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1 Introduction

Life insurers, pension funds, health care providers and social security institutions face increasing
expenses due to continuing improvements of mortality rates. The quantification of longevity
risk in a systematic way requires stochastic mortality projection models, as Barrieu et al. (2012)
indicate. The development of such models receives wide coverage in the actuarial, demographic
and statistical literature, starting from the seminal work by Lee & Carter ([LC]) (Lee and Carter
(1992)). As a follow-up to the 2002 mortality study of the former KVBA-ARAB (now: Institute
of Actuaries in Belgium [IA|BE]) (see Lambrechts (2001), Brouhns et al. (2002a), Delfosse
and Boelen (2002)), this report presents the set-up and technical specifications of the 2015
mortality projection model of the Institute of Actuaries in Belgium. The report also documents
the resulting projections and the use of this model in actuarial applications. The IA|BE 2015
mortality projection model is a fully stochastic projection model of Li & Lee ([LL]) type, see
Li and Lee (2005). The model is an application of the AG 2014 projection methodology of the
Dutch Koninklijk Actuarieel Genootschap (see Koninklijk Actuarieel Genootschap (2014)1) to
the Belgian setting. This multi-population model projects Belgian mortality rates using Belgian
mortality data together with observed mortality statistics for a collection of European countries
with similar socioeconomic characteristics. A Lee & Carter model is imposed for the European
mortality trend as well as for the Belgian deviation from this common trend. We2 have chosen
this model as the preferred model from a comparative analysis of stochastic projection models
proposed in recent scientific literature. As part of this comparative exercise we studied the
single population mortality models from the papers by Cairns et al. (2009), Haberman and
Renshaw (2011), Börger et al. (2014), Van Berkum et al. (2014), and the multi-population
mortality models of Li and Lee (2005) and Koninklijk Actuarieel Genootschap (2014). The
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Cairns et al. (2006) stochastic two factor mortality model, and its generalizations proposed in
Cairns et al. (2009), have not been investigated, since these Cairns, Blake & Dowd ([CBD])
mortality models are designed for pensioner age mortality only, whereas the IA|BE study puts
focus on a projection model for the full age range (starting from age 0). For each model in
the study we carefully examined its calibration, the modelling and projection of time dependent
parameters and the produced forecasts. We evaluated the collection of mortality models using
the criteria proposed in Cairns et al. (2009), supplemented with our own points of attention
regarding biological reasonableness, statistical performance and transparency. The preferred
model, and its calibration methodology, follows the AG2014 projection methodology as described
in Koninklijk Actuarieel Genootschap (2014). Readers may want to consult the Koninklijk
Actuarieel Genootschap (2014) documentation as additional reading material.

This report is organized as follows. A technical description of the model is in Section 2. The
subsections 2.1, 2.3 and 2.4 follow to a large extent Appendix A in Koninklijk Actuarieel
Genootschap (2014). The use of the model and its applications are documented in Section 3.
Section 4 concludes. Parameter estimates and the resulting IA|BE 2015 mortality projection for
Belgium are available in an online appendix.

2 Technical description of the model

2.1 Notation

Let X denote a collection of ages and T a collection of years. We denote with qx,t, for x ∈ X
and t ∈ T , the probability that a person who is alive at 1 January of year t, and who was born
on 1 January of year t− x, will be death on 1 January of year t+ 1. We call qx,t the mortality
rate at exact age x in year t. The stochastic mortality models discussed in the papers mentioned
in Section 1 directly model (a transformation of) qx,t or they model the force of mortality, µx,t.
Under the assumption of piecewise constant force of mortality, i.e. µx+s,t+s = µx,t for 0 6 s < 1,
the following relation holds between qx,t and µx,t:

qx,t = 1− exp (−µx,t). (1)

Expression (1) enables switching from the force of mortality to the mortality rate, and vice
versa, in a straightforward way. For more details about these concepts and additional reading
material we refer to the monograph of Pitacco et al. (2009).

2.2 Data

We use data on the observed number of deaths, dx,t, and the corresponding exposures to risk,
Ex,t, as available in the Human Mortality Database3 ([HMD]). From this database we use the
tables ‘Deaths’ and ‘Exposure to risk’ in 1×1 format. In our study we calibrate mortality models
on age range X = {0, . . . , 90} and calibration period T = {1970, . . . , 2013}. We use data from
a collection of 14 European countries, namely Belgium, The Netherlands, Luxemburg, Norway,
Switzerland, Austria, Ireland, Sweden, Denmark, West-Germany, Finland, Iceland, England &
Wales and France. All these countries have a Gross Domestic Product ([GDP]) per capita above

3This database is available at www.mortality.org.
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European average4. For Belgium we obtain data from 1970 until (and including) 2012 from
HMD. For the other countries in the study we download data from 1970 until (and including)
2009 from HMD. We supplement the Belgian data with 2013 observations on deaths (dBE

x,2013)

and exposures to risk (EBE
x,2013), as defined according to the protocol of HMD5. Adjusting to the

HMD protocol requires the following transformations, where dADSEI
x,t refers to deaths obtained

from AD SEI6 and pADSEI
x,t refers to population size7 from the same source:

dBE
x,t =

1

2
dADSEI
x−1,t +

1

2
dADSEI
x,t if x > 0

dBE
0,t = dADSEI

birth,t +
1

2
dADSEI

0,t ,

and8

EBE
x,t =

1

2

(
pADSEI
x,t + pADSEI

x,t+1

)
+

1

6

(
1

2
dADSEI
x−1,t −

1

2
dADSEI
x,t

)
if x > 0

EBE
0,t =

1

2

(
pADSEI

0,t + pADSEI
0,t+1

)
+

1

6

(
dADSEI

birth,t −
1

2
dADSEI

0,t

)
.

As such, we proceed with a data set of deaths and exposures, as defined according to the HMD
protocol, for a collection of 13 European countries during 1970-2009 and for Belgium during
1970-2013. We extract this data source for males and females. The unisex data are created by
aggregating the data for males and females.

2.3 Model specification

The mortality model specifies the logarithm of the force of mortality for Belgium, µx,t, as follows

lnµx,t = lnµEU
x,t + lnµBE

x,t (2)

lnµEU
x,t = Ax +BxKt (3)

lnµBE
x,t = αx + βxκt. (4)

We recognize two times a Lee & Carter specification; (3) is a LC model for the European
evolution of mortality (driven by µEU

x,t ) and (4) is a LC model for the Belgian deviation from this

common trend (specified by µBE
x,t ). We calibrate this model on data with ages ranging from 0

up to 90, thus X = {0, . . . , 90}, and years from 1970 up to 2013, thus T = {1970, . . . , 2013}.
4Source: World Bank Data for 2013 on GDP per capita in US dollar, http://data.worldbank.org/

indicator/NY.GDP.PCAP.CD. The GDP per capita for the Euro area is 39,360 USD in 2013 and the fourteen
countries listed are the countries in Europe with a higher GDP per capita.

5This protocol is available from http://www.mortality.org/Public/Docs/MethodsProtocol.pdf.
6AD SEI is Algemene Directie Statistiek en Economische Informatie. Number of deaths are avail-

able at http://statbel.fgov.be/nl/modules/publications/statistiques/bevolking/downloads/bevolking_
sterftetafels.jsp, where we used Sterftetafels jaarlijks in verstreken leeftijd (1997-2013) and the data dx from
this table.

7We use the px column in the http://statbel.fgov.be/nl/modules/publications/statistiques/

bevolking/downloads/bevolking_sterftetafels.jsp data source (up to 2013). For the 2014 data we use
http://www.plan.be/databases/database_det.php?lang=fr&ID=35.

8See formula (49) in the HMD protocol.
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The calibration methodology is described in Section 2.4. For the time dependent parameters,
Kt and κt, the following time series models are used

Kt+1 = Kt + θ + εt+1 (5)

κt+1 = aκt + δt+1. (6)

The dynamics of the common period effect (see (5)), Kt, are modelled with a Random Walk
with Drift ([RWD]), where θ is the drift and εt+1 is white noise. The Belgian period effect
(see (6)), κt, follows an AR(1) process without intercept. We calibrate the parameters in these
time series specifications on the estimated Kt and κt parameters, for t ∈ T , and use these
dynamics to forecast µx,t for t ∈ {2014, 2015, . . . , 2060}. This projection strategy is documented
in Section 2.5.

2.4 Calibration

We calibrate the parameters (Ax, Bx, Kt, αx, βx and κt) in the LL specification using Maximum
Likelihood Estimation ([MLE]). Following the seminal paper by Brouhns et al. (2002b) we
assume a Poisson distribution for the number of deaths random variable Dxt, with mean Ex,t ·µx,t
and Ex,t the observed exposure to risk. To avoid identification problems in the LL model we use a
conditional maximum likelihood approach as in Li (2013) and Koninklijk Actuarieel Genootschap
(2014). We calibrate the common parameters (i.e. Ax, Bx and Kt) in a first step, followed by
the calibration of the Belgian parameters (i.e. αx, βx and κt) in a second step.

1. Observed deaths to calibrate the European trend, dEU
x,t , and corresponding exposures to

risk, EEU
x,t , are obtained from the Human Mortality Database (see Section 2.2) by aggre-

gating deaths and exposures over the 14 selected countries, using X = {0, . . . , 90} and
T̄ = {1970, . . . , 2009}. We maximize the following Poisson likelihood

max
Ax,Bx,Kt

∏
x∈X

∏
t∈T̄

(EEU
xt µ

EU
x,t )d

EU
xt · exp (−EEU

xt µ
EU
x,t )/(dEU

xt !), (7)

with µEU
x,t = exp (Ax +BxKt). We apply the usual Lee & Carter parameter constraints to

identify parameters in a unique way, namely
∑

t∈T̄ Kt = 0 and
∑

x∈X Bx = 1.

2. For Belgium, in contrast to the other European countries used in the model calibration,
we have data up to 2013 and want to use the most recent set of data when calibrating
the mortality model. Therefore, we extend the parameter estimates for Kt to the years
{2010, 2011, 2012, 2013} using linear extrapolation, namely

K2009+s = K2009 + s(K2009 −K1970)/(2009− 1970),

with s ∈ {1, 2, 3, 4}. The linear extrapolation is justified by the linear pattern of the
estimated Kt parameters, see for example Figure 1 (right plot).

3. We calibrate the parameters for Belgium (i.e. αx, βx and κt) by maximizing the following
Poisson likelihood, conditional on the common parameters estimated in step 1 of this
procedure. Thus,

max
αx,βx,κt

∏
x∈X

∏
t∈T

(EBE
xt µx,t)

dBE
xt · exp (−EBE

xt µx,t)/(d
BE
xt !), (8)
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where µx,t = µEU
x,t · exp (αx + βxκt). We calibrate the parameters for Belgium on ages

X = {0, . . . , 90} and years t ∈ T = {1970, . . . , 2013}. Once again we normalize the
estimated parameters by imposing

∑
t∈T κt = 0 and

∑
x∈X βx = 1.

We apply this calibration strategy9 separately for male, female and unisex data. We illustrate
the resulting parameter estimates for female data in Figure 1 (common parameters) and Figure 2
(Belgian parameters). An online appendix to this report lists all parameter estimates.
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Figure 1: Estimated common parameters, female data, ages 0-90, years 1970-2009: Ax, Bx and Kt.
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Figure 2: Estimated parameters for Belgium, female data, ages 0-90, years 1970-2013: αx, βx and κt.

2.5 Projection

Calibrating the time series models. The mortality model specified in Section 2.4 together
with the time dynamics specified in (5) and (6) allows to generate future scenarios of mortality.
First, we calibrate the time series models to the parameter estimates {(Kt, κt) | t ∈ T } with T =
{1970, . . . , 2013}. We hereby assume a bivariate normal distribution for the error terms (εt, δt)
with mean (0, 0) and covariance matrix C. The error terms are independent and identically
distributed for all t. The parameters θ, a and C, used in the time series specifications, are
estimated using maximum likelihood10. The resulting parameter estimates (for males, females
and unisex data) are listed in Table 1 (males and females) and 2 (unisex).

Generating future scenarios of mortality. Future mortality scenarios can be generated
using the following step by step approach. For each future scenario i = 1, . . . , N , and with t
running from 2014 to some specific end year T , we use the following strategy.

9We use routines written in R.
10In R we use Seemingly Unrelated Regression through the package systemfit, we use the function systemfit

with options method="SUR" and methodResidCov="noDfCor".
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males females

θ a C θ a C
-2.0372 0.9996 1.7603 -0.1584 -2.0029 0.8645 2.4939 -0.01895

-0.1584 0.0649 -0.01895 0.0057

Table 1: Time series parameter estimates for data on males and females.

unisex

θ a C
-2.0161 0.9229 2.0820 -0.0298

-0.0298 0.0184

Table 2: Time series parameter estimates for unisex data.

1. We simulate future (Ki
t , κ

i
t) using the time dynamics specified in (5) and (6), with parame-

ter estimates as listed in Table 1 or 2. We hereby start with (K2013, κ2013) as obtained with
the calibration strategy from Section 2.4. These values are listed in the online appendix.
We generate (εt, δt) from a bivariate normal distribution with mean (0, 0) and covariance
matrix C, as listed in Table 1 or 2.

2. Using the simulated (Ki
t , κ

i
t) for t = 2014, . . . , T , we obtain µix,t using (2), (3) and (4) and

the age specific parameters (Ax, αx, Bx, βx).

Figure 3 illustrates the projection of the time dependent parameters Kt (left) and κt (right) for
females. We generate 10,000 scenarios and show the corresponding fan charts (formed by the
median, 0.5% and 99.5% quantiles).
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BE Female :  κt
(BE)  −  AR(1) without intercept

Year

Figure 3: Projection of time dependent parameters: Kt and κt, female data. We plot 0.5% quantile,
median and 99.5% quantile obtained from 10,000 simulations.

Closing for old ages. We use Kannistö (1992) to close each mortality scenario for old ages,
say x ∈ {91, 92, . . . , 120}. This mortality law is chosen from a comparative analysis of techniques

6



to close mortality tables, documented in Antonio (2012). This parametric law specifies the force
of mortality in each scenario i, for ages x > 90 and a specific year t, as follows:

µix,t =
φi,t1 exp (φi,t2 x)

1 + φi,t1 exp (φi,t2 x)
. (9)

We estimate (φi1, φ
i
2) for each scenario i and year t using the relation (see Doray (2008))

logit µix,t = log (φi,t1 ) + φi,t2 x, (10)

which we estimate with OLS on the ages x ∈ {80, 81, . . . , 90}. The estimates for (φi,t1 , φ
i,t
2 ) are

then used in (9) to close the generated mortality scenario for ages x > 90.

Finally, we can switch to scenarios for future mortality rates using the transformation in (1),
thus

qix,t = 1− exp (−µix,t), (11)

for t = 2014, 2015, . . . , T and x ∈ 0, 1, . . . , 120.

3 Results and applications

3.1 Fitted and simulated mortality rates

Figure 4 shows the calibration of qx,t for Belgian females and a selection of ages x ∈ {25, 45, 65, 85}.
Figure 5 shows the corresponding results for males. We show the median and 99% pointwise
confidence intervals based on 10,000 scenarios of projected mortality rates. The black dots
in this Figure are the observed mortality rates qx,t. The dotted line indicates the mortality
rates fitted with the model specified in Section 2.3. As a reference line we add the projection
2013-2060 of Federaal Planbureau (2014)11. The qx,t in the FPB table are defined at age in
completed years and have been transformed to qx,t’s at exact age, using the transformation
documented in Jaumain and Vandeschrick (2012)12. The FPB model is a deterministic model,
and its calibration does not follow the nowadays standard assumption of Poisson likelihood for
the number of deaths. The projection of FPB is using calibration period 1991-201213, whereas
earlier projections of the FPB were using a calibration period starting in 197014.

3.2 The IA|BE 2015 mortality projection for Belgium

The projected mortality table obtained with the best estimates of future (Kt, κt) (with t =
2014, 2015, . . . , 2060) is the resulting ‘IA|BE 2015 mortality projection for the Belgian popu-
lation’. These best estimates for the period effects result from (5) and (6) with noise terms
εt = 0 = δt for all future t. We close the mortality table obtained in this way with Kannistö
(1992) such that µx,t for x ∈ {0, 1, . . . , 120} and t ∈ {2014, . . . , 2060} result. The corresponding
mortality rates qx,t follow from (1). This table is online available for males, females and as a
unisex table.

11We use the Prospectieve sterftequotiënten 2013-2060 available on http://www.plan.be/databases/

database_det.php?lang=nl&ID=50 (tab QxCalc-F and QxCalc-M). The methodology is described in Federaal
Planbureau (2009).

12We use formula (6) and (9) on page 11 of Jaumain and Vandeschrick (2012).
13See Federaal Planbureau (2014) on page 14.
14See Federaal Planbureau (2009) on page 2.
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Figure 4: Estimated and projected mortality rates, qx,t, for Belgium, female data, ages 25, 45 (top row)
and 65, 85 (bottom row). We plot 0.5% quantile, median and 99.5% quantile obtained from
10,000 simulations.

3.3 Life expectancy: period and cohort

From the simulated scenarios for future mortality rates we obtain simulations for the period as
well as cohort life expectancy. Using the assumption of piecewise constant force of mortality,
the period life expectancy for an x year old in year t is

eper
x (t) =

1− exp (−µx,t)
µx,t

+
∑
k>1

k−1∏
j=0

exp (−µx+j,t)

 1− exp (−µx+k,t)

µx+k,t
, (12)

and the cohort life expectancy for an x year old in year t is

ecoh
x (t) =

1− exp (−µx,t)
µx,t

+
∑
k>1

k−1∏
j=0

exp (−µx+j,t+j)

 1− exp (−µx+k,t+k)

µx+k,t+k
, (13)

see, for example, Pitacco et al. (2009). Using the mortality scenarios generated as described
in Section 2.5 we obtain simulations of the period and cohort expectancy, say eper,i

x (t) and

ecoh,i
x (t). Scenarios can be generated beyond 2060. Thus, when calculating life expectancies in,

for example, 2060, we will project the mortality rates for 120 years after 2060. Of course, the
best estimate table introduced in Section 3.2 can also be used to calculate a point estimate of
the period and cohort life expectancy.

Figure 6 shows the observed period life expectancy (black dots) for a 0 (left) and 65 (right)
year old female, the calibrated period life expectancy (red line) and the simulations of e0(t) and
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Figure 5: Estimated and projected mortality rates, qx,t, for Belgium, male data, ages 25, 45 (top row)
and 65, 85 (bottom row). We plot 0.5% quantile, median and 99.5% quantile obtained from
10,000 simulations.

e65(t) for t = 2014, . . . , 2024. The blue fan chart shows the cohort life expectancy, ecoh
0 (t) and

ecoh
65 (t). The corresponding results for males are in Figure 7.
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Figure 6: Period (black dots and red lines) and cohort (blue) life expectancy for a 0 year old (left) and
65 year old (right), female data. We plot 0.5% quantile, median and 99.5% quantile obtained
from 10,000 simulations.

Tables 3 and 4 list the median and 99% confidence intervals of ecoh
x (t) for some specific choice of

x and t. As a benchmark the table also shows the cohort life expectancies published by Federaal
Planbureau (2014)15. We transform these from ages in completed years to exact ages, using

15These are the EGxCalc in http://www.plan.be/databases/database_det.php?lang=nl&ID=50.
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Figure 7: Period (black dots and red lines) and cohort (blue) life expectancy for a 0 year old (left) and
65 year old (right), male data. We plot 0.5% quantile, median and 99.5% quantile obtained
from 10,000 simulations.

Jaumain and Vandeschrick (2012)16.

year males females
0 65 0 65

2014 Best Est. 88.26 19.3 92.4 22.98
[q0.5; q50; q99.5] [86.74;88.26;89.48] [18.63;19.31;19.96] [90.8;92.39;93.81] [22.09;22.98;23.82 ]
FPB (88.38;88.58) (19.13;19.57) (90.42;90.67) (22.23;22.7)

2040 Best Est. 91.04 22.33 94.66 25.85
[q0.5; q50; q99.5] [89.61;91.03;92.19] [21.15;22.33;23.4] [93.16;94.65;95.93] [24.56;25.84;27.03]
FPB (90.94;91.31) (22.56;23.03) (92.41;92.81) (24.72;25.2)

2060 Best Est. 92.61 24.28 95.95 27.64
[q0.5; q50; q99.5] [91.31;92.6;93.62] [22.96;24.28;25.38] [94.6;95.95;97.08] [26.23;27.64;28.85]
FPB (92.36;92.78) (24.59;25.07) (93.66;94.1) (26.33;26.81)

Table 3: Cohort life expectancy for a 0 and 65 year old, Best Estimate and 0.5% quantile, median and
99.5% quantile obtained from 10,000 simulations, males and females. ‘FPB’ refers to Federaal
Planbureau (2014); the first number is the cohort life expectancy as published in Federaal
Planbureau (2014) (i.e. using ages in completed years) and the second number is the cohort
life expectancy at exact ages, using Jaumain and Vandeschrick (2012).

3.4 Back testing the mortality model

One of the evaluation criteria used in the process of selecting a mortality model, is the perfor-
mance of a model in back tests (see Cairns et al. (2009)). We illustrate the performance of the
IA|BE 2015 mortality projection model in two types of back tests. In Figure 8 (females) and 9
(males) we calibrate the model on data from 1970 to 2000 and use it to project mortality rates
qx,t with t ∈ {2001, . . . , 2013}.

Figure 10 and 11 visualize the results of three back tests, on calibration periods {1970, . . . , 1980},
{1970, . . . , 1990} and {1970, . . . , 2000}, expressed as fitted values and projections of the period
life expectancy for a 0 year old and a 65 year old.

16We use formulas (11) and (14).
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year unisex
0 65

2014 Best Est. 90.78 21.26
[q0.5; q50; q99.5] [89.08;90.78;92.25] [20.51;21.26;22.03]
FPB 2014 (89.39;89.62) (20.74;21.19)

2040 Best Est. 93.46 24.37
[q0.5; q50; q99.5] [91.9;93.47;94.85] [23.07;24.36;25.56]
FPB 2014 (91.68;92.06) (23.66;24.13)

2060 Best Est. 95.02 26.35
[q0.5; q50; q99.5] [93.6;95.02;96.25] [24.92;26.35;27.6]
FPB 2014 (93.02;93.45) (25.47;25.95)

Table 4: Cohort life expectancy for a 0 and 65 year old, Best Estimate and 0.5% quantile, median
and 99.5% quantile obtained from 10,000 simulations, unisex data. ‘FPB’ refers to Federaal
Planbureau (2014); the first number is the cohort life expectancy as published in Federaal
Planbureau (2014) (i.e. using ages in completed years) and the second number is the cohort
life expectancy at exact ages, using Jaumain and Vandeschrick (2012).
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Figure 8: Back test on qx,t, for Belgium, female data, ages 25, 45 (top row) and 65, 85 (bottom row).
We calibrate on 1970-2000 data and then project 2001-2013. We plot 0.5%, median and 99.5%
quantile obtained from 10,000 simulations.

4 Conclusion

This report describes the methodology used to produce the IA|BE 2015 mortality projection
as well as the stochastic model underneath this best estimate table. The mortality model is of
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Figure 9: Back test on qx,t, for Belgium, male data, ages 25, 45 (top row) and 65, 85 (bottom row). We
calibrate on 1970-2000 data and then project 2001-2013. We plot 0.5%, median and 99.5%
quantile obtained from 10,000 simulations.
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Figure 10: Back tests using calibration periods {1970, . . . , 1980} (red), {1970, . . . , 1990} (green) and
{1970, . . . , 2000} (blue), period life expectancy for a 0 year old (left) and 65 year old (right),
female data. We plot 0.5%, median and 99.5% quantile obtained from 10,000 simulations.

Li & Lee type and uses Belgian data, together with mortality data from a set of 13 other well
selected European countries, to forecast mortality. The model follows the specifications of the
2014 projection model published by the Dutch Koninklijk Actuarieel Genootschap. Actuaries
can use this model to generate scenarios for future mortality, or they can use the table of qx,t’s
as a best estimate scenario of future mortality. We selected this model from a comparative study
of a wide set of stochastic mortality models published in recent literature. The model performs
well in terms of (among others) robustness, biological reasonableness, transparency, in sample
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Figure 11: Back tests using calibration periods {1970, . . . , 1980} (red), {1970, . . . , 1990} (green) and
{1970, . . . , 2000} (blue), period life expectancy for a 0 year old (left) and 65 year old (right),
male data. We plot 0.5%, median and 99.5% quantile obtained from 10,000 simulations.

fit and back testing.
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