
Optimization of CHR Propagation

Rules: Extended Report

Peter Van Weert

Report CW519, August 2008

n Katholieke Universiteit Leuven
Department of Computer Science

Celestijnenlaan 200A – B-3001 Heverlee (Belgium)

Optimization of CHR Propagation

Rules: Extended Report

Peter Van Weert

Report CW519, August 2008

Department of Computer Science, K.U.Leuven

Abstract
Constraint Handling Rules (CHR) is an elegant, high-level programming
language based on multi-headed, forward chaining rules. To ensure CHR
propagation rules are applied at most once with the same combination
of constraints, CHR implementations maintain a so-called propagation
history. The performance impact of this history can be significant. We
introduce several optimizations that, for the majority of CHR rules, elim-
inate this overhead. We formally prove their correctness, and evaluate
their implementation in two state-of-the-art CHR systems. This ex-
tended report contains complete formal proofs of all theoretical results.

Keywords : Constraint Handling Rules, CHR, optimization.
CR Subject Classification : D.3.2 [Programming Languages] Language Clas-
sifications — Constraint and logic languages; D.3.4 Processors — Compilers,
Optimization.

Optimization of CHR Propagation Rules
Extended Report

Peter Van Weert∗

Report CW 519, August 2008

Abstract

Constraint Handling Rules (CHR) is an elegant, high-level programming language based
on multi-headed, forward chaining rules. To ensure CHR propagation rules are applied at
most once with the same combination of constraints, CHR implementations maintain a so-
called propagation history. The performance impact of this history can be significant. We
introduce several optimizations that, for the majority of CHR rules, eliminate this overhead.
We formally prove their correctness, and evaluate their implementation in two state-of-the-art
CHR systems. This extended report contains complete formal proofs of all theoretical results.

1 Introduction

Constraint Handling Rules (CHR) [1, 5, 7, 16] is a high-level committed-choice CLP language,
based on multi-headed, guarded multiset rewrite rules. Originally designed for the declarative
specification of constraint solvers, the CHR programming language is increasingly used for general
purposes, in a wide range of applications (see [16] for a recent survey). Efficient implementations
exist for several host languages, including Prolog [8, 12], Haskell [17], and Java [19].

An important, distinguishing feature of CHR are propagation rules. Unlike most rewrite rules,
propagation rules do not remove the constraints matched by their head. They only add extra,
implied constraints. Logically, a propagation rule corresponds to an implication. To avoid trivial
non-termination, each CHR rule is therefore applied at most once with the same combination of
constraints. This requirement stems from the formal study of properties such as termination and
confluence [5], and is reflected in most current CHR implementations [8, 12, 19].

To prevent reapplication, a CHR runtime system maintains a so-called propagation history,
containing a tuple for each constraint combination that fired a rule. Efficiently implementing a
propagation history is challenging. Even with the implementation techniques proposed in e.g. [3,
10, 21], maintaining a propagation history remains expensive. Our empirical observations reveal
the history often has a significant impact on both space and time performance. Existing literature
on CHR compilation nevertheless pays only scant attention to history-related optimizations. This
paper resolves this discrepancy by introducing several novel approaches to resolve history-related
performance issues. We show that, for almost all CHR rules, the propagation history can be
eliminated completely. We either use innovative, alternate techniques to prevent rule reapplication,
or prove that reapplication has no observable effect. Experimental results confirm the relevance
and effectiveness of our optimizations.

1.1 Overview

This technical report is an extended version of [18], containing the formal proofs of all theoretical
results. A preliminary version of this paper appeared in [21].

∗Research Assistant of the Research Foundation– Flanders (FWO-Vlaanderen).

1

reflexivity @ leq(X, X) ⇔ true.

idempotence @ leq(X, Y) \ leq(X, Y) ⇔ true.

antisymmetry @ leq(X, Y), leq(Y, X) ⇔ X = Y.

transitivity @ leq(X, Y), leq(Y, Z) ⇒ leq(X, Z).

Figure 1: leq, a CHR program for the less-than-or-equal constraint.

Section 3 discusses non-reactive CHR rules—rules that are not reconsidered when built-in
constraints are added—and shows that their history can always be eliminated without affecting
the program’s operational semantics. More precisely, we prove that reapplication of non-reactive
rules is either impossible, or that it can be prevented using a novel, more efficient technique.

Section 4 introduces the notion of idempotence. We prove that reapplying idempotent rules
has no observable effect, and thus that their history can be eliminated as well, even if the rule is
reactive. Together, the optimizations of Sections 3 and 4 cover the majority of the rules found in
existing CHR programs.

We implemented the proposed optimizations in two state-of-the-art CHR implementations.
Section 5 reports on the significant performance gains obtained. Section 6, finally, reviews some
related work and concludes.

For self-containedness, we first briefly review CHR’s syntax and operational semantics in Sec-
tion 2. Gentler introductions are found for instance in [3, 5, 7, 10].

2 Preliminaries

2.1 CHR Syntax

CHR is embedded in a host language H. A constraint type c/n is denoted by a functor/arity
pair; constraints c(x1, . . . , xn) are atoms constructed from these symbols. Their arguments xi are
instances of data types offered by H. Many CHR systems support type and mode declarations for
constraint arguments.

There are two classes of constraints: built-in constraints, solved by an underlying constraint
solver of the host language H, and CHR constraints, handled by a CHR program. A CHR program
P, also called a CHR handler, is a sequence of CHR rules. The generic syntactic form of a CHR
rule is:

ρ @ Hk \ Hr ⇔ G |B
The rule’s unique name ρ is optional; if omitted a name is assigned implicitly. The head consists
of two conjunctions of CHR constraints, Hk and Hr. Their conjuncts are called occurrences (kept
and removed occurrences resp.). If Hk is empty, the rule is a simplification rule. If Hr is empty,
it is a propagation rule, and ‘⇒’ is used instead of ‘⇔’. If both are non-empty, the rule is a
simpagation rule. The guard G is a conjunction of built-in constraints, the body B a conjunction
of CHR and built-in constraints. A trivial guard ‘true | ’ may be omitted.

Example 1 Figure 1 shows a classic CHR handler, called leq. It defines a single CHR con-
straint, a less-than-or-equal constraint, using four CHR rules. All three kinds of rules are present.
All constraint arguments are logical variables. The handler uses a built-in equality constraint =/2
(solved by e.g. Prolog’s built-in unification). The first two rules remove redundant constraints.
The antisymmetry rule replaces the CHR constraints matched by its head with a built-in equality
constraint. The transitivity propagation rule adds redundant CHR constraints.

Head Normal Form In the Head Normal Form of a CHR program P, denoted HNF(P),
variables occur at most once in a rule’s head. For instance in HNF(leq), the normalized form of
the transitivity rule from Figure 1 is:

transitivity @ leq(X, Y), leq(Y1, Z) ⇒ Y = Y1 | leq(X, Z).

2

2.2 CHR’s Refined Operational Semantics

The behavior of most current CHR implementations is captured formally by the refined operational
semantics [4], commonly denoted as ωr. The ωr semantics is formulated as a state transition
system, in which transition rules define the relation between subsequent execution states. The
version presented here follows [3, 10], which is a slight modification of the original specification
[4].

Notation Sets, multisets and sequences (ordered multisets) are defined as usual. We use S[i]
to denote the i’th element of a sequence S, ++ for sequence concatenation, and [e|S] to denote
[e]++S. The disjoint union of sets is defined as: ∀X,Y, Z : X = Y tZ ↔ X = Y ∪Z ∧Y ∩Z = ∅.
For a logical expression X and a set V of variables, vars(X) denotes the set of free variables, and
constraint projection is defined as πV (X)↔ ∃v1, . . . , vn : X with {v1, . . . , vn} = vars(X) \ V .

Execution States An execution state of ωr is a tuple 〈A,S,B,T〉n. The role of the sequence
A, called the execution stack, is explained below, in the paragraph on ωr’s transition rules. The
ωr semantics is multiset-based. To distinguish between otherwise identical constraints, the CHR
constraint store S is thus a set of identified CHR constraints, denoted c#i, where each CHR
constraint c is associated with a unique constraint identifier i ∈ N. The projection operators
chr(c#i) = c and id(c#i) = i are extended to sequences and sets in the obvious manner. The
integer n represents the next integer to be used as a constraint identifier.

The built-in constraint store B is a conjunction containing all built-in constraints passed to the
built-in solver. Their meaning is determined by the built-in constraint theory DH (see e.g. [10] for
a rigorous definition of this concept). The propagation history T, finally, is a set of tuples, each
recording a sequence of identifiers of CHR constraints that fired a rule, and the name of that rule.

Given an initial query Q, a sequence of built-in and CHR constraints, an initial execution state
is of the form 〈Q, ∅, true, ∅〉1.

Transition Rules Figure 2 lists the transition rules of ωr. The execution stack A is used to
treat CHR constraints as function calls. The top-most element of A is called the active constraint.
When active, a CHR constraint performs a search for partner constraints that match the head
of a rule. The constraint’s occurrences are tried in a top-down, right-to-left order. To realize
this order in ωr, identified constraints on the execution stack are occurrenced in Activate and
Reactivate transitions. When an occurrenced identified CHR constraint c#i : j is active, only
matches with the j’th occurrence of c’s constraint type are considered. Interleaving a sequence
of Default transitions, all applicable rules are fired in Propagate and Simplify transitions. A
rule is applicable if the store contains matching partner constraints for all remaining occurrences
in its head. Formally:

Definition 1 Given a conjunction of built-in constraints B, a rule ρ is applicable with se-
quences of identified CHR constraints K and R, denoted appl(ρ,K,R,B), iff a matching sub-
stitution θ exists for which apply(ρ,K,R,B, θ) is defined. The latter partial function is defined as
apply(ρ,K,R,B, θ) = B iff K ∩R = ∅ and, renamed apart, ρ is of form “ρ @ Hk \ Hr ⇔ G |B”
(Hk or Hr may be empty) with chr(K) = θ(Hk), chr(R) = θ(Hr), and DH |= B→ πvars(B)(θ∧G).

If the top-most element of A is a built-in constraint, this constraint is passed to the built-in
solver in a Solve transition. As this may affect the entailment of guards, all CHR constraints for
which additional rules might have become applicable have to be put back on the execution stack.
These then cause Reactivate transitions to reinitiate searches for applicable rules. Constraints
with fixed arguments are not reactivated, as no additional guards can become entailed.

Definition 2 A variable v is fixed by constraint conjunction B, or v ∈ fixed(B), iff DH |=
∀θ((π{v}(B) ∧ π{θ(v)}(θ(B)))→ v = θ(v)) for any variable renaming θ.

3

1. Solve 〈[b|A],S,B,T〉n�P 〈S ++ A,S, b ∧ B,T〉n if b is a built-in constraint. For the set of
reactivated constraints S ⊆ S, the following bounds hold: lower bound: ∀H ⊆ S : (∃K,R : H =
K ++ R ∧ ∃ρ ∈ P : ¬appl(ρ,K,R,B) ∧ appl(ρ,K,R, b ∧ B)) → (S ∩ H 6= ∅) and upper bound:
∀c ∈ S : vars(c) 6⊂ fixed(B).

2. Activate 〈[c|A],S,B,T〉n�P 〈[c#n :1|A], {c#n} t S,B,T〉n+1 if c is a CHR constraint (which
has not yet been active or stored in S).

3. Reactivate 〈[c#i|A],S,B,T〉n�P 〈[c#i : 1|A],S,B,T〉n if c is a CHR constraint (re-added to
A by a Solve transition but not yet active).

4. Simplify 〈[c#i :j|A],S,B,T〉n�P 〈B++A,KtS, θ∧B,T′〉n with S = {c#i}tKtR1tR2tS,
if the j-th occurrence of c in P occurs in rule ρ, and θ is a matching substitution such that
apply(ρ,K,R1 ++[c#i]++R2,B, θ) = B.
Let t = (ρ, id(K++R1)++[i]++ id(R2)), then t /∈ T and T′ = T ∪ {t}.

5. Propagate 〈[c#i :j|A],S,B,T〉n�P 〈B++[c#i :j|A],S \ R, θ∧B,T′〉n with S = {c#i}tK1 t
K2 tRtS, if the j-th occurrence of c in P occurs in rule ρ, and θ is a matching substitution such
that apply(ρ,K1 ++[c#i]++K2, R,B, θ) = B.
Let t = (ρ, id(K1)++[i]++ id(K2 ++R)), then t /∈ T and T′ = T ∪ {t}.

6. Drop 〈[c#i :j|A],S,B,T〉n�P 〈A,S,B,T〉n if c has no j-th occurrence in P.

7. Default 〈[c#i : j|A],S,B,T〉n�P 〈[c#i : j + 1|A],S,B,T〉n if the current state cannot fire any
other transition.

Figure 2: The transition rules of the refined operational semantics ωr.

When a rule fires, its body is executed. By putting the body on the activation stack, the differ-
ent conjuncts of the body are activated (for CHR constraints) or solved (for built-in constraints)
in a left-to-right order. Control only returns to the original active constraint after the body is
completely executed.

Derivations Execution proceeds by exhaustively applying transitions. Formally, an ωr-derivation
D is a sequence of ωr states, with D[1] an initial execution state for some query Q, and D[i]�P
D[i+ 1] a valid ωr transition. We also use the notational abbreviation σ1�?

P σn to denote a finite
derivation [σ1, . . . , σn].

3 Non-reactive Propagation Rules

Section 3.1 introduces non-reactive CHR rules, rules that are never matched by a reactivated
constraint, and illustrates that a substantial portion of CHR rules is non-reactive. In Section 3.2,
we prove that the history of certain non-reactive propagation rules can be eliminated, as CHR’s
operational semantics ensures these rules are never matched by the same constraint combination.
For the remaining non-reactive rules, we introduce an innovative, more efficient technique to
prevent rule reapplication in Section 3.3, and prove its soundness.

3.1 Introduction: From Fixed to Non-reactive CHR

Non-reactive CHR constraints are never reactivated when built-in constraints are added. Formally:

Definition 3 A CHR constraint type c/n is non-reactive in a program P under a refined oper-
ational semantics ω?r (ωr or any of its refinements: see further) iff for any Solve transitions of
the form 〈[b|A],S,B,T〉n�P 〈S ++ A,S, b ∧ B,T〉n in any ω?r -derivation D the set of reactivated

4

:- chr constraint up to(+int), fib(+int,+int).

up to(U) ⇒ fib(0,1), fib(1,1).

up to(U), fib(N - 1,M1), fib(N,M2) ⇒ N < U | fib(N + 1,M1 + M2).

Figure 3: This handler, referred to as fibbo, performs a bottom-up computation of all Fibonacci
numbers up to a given number. All constraint arguments are fixed integers.

:- chr constraint fib(+int,?int).

memoization @ fib(N,M1) \ fib(N,M2) ⇔ M1 = M2.

base_case @ fib(N,M) ⇒ N ≤ 1 | M = 1.

recursion @ fib(N,M) ⇒ N > 1 | fib(N-1,M1), fib(N-2,M2), M = M1 + M2.

Figure 4: A CHR handler that computes Fibonacci numbers using a top-down computation
strategy with memoization.

constraints S ⊆ S does not contain constraints of type c/n. A rule ρ ∈ P is non-reactive iff all
constraint types that occur in its head are non-reactive in P.

The simplest instances are so-called fixed constraints. A CHR constraint type c/n is fixed iff
vars(c) ⊆ fixed(∅) (see Definition 2) for all constraints c of this type. Clearly, if all constraint ar-
guments are fixed, no additional rule becomes applicable when adding built-in constraints. Which
CHR constraints are fixed is derived from their mode declarations, or using static groundness
analysis [13].

Example 2 The fibbo handler depicted in Figure 3, performs a bottom-up computation of all
Fibonacci numbers up to a given number. The constraint declarations1 specify that all arguments
are fixed instances of the host language’s int type (the ‘+’ mode declaration indicates a constraint’s
argument is fixed).

Under ωr, a CHR constraint type is non-reactive iff it is fixed. The following example though
shows why the class of non-reactive constraints should be larger:

Example 3 Figure 4 contains an alternative Fibonacci handler, this time using a top-down com-
putation strategy with memoization. The fib/2 constraint is not fixed, and is typically called with
a free (logical) variable as second argument—hence also the ‘?’ mode declaration. Reactivating
fib/2 constraints is nevertheless pointless, as there are no guards constraining its second argu-
ment. Additional built-in constraints therefore never result in additional applicable rules.

Using unbound, unguarded arguments to retrieve the outcome of a computation is very com-
mon in CHR. Under ωr, with all these programs, constraints such as fib/2 may be reactivated
unnecessarily. In general, CHR constraints should only be reactivated if additional built-in con-
straints may cause more guards to become entailed. This is insufficiently specified in the ωr
semantics. To address this issue, we reintroduce the concept of anti-monotonicity [11, 21]:

Definition 4 A conjunction of built-in constraints B is anti-monotone in a set of variables V
iff ∀B1, B2((πvars(B)\V (B1 ∧B2)↔ πvars(B)\V (B1))

→ ((DH 6|= B1 → B)→ (DH 6|= B1 ∧B2 → B)))

Definition 5 A CHR program P is anti-monotone in the i’th argument of a CHR constraint
type c/n, if and only if for every occurrence c(x1, . . . , xi, . . . , xn) in HNF(P), the guard of the
corresponding rule is anti-monotone in {xi}.

1 The syntax is inspired by that of the K.U.Leuven CHR system [10, 12].

5

:- chr constraint account(+client id, +float), sum(+client id, ?float).
:- chr constraint gen(+client id), sum(+float), get(?float).

sum balances @ sum(C, Sum) ⇔ gen(C), get(Sum).

generate @ gen(C), account(C,B) ⇒ sum(B).

simplify @ sum(B1), sum(B2) ⇔ sum(B1 + B2).

retrieve @ get(Q), gen(), sum(Sum) ⇔ Q = Sum.

Figure 5: CHR rules computing the sum of the account balances of a given client. These rules
may be part of some larger CHR handler modeling a banking application.

A CHR program is always anti-monotone in fixed or unguarded constraint arguments. More-
over, several typical built-ins are anti-monotone in their arguments. In Prolog, for instance, var(X)
is anti-monotone in {X}. Using anti-monotonicity, we now define ω′r, a slight refinement of ωr2:

Definition 6 Let delay varsP(c) denote the set of variables in which P is not anti-monotone
that occur in an (identified) CHR constraint c. Then ω′r is obtained from ωr by replacing the
upper bound on the set of reactivated constraints S in its Solve transition with “ ∀c ∈ S :
delay varsP(c) 6⊂ fixed(B)”.

Most rules in general-purpose CHR programs are non-reactive under ω′r. Several CHR systems,
including the K.U.Leuven CHR and JCHR systems [12, 19], already implement this refinement of
ωr (see also [11]). In the following two subsections, we prove that for non-reactive CHR rules the
expensive maintenance of a propagation history can always be avoided.

3.2 Propagation History Elimination

Because non-reactive CHR constraints are only active once, non-reactive propagation rules often
do not require a history:

Example 4 The sum/2 constraint in Figure 5 computes the sum of a client’s account balances
using a common CHR programming idiom to compute aggregates (see also [20]). The idiom uses
a (typically non-reactive) propagation rule to generate a number of constraints, from which, after
simplification to a single constraint, the result can be retrieved.

Returning to the example: when the active gen/1 constraint considers the generate rule, it
iterates over candidate account/2 partner constraints. Assuming this iteration does not contain
duplicates (a property formalized shortly in Definition 8), the generate rule never fires with the
same constraint combination under ωr, even if no propagation history is maintained. Indeed, the
generate rule only adds sum/1 constraints, which, as there is no get/1 constraint yet in the store
(the body of the sum balances rule is executed from left to right), only fire the simplify rule.

A common mistake is to assume that the history is thus superfluous for all non-reactive CHR
rules. This is not the case, as shown by the following example:

Example 5 Reconsider the fibbo handler of Figure 3. If an up to(U) constraint is told, the first
rule propagates two fib/2 constraints. After this, the second rule propagates all required fib/2

constraints, each time with a fib/2 constraint as the active constraint. Next, control returns to
the up to(U) constraint, and advances to its second occurrence. Some mechanism is then required
to prevent the second (non-reactive) propagation rule to add erroneous fib/2 constraints.

So, non-reactive propagation rules can match the same constraint combination more than once.
This occurs if one or more partner constraints for an active constraint in rule ρ were added by
firing ρ or some earlier rule with the same active constraint. We say these partner constraints
observe the corresponding occurrence of the active constraint in ρ (cf. also [13]). Formally:

2 See Appendix A for a formal proof that ω′r is indeed an instance of ωr. The appendix also specifies the
difference between our definition of ω′r and that of [11], which was wrong.

6

Definition 7 Let the k’th occurrence of a rule ρ’s head be the j’th occurrence of constraint type
c/n. Then this occurrence is unobserved under a refined operational semantics ω?r iff for all
Activate or Default transitions of the form3:

〈A0,S,B,T〉 �P 〈[c#i :j|A],S,B,T〉

(A0[1] = c#i or A0[1] = c#i : j − 1) the following holds: ∀(ρ, I) ∈ T : I[k] 6= i, and similarly for
all transition sequences starting with a Propagate transition

〈A,S,B,T〉 �P 〈B++A,S′,B′,T′〉 �?
P 〈A,S′′,B′′,T′′〉

with A[1] = c#i :j, ∀(ρ, I) ∈ T′′\T′ : I[k] 6= i.

Let ω†r denote the semantics obtained from ω′r by adding the following condition to its Prop-
agate and Simplification transitions: “ If the j’th occurrence of c is unobserved under ω′r, then
T′ = T ”. Also, to prevent trivial reapplication in a consecutive sequence of Propagate transitions
(see e.g. Example 4), propagation in ω†r is defined to be duplicate-free:

Definition 8 (Duplicate-free Propagation) Propagation in a refined operational semantics
ω?r is duplicate-free iff for all ω?r -derivations D of a CHR program P where the j’th occurrence of
c is kept, the following holds:

if



σ1�P σ2�?
P σ
′
1�P σ

′
2 is part of D

σ1 = 〈[c#i :j|A],S, . . .〉 and σ′1 = 〈[c#i :j|A],S′, . . .〉
σ1�P σ2 is a Propagate transition applied with constraints H ⊆ S
σ′1�P σ

′
2 is a Propagate transition applied with constraints H ′ ⊆ S′

between σ2 and σ′1 no Default transition occurs of the form
σ2�?

P 〈[c#i :j|A], . . .〉 �P 〈[c#i :j + 1|A], . . .〉 �?
P σ
′
1

then H 6= H ′.

The following theorem establishes the equivalence of ω†r and ω′r, thus proving the soundness of
eliminating the history of unobserved CHR rules:

Theorem 1 Define the mapping function α† as follows:

α†(〈A,S,B,T〉n) = 〈A,S,B, {(ρ, I) ∈ T | ρ is not unobserved}〉n
If D is an ω′r derivation, then α†(D) is an ω†r derivation. Conversely, if D is an ω†r derivation,
then there exists an ω′r derivation D′ such that α†(D) = D′.
Proof. If D is an ω′r derivation, then α†(D) is clearly an ω†r derivation.

For the reverse direction, let D be an ω†r derivation, and D′ the derivation obtained from D by
adding the necessary tuples to the propagation history. That is, for each Propagate or Simplify
transition in D of the form

〈A,S,B,T〉n�P 〈B++A,S′,B,T〉n

the corresponding transition in D′ becomes of the form

〈A,S,B,T〉n�P 〈B++A,S′,B,T ∪ {(ρ, I)}〉n (1)

All Propagate and Simplify transitions in D′ now have form (1). It suffices to show that for all
these transitions (ρ, I) /∈ T (note that we used ∪ and not t, as the disjointness of the union is is
exactly what still needs to be shown).

Suppose there exist transitions of form (1) in D′ for which (ρ, I) ∈ T. Without loss of generality,
we may consider the first such transition. Suppose the active constraint c#i : j matched the k’th

3 We use ‘ ’ to denote that we are not interested in the identifier counter.

7

occurrence in ρ’s head. Then, clearly, this occurrence must be unobserved, and D′ starts with the
transition sequence

D[1] �?
P 〈A0,S0,B0,T0〉n0 (A0[1] 6= c#i :j)

�P 〈[c#i :j|A′],S0,B0,T0〉n0

�?
P 〈[c#i :j|A′],S,B,T〉n

�P 〈B++[c#i :j|A′],S′,B,T ∪ {(ρ, I)}〉n

with [c#i : j|A′] = A, I[k] = i and (ρ, I) ∈ T. The sequence of transitions without this last
invalid Propagate transition is the beginning of a valid ω′r derivation. Therefore, by Definition 7,
(ρ, I) /∈ T0 (the j’th occurrence of c is unobserved, and I[k] = i). Prior to the invalid Propagate
transition, the non-reactive c#i : j active constraint repeatedly appears on top of the activation
stack in a sequence of zero or more Propagate transitions:

. . .�P 〈[c#i :j|A],S0,B0,T0〉n0 �P 〈B1 ++[c#i :j|A],S′0,B0,T0 ∪ {(ρ, I1)}〉n0

�?
P 〈[c#i :j|A],S1,B1,T1〉n1

�P 〈B2 ++[c#i :j|A],S′1,B1,T1 ∪ {(ρ, I2)}〉n1

. . .
�P 〈[c#i :j|A],Sm,Bm,Tm〉nm

with Sm = S, Bm = B, Tm = T, and nm = n. By Definition 7:

∀i′ ∈ [1,m] : ∀(ρ, I ′) ∈ Ti′ \ (Ti′−1 ∪ {(ρ, Ii′)}) : I ′[k] 6= i′

and consequently (by induction):

Θ = {(ρ, I ′) ∈ T \ T0 | I ′[k] = i} = {(ρ, I1), . . . , (ρ, Im)}

Because propagation is duplicate-free, (ρ, I) /∈ Θ. Consequently, as I[k] = i, (ρ, I) /∈ T \ T0.
And we already showed that (ρ, I) /∈ T0, so (ρ, I) /∈ T. By contradiction, no (first) transition of
form (1) can exist with (ρ, I) ∈ T. �

3.2.1 Implementation

The main difficulty in the implementation of this optimization is deriving that a rule is unobserved
(enforcing duplicate-free propagation is straightforward, as shown in Section 3.3). The abstract
interpretation-based late storage analysis of [13], which derives a similar observation property, can
be adapted for this purpose. The details are beyond the scope of this paper.

3.3 Optimized Reapplication Avoidance

Non-reactive CHR rules that are not unobserved, such as the second rule in the fibbo handler
of Example 5, do require some mechanism to prevent reapplication. Moreover, even if a rule
is unobserved, this does not mean the compiler is capable of deriving it. In this section we
therefore present a novel, very efficient technique that prevents the reapplication of any non-
reactive propagation rule without maintaining a costly history.

The central observation is that, when a non-reactive rule is applied, the active constraint is
always more recent than its partner constraints:

Lemma 1 Let P be an arbitrary CHR program, with ρ ∈ P a non-reactive rule, and D an
arbitrary ω′r derivation with this program. Then for each Simplify or Propagate transition in
D of the form

〈[c#i :j|A],S,B,T〉n�P 〈A′,S′,B′,T t {(ρ, I1 ++[i]++I2)}〉n (2)

the following holds: ∀i′ ∈ I1 ∪ I2 : i′ < i.

8

Proof. Assume i′ = max(I1 t I2) with i′ ≥ i. By Definition 1 of rule applicability, i′ 6= i, and
∃c′#i′ ∈ S. This c′#i′ partner constraint must have been stored in an Activate transition.
Since i′ = max(I1 t {i} t I2), in D, this transition came after the Activate transitions of all
other partners, including c#i. In other words, all constraints in the matching combination of
transition (2) were stored prior to the activation of c′#i′. Also, in (2), c#i is back on top of the
activation stack. Because c is non-reactive, and thus never put back on top by a Reactivate
transition, the later activated c′#i′ must have been removed from the stack in a Drop transition.
This implies that all applicable rules matching c′ must have fired. As all required constraints were
stored (see earlier), this includes the application of ρ in (2). By contradiction, our assumption is
false, and i′ < i. �

Let ω‡r denote the semantics obtained from ω′r by replacing the propagation history condition
in its Simplify and Propagate transitions with the following:

If ρ is non-reactive, then ∀i′ ∈ id(H1 ∪ H2) : i′ < i and T′ = T. Otherwise, let
t = (ρ, id(H1)++[i]++ id(H2)), then t /∈ T and T′ = T ∪ {t}.

Propagation in ω‡r is again duplicate-free, as defined by Definition 8. Similarly to Theorem 1, the
following theorem proves that ω′r and ω‡r are equivalent:

Theorem 2 Define the mapping function α‡ as follows:

α‡(〈A,S,B,T〉n) = 〈A,S,B, {(ρ, I) ∈ T | ρ is a reactive CHR rule}〉n
If D is an ω′r derivation, then α‡(D) is an ω‡r derivation. Conversely, if D is an ω‡r derivation,
then there exists an ω′r derivation D′ such that α‡(D) = D′.
Proof. If D is an ω′r derivation, then, by Lemma 1, α‡(D) is an ω‡r derivation.

For the reverse direction, let D be an ω†r or ω‡r derivation, and D′ the derivation obtained
from D by adding the necessary tuples to the propagation history, as described in the proof of
Theorem 1. That is: all Propagate and Simplify transitions in D′ have form (1). It suffices
again to show that for all these transitions (ρ, I) /∈ T.

First, we show that Lemma 1 still holds for the derivation D. That is, for all transitions of D
of form (1), if the active constraint matched the k’th occurrence in ρ’s head, then I[k] = max(I).
By definition of ω†r, this is true for the tuples that were not added to the history in the original
derivation D. For those added in both D and D′, this also holds by definition of ω†r and Lemma 1.

Suppose, for some transition of form (1), that (ρ, I) ∈ T, and that the active constraint
matched the k’th occurrence of ρ. Then I[k] = max(I). Moreover, when the (ρ, I) tuple was first
added to the history, by uniqueness of constraint identifiers, the active constraint was the same
constraint as active in the considered constraint. As propagation is duplicate-free in D, and the
active constraint is non-reactive, this is not possible. �

3.3.1 Implementation

The standard CHR compilation scheme (see e.g. [3, 10]) generates for each occurrence a nested
iteration that looks for matching partner constraints for the active constraint. If a matching com-
bination is found, and the active constraint is not removed, the constraint iterators are suspended
and the rule’s body is executed. Afterwards, the nested iteration is simply resumed.

Example 6 Figure 6(a) shows the generated code for the second occurrence of the up to/1 con-
straint in Figure 3. For the query up to(U), the propagation history for the corresponding rule
would require O(U) space. Because all constraints are non-reactive, however, no propagation his-
tory has to be maintained. Simply comparing constraint identifiers suffices.

If all iterators return candidate partner constraints at most once, propagation is guaranteed
to be duplicate-free (see Definition 8). Most iterators used by CHR implementations have this
property. If not, a temporary history can for instance be maintained whilst the active constraint
is considering an occurrence.

9

procedure up to(U)#id : 2

foreach fib(N,M2)#id2 in ...

foreach fib(N-1,M1)#id1 in ...

if N < U

if id < id1 and id < id2
. . .

(a) Efficient reapplication avoidance using identifier
comparisons

procedure up to(U)#id : 2

foreach fib(N,M2)#id2 in ...

if id < id2 and N < U

foreach fib(N-1,M1)#id1 in ...

if id < id1
. . .

(b) After Loop-invariant Code Motion

Figure 6: Pseudocode for the second occurrence of the up to/1 constraint of Figure 3.

3.3.2 Loop-invariant Code Motion

Most CHR compilers perform a so-called Loop-invariant Code Motion optimization to check guard
entailment as soon as possible (e.g. ‘N < U ’ in Figure 6(b)). Contrary to a propagation history
check, identifier comparisons enable additional code motion, as illustrated in Figure 6(b). This
may prune the search space of candidate partner constraints considerably.

Note furthermore that Lemma 1 does not only apply to propagation rules, but also to simplifi-
cation and simpagation rules. Whilst maintaining a history for non-propagation rules is pointless,
comparing partner constraint identifiers in outer loops is not, as they can avoid redundant itera-
tions of nested loops.

4 Idempotence

Constraints in CHR handlers that specify traditional constraint solvers, such as the leq/2 con-
straint of Example 1, typically range over unbound variables, and are thus highly reactive. Without
a history, constraint reactivations are likely to cause reactive propagation rules to fire multiple
times with the same combination. For constraint solvers, however, such additional rule appli-
cations generally have no effect, as they only add redundant constraints that are immediately
removed. For such rules, the propagation history may be eliminated as well.

Example 7 Suppose the reactive transitivity propagation rule of Figure 1 is allowed to fire
a second time with the same constraint combination matching its head, thus adding a leq(X,Z)

constraint for the second time. If the earlier told duplicate is still in the store, this redundant
leq(X,Z) constraint is immediately removed by the idempotence rule. Otherwise, the former
duplicate must have been removed by either the reflexivity or the antisymmetry rule. It is easy
to see that in this case X = Z, and thus that the new, redundant leq(X,Z) constraint is again
removed immediately by the reflexivity rule.

We say the leq/2 constraint of the above example is idempotent. With live(T,S) = {(ρ, I) ∈
T | I ⊆ id(S)}, idempotence is defined formally as:

Definition 9 A CHR constraint type c/n is idempotent in a CHR program P under a refined
semantics ω?r iff for any state σ = 〈[c|A],S,B,T〉n in a ω?r derivation D with c a CHR constraint,
the following holds: if earlier in D a state 〈[c′|A′],S′,B′,T′〉n′ occurs with DH |= B→ c = c′, then
σ�?

P 〈A,S′′,B′′,T′′〉n′′ with S′′ = S, live(T′′,S) = live(T,S), and DH |= πvars(B)∪vars(D[1])(B′′)↔
B.

In other words, an idempotent constraint c for which a syntactically equal constraint c′ was
told earlier in the same derivation, is removed without making any observable state change. Since
‘�?
P’ denotes a finite derivation, telling duplicate idempotent CHR constraints does not affect

termination either.
We do not consider arbitrary, extra-logical host language statements here, and assume all built-

in constraints b are idempotent, that is: ∀b : DH |= b ∧ b↔ b. By adding “ If DH |= (B ∧ b)↔ B,

10

then S = ∅ ” to the Solve transition of ωr (or any of its refinements from Section 3), we avoid
redundant constraint reactivations when idempotent built-in constraints are told. This is correct,
as Solve’s upper bound on S already specifies that any matching that was already possible prior
to b’s addition may be omitted from S. Many CHR systems already implement this optimization.
Denote the resulting semantics ωidemr .

Definition 10 A CHR rule ρ ∈ P is idempotent (under ωidemr) iff all CHR constraint types that
occur in its body are idempotent in P.

We now prove that an idempotent propagation rule may be fired more than once with the
same combination of constraints, without affecting a program’s operational semantics. Let ωidem

′

r

denote the semantics obtained by adding the following phrase to the Simplify and Propagate
transitions of ωidemr :

If the rule ρ is idempotent, then T’ = T; otherwise, . . . (as before)

Assuming furthermore that propagation for ωidem
′

r is duplicate-free4 in the sense of Definition 8,
the ωidem

′

r semantics is equivalent to ωidemr . More precisely:

Theorem 3 If D′ is an ωidem
′

r derivation, then there exists an ωidemr derivation D with D[1] =
D′[1] such that a monotonic function α can be defined from the states in D to states in D′ for
which

- α(D[1]) = D′[1]
- if α(D[i]) = D′[k] and α(D[j]) = D′[l] with i < j, then k < l
- if α(〈A,S,B,T〉n) = 〈A′,S′,B′,T′〉n′ , then DH |= πvars(B)∪vars(D[1])(B′) ↔ B, A′ = A,

S′ = S, and live(T′,S) = live(T,S) \ {(ρ, I) ∈ T | ρ is idempotent}.
Conversely, if D is an ωidemr derivation, then an ωidem

′

r derivation D′ exists with D′[1] = D[1] for
which a function with these same properties can be defined.
Proof Sketch. An ωidem

′

r derivation D′ only differs from the corresponding ωidemr derivation
D when a Propagate transition fires an idempotent propagation rule ρ using a combination of
constraints that fired ρ before. This ωidem

′

r transition has form σ0 = 〈A,S,B,T〉n �P 〈B ++
A,S,B,T〉n = σ1. Because ρ’s body B is idempotent, it follows from Definition 9 that the remain-
der of D′ begins with σ1�?

P σ
′
0 = 〈A,S,B′,T′〉n, with DH |= πvars(B)∪vars(D[1])(B′) ↔ B, and

live(T′,S) = live(T,S). Because σ′0 is thus essentially equivalent to σ0, we simply omit states σ1

to σ′0 in the corresponding ωidemr derivation D.
Given above observations it is straightforward to construct the mapping function α and the

required derivations for both directions of the proof. �

For multi-headed propagation rules, reapplication is often cheaper than maintaining and check-
ing a propagation history. The experimental results of Section 5 confirm this. To estimate the
cost of reapplication versus the cost of maintaining a history, heuristics can be used.

4.1 Deriving Idempotence

The main challenge lies in automatically deriving that a CHR constraint is idempotent. A wide
class of idempotent CHR constraints should be covered:

Example 8 Many constraint solvers contain a rule such as:

in(X,L1,U1) \ in(X,L2,U2) ⇔ L2 ≤ L1, U2 ≥ U1 | true.

Here, ‘in(X,L,U)’ denotes that the variable X lies in the interval [L, U]. The in/3 constraint is
probably idempotent (it depends on the preceding rules). There is however an important difference
with the leq/2 constraint in Example 7: by the time the constraint is told for the second time, the
earlier told duplicate may now be replaced with a syntactically different constraint—in this case:
a constraint representing a smaller interval domain.

4 In this case a finite number of duplicate propagations would also not be a problem.

11

Theorem 4 provides a sufficiently strong syntactic condition for determining the idempotence
of a CHR constraint. It uses arbitrary preorders on the constraint’s arguments. For the three
arguments of the in/3 constraint in Example 8 for instance, the preorders =, ≤ and ≥ can be
used respectively.

Let bi(B) and chr(B) denote the conjunction of built-in respectively CHR constraints that
occur in a constraint conjunction B. Then:

Theorem 4 A CHR constraint type c/n is idempotent in P under ωidemr if for preorders C1, . . . ,Cn:

1. There exists a rule of the form “c(y1, . . . , yn) \ c(x1, . . . , xn)⇔ G | true.” in HNF(P) with
DH |= (x1 C1 y1 ∧ . . . ∧ xn Cn yn)→ G.

Let ρ be the first such rule occurring in the HNF(P) sequence.

2. All rules in HNF(P) prior to ρ that contain an occurrence of c/n have a trivial body ‘true’,
and do not contain any removed occurrences apart from possibly that c/n occurrence.

Consider a set of n mutually distinct variables V = {x1, . . . , xn}. For all removed occurrences of
c/n in HNF(P) that can be renamed to the form

Hk \ Hr1 , c(x1, . . . , xn), Hr2 ⇔ G |B

(Hk, Hr1 , and Hr2 may be empty), such that ¬∃c(y1, . . . , yn) ∈ Hk ∪ chr(B) : DH |= G∧ bi(B)→
(x1 C1 y1 ∧ . . . ∧ xn Cn yn), define Φ = πV (G ∧ bi(B)). For each of these occurrences, either
DH |= Φ↔ false, or conditions 3 and 4 hold:

3. There exists a rule in HNF(P) that can be renamed to the form
“c(x1, . . . , xn)⇔ G |B”, such that bi(B) = B and DH |= Φ→ (G ∧B).

Let ρ′ be the first such rule occurring in the HNF(P) sequence.

4. All rules in HNF(P) prior to ρ′ that contain an occurrence of c/n can be renamed to
“Hk \Hr⇔ G | B” with Hk++Hr = H1 ++[c(x1, . . . , xn)]++H2, such that either

- DH |= Φ→ ¬G; or

- Hr ⊆ [c(x1, . . . , xn)] ∧ (bi(B) = B) ∧ DH |= (Φ ∧G)→ B; or

- ∃c(y1, . . . , yn) ∈ H1 ∪H2 : DH |= (Φ ∧G)→ (x1 C1 y1 ∧ . . . ∧ xn Cn yn).
Proof. Let P be an arbitrary CHR program, and suppose that in this program the four conditions
listed in Theorem 4 hold for CHR constraint c/n. Let D be an arbitrary ωidemr derivation of P of
the form

〈Q, ∅, true, ∅〉1�?
P σ
′ = 〈[c′|A′],S′,B′,T′〉′n�?

P σ = 〈[c|A],S,B,T〉n
with c and c′ CHR constraint of type c/n such that DH |= B → c = c′. Clearly, D 3 σ′�P
〈[c′#n′|A], {c′#n′} ∪ S′,B′,T′〉n′+1, that is: at some point earlier in the derivation the duplicate
constraint c’#n’ was added to the constraint store. Suppose now that DH |= π∅(B) (the case
with DH |= ¬π∅(B) is straightforward), and that σ�P σ0 = 〈[c#n|A], {c#n} ∪ S,B,T〉n+1�?

P
〈A,S′′,B′′,T′′〉n′′ . Then it remains to be shown that S′′ = S, DH |= πvars(B)∪vars(D[1])(B′′) ↔ B,
and live(T,S) = live(T′′,S′′). For the derivation starting from σ0, with active constraint c#n,
we consider two cases. Let C denote the preorder on c/n constraints defined as c(x1, . . . , xn) C
c(y1, . . . , yn)↔ x1 C1 y1 ∧ . . . ∧ xn Cn yn, then:

Case A ∃c′′#n′′ ∈ S : DH |= B→ cC c′′

Let ρ be the rule as defined in condition 1. Then appl(ρ, [c′′#n′′], [c#n],B), so the active
constraint c#n is removed when it reaches rule ρ. By condition 2, none of the rules that are
applied with c#n active before it is removed (by an application of ρ or earlier) remove or add
any constraints. Therefore, no other CHR constraint becomes active before c#n is removed, and
σ0 �?

P 〈A,S,B′′,T′′〉n′′ with πvars(B)∪vars(D[1])(B′′) ↔ B (only matching substitutions may be
added to B), and live(T,S) = live(T′′,S) (all rules fired involve c#n).

12

SWI JCHR total # n-headed propagation rules
history non-react history non-react non-react+ rules n = 1 n = 2 n = 3 n > 3

fibbo(1000) 15,929 4,454 (28%) 70 67 (95%) 21 (30%) 3 1 - 1 -
fibbo(3000) timeout timeout 542 464 (85%) 153 (28%) 3 1 - 1 -
floyd-warsh(30) 11,631 9,706 (83%) 368 188 (51%) 186 (51%) 21 3 2 1 -
interpol(8) 5,110 1,527 (30%) 43 41 (95%) 37 (86%) 5 - 2 - -
manners(128) 849 561 (66%) 328 322 (98%) 317 (97%) 8 - - 1 -
nsp grnd(12) 547 169 (31%) 10 6 (60%) 5 (50%) 3 1 1 - -
nsp grnd(36) 81,835 10,683 (13%) 1,434 502 (35%) 494 (34%) 3 1 1 - -
sum(1000,100) 6,773 3,488 (51%) 215 135 (63%) N/A 4 - 1 - -
turing(20) 10,372 7,387 (71%) 761 280 (37%) 276 (36%) 11 1 4 1 5
wfs(200) 2,489 2,143 (86%) 71 67 (94%) 67 (94%) 44 - 4 - -

Table 1: Benchmark results (in average milliseconds) for non-reactive CHR rules.

Case B ¬∃c′′#n′′ ∈ S : DH |= B→ cC c′′

Given this assumption, the c′#n′ constraint must have been removed from the store at some
point in the derivation. Moreover, this occurred when matching an occurrence that, after renaming,
had form:

Hk \ Hr1 , c(x1, . . . , xn), Hr2 ⇔ G |B

If for this rule the following holds

∃c(y1, . . . , yn) ∈ Hk ∪ chr(B) : DH |= G ∧ bi(B)→ (x1 C1 y1 ∧ . . . ∧ xn Cn yn) (3)

then a constraint c′′#n′′ with DH |= B → c = c′ C c′′ existed in, or was added to the store S at
the moment c′#n′ was removed. This constraint, in turn, must have been removed, so we apply
the above reasoning again, only this time for c′′#n′′ instead of c′#n′.

After a finite number of times, c′#n′, or one of its derived constraints c′′#n′′, must have
been removed by a rule for which formula (3) does not hold. For V = {x1, . . . , xn}, define
Φ = πV (G∧bi(B)) as in the Theorem. The case where DH |= Φ↔ false is trivial, so assume DH |=
Φ 6↔ false. Then DH |= B → Φ, and conditions 3 and 4 hold. By condition 3, ∃ρ′ ∈ HNF(P) :
appl(ρ′, ∅, [c#n],Φ), and thus ∃ρ′ ∈ HNF(P) : appl(ρ′, ∅, [c#n],B). This rule ρ′ furthermore does
not add CHR constraints, nor does it add built-in constraints that are not already entailed by
B. Condition 4 then ensures that none of the rules applied whilst c#n is active, and before the c
constraint is removed (by an application of ρ′ or earlier), remove or add CHR constraints, or add
unentailed built-in constraints. Therefore, analogously to Case A, σ0�?

P 〈A,S,B′′,T′′〉n′′ with
live(T′′,S) = live(T,S) and DH |= πvars(B)∪vars(D[1])(B′′)↔ B. �

5 Evaluation

We implemented the optimizations introduced in this paper in the K.U.Leuven CHR system [10, 12]
for SWI-Prolog, and in the K.U.Leuven JCHR system [19] for Java, and evaluated them using
standard CHR benchmarks and constraint solvers. Benchmark timings are given in Tables 1 and
2. The history columns give the reference timings (in milliseconds) when using a propagation
history.

The non-react columns in Table 1 contain the results when the optimizations of Section 3 are
used. For the non-react+ measurements, loop-invariant code motion was applied to the identifier
comparisons (see Section 3.3; currently only implemented in JCHR5). If the history was eliminated
using the optimization of Section 3.2, code motion is of course not applicable (N/A). Table 2 shows
the results for the idempotence-based history elimination of Section 4.

Significant performance gains are measured. The selected benchmarks run about two times
faster on average, and scale better as well. Even though no numbers are shown, it is moreover

5 In JCHR, after code motion, identifier comparisons are integrated in the constraint iterators themselves. These
iterators moreover exploit the fact that the stored constraints are often sorted on their identifiers. This can further
improve performance.

13

SWI JCHR # SWI JCHR #history idempotence hist. idempot. history idempotence hist. idempot.
interval(21) 22,622 17,611 (78%) 8 5 (62%) 15/27 eq(35) 3,465 1,931 (56%) 47 19 (40%) 1/4
interval(42) timeout timeout 54 28 (52%) 15/27 leq(70) 3,806 1,236 (32%) 85 35 (41%) 1/4
nsp grnd(12) 547 164 (30%) 10 6 (60%) 2/3 nsp(12) 1,454 1,036 (71%) 12 8 (67%) 2/3
nsp grnd(36) 81,835 10,485 (13%) 1,365 496 (36%) 2/3 nsp(36) timeout timeout 1,434 621 (43%) 2/3
timepoint(16) 1,684 1,312 (78%) 404 317 (78%) 2/7 minmax(15) 4,826 3,631 (75%) 133 82 (61%) 6/54

Table 2: Benchmark results (in average milliseconds) for idempotent propagation rules. The ‘#’
columns give the number of propagation rules over the total number of rules.

clear that the space complexity of the propagation histories has become optimal. Unoptimized, the
worst-case space consumption of a propagation history is linear in the number of rule applications
(see e.g. Example 6). Using our optimizations, propagation histories consume no space at all. In
extreme cases, this even improves the space complexity of the entire CHR handler.

6 Conclusions

6.1 Related Work

A preliminary version of this paper covering only Section 3.3 of the present paper appeared in [21].
The present paper completes this earlier work by introducing propagation history elimination based
on unobservedness and idempotence, and by providing a more extensive experimental evaluation.

Section 3.2 can be seen as an extension and formalization of an optimization briefly presented
in [3]. This ad-hoc optimization was restricted to fixed CHR constraints, and lacked a formal
correctness proof.

Since the propagation history contributes to significant performance issues when implementing
CHR in a tabling environment (see e.g. [14]), [9] proposes an alternative set-based CHR semantics,
and argues that it does not need a propagation history. Our results, however, show that abandoning
CHR’s familiar multiset-based semantics is not necessary: indeed, our optimizations eliminate the
history-related performance issues whilst preserving the ωr-semantics.

6.2 Conclusions

Whilst there is a vast literature on CHR compilation and optimization, propagation histories never
received much attention. Maintaining a propagation history, however, comes at a considerable
runtime cost, both in time and in space. In this work, we resolved this apparent discrepancy,
and introduced several innovative optimization techniques that circumvent the maintenance of a
history for the majority of CHR propagation rules:

• For non-reactive CHR propagation rules, we showed that very cheap constraint identifier
comparisons can be used. These comparisons can moreover be moved early in the generated
nested iterations, thus pruning the search space of possible partner constraints. We also
identified the class of non-reactive rules for which the history can simply be eliminated.

• Whilst rules in general-purpose CHR programs are mostly non-reactive, CHR handlers that
specify a constraint solver are typically highly reactive. We therefore introduced the concept
of idempotence, and found that most rules in the latter handlers are idempotent. We showed
that if a propagation rule is idempotent, the rule may safely be applied more than once
matching the same combination of constraints. Interestingly, reapplication is mostly cheaper
than maintaining and checking a history. We also presented a sufficient syntactic condition
for the idempotence of a CHR constraint.

We proved the correctness of all our optimizations and analyses in the formal framework
of CHR’s refined operational semantics [4], and implemented them in two state-of-the-art CHR
systems [12, 19]. Our experimental results show significant performance gains for all benchmarks
containing propagation rules.

14

Acknowledgments The author thanks Tom Schrijvers for his invaluable aid in the implemen-
tation of the optimizations in the K.U.Leuven CHR system. Thanks also to Bart Demoen and the
anonymous referees of CHR 2008 and ICLP 2008 for their useful comments on earlier versions of
this paper.

References

[1] The Constraint Handling Rules (CHR) programming language homepage, 2008.
http://www.cs.kuleuven.be/∼dtai/projects/CHR.

[2] B. Demoen and V. Lifschitz, editors. ICLP ’04: Proc. 20th Intl. Conf. Logic Programming,
volume 3132 of LNCS, Saint-Malo, France, September 2004. Springer.

[3] Gregory J. Duck. Compilation of Constraint Handling Rules. PhD thesis, University of
Melbourne, Australia, December 2005.

[4] Gregory J. Duck, Peter J. Stuckey, Maŕıa Garćıa de la Banda, and Christian Holzbaur. The
refined operational semantics of Constraint Handling Rules. In Demoen and Lifschitz [2],
pages 90–104.

[5] Thom Frühwirth. Theory and practice of Constraint Handling Rules. J. Logic Programming,
Special Issue on Constraint Logic Programming, 37(1–3):95–138, 1998.

[6] Thom Frühwirth. Programming with a Chinese horse. Invited Talk at 11th Intl. Conf., CP
2005, Sitges, Spain, October 2005. (slides).

[7] Thom Frühwirth. Constraint Handling Rules. Cambridge University Press, 2008. To appear.

[8] Christian Holzbaur and Thom Frühwirth. A Prolog Constraint Handling Rules compiler and
runtime system. volume 14(4) of Journal of Applied Artificial Intelligence, pages 369–388.
Taylor & Francis, April 2000.

[9] Beata Sarna-Starosta and C.R. Ramakrishnan. Compiling Constraint Handling Rules for
efficient tabled evaluation. In M. Hanus, editor, PADL ’07: Proc. 9th Intl. Symp. Practical
Aspects of Declarative Languages, volume 4354 of LNCS, pages 170–184, Nice, France, January
2007. Springer.

[10] Tom Schrijvers. Analyses, optimizations and extensions of Constraint Handling Rules. PhD
thesis, K.U.Leuven, Belgium, June 2005.

[11] Tom Schrijvers and Bart Demoen. Antimonotony-based delay avoidance for CHR. Technical
Report CW 385, K.U.Leuven, Dept. Comp. Sc., July 2004.

[12] Tom Schrijvers and Bart Demoen. The K.U.Leuven CHR system: Implementation and ap-
plication. In Th. Frühwirth and M. Meister, editors, CHR ’04, Selected Contributions, pages
8–12, Ulm, Germany, May 2004.

[13] Tom Schrijvers, Peter J. Stuckey, and Gregory J. Duck. Abstract interpretation for Constraint
Handling Rules. In P. Barahona and A.P. Felty, editors, PPDP ’05, pages 218–229, Lisbon,
Portugal, July 2005. ACM Press.

[14] Tom Schrijvers and David S. Warren. Constraint Handling Rules and tabled execution. In
Demoen and Lifschitz [2], pages 120–136.

[15] Jon Sneyers. Optimizing compilation and computational complexity of Constraint Handling
Rules. PhD thesis, K.U.Leuven, Belgium, 2008. To appear.

15

http://www.cs.kuleuven.be/~dtai/projects/CHR

[16] Jon Sneyers, Peter Van Weert, Tom Schrijvers, and Leslie De Koninck. As time goes by:
Constraint Handling Rules – A survey of CHR research between 1998 and 2007. Submitted
to Journal of Theory and Practice of Logic Programming, 2008.

[17] Martin Sulzmann and Edmund S.L. Lam. Parallel execution of multi-set constraint rewrite
rules. In S. Antoy, editor, PPDP ’08: Proc. 10th Intl. Conf. Princ. Pract. Declarative Pro-
gramming, pages 20–31, Valencia, Spain, July 2008. ACM Press.

[18] Peter Van Weert. Optimization of CHR propagation rules. In ICLP ’08: Proc. 24rd Intl.
Conf. Logic Programming, LNCS, Udine, Italy, December 2008. Accepted.

[19] Peter Van Weert, Tom Schrijvers, and Bart Demoen. K.U.Leuven JCHR: a user-friendly,
flexible and efficient CHR system for Java. In T. Schrijvers and Th. Frühwirth, editors, CHR
’05, K.U.Leuven, Dept. Comp. Sc., Technical report CW 421, pages 47–62, Sitges, Spain,
2005.

[20] Peter Van Weert, Jon Sneyers, and Bart Demoen. Aggregates for CHR through program
transformation. In A. King, editor, LOPSTR ’07, Revised Selected Papers, volume 4915 of
LNCS, Kongens Lyngby, Denmark, 2008.

[21] Peter Van Weert. A tale of histories. In T. Schrijvers, F. Raiser, and T. Frühwirth, editors,
CHR ’08, RISC Report Series 08-10, University of Linz, Austria, pages 79–94, Hagenberg,
Austria, July 2008.

[22] Jan Wielemaker. An overview of the SWI-Prolog programming environment. In F. Mes-
nard and A. Serebenik, editors, Proc. 13th Intl. Workshop on Logic Programming En-
vironments, pages 1–16, Heverlee, Belgium, December 2003. System’s hompeage at
http://www.swi-prolog.org/.

16

A On Anti-Monotony-based Delay Avoidance

In [11], the following version of the Solve transition is proposed:

1. Solve† 〈[b|A],S,B,T〉n �P 〈S ++ A,S, b ∧ B,T〉n if b is a built-in constraint and
S ⊆ S such that ∀c ∈ S \S : ∃V1, V2 : vars(c) = V1 ∪ V2 ∧ V1 ⊆ fixed(B) ∧
all variables in V2 appear only in arguments of c that are anti-monotone in P.

Proposition 1 Using our notation, this Solve† transition is equivalent to:

1. Solve‡ 〈[b|A],S,B,T〉n�P 〈S++A,S, b∧B,T〉n if b is a built-in constraint and S ⊆ S
such that ∀c ∈ S \S : delay varsP(c) ⊆ fixed(B).

Proof. Let c ∈ S \ S, with S defined as in Solve†. Then sets V1 and V2 exist, as defined in
Solve†. By definition, V2 ⊆ vars(c)\delay varsP(c), and thus V2∩delay varsP(c) = ∅. Therefore,
delay varsP(c) ⊆ V1 ⊆ fixed(B).

Conversely, assume c ∈ S \ S, with S defined as in Solve‡. Then the required sets V1 and V2

exist: simply take V1 = delay varsP(c) and V2 = vars(c) \ V1. �

In [11] the resulting semantics is shown to be correct with respect to the original refined
operational semantics ωr [4], where Solve is specified as:

1. Solve? 〈[b|A],S,B,T〉n�P 〈S++A,S, b ∧ B,T〉n where b is a built-in constraint and
S ⊆ S such that vars(S \S) ⊆ fixed(B).

That is, all constraints with at least one non-fixed argument have to be reactivated. The original
specification of the ωr semantics therefore prohibits any form of delay avoidance for non-fixed
arguments, as illustrated by this example:

Example 9 Consider the following CHR program:

c(X) ⇒ X = 2, b.

c(_), a ⇔ true.

c(_), b ⇔ true.

For the query ‘a, c(X)’ with X a free logical variable, Solve? specifies that the c(X) constraint
has to be reactivated when ‘X = 2’ is added to the built-in constraint solver, which leads to a final
constraint store {b#3}. This is the only final store allowed by the original refined semantics.
However, as the program is clearly anti-monotone in c’s argument, the Solve‡ transition might
not reactivate c, which then leads to an incorrect final constraint store {a#1}.

This counterexample shows the proof in [11] must be wrong. The essential problem is that
Solve? specifies that constraints with non-fixed arguments have to be reactivated, even if the
newly added built-in constraint does not enable any new matchings with them. This problem is
not restricted to delay avoidance. It was first noted in [3, 10] in a different context:

Example 10 Consider the following CHR program:

c(X) ⇒ Y = 2, b.

c(_), a ⇔ true.

c(_), b ⇔ true.

For the query ‘a, c(X)’ with X a free logical variable the original Solve? transition specifies that
the c(X) constraint must be reactivated when ‘Y = 2’ is added to the built-in constraint solver. The
only final store allowed by the original refined semantics is thus {b#3}. However, actual CHR
implementations will not reactivate the c(X) constraint, as the newly added ‘Y = 2’ constraint
does not affect X, the only variable occurring in c(X).

17

Because the original refined operational semantics is thus inconsistent with the behavior of
actual (Prolog) CHR implementations, a slightly more relaxed version of the Solve transition
was defined in [3, 10]. This is also the version of ωr we presented in Section 2.2. The following
theorem shows that our definition of Solve’ in Section 3 is correct with respect to this relaxed ωr
semantics:

Theorem 5 Let P be an arbitrary CHR program, and σ = 〈[b|A],S,B,T〉n an arbitrary state
with b a built-in constraint. If σ�P 〈S++A,S, b ∧ B,T〉n is a valid Solve’ transition of ω′r, then
it is a valid ωr Solve transition as well.
Proof. By definition of Solve’, S ⊆ S, and

(1) ∀c ∈ S : delay varsP(c) 6⊂ fixed(B),
(2) ∀H ⊆ S : (H = K++R ∧ ∃ρ ∈ P :

¬appl(ρ,K,R,B) ∧ appl(ρ,K,R, b ∧ B))→ (S ∩H 6= ∅).

As the lowerbound of the Solve transition in ωr is also exactly (2), it suffices to prove that ∀c ∈ S :
vars(c) 6⊂ fixed(B). This is obvious given (1), as by definition ∀c : delay varsP(c) ⊆ vars(c). �

The optimized semantics of [11] on the other hand remains incorrect with respect to the relaxed
ω′r semantics. The reason is that the Solve‡ transition only restricts the constraints that are not
reactivated. The constraints that are reactivated, on the other hand, are not restricted:

Example 11 Consider the following CHR program:

c ⇒ X = 2, b.

c, a ⇔ true.

c, b ⇔ true.

For the query ‘a, c’ the Solve transition of Figure 2 specifies that the c constraint may not
be reactivated when the ‘X = 2’ constraint is told. This leads to the only final store allowed by
the ωr semantics of Section 2.2, namely {b#3}. The Solve‡ transition, however, allows the c’s
reactivation. The resulting semantics thus may lead to an incorrect final constraint store {a#1}.

The final theorem show that our Solve’ transition is indeed stronger then Solve‡, since it
never reactivates more constraints:

Theorem 6 Let P be a CHR program, and σ = 〈[b|A],S,B,T〉n astate with b a built-in constraint.
If σ�P 〈S++A,S, b∧B,T〉n is a valid Solve‡ transition, and σ�P 〈S′++A,S, b∧B,T〉n a valid
Solve’ transition of ω′r, then S′ ⊆ S.
Proof. By definition of Solve‡: ∀c ∈ S\S : delay varsP(c) ⊆ fixed(B), and by definition of
Solve’: S′ ⊆ S∧∀c ∈ S′ : delay varsP(c) 6⊂ fixed(B). Therefore clearly (S\S)∩S′ = ∅, and thus
(S′ ⊆ S ∧ S′ ∩ (S\S) = ∅)→ S′ ⊆ S. �

B The Benchmarks

This section contains more information on the benchmarks used for Section 5. The benchmark pro-
grams are mostly standard CHR benchmarks or benchmarks created from standard CHR handlers
found on the CHR Homepage [1]. Table 3 provides a description of all benchmarks used.

For several benchmarks pseudo-random sparse graphs of O(N) nodes and edges are generated.
These graphs consist of a Hamiltonian cycle of N edges with weight 1 from node i to node i + 1
(and node N to node 1), and 3N random weight edges, 3 from every node to some randomly
chosen other.

All benchmarks were performed on a Intel R© Pentium R© 4 (2.80GHz) with 1 GiB of RAM. SWI
Prolog version 5.6.55 [22] was used, with a modified version of the K.U.Leuven CHR system [10, 12].
For the JCHR benchmarks, K.U.Leuven JCHR version 1.6.0 was modified. The (generated) Java
code was compiled using Sun’s JDK 1.6.0, and executed using Sun’s HotSpot JVM 1.6.0.

18

Name Description, origin, author, . . .

eq(N) Classical CHR benchmark that solves a circular list of N equality
constraints.

fibbo(N) Bottom-up computation of the N first Fibonacci numbers
(see Figure 3; origin: [6]).

floyd-warsh(N) Finding the shortest path between all pairs of nodes of a sparse
graph of O(N) nodes and edges using the Floyd-Warshall algo-
rithm.

interpol(N) Linear interpolation of some points up to depth N . Author:
Paolo Pilozzi.

interval(N) Using Thom Frühwirth’s interval domain solver over integer and
real, available on [1], to solve sequence of O(N) addition con-
straints over N variables.

leq(N) Classic CHR benchmark that solves a circular list of N less-or-
equal constraints. See Figure 1 for the leq handler.

manners(N) Port of a classic production rules benchmark called Miss Manners
(original version available at http://www.cs.utexas.edu/ftp/
pub/ops5-benchmark-suite/). Miss Manners is a constraint
optimization problem that finds an optimal, acceptable seating
arrangement for N guests at a dinner party, under certain given
constraints.

minmax(N) This benchmark uses a solver for inequality, minimum and max-
imum constraints on ground terms, written by Thom Frühwirth
and Christian Holzbaur (available on [1]). The benchmark con-
sists of solving N − 1 maximum constraints over N integer vari-
ables.

nsp(N) Finding the shortest path between all pairs of nodes of a sparse
graph of O(N) nodes and edges using a naive shortest path al-
goritm of only three CHR rules. Constraint arguments are free
logical variables.

nsp grnd(N) Variant of the above benchmark where constraint arguments are
ground integers.

sum(N ,M) Computes the sum of the balances of the accounts of N clients,
where each client has M accounts with pseudo-random balances.
See Example 4.

timepoint(N) Using Frühwirth’s Christian Holzbaur’s time point constraint
handler, available at [1], to solve 1000N difference constraints
over 1000N time points.

turing(N) Using a Turing machine simulator to execute a Turing program
to copy a sequence of N consecutive cells. The simulator was
written by Jon Sneyers, and will appear in [15].

wfs(N) Computes the well-founded semantics of a simple 3-valued logic
program (origin: [10, 12]).

Table 3: Description of the different benchmarks used for Section 5.

19

http://www.cs.utexas.edu/ftp/pub/ops5-benchmark-suite/
http://www.cs.utexas.edu/ftp/pub/ops5-benchmark-suite/

	Introduction
	Overview

	Preliminaries
	CHR Syntax
	CHR's Refined Operational Semantics

	Non-reactive Propagation Rules
	Introduction: From Fixed to Non-reactive CHR
	Propagation History Elimination
	Implementation

	Optimized Reapplication Avoidance
	Implementation
	Loop-invariant Code Motion

	Idempotence
	Deriving Idempotence

	Evaluation
	Conclusions
	Related Work
	Conclusions

	On Anti-Monotony-based Delay Avoidance
	The Benchmarks

