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Abstract 
 
If CO2 Capture and Storage (CCS) is to become a viable option for low-
carbon power generation, its deployment will require the construction of 
dedicated CO2 transport infrastructure. This paper describes the InfraCCS 
model, which can determine the likely extent and cost of the optimal least-
cost CO2 transport network at European scale for the period 2015-2050, 
with 2015 the earliest foreseeable starting date of the CCS projects co-
funded by the European Energy Programme for Recovery (EEPR), and 
2050 the EU’s target date for 80-95% reduction of greenhouse gas 
emissions. The computation is made possible by a number of 
methodological innovations compared to previous research, in particular: 
the use of k-means clustering to reduce the number of nodes in the network; 
the application of the Delaunay triangulation algorithm for pipeline pre-
selection; and the introduction of a mathematically convenient yet realistic 
new pipeline costing model. The InfraCCS tool is applied to determine the 
optimal network corresponding to a CCS scenario that ensures near-
complete decarbonisation of the European power sector. It is shown that the 
size of the CO2 network could range from 11000 to 17000 km by 2050, 
requiring 16 to 36 billion Euros investment, with the higher numbers 
corresponding to the case when onshore aquifers are excluded as potential 
CO2 storage sites. Since the model shows that by 2030 more than half of the 
EU Member States could be involved in cross-border CO2 transport, 
international coordination seems crucial for the development of an 
optimised trans-European CO2 transport network. 
 
Keywords: CCS; CO2; infrastructure; pipelines; optimisation; mixed-
integer linear programming 
 

1. Introduction 

Fossil fuels are likely to remain the main source for electricity 

generation in Europe, at least in the short to medium term, despite the 

significant ongoing efforts to promote renewable energy technologies and 

energy efficiency (see e.g. Tzimas, 2009). Therefore, CO2 Capture and 
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Storage (CCS) is generally considered as a promising technological option 

for reducing CO2 emissions from the power generation sector, as well as 

from other heavy industries. CCS is a process consisting of the separation of 

CO2 from industrial and energy-related sources, transport to a storage 

location (such as a depleted hydrocarbon field or a saline aquifer) and long-

term isolation from the atmosphere (see e.g. IPCC, 2005). CCS may offer a 

bridge between the fossil fuels dependent economy and the carbon-free 

future. 

Large-scale deployment of CCS in Europe will require the 

development of new infrastructure to transport the captured CO2 from its 

sources (e.g. power plants) to the appropriate CO2 storage sites. As pointed 

out before (Tzimas, 2009; Morbee et al., 2010), there are different views on 

how such CO2 transport infrastructure might evolve in Europe. On the one 

hand, there is often a perception that CCS plants will be built in close 

proximity to potential storage sites in order to reduce transport costs. On the 

other hand, proposals for CCS projects that have become public often show 

that their location is dictated by other factors, such as safety and public 

acceptance concerns that may require that CO2 is initially stored offshore; or 

the presence of old power plants that are suitable for retrofitting or 

refurbishing with CO2 capture technologies. Furthermore, as echoed in a 

recent communication from the European Commission (2010b), the large-

scale deployment of CO2 capture facilities in Europe, which would be 

needed to achieve the decarbonisation of the European energy system by 

2050,1 combined with the fact that CO2 storage sites and capacities are not 

uniformly distributed across Europe, will quickly exhaust local storage 

opportunities and require the construction of an extended transport 

infrastructure, which will span across national borders when countries do 

not have adequate domestic CO2 storage capacity. 

The evolution of the CO2 transport network in Europe will be 

dictated by the level of CCS deployment and the degree of coordination for 

its development (Morbee et al., 2010). The simplest approach for the 

                                                 
1 For instance, a scenario such as Power Choices (Eurelectric, 2010), which is in line with 
the EU’s 80% to 95% greenhouse gas emissions reductions targets (as repeated in a recent 
communication by the European Commission, 2010a), projects more than 1 Gt/y of CO2 
captured in the EU by 2050. 
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development of the CO2 transport infrastructure would be the construction 

of numerous pipelines linking individual CO2 sources with sinks, sized to 

meet the transport needs of individual capture facilities. This implies that 

pipelines will be constructed in the context of individual CCS projects and 

their planning and construction will be synchronous to the development of 

the CO2 capture facilities. However, as pointed out by Morbee et al. (2010), 

this approach is likely to impede the large-scale deployment of CCS as it 

will not allow for the expansion and sharing of the infrastructure with other 

CO2 sources, which in turn will be required to develop their own pipelines, 

resulting in deployment delays due to permitting procedures, and additional 

costs, since pipeline costs do not scale proportionally with transport 

capacities. Apparently, this situation would be most detrimental for CO2 

sources that are either of small size or located away from suitable storage 

sites. Alternatively, as also highlighted by the European Commission 

(2010b), the development of integrated pipeline networks, planned and 

constructed initially at regional or national level and oversized to meet the 

transport needs of multiple CO2 sources, would take advantage of 

economies of scale and enable the connection of additional CO2 sources 

with sinks in the course of the pipeline lifetime. As an example, Morbee et 

al. (2010) and the European Commission (2010b) cite the Pre-Front End 

Engineering Design Study of a CCS network for Yorkshire and Humber 

(CO2Sense, 2010), which showed that initial investment in spare pipeline 

capacity would be cost-effective even if subsequent developments were not 

to join the network for up to 11 years. They point out that the CO2Sense 

(2010) study also confirmed experience from other sectors i.e. that investing 

in integrated networks would catalyse the large scale deployment of CCS 

technologies by consolidating permitting procedures, reducing the cost of 

connecting CO2 sources with sinks and ensuring that captured CO2 can be 

stored as soon as the capture facility becomes operational. In the longer run, 

according to the European Commission (2010b), such integrated networks 

could be expanded and interlinked to reach CO2 sources across Europe and 

distant storage sites, leading to the development of a true trans-European 

network, similar to the existing networks for electricity and gas. The 

European Commission (2010b) suggests that the realisation of such CO2 
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transport infrastructure would require a timely start of coordinated 

infrastructure planning and development at European level. 

The aim of this paper is to present an optimisation model, named the 

InfraCCS model, that can describe the likely extent and cost of a CO2 

transport network at European scale for the period 2015-2050. Our work fits 

in the existing CCS literature on the economics of CO2 transport. A large 

part of this literature deals with direct source-sink connections (with 

occasional attention for the benefits of coordinated infrastructure, as in e.g. 

Svensson et al., 2004), or with pre-defined transport system options, such as 

Odenberger et al. (2008) or Haugen et al. (2010). Our work, by contrast, 

aims at computing an optimal network, under the assumption of 

international coordination. The CO2 network optimisation question has 

recently received significant attention. Kazmierczak et al. (2009), for 

example, provide a CO2 pipeline network optimisation algorithm based on a 

heuristic approach. Rather than developing a heuristic solution, our model 

follows the approach of Middleton and Bielicki (2009), who formulate the 

problem as a mixed-integer linear programme that can be solved towards a 

global optimum using state-of-the art optimisation engines. Middleton and 

Bielicki’s (2009) model is limited to a static snapshot and does not include a 

gradual build-up over time, apparently because the resulting model would 

be “extremely computationally intensive to solve” (p. 1059). Our InfraCCS 

tool, by contrast, does include the gradual deployment of infrastructure over 

the course of five interdependent time-steps. Timing is also considered by 

e.g. Broek et al. (2010a, 2010b) and Klokk et al. (2010). However, these 

two models are focused on one country and the applications described 

include only around 20 nodes (sources and sinks combined). As we will see 

below, the pan-European scope of our InfraCCS model requires close to 100 

nodes, i.e. four times more than the latter two studies, and also almost 

double the number of nodes included in the case study of Middleton and 

Bielicki (2009). Since the computational complexity of the optimisation 

process can be assumed to be exponential in the number of nodes, the major 

contribution of our InfraCCS model is that it introduces a number of 

methodological improvements which allow for a pan-European scope with 

multiple time-steps while keeping the model computationally tractable. As 
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will be explained below, these improvements in InfraCCS consist of the use 

of computational geometry techniques for automatic clustering and pipeline 

preselection2, as well as a mathematically convenient yet realistic pipeline 

costing concept. Furthermore, our model contains an enhanced routing 

algorithm that can deliver slightly more accurate results than the eight-

neighbour-cell algorithm used by both Middleton and Bielicki (2009) and 

Broek et al. (2010a, 2010b). 

Pan-European networks of CO2 have been considered in previous 

research. The CO2Europipe project (Neele et al., 2010) develops a large-

scale European CCS transport and storage network. In contrast to our 

optimisation-based model, their approach is based mostly on manual design. 

The model developed by Mendelevitch et al. (2010) provides an 

optimisation view of North-West European CO2 infrastructure over time, 

using a grid of cells of approximately 100x100km, with pipelines only 

possible in North-South, East-West and 45º angles between the cells. By 

contrast, the clustering and triangulation approach used in InfraCCS allows 

for free location of sources and sinks, and does not put any constraints on 

pipeline angles. On the other hand, Mendelevitch et al. (2010) endogenise 

the decision regarding the amount of CO2 captured (as is also the case in e.g. 

Broek et al., 2010a, 2010b), while our InfraCCS model takes an external 

capture scenario as input. 

The remainder of the paper is organised as follows. Section 2 

describes the InfraCCS methodology and the innovations that make it 

computationally tractable. As an illustration of the model, Section 3 presents 

the input assumptions and model outcomes of the simulation of two case 

studies. Section 4 provides a discussion of the results, and Section 5 

summarises our conclusions. 

                                                 
2 An alternative way to address the same issue is the methodology proposed by Johnson and 
Ogden (2010), who construct a candidate pipeline network for Texas and surroundings 
based on existing natural gas pipeline rights-of-way.  
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2. Methodology 

2.1. Optimisation model 

The objective of our InfraCCS tool is to find the optimal, i.e. cost-

minimising, pipeline network that is capable of transporting given amounts 

of CO2 from capture sources to the optimal sinks. 3  Let us define this 

problem more precisely. All sources and sinks are ‘nodes’ in the network. 

Let N denote the total number of nodes. Assume that there are P possible 

pipelines that connect these nodes, and T possible points in time at which 

these pipelines can be built. The objective of the optimisation is to find the 

optimal choice of pipelines (among the P possible pipelines) that should be 

built at each of the T points in time, in order to make sure that all CO2 

captured at each of the nodes can be transported to other nodes that have 

sufficient CO2 sink capacity. The difficulty of this optimisation problem lies 

in the fact that pipeline construction is a binary decision: one cannot build 

‘half’ of a pipeline. 4  As a result, the optimisation question becomes a 

Mixed-Integer Linear Programme, which is in many cases NP-hard5 to solve. 

Let us consider the total number of combinations as a measure for 

computational complexity, although modern solvers obviously do not 

perform an exhaustive search. Since every pipeline can be built at any point 

in time, the number of binary decisions is P·T and the computational 

complexity of an exhaustive search is on the order O(2PT). 6 

                                                 
3 Transporting CO2 by ship would be an alternative to pipelines. While our InfraCCS model 
is flexible enough to accommodate shipping, we do not consider it here, for the sake of 
expositional clarity. Indeed, pipelines currently seems to be the most mature technology for 
CO2 transport. Despite some technical challenges compared to natural gas pipelines, the 
large-scale transportation of CO2 by pipeline is an established industrial process in the USA, 
with 3900 km of pipelines transporting 30Mt of CO2 annually (Morbee et al., 2010). 
Furthermore, the fact that many possible CO2 sources and sinks are onshore, provides an 
additonal advantage to pipelines. In support of this argument, Tzimas (2009) notes that 
only one out of the seven archetypal projects identified by ZEP (2008) envisages CO2 
transport by ship. 
4 Obviously, it is possible to build a pipeline with half the capacity, however the point here 
is that the cost of such a ‘half’ pipeline would be much more than half the cost of the 
original pipeline, due to the economies of scale in pipeline construction. 
5 This term from computational complexity theory refers to a class of problems for which 
no efficient solution algorithm exists today. Solution time of such problems with current 
algorithms typically goes up exponentially as a function of the dimensions of the problem. 
6 The symbol O(·) is used here for “Big O notation”, which describes the asymptotic 
behaviour of an algorithm. 
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Many earlier studies, such as Middleton and Bielicki (2009) and 

Broek et al. (2010a, 2010b), consider possible pipeline connections between 

all sources and all sinks. As a result, P becomes quadratic in N. Furthermore, 

all optimisation models mentioned in Section 1 consider multiple discrete 

possible diameters for each possible pipeline connection. Consequently, we 

find that 2P N D , with D the number of possible diameters and   a 

constant. The computational complexity of an exhaustive search is therefore 
2

(2 )N DTO  , which increases very rapidly with N and hence creates 

challenges when the scope is pan-European (N large), especially when there 

are multiple time-steps ( 1T  ), as is the case in our paper.7 Therefore, 

Section 2.2 proposes an automatic clustering approach that makes N  as low 

as possible for a given desired level of accuracy. Despite the clustering 

approach, we find that for our pan-European scope, we require 94N  , 

which is much larger than the number of nodes in other studies, so that 

further reduction of computational complexity is required. Therefore, in 

Section 2.3, we propose a pipeline pre-selection algorithm, which makes P 

linear (instead of quadratic) in N. Furthermore, in Section 2.4, we develop a 

new CO2 pipeline costing concept, which does not require the use of 

multiple discrete pipeline diameters in the optimisation, thereby making 

1D   without loss of generality. As a result of these improvements the 

computational complexity of exhaustive search is reduced from 
2

(2 )N DTO  to (2 )NTO  , which remains tractable for much larger values of N. 

In addition to the improvements in the optimisation model, the InfraCCS 

tool also contains an improved GIS-based pipeline routing algorithm, which 

is described in Section 2.5. Finally, Section 2.6 provides the full 

mathematical specification of the optimisation model. 

                                                 
7 It should be noted that while both Middleton and Bielicki (2009) and Broek et al. (2010a, 
2010b) consider possible pipeline connections between all sources and all sinks, they do 
apply a subsequent reduction of the number of pipelines, by eliminating duplication of 
candidate pipeline segments that happen to follow the same routing. In a pan-European 
scope however (as in this paper), and when using a coarser cost surface, such accidental 
overlapping is much less common, hence we need to assume the worst-case behaviour, 
namely P~N2. 
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2.2. Automatic clustering of sources and sinks 

The E-PRTR (2010) emissions database contains 6484 CO2 

emissions sources in the EU-27, of which 1335 in the power sector. 

Likewise, the EU GeoCapacity database contains around 2000 aquifers and 

hydrocarbon fields, that can be used for CO2 storage (Vangkilde-Pedersen et 

al., 2009c).8 Obviously, if all of these sources and sinks were to be included 

as nodes in the network, then N would be far too large for the model to be 

tractable. For reasons of computational complexity, nearly all previous 

models mentioned in Section 1 contain some kind of ‘clustering’ procedure, 

which groups sources or sinks that are close to each other, into ‘clusters’. 

Only the cluster centres become nodes in the network. In small-scale studies, 

such clusters can easily be identified manually. Given the pan-European 

scope of InfraCCS, however, we propose an automatic clustering procedure 

based on the k-means algorithm. 

Let us consider C countries, and assume these countries contain M 

sources and sinks in total, of which SM sources, AM  aquifer sinks and HM  

hydrocarbon field sinks. The number of sources in each country c is denoted 
,S cM , with 1,...,c C . The geographical coordinates of the sources in 

country c are given by , ,( , )S c S c
m mx y  with ,1,..., S cm M . Since sources are 

different in size, we assign weights ,S c
mw , ,1,..., S cm M . The same 

definitions apply to aquifers and hydrocarbon fields, with superscript S 

replaced by A and H respectively. We assume that the sum of all weights is 

1. The objective is to determine N clusters (with N M ), which are 

distributed across all C countries. Suppose that country c contains ,S cN  

source clusters, ,A cN  aquifer clusters and ,H cN  hydrocarbon field clusters.9 

The geographical coordinates of the centre of each of the ,S cN  source 

clusters are represented by 
, ,

( , )
S c S c
n nx y , ,1,..., S cn N . Let us define the 

function , ( )S cf  , which maps each source m in country c onto the 

corresponding cluster , ( )S cn f m  (which is the cluster of which the cluster 
                                                 
8 The database also contains 227 coal fields (Vangkilde-Pedersen et al., 2009c). Due to 
their very limited storage capacity, we will not consider those in this paper. 
9 Sources, aquifers and hydrocarbon fields are clustered separately, because they play very 
different roles in the simulations (see Section 3). Furthermore, we assume that clusters 
cannot span across country borders, so that the model is capable of producing unambiguous 
outputs per country. Finally, we cluster onshore and offshore sinks separately, because that 
distinction also becomes important in Section 3. In practice, we do this by assuming that 
offshore sinks are in a ‘different country’. 
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centre is nearest to m). Obviously, since N M , multiple sources are 

mapped to the same clusters. Again, the same definitions apply to aquifers 

and hydrocarbon fields, with superscript S replaced by A and H respectively. 

Since the model’s computational complexity increases rapidly with 

the total number of clusters N, our objective is to minimise N while 

maintaining a given level of spatial accuracy. As a criterion for spatial 

accuracy, we choose the weighted root mean square (RMS) distance 

between the original M sources or sinks, and the centres of their respective 

nearest clusters. We impose that this RMS distance should be less than or 

equal to maxR , in order to maintain sufficient spatial accuracy. The 

clustering question can now be formulated mathematically as follows: 

Choose 

,X cN    ( 1,...,c C ; , ,X S A H ); 
, ,

( , )
X c X c
n nx y  ( 1,...,c C ; , ,X S A H ; ,1,..., S cn N ) 

in order to minimise 

,

, , 1

C
X c

X S A H c

N N
 

    

subject to 

   
, 2 2, ,, , ,

( ) max( )
, , 1 1

X cC M X c X cX c X c X c
f mm m m f m

X S A H c m

w x x y y R
  

      
   

 (1) 

For simplicity of notation, we have omitted the superscript of f. We 

can solve the above optimisation problem (1) using a procedure based on 

Lloyd’s (1982) k-means clustering algorithm. The k-means clustering 

algorithm is capable of finding the optimal clustering of L points into K 

clusters (with K given), so as to minimise the RMS distance. Our approach 

consists of two steps. In the first step, the k-means algorithm is applied per 

country, separately for sources, aquifers and hydrocarbon fields. In other 

words, the k-means algorithm is applied to each possible ( , )X c  

combination separately. In each case the k-means algorithm is run 

repeatedly for various target numbers of clusters (i.e. various values of 
,X cK N ). This results in a function , ,( )X c X cr N , which provides the RMS 
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distance resulting from the clustering of all ( , )X c  points, as a function of 

the chosen number of clusters ,X cN . The function , ,( )X c X cr N  is computed 

for each ( , )X c  combination. 

The second step of the procedure is to find all optimal ,X cN . Since 

the functions , ,( )X c X cr N  are known from the first step, the above 

optimisation problem (1) translates to: 

Choose 

,X cN    ( 1,...,c C ; , ,X S A H ) 

in order to minimise 

,

, , 1

C
X c

X S A H c

N N
 

    

subject to 
,

2, , , 2
max

, , 1 1

( )
X cC M

X c X c X c
m

X S A H c m

r N w R
  

       (2) 

Since the functions , ,( )X c X cr N  are convex, problem (2) is an easy-

to-solve convex optimisation programme, despite the integer nature of the 

variables ,X cN . Once all ,X cN  are determined, the cluster centres 
, ,

( , )
X c X c
n nx y  (which we left out from problem (2)) can be taken from the 

corresponding run of the k-means algorithm in the first step. 

Figure 1 illustrates our procedure. The panel on the left shows all 

European sources, aquifers and hydrocarbon fields. The sources are the 

1335 point sources of CO2 in the EU-27 power sector, as obtained from E-

PRTR (2010). The size of the circles corresponds to annual CO2 emissions. 

Sinks are obtained from the public information available from the EU 

GeoCapacity project (2009a, 2009b, 2009c),10 and the size of the circles 

corresponds to the ‘conservative’ storage capacity identified in the project. 

Note that while Norway (as a non-EU country) is not considered among the 

sources, we do consider the Norwegian storage sites, due to their relative 

importance. The sizes of the circles of sources and sinks are obviously used 

                                                 
10  Note that since we are using only the publicly available information of the EU 
GeoCapacity project (as obtained from published deliverables, presentations and articles), 
the graph is only an approximation of the EU GeoCapacity information. Any errors should 
not be attributed to the EU GeoCapacity project. 
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as weights ,X c
mw  in the clustering procedure. As xy-coordinates, we use the 

Lambert Conformal Conic projection of the WGS84 ellipsoid, as do 

Vangkilde-Pedersen et al. (2009c). 

The panel on the right in Figure 1 shows the results of our clustering 

approach. We choose maxR  = 100 km, which is approximately the same 

characteristic distance as the grid cell size used by Mendelevitch et al. 

(2010). Using our above-mentioned clustering approach, we find N = 94.11 

Figure 1 shows the locations of the cluster centres. The sizes of the circles 

correspond to the cumulative weight of all points assigned to each cluster. 

Throughout the rest of the paper, we will use the 94 clusters shown in 

Figure 1 as the nodes in the CO2 transport network. The entire clustering 

procedure is performed using MATLAB R2010a and Excel 2003. 

Figure 1: Illustration of the InfraCCS clustering procedure. 
Left: All EU-27 sources, aquifers and hydrocarbon fields (3191 points). 

Right: Resulting clusters (94 clusters). 

 

 

2.3. Pipeline preselection: Delaunay triangulation 

Once the nodes of the network are identified, the question is which 

candidate pipelines between these nodes should be considered in the 

optimisation. As mentioned before, Middleton and Bielicki (2009) and 

Broek et al. (2010a, 2010b) consider all possible source-sink pairs. With 94 

                                                 
11 N is obviously a decreasing and convex function of Rmax. For example, setting Rmax = 150 
km would lead to N = 76, while setting Rmax = 75 km would lead to N = 118. 
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nodes however, such an approach would make the model impossible to 

solve in reasonable time. We therefore propose an approach by which each 

node is only connected to a number of nearby nodes, rather than to all 

sources or all sinks. For this purpose, we apply the triangulation algorithm 

developed by Delaunay (1934), which connects each node to its ‘natural’ 

neighbours. The algorithm is such that it maximises the minimum angle of 

all the angles of the triangles in the triangulation, which provides the 

desirable property that near-parallel pipelines get eliminated as much as 

possible. For N nodes, the Delaunay triangulation generates less than 3N 

pipelines. Figure 2 shows the results when we apply the Delaunay 

triangulation to the 94 nodes identified before. 

Figure 2: Delaunay triangulation to identify candidate pipelines. 

 
 

After the Delaunay triangulation, the tool eliminates all pipelines 

that go outside EU-27 plus Norway, since our focus is on finding an optimal 

network within the European Economic Area (EEA). In particular, this 

eliminates from Figure 2 the connections that go through Switzerland, 

Ukraine, Belarus, or the non-EU part of the Balkans. The entire pipeline 

preselection procedure is performed in MATLAB R2010a. 
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2.4. Pipeline costing model 

The InfraCCS optimisation model that will be described in Section 

2.6 makes an optimal choice of pipelines (and timing of investments) among 

the candidate pipelines identified in Section 2.3. One important input 

parameter to this decision is the investment cost associated with each 

candidate pipeline. The most important feature of pipeline investments is 

that they exhibit significant economies of scale, e.g. a pipeline with capacity 

5 Mt/y of CO2 may not be much more expensive than a pipeline with 

capacity 1 Mt/y. In fact, this is the main reason why a joint CO2 pipeline 

network may be significantly cheaper than individual source-sink 

connections. Most earlier models have addressed this issue, by including 

multiple discrete candidate diameters for each candidate pipeline link in the 

optimisation model, and assigning to each candidate diameter an investment 

cost that reflects the economies of scale. For instance, Broek et al. (2010b, 

footnote 20) include two or three possible diameters for each candidate 

pipeline. They state explicitly that the study is limited to this number 

‘because of computational constraints’ (Broek et al., 2010b, footnote 21). 

The issue of computational complexity would arise even more in our case, 

because our pan-European scope (which leads to very large bulk pipelines, 

but also relatively small feeder pipelines) would require many different 

possible diameters. We therefore propose an alternative costing model that 

does not require the use of multiple discrete pipeline diameters. 

The starting point is the pipeline investment cost formula proposed 

by IEAGHG (2002): 

 2
0 0 1 1 2 2( ) ( ) ( )I a L b a L b d a L b d       (3) 

where I is the pipeline investment cost, L is the pipeline length, and d is the 

pipeline diameter. For the coefficient values cited by IEAGHG (2002), the 

ratio /i ib a  (i=0,…,2) is typically on the order of 10 (expressed in km). 

Since the average candidate pipeline in InfraCCS is 367 km long, we can 

safely assume 0ib   (i=1,…,3). Furthermore, for typical pipeline diameters 

in the range of 20 to 40 inch, we find that the ratio between 2
2a d  and 1a d  is 

between 5 and 10. Hence we make the mathematically simplifying 

assumption that 1 0a  , so that equation (3) reduces to: 
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 2
0 2

I
a a d

L
   (4) 

The coefficients 0a  and 2a  will be re-estimated later, in order to 

compensate for the fact that we have set 1 0a  . Since the data points that 

will be used for this estimation include also the cost of compressor stations, 

we assume that this cost is also captured by equation (4). 

In order to be able to express equation (4) as a function of the 

capacity of the pipeline, we take the Darcy-Weisbach equation for pressure 

loss along a pipeline: 

 
2

2

L v
p f

d


     (5) 

where p  is the pressure drop, f is the Darcy friction factor,   is the mass 

density of the fluid (i.e. CO2) and v  is the average velocity of the fluid in 

the pipeline. Considering the pipeline geometry, the mass flow rate Q (i.e. 

the capacity of the pipeline) is given by: 

 
2

4

d
Q v

    (6) 

Combining equations (5) and (6), we obtain: 

 
5

2
2

4

p
Q d

f L

  
  (7) 

Eliminating d between equations (4) and (7), we find: 

2
5

0 2 2

8 4
        with            and    

5

I fL
a Q a

L p
  

 
 

     
 (8) 

Our final simplifying assumption is that we use the approximation 1  . 

Cost data shown below will illustrate that this a reasonable simplification. 

More importantly, this assumption is crucial in order to allow for the 

inclusion of a large range of pipeline capacities in the optimisation without 

increasing computational complexity. The costing formulae above are 

meant for onshore flat terrain. For mountainous areas, we assume that costs 

per km are 50% higher, based on IEAGHG (2002, Table 4.13). Offshore 

pipelines are assumed to be twice as expensive as onshore pipelines, based 

on the typical ratios between offshore and onshore pipeline costing formulae 
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in IEAGHG (2002, Tables 4.14 and 4.15). To summarise, our pipeline 

costing formula becomes: 

 0

I
a Q

L



   (9) 

with   the terrain-related correction factor (1.5 for mountainous terrain; 2 

for offshore; factors for other types of terrain are provided in IEAGHG, 

2002). 

To account for the assumptions made above, we now proceed to an 

independent re-estimation of the coefficients 0a  and  , based on pipeline 

investment cost data reported in the literature. We include all public data 

points from a recent survey by Schoots et al. (2010) – i.e. Denbury (2008), 

Hamelinck et al. (2002), Hendriks et al. (2004), IEA (2009), IPCC (2005), 

Lako (2006), and NEBC (1998) – complemented with data points from the 

recent GHGT-10 conference (ICO2N, 2010; Wells, 2009).12 Since some of 

the projected European CO2 trunklines in our model may have far larger 

capacities than the above-mentioned data points available for CO2 pipelines, 

we also include cost information from recent or ongoing European large 

natural gas pipeline projects (GALSI, 2010; GASSCO, 2010; Medgaz, 2010; 

Nabucco, 2010; Nordstream, 2010). Where the CO2 mass flow rate of a 

pipeline is not available or not stated in the source (e.g. for the natural gas 

pipelines), it is estimated based on the diameter, using equation (7), 

assuming typical parameters f = 0.015,   = 850 kg/m3 and /p L = 0.3 

bar/km. All cost data are converted to Euros 2010 using the CEPCI 

Composite index (Vatavuk, 2002) and average annual exchange rates from 

Eurostat (2010). The results are shown in Figure 3. With /I L  expressed in 

millions of Euros per km, and the capacity Q in million tonnes (Mt) of CO2 

per year, we find 0a = 0.533 and  = 0.019. These values will be used 

throughout the remainder of the paper. The R2
 of the regression is 0.80, 

which implies a reasonably good fit. One should take into account that 

pipeline cost data always shows relatively large scatter, as also pointed out 

by Schoots et al. (2010). Further details about our pipeline costing approach 

                                                 
12 To avoid confirmation bias, we exclude all data points that are directly or indirectly 
based on IEAGHG (2002). 
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can be found in Serpa et al. (2011). The statistical analysis is performed 

with Stata 11, an econometric software package. 

Figure 3: Estimation of equation (9) using cost data from the literature. 
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2.5. Pipeline routing 

The candidate pipelines in Figure 2 are drawn as straight lines 

between the nodes. However, due to the cost factor   in equation (9), it 

may be optimal to route some pipelines differently, so as to reduce costs by 

avoiding difficult terrain or offshore areas. Therefore, both Middleton and 

Bielicki (2009) and Broek et al. (2010b) apply a routing algorithm that finds 

the cost-minimising path between nodes, for a given ‘cost surface’. The 

‘cost surface’ is a GIS-based spatial data set, which splits the region of 

interest into rectangular cells and provides the value of   for each of the 

cells. Middleton and Bielicki (2009) use 1km x 1km cells, while Broek et al. 

(2010b) use 100m x 100m cells. Passing through a cell means that the 

corresponding cost factor   is applied to the distance travelled through that 

cell. Since the cost factor  is applied at the end of the pipeline cost 

calculation, the optimal routing is independent of the pipeline capacity Q. 

Both Middleton and Bielicki (2009) and Broek et al. (2010b) use a modified 

version of Dijkstra’s (1959) algorithm in order to find the optimal (least-

cost) routing from source to destination, across the cells in the cost surface. 

In Middleton and Bielicki (2009) and Broek et al. (2010b), the pipeline is 

allowed to pass through the cells following orthogonal or diagonal 
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directions. This point is illustrated in the left-hand side panel of Figure 4. 

Assume for the sake of simplicity that the cost surface is homogenous, i.e. 

  is constant. Starting from point A, the pipeline can be routed to any of the 

A’s 8 immediate neighbours (shown in grey), and so on. The slight 

disadvantage of this approach becomes clear when considering the optimal 

routing of a pipeline from point A to point B. The shortest path according to 

the algorithm is shown with arrows, and has length 3(1 2) . The straight 

distance is shown in dotted line and has length 3 5 . Hence, in worst case, 

the pipeline distance may be overestimated by 8%. Also, the angle of the 

pipeline is off by up to 27º. Our InfraCCS model therefore includes an 

enhanced version of the same algorithm, which allows the pipeline to move 

to cells that are three neighbours away, as shown in grey in the right-hand 

side panel of Figure 4. Not all cells within this zone need to be included 

explicitly, since some of them can be reached accurately through the eight 

immediate neighbours (hence the white ‘holes’ in the grid). With this 

modification, there is no more overestimation in the pipeline routing from A 

to B. The worst-case behaviour is now for a pipeline from cell A to e.g. cell 

C. The potential overestimation of the shortest path is in this case reduced to 

less than 0.5%. 

Figure 4: Least-cost pipeline routing algorithm. 
Left: 8-neighbour algorithm. 

Right: 32-neighbour algorithm. 
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Using this enhanced algorithm is a ‘no-regret move’. Although it 

results in higher computational complexity of the pipeline routing procedure, 

this does not affect the computational complexity of the overall optimisation 

problem (which is the only real bottle-neck), because pipeline routing and 

costing are only a pre-processing step that serves as an input to the 
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optimisation. Indeed, the key output from the pipeline routing is the 

‘effective length’ of each candidate pipeline. The ‘effective length’ is the 

length of the candidate pipeline along the least-cost path, with every 

segment of the pipeline weighted by the cost factor   of the cell through 

which it passes. We denote this effective length by L . For a given effective 

length L  and capacity Q, the investment cost of a candidate pipeline can be 

determined using equation (9). The routing algorithm is implemented using 

a combination of ArcGIS 9.3 and MATLAB R2010a.13 

2.6. Model specification 

Consider N nodes (n = 1, …, n), P candidate pipelines between the 

nodes (p = 1, …, P), and T time-steps (t = t1, …, tT) at which these pipelines 

can be built. The time-steps do not need to be at equal intervals. Note also 

that a particular pipeline link between two nodes can be built at multiple 

time-steps, e.g. a small pipeline of 5 Mt/y between A and B is built at t2 and 

a subsequent larger pipeline between A and B is built along the same route 

at a later time-step t4.
14 The set of P candidate pipelines is known from 

Section 2.3. We define the function ( , )F p n , which is -1 if pipeline p starts 

at node n, 1 if pipeline p ends at node n, and 0 otherwise. Note that this 

implies that we assign an arbitrary direction to each of the pipelines. Since 

we assume that a pipeline can always be utilised in both directions, this does 

not cause a loss of generality. The investment cost of each pipeline p 

depends on its ‘effective length’ pL , as computed according to Section 2.5,. 

We assume that the amount of CO2 captured at each node at each time-step 

is exogenously given by ,n tC . The maximum amount of CO2 that can be 

stored annually at each node (i.e. the injectivity) is given by ,n tS  and the 

                                                 
13 The cost surface uses the factors 1.5   and 2   for mountainous and offshore areas, 
respectively, as explained in Section 2.4. Unlike Middleton and Bielicki (2009) and Broek 
et al. (2010b), we do not include existing rights-of-way in our cost surface. This is because 
our model is much more ‘zoomed out’ (i.e. at aggregate European scale) and because the 
existing pipeline network in Europe is quite dense, especially in the densely populated 
areas in central and western Europe where right-of-way would be most crucial. As a result, 
many of the pipelines envisaged by the InfraCCS model in the simulations in Section 3 turn 
out to be routed more or less along existing pipelines. 
14  Note however that the cost 0a L  (with L  the effective length of the pipeline path 

between A and B) would be incurred twice in this case. 
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total capacity of the sink at each node is given by nK . Obviously, for source 

nodes we have , 0n t nS K  , while for sink nodes we have , 0n tC  . 

The decisions that need to be made are as follows. First of all, the 

optimisation needs to decide, for each candidate pipeline p and each time-

step t, whether to build a pipeline p at time t. This decision is represented by 

a set of binary variables ,p t  (1 means construction, 0 means no 

construction). If , 1p t  , then the optimisation also needs to decide on the 

capacity ,p tQ  of the pipeline being constructed. Secondly, the optimisation 

needs to decide on the actual flow rate ,p tq  of CO2 through each pipeline at 

each point in time, because pipelines need not necessarily be fully utilised at 

all points in time. ,p tq  has a sign according to the direction of the pipelines 

as defined above. Finally, the optimisation needs to decide on the amount of 

CO2 being stored at each point in time at each node, which is denoted by 

,n ts . 

The objective of the optimisation is to minimise the total discounted 

pipeline investment cost: 

 
 

 
0 0 , ,

1 1

1

1 i

T P

p t p t pt t
i p

a Q L 
 

 




    (10) 

with   the discount rate, 0t  the reference year, and 0a  and   from Section 

2.4. We ignore operational expenditure since it is small compared to the 

investment cost (see e.g. the costing formulas provided by IEAGHG, 2002). 

The minimisation of expression (10) is subject to the following 

constraints: 

 Balance within each node (n = 1, …, N; t = t1, …, tT): 

 , , ,
1

( , )
P

n t p t n t
p

C F p n q s


   (11) 

 Pipeline capacity constraint (p = 1, …, P; t = t1, …, tT): 

 , ' , , '
' '

p t p t p t
t t t t

Q q Q
   

     (12) 

 Pipeline construction constraint (p = 1, …, P; t = t1, …, tT): 

 , , max0 p t p tQ Q   (13) 

 Sink injectivity constraint (n = 1, …, N; t = t1, …, tT): 
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 , ,0 n t n ts S   (14) 

 Sink capacity constraint (n = 1, …, N): 

  
1

1 , ,
1

( )
i T

T

i i n t T n t n
i

t t s t s K





     (15) 

The parameter maxQ  defines the upper limit of the capacity of a 

pipeline link that can be built at once. However, even though pipeline 

diameters are clearly limited, it is always possible to simultaneously build 

multiple large pipelines in parallel. In fact, the total cost of the multiple 

pipelines would still correspond rather well to the linearisation in Figure 3, 

because for very large pipelines the intercept 0a  becomes negligible. We 

therefore set maxQ  to a very large value so that this does not constrain any 

pipeline construction. However, the constraint (13) is still needed in order to 

force ,p tQ  to 0 when , 0p t  . The mathematical simplicity of expression 

(10) and (13) demonstrates the advantage of our pipeline costing model.15 

The parameter Tt  defines the number of years that the network needs to 

remain in operation after the final time-step Tt . Note that we assume that 

pipelines constructed at time t are immediately available for use. Obviously 

pipeline construction in reality does not happen overnight. However, since 

the model assumes perfect foresight, the construcion of pipelines for time t 

can be assumed to start a few (say x) years earlier. All this would mean is 

that all costs would be incurred x years earlier, and hence the objective 

expression (10) would simply be scaled by (1 )x . The resulting optimal 

CO2 network would not change. 

The optimisation problem (10)-(15) is programmed as a Mixed-

Integer Linear Programme (MIP) in GAMS 23.5 and solved using 

alternatively CPLEX 12.2 and XPRESS 20.0. In our experience, the fastest 

                                                 
15 The key computational advantage of our pipeline costing model is that the factor ,p t  

can be left out of the second term of equation (10): we can write 0 , ,p t p ta Q   instead of 

, 0 ,( )p t p ta Q   because of the pipeline construction constraint, equation (13). Indeed, on 

the one hand, if , 1p t  , then obviously , , ,p t p t p tQ Q   . If, on the other hand, , 0p t  , 

then , 0p tQ   because of constraint (13), hence we also find: , , ,p t p t p tQ Q   . This 

simplification makes the model significanly less complex: with , ,p t p tQ   the model would 

be non-linear, while with ,p tQ  the model is linear, hence the only remaining complication 

is the integer aspect. 
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results are obtained with CPLEX, presumably because it has specific 

features for solving network problems (IBM ILOG, 2010). The output of the 

optimisation is processed using a combination of MATLAB R2010a and 

ArcGIS 9.3. 

3. Results 

3.1. Input assumptions 

In order to demonstrate the use of the InfraCCS tool, we apply it in 

order to determine the optimal network that would be required to transport 

all CO2 captured in the EU-27 according the Power Choices scenario 

(Eurelectric, 2010). The Power Choices scenario, which is based on the 

PRIMES model, is chosen for this purpose because it is in line with the 

EU’s 80% to 95% greenhouse gas emissions reductions targets by 2050 

(implying near-complete decarbonisation of the power sector), and hence 

provides a view on large-scale pan-European deployment of CCS in the 

power sector.16 The scenario implies a reduction of CO2 emissions from the 

power sector to 150 Mt/y by 2050, compared to 1423 Mt/y in 2005. This is 

achieved through more than 40% electricity production from renewable 

energy sources (RES), close to 30% of nuclear power, and the remaining 

30% from fossil fuels. The latter entails the construction of 63 GW of CCS-

equipped power stations by 2030 and an additional 128 GW between 2030 

and 2050. 

Since the Power Choices report by Eurelectric (2010) provides the 

amount of CCS only at aggregate European level, we need to make an 

assumption on how this breaks down to individual countries. To achieve 

maximum realism, we use a two-pronged approach. First, we use the break-

down of CO2 captured per country as stated in the Baseline 2009 scenario 

(Capros et al., 2010), which is also based on the PRIMES model. Secondly, 

since the total amount of CO2 captured in the Baseline 2009 scenario is 

lower than in the Power Choices scenario, the incremental amount of CO2 

                                                 
16 A different choice of scenario would obviously lead to a different network structure, 
although many elements (e.g. bulk pipelines to the North Sea) are likely to remain similar 
across a relatively wide range of scenarios. A complete study of the uncertainties in CO2 
network deployment, based on a range of scenarios, is outside of the scope of this paper. 
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captured in the Power Choices scenario is allocated to individual countries 

proportionally to current power sector emissions. However, to avoid 

unrealistic fragmentation of CO2 capture sites, countries which – based on 

the proportional allocation – would capture less than 5 Mt/y of CO2, are 

excluded until they reach the 5 Mt/y threshold.17 This procedure is applied 

to the years t2=2020, t3=2025, t4=2030 and t5=2050. For t1=2015, we 

assume that the only CO2 captured is from the 6 CCS projects funded by the 

European Energy Programme for Recovery (EEPR), as listed by the 

European Commission (2009). Our resulting assumptions about the 

quantities of CO2 captured per country over time are shown in Table 1. 

Table 1: Assumptions about quantities of CO2 captured 
[Mt/y] 

 2015 2020 2025 2030 2050 
Austria - - - 3.5 7.6 
Belgium - - - 6.1 28.4 
Bulgaria - - 9.4 13.6 23.3 
Czech Republic - - 10.0 18.5 58.3 
Denmark - - - 2.8 14.3 
Estonia - - - - 9.7 
Finland - - 3.1 7.4 22.2 
France - - - 9.9 25.6 
Germany 1.5 5.2 95.1 181.0 315.9 
Greece - - - 7.9 42.4 
Hungary - - - 5.5 16.4 
Ireland - - - - 9.9 
Italy 1.5 3.2 12.0 23.6 83.7 
Netherlands 1.5 4.2 10.9 16.0 48.6 
Poland 1.5 4.7 24.7 43.7 138.1 
Portugal - - - 7.6 16.1 
Romania - - 4.7 14.8 40.5 
Slovakia - - 2.7 6.3 15.2 
Slovenia - - - 2.5 5.3 
Spain 1.5 2.8 10.7 43.2 74.7 
Sweden - - - - 10.1 
United Kingdom 1.5 16.0 33.1 70.5 162.5 
Total 9 36 216 484 1169 

 

The optimisation model takes as an input the values of ,n tC , i.e. the 

amount of CO2 captured at each node at each point in time. Therefore, for 

                                                 
17 In some countries, the Baseline 2009 scenario foresees less than 5 Mt/y (but strictly more 
than 0 Mt/y) of CO2 captured at some points in time. Since the Baseline 2009 scenario is 
based on microeconomic modelling in PRIMES, we do not exclude these countries in such 
cases. Countries with under 5 Mt/y are only excluded if the amount of CO2 captured results 
only from our proportional distribution of the incremental CO2 captured in the Power 
Choices scenario compared to the Baseline 2009 scenario. 
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countries with more than one source node, the assumption about the total 

national amount of CO2 captured in each of the years 2020, 2025, 2030 and 

2050, needs to be broken-down to the individual source nodes in the country. 

In the same vein as the above, the allocation is done proportionally to 

current CO2 emissions per node, with the same 5 Mt/y threshold as 

described above. Hence, the location of CCS plants is based on current 

emissions from the power sector, i.e. on the location of current fossil fuel 

power plants. Put otherwise, we implicitly assume that CCS will be mainly 

deployed through retrofitting of capture units onto existing plants, or 

through the construction of new CCS power plants on brownfield sites of 

current fossil-fuel plants. For the year 2015, the amount of CO2 captured per 

EEPR project is assumed to be 1.5 Mt/y (which is a realistic value since 

these projects are typically 250 MW plants), and this value is directly 

assigned to each of the 6 nodes that are closest to the 6 proposed EEPR sites. 

Furthermore, to improve realism of the results, the location of these 6 nodes 

is moved to the location of the EEPR sites.18 

Storage capacities nK  per node are taken from our clustering 

exercise, so they are based on the public data available from the EU 

GeoCapacity project (Vangkilde-Pedersen et al., 2009a, 2009b, 2009c). 

However, he EU GeoCapacity project does not provide annual injectivity 

per storage site. There is currently large uncertainty about annual injecivity 

of CO2 in storage sites, and ongoing projects such as the Sleipner project 

typically use only a fraction of the maximum injectivity of the reservoir. We 

make the assumption that the ratio ,/n n tK S  should be comparable to the R/P 

ratio of the petroleum sector, i.e. we make the apparently reasonable 

assumption that injection of a fluid into a reservoir is technically 

comparable to the extraction of a fluid from the reservoir. According to BP 

(2010), the global R/P ratio of oil was 45.7 years in 2009. We therefore set 

, / 45.7 yn t nS K . This assumption is very similar to the approach used by 

Neele et al. (2010) to model large reservoirs: they use the same formula, but 

with 40 years instead of 45.7 years. 

                                                 
18 On average the distance between the old location and the new location of the 6 nodes that 
are moved is only 66 km, so this move does not fundamentally disturb the results of the 
clustering procedure. 
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We choose the discount rate 7.5%  , which is midway between 

the rate of 5.5% suggested for cost-benefit analysis of European regional 

investment projects (Florio et al., 2008) and typical industrial discount rates 

for this type of projects (10-11%).19 Furthermore, we choose 10Tt   years, 

implying that the infrastructure needs to be able to continue to store a 

constant flow of CO2 for 10 years after the last time-step 2050. Finally, we 

assume that international pipeline connections can only be built after 2015, 

due to public acceptance issues. The main impact of this assumption is that 

the 6 EEPR capture sources are connected to domestic sinks, even when 

cross-border transport would be less costly. 

3.2. Model outcomes 

We run the InfraCCS model on the above-mentioned input data, for 

two cases. Case 1 includes all sinks, i.e. both aquifers and hydrocarbon 

fields, both onshore and offshore. Case 2 excludes the onshore aquifers as 

storage locations, because they are very much subject to public acceptance 

issues. Onshore hydrocarbon fields are included in both cases. Figure 5 and 

Figure 6 show the results of the InfraCCS optimisation, for Case 1 and Case 

2, respectively. The results for year 2015 are not shown, because they are 

nearly identical to those for 2020. 

                                                 
19 The results of a sensitivity analysis using a 15% discount rate are shown in Appendix A. 
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Figure 5: CO2 pipeline network deployment in Case 1 
(i.e. including onshore aquifers) 
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Figure 6: CO2 pipeline network deployment in Case 2 
(i.e. excluding onshore aquifers) 
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4. Discussion 

In Case 1, i.e. when onshore aquifers are included, the optimal CO2 

transport network remains very local until 2030. As of 2030, the first 

regional networks of two to three countries start to emerge. By 2050 

however, a two-part continental European backbone develops, with one part 

covering northwest Europe and one part covering the eastern part of Europe 

from Poland to Greece. Scandinavia, the Iberian peninsula, the British Isles 

and Italy remain unconnected to this larger network. It is striking to see that 

in this case almost no CO2 is stored in the North Sea, except in the UK 

sector of the southern North Sea, and in an aquifer immediately offshore 

Denmark. Besides the public acceptance concerns of storing large amounts 

of CO2 in onshore aquifers, a major caveat associated with this simulation is 

that it depends strongly on the large storage capacities in the Paris Basin and 

northern Germany, which are still highly uncertain. 

In Case 2, i.e. when onshore aquifers are excluded, the optimal CO2 

transport network looks completely different. Already by 2025, a trunkline 

from Poland and Czech Republic to the North Sea starts to develop. By 

2030, the line is extended to most of central and eastern Europe. Initially, 

the CO2 is stored mostly in onshore hydrocarbon fields and in the southern 

part of the North Sea. By 2050 however, very large bulk pipelines are 

constructed to transport more than 400 Mt of CO2 to the central and 

northern sectors of the North Sea. One of these is a direct corridor from 

central Europe through Denmark. With the assumptions in this scenario, 

also Italy and the Iberian peninsula become connected to this network, 

which spans across all of Europe, except Scandinavia. 

The optimisation produces a number of interesting effects. First of 

all, both in Case 1 and in Case 2, many pipelines are initially ‘oversized’ 

(coloured red in the figures): due to the economies of scale in pipeline 

construction, it may indeed be more attractive to build a larger pipeline that 

is initially not fully utilised, instead of building a smaller pipeline that needs 

to be complemented with a second pipeline when flows increase beyond the 

capacity of the first pipeline. A second remarkable effect of the optimisation 

is that the flow in some pipelines reverses in the course of time. For 
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example, in Case 2, the 48 Mt/y pipeline between Hungary and Romania 

(constructed by 2030) initially transports CO2 from Poland and Slovakia to 

the hydrocarbon fields in central Romania. By 2050, the flow reverses and 

the same pipeline now brings excess CO2 from Romania and Bulgaria to 

Slovakia, where it feeds into the large bulk pipeline to the North Sea. 

Figure 7 summarises the main characteristics of the CO2 networks 

shown in Figure 5 and Figure 6. When onshore aquifers are excluded (i.e. 

Case 2), the total pipeline network becomes roughly 50% longer and more 

than twice as expensive. In both cases, the largest growth of the network 

takes place between 2030 and 2050, because the Power Choices scenario 

foresees a major step-up of CCS during that period. By 2050, network 

length could reach 11000 to 17000 km. It is interesting to observe that these 

results have the same order of magnitude as the optimisation results of 

Mendelevitch et al. (2010): their most optimistic scenario with onshore 

storage requires a total pipeline network length of 13359 km, while their 

most optimistic scenario without onshore storage requires a total pipeline 

network length of 15889 km.20 

Undiscounted cumulative investment in our simulations could reach 

5 to 10 billion Euros by 2030, and 16 to 36 billion Euros by 2050. Clearly 

this is strongly dependent on the CO2 capture scenario: the Power Choices 

scenario that is used here assumes near-complete decarbonisation of the 

European electricity system, hence a large role for CCS. However, it should 

be noted that the analysis does not include any CO2 from other sectors (e.g. 

heavy industry), which would further increase the network requirements. In 

the period 2020-2050, the cost per tonne of CO2 transported ranges from 1.7 

to 3.5 EUR/t in Case 1, and from 3.2 to 4.7 EUR/t in Case 2. In the start-up 

phase in 2015, costs are much higher due to lack of scale and pipeline 

oversizing in anticipation of future flows. Indeed, in 2015 only the EEPR 

projects capture CO2 and their start-up volume – typically around 1-2 Mt/y 

– is still very low. Costs per tonne drop dramatically by 2020 when new 

CO2 sources come online, which enable the amortisisation of the 

                                                 
20 As already explained in the introduction, the set-up of the model by Mendelevitch et al. 
(2010) is different from ours, so the comparison is only indicative. 
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infrastructure costs over a larger volume and the use of the afore-mentioned 

economies of scale in pipeline costs. 

 

Figure 7: Characteristics of the optimal CO2 networks 
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The bottom row of Figure 7 shows that in this optimised network, 

more than half of the EU’s Member States would be involved in cross-

border CO2 transport by 2030, even in Case 1. By 2050, nearly all Member 

States involved in CCS are also involved in cross-border CO2 transport. 
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Therefore, based on this simulation, it seems apparent that international 

coordination is crucial for the development of an optimised trans-European 

CO2 transport network. 

5. Conclusions 

In this paper, we have described the InfraCCS model, which can 

estimate the likely extent and cost of a CO2 transport network at European 

scale for the period 2015-2050. The computation is made possible by a 

number of methodological innovations compared to previous research on 

this topic, in particular: the use of k-means clustering to reduce the number 

of nodes in the network; the application of the Delaunay triangulation 

algorithm for pipeline pre-selection; and the introduction of a 

mathematically convenient yet sufficiently accurate new pipeline costing 

model. 

The InfraCCS tool is applied to determine the optimal network 

corresponding to a CCS scenario that ensures near-complete 

decarbonisation of the European power sector. Under the assumptions of the 

scenario, the CO2 network by 2050 is about 11000 km in length and requires 

16 billion Euros investment. If onshore aquifers are excluded, the network 

would need to be 17000 km in length and would require 36 billion Euros 

investment, The large cost savings that can be obtained by using onshore 

aquifers indicate the need for stakeholder outreach efforts and further R&D 

that reduces the environmental uncertainties associated with onshore storage. 

Finally, since the model shows that by 2030 more than half of the EU 

Member States could be involved in cross-border CO2 transport, 

international coordination seems crucial for the development of an 

optimised trans-European CO2 transport network. 

As mentioned before, the InfraCCS model uses an exogenous 

scenario of CCS deployment. Further research could focus on endogenising 

the amount of CO2 captured, through soft or hard-coupling with a partial 

equilibrium model of the European energy system. Such an approach could 

also endogenise the location of new power plants, i.e. it could decide to 

build power plants closer to storage sites, in contrast with our current model, 

which locates capture plants at existing power plant sites. Furthermore, the 
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model assumes international coordination in order to achieve a jointly 

optimal solution. A possible route of research would be to model under 

which conditions and incentive systems such cooperation would take place. 

Also, the current paper computes the optimal network for two cases. The 

same analysis could be done for a much wider range of scenarios and 

assumptions, to obtain a quantification of the uncertainties in infrastructure 

deployment. Finally, the model assumes perfect foresight. An alternative, 

but computationally very intensive, approach would be to consider future 

capture scenarios as stochastic, and determine the optimal network that 

would be robust against such uncertainties. 
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Appendix A. Sensitivity analysis regarding the discount rate 

The results shown in Section 3.2 include a number of ‘oversized’ 

pipelines: pipelines which, in anticipation of future flows of CO2, are built 

with a larger capacity than what is strictly needed at the time of construction. 

This requires very long planning horizons and implies that governments 

and/or industry take a volume risk, because future flows may never actually 

materialise. One way to account for such uncertainty is to increase the 

discount rate. In this appendix we therefore rerun the simulations with a 

15% discount rate, i.e. twice as high as the original 7.5% discount rate used 

throughout the paper. The characteristics of the resulting optimised network 

are shown in Figure 8. 
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Figure 8: Characteristics of the optimal CO2 networks 
assuming double discount rate 
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It is interesting to compare Figure 8 with Figure 7. First of all, the 

resulting total network length when using a 15% discount rate is greater 

than when a 7.5% discount rate is used for optimisation. This is a fairly 

intuitive result: with higher discount rates, there will be less anticipation of 

future CO2 flows, hence fewer bulk pipelines are built upfront. As a 

consequence, more pipelines need to be built later on, resulting in greater 

total network length. Likewise, when a higher discount rate is used, 
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investments in the first time steps are slightly smaller, but the total 

cumulative investment is larger: the difference is 0.9 billion Euros in Case 1 

and 0.8 billion Euros in Case 2. This is also reflected in the cost per tonne of 

CO2 transported, which is significantly lower in the beginning but 0.1 

EUR/t higher by 2050 when the higher discount rate is used. All in all, 

however, the changes seem relatively small, hinting that the characteristics 

of the optimal CO2 transport network are fairly robust vis-à-vis changes in 

the discount rate assumed for the optimisation algorithm. 


