
Sequential Minimal Optimization for SVM with Pinball Loss✩

Xiaolin Huanga,∗, Lei Shib, Johan A.K. Suykensa

aKU Leuven, Department of Electrical Engineering (ESAT-STADIUS), B-3001 Leuven, Belgium
bSchool of Mathematical Sciences, Fudan University, Shanghai, 200433, P.R. China

Abstract

To pursue the insensitivity to feature noise and the stability to re-sampling, a new type of support vector machine
(SVM) has been established via replacing the hinge loss in the classical SVM by the pinball loss and was hence called a
pin-SVM. Though a different loss function is used, pin-SVM has a similar structure as the classical SVM. Specifically, the
dual problem of pin-SVM is a quadratic programming problem with box constraints, for which the sequential minimal
optimization (SMO) technique is applicable. In this paper, we establish SMO algorithms for pin-SVM and its sparse
version. The numerical experiments on real-life data sets illustrate both the good performance of pin-SVMs and the
effectiveness of the established SMO methods.

Keywords: support vector machine, pinball loss, sequential minimal optimization

1. Introduction

Since proposed in [1] [2], the support vector machine
(SVM) has been widely applied and well studied, because
of its fundamental statistical property and good general-
ization capability. The basic idea of SVM is to maximize
the margin between two classes by minimizing the regu-
larization term. The margin is classically related to the
closest points of two sets, since the hinge loss is min-
imized. For a given sample set z = {xi, yi}

m
i=1, where

xi ∈ R
n, yi ∈ {−1, +1}, the SVM with the hinge loss (C-

SVM) in the primal space has the following form,

min
w,b

1

2
‖w‖2

2 + C

m∑

i=1

Lhinge

(
1 − yi(w

T φ(xi) + b)
)
, (1)

where φ(x) is a feature mapping, Lhinge(u) = max{0, u} is
the hinge loss, and C is the trade-off parameter between

✩This work was supported: • EU: The research leading to these
results has received funding from the European Research Coun-
cil under the European Union’s Seventh Framework Programme
(FP7/2007-2013) / ERC AdG A-DATADRIVE-B (290923). This
paper reflects only the authors’ views, the Union is not liable for any
use that may be made of the contained information. • Research
Council KUL: GOA/10/09 MaNet, CoE PFV/10/002 (OPTEC),
BIL12/11T; PhD/Postdoc grants • Flemish Government: ◦ FWO:
projects: G.0377.12 (Structured systems), G.088114N (Tensor based
data similarity); PhD/Postdoc grants ◦ IWT: projects: SBO POM
(100031); PhD/Postdoc grants ◦ iMinds Medical Information Tech-
nologies SBO 2014 • Belgian Federal Science Policy Office: IUAP
P7/19 (DYSCO, Dynamical systems, control and optimization, 2012-
2017). L. Shi is also supported by the National Natural Science Foun-
dation of China (11201079) and the Fundamental Research Funds for
the Central Universities of China (20520133238, 20520131169). Jo-
han Suykens is a professor at KU Leuven, Belgium.

∗Corresponding author.
Email addresses: huangxl06@mails.tsinghua.edu.cn (Xiaolin

Huang), leishi@fudan.edu.cn (Lei Shi),
johan.suykens@esat.kuleuven.be (Johan A.K. Suykens)

the margin width and misclassification loss. Since the dis-
tance between the closest points is easily affected by the
noise on feature xi, the classifier trained by C-SVM (1)
is sensitive to feature noise and unstable to re-sampling.
This phenomenon has been observed by many researchers
and some techniques have been designed, see, e.g., [3]–[7].
An attractive method for enhancing the stability to fea-
ture noise is to change the closest distance measurement to
the quantile distance. However, maximizing the quantile
distance is non-convex. The well-known ν-support vector
machine (ν-SVM, [8]) can be regarded as a convex ap-
proach for maximizing the quantile distance and has been
successfully applied. In ν-SVM, the margin between the
surfaces {x : yf(x) = ρ} is maximized. Minimizing the
hinge loss together with an additional term −νρ pushes ρ

to be the quantile value of yif(xi) and the quantile level
is controlled by ν. Recently, we established a new convex
method in [9] by extending the hinge loss in C-SVM to the
pinball loss. The pinball loss Lτ (u) is defined as

Lτ (u) =

{
u, u ≥ 0,

−τu, u < 0,

which can be regarded as a generalized ℓ1 loss. Particu-
larly, when τ = 0, the pinball loss Lτ (u) reduces to the
hinge loss. When a positive τ is used, minimizing the pin-
ball loss results in the quantile value. This link has been
well studied in quantile regression, see, e.g., [10] [11]. Mo-
tivated by this link, the pinball loss with a positive τ value
was applied in classification tasks and the related classifi-
cation method can be formulated as,

min
w,b

1

2
‖w‖2

2 + C

m∑

i=1

Lτ

(
1 − yi(w

T φ(xi) + b)
)
, (2)

Preprint submitted to Elsevier September 18, 2014



which is called a support vector machine with the pinball
loss (pin-SVM, [9]). Unlike ν-SVM, pin-SVM pushes the
surfaces that define the margin to quantile positions by
penalizing also the correctly classified sampling points.

In classification tasks, the pinball loss Lτ has been
proved to be calibrated, i.e., the minimizer of the pinball
loss has the same sign as Prob{y = +1|x} − Prob{y =
−1|x}. The preliminary experiments reported in [9] illus-
trate the stability to feature noise of pin-SVM. A model
called sparse pin-SVM has been established for enhancing
the sparseness. The sparsity is obtained by introducing
the ε-zone to the pinball loss, which results in the pinball
loss with an ε insensitive zone, denoted by Lε

τ (u):

Lε
τ (u) =






u − ε, u > ε,

0, − ε
τ
≤ u ≤ ε,

−τ(u + ε
τ
), u < − ε

τ
.

(3)

When a training point falls into the interval [− ε
τ
, ε], the

corresponding dual variable is zero. In Fig.1, we plot Lε
τ(u)

for several τ and ε values. When ε = 0, Lε
τ (u) reduces to

the pinball loss. Furthermore, if τ = 0, it reduces to the
hinge loss.

−2 −1.5 −1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

L
ǫ τ
(u

)

τ
=

0
,
ε

=
0

τ
=

0.3, ε
=

0

τ = 0.1, ε = 0

τ
=

0
.3

,
ε

=
0
.2

Figure 1: The plots of the pinball loss with an ε insensitive zone.
τ = 0, ε = 0 corresponds to the hinge loss and is displayed by the
solid line. When ε = 0, Lε

τ
(u) reduces to the pinball loss, as shown

by the dashed lines. The dotted line gives the case τ = 0.3, ε = 0.2.

With properly selected parameters, pin-SVMs can per-
form better than C-SVM. However, pin-SVMs currently
lack fast training algorithms, which is the target of this
paper. Generally, we will train pin-SVMs in the dual space
by sequential minimal optimization (SMO). SMO is one of
the most popular methods for solving SVMs in the dual
space. SMO is a kind of decomposition method and always
uses the smallest possible working set, which contains two
dual variables and can be updated very effectively. For
C-SVM, the corresponding SMO algorithms can be found
in [12]–[17]. The convergence behavior of SMO has been
also well studied in [18]–[22].

In the following, we will first investigate the dual prob-
lem of pin-SVM and establish a SMO method in Section 2.
Section 3 gives the SMO algorithm for sparse pin-SVM. Af-
ter that, we use the established SMO algorithms to train
pin-SVMs on some real-life problems in Section 4. The
numerical experiments confirm the good property of pin-
SVM with the proposed methods, which will be promising
tools in many applications, as summarized in Section 5.

2. Sequential Minimal Optimization for pin-SVM

2.1. Dual problem of pin-SVM

The dual problem of pin-SVM has been discussed in
[9]. In the following, we will first introduce the dual prob-
lem and then investigate the problem structure. In the
primal space, pin-SVM (2) can be written as the following
constrained quadratic programming (QP) problem,

min
w,b,ξ

1

2
wT w +

m∑

i=1

Ciξi

s.t. yi

[
wT φ(xi) + b

]
≥ 1 − ξi, i = 1, . . . , m, (4)

yi

[
wT φ(xi) + b

]
≤ 1 +

1

τ
ξi, i = 1, . . . , m,

where Ci could be different for different observations. The
value of Ci is the weight on the loss related to (xi, yi) and
one can consider many impacts when setting it. For ex-
ample, if (xi, yi) is an outlier or is heavily noise-polluted,
one should choose a small Ci. One noticeable situation is
the unbalanced problems, for which the numbers of posi-
tive and negative labels are not the same. In this case, we
prefer to the following typical setting,

Ci = C0, ∀i : yi = 1,

Ci =
#j:yj=−1
#j:yj=1 C0, ∀i : yi = −1,

(5)

where C0 > 0 is a user-defined constant. In this paper, we
always use this setting, which gives equal weights to both
classes. The algorithms proposed in the rest of the paper
also work for other parameter settings. One can choose
suitable Ci according to different applications and prior
knowledge.

We introduce the Lagrange multipliers αi, βi ≥ 0, which
correspond to the constraints in (4). These variables should
satisfy the following complementary slackness condition,

αi

(
1 − ξi − yi

[
wT φ(xi) + b

])
= 0,

i = 1, 2, . . . , m,

βi

(
yi

[
wT φ(xi) + b

]
−

1

τ
ξi − 1

)
= 0,

i = 1, 2, . . . , m.

Considering the Lagrangian of (4) and KKT condition, we
get the following dual problem for pin-SVM,

min
α,β

1

2

m∑

i=1

m∑

j=1

(αi − βi)yiKijyj(αj − βj)

−

m∑

i=1

(αi − βi)

s.t.

m∑

i=1

yi(αi − βi) = 0 (6)

αi +
1

τ
βi = Ci, i = 1, 2, . . . , m,

αi ≥ 0, βi ≥ 0, i = 1, 2, . . . , m,

2



where K corresponds to a positive definite kernel with
Kij = K(xi, xj) = φ(xi)

T φ(xj). After obtaining the so-
lution of (6), we use the sign of the following function to
do classification:

f(x) =

m∑

i=1

yi(αi − βi)K(x, xi) + b,

where b is computed according to the complementary slack-
ness conditions

yif(xi) = 1, ∀i ∈ {j : αj 6= 0, βj 6= 0}.

We further introduce λi = αi − βi and eliminate the
equality constraint αi + 1

τ
βi = Ci. Then the equivalent

formulation of (6) can be posed as

min
λ

F (λ) =
1

2

m∑

i=1

m∑

j=1

λiyiKijyjλj −

m∑

i=1

λi

s.t.

m∑

i=1

yiλi = 0, (7)

−τCi ≤ λi ≤ Ci, i = 1, 2, . . . , m.

We again observe the relationship between pin-SVM and
C-SVM in the dual space: pin-SVM with τ = 0 reduces to
C-SVM. The optimization problem (7) is a quadratic pro-
gramming with box constraints. Therefore, we can update
a part of the dual variables and keep the others unchanged,
i.e., the sequential minimization optimization (SMO, [12]–
[17]) is applicable to train pin-SVM (7).

The constraint −τCi ≤ λi ≤ Ci can be equivalently
transformed into

Ai ≤ yiλi ≤ Bi,

where

Ai =

{
−τCi, yi = 1,

−Ci, yi = −1,
Bi =

{
Ci, yi = 1,

τC, yi = −1.

For a given λ, the indices are divided into the following
two sets,

Iλ
up = {i : yiλi < Bi} and Iλ

down = {i : yiλi > Ai}.

The subscripts of the two sets imply that for a pair of
observations i ∈ Iλ

up, j ∈ Iλ
down, one can always find a

small positive scalar t such that the modified solution λi +
t, λj − t remains feasible. Therefore, if λ is an optimizer,
the following inequality should be met

yig
λ
i ≥ yjg

λ
j ,

where

gλ
i = yi

m∑

j=1

yjλjKij − 1

stands for the derivatives of the objective function of (7)
with respect to αi. Otherwise, if yig

λ
i < yjg

λ
j , we can

update λi and λj to obtain a strict decrease on the objec-
tive value of (7). Since the above inequality holds for any
i ∈ Iup(λ) and j ∈ Idown(λ), a necessary condition of λ∗

being optimal (7) can be written as:

m∑

i=1

yiλ
∗
i = 0,

and

∃ρ ∈ R such that max
i∈Iλ∗

up

yig
λ∗

i ≤ ρ ≤ min
j∈Iλ∗

down

yjg
λ∗

j . (8)

The corresponding condition for C-SVM has been widely
applied in the SMO technique, see, e.g., [20] and [14].
When τ varies, Iλ∗

up and Iλ∗

down are different.

2.2. Dual variable update

Sequential minimal optimization starts from an initial
feasible solution of (7) and updates λ until (8) is satisfied.
The basic idea of SMO is that we only update the dual
variables in a working set and leave the other variables
unchanged. The extreme case is that only two variables
are involved in each iteration, which follows that there
exists an explicit update formulation.

Denote the current solution by λold. Without any loss

of generalization, we assume that i ∈ Iλold

up , j ∈ Iλold

down are
the variables in the working set. That means that the two
elements violate the optimality condition (8), i.e.,

yig
λold

i > yjg
λold

j . (9)

Denote uij for a vector of which the i-th component is yi,
the j-th component is −yj , and the others are zero. Then
searching along uij will bring the improvement for (7).
Specifically, λold + ζuij with a sufficiently small positive
ζ > 0 will be still feasible to (7). Moreover,

F (λold + ζuij) − F (λold)

= ζ
(
yig

λold

i − yjg
λold

j

)
− ζ2

2 (Kii + Kjj − 2Kij).

(10)
From this formulation and (9), we know that the objective
function of (7) can be decreased strictly. The best ζ which
gives the largest decrease of the objective function is the
minimizer of the following problem,

min
ζ≥0

−ζ
(
yig

λold

i − yjg
λold

j

)
+

ζ2

2
(Kii + Kjj − 2Kij)

s.t. yig
λold

i + ζ ≤ Bi,

yjg
λold

j − ζ ≥ Aj .

For this 1-dimensional QP, the optimal solution can be
explicitly given by

ζ̂ = min

{
Bi − yig

λold

i , yjg
λold

j − Aj ,
yig

λold

i − yjg
λold

j

Kii + Kjj − 2Kij

}
.

3



Correspondingly, the dual variables are updated to

λnew
i = λold

i + ζ̂yi and λnew
j = λold

j − ζ̂yj .

At the same time, the gradient vector is updated to

gλnew

l = gλold

l − ζ̂ylKil + ζ̂ylKjl, ∀l = 1, 2, . . . , m.

2.3. Working set selection and initial solution

Above we discussed the update process for pin-SVM

when i ∈ Iλold

up , j ∈ Iλold

down are chosen in the working set.
Before establishing the SMO for pin-SVM, we first consider
the working set selection and initial solution generation.

The objective function of pin-SVM (7) is the same as
that of C-SVM. Thus, the strategies of selecting two dual
variables for C-SVM are applicable to pin-SVM. The sim-
plest selection is the maximal violating pair, which has
been discussed in [20]. For the current solution λold, we
choose i and j as

i = arg max
l∈Iλold

up

ylg
λold

l and j = arg min
l∈Iλold

down

ylg
λold

l . (11)

This strategy is essentially the greedy choice based on the
first order approximation of F (λold + ζuij)−F (λold). One
can also consider the second order working set selection
proposed by [13]. That method is based on the second
order expansion (10). This quadratic gain should be max-
imized with the linear constraints. To quickly and heuris-
tically find a good direction, we ignore the constraint and
then can find the maximal gain easily:

(yig
λold

i − yjg
λold

j )2

2(Kii + Kjj − 2Kij)
. (12)

One can choose i, j by maximizing (12) but it needs pair-
wise comparison. Instead, we first use (11) to find i and
then only choose j according to (12), which simply requires
element comparison. This is also the strategy utilized for
C-SVM in LIBSVM [17].

For the initialization, we use λi = −τCi. Recalling (5)
for the setting of Ci, one can verify that λi = −τCi gives a
feasible solution of (7). When τ = 0, the initial solution is
λ = 0, which is commonly used for C-SVM. If we know the
optimal solution for pin-SVM with τ1, denoted by λ(τ1),
then we can have a good guess for pin-SVM with τ2. To
observe the link between λ(τ1) and λ(τ2), we illustrate a
simple classification task “two moons” in Fig.2, where the
red crosses and the green stars correspond to observations
in class +1 and class −1, respectively. We use pin-SVM
(7) to train the classifier. In this example, the same radial
basis function (RBF) kernel and the same regularization
parameter, but different τ values are used. The surfaces
{x : f(x) = −1, +1} are displayed in Fig.2.

According to the complementary slackness conditions,
we know that

yif(xi) > 1, ⇒ i ∈ S− = {j : λj = −τCj} ,

yif(xi) = 0, ⇐ i ∈ S0 = {j : −τCj < λj < Cj} ,

yif(xi) < 1, ⇒ i ∈ S+ = {j : λj = Cj} .

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x(1)

x(2)

Figure 2: Sampling points and classification results of pin-SVM.
Points in class +1 and −1 are shown by green stars and red
crosses, respectively. The surfaces {x : f(x) = 1} (blue lines) and
{x : f(x) = −1} (black lines) for τ = 0, 0.05, 0.1 are displayed by
solid, dash-dotted, and dotted lines, respectively.

In other words, the surfaces {x : f(x) = ±1} partition the
training sets into three parts. Most of the dual variables
take the values −τCi or Ci. The left data are located in
{x : f(x) = +1} or {x : f(x) = −1}. From Fig.2, we
observe that for many points, they are located in the same
part for different τ . Fig.2 also illustrates that with the
increasing τ , the surfaces f(xi) = ±1 move towards the
decision boundary. This can be observed as well from the
primal form (2), of which the optimality condition can be
written as the existence of ηi ∈ [−τ, 1] such that

wj

C
−

∑

i∈S−

yiφj(xi)+τ
∑

i∈S+

yiφj(xi)−
∑

i∈S0

ηiyiφj(xi) = 0, ∀j.

This condition implies that generally a larger τ results
in more data falling into S−. Therefore, if τ1 > τ2 and
the difference is not big, it is with a high probability that

λ
(τ2)
i = −τ2Ci if λ

(τ1)
i = −τ1Ci. Following from this dis-

cussion, we suggest Algorithm 1 for the initial solution.
By the proposed procedure, we find a new feasible so-

lution, which is heuristically suitable for τ2. When tuning
the parameter τ , we need to train pin-SVM for a series of
τ values, for which the above procedure can be applied.

Now we give the SMO algorithm for pin-SVM (1) in
Algorithm 2, where e is a pre-defined accuracy and is set
to be 10−6 in this paper.

3. SMO for Sparse pin-SVM

Pin-SVM can be regarded as an extension to C-SVM
via introducing flexibility on τ . Since quantile distances
are considered, pin-SVM is insensitive to feature noise and
has shown better classification accuracy over C-SVM. In
pin-SVM (7), the dual variables are categorized into three
types: lower bounded support vectors (λi = −τCi), free

support vectors (−τCi < λi < Ci), and upper bounded

support vectors (λi = Ci). When τ = 0, pin-SVM reduces
to C-SVM. Correspondingly, the lower bounded support
vectors are zero and C-SVM has sparseness. To pursue

4



Algorithm 1: Initialization for pin-SVM with τ2

from λ(τ1)

Set Sλ(τ1)

− :=
{
i : λ

(τ1)
i = −τ1Ci

}
,

Sλ(τ1)

+ :=
{
i : λ

(τ1)
i = Ci

}
;

Let λ̃i := −τ2Ci, ∀i ∈ Sλ(τ1)

− and

λ̃i := Ci, ∀i ∈ Sλ(τ1)

+ ;

Calculate the violation v :=
∑m

i=1 yiλ̃i;
if τ2 > τ1 then

repeat

select i from {i : yi = sign(v)}
⋂
Sλ(τ1)

+ ;

set λ̃i := max{Ci − v,−τ2Ci};
update v := max{0, v − (1 + τ2)Ci};

until v = 0 ;
else

repeat

select i from {i : yi = −sign(v)}
⋂

Sλ(τ1)

− ;

set λ̃i := max{−τ2Ci + v, Ci};
update v := max{0, v − (1 + τ2)Ci};

until v = 0 ;
end

Return λ̃ as the initial solution for pin-SVM with τ2.

Algorithm 2: SMO for pin-SVM

Set λi := −τCi or use Algorithm 1 to generate λ ;
Calculate gi := yi

∑m

j=1 yjλjKij − 1 and set

Ai :=

{
−τCi, yi = 1
−Ci, yi = −1

Bi :=

{
Ci, yi = 1

τCi, yi = −1
;

repeat

Iλ
up := {i : yiλi < Bi}, I

λ
down := {i : yiλi > Ai};

select i := arg max
l∈Iλ

up

ylgl;

select j := arg max
l∈Iλ

down

(yig
λ
i −ylg

λ
l )2

2(Kii+Kll−2Kil)
;

calculate the update length

ζ := min
{

Bi − yigi, yjgj − Aj ,
yigi−yjgj

Kii+Kjj−2Kij

}
;

update λi := λi + yiζ and λj := λj + yjζ,
gl := gl − ζylKil + ζylKjl, ∀l = 1, . . . , m;

until maxi∈Iλ
up

yigi − minj∈Iλ
down

yjgj < e ;

Calculate b := 1
2

(
maxi∈Iλ

up
yigi + minj∈Iλ

down
yjgj

)
.

sparseness for pin-SVM with a nonzero τ value, a loss func-
tion with an ε insensitive zone was applied. Then a sparse

pin-SVM has been established in [9]. In the primal space,
sparse pin-SVM can be posed as

min
w,b

1

2
‖w‖2 + C

m∑

i=1

Lε
τ

(
1 − yi(w

T φ(xi) + b)
)
, (13)

where the pinball loss with an ε insensitive zone Lε
τ (u) is

defined in (3). The dual problem of (13) has been deduced
in [9] and takes the following form,

min
λ,γ

1

2

m∑

i=1

m∑

j=1

λiyiKijyjλj −

m∑

i=1

λi − ε

m∑

i=1

γi

s.t.

m∑

i=1

yiλi = 0, (14)

γi ≥ 0, i = 1, . . . , m,

−τ(Ci − γi) ≤ λi ≤ Ci − γi, i = 1, . . . , m.

The possible range of the dual variable γi is 0 ≤ γi ≤
Ci. When γi takes value Ci, the corresponding λi will be
zero, which brings sparsity to pin-SVM. From the objective
function of (14), one can see that a large ε will push γi close
to Ci, i.e., there are more λi values zero.

The last constraint in (14) can be viewed as a box
constraint on λi and the box depends on another dual
variable γi. Similarly to the discussion on pin-SVM (7),
we can write −τ(Ci − γi) ≤ λi ≤ Ci − γi as

A
γi

i ≤ yiλi ≤ B
γi

i ,

where

A
γi

i =

{
−τ(Ci − γi), yi = 1,

−(Ci − γi), yi = −1,

and

B
γi

i =

{
Ci − γi, yi = 1,

τ(Ci − γi), yi = −1.

Then for given γ and λ, we can find the two following sets,

Iλ,γ
up = {i : yiλi < B

γi

i or γi > 0},

and
I

λ,γ
down = {i : yiλi > A

γi

i or γi > 0}.

Here γi > 0 can guarantee that λi ± ζ is feasible for suffi-
ciently small scalar ζ. Then, necessary conditions for λ, γ

being optimal to (14) can be presented as follows:

• for a given γ value, λ should satisfy:

max
i∈I

λ,γ
up

yig
λ
i ≤ min

j∈I
λ,γ

down

yjg
λ
j , and

m∑

i=1

yiλi = 0;

• for a given λ value, γ should satisfy:

γi = min

{
Ci +

1

τ
λi, Ci − λi

}
.

5



Notice that in sparse pin-SVM (14), the gradient gλ
i is

different from that in pin-SVM (6), since there is one ad-
ditional freedom on γi. Specifically, there are three situa-
tions. If λi = Ci − γi, then

gλ
i = yi

m∑

j=1

yjλjKij − 1 + ε.

If λi = −τ(Ci − γi), then we have

gλ
i = yi

m∑

j=1

yjλjKij − 1 −
ε

τ
.

Otherwise, i.e., −τ(Ci − γi) < λi < Ci − γi, we have

gλ
i = yi

m∑

j=1

yjλjKij − 1.

The above conditions are given separately for λ and
γ. For sparse pin-SVM (14), λi and γi are coupled in the
constraints. Hence these conditions are necessary but not
sufficient. However, to pursue an efficient solving method
for (14), we apply the above necessary condition to choose
two data points in a working set. Then the selected dual
variables are modified and the others are unchanged.

Similarly to pin-SVM, the working set for sparse pin-
SVM (14) contains at least two data points. Suppose that
i, j are selected. Then to update λi,j , γi,j , we are to solve
the following QP problem

min
λi,j ,γi,j

1

2
Kiiλ

2
i + λjyjKijyjλj +

1

2
Kjjλ

2
j

+λiyi

∑

l 6=i,j

ylλlKil + λjyj

∑

l 6=i,j

ylλlKjl

−λi − λj − εγi − εγj

s.t. yiλi + yjλj = −
∑

l 6=i,j

ylλl, (15)

γi ≥ 0, γj ≥ 0,

−τ(Ci − γi) ≤ λi ≤ Ci − γi,

−τ(Cj − γj) ≤ λj ≤ Cj − γj .

When γi,j are fixed, (15) reduces to a 2-dimensional QP
with one equality constraint, which has an explicit solu-
tion. This is the case for pin-SVM (7). However, in sparse
pin-SVM, γi,j and λi,j are coupled and there is no explicit
solution. Hence, we have to solve (15) to update λi,j , γi,j

at each iteration.
Solving (15) decreases the objective of (14). We should

choose the reasonable working set according to the gain of
solving (15). The gain is better than the case keeping γi,j

unchanged. For the case γi,j fixed, the gain is (10), from
which we can estimate the gain for (15) and then select
the working set by the following rule:

i = arg max
l∈I

λ,γ
up

ylg
λ
l ,

j = arg max
l∈I

λ,γ

down

(yig
λ
i −ylg

λ
l )2

2(Kii+Kll−2Kil)
.

This selection strategy is similar to that for pin-SVM,
but now it is dependent on γ. The initial solution for
pin-SVM λi = −τCi is also feasible to sparse pin-SVM
(14). Correspondingly, the initial γ is set to be γi =
min

{
Ci + 1

τ
λi, Ci − λi

}
, which is according to the nec-

essary optimal condition.
Now the sequential minimal optimization for sparse

pin-SVM (14) is summarized in Algorithm 3.

Algorithm 3: SMO for sparse pin-SVM

Set λi := −τCi and γi := min
{
Ci + 1

τ
λi, Ci − λi

}
;

Calculate gi := yi

∑m

j=1 yjλjKij − 1;

A
γi

i :=

{
−τ(Ci − γi), yi = 1
−(Ci − γi), yi = −1

;

B
γi

i :=

{
Ci − γi, yi = 1

τ(Ci − γi), yi = −1
;

repeat

Iλ,γ
up := {i : yiλi < B

γi

i or γi > 0};

I
λ,γ
down := {i : yiλi > A

γi

i or γi > 0};
select i := arg max

l∈Iλ
up

ylgl;

select j := arg max
l∈Iλ

down

(yig
λ
i −ylg

λ
l )2

2(Kii+Kll−2Kil)
;

solve (15) to update λi,j , γi,j ;
update A

γi

i , B
γi

i , and gl, ∀l = 1, . . . , m;
until max

i∈I
λ,γ
up

yigi − min
j∈I

λ,γ

down
yjgj < e ;

Calculate b := 1
2

(
max

i∈I
λ,γ
up

yigi + min
j∈I

λ,γ

down
yjgj

)
.

4. Numerical Experiments

In the above sections, we gave the SMO algorithms for
training pin-SVM (7) and sparse pin-SVM (14). In the
following, we will evaluate their performance on real-life
data sets. There are two concerned aspects. First, we
will test whether SMO is effective for training pin-SVMs.
Second, with an effective training method, we can consider
more experiments and support the theoretical analysis in
[9]. The sparsity of sparse pin-SVM is also considered.

The data in these experiments are downloaded from
the UCI Repository of Machine Learning Datasets [23] and
LIBSVM data sets [17]. For some of these data, the train-
ing and test sets are provided. Otherwise, we randomly
select m observations to train the classifier and use the
remaining for test. The problem dimension n, the number
of the training data m, and the number of test data mT

are summarized in Table 1.
In pin-SVM (7), we use the RBF kernel and apply Al-

gorithm 2 to train the classifiers with different τ values.
With the data size m grows, caching for the kernel matrix
becomes larger. In our experiments, when m ≥ 5000, we
calculate element Kij only when needed, which reduces the
caching but costs more time. To make a fair comparison,

6



Table 1: Dimension, Training Data and Test Data Size

name n m mT name n m mT

Spect 21 80 187 Pima 8 500 269
Monk3 6 122 432 Breast 10 500 199
Monk1 6 124 432 Splice 60 500 2175
Haberman 3 150 156 Spambase 58 1000 3601
Statlog 13 150 120 Guide1 4 3000 4000
Monk2 6 169 432 Magic 10 10000 9020
Ionosphere 33 200 151 IJCNN1 22 20000 91707
Transfusion 4 300 448 Cod RNA 8 30000 271617

we use λi = −τCi as the initial solution. If the num-
ber of the training data is less than 10000, 10-fold cross-
validation is utilized to tune the regularization coefficient
C0 and the bandwidth in the RBF kernel σ. Otherwise, we
set C0 = 1 and tune σ only. The training and test process
is repeated 10 times. Then the average accuracy on test
sets, the standard deviation, and the average computing
time are reported in Table 2.

Table 2: Test Accuracy and Average Training Time

Data τ = 0 τ = 0.1 τ = 0.3 τ = 0.5

Spect 84.62 ± 3.22 82.42 ± 2.47 80.08 ± 1.73 80.33 ± 2.63
8.96 ms 9.06 ms 8.92 ms 8.94 ms

Monk3 92.22 ± 1.31 93.80 ± 2.42 94.26 ± 1.36 93.23 ± 1.46
16.5 ms 20.5 ms 25.5 ms 28.6 ms

Monk1 81.97 ± 1.49 82.31 ± 1.67 83.06 ± 3.80 83.70 ± 4.12
18.8 ms 22.6 ms 24.2 ms 27.0 ms

Haber. 74.27 ± 2.53 73.63 ± 2.96 72.61 ± 4.33 74.52 ± 2.63
26.5 ms 24.4 ms 24.9 ms 24.6 ms

Statlog 82.82 ± 2.05 83.40 ± 2.01 83.15 ± 1.42 82.32 ± 2.39
24.2 ms 27.8 ms 30.2 ms 32.8 ms

Monk2 83.98 ± 1.25 85.56 ± 0.38 86.11 ± 0.00 85.93 ± 0.28
29.4 ms 34.3 ms 37.1 ms 39.4 ms

Iono. 94.01 ± 1.22 94.08 ± 1.39 93.42 ± 1.16 93.62 ± 1.32
32.8 ms 40.6 ms 44.4 ms 47.4 ms

Trans. 73.64 ± 2.42 73.70 ± 2.02 73.74 ± 2.57 74.15 ± 2.28
34.5 ms 28.4 ms 29.0 ms 28.8 ms

Pima 74.14 ± 2.45 74.51 ± 3.39 73.77 ± 2.54 73.36 ± 3.14
111 ms 126 ms 135 ms 144 ms

Breast 95.65 ± 1.42 95.60 ± 1.66 95.30 ± 2.02 95.45 ± 1.69
57.4 ms 71.3 ms 73.9 ms 74.0 ms

Splice 85.72 ± 3.34 86.12 ± 0.70 85.93 ± 1.18 86.25 ± 1.04
102 ms 93.2 ms 98.9 ms 99.3 ms

Spamb. 91.92 ± 0.38 90.27 ± 0.47 89.61 ± 1.07 89.29 ± 2.02
200 ms 168 ms 171 ms 167 ms

Guide1 96.60 ± 0.21 96.42 ± 0.28 96.34 ± 0.16 96.12 ± 0.79
158 ms 181 ms 195 ms 210 ms

Magic 85.01 ± 0.24 85.15 ± 0.48 84.31 ± 0.44 83.79 ± 0.69
23.4 s 29.0 s 30.1 s 30.3 s

IJCNN1 92.62 ± 0.65 93.75 ± 1.13 92.42 ± 0.91 92.12 ± 1.11
147 s 212 s 213 s 209 s

RNA 94.26 ± 1.05 92.26 ± 0.95 92.11 ± 1.11 91.08 ± 0.89
123 s 114 s 124 s 141 s

We also illustrate the scalability of the proposed SMO
algorithm by plotting the training time for different train-
ing data sizes. In Fig.3 we plot the training time for data
set IJCNN1. Notice that there is a sudden change at
m = 5000, due to different kernel computation strategies.

Both Table 2 and Fig.3 illustrate that the proposed
SMO method can train pin-SVM effectively. For differ-
ent τ values, the computational time is similar and is not
monotonic with respect to τ . In our method, pin-SVM is
trained in the dual space, which corresponds to a QP with
box constraints −τCi ≤ λi ≤ Ci. One can observe that τ

controls the size of the feasible set. In two extreme cases,
i.e., when the box is large enough or very small, optimal so-
lutions can be obtained easily. Therefore, though a larger
τ is generally related to more training time, the difference
is not significant. In some applications, a larger τ even
corresponds to less training time. Generally, the proposed

0 1000 2000 3000 4000 5000
0

1

2

3

4

5

6

7

m

ti
m

e
(s

)

(a)

5,000 10,000 20,000 30,000 40,000
0

100

200

300

400

500

600

700

m

ti
m

e
(s

)

(b)

Figure 3: Training time of Algorithm 2 (τ = 0.1) for IJCNN1 for
different training data sizes. (a) m < 5000; (b) m ≥ 5000.

SMO for pin-SVM is effective and it takes similar training
time as SMO for C-SVM.

With a properly selected τ , pin-SVM provides better
classification accuracy over C-SVM. But the sparseness is
lost. If the problem size is not too large and sparseness
is not the main target, then finding a suitable τ is mean-
ingful for improving the classification accuracy. Moreover,
we can use sparse pin-SVM (14) to enhance the sparsity.
In the following, we set τ = 0.1 and apply Algorithm 3 for
several different ε values. The training and test process
is similar to the previous experiment, except that the pa-
rameters for sparse pin-SVM are tuned based on pin-SVM,
since Algorithm 3 costs more time than Algorithm 2. In
practice, if the allowed time is not strict, one can tune the
parameters based on sparse pin-SVM and improve the per-
formance further. The average classification accuracy, the
number of support vectors (in brackets), and the training
time are reported in Table 3, where the results of C-SVM
are given as well for reference.

Compared with pin-SVM (7), sparse pin-SVM (14) en-
hances the sparsity, but takes more training time. In Algo-
rithm 3, the update formulation involves a 4-dimensional
QP problem. Though it can be solved effectively, its com-
putation time is larger than the explicit update formu-
lation in Algorithm 2. Roughly, Algorithm 3 needs 10
times more than Algorithm 2. In C-SVM, the points with
yif(xi) < 1 are related to zero dual variables and so are the
points with − ε

τ
< yif(xi) < ε in sparse pin-SVM. Thus,

the results of C-SVM are generally more sparse. But when
the feature noise is heavy, it is worthy considering Algo-
rithm 3 to train sparse pin-SVM.

7



Table 3: Test Accuracy, Number of Nonzero Dual Variables, and
Training Time for Sparse pin-SVM (τ = 0.1)

Data C-SVM ε = 0.05 ε = 0.10 ε = 0.20

Spect 84.62 (69) 82.20 (66) 80.80 (62) 79.50 (60)
8.96 ms 108 ms 75.3 ms 90.4 ms

Monk3 92.22 (83) 90.58 (97) 91.44 (87) 90.42 (86)
16.5 ms 143 ms 131 ms 127 ms

Monk1 81.97 (68) 79.15 (100) 77.53 (93) 74.84 (88)
18.8 ms 126 ms 139 ms 127 ms

Haber. 74.27 (140) 74.63 (140) 74.63 (139) 73.63 (137)
26.5 ms 154 ms 150 ms 177 ms

Statlog 82.82 (99) 83.11 (122) 82.11 (118) 81.41 (101)
24.2 ms 155 ms 143 ms 139 ms

Monk2 83.98 (101) 83.87 (107) 83.78 (98) 81.45 (90)
29.4 ms 246 ms 277 ms 253 ms

Iono. 94.01 (99) 93.89 (109) 93.80 (98) 93.76 (87)
32.8 ms 277 ms 243 ms 243 ms

Trans. 73.64 (286) 75.53 (272) 74.32 (261) 73.37 (195)
34.5 ms 250 ms 252 ms 250 ms

Pima 74.14 (337) 74.01 (354) 71.29 (346) 70.74 (336)
111 ms 535 ms 502 ms 486 ms

Breast 95.65 (89) 96.50 (137) 95.85 (126) 93.60 (99)
57.4 ms 445 ms 469 ms 483 ms

Splice 85.72 (271) 83.11 (392) 82.87 (322) 82.49 (234)
102 ms 749 ms 652 ms 659 ms

Spamb. 91.92 (290) 91.28 (906) 91.12 (864) 91.20 (780)
200 ms 741 ms 755 ms 697 ms

Guide1 96.60 (345) 96.72 (2018) 96.63 (1684) 94.99 (1203)
158 ms 2.74 s 2.53 s 2.34 s

5. Conclusion

In this paper, sequential minimal optimization has been
established for the support vector machine with the pin-
ball loss. Since pin-SVM has the same problem structure
as C-SVM, the corresponding SMO is related to that for C-
SVM. We investigated the details and implemented SMO
for pin-SVM. The SMO for training sparse pin-SVM was
given as well. Then the proposed algorithms were eval-
uated on numerical experiments, showing the effective-
ness of training pin-SVMs. The proposed SMO algorithms
make pin-SVMs promising tools in real-life application, es-
pecially when the data are corrupted by feature noise.

Acknowledgment

The authors would like to thank Prof. Chih-Jen Lin in
National Taiwan University for encouraging us to establish
the SMO algorithm for pin-SVM.

The authors are grateful to the anonymous reviewers
for helpful comments.

References

[1] C. Cortes and V. Vapnik, Support-vector networks. Machine
Learning, 20:273–297, 1995.

[2] V. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.
[3] X. Zhang. Using class-center vectors to build support vector

machines. In Proceedings of the IEEE Signal Processing Society
Workshop, pages 3–11. IEEE, 1999.

[4] J. Bi and T. Zhang. Support vector classification with input
data uncertainty. In Advances in Neural Information Processing
Systems, volume 17, page 161. MIT Press, 2005.

[5] G.R.G. Lanckriet, L.E. Ghaoui, C. Bhattacharyya, and M.I.
Jordan. A robust minimax approach to classification. The Jour-
nal of Machine Learning Research, 3:555–582, 2003.

[6] P.K. Shivaswamy, C. Bhattacharyya, and A.J. Smola. Second
order cone programming approaches for handling missing and
uncertain data. The Journal of Machine Learning Research,
7:1283–1314, 2006.

[7] H. Xu, C. Caramanis, and S. Mannor. Robustness and regu-
larization of support vector machines. The Journal of Machine
Learning Research, 10:1485–1510, 2009.

[8] B. Schölkopf, A.J. Smola, R.C. Williamson, and P.L. Bartlett.
New support vector algorithms. Neural Computation, 12(5):
1207–1245, 2000.

[9] X. Huang, L. Shi, and J.A.K. Suykens. Support vector machine
classifier with pinball loss. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 36(5): 984–997, 2014.

[10] R. Koenker. Quantile Regression. Cambridge University Press,
2005.

[11] I. Steinwart and A. Christmann. Estimating conditional quan-
tiles with the help of the pinball loss. Bernoulli, 17(1): 211–225,
2011.

[12] J.C. Platt. Fast training of support vector machines using se-
quential minimal optimization. In Advances in kernel methods
– Support Vector Learning, pages 185–208. MIT Press, 1999.

[13] R.E. Fan, P.H. Chen, and C.J. Lin. Working set selection using
second order information for training support vector machines.
The Journal of Machine Learning Research, 6:1889–1918, 2005.

[14] L. Bottou and C.-J. Lin. Support vector machine solvers. in
Large Scale Kernel machines, pages 301–320. MIT Press, 2007.

[15] Y. Torii and S. Abe. Decomposition techniques for training
linear programming support vector machines. Neurocomputing,
72(4):973–984, 2009.

[16] J. Shawe-Taylor and S. Sun. A review of optimization
methodologies in support vector machines. Neurocomputing,
74(17):3609–3618, 2011.

[17] C.C. Chang and C.J. Lin. LIBSVM: a library for support vec-
tor machines. ACM Transactions on Intelligent Systems and
Technology, 2(3):27, 2011.

[18] C.C. Chang, C.W. Hsu, and C.J. Lin. The analysis of decompo-
sition methods for support vector machines. IEEE Transactions
on Neural Networks, 11(4):1003–1008, 2000.

[19] C.J. Lin. On the convergence of the decomposition method
for support vector machines. IEEE Transactions on Neural
Networks, 12(6):1288–1298, 2001.

[20] S.S. Keerthi and E.G. Gilbert. Convergence of a generalized
SMO algorithm for SVM classifier design. Machine Learning,
46 (1-3):351–360, 2002.

[21] D. Hush, P. Kelly, C. Scovel, and I. Steinwart. QP algorithms
with guaranteed accuracy and run time for support vector ma-
chines. The Journal of Machine Learning Research, 7:733–769,
2006.

[22] J. López and J.R. Dorronsoro. Simple proof of convergence of
the SMO algorithm for different SVM variants. IEEE Transac-
tions on Neural Networks and Learning Systems, 23(7):1142–
1147, 2012.

[23] A. Frank and A. Asuncion. UCI machine learning repository,
2010.

8


