosenbrock—Euler method has been studied
in the context of the Runge-Kutta methods (e.g., [12, Chapter IV.7]). We need a
more specialized result and will for completeness provide an error estimate for the
Rosenbrock—Euler method in our setting. Consider the autonomous ODE y/'(t) =
f(y(t)) with ||y(0)|]| = 1. Suppose the ODE has a structure such that the norm is an
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—o— ||V,< - VK||
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iteration count

(a)
100 .............
10_5 ............................
-10 ~
10 TV T D T
T
—— ||Vk - VK||
10’15 .................................. 10’15 ..................................
0 2 4 6 8 10° 10°
ODE time x10* ODE time
(b)

Fic. 7. Plot of norm of residual and absolute error as function of iteration count (a) and
ODE time t (b). The horizontal azis is linear in the left panel, and logarithmic in the right panel.
In the final iterations, the time step is hmax = 10%*. The vector fi denotes the residual, i.e.,

Jr = p(vr)vr — A(vk)vg-

invariant, i.e., |y(¢)|| = 1 for all ¢ > 0. Let g1 be one step of the Rosenbrock—Euler
method. By using a Taylor expansion, it is straightforward to show that the local
error of the Rosenbrock—Euler step is given by §; — y(h) = h%q + %QI”(T), where

1 o - - -
(A1) ¢ = =5 (I =hf'(§0)) " (I + hf'(§o)) f' (50) f (o)-

and 9" (1) = (v""(11)1, - - -, ¥ (Tn)n)T with 71,..., 7, € [0, h]. We approximate ||q| ~
LI1f'(Fo) f(Fo)|| and neglect the final term which leads us to the following choice of
step length for a given error tolerance:

2¢e
(A.2) "= TG Gl
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-10 -10 -10
-10 0 10 -10 0 10 -10 0 10

Fic. 8. The approzimations |Yi(x,y)| for different iterates. The random starting value first
turns into the general shape of the solution in ~ 10 iterations, and in the remaining iterations,
only the vortices are modified. The contour levels were selected as 1010, 108, 10~6, 10~4, 1073,
10725, 1072, 107175, 10715, and 10~125. The outer contours have the smaller values.

h =250 h _ 104
max max
0.573070 1000000
—o— IV~ MV, =V I —o— IV~ IV, =Vl
— .
0:073048 0.633333
0.573025
0.573017
0.266667
0.572990 0.032462
90 100 110 120 90 95 100 105

iteration count iteration count

Fic. 9. Estimation of the convergence factor from a calculation with hmax = 250 and com-
parison with the theoretical convergence factor v (horizontal lines). The asymptotic region starts
at iteration k =~ 95. The deviations for large k are due to numerical noise in the error estimate
llvk — vl
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F1G. 10. Plot of o — A«, which quickly becomes small and negative.
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