

Sequential testing of k-out-
of-n systems with imperfect
tests
Wei W, Coolen K, Talla Nobibon F, Leus R.

KBI_1508

Sequential testing of k-out-of-n systems with

imperfect tests

Wenchao Wei1, Kris Coolen2, Fabrice Talla Nobibon3, and Roel Leus4∗

Abstract. A k-out-of-n system configuration requires that, for the overall system to be functional, at

least k out of the total of n components be working. We consider the problem of sequentially testing the

components of a k-out-of-n system in order to learn the state of the system, when the tests are costly and

when the individual component tests are imperfect, which means that a test can identify a component as

working when in reality it is down, and vice versa. Each component is tested at most once. Since tests

are imperfect, even when all components are tested the state of the system is not necessarily known with

certainty, and so reaching a lower bound on the probability of correctness of the system state is used as

a stopping criterion for the inspection.

We define different classes of inspection policies and we examine global optimality of each of the

classes. We find that a globally optimal policy for diagnosing k-out-of-n systems with imperfect tests

can be found in polynomial time when the predictive error probabilities are the same for all the compo-

nents. Of the three policy classes studied, the dominant policies always contain a global optimum, while

elementary policies are compact in representation. The newly introduced class of so-called ‘interrupted

block-walking’ policies combines these merits of global optimality and of compactness.

Keywords: sequential testing, k-out-of-n systems, imperfect tests, sequencing and scheduling.

1 Introduction

System health monitoring for complex systems, such as a space shuttle, aircraft or integrated cir-

cuits, is crucial for reducing the likelihood of accidents due to sudden failures, and for improving

system availability. It is also imperative that systems be tested before being put into opera-

tion, in order to ascertain their functionality. At manufacturing sites, for instance, products

are typically inspected at the final stage of production before being shipped to the customer.

Electronic equipment (smart mobile phones, laptops, etc.) in particular, which contains compo-

nents from many different suppliers, has various tests executed throughout the different stages

of manufacturing.

This text is a reworked and updated version of the earlier working paper KBI 1315.
1Faculty of Engineering, INESC, University of Porto, Portugal, wenchao.wei@inesctec.pt.
2HEC – Management School, QuantOM, Université de Liège, Belgium, kris.coolen@ulg.ac.be.
3Federal Express (FedEx), Brussels, Belgium, tallanob@gmail.com.
4ORSTAT, Faculty of Economics and Business, KU Leuven, Belgium, Roel.Leus@kuleuven.be.
∗Corresponding author.

1

The k-out-of-n configuration is a special case of a complex system that requires that, for the

overall system to be functional, at least k out of the total of n components must be working.

This configuration has a wide range of applications in both industrial and engineering systems

(Ünlüyurt, 2004), such as a multi-display system in a cockpit, the multi-radiator system in a

heating system, a bridge with n cables where a minimum of k cables are necessary to support

the bridge, and the power grid of a city with excess power generators. Consider, for example,

an airplane with four engines. Furthermore, suppose that the design of the aircraft is such that

at least two engines are required to function for the aircraft to remain airborne. This means

that the engines are related in a k-out-of-n configuration, with k = 2 and n = 4. This is in

literature sometimes also referred to as a “2-out-of-4:G” system, where G means the system

works or is “good”; a k-out-of-n:G system is equivalent to an (n − k + 1)-out-of-n:F system,

which fails (“F”) if at least (n− k + 1) components fail. The airplane is tolerant to failures in

up to two engines. More generally, the k-out-of-n system configuration represents systems with

built-in redundancy. A so-called series system is an n-out-of-n system and a parallel system is

a 1-out-of-n system.

In sequential testing, the procedure of diagnosing a system consists in testing the components

one by one in order to learn the state of the system (Ünlüyurt, 2004). The same diagnosis

procedure may be repeated thousands of times, and so it is important to minimize the total

expected costs in the long run. Additionally, besides this cost directly attributable to the test-

set hardware and manpower, field return costs can be reduced by improving output quality

through appropriate testing. In this article we search for an inspection policy, which is a set of

decision rules that decide in which order to test the components, and respects specific stopping

criteria. More specifically, we develop algorithms for finding optimal policies that minimize the

expected testing expenses.

We focus on the case where individual component tests are imperfect, which means that a

test can identify a component as working when in reality it is down, and vice versa; this can have

severe implications. Obviously, different costs will be incurred in different ensuing situations,

but these are neglected in this article: we only focus on the expected cost to assess the state

of the system with a specific confidence level. Sequencing of imperfect component tests has

already been studied in a number of isolated articles; we provide an overview in Section 2. The

reference closest to our work is Nachlas et al. (1990), who focus only on series systems. To

the best of our knowledge, however, the more general sequencing problem of imperfect tests

2

for k-out-of-n systems has not yet been treated in the existing literature. It is the goal of this

paper to fill exactly this gap.

Throughout the text, we will say that a positive test outcome is associated with the discovery

of a failure. Imperfect testing can involve two types of test errors. The first type of error is

false positive (type-I error), which means the tester concludes the component fails (is ‘down’)

when really it is not; for example, a product can fail a quality test before being shipped, while

in reality it is in good condition (component is ‘up’). The second type of test error is false

negative (type-II error), which means the outcome is negative but in reality the component

fails, for example, a system check-up failing to detect the fault it was designed to find, in a

computer system that really has the fault. Positive predictive value is the proportion of positive

results that are truly positive, whereas negative predictive value is the proportion of negative

results that are truly negative. The following expressions show how these two values are related

with type-I and type-II error:

positive predictive error ε0 = Pr{ component up | outcome positive },

negative predictive error ε1 = Pr{ component down | outcome negative },

positive predictive value (1− ε0) = Pr{ component down | outcome positive },

negative predictive value (1− ε1) = Pr{ component up | outcome negative },

type-I error = Pr{ outcome positive | component up },

type-II error = Pr{ outcome negative | component down },

where Pr{A|B} is the conditional probability of event A knowing that event B has occurred.

Note that predictive values are conditioned on the test results and represent the probability of

presence or absence of a fault in a given component test. For definitions of similar terms in

diagnostic tests, we refer the reader to Altman and Bland (1994a,b).

Consider a numerical example for testing one module of a specific product. Suppose the

positive and negative predictive error are equal, ε0 = ε1 ≡ ε = 10%, so if a test outcome is

positive, we know that the module is not functional with probability 0.9 and is working with

probability 0.1; a similar interpretation applies for the negative outcome. If χ = 81.25% of the

test outcomes of the production output for a given day is negative, then we can infer that the

a-priori probability that a produced module works, is 0.1(1−χ)+0.9χ = 0.75. The type-I error

is computed as 0.1875× 0.1/0.75 = 0.025 and the type-II error is 0.8125× 0.1/0.25 = 0.325.

In the foregoing example, we first fix the positive and negative predictive value and thereby

3

also the complement ε, which represents the probability that a test outcome is wrong. The type-I

and type-II errors then follow implicitly from this choice for ε combined either with historical

test data or with the a-priori probability that the module is functional. We will continue this

approach throughout the article, and this contrasts with the few existing references (e.g., Ding

et al., 1998; Nachlas et al., 1990), where the type-I and type-II errors are assumed to be known,

which then implies a value for the predictive errors. Indeed, when a tester examines a component

returning a positive result, he/she then wishes to evaluate what is the probability of the need

to reject or repair this component. Type-I and type-II errors cannot be directly used to answer

this question, because they are conditional on whether the component is actually functional

or not. Predictive values are therefore very useful measures of diagnostic accuracy in routine

inspection practice (Akobeng, 2006; Altman and Bland, 1994a,b). Additionally, and this is a

rather stringent assumption, we will assume that the positive predictive error ε0 is the same for

all components, and likewise for the negative predictive error ε1. One possible source of such

a common error probability is the design of a single unreliable test machine. Benjamini and

Hochberg (1995, 2000) also make a case for controlling what they call the “false discovery rate”

in test design, which is equivalent to our positive predictive error ε0. In the context of event

detection by means of a network of sensors, Luo et al. (2006) also assume identical “false alarm

probabilities,” in a setup that is close to a k-out-of-n system. Sarma and Tufts (2001) describe

that it is desirable in signal detection to maintain the “average probability of false alarm” at a

fixed level despite time-varying noise, leading to “constant false alarm rate” (CFAR) detectors.

Two types of testing policies are defined by Butterworth (1972): sequential and non-

sequential. Sequential then means that the testing order of the components is selected before

the diagnosis begins, while non-sequential means the testing order is dynamic, in the sense

that it can vary according to the results of the component tests. The terminology, however,

varies between references (compare with Wald (1945), for example), and in the general setting

of sequential system diagnosis, the adjective ‘sequential’ simply refers to the fact that compo-

nent tests are conducted one after the other, and never simultaneously (in a scheduling context

(Pinedo, 2012), one could speak of single-machine scheduling). In order to avoid misunderstand-

ing, we therefore resort to the use of the name elementary policy to refer to what Butterworth

(1972) defines as a sequential policy.

In the policy classes studied in this article, decisions are made dynamically, meaning that

they are conditional on the observations (the outcomes) of the previous tests. As mentioned

4

above, this dynamic character of our policy classes constitutes a very natural motivation for

conditioning on the test outcomes (fixing positive and negative predictive value) rather than on

the actual (hence, unknown) state of the components (as would be done by specifying type-I

and type-II errors). One can also imagine that under certain circumstances, testing the same

component more than once would improve the quality of the output. We do not consider such

retesting: each component is tested at most once. This allows us to focus only on the sequencing

aspect.

The contributions of this article are threefold: (1) we describe a general setting for k-out-of-n

system testing with imperfect tests; (2) we examine different classes of diagnosis policies and

discuss global optimality of each of the classes; and (3) we present a polynomial-time algorithm

to find a globally optimal policy. In the process, we also define and analyze other problem

variants of k-out-of-n testing. The remainder of this text is structured as follows: Section 2

provides a review of the relevant literature. Some definitions and a formal problem statement

are given in Section 3. A number of observations and results regarding the confidence level are

presented in Section 4, and our main results are established in Section 5. We summarize and

conclude this article in Section 6.

2 Literature review

An extensive literature review of different types of sequential testing problems can be found in

Ünlüyurt (2004). Butterworth (1972) shows that the special cases of a parallel (k = 1) and a

series (k = n) system without precedence constraints are polynomially solvable. A polynomial-

time algorithm for arbitrary k was presented first by Salloum (1979), and independently by

Ben-Dov (1981). Efficient implementations of this algorithm were proposed in Chang et al.

(1990) (off-line algorithm requiring O(n2) space and O(n2) time) and in Salloum and Breuer

(1997) (on-line algorithm requiring O(n) space and O(n log(n)) time). With general precedence

constraints, the testing problem for series systems is NP-hard (Kelly, 1982; De Reyck and Leus,

2008). Computational results for sequencing tests of k-out-of-n systems with general precedence

constraints can be found in Wei et al. (2013). One specific variant of classic k-out-of-n testing is

the so-called conservative k-out-of-n testing, which is defined in the same way, but testing now

continues until either k successful tests are observed or until all n tests have been performed

(Hellerstein et al., 2011). In this text, we will assume component tests to be independent;

5

Cramer and Kamps (1996) present a generalization in which the failure rate of the untested

components is parametrically adjusted based on the number of preceding failures.

Most research efforts in the system-testing literature have been directed at finding testing

policies for systems with k = 1 and k = n (parallel and series systems) and with special prece-

dence constraints (e.g. a series-parallel or a tree precedence graph). Relatively less attention

has been given to imperfect testing, where due to a defective test design or unforeseen errors,

the outcome of a test only reflects the real condition of the component with a probability less

than one, otherwise giving adverse information or even no information. The optimization of se-

quential search processes with imperfect tests has already been modeled and applied to various

domains; we provide a survey below.

Imperfect testing has been introduced for so-called ‘search problems.’ In the discrete search

problem with a stationary target (Ahlswede and Wegener, 1987), an item is assumed to be

hidden in one of a set of boxes. Associated with each box i is a prior probability pi (
∑

i pi = 1)

that the item is hidden in that box and the overlook probability (type-II error) ai that the item

will not be found in a particular search of that box even though the item is actually there.

Value ai remains the same for every search of box i, and the time (cost) consumed in examining

box i is ci. The search procedure does not stop before the item is found. Bellman (1957)

was the first to describe an optimal policy to minimize the expected search cost by arranging

the components in descending order of the ratio pi(1 − ai)/ci. Using this result, Gluss (1959)

develops an optimal procedure for detecting the breakdown in a complex multi-component

system. The stop criterion is the same: the fault can be concealed due to test errors, but is

ultimately discovered by repeating tests until it is properly isolated. Wagner and Davis (2001)

extend the module concept proposed by Gluss (1959) for discrete sequential search and refer

to it as a ‘group activity.’ Variations of stationary-object search are addressed in Song and

Teneketzis (2004) and Stone et al. (1972).

The discrete search problem can also be seen as a representation of system testing. Besides

the cost of testing, which depends on the set of components that are actually tested, Nachlas

et al. (1990) also consider the consequences of a test error related to the disposition of the

system after repair. If a false positive test result occurs, a functioning component is replaced

and the failed component is left in place. If the system is then returned to service, the system

fails immediately. If a false negative test result occurs, the overall test could indicate that no

item fails; if the system is then returned to service, it fails immediately or it might be scrapped.

6

Nachlas et al. add these two events with corresponding cost coefficient into the objective function

and perform efficient enumeration of permutations of test sequences to find an optimal one that

minimizes the expected total costs for small systems (less than 10 components) with series

structure.

Raghavan et al. (1999) study the single-fault detection problem with unreliable tests, where

the fault is inherited from a finite failure source, and there is a finite set of available tests, each

of which checks a subset of failure sources. The problem is to design a test policy with minimum

expected total diagnostic cost to isolate the failure source with a specified confidence (typically

within [0.95, 0.99]). This problem is treated as a partially observed Markov decision problem

(POMDP), and is solved by a continuous-state dynamic programming recursion. Different fault

detection problems are considered in Balakrishnan and Semmelbauer (1999), Shakeri et al.

(2000), and Ruan et al. (2009).

In the testing department of a typical manufacturing company, for example a semiconductor

manufacturer, the objective of the testing process is to achieve a high outgoing-product quality

while minimizing the costs of testing, scrapping conforming products, and the opportunity cost

of passing non-conforming items. Tzimerman and Herer (2009) consider a batch of products that

was produced in a given order on a machine that is subject to random failures. They propose an

exact dynamic programming algorithm and four heuristics to find an off-line inspection policy

which finds the first non-conforming item (i.e., the point at which the machine fails) with a given

confidence level while minimizing the expected number of inspected products in the batch. In

the model of Tzimerman and Herer a conformity test may be wrong and it is assumed that

an item is tested at most once. Since the tests are imperfect, however, applying the same

test multiple times can be useful for obtaining higher outgoing quality and economic savings.

Raouf et al. (1983) develop a model where accepted components are repetitively retested, and

they determine the optimal number of repeat inspections for multi-characteristic components to

minimize the total expected cost per accepted component due to type-I error, type-II error and

cost of inspection. Greenberg and Stokes (1995) use the data acquired from retesting rejected

items to estimate the probability of testing errors. Note that this stream of literature allows

type-I and type-II errors of tests to vary after each test cycle. Ding et al. (1998) examine the

question whether it is better to repetitively test rejected components or to repetitively test

accepted components. Choosing between these two policies depends on the tradeoff between

scrapping costs and outgoing quality; see also Ding and Gong (2008) and Quinino et al. (2010) for

7

variations of this problem. Sequencing issues and imperfect testing have both been considered in

the inspection of multi-characteristic components; we refer to Raouf et al. (1983), Schmidt and

Bennett (1972) and Tang and Tang (1994) for examples. The results in the foregoing references,

however, do not apply for the case where retesting is not allowed or economically infeasible.

Solutions have been published for the latter case also, albeit mainly in a different field; this is

the subject of the next paragraph.

The reliability of a system is the probability that the system functions (ex ante, without

diagnosis). The main concern of the reliability literature is the evaluation or the approximation

of the reliability of a given system; see for instance Wu and Chen (1994) for weighted k-out-of-n

systems, Ding et al. (2010), who develop approximation procedures for the reliability of multi-

state weighted k-out-of-n systems, or Eryilmaz (2013), who analyzes the case when components

have random weights. For a k-out-of-n configuration with imperfect information, most of the

literature has focused on the design of the system such that it strikes a balance between reliability

and cost. In general, the reliability of a k-out-of-n system for fixed k increases with the number n

of components. As the required reliability of the system increases, the cost also goes up due to

the increase in the number of redundant (idle) components in the system. Marseguerra et al.

(2005) develop an approach to incorporate uncertainty (component failure probabilities are not

known with certainty) into reliability calculations by using Monte-Carlo simulation and genetic

algorithms. Amari et al. (2004) also study the design of systems with built-in redundancy,

including k-out-of-n subsystems subjected to imperfect fault coverage (type-II error, see Arnold

(1973) for the definition of fault coverage).

3 Definitions and problem statement

3.1 Definitions

We monitor a system consisting of n components; the component set is N = {1, 2, . . . , n}. In

order to discover the state of the system, we can test each component sequentially on a single

test machine. Each component is in one of two states: either working (up) or not working

(down). The system functions (succeeds) if at least k ≤ n of the n components are working and

malfunctions (fails) if at least (n−k+1) components are not working. Each component is tested

at most once (Nachlas et al. (1990) refer to this setting as ‘single-pass’ testing). We also call

the test of component i simply ‘test i.’ The outcome of test i is a binary value xi ∈ B = {0, 1}

8

with the interpretation that xi = 0 if and only if the test detects a fault (a positive outcome).

All outcomes can be gathered in an n-dimensional binary vector x = (x1, x2, . . . , xn) ∈ Bn.

We study the situation where the measurements (tests) are imperfect: the outcome can

be positive while the component is actually working, and vice versa. As already stated in

Section 1, each positive outcome has probability ε0 of being wrong (in which case, the system

is really functioning); we refer to ε0 as the positive predictive error. Correspondingly, value ε1

represents the negative predictive error, the probability that a negative outcome is incorrect.

We define χi as the probability that xi = 1 (negative outcome), and pi is the prior probability

that component i works. For ease of notation, we also define qi = 1−pi as the prior probability

that component i is down, and λi = 1 − χi the probability that xi = 0. Let Xi represent

outcome i before testing, which is a Bernoulli random variable with parameter χi, and denote

by X = (X1, X2, . . . , Xn) the associated vector of random variables. The realization of each Xi

is known only at the end of test i. We assume all variables Xi to be mutually independent.

A schedule s = (s1, s2, . . . , s|s|) is an ordered subset of N indicating the test sequence of

a specific outcome, with st the index of the test in position t in the schedule s. Let value ci

represent the cost of test i; then the cost of schedule s is f(s) =
∑|s|

t=1 cst . Tests are conducted

one at a time, so a sequence of (a subset of) tests indeed defines a schedule. Testing the

components sequentially is a dominant decision for our objective function, but this does not

necessarily apply for other objectives (such as makespan minimization; see, for instance, Pinedo,

2012).

3.2 Conditions on the predictive errors

From the foregoing definitions, it directly follows that

pi = (1− ε1)χi + ε0(1− χi). (1)

When ε0 + ε1 6= 1, we can also express χi in function of the other parameters as follows:

χi =
pi − ε0

1− ε0 − ε1
(2)

From this expression, it is natural to distinguish the following three cases:

1. ε0 + ε1 < 1

9

From (1) it can be seen that the condition ε0 + ε1 < 1 implies that

ε0 < pi < 1− ε1 (3)

ε1 < qi < 1− ε0 (4)

In other words, the probability of having a working component increases after a negative

test result and decreases after a positive test result. Similarly, the probability of a failing

component increases after a positive test result and decreases after a negative test result.

We conclude that the condition ε0+ε1 < 1 is a characteristic of any reasonable component

test in the sense that the outcome of the test does indeed provide more information on

the true component state. Remark that in this case, it also holds that 0 < χi < 1.

2. ε0 + ε1 = 1

In this case the strict inequalities in (3) and (4) become equalities, and therefore the test

outcome does not change the likelihood of the component to be either working or failing.

In other words, the component state and the component test outcome are statistically

independent events; the test gives no information concerning the component state. Further

note that in this case, χi is not even known from pi, ε0 and ε1 (it can be any value between

0 and 1), and can only be determined when the type-I and type-II errors are also given.

3. ε0 + ε1 > 1

This case corresponds to a test where the component is more likely to work after observing

a positive test and more likely to fail after a negative test. Such a test would not be

reasonable.

Based on the above analysis, we will assume that ε0 + ε1 < 1 in the remainder of this paper.

We explicitly use this condition in Section 5.

3.3 Problem statement

A solution to the sequencing problem under study is a testing policy, which decides how to

proceed at each stage based on diagnosis information from the preceding test outcomes. After

each test, either a new component is selected or the diagnosis procedure is halted; this choice is

based on the confidence level regarding the system’s state. Let θ1(r,x, s) be the probability that

there are k or more working components among the first r tested ones following schedule s and

10

with outcome vector x (which would mean that the system functions), with r ≤ |s| and r ≤ |x|.

Similarly, θ0(r,x, s) is the probability that there are at least (n − k + 1) failing components

among the first r tested components (which would mean that the system malfunctions). When

there is no risk of confusion, we will use θ1(r) and θ0(r) for short. We define the overall system

confidence level as θ(r) = max{θ0(r), θ1(r)}; in the context of isolating a single failure source,

Raghavan et al. (1999) also use the term ‘level of confidence’ to refer to this value. We study

the optimization problem of designing a test policy Π with minimum expected total diagnostic

costs. Given a specified threshold value T on system confidence (e.g., T = 95%), the inspection

procedure stops when θ(r) reaches or exceeds T ; if this stop criterion is never fulfilled then we

perform all the n tests (which maximizes the confidence of the result). The value of T should

follow from the requirements of the system or is specified by the user.

Consider an example 3-out-of-5 system for a given test outcome (1, 1, 1, 1, 1) and sched-

ule (1, 2, 3, 4, 5). With negative predictive error rate ε1 = 10% (the value of ε0 is irrelevant

here because all test outcomes are negative), we have θ1(3) = 72.9%, θ1(4) = 94.77% and

θ1(5) = 99.144%, and also θ0(3) = 0.1% = 0.13, θ0(4) = 0.37% and θ0(5) = 0.856%, while

θ0(r) = θ1(r) = 0 for r ≤ 2 (see Section 4 for details on the computation of these values). In

case T = 95% then the diagnosis is not interrupted after the first four component tests because

the obtained confidence level is not yet high enough, and so the fifth component is also tested;

after this fifth test, θ1(5) ≥ T and so we conclude that the system is working. Had we worked

with T = 90%, however, then θ1(4) ≥ T and the fifth test would not have been necessary to

achieve the (lower) desired confidence threshold. Value T = 90% would still have required four

negative test outcomes although k = 3 because θ1(3) = 0.729 < 0.9. For T = 99.5%, even after

all five component tests the threshold is not attained, and so we halt without firm conclusion;

we will call such a diagnosis inconclusive.

In line with the literature on stochastic scheduling (Igelmund and Radermacher, 1983), a

policy Π can be modeled as a function Π : Bn → Σ that maps outcomes x to schedules, where

Σ is the set of all schedules; different outcomes may be mapped to the same schedule. Our

objective is to find a policy Π∗ within a specific class that minimizes the following expression,

which represents the expected cost of policy Π:

E[f(Π(X))] =
∑
x∈Bn

(∏
i:xi=1

χi

)(∏
i:xi=0

λi

)
f(Π(x)), (5)

11

Table 1: Costs and probabilities of the example 3-out-of-5 instance

i 1 2 3 4 5

ci 1 1 1 1 1
χi 0.5 + δ 0.5 0.5 0.5 0.5− δ

3

4 4

5 15 5

4

1

3 1

5 5

3 3

1

5 5

5 5

2

1 1 1 11 1 1 5F S

F - F - - - F - - - - - - S F - - - - - - S - - - S - S

Figure 1: A globally optimal policy of the example instance

with E[·] the expectation operator with respect to X and f() the cost function as defined in

Section 3.1. We say that a policy is globally optimal if it achieves the minimum expected cost

over all possible policies.

The flexibility inherent in a testing policy allows to schedule different tests conditional on

the outcomes of the previously conducted tests: the second component to be tested, for instance,

might depend on the result (success or failure) of the first test. To capture this dynamic nature,

a policy Π can also be represented by a binary decision tree (BDT). In such a BDT, each

non-leaf node is labeled with the index of a component to be tested and has two child nodes.

If the test outcome is positive then the left branch is entered, otherwise the right subtree is

taken. Each leaf node either represents a conclusion of a specific system state (successful (S)

or failed (F)) with the required confidence, or indicates that all components have been tested

but the diagnosis is inconclusive (labeled by −). For a given outcome, the policy generates the

schedule stepwise from the root node to a leaf node. Table 1 contains additional parameters

for the example 3-out-of-5 system, with 0 ≤ δ < 0.5; let the positive predictive error ε0 = 5%.

Figure 1 depicts a BDT representing a testing policy for the example instance of Table 1 with

T = 90%; its expected cost is 4.875− 0.25δ. For outcome vector (1, 0, 1, 0, 1), for example, the

policy consecutively tests components 2, 4, 3, 5, and 1, and the tests are inconclusive.

12

3.4 Policy classes

In this section we briefly describe the classes of dominant and of elementary policies, which

were both defined in Wei et al. (2013) for sequential testing with perfect tests.

We say that a policy is dominant if for any two vertices u1 and u2 with the same tested

component set in the BDT representation of the policy (meaning that the same components

were tested in the diagnosis process to reach u1 and u2) and with the same number of negative

test outcomes in the preceding tests, it holds that the subtrees rooted at u1 and u2 are identical.

Lemma 1. There exists a dominant policy that is globally optimal.

All proofs appear in the appendix. Inspired by priority policies for standard scheduling problems

(Pinedo, 2012), we also consider elementary policies, which are characterized by a total order

of the component set N . Such an order can be represented by a list (or permutation) L =

(l1, l2, . . . , ln) of the elements ofN . For a given outcome x, the elementary policy Π characterized

by a list L generates a unique schedule Π(x;L) by testing the components one by one in the

order of the list (so first l1, then l2, etc.). The diagnosis stops when the confidence level

reaches the threshold or all the components have been tested. The list (1, 2, 3, 4, 5), for example,

characterizes an elementary policy for the example instance presented above, with corresponding

expected costs 4.875 for T = 90%. Clearly, one direct advantage of elementary policies is their

compact representation: one can also draw up a BDT for an elementary policy, but this is not

necessary since the list contains all the information.

4 System confidence level

4.1 Computing the confidence level

We define Q(x,s)(w, r) as the probability that there are exactly w components working among the

first r components tested (consequently, r−w components are down) according to schedule s and

outcome x (with r ≤ |s| and r ≤ |x|). We use Q(w, r) for short when no ambiguity is possible.

We initialize Q(0, 0) = 1, and Q(w, r) = 0 when w = −1 or w > r ≥ 0, and we propose the

following recursive formula to generate each Q(w, r) for w = 0, 1, . . . , n; r = 1, 2, . . . , n with

13

Table 2: Values of Q(w, r) for outcome x = (1, 0, 1, 0) and schedule s = (1, 2, 3, 4)

r = 1 2 3 4
xsr = 1 0 1 0

w = 0 ε1 ε1(1 − ε0) ε21(1 − ε0) ε21(1 − ε0)2

w = 1 1 − ε1 ε0ε1 + (1 − ε0)(1 − ε1) ε0ε
2
1 + 2ε1(1 − ε0)(1 − ε1) 2ε0ε

2
1(1 − ε0)

+2ε1(1−ε0)2(1−ε1)

w = 2 0 ε0(1 − ε1) 2ε0ε1(1 − ε1)
+(1 − ε0)(1 − ε1)2

ε20ε
2
1 +(1−ε0)2(1−ε1)2

+4ε0ε1(1 − ε0)(1 − ε1)

w = 3 0 0 ε0(1 − ε1)2 2ε20ε1(1 − ε1)
+2ε0(1−ε0)(1−ε1)2

w = 4 0 0 0 ε20(1 − ε1)2

4∑
w=0

Q(w, r) = 1 1 1 1

w ≤ r:

Q(w, r) = Q(w, r − 1)(xsrε1 + (1− xsr)(1− ε0))

+Q(w − 1, r − 1)(xsr(1− ε1) + (1− xsr)ε0).

(6)

The remaining values Q(w, r) are set to zero. In words, in order to have w working components

after r tests, either there were already w working components after r−1 tests (which corresponds

with the first term in the right-hand side), and then the last test sr pertains to a failing

component, which is either correctly observed (xsr = 0) with probability 1 − ε0, or wrongly

observed (xsr = 1) with probability ε1. Alternatively, there were only w−1 working components

after the first r − 1 tests, and then a similar reasoning can be followed to obtain the second

term in the right-hand side.

Table 2 gives an illustration of Q(w, r) for a given outcome x = (1, 0, 1, 0) and schedule

s = (1, 2, 3, 4) (we do not include the fifth component because this would make the table overly

unwieldy, but line w = 5 and column r = 5 can be added, given knowledge of x5, following

exactly the same logic). Computing all values Q(w, r) requires O(n2) operations in total for a

given schedule and outcome vector. Given the values of Q(w, r), we derive θ1(r) and θ0(r) as

14

follows:

θ1(r) =


0 if r < k

r∑
w=k

Q(w, r) if r ≥ k
(7)

θ0(r) =


0 if r < n− k + 1

r−n+k−1∑
w=0

Q(w, r) if r ≥ n− k + 1

(8)

The value of θ1(4) computed in Section 3.3 for the 3-out-of-5 instance with outcome vector

(1, 1, 1, 1, 1), for instance, can be obtained as Q(3, 4) +Q(4, 4) = 4 · 0.93 · 0.1 + 0.94 = 0.9477.

We define Q̇(g; t, r) as the probability that there are exactly g working components in reality

among the first r components already tested, when t negative results were obtained.

Lemma 2. For g, t, r = 0, 1, 2, . . . , n with g ≤ r and t ≤ r, we have:

Q̇(g; t, r) =



min{r−g,t}∑
l=0

(
r − t

g − t+ l

)(
t

l

)
(1− ε0)r−g−lεg−t+l0 (1− ε1)t−lεl1 if g ≥ t

min{g,r−t}∑
l=0

(
r − t
l

)(
t

t− g + l

)
(1− ε0)r−t−lεl0(1− ε1)g−lε

t−g+l
1 otherwise.

(9)

Proposition 1. Q(x,s)(w, r) = Q̇(w; t, r), where t is the number of negative outcomes in x.

This proposition follows directly by observing that the computation of Q̇(g; t, r) in the proof of

Lemma 2 can be carried through step by step for Q(x,s)(w, r). The underlying reason for the

equality is the fact that we have assumed equal positive and equal negative predictive errors for

all components. In Equations (7) and (8), we have implicitly (via Q) defined the confidence level

as dependent on one specific pair of outcome and schedule. From Proposition 1, however, we see

that as long as the number r of conducted tests is the same and the number of positive outcomes

is the same (even if the set of components examined differs), the corresponding confidence will

be identical. We therefore redefine the values θ1(r; t) and θ0(r; t) as conditional on the number r

of tested components and the number t of observed negative outcomes; we will write parameter t

explicitly only when necessary.

4.2 Comparing the confidence with the threshold T

The decisions to be made by a tester are: (1) when to halt the testing procedure, and (2) how

to sequence the tests such that the total expected costs are minimized. In the remainder of

15

Section 4, we will answer the first question; we develop a solution to the second question in

Section 5. We first state a few properties of θ1(r) and θ0(r).

Lemma 3. θ1(r,x, s) and θ0(r,x, s) are non-decreasing functions of r for any given schedule s

with outcome vector x.

Following the definitions of θ1(r) and θ0(r), this lemma is intuitive: increasing r means more

tests, so more possibilities to reach the required number of successes and failures. This also

implies that both positive and negative outcomes can contribute to both θ1(r) as well as θ0(r).

In particular, for any fixed number t ≤ r of negative test outcomes the probabilities θ1(r; t) and

θ0(r; t) are non-decreasing in the number of conducted tests r.

Lemma 4. For 0 ≤ r ≤ n, we have θ0(r; t) + θ1(r; t) ≤ 1 for any value of t; equality holds when

r = n.

Informally, 1− θ0(r)− θ1(r) is the probability that neither k successes nor (n− k + 1) failures

occur among the first r tested components. Since k+ (n− k+ 1) = n+ 1 > n, these two events

cannot occur simultaneously for any r ≤ n, and when r = n then exactly one of the two events

will hold. From Lemma 4, we infer that:

Corollary 1. If T > 50% then we cannot simultaneously have θ1(r) ≥ T and θ0(r) ≥ T for

any number of tests r.

In words, we will never conclude that a system works and fails at the same time. To illustrate the

importance of the condition T > 50%, consider the instance in Section 3.3 with ε0 = ε1 = 40%

and T = 45%. For outcome (1, 1, 1, 0, 0) we have θ1(5; 3) = 53.86% > T and θ0(5; 3) =

46.14% > T , whereas both θ1(4; 3) < T and θ0(4; 3) < T . Clearly, this is a situation that

renders the classification of the system highly confusing because the thresholds for concluding

system success and system failure are reached at the same time. To avoid such situations, we

thus assume T > 50% throughout this text. Intuitively, with only two system states possible,

it is also clear that a tester would need to have more than 50% certainty about being in any

specific state before drawing conclusions about what is the most plausible state.

For the 3-out-of-5 example instance of Section 3.3 with T = 95%, we observed that the series

of outcomes (1, 1, 1, 1) from schedule (1, 2, 3, 4) led to θ1(4) = 94.77% < T , and we suggested

that the final component 5 also needed to be tested in this case. From Lemma 3 we know that

both θ1(r) as well as θ0(r) are non-decreasing in r, and we see that if ε0 > 0 then θ1(5) > θ1(4)

16

even if x5 = 0. In particular, even for outcome (1, 1, 1, 1, 0) and schedule (1, 2, 3, 4, 5), and with

ε0 = 5% as before, we have θ1(5) = 95.01% > T . In conclusion, θ1(5) > T whether x5 takes

value 0 or 1, and so whatever the outcome of the final test, the threshold for concluding a

working system will be reached anyway, while (based on Corollary 1), the threshold for a failing

system cannot be reached. This indicates that the diagnosis may be interrupted already after

observing four negative results, and following similar arguments it can be seen that it is also

optimal to halt after four positive results. In the remainder of this section we formalize this

insight, which is based on the fact that the values θ0(r) and θ1(r) only pertain to the first r

components while we learn from Lemma 3 that these values are non-decreasing with r.

With Theorem 1, we provide an alternative testing diagnosis based on simply counting the

number of successful and unsuccessful outcomes such that more information is included in the

stopping criterion. We first state the following intermediate results:

Lemma 5. If ε0 + ε1 < 1 and 0 ≤ t1 < t2 ≤ r then θ1(r; t1) ≤ θ1(r; t2).

Lemma 6. If ε0 + ε1 < 1 and 0 ≤ l1 < l2 ≤ r then θ0(r;n− l1) ≤ θ0(r;n− l2).

Under the stated condition, these lemmas imply that having more negative outcomes for the

same number of tests will never decrease the probability of having a working system. Similarly,

having more positive outcomes will never decrease the probability of having a failing system.

We pointed out in Section 3.2 that the condition ε0 + ε1 < 1 is inherent to any reasonable

component test, so it is definitely not a restrictive condition.

We define the following parameters:

K1 = min{l ∈ N : l ≤ n and T ≤ θ1(n; l)}; (10)

K0 = min{l ∈ N : l ≤ n and T ≤ θ0(n;n− l)}. (11)

In words, K1 is the lowest integer not exceeding n such that θ1(n) is at least equal to the

threshold T when K1 negative outcomes were observed. Similarly, K0 is the lowest integer less

than or equal to n such that when K0 positive test results are obtained, the conclusion of a

failing system will be drawn with the required confidence level after the n-th test or sooner. In

case the min-operator applies to an empty set (there is no integer l that fulfills the conditions)

then we will say that the parameter in question does not exist. Thus, if K1 does not exist then

it is known before the start of the system diagnosis that we will never reach the conclusion

17

that the system functions with the required confidence threshold T , whatever the outcomes.

Similarly, when K0 does not exist then the conclusion of system failure can never be drawn

with the required confidence. If neither K0 nor K1 exist then the testing sequence becomes

irrelevant because the diagnosis will conduct all the n tests under all possible outcomes (and

will certainly be inconclusive).

Before the main theorem, we make a few observations. To start with, it can happen that K1

equals 0, which is when θ1(n; 0) ≥ T . When k = 1 (only one working component needed for a

successful system), for instance, then θ1(n; 0) = 1− (1− ε0)n, and so K1 = 0 when n > ln(1−T)
ln(1−ε0) .

With T = 75% and ε0 = 10%, K1 = 0 for n = 14 and higher. This means that the system

will work with at least 75% confidence whatever the outcomes of the tests (even of they are all

positive), due to testing errors. The case where K0 = 0 can be interpreted similarly. We need

the following lemma (assuming T > 50%):

Lemma 7. If K1 = 0 then K0 does not exist, and vice versa.

We can now state the main result of this section (assuming ε0 + ε1 < 1 and T > 50%):

Theorem 1. When the test procedure accumulates K1 negative tests then it is a dominant

decision to stop the procedure immediately, and the system will work with confidence level at

least T . When the test procedure reaches K0 positive tests then it is a dominant decision to

halt the test procedure immediately, and the system will fail with confidence level at least T .

Moreover, these stopping criteria are tight: one cannot stop testing before reaching either K0

positive or K1 negative outcomes and still guarantee the required confidence level.

From Lemma 3 and Lemma 5 it follows that θ1(r; t) is non-decreasing in both arguments

r and t such that its maximum value is reached when t = r = n. Therefore, K1 exists if and

only if θ1(n;n) ≥ T , and it can be computed by comparing T with the different θ-values. From

Lemma 3 and Lemma 6, K0 exists if and only if θ0(n; 0) ≥ T , and its value can be evaluated

using a similar procedure. Overall, identifying K0 and K1 can be done in O(n3) time. This

can be seen as follows: we need the values of θ1(n; t) and θ0(n;n − l) for 0 ≤ t, l ≤ n. This

can be achieved recursively by computing Q-values for appropriate outcome vectors; this takes

O(n2) time per outcome. One such set of Q-values enables us to obtain θ1(n; t) and θ0(n;n− l)

for a fixed value of t and l (pick an outcome vector with t ones and l zeros). This will cost

another O(n) additions. Therefore, we can evaluate θ1(n; t) and θ0(n;n − l) for fixed t and

l in time O(n2) + O(n) = O(n2). In the worst case, we need to do this for n + 1 different

18

Algorithm 1 Procedure for computing K1 and K0

1: Let s be any schedule of n tests;
2: for t = 0, . . . , n do
3: Choose a state vector xt with t negative outcomes;
4: Compute Q(xt,s)(w, n) for each w ∈ {0, . . . , n} recursively from Equation (6);
5: Compute θ1(n;xt, s) = θ1(n; t) and θ0(n;xt, s) = θ0(n; t) from Equations (7) and (8);
6: end for
7: if θ1(n;n) ≥ T then
8: Let K1 be the smallest t ∈ {0, . . . , n} with θ1(n; t) ≥ T ;
9: else

10: K1 does not exist;
11: end if
12: if θ0(n; 0) ≥ T then
13: Let K0 be the smallest l ∈ {0, . . . , n} with θ0(n;n− l) ≥ T ;
14: else
15: K0 does not exist;
16: end if

outcome vectors, for instance (0, 0, . . . , 0), (1, 0, . . . , 0), (1, 1, 0, . . . , 0), . . . , (1, 1, . . . , 1), leading

to an overall time complexity of O(n3). Algorithm 1 shows the pseudo-code of the procedure

to compute the values of K1 and K0.

Lemma 7 indicated that if one of K0 and K1 is zero then the system diagnosis is unambiguous

but not very interesting. Ambiguity might arise, however, when both K0 and K1 exist (and

hence are non-zero) but K0 + K1 ≤ n. To see this, construct outcome x∗ as follows: x1 =

x2 = . . . = xK1 = 1 and xK1+1 = xK1+2 = . . . = xn = 0, and consider policy Π1 that tests the

components in increasing index. Clearly, Π1 will observe K1 successes under x∗ while observing

0 failures, so if K0 > 0 then Π1 indeed concludes to system success. Similarly, if Π2 conducts

tests in decreasing index, it will reach the conclusion of system failure as long as K1 > 0. Thus

there exist outcomes x∗ and policies Π1 and Π2 such that Π1 under x∗ will first observe K1

working components while less than K0 failing components are identified (and thus conclude

that the system functions with the pre-specified confidence threshold T), whereas Π2 under x∗

will first observe K0 failing components while less than K1 working components are encountered

(and thus halt the diagnosis with the conclusion of system failure). When K0 +K1 ≥ n+ 1, on

the other hand, we cannot construct the vector x∗ anymore. In conclusion, when K0+K1 ≥ n+1

then the identification of the system state only depends on the test outcomes but not on the

sequence in which the tests are executed, while the case K0 + K1 ≤ n can lead to ambiguous

conclusions and would therefore require modifications in the problem statement (e.g., different

stopping criteria or different statement of system identification). The following lemma reassures

19

us that ambiguity will not occur in the setting of Theorem 1, and justifies the restriction to

K0 +K1 ≥ n+ 1 in Section 5.

Lemma 8. If T > 50% and both K0 and K1 exist then K0 +K1 ≥ n+ 1.

5 An optimal algorithm

In this section, we show that the testing problem with imperfect tests is polynomially solvable,

and that a globally optimal solution for some special cases can be represented by a permutation

of all the components. We investigate two different settings, namely the case where either K0

or K1 does not exist and the case where they both exist. In Section 4.2 we observed already

that when neither K0 nor K1 exists, sequencing decisions are irrelevant.

5.1 Exactly one of K0 and K1 exists

Consider the conservative k-out-of-n testing problem, which is defined similarly as traditional k-

out-of-n testing (with perfect tests), except that we perform tests either until we have observed

k tests with negative outcome, or we have performed all n tests (Hellerstein et al., 2011). In

particular, the diagnosis is not interrupted after observing n−k+1 tests with positive outcome.

We have the following result:

Observation 1. If exactly one of the parameters K0 and K1 exists then the k-out-of-n testing

problem with imperfect tests as defined in Section 3 reduces to the conservative k-out-of-n testing

problem.

This is an immediate consequence of Theorem 1. More precisely, when only K1 exists then an

optimal policy for an instance of the k-out-of-n testing problem with imperfect tests corresponds

exactly to an optimal policy for a corresponding instance of the conservative K1-out-of-n testing

problem with the χi-values as success probabilities. Such policy either concludes a working

system with confidence level at least T after observing K1 negative outcomes, or it tests all

components and is inconclusive. When only K0 exists then an optimal policy for an instance

of the k-out-of-n testing problem with imperfect tests is constructed from an optimal policy for

K0-out-of-n conservative testing with values λi as success probabilities, by interchanging every

pair of child nodes at every parent node in its BDT representation.

Hellerstein et al. (2011) mention the following result for conservative k-out-of-n testing,

which follows from a more general result obtained in Boros and Ünlüyurt (1999).

20

Proposition 2. For conservative k-out-of-n testing with perfect tests, an elementary policy

represented by the permutation of all n components arranged in non-decreasing order of ci/pi is

a globally optimal (elementary) policy.

From Observation 1 and Proposition 2, we immediately obtain the following result.

Corollary 2. When exactly one of the parameters K0 and K1 does not exist then the imperfect

k-out-of-n testing problem is polynomially solvable, and an optimal policy can be stored in O(n)

space.

5.2 Both K0 and K1 exist

Chang et al. (1990) propose a polynomial-time algorithm for the classic k-out-of-n (perfect)

testing problem. We use their algorithm in Section 5.2.2 as a subroutine for solving our problem.

For the sake of completeness, we first summarize this algorithm below in Section 5.2.1.

5.2.1 The algorithm of Chang et al.

Consider an instance of the k-out-of-n testing problem with perfect tests. We relabel the

components such that:

c1
p1
≤ c2
p2
≤ · · · ≤ cn

pn
,

and we determine a permutation σ such that:

cσ(1)

qσ(1)
≤
cσ(2)

qσ(2)
≤ · · · ≤

cσ(n)

qσ(n)
.

For any U ⊆ N , define Vi(U) to be the subset of U containing the i components with

smallest index, so Vi(U) = {j ∈ U | 1 ≤ j ≤ i}. Also, let Fi(U) be the subset of components

in U that occupy the first i positions in σ: Fi(U) = {σ(j) ∈ U | 1 ≤ j ≤ i}. Finally, we define

SS (U) as the component in U with the smallest index.

The following procedure, described by Chang et al. (1990), produces a globally optimal

policy for this problem. We start with testing component i = SS (Vk(N) ∩ Fn−k+1(N)). If

component i is working then we choose component SS (Vk−1(N \ {i}) ∩ Vn−k+1(N \ {i})) to

test; otherwise we select component SS (Vk(N \ {i}) ∩ Fn−k(N \ {i})) as the next component

to be examined. Following this method recursively, we continue the test procedure until either

k working components or n− k + 1 failing components are found.

21

3

4

5

2

1

(2, 4)

(2, 5) (1, 4)

(1, 5)

F

F

F S

S

S

Figure 2: The BW representation of a globally optimal policy for the 3-out-of-5 example instance
of Section 3.3 with ε0 = ε1 = 0

The BDT representation of an optimal policy generated by the above procedure can be

simplified to a so-called block-walking (BW) representation. See Figure 2 for an illustration,

which represents a globally optimal policy for the example instance with perfect tests. Testing

proceeds from top to bottom along the grid. The line crossings on the outside of the grid

are labeled by the index of the component to be tested, the nodes at the bottom represent

the identification of the state of the system, and the inner crossings are marked by a pair of

components, the first one of which will be tested if the previously tested component is working

and the second one will be tested if the previously tested component is not working. Similarly

as for the BDT representation, if a component is found to be working then the right downward

line segment is taken, otherwise the left segment is selected. A testing policy that has this

structure is referred to as a BW policy.

5.2.2 Generalized testing

We define a new generalized testing problem (with perfect tests) called (k0, k1)-out-of-n testing

problem, defined similarly as the classic k-out-of-n testing problem in that an instance is defined

by a component set N with parameters ci and pi, but instead of parameter k, a generalized

testing instance takes two parameters k1 and k0 and the system diagnosis continues until either

k1 working components or k0 failing components are found, or until all tests are performed with-

out reaching any of the two previous conditions. The system is therefore in one of three states;

in order of the foregoing three possible diagnosis outcomes: working, failing or inconclusive,

respectively. Clearly, the classic k-out-of-n testing problem is a special case of (k0, k1)-out-of-n

testing where k1 = k and k0 = n− k + 1, and the inconclusive system state never occurs. Sim-

22

ilarly, the conservative k-out-of-n testing problem is a subproblem of the generalized problem

with k1 = k and k0 = n. We now turn back to k-out-of-n testing with imperfect tests. The

following result holds.

Proposition 3. If both K0 and K1 exist then the k-out-of-n testing problem with imperfect tests

as defined in Section 3 is equivalent to the (k0, k1)-out-of-n testing problem with perfect tests.

The result in Proposition 3 follows immediately from Theorem 1 after setting k1 = K1 and

k0 = K0. As a consequence, any policy for the (K0,K1)-out-of-n testing problem with perfect

tests can also be interpreted as a policy for the k-out-of-n testing problem with imperfect tests

(assuming that K0 and K1 exist). The generalized testing problem with k0 + k1 = n + 1

is equivalent with classic (perfect) k-out-of-n testing, and so is polynomially solvable by the

algorithm of Chang et al. described in Section 5.2.1. Notice that in this case the system is never

in the inconclusive state. The following theorem contains a generalization of this observation.

We will not consider k0 + k1 ≤ n in this text because this situation exhibits similar ambiguities

as those mentioned for the case K0 +K1 ≤ n in Section 4.2.

Theorem 2. The (k0, k1)-out-of-n testing problem with perfect tests is polynomially solvable

when k0 + k1 ≥ n+ 1. An optimal policy can be stored in O(n2) space.

The idea of the proof of Theorem 2 is to show that the (k0, k1)-out-of-n testing problem

reduces to the classic k-out-of-n testing problem. In the reduction (see the proof for details)

one adds k0 + k1−n− 1 dummy components to the original n components. By construction, in

any optimal policy, the dummy components are only tested after all original components. By

removing the dummy components from such policies, a policy for the original (k0, k1)-out-of-n

testing problem is obtained. Such a policy is also a feasible solution to the equivalent k-out-of-n

testing problem with imperfect tests. We refer to a policy for the generalized testing problem

that is obtained by removing the dummy components from a BW policy as a generalized block-

walking (GBW) policy. We also use the name GBW policy for the corresponding policy for the

equivalent imperfect testing problem.

The following result ensues directly from Proposition 3, Lemma 8, Theorem 2 and the

previous discussion.

Corollary 3. Consider the imperfect k-out-of-n testing problem as defined in Section 3 and

assume that K0 and K1 both exist. If ε0+ε1 < 1 and T > 50%, then the problem is polynomially

solvable. An optimal GBW policy can be stored in O(n2) space.

23

Algorithm 2 Optimal algorithm for the k-out-of-n testing problem with imperfect tests

1: For each component i, compute χi via Equation (2);
2: Compute K1 and K0 by Algorithm 1;
3: if K1 and K0 do not exist then
4: Return (every policy is always inconclusive);
5: else if K0 does not exist then
6: Test the components in non-decreasing order of ci/χi until either K1 negative test out-

comes are observed (in which case the system works with confidence T), or all components
are tested (in which case testing is inconclusive);

7: else if K1 does not exist then
8: Test the components in non-decreasing order of ci/(1− χi) until either K0 positive test

outcomes are observed (in which case the system fails with confidence T), or all components
are tested (in which case testing is inconclusive);

9: else
10: Solve the (K0,K1)-out-of-n testing problem for perfect tests with value χi as the prob-

ability that component i works and ci as its testing cost;
11: end if

3

4 4

5 15 5

3

1

4 4

1 1

5 5

1

5 5

1 1

2

1 1 1 11 1 1 5F S

F - F - - - F - - - - - - S F - - - - - - S - - - S - S

Figure 3: Another globally optimal policy for the example instance in Section 3.3

An overview of the optimal algorithm is presented in the pseudo-code of Algorithm 2, assuming

ε0 + ε1 < 1 and T > 50%.

The class of GBW policies combines the advantages of dominant and of elementary policies,

namely global optimality (Lemma 1) and compact representation (polynomial in n). We note

that the class of GBW policies is a subset of the class of dominant policies, but the reverse is

not true. For the example instance, the dominant policy depicted in Figure 1 is not a GBW

policy. Figure 3 gives another globally optimal dominant policy that does belong to the GBW

class, and its compact representation is shown in Figure 4. As before, the bottom end points

of the edges in the grid are labeled by one of the three symbols S, F and −, which indicate the

system is working, not working or the diagnosis is inconclusive, respectively (for the specified

confidence threshold).

24

2

3

4

3

4

(4, 4)

(5, 5) (5, 5)

(1, 1)

F

F S

S

(1, 1)

5

(1, 5)

1

- -

Figure 4: The GBW representation of the globally optimal dominant policy in Figure 3

5.2.3 Counterexample for global optimality of elementary policies

Elementary policies have the benefit of compact representation, but they may ‘miss’ the global

optimum. For the example instance of Section 3.3 with T = 95%, ε1 = 10% and ε0 = 5%, we

have K0 = K1 = 4 by Equations (10) and (11). The globally optimal GBW policy depicted in

Figure 4 has expected total costs 4.875−0.25δ, while the optimal elementary policy characterized

by list (1, 2, 3, 4, 5) has expected costs 4.875, which is strictly higher than the global optimum.

6 Summary and outlook on future work

In this article, we have studied the problem of diagnosing k-out-of-n systems when the tests are

imperfect. When positive and negative predictive values are the same for all components and

with reasonable restrictions on the values of the parameters, this problem can be transformed

into a generalized testing problem with perfect tests. We describe a polynomial-time algorithm

for the generalized testing problem with perfect tests, which implies that the k-out-of-n test

sequencing problem with imperfect tests is also polynomial (again given specific assumptions

on the parameters). We examine different policy classes for the imperfect testing problem,

namely the class of dominant policies, of elementary policies and of GBW policies. The class

of dominant policies always contains a global optimum, while elementary policies are compact

in representation (polynomial in the number of components). GBW policies have the merits of

both global optimality and of compactness.

For further research, it may be interesting to take retesting into consideration: finished

products that do not pass the quality inspection (they have a positive test outcome), for instance,

may be retested to reduce the scrapping cost. Accepted components may also be retested to

improve outgoing quality. More generally, performing a component test more than once will

25

allow the tester to obtain more information about the system under study. This option was not

explored in this article because it requires additional modeling assumptions. A second option for

further work to pursue is a different interpretation of imperfect testing, in which the outcome

of a particular test might also be unknown or indeterminate instead of simply wrong. This

setting has already received some attention in recent literature, see for instance Balakrishnan

and Semmelbauer (1999).

Appendix

Proof of Lemma 1: Consider the BDT of a globally optimal policy Π∗ and suppose that

there are two vertices u1 and u2 in the tree that have the same tested component set (as in the

definition of dominant policies) but with different subtrees rooted from u1 and u2, so that Π∗

is not dominant. By replacing u1 together with its subtree by u2 together with its subtree we

obtain a different policy Π1, and similarly we can also replace u2 and subtree by u1 and subtree

to obtain Π2. The objective function value of either Π1 or Π2 will be at most as high as that

of Π∗. By retaining the best policy of either Π1 or Π2 and applying similar changes until a

dominant policy is obtained, we arrive at a dominant globally optimal policy. The confidence

threshold will also be reached in exactly the same leaf nodes because the confidence depends

only on the number of conducted tests and the number of positive outcomes (see the discussion

in Section 4.2).

Proof of Lemma 2: There are t components whose outcomes are negative and (r − t) com-

ponents with positive outcomes. We first focus on the case g ≥ t: there are at least as many

components (g) working as there were negative observations, so at least g− t tests gave a wrong

outcome. Therefore,

Q̇(g; t, r) = Pr{g components working | t negative outcomes, r tested }

=

min{r−g;t}∑
l=0

Pr{g − t+ l false positive, l false negative | t negative, r − t positive }

=

min{r−g;t}∑
l=0

Pr{g − t+ l false positive | r − t positive } · Pr{l false negative | t negative }.

The summation index l represents the number of incorrect negative outcomes, which cannot be

more than the total number t of negative outcomes, and it can also not exceed the number r−g of

26

failing components. Based on our definitions, each positive outcome is actually an independent

Bernoulli trial with probability ε0 of being a false positive, and so the total number of false

positive observations out of (r − t) follows a Binomial distribution. Similarly, the number of

false negative observations is Binomial with t experiments and probability ε1. Consequently,

Pr{g − t+ l false positive | r − t positive } =

(
r − t

g − t+ l

)
εg−t+l0 (1− ε0)r−g−l

and

Pr{l false negative | t negative } =

(
t

l

)
εl1(1− ε1)t−l.

This leads to the first term in Equation (9).

We now turn to the case g < t, where there are at least t − g false negative outcomes. In

line with the derivation above, we obtain

Q̇(g; t, r) =

min{g;r−t}∑
l=0

Pr{l false positive | r − t positive }·Pr{t− g + l false negative | t negative },

where the counter l in the summation now represents the number of false positive outcomes.

Proof of Lemma 3: We wish to establish that θ1(r+1) ≥ θ1(r) for 0 ≤ r ≤ n−1. If 0 ≤ r < k

then θ1(r) = 0, so θ1(r + 1) ≥ θ1(r) is always true. If k ≤ r ≤ n − 1, then using Equation (7)

we have

θ1(r + 1) =
r+1∑
w=k

Q(w, r + 1).

Substituting Q(w, r + 1) by Q(w, r) and Q(w − 1, r) according to Equation (6), we obtain

θ1(r + 1) =

r+1∑
w=k

Q(w, r)(xsr+1ε1 + (1− xsr+1)(1− ε0))

+

r+1∑
w=k

Q(w − 1, r)(xsr+1(1− ε1) + (1− xsr+1)ε0).

Taking Q(r+ 1, r) and Q(k− 1, r) out of the first and second summation, respectively, we have

θ1(r + 1) = Q(r + 1, r)(xsr+1
ε1 + (1− xsr+1

)(1− ε0)) +

r∑
w=k

Q(w, r)(xsr+1
ε1 + (1− xsr+1

)(1− ε0))

+Q(k − 1, r)(xsr+1(1− ε1) + (1− xsr+1)ε0) +

r∑
w=k

Q(w, r)(xsr+1(1− ε1) + (1− xsr+1)ε0).

27

With Q(r + 1, r) = 0, this reduces to

θ1(r + 1) = Q(k − 1, r)(xsr+1(1− ε1) + (1− xsr+1)ε0) +
r∑

w=k

Q(w, r)

= Q(k − 1, r)(xsr+1(1− ε1) + (1− xsr+1)ε0) + θ1(r) (12)

≥ θ1(r).

We conclude that θ1(r) increases with r.

Via analogous reasoning, we infer that

θ0(r + 1) = θ0(r) +Q(n− k, r)(xsr+1ε1 + (1− xsr+1)(1− ε0)). (13)

From this, the result for θ0 follows.

Proof of Lemma 4: Using Equations (7) and (8) and Proposition 1, we have

θ1(r; t) + θ0(r; t) =
r∑

g=k

Q̇(g; t, r) +

(k−1)+(r−n)∑
g=0

Q̇(g; t, r).

It then follows that

θ1(r; t) + θ0(r; t) ≤
n∑
g=0

Q̇(g; t, r) ≤
n∑
g=0

Q̇(g; t, n) = 1.

The first inequality holds because r ≤ n and so the summation index g does not necessarily take

all values in {0, 1, 2, . . . , n}. The second inequality follows from Proposition 1 and Lemma 3. It

is easy to verify that when r = n (all tests are applied), θ1(r; t) + θ0(r; t) = 1 holds regardless

of the value of t.

Proof of Lemma 5: It suffices to prove that θ1(r; t) ≤ θ1(r; t+ 1) holds when ε1 + ε0 < 1 and

0 ≤ t < r. Let x be any (r−1)-dimensional outcome vector with
∑r−1

i=1 xi = t. We construct two

new vectors x′ = (x, 0) and x′′ = (x, 1) and a schedule s = (1, 2, . . . , r−1) and s′ = (1, 2, . . . , r).

From Eq. (12) and with explicit mention of the arguments of θ1 and Q as in Sections 3.3

and 4.1, we have

θ1(r,x
′, s′) = Q(x,s)(k − 1, r − 1)ε0 + θ1(r − 1,x, s)

28

and

θ1(r,x
′′, s′′) = Q(x,s)(k − 1, r − 1)(1− ε1) + θ1(r − 1,x, s).

Since ε0 < 1−ε1, we have θ1(r,x
′, s′) ≤ θ1(r,x′′, s′′). Using the redefinition of θ1 in the discussion

of Proposition 1, this implies that θ1(r; t) ≤ θ1(r; t+ 1).

Proof of Lemma 6: Analogous to the proof of Lemma 5, based on Eq. (13) instead of (12).

Proof of Lemma 7: If K1 = 0 then θ1(n; 0) ≥ T , and θ0(n; 0) = 1 − θ1(n; 0) ≤ 1 − T . Since

T > 0.5, it holds that 1− T < T ; therefore θ0(n; 0) < T , and so K0 does not exist.

The same reasoning can be set up for the case where K0 = 0.

Proof of Theorem 1: We provide the proof for K1, the result for K0 can be verified analo-

gously. In the first paragraph we show the dominance result for K1 and in the second paragraph

we show that it is tight.

Consider a sequence of tests of all n components, and for each r ≤ n let K(r) denote the

number of negative test outcomes obtained after the first r tests. Clearly, K(r) is non-decreasing

with r. Let r∗ be the lowest number of conducted tests such that K(r∗) = K1 (we assume that

r∗ exists). If θ1(r
∗;K1) ≥ T then the system works with confidence level at least T , in which

case it is a dominant decision to stop testing after r∗ tests with K1 negative outcomes. Now

assume that θ1(r
∗;K1) < T . Then, by the definition of K1 and by Lemma 5, it follows that

the threshold is still reached after performing all n tests, whatever the outcome of the tests

after test r∗, because θ1(n;K(n)) ≥ θ1(n;K1) ≥ T . Therefore, it is a dominant decision to stop

the testing procedure after r∗ tests since the threshold for a working system will eventually be

reached anyway. It remains to show that the threshold will not be reached earlier for θ0 (from

Corollary 1 we already know that the threshold cannot be reached simultaneously). To see this,

let r̄ be the smallest number of tests with θ1(r̄;K(r̄)) ≥ T (with r∗ < r̄ ≤ n). Then for any

r < r̄, it holds that θ0(r;K(r)) ≤ θ0(r̄;K(r̄)) ≤ 1 − θ1(r̄;K(r̄)) ≤ 1 − T < T , where the first

two inequalities follow from Lemma 3 and Lemma 4, respectively.

To show that K1 is tight, assume by contradiction that the threshold is reached before

observing K1 negative outcomes. Then, with the same notation as in the previous paragraph,

θ1(r
′;K(r′)) ≥ T for some test r′ with r′ < r∗ ≤ n and K(r′) < K1. But by Lemma 3 and the

definition of K1, we find that θ1(r
′;K(r′)) ≤ θ1(n;K(r′)) < T , which is not possible.

29

Proof of Lemma 8: If K1 and K0 both exist then both values are greater than zero (Lemma 7),

and by definition

θ1(n;K1) ≥ T and θ0(n;n−K0) ≥ T.

Suppose (reductio ad absurdum) that K1+K0 ≤ n; then K1 ≤ n−K0, implying θ1(n;n−K0) ≥

θ1(n;K1) ≥ T . Then θ0(n;n−K0) + θ1(n;n−K0) ≥ 2T > 1 since T > 0.5, which contradicts

Lemma 4.

Proof of Theorem 2: For an arbitrary instance of generalized testing with k0 + k1 ≥ n + 1,

we construct an instance of classic k-out-of-n′ testing, as follows. The component set includes

all components of the generalized instance but we add (k0 + k1 − n − 1) ≥ 0 identical dummy

components to the system, resulting in a system with n′ = k0 +k1− 1 components in total, and

with parameter k = k1. The constructed k-out-of-n′ system works if at least k = k1 components

work and fails if at least n′−k+1 = k0 components fail. We wish to make sure that the costs of

the dummy components are very high such that the dummy components have the highest ratios

of both c/p and c/q; each cost can for instance be chosen as max{cn/pn; cσ(n)/qσ(n)} and the

probability of success as 0.5. In this way, the dummy components will not be tested until all the

ordinary components (inherited from the generalized testing instance) have been inspected, and

they will always be sequenced last in the diagnosis procedure. Therefore, the probability that

dummy components will be tested does not depend on the sequence of the ordinary components,

such that the contribution of testing all dummy components to the objective function can be

calculated independently and remains the same in any optimal policy.

We apply the algorithm of Chang et al. (1990) to thus constructed k1-out-of-(k0 + k1 − 1)

system to obtain an optimal BW policy. Removing the dummy components from this optimal

policy then leads to an optimal policy for the original generalized testing instance, where the

(k0, k1)-out-of-n system is classified as ‘inconclusive’ in exactly those scenarios that need one or

more dummy components to be inspected after all n original components were inspected in the

optimal BW policy of the constructed k1-out-of-(k0 + k1 − 1) system.

References

Ahlswede, R. and Wegener, I. (1987). Search Problems. Wiley-Interscience, New York.

30

Akobeng, A. (2006). Understanding diagnostic tests 2: Likelihood ratios, pre- and post-test

probabilities and their use in clinical practice. Acta Paediatrica, 96:487–491.

Altman, D. and Bland, J. (1994a). Statistics notes: Diagnostic tests 1: Sensitivity and speci-

ficity. British Medical Journal, 308:1552.

Altman, D. and Bland, J. (1994b). Statistics notes: Diagnostic tests 2: Predictive values.

British Medical Journal, 309:102.

Amari, S. V., Pham, H., and Dill, G. (2004). Optimal design of k-out-of-n:G subsystems

subjected to imperfect fault-coverage. IEEE Transactions on Reliability, 53(4):567–575.

Arnold, T. (1973). The concept of coverage and its effect on the reliability model of a repairable

system. IEEE Transactions on Computers, 22:251–254.

Balakrishnan, A. and Semmelbauer, T. (1999). Circuit diagnosis support system for electronics

asssembly operations. Decision Support Systems, 25(4):251–269.

Bellman, R. (1957). Dynamic Programming. Princeton University Press, Princeton.

Ben-Dov, Y. (1981). Optimal testing procedures for special structures of coherent systems.

Management Science, 27(12):1410–1420.

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate – a new and

powerful approach to multiple testing. Journal of the Royal Statistical Society B, 57:289–300.

Benjamini, Y. and Hochberg, Y. (2000). On the adaptive control of the false discovery rate in

multiple testing with independent statistics. Journal of Educational and Behavioral Statistics,

25(1):60–83.

Boros, E. and Ünlüyurt, T. (1999). Diagnosing double regular systems. Annals of Mathematics

and Artificial Intelligence, 26:171–191.

Butterworth, R. (1972). Some reliability fault-testing models. Operations Research, 20(2):335–

343.

Chang, M.-F., Shi, W., and Fuchs, W. (1990). Optimal diagnosis procedures for k-out-of-n

structures. IEEE Transactions on Computers, 39(4):559–564.

31

Cramer, E. and Kamps, U. (1996). Sequential order statistics and k-out-of-n systems with se-

quentially adjusted failure rates. Annals of the Institute of Statistical Mathematics, 48(3):535–

549.

De Reyck, B. and Leus, R. (2008). R&D-project scheduling when activities may fail. IIE

Transactions, 40(4):367–384.

Ding, J. and Gong, L. (2008). The effect of testing equipment shift on optimal decisions in a

repetitive testing process. European Journal of Operational Research, 186(1):330–350.

Ding, J., Greenberg, B., and Matsuo, H. (1998). Repetitive testing strategies when the testing

process is imperfect. Management Science, 44(10):1367–1378.

Ding, Y., Zuo, M. J., Lisnianski, A., and Li, W. (2010). A framework for reliability approxima-

tion of multi-state weighted k-out-of-n systems. IEEE Transactions on Reliability, 59(2):297–

308.

Eryilmaz, S. (2013). On reliability analysis of a k-out-of-n system with components having

random weights. Reliability Engineering and System Safety, 109:41–44.

Gluss, B. (1959). An optimum policy for detecting a fault in a complex system. Operations

Research, 7(4):468–477.

Greenberg, B. and Stokes, S. (1995). Repetitive testing in the presence of inspection errors.

Technometrics, 37:102–111.

Hellerstein, L., Özkan, O., and Sellie, L. (2011). Max-throughput for (conservative) k-of-n

testing. In Algorithms and Computation, volume 7074, pages 703–713. Springer Berlin Hei-

delberg.

Igelmund, G. and Radermacher, F. (1983). Preselective strategies for the optimization of

stochastic project networks under resource constraints. Networks, 13:1–28.

Kelly, F. P. (1982). A remark on search and sequencing problems. Mathematics of Operations

Research, 7(1):154–157.

Luo, X., Dong, M., and Huang, Y. (2006). On distributed fault-tolerant detection in wireless

sensor networks. IEEE Transactions on Computers, 55(1):58–70.

32

Marseguerra, M., Zio, E., Podofillini, L., and Coit, D. (2005). Optimal design of reliable network

systems in presence of uncertainty. IEEE Transactions on Reliability, 54(2):243–253.

Nachlas, J., Loney, S., and Binney, B. (1990). Diagnostic-strategy selection for series systems.

IEEE Transactions on Reliability, 39(3):273–280.

Pinedo, M. (2012). Scheduling. Theory, Algorithms, and Systems. Springer.

Quinino, R., Colin, E., and Ho, L. (2010). Diagnostic errors and repetitive sequential classifi-

cations in on-line process control by attributes. European Journal of Operational Research,

201(1):231–238.

Raghavan, V., Shakeri, M., and Pattipati, K. (1999). Test sequencing algorithms with unreliable

tests. IEEE Transactions on Systems, Man and Cybernetics - Part A: Systems and Humans,

29(4):347–357.

Raouf, A., Jain, J., and Sathe, P. (1983). A cost-minimization model for multicharacteristic

component inspection. IIE Transactions, 15:187–194.

Ruan, S., Y. Zhou, F. Y., Pattipati, K. R., Willett, P., and Patterson-Hine, A. (2009). Dy-

namic multiple-fault diagnosis with imperfect tests. IEEE Transactions on Systems, Man

and Cybernetics - Part A: Systems and Humans, 39(6):1224–1236.

Salloum, S. (1979). Optimal testing algorithms for symmetric coherent systems. PhD thesis,

University of Southern California.

Salloum, S. and Breuer, M. (1997). Fast optimal diagnosis procedures for k-out-of-n:G systems.

IEEE Transactions on Reliability, 46(2):283–290.

Sarma, A. and Tufts, D. (2001). Robust adaptive threshold for control of false alarms. IEEE

Signal Processing Letters, 8(9):261–263.

Schmidt, J. W. and Bennett, G. K. (1972). Economic multiattribute acceptance sample. AIIE

Transactions, 4(3):194–199.

Shakeri, M., Raghavan, V., Pattipati, K. R., and Patterson-Hine, A. (2000). Sequential testing

algorithms for multiple fault diagnosis. IEEE Transactions on Systems, Man, and Cybernetics

- Part A: Systems and Humans, 30(1):1–14.

33

Song, N. and Teneketzis, D. (2004). Discrete search with multiple sensors. Mathematical Methods

of Operations Research, 60(1):1–13.

Stone, L., Stanshine, J., and Persinger, C. (1972). Optimal search in the presence of Poisson-

distributed false targets. SIAM Journal on Applied Mathematics, 23(1):6–27.

Tang, K. and Tang, J. (1994). Design of screening procedures: A review. Journal of Quality

Technology, 26(3):209–226.

Tzimerman, A. and Herer, Y. T. (2009). Off-line inspections under inspection errors. IIE

Transactions, 41:626–641.

Ünlüyurt, T. (2004). Sequential testing of complex systems: A review. Discrete Applied Math-

ematics, 142:189–205.

Wagner, B. and Davis, D. (2001). Discrete sequential search with group activities. Decision

Sciences, 32(4):557–573.

Wald, A. (1945). Sequential tests of statistical hypotheses. The Annals of Mathematical Statis-

tics, 16(2):117–186.

Wei, W., Coolen, K., and Leus, R. (2013). Sequential testing policies for complex systems under

precedence constraints. Expert Systems with Applications, 40:611–620.

Wu, J. and Chen, R. (1994). An algorithm for computing the reliability of weighted-k-out-of-n

systems. IEEE Transactions on Reliability, 43(2):3276–328.

34

FACULTY OF ECONOMICS AND BUSINESS
Naamsestraat 69 bus 3500

3000 LEUVEN, BELGIË
tel. + 32 16 32 66 12
fax + 32 16 32 67 91

info@econ.kuleuven.be
www.econ.kuleuven.be

	KBI_1508
	imperfect testing - WP 2015

