
MAGIK: Managing Completeness of Data

Ognjen Savković, Mirza Paramita, Sergey Paramonov, and Werner Nutt
Free University of Bozen-Bolzano

Piazza Domenicani 3, I-39100 Bolzano, Italy
{savkovic,nutt}@inf.unibz.it, {mparamita, sparamonov}@stud-inf.unibz.it

ABSTRACT
MAGIK demonstrates how to use meta-information about the com-
pleteness of a database to assess the quality of the answers returned
by a query. The system holds so-called table-completeness (TC)
statements, by which one can express that a table is partially com-
plete, that is, it contains all facts about some aspect of the domain.

Given a query, MAGIK determines from such meta-information
whether the database contains sufficient data for the query answer
to be complete. If, according to the TC statements, the database
content is not sufficient for a complete answer, MAGIK explains
which further TC statements are needed to guarantee completeness.

MAGIK extends and complements theoretical work on model-
ing and reasoning about data completeness by providing the first
implementation of a reasoner. The reasoner operates by translat-
ing completeness reasoning tasks into logic programs, which are
executed by an answer set engine.

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Administration—Repos-
itory, Data warehouse, Security, integrity, and protection

General Terms
Algorithms, Management

Keywords
Data Quality, Data Completeness, Answer Set Programming

1. INTRODUCTION
Completeness is a central aspect of data quality which only re-

cently has received increased attention in research (cf. [1, 2]) In
particular, there are no established techniques and systems to man-
age the completeness of data sets up to now.

Recently, Razniewski and Nutt revisited the problem of data com-
pleteness. The work was motivated by a project to create a school
information system that can give guarantees about the complete-
ness of its data—an application that shares characteristics with other
applications in data integration and decision support [6]. In this
scenario, a database instanceD may be partially complete in that it
contains, e.g., all pupils of classes 1a and 1b, but generally incom-
plete because it contains only some of the pupils of other classes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Building upon previous work by Motro [5] and Levy [4], they
developed a framework to reason about the question whether a gen-
erally incomplete database D contains sufficient information to re-
turn a complete answer for a specific query Q. In this framework,
one can express which parts of which tables are complete, using
so-called table-completeness (TC) statements (also called “local
completeness statements” in [4]). For instance, one can write TC
statements which say that the database instance contains “all pupils
of class 1a” (TC1a), “all pupils of class 1b” (TC1b), “all pupils in
classes of the science branch” (TCsc) or the “humanities branch”
(TChum) of a school, respectively. We expect that in an applica-
tion, TC statements will be generated automatically. For instance,
a workflow engine could create a statement after concluding the
task of registering the pupils of a class.

Given a collection of TC statements that hold over an instance
D of our school database, we can ask whether they entail that for
a certain query Q the set of answers Q(D) is complete, that is,
whetherQ(D) contains all answer records that one would expect if
D were complete. Examples of queries are the ones for “all pupils
in a class of level 1” (Qlev1), or “all pupils of the school” (Qsch).

To find out whether a set of TC-statements implies completeness
of a query is called TC-QC reasoning. In [6], the authors assessed
the complexity of TC-QC reasoning for several types of TC state-
ments and queries, under both set and bag semantics.

They did not show, however, how to implement reasoners for
these problems. Neither did they take into account the integrity
constraints that hold over a database, although in many cases query
completeness is only implied by a set of TC-statements together
with key, foreign key (FK), or finite domain constraints (FD). For
instance, in general completeness of the query Qlev1 does not follow
from TC1a and TC1b alone, but it does if we know in addition that
the only code letters for a class are “a” and “b”, which is a finite
domain constraint. As another example, consider query Qsch and
the two statements TCsc and TChum. Then completeness of Qsch
does not follow from these two TC statements alone, but it does if
in addition there is the FK constraint that every pupil belongs to a
class in some branch and if there is the FD constraint that science
and humanities are the only branches.

With the MAGIK demonstrator for completeness reasoning, we
have made the following contributions:
• We have realized the first system that can check whether a

set of table completeness statements C entails completeness
of a query Q, as defined in [4, 6], both under set and bag
semantics, provided C and Q are expressed by conjunctive
queries without built-in predicates.
• We have gone beyond [6], by enabling MAGIK to take into

account finite domain and (acyclic) foreign key constraints.
• We have developed a technique to leverage answer-set pro-

gramming for completeness reasoning. We translate a TC-
QC inference task into a logic program whose answer sets
have to have a certain property for the inference to be valid.
• We have also developed a component for explanations and

suggestions.
Section 2 presents a possible demo session of MAGIK, Section 3

sketches the translation of completeness reasoning to answer set
programming, and Section 4 gives an overview of the architecture.

2. SAMPLE DEMONSTRATION
MAGIK can reason about queries posed over a fixed schema with

key, FK, and FD constraints. Schema and constraints can be loaded
from an existing database or can be manually edited. One interacts
with MAGIK via a web interface.

This section shows by way of examples which kinds of reason-
ing problems MAGIK solves and how one can interact with the sys-
tem. We assume that we have defined the schema of a toy school
database with the relations

pupil(name,level,code)

class(level,code,branch)

learns(name,lang).

Here, pupil(fred, 1, a) means that Fred is a pupil in class 1a;
class(1, a, sci) means class 1a belongs to the science branch;
and learns(fred, french) that Fred learns French. Underlined
attributes make up the primary keys and foreign key constraints
hold as one would expect.

Figure 2 is a screenshot of the main page of the MAGIK demo,
where we have loaded the schema above as a virtual schema, that is,
as a manually edited schema without connection to a database. The
page contains four main components: (1) Foreign key constraints,
(2) Finite domain constraints, (3) Table completeness statements,
and (4) Queries. For each component one can create new entries
and modify existing ones. To specify a reasoning task, one acti-
vates constraints, TC statements, and a query by clicking. Below,
we discuss four examples, where MAGIK analyzes a query with
respect to some constraints and TC statements.
Query Q1a: “Select the names of all pupils in class 1a”:

SELECT p.name
FROM pupil as p
WHERE p.level = ’1’ AND p.code = ’a’

Suppose, we activate no constraints and no TC statements, only
query Q1a. By pushing “Run Query”, we call the reasoner, which
replies “Query is not complete”. It analyzes, which parts of the
database that are needed for the query are incomplete, suggests to
supply the necessary data, and to confirm this by adding a TC state-
ment. TC statements are written in a datalog-like syntax. Syntac-
tically, a statement for a table R consists of two parts: an R-atom,
representing a selection on R and, possibly, a condition, represent-
ing a semijoin with other tables. In the current example, the pro-
posed statement has the form

Table: pupil(P_name,1,a) Condition:

The atom pupil(P_name,1,a), where P_name is a variable and
1, a are constants, represents all records satisfying the selection
σlevel=1,code=a(pupil). We see that, unsurprisingly, MAGIK sug-
gests the statement TC1a from above, or, in words, it proposes to
complete the pupils of class 1a.
Query Qlev1: “Select the names of all pupils at level 1,” obtained
from Q1a by dropping the condition “p.code = ’a’”. We also
activate the FD constraint

pupil[code] ∈ {a, b},

Figure 1: Screenshot of the MAGIK demonstrator

which states that possible codes for classes are only a and b. Fi-
nally, we activate TC statement TC1a. Clearly, Qlev1 cannot be an-
swered completely because information about class 1a is complete,
but not about class 1b. Exploiting the FD constraints, MAGIK is
able to deduce this and suggests

Table: pupil(P_name,1,b) Condition:

that is, to complete the pupils of class 1b.
Query Qfr: “Select the pupils of the science branch learning French”:

SELECT p.name
FROM pupil AS p, learns AS l, class AS c
WHERE p.level = c.level AND p.code = c.code AND

c.branch = ’science’ AND
l.name = p.name AND l.lang = ’french’

This example illustrates the role of foreign keys. We assume that
our database is complete for all learners of French (TCfr):

Table: learns(Name,french) Condition:

and that the FKs from learns to pupil and from pupil to class
are enforced in our database. Then MAGIK reasons that for every
learner of French, there are a corresponding pupil record and a
corresponding class record. Thus, one can check for each learner
of French whether they attend a class of the science branch, so that
the query can be answered completely.
Query Qlfr: “How many languages does each learner of French
learn?”:

SELECT l1.Name
FROM learns AS l1, learns AS l2
WHERE l1.Name = l2.Name AND

l1.Lang = ’french’

Since bag semantics is the default in SQL, the query returns each
name of a learner of French as many times as there are learns tu-
ples with that name. If we only activate TCfr, that is, if we suppose

that we are complete for the French learners, but not necessarily for
other languages, then MAGIK requests

Table: learns(Tl2_name,Tl2_lang)
Condition: learns(Tl2_name,french),

that is, to complete the learns tuples for the names of those pupils
who learn French (note, the request is not for all tuples, but only
those whose Tl2_name variable satisfies the condition). If we add
the keyword DISTINCT, that is, indicate that the query is to be eval-
uated under set semantics, then MAGIK finds out correctly that the
query is complete, because tuple l2 in the query is superfluous.

3. TRANSLATION INTO ANSWER SET
PROGRAMMING

To check completeness of a query, MAGIK generates a disjunc-
tive logic program, which is executed by the DLV answer set engine
[3]. In essence, the program contains a protoypical complete data-
base (the ideal database), where the query returns an answer. This
ideal database is extended to satisfy FK and instantiated to satisfy
FD constraints. The program then constructs for each instantiation
a minimal real database, which contains just the necessary data that
it is required to contain according to the TC statements. Finally,
it tests whether the query also returns an answer over all the new
real databases. If it does, then MAGIK replies “Query complete.”
If not, we generate an explanation out of the comparison between
ideal and real database.

In our translation, we exploit various features of disjunctive logic
programs and answer set programming (ASP): (1) an FK constraint
is translated into a non-monotonic rule with a Skolem function,
which generates a referenced tuple if none exists; (2) an FD con-
straint is translated into a disjunctive rule, which nondeterministi-
cally instantiates constrained variables with FD values; (3) cautious
reasoning [3] is applied to check whether the query is satisfied by
all resulting real databases.

Our translation creates always programs that are just as complex
as needed: for classes of reasoning problems that are in PTIME, in
NP, or in ΠP

2 , the resulting ASP programs have the same difficulty.

4. SYSTEM ARCHITECTURE,
FUNCTIONALITIES AND USAGE

System architecture. MAGIK is a web application that consists
of three layers (Figure 2). The web interface layer is implemented
using Java Server Pages that are executed on an Apache-Tomcat
Web server. The reasoning layer is the core part of the system. It
encodes the the problem into a logic program and passes it on to
the DLV answer set engine [3]. Based on the returned answers,
it suggests the minimal set of TC-statements that are missing to
guarantee query completeness. Lastly, the data layer manages TC-
statements, queries and schema constraints. It can also connect to
a database, extract schema and constraints, and evaluate the an-
alyzed query. Currently, MAGIK is set up to communicate with
PostgreSQL databases.

System functionalities. MAGIK can be accessed in two modes.
The database mode illustrates a scenario where a completeness
manager is added to an existing database. Here, MAGIK imports
table declarations and foreign keys from the database catalog. In
the virtual mode one can define arbitrary new schemas with keys
and foreign keys for testing purposes. In both modes, FD con-
straints, TC statements and queries are created, edited, or deleted
by the user. Currently, MAGIK accepts SQL select-project-join
queries where selections are equality tests. Moreover, queries can

Figure 2: Architecture of the MAGIK demonstrator
Interface	
 layer	
 Reasoning	
 layer	

Database	
 DLV	
 engine	

Analyzing	

returned	

answer	
 set	

programs	

Input	

Output	

MAGIK	

business	
 logic	

TC-­‐QC	

Encoder	

	
 	

TC-­‐statements	

Schema	
 constraints	

SQL	
 query	

Minimal	
 set	
 of	

incomplete	
 tables	

Query	
 answer	
 and	

query	
 completeness	

Data	
 layer	

SQL	
 Queries,	

Schemas	
 constr.,	

and	
 TC-­‐statements	

as	
 Java	
 Objects	

St
or
e/
Lo
ad
	
 Ja

va
	
 O
bj
.	

Ev
al
ua
te
	
 S
Q
L	

qu

er
y	

Re
ad
	
 D
B	

sc
he

m
a	

Output	
 interface	

Input	
 	
 interface	

have the key word DISTINCT or grouping with the aggregate func-
tion count(*). MAGIK analyzes a query with respect to com-
pleteness and, in database mode, also evaluates the query.
System usage. After starting the demo the user is located on the
schema selection page where several virtual and database schemas
are offered. Then he chooses the mode and a schema and is led
to the main page where he can create, edit, and activate the input
parameters: FK constraints, FD constraints, TC statements and a
query. When he runs the query, the result field appears and dis-
plays a “completeness certificate” for the query. Depending of the
mode, also the query answer is printed. In case the query is not
found to be complete, the system proposes a minimal set of TC-
statements that are needed to guarantee completeness of the query.
Those TC-statements can be added to the existing statements by
clicking. Finally, one can inspect the answer set program that en-
codes the reasoning problem.

5. CONCLUSION
With MAGIK, we show how one could build a completeness

management component for an information systems that collects
data coming from different sources and/or different business pro-
cesses and therefore is generally incomplete. MAGIK demonstrates
the key functionalities of a such a component: it would document
the content of an information system in terms of table complete-
ness (TC) statements and it would analyze whether a query can be
answered completely, based on the TC statements and the integrity
constraints that the database satisfies. Such reasoning services have
been proposed in the literature and have independently been re-
quested by practitioners. MAGIK shows how such services can be
realized with an answer set engine and offers a platform to experi-
ment with them. The preview of the MAGIK demo is available at
http://magik-demo.inf.unibz.it/cikm2012.

6. REFERENCES
[1] W. Fan and F. Geerts. Relative information completeness. In

PODS, pages 97–106, 2009.
[2] W. Fan and F. Geerts. Capturing missing tuples and missing

values. In PODS, pages 169–178, 2010.
[3] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri,

and F. Scarcello. The dlv system for knowledge representation
and reasoning. ACM TOCL, 7(3):499–562, 2006.

[4] A. Levy. Obtaining complete answers from incomplete
databases. In Proc. VLDB, pages 402–412, 1996.

[5] A. Motro. Integrity = Validity + Completeness. ACM TODS,
14(4):480–502, 1989.

[6] S. Razniewski and W. Nutt. Completeness of queries over
incomplete databases. In VLDB, 2011.

http://magik-demo.inf.unibz.it/cikm2012

	Introduction
	Sample Demonstration
	Translation into Answer Set Programming
	System architecture, functionalities and usage
	Conclusion
	References

