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Abstract
In this report, we provide a detailed description of the compila-
tion scheme the K.U.Leuven JCHR system uses to compile CHR
to efficient Java code. We start from a relatively straightforward
adaptation of the traditional CHR compilation scheme for Prolog,
and gradually add all its basic optimizations. Next, we show why
this compilation scheme is not suited for compilation to an imper-
ative host language such as Java. We therefore introduce a novel
compilation scheme from CHR to Java that uses explicit call stack
maintenance and trampoline-style compilation to guarantee that ex-
ecuting recursive CHR programs no longer results in call stack over-
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confirms it is mostly superior to the traditional one.
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Chapter 1

Introduction

Constraint Handling Rules (CHR) [CHR08, Frü98, Frü08] is a high-level, elegant committed-choice
CLP language, based on multi-headed, guarded multiset rewrite rules. Originally designed for the
declarative specification of constraint solvers, CHR has matured toward a powerful general purpose
language, used in a wide range of application domains, including computational linguistics, multi-
agent systems, and type system design. A recent survey on CHR is [SVWSDK08].

Although CHR is Turing complete [SSD05b], it is typically implemented as a language exten-
sion, embedded in a host language. Traditional host languages for CHR are (constraint) logic
programming languages, such as Prolog [HF00, SD04, Sch05a], HAL [DSGH03, HGSD05, Duc05],
and Mercury. Efficient implementations also exist for other host languages, including Haskell
[CSW03, SSW04], Java [Wol01, AKSS02, VSD05], and C [WSD07].

The first complete and efficient CHR system was [HF00]. This implementation has long been
considered the reference implementation of CHR. In [Sch05a], a comprehensive explanation of its
compilation schema is provided. In this report, we denote this scheme as the traditional compila-
tion scheme. The operational semantics of [HF00] is captured formally by the refined operational
semantics [DSGH04], which rapidly became the norm for later systems. The semantics and compi-
lation scheme of [HF00] serve as the basis for most current, state-of-the-art CHR implementations,
including the K.U.Leuven CHR system [SD04, Sch05a] for Prolog, and the systems for the imper-
ative host languages Java [VSD05] and C [WSD07].

This work presents the compilation scheme used by the K.U.Leuven JCHR system [VSD05].
The K.U.Leuven JCHR system [VSD05, VW08a] is a state-of-the-art CHR implementation in
Java. It features a statically typed declarative syntax, a tight integration with the object-oriented
host-language, extensive static analysis, and a compilation to highly optimized code. For more
information and examples on the use and syntax of the JCHR language, see [VW08a, VW08b].

The JCHR system and its compilation scheme influenced the design and implementation of the
CCHR system [WSD07], the first CHR embedding in the C programming language. Thanks to
its compilation to efficient low-level code, it can come close to native C code. Both our imperative
CHR systems, JCHR and CCHR, outperform existing CHR implementations by up to several
orders of magnitude.

A reworked version of this report appears in [VWWSD08]. It features a generalization of the
compilation scheme presented here, and that of CCHR, towards any imperative target language.
The article also outlines several other challenges faced when embedding CHR in an imperative
host language, and contains a more detailed discussion of related work.

The presentation of the compilation in [VWWSD08] is more high-level, and contains a more
complete survey of all compiler optimizations that appeared in recent literature (including [DS07,
Duc05, DS05, HGSD05, Sch05a, SSD05a, SSD05c, SSD06b, VW08c]). This report on the other
hand focusses on the compilation scheme of JCHR, and provides some more low level details
and optimizations thereof. More advanced optimizations are not presented, though references to
specialized literature are provided where relevant.
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Overview The K.U.Leuven JCHR system implements the refined operational semantics [DSGH04].
Section 1.1 shortly reviews this semantics, as it is imperative for a good understanding of the com-
pilation schemes presented in subsequent chapters.

Chapter 2 provides a reconstruction of the traditional compilation scheme used by JCHR
for compiling CHR to Java. It is a relatively direct translation of the scheme used by Prolog
embeddings. Sections 2.1 and 2.2 are a translated, extended revision of [VW05, Sections 8.2.4–
8.2.5], and are analogous the corresponding chapter [Sch05b] in [Sch05a]. They provide a first
thorough description of JCHR’s traditional compilation scheme. The evaluation of this scheme
in Section 2.3, however, reveals the traditional compilation scheme is less suited for compiling
CHR to an imperative language such as Java. Similar results were observed for C [WSD07]. The
main reason is the lack of tail call optimizations in imperative host languages. For recursive CHR
programs, the traditional compilation scheme therefore rapidly results in call stack overflows.

Chapter 3 outlines a new and improved compilation scheme for CHR to Java that eliminates
this issue completely. Evaluation in Section 3.3 shows the new compilation scheme is superior to
the traditional one.

1.1 The Refined Operational Semantics ωr

Basic knowledge of CHR, its syntax and its semantics, is assumed. Good introductions can be
found for instance in [Duc05, Frü98, Frü08, Sch05a]. Only CHR’s refined operational semantics
is reviewed in more detail [DSGH04]. This semantics, commonly denoted as the ωr (operational)
semantics, formally captures the operational semantics of most current CHR implementations.
The compilation schemes presented in Chapters 2 and 3 will be implementations of this opera-
tional semantics. This section revises the refined operational semantics. For more details, consult
[DSGH04] or [Duc05].

The ωr semantics is formulated as a state transition system. Transition rules define the relation
between subsequent execution states in a CHR derivation. The version presented here follows
[Duc05, Sch05a]. This slight modification of the original specification [DSGH04] describes more
closely the semantics implemented by JCHR, and most other recent CHR implementations.

Notation Sets, multisets and sequences (ordered multisets) are defined as usual. We use S[i]
to denote the i’th element of a sequence S, ++ for sequence concatenation, and [e|S] to denote
[e]++S. The disjoint union of sets is defined as: ∀X,Y, Z : X = Y tZ ↔ X = Y ∪Z ∧Y ∩Z = ∅.
For a logical expression X and a set V of variables, vars(X) denotes the set of free variables, and
constraint projection is defined as πV (X)↔ ∃v1, . . . , vn : X with {v1, . . . , vn} = vars(X) \ V .

Execution States An execution state of ωr is a tuple 〈A,S,B,T〉n. The role of the sequence
A, called the execution stack, is explained below, in the paragraph on ωr’s transition rules. The
ωr semantics is multiset-based. To distinguish between otherwise identical constraints, the CHR
constraint store S is thus a set of identified CHR constraints, denoted c#i, where each CHR
constraint c is associated with a unique constraint identifier i ∈ N. The projection operators
chr(c#i) = c and id(c#i) = i are extended to sequences and sets in the obvious manner. The
integer n represents the next integer to be used as a constraint identifier.

The built-in constraint store B is a conjunction containing all built-in constraints passed to
the built-in solver. Their meaning is determined by the built-in constraint theory DH (see e.g.
[Sch05a] for rigorous definition of this concept). The propagation history T, finally, is a set of
tuples, each recording a sequence of identifiers of CHR constraints that fired a rule, and the name
of that rule.

Transition Rules Fig. 1.1 lists the transition rules of ωr. Execution proceeds by exhaustively
applying transitions, starting from an initial execution state of the form 〈Q, ∅, true, ∅〉1. The
constraint sequence Q is called the query.
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1. Solve 〈[b|A],S,B,T〉n�P 〈S ++ A,S, b ∧ B,T〉n if b is a built-in constraint. For the set of
reactivated constraints S ⊆ S, the following bounds hold: lower bound: ∀H ⊆ S : (∃K,R : H =
K ++ R ∧ ∃ρ ∈ P : ¬appl(ρ,K,R,B) ∧ appl(ρ,K,R, b ∧ B)) → (S ∩ H 6= ∅) and upper bound:
∀c ∈ S : vars(c) 6⊂ fixed(B).

2. Activate 〈[c|A],S,B,T〉n�P 〈[c#n :1|A], {c#n} t S,B,T〉n+1 if c is a CHR constraint (which
has not yet been active or stored in S).

3. Reactivate 〈[c#i|A],S,B,T〉n�P 〈[c#i : 1|A],S,B,T〉n if c is a CHR constraint (re-added to
A by a Solve transition but not yet active).

4. Simplify 〈[c#i :j|A],S,B,T〉n�P 〈B++A,KtS, θ∧B,T′〉n with S = {c#i}tKtR1tR2tS,
if the j-th occurrence of c in P occurs in rule ρ, and θ is a matching substitution such that
apply(ρ,K,R1 ++[c#i]++R2,B, θ) = B.
Let t = (ρ, id(K++R1)++[i]++ id(R2)), then t /∈ T and T′ = T ∪ {t}.
5. Propagate 〈[c#i :j|A],S,B,T〉n�P 〈B++[c#i :j|A],S \ R, θ∧B,T′〉n with S = {c#i}tK1 t
K2 tRtS, if the j-th occurrence of c in P occurs in rule ρ, and θ is a matching substitution such
that apply(ρ,K1 ++[c#i]++K2, R,B, θ) = B.
Let t = (ρ, id(K1)++[i]++ id(K2 ++R)), then t /∈ T and T′ = T ∪ {t}.
6. Drop 〈[c#i :j|A],S,B,T〉n�P 〈A,S,B,T〉n if c has no j-th occurrence in P.

7. Default 〈[c#i : j|A],S,B,T〉n�P 〈[c#i : j + 1|A],S,B,T〉n if the current state cannot fire any
other transition.

Figure 1.1: The transition rules of the refined operational semantics ωr.

The execution stack A is used to treat CHR constraints as function calls. The top-most
element of A is called the active constraint. When active, a CHR constraint performs a search
for partner constraints that match the head of a rule. The constraint’s occurrences are tried in a
top-down, right-to-left order. To realize this order in ωr, identified constraints on the execution
stack are occurrenced in Activate and Reactivate transitions. When an occurrenced identified
CHR constraint c#i : j is active, only matches with the j’th occurrence of c’s constraint type
are considered. Interleaving a sequence of Default transitions, all applicable rules are fired in
Propagate and Simplify transitions. A rule is applicable if the store contains matching partner
constraints for all remaining occurrences in its head. Formally:

Definition 1.1 Given a conjunction of built-in constraints B, a rule ρ is applicable with se-
quences of identified CHR constraints K and R, denoted appl(ρ,K,R,B), iff a matching substi-
tution θ exists for which apply(ρ,K,R,B, θ) is defined. The latter partial function is defined as
apply(ρ,K,R,B, θ) = B iff K ∩R = ∅ and, renamed apart, ρ is of form “ρ @ Hk \ Hr ⇔ G| B”
(Hk or Hr may be empty) with chr(K) = θ(Hk), chr(R) = θ(Hr), and DH |= B→ πvars(B)(θ∧G).

If the top-most element of A is a built-in constraint, this constraint is passed to the built-in
solver in a Solve transition. As this may affect the entailment of guards, all CHR constraints for
which additional rules might have become applicable have to be put back on the execution stack.
These then cause Reactivate transitions to reinitiate searches for applicable rules. Constraints
with fixed arguments are not reactivated, as no additional guards can become entailed.

Definition 1.2 A variable v is fixed by constraint conjunction B, or v ∈ fixed(B), iff DH |=
∀θ((π{v}(B) ∧ π{θ(v)}(θ(B)))→ v = θ(v)) for any variable renaming θ.

When a rule fires, its body is executed. By putting the body on the activation stack, the
different conjuncts of the body are activated (for CHR constraints) or solved (for built-in con-
straints) in a left-to-right order. Control only returns to the original active constraint after the
body is completely executed. This corresponds closely to the execution of procedure calls in the
stack-based programming languages, such as Prolog and Java, to which CHR is compiled.
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Chapter 2

Traditional Compilation Scheme

The compilation scheme commonly used to compile CHR to (constraint) logic programming lan-
guages is best described in [Sch05b]. This chapter is written to be analogous to the latter chapter
of [Sch05a], and describes the result of porting this compilation scheme to the Java setting. Sec-
tion 2.1 introduces a simplified scheme that closely follows the refined operational semantics (cf.
Section 1.1). Next, in Section 2.2, several simple optimizations are added one by one. The more
advanced analyses and optimizations performed by the system are outside the scope of this paper
(Section 2.2 contains several footnote references that direct the interested reader to the relevant
literature on the subject). Section 2.3, finally, evaluates this compilation scheme.

2.1 Basic Compilation Scheme

Where applicable, implementation aspects are related to the transition rules of the refined op-
erational semantics, or the different components of the formal execution state. In short, an ωr
execution state 〈A,S,B,T〉 is implemented as follows:

• As in most traditional CHR compilation schemes, Activate and Reactivate transitions are
implemented as procedure calls—here: Java method invocations. The activation stack A is
thus mapped onto the implicit call stack of the Java Virtual Machine (JVM). In Chapter 3,
a new compilation scheme is presented that maintains the activation stack more explicitly.

• S, the CHR constraint store, is maintained by a generated Handler class, as described in
Section 2.1.1. The concrete data structures used are beyond the scope of this report.

• In JCHR built-in constraint solvers are, as far as the JCHR compiler is concerned, black
boxes. They are responsible for performing Solve transitions. The interaction with arbitrary
built-in solvers is inspired by [DSGH03] (see also [VWWSD08]). For more details on JCHR’s
built-in constraint solvers, we refer to [VW08b].

• For the implementation of the propagation history T, cf. Section 2.2. Details are again out
of the scope of this text.

2.1.1 The Handler class

For each JCHR handler h, a single subclass of Handler is generated, named HHandler. For
generic handlers the class is parameterized with the handler’s type parameters (generic handlers
are analogous to generic classes in Java: see [VW08b] for details).

The handler class contains references to all built-in constraint solvers declared in the handler
source file. The main responsibility of a handler class though is the management of the CHR
constraint store. The constraint store can be considered an abstract collection of Constraint

7



objects1. A Handler class provides the following methods for each user-defined constraint c(args)
declared in its source file (args is a conjunction of arguments):

• tellC(args): The tellC(args) method for a constraint c(args) is implemented as follows:

public void tellC(args) {
new CConstraint(args).activate();

}
The activate() method corresponds to an Activate transition in the refined operational
semantics. Detailed information on the CConstraint classes is found in the Section 2.1.2.

• storeC(CConstraint): stores the provided CConstraint object in the constraint store,
updating all necessary data structures and indexes. Unlike the public tellC method, this
method is only accessible from within the HHandler class.

• lookupC(): returns an Iterator<CConstraint> object [GHJV95] that allows traversal of
all CConstraint objects in the constraint store2. The iterators have to obey the following
three properties, which will be exploited (or relaxed) throughout Section 2.2:

1. The returned iterator is robust under structural modifications of the underlying con-
straint store, that is: the iterator does not fail if CConstraint’s are added or removed
during the iteration. Ideally, the next candidate partner constraint is returned in (amor-
tized) O(1), even if arbitrary constraints may be removed during the iteration. Even
for simple indexes, this can be quite challenging.

2. Only live constraints are returned.

3. A contiguous iteration does not contain duplicates. This is required for termination.
Preferably an iteration remains duplicate-free under structural modifications of the
constraint store.

4. All constraints stored at the moment of the iterator’s creation are returned at least
once in the iteration. Constraints added after the creation of the iterator do not have
to appear in the iteration. This is correct, since the refined operational semantics
requires that these constraints were already activated earlier. All rules for which they
appear in the matching have therefore already been fired, including those that include
the current active constraint as well.

The implementation of the last two methods depends on the concrete data structures used
for the constraint store, and on the indices used for efficient constraint retrieval. These concerns,
however, are beyond the scope of this paper.

2.1.2 The Constraint classes

The reference SICStus Prolog implementation of CHR [HF00] reads:

A CHR constraint is implemented as both code (a Prolog predicate)
and data (a Prolog term in the constraint store).

The same principle is used here: a CHR constraint is implemented as a Java object serving as data
in the constraint store, whose class contains the code that has to be executed when the constraint
is active (cf. the refined operational semantics).

1 Each Handler class effectively implements the standard java.util.Collections<Constraint> interface.
2 The actual implementation will offer a series of different lookupC(. . .) methods. using different constraint

store indexes for more efficient constraint retrieval. Details are beyond the scope of the paper.
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〈arguments〉 X For each formal argument of the constraint, an instance field is
generated with the same type as declared. The name of a formal
argument, and thus the corresponding field, can also be declared
to improve usability.

int ID A unique increasing number assigned on constraint object cre-
ation. This field corresponds to the constraint identifier used
by the refined operational semantics. It is used for propagation
histories, and for sorting lists in certain constraint store imple-
mentations.

boolean alive Indicates whether a constraint is alive or not. A constraint dies
when its terminate() method is called. In the refined operational
semantics this corresponds more or less to the removal of the
constraint from the constraint store in a Simplify transition. In
practice though, the constraint is not necessarily stored before it
is terminated (cf. the Late Storage Optimization in Section 2.2).

boolean stored Indicates whether a constraint is stored in the constraint store.
Unlike in the refined operational semantics, the optimized compi-
lation scheme only effectively stores constraints if necessary (cf.
the Late Storage Optimization in Section 2.2).

〈history〉 X A constraint can contain multiple instance fields related to the
propagation history (one for each propagation rule): for details
see Distributed Propagation History in Section 2.2.

boolean reactivated X Used for the Drop after Reactivation optimization in Section 2.2.

〈handler〉 X Each constraint has a reference to the constraint handler that
manages it. As Constraint classes are generated as non-static
inner classes of a handler, this reference is implicit. This way,
Constraint classes gain access to the methods and fields of their
enclosing Handler class.

Table 2.1: Overview of the instance fields of a constraint. Generated fields are indicated with X;
the other fields are inherited from the abstract super class Constraint.

2.1.2.1 JCHR Constraints as Data

For each user-defined constraint c declared in a handler, a class CConstraint is generated, extend-
ing the abstract Constraint class. These constraint classes are inner classes of their handler class,
thus implicitly obtaining access to the built-in solver references and all constraint store methods.
For parameterized handlers, the handler type parameters can also be used inside the constraint
classes. Table 2.1 provides an overview of the instance fields of the generated constraint classes.
Public inspector methods are inherited or generated where applicable.

2.1.2.2 JCHR Constraints as Code

Listing 2.1 shows the first part of the compilation scheme for a constraint c with n occurrences.
The activate() method corresponds to the Activate transition of the refined operational seman-
tics, and is called immediately after creation of the constraint object. First, as in ωr, the constraint
is stored in the constraint store. The rule preceded with # is pseudo-code: the constraint regis-
ters itself as an observer with the different non-fixed arguments of the constraint. The notify()
method of the well-known observer pattern [GHJV95] is called reactivate(), and corresponds to
a Reactivate transition. This method is called by a built-in constraint solver in what corresponds
to a Solve transition: each time a new built-in constraint has been told, all JCHR constraints

9



public void activate() {
store();
occurrences();

}

protected void store() {
storeC(this);

# foreach (a : non-fixed arguments of c)
a.addBuiltInConstraintObserver(this);

}

public void reactivate() {
occurrences();

}

private final void occurrences() {
c_1(); c_2(); ... c_n();

}

Listing 2.1: Basic compilation scheme for (re)activations of a constraint c with n occurrences.

observing the variables involved are reactivated.
In ωr, the Activate and Reactivate transitions put an identified constraint on the execution

stack. The basic compilation scheme implements this implicitly: each constraint receives a unique
identifier upon creation (cf. Table 2.1), and by calling the activate() or reactivate() method,
a stack frame is added to the Java Virtual Machine call stack.

An Activate or Reactivate transition is always followed by a sequence of Default or Propa-
gate transitions, and then a Simplify or Drop transition. This is realized in the occurrences()
method called by both activate() and reactivate(). This method then calls a so-called occur-
rence method for each of the n occurrences of the constraint c. The order in which the occurrences
are traversed is the one determined by the refined operational semantics.

The remainder of this section presents the compilation scheme for the occurrence methods of
a rule of the following generic form:

ρ@ c
[j1]
1 (X1,1, . . . , X1,a1), . . . , c

[jr−1]
r−1 (Xr−1,1, . . . , Xr−1,ar−1) \

c
[jr ]
r (Xr,1, . . . , Xr,ar ), . . . , c

[jh]
h (Xh,1, . . . , Xh,ah) ⇔ g1, . . . , gng | b1, . . . , bnb .

Here, a rule ρ has h occurrences c[ji]
i in its head, numbered from left to right, with r the index

of the first removed occurrence. For a simplification rule there are no kept occurrences (i.e., r = 1),
for a propagation rule there are no removed occurrences (h = r−1). The occurrence number ji
of an occurrence c[ji]

i denotes that this occurrence is the ji’th occurrence of constraint ci in the
program, when numbered according to the top-to-bottom, right-to-left order determined by ωr.

Listing 2.2 lists the basic compilation scheme for an occurrence c[ji]
i of such a rule. The following

pseudo-code operators are used:

• #type(x) returns the Java type of its argument x; and
• #arg(c,i) returns the the i’th formal argument of the constraint c.

Lines 7–30 implements the search for partner constraints, in the order they appear left-to-right
in the head of the rule3. Partner constraints are retrieved using the lookupC methods offered by

3 In the actual implementation the order in which partner constraints are searched is determined by means of
static analysis. The problem of determining this optimal join order is addressed comprehensively in [DS07].
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1 private final void ci ji() {
2 final CiConstraint ci ji = this;
3 final #type(#arg(ci,1)) Xi,1 = this.#arg(ci,1);
4 ...
5 final #type(#arg(ci,ai)) Xi,mi

= this.#arg(ci,ai);
6

7 final Iterator<C1Constraint> c1 j1 iter = lookupC1();
8 C1Constraint c1 j1;
9 #type(#arg(c1,1)) X1,1;

10 ...
11 #type(#arg(c1,a1)) X1,m1;
12

13 while (c1 j1 iter.hasNext()) {
14 c1 j1 = c1 j1 iter.next();
15 X1,1 = c1 j1.#arg(c1,1);
16 ...
17 X1,m1 = c1 j1.#arg(c1,a1);
18

19 final Iterator<C2Constraint)> c2 j2 iter = lookupC2();
20 C2Constraint c2 j2;
21 #type(#arg(c2,1)) X2,1;
22 ...
23 #type(#arg(c2,a2)) X2,m2;
24

25 while (c2 j2 iter.hasNext()) {
26 c2 j2 = c1 j1 iter.next();
27 X2,1 = c2 j2.#arg(c2,1);
28 ...
29 X2,m2 = c2 j2.#arg(c2,a2);

30
. . .

31 if (c1 j1.isAlive()) {
32

. . .
33 if (ch jh.isAlive()) {
34 if (c1 j1 != c2 j2 && ... && ch−1 jh−1 != ch jh) {
35 if (g1) {
36

. . .
37 if (gng) {
38 if (!inHistory ρ(c1 j1, ..., cn jn) {
39 addToHistory ρ(c1 j1, ..., cn jn);
40 cr jr.terminate();

41
...

42 ch jh.terminate();
43

44 b1; ...; bnb;
45 }
46 }
47 . .

.

48 }
49 }
50 }
51 . .

.

52 }
53 . .

.

54 }
55 }
56 }

Listing 2.2: Basic compilation for an occurrence.
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the enclosing Handler class4, and the iterator pattern [GHJV95] is used to iterate over all possible
partners. For the active occurrence c[ji]

i itself (lines 1–5), no iterator or while loop is generated.
Lines 7–30 therefore consists of n− 1 nested while loops.

Eventually, for each possible combination of partner constraints found by these nested loops,
lines 31–38 check whether:

• all partner constraints are still alive (lines 31–33),

• all partner constraints are mutually distinct (line 34),

• all guards are satisfied (lines 35–37)5,

• and whether that particular combination of constraints has not yet fired rule ρ, i.e., whether
the combination is not yet present in the propagation history (line 38).

If all above tests succeed, the rule fires: the propagation history is extended (line 39), the con-
straints matching the removed occurrences are terminated (lines 40–42), and the body is executed
(line 43). For i < r this corresponds to a Propagate transition, for i ≥ r to a Simplify transition.

Guard and body conjuncts Listing 2.2 makes abstraction of the conjuncts of the guard and
the body. As in the refined semantics, body conjuncts are executed left-to-right. A body conjunct
c(...) with c a JCHR constraint is compiled as:

new CConstraint(...).activate();

The arguments of such a constraint are generally copied as is from the source code, possibly after
some coercion and desugaring. The same applies for other conjuncts, that is built-in constraints
and host language statements. More details can be found in [VW08b].

2.2 Standard Optimizations

This section lists several simple optimizations to the basic compilation scheme. This section
again follows [Sch05b]: all “simple optimizations” listed [Sch05a, Section 5.3] are ported to the
Java setting and listed here. Some extra optimizations, such as for instance Backjumping, are
introduced as well.

The optimizations are grouped in three categories: semantical optimizations, host language op-
timizations, and data structure optimizations. [S]emantical optimizations are based on reasoning
about the (refined) operational semantics of CHR. [H]ost language optimizations are optimiza-
tions tailored to generate more efficient host language code, adapted here in particular to the host
language Java. [D]ata structure optimizations finally deploy optimized data structures.

Early Distinct Partner Constraints Testing [S]

Line 34 in Listing 2.2, added to remain analogous to [Sch05b], does not reflect what is done in
the actual compilation scheme: each time a candidate partner constraint is found (i.e., after lines
14, 26, . . . ), this constraint is immediately compared to previous partners. Clearly, searching for
more partners is useless, if the partners already found are not distinct. Constraints are also only
compared to partners of the same constraint type.

4 Commonly a more specific lookupC method will be used which takes advantage of maintained constraint store
indexes to optimize the retrieval of partner constraint candidates.

5 In the actual compilation scheme guards are tested as early as possible, i.e., as soon as all involved variables
are bound by a candidate partner constraint. This is an instance of a standard compiler optimization technique
called loop-invariant code motion (also: hoisting, or scalar promotion).
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Propagation History Maintenance [S]

The propagation is added to the CHR semantics to prevent the same rule to be applied multiple
times with the same combination of constraints, thus avoiding trivial non-termination. Terminat-
ing one or more partner constraint already ensures the rule is fired only once with a particular
combination. This means (as the observant reader already guessed from its name) that a propa-
gation history only has to be maintained for propagation rules6.

Distributed Propagation History [D]

In JCHR, the propagation history is not maintained globally, but stored distributively in the
different constraint objects (cf. Table 2.1). For each Propagate transition a new tuple is added
to the part of the propagation history maintained by the active constraint. Consequently, each
time the propagation history has to be checked for the presence of some tuple, only the parts of
all involved partner constraints have to be checked.

Whereas both the SICStus reference implementation and the K.U.Leuven CHR system use AVL
trees, the K.U.Leuven JCHR system uses data structures based on efficient hashing techniques
to maintain the distributed parts of the propagation history. This reduces the time complexity
of both checking and extending the propagation history from O(m log(n)) to O(m), with m the
number of occurrences in the head (typically only a few), and n the number of constraints in the
constraint store (can become very large).

The propagation histories are also further specialized for each separate rule (unlike in the
refined operational semantics, the rule identifier is therefore not explicitly part of the tuple stored
in the data structure). This allows a further optimization: for propagation rules with only a single
occurrence in the head, the propagation history is simply a boolean, maintained in the active
constraint. For two-headed rules, more efficient data structures are possible as well: see [VW08d].

Even though the time complexity of a centralized propagation history would remain similar, the
distributed approach is more favorable for memory reuse: if a constraint is terminated, its instance
fields belonging to the distributed propagation history are set to null, allowing the JVM garbage
collector to reclaim that part of the memory. A global propagation history on the other hand
would maintain the reachability of all history tuples, unless custom memory management releases
the memory explicitly. Whilst the risk for excessive, redundant memory use is not completely
eliminated with the distributed propagation history maintenance, practice shows that it performs
adequately. For more information on propagation history implementation, we refer to [VW08d].

Simplify Transitions [S]

In a Simplify transition, the active constraint is removed. So, afterwards, it is clearly no longer
necessary to keep looking for partner constraints. Consequently, in Listing 2.2 a “return;” state-
ment can be added after line 44.

A second observation in the case of a Simplify transition is that the partner constraints are
always alive if lines 31–33 of Listing 2.2 are reached. They were live when returned by their iterator
(cf. Section 2.1.1), and could only become terminated when the rule is applied. By the optimization
discussed in the previous paragraph however, the search for partner constraints is stopped after
the first application of a Simplify transition. Lines 31–33 can thus safely be removed. Note
that “if (!alive) return;” would have to be added prior to line 2, as otherwise rules could
be fired with a active constraint that is terminated by an earlier occurrence method. The next
optimization though will ensure this is no longer necessary.

Sequential Control Flow [H]

Listing 2.2 uses a sequential approach: all different occurrence methods are called in sequence.
Both the SICStus reference implementation and the K.U.Leuven CHR system however use a

6 In fact, even for most propagation rules no history has to be maintained. We showed this in [VW08d] for
non-reactive propagation rules, and, more recently, in [VW08c] for idempotent propagation rules.
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1

...
2 cr jr.terminate();

3

...
4 ch jh.terminate();
5

6 b1; ...; bnb
;

7

8 return false;
9 }

10 . .
.

11 }
12 return true;
13 }

Listing 2.3: Optimized compilation scheme for a Simplify transition (using sequential control
flow). Note that it is considerably less complicated than the compilation scheme for a Propagate
transition (Listing 2.6).

continuation based approach: an occurrence predicate calls the next occurrence predicate if the
active constraint is still alive (a live continuation), or does nothing if the latter is terminated (a
dead continuation). This approach is also referred to as chaining.

In the case of an imperative language such as Java, chaining is not advised. The reason is
that, contrary to Prolog, Java does not perform particularly well with deeply nested method
calls. Therefore, a more sequential approach is preferred. There is nevertheless no point in calling
occurrence methods once the active constraint has been terminated. To differentiate between life
and dead continuations, the occurrence methods are modified to return a boolean: true in the
case of a live continuation, false in the case of a dead continuation. The occurrences() and
method from Listing 2.2 is then replaced with:

private final void occurrences() {
if (c 1() && c 2() && ... && c n());

}

Here the laziness of Java’s ‘&&’-operator is exploited to ensure, essentially, that a Drop tran-
sition occurs as soon as the active constraint is terminated. This approach ensures the active
constraint is always alive whilst searching for partner constraints. This also means that this no
longer has to be tested in lines 31–33 of Listing 2.2. Recall that the Simplification Transition
optimization already allowed the removal of all these lines in case of a Simplify transition.

The final, optimized compilation scheme for Simplify transitions is found in Listing 2.3. The
following changes were performed to the basic compilation scheme of Listing 2.2 (this also includes
the Simplification Transition optimization):

• Add “return false;” after line 44.

• Remove lines 31–33 entirely.

• Add as the last statement of the method (i.e., after line 55), “return true;”, unless the
Simplify transition is known to always be applied. The latter is the case if it is a single-
headed simplification rule without guard.

In case of a Propagate transition, the following refinements are made to the basic compilation
scheme:
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1

...
2 cr jr.terminate();

3

...
4 ch jh.terminate();
5

6 b1; ...; bnb
;

7

8 if (! alive) return false;
9

10 if (!c1 j1.isAlive()) continue label c1 j1;

11

...
12 if (!cr−1 jr−1.isAlive()) continue label cr−1 jr−1;
13

14 continue label cr jr;
15 }
16 . .

.

Listing 2.4: Adding backjumping to the compilation scheme: replace lines 40–45 of 2.2 with the
above code in case of a Propagate transition (also using sequential control flow). Each while
loop is furthermore annotated with a label: label ci ji for the loop iterating over the candidates
for the i’th partner ci ji.

• Even though the transition does not terminate the active constraint directly, it is possible
the active constraint is terminated indirectly by executing the body of the rule. Therefore,
“if (!alive) return false;” is added after line 44 (unless the body is empty).

• Remove the “ci ji.isAlive()” test from lines 31–33.

• Add “return true;” as the last statement of the method.

The next three subsections further optimize the Propagate case.

Backjumping [H]

Prolog implementations often use backtracking to search for matching partner constraints. The
compilation scheme presented in Listing 2.2 on the other hand uses a pure iterative version,
consisting of nested loops. This can be exploited in the case of Propagate transitions.

As seen in Section 2.1.1, constraint iterators only return live constraints. This means that
the first time lines 31–33 are reached, these tests are superfluous (i.e., not only for the active
constraint as already indicated in the previous subsection). After the application of a Propagate
transition, generally more constraint combinations have to be searched (unless the active constraint
is removed indirectly by the application of the body). If the corresponding rule is a simpagation
rule though, certain partner constraints were terminated directly. Also, other partners may be
removed indirectly by the execution of the body. Lines 31–33 therefore cannot safely be removed,
as was the case with a Simplify transition.

However, relying on the refined operational semantics, the iterative control flow can be ex-
ploited to obtain a form of backjumping. Concretely, lines 31–33 are removed, and lines 40–45
are replaced with the code listed in Listing 2.4. To enable backjumping (lines 10–14), each while

loop is also annotated with a label : label ci ji for the loop that corresponds to occurrence c[ji]
i .

This allows for instance the control to immediately jump to the outer most while loop if the first
partner constraint no longer is alive. Without this optimization, a phenomenon referred to as
trashing would occur: first all inner loops are iterated until exhaustion, each time failing because
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the first partner constraint is already dead, prior to eventually advancing the outer iterator. The
backtracking used by Prolog implementations also suffers from trashing.

Listing 2.4 may warrant some more clarification. The constraints terminated directly by the
rule application are never tested for their liveness (cf. line 14), saving some more tests compared
to the basic compilation scheme. Furthermore in lines 10–12 the liveness of the active constraint
is not tested again (cf. line 8). A final optimization is applicable if the body is empty: in that
case, lines 8–12 are simply removed.

Existential Constraint Iterators [D,S]

In Section 2.1.1, the general requirements for constraint iterators were established. Several of
these requirements are related to the behavior of the iterators under structural modifications on
the constraint store. We denote such iterators universal constraint iterators. Implementing such
iterators efficiently, however, is challenging. We therefore introduced a second type of constraint
iterators, called existential constraint iterators, for which correct behavior is only guaranteed if
during their lifetime no constraints are added or removed from the underlying constraint store.
These iterators can often be implemented more efficiently (empirical results show up to 15% faster
constraint traversal for linked lists).

Clearly, all iterators for Simplify transitions can safely be replaced with existential iterators.
A similar optimization is also presented in [Sch05a]. The Explicit Backjumping optimization,
however, allows existential iterators to be used in the compilation scheme of Propagate transitions
as well: because control always jumps back at least as high as the loop for the first removed
partner, existential iterators may be used for all removed partner occurrences. This optimization
was inspired by [Wui07].

Drop after Reactivation [S]

Executing the body of a rule after a Propagate transition may cause the active constraint to be
reactivated (due to a Solve transition). In terms of the refined operational semantics, this means
the same (identified) constraint occurs more than once on the activation stack. Based on this
semantics, [Sch05a] proves that in that case all occurrences except the most upper one can safely
be removed from the stack.

Traditionally, this is implemented using an integer field in the constraint representations, incre-
mented each time a constraint is reactivated. In [Sch05b], this optimization is called Generations.
Here, we introduce a more efficient implementation, that also transfers better to the compilation
scheme of Chapter 3.

We use the reactivated boolean field in the Constraint classes (see Table 2.1). Before the
body is executed, that is, at line 5 of Listing 2.4, the following line of code is added:

reactivated = false;

After each reactivation, the reactivated field is set to true: see Listing 2.5. Note that it is
imperative that the field is only updated after the reactivation, otherwise nested reactivations
would not work correctly. After the body is executed the field is tested. If the active constraint
was reactivated, a Drop transition occurs. Concretely, in Listing 2.4, the following code is added
after line 6:

if (reactivated) return false;

This optimization is of course not applied if the body is empty. The optimization is also
pointless if none of the occurrences in the head will ever be reactivated, for instance if all arguments
in the head are fixed. In all other cases, this optimization may save a lot of redundant work.

Late Storage [S]

The refined operational semantics suggests a CHR constraint is added to the constraint store
immediately at an Activate transition. This is also reflected in Listing 2.2. Often, however, a
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public void activate() {
if (occurrences()) store();

}

protected void store() {
if (! stored) {

stored = true;
storeC(this);

# foreach (a : non-fixed arguments of C)
a.addBuiltInConstraintObserver(this);

}
}

public void reactivate() {
occurrences();
reactivated = true;

}

private final boolean occurrences() {
return c_1() && c_2() && ... && c_n();

}

Listing 2.5: Optimized compilation scheme for (re)activations of a constraint c with n occurrences
(after adding the Drop after Reactivation and Late Storage optimizations).

constraint’s lifetime is very short. The most obvious case is when an active constraint is terminated
in a Simplify transition, shortly after activation. The constraint may also be terminated early
indirectly, due to the execution of a body.

The goal of the late storage optimization is to postpone the addition of the constraint to the
constraint store as long as possible. Consequently, in many cases, the constraint is effectively
never stored at all, thus avoiding the considerable overhead of adding and removing the constraint
to the constraint store. This subsection only describes the simple late storage optimization, used
also by the reference SICStus Prolog implementation. More advanced instances use results of the
so-called observation analysis [Duc05, SSD05a, Sch05a] to further delay constraint storage.

Execution points where a constraint has to be stored are at Drop transitions, and prior to
the execution of a rule’s body in Propagate transitions. The former is realized by moving the
call to store() after all occurrences are tried: only if the last continuation is a live continuation,
the constraint will be stored. The resulting compilation scheme is depicted in Listing 2.5. The
stored field (cf. Table 2.1) is used to prevent the constraint from being added more than once.
In the terminate() method it is also used to test whether a constraint has to be removed from
the constraint store or not.

For Propagate transitions, the final, optimized compilation scheme is listed in Listing 2.6. It
replaces the scheme of Listing 2.4. Lines 6–20 of Listing 2.6 are only generated if the body of the
rule is non-empty7.

Inlining [H]

A final optimization discussed in [Sch05a] is inlining. There, as explained before, an occurrence
predicates calls the next occurrence predicate in case of a live continuation, thus forming a chain
of predicate calls (hence the term: chaining). Instead of calling the predicate, the predicate is
often replaced by its body, which saves the overhead of doing the actual call.

7 The compiler actually uses results from static analyses to determine whether a constraint can be added or
reactivated by a rule’s body. This analysis, called observation analysis, is described in detail in [Sch05a, SSD05a].
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1

...
2 cr jr.terminate();

3

...
4 ch jh.terminate();
5

6 reactivated = false;
7

8 store();
9

10 b1; ...; bnb
;

11

12 if (reactivated) return false;
13

14 if (! alive) return false;
15

16 if (!c1 j1.isAlive()) continue label c1 j1;

17

...
18 if (!cr−1 jr−1.isAlive()) continue label cr−1 jr−1;
19

20 continue label cr jr;
21 }
22 . .

.

23 }
24 return true;
25 }

Listing 2.6: Optimized compilation scheme for a Propagate transition (using sequential contin-
uation flow, and after adding the Drop after Reactivation, Late Storage and Explicit Backjumping
optimizations).
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It would be possible to inline the different occurrence methods into the occurrences() method
of Listing 2.5. This is known to improve performance, as it may save many method calls. There
are some reasons not to perform this form of inlining:

• Arguably, it decreases the readability of the generated code.
• In certain cases it is interesting to treat the activate() and reactivate method separately,

as in general not all occurrences have to be retried in case of a Reactivate transition (cf.
[DSGH03]). Inlining the occurrences in both the activate() and reactivate() method
would duplicate code.

• The amount of code per method is limited to 65536 bytes in Java [LY99].

Currently, occurrence methods are not inlined, even though it would be interesting to investi-
gate this possibility further in the future. Inlining is already applied though by the compiler to
many auxiliary methods, including e.g. the store() and occurrences methods. For readability,
the code samples in this document are listed without inlining.

2.3 Evaluation

For a performance comparison of JCHR with two other Java embeddings of CHR, DJCHR [Wol01]
and JaCK [AKSS02], we refer to [VSD05]. In this work it was shown that JCHR, using the
traditional compilation scheme presented in this chapter, outperforms these systems by up to
several orders of magnitude. Because neither of these systems has evolved since, and JCHR’s
performance has only improved, this result remain valid.

In [VSD05], JCHR is also compared against two Prolog implementations of CHR. All these
systems have advanced considerably though over the past years, An updated performance compar-
ison is given at the end of next chapter (Section 3.3). In this chapter a new, improved compilation
scheme for JCHR is presented, which solves the issues discussed in the following subsection.

2.3.1 Call stack overflows

The CHR language does not provide language primitives for loops. Other programming languages
that share this property include most functional and logic programming languages, as well as some
object-oriented languages such as SmallTalk. Any non-trivial CHR program therefore contains
recursion. That is: directly or indirectly, there are rules with an occurrence of constraint c/n in
the head that activate a body that adds c/n constraint to the store. While recursion has the same
expressive power as iteration, recursive calls risk consuming a lot of stack space.

For recursive CHR programs, the traditional compilation schema generates a set of mutually
recursive host language procedures. Unless the host language compiler or interpreter adequately
deals with recursion, the traditional, call-based compilation scheme leads to stack overflow issues,
as shown empirically below.

Languages that advocate a loop-free programming style employ several optimizations to execute
recursion more efficiently, preferably within constant stack space. Prolog implementations e.g.
perform tail call optimization since the early days of Prolog [War80]. This optimization consists
in reusing the execution frame of the caller for the last call in the body of a clause. In other words:
tail calls are executed by Prolog in constant stack space.

In CHR, a tail call occurs when the active constraint matches a removed occurrence, and the
body ends with the addition of a CHR constraint. If the active constraint is not removed, the last
body conjunct is not a tail call, as the search for partner constraints has to be resumed after the
execution for the body, or more occurrences have to be tried for the previously active constraint.

For a host language such as Prolog, the traditional compilation scheme is therefore less prob-
lematic; indeed: to solve stack overflows during a CHR program’s execution, it mostly suffices
to rewrite the program to use tail calls for the recursive constraints. The underlying compiler or
interpreter should then execute the program in constant stack space.
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JCHR CCHR SWI YAPJRE 1.5 JRE 1.6
tail 35,900 3,200 ∞ ∞ ∞
non-tail 38,700 3,200 0.5M 3.3M ±∞

Table 2.2: Recursion limits for different CHR systems. The number indicate the approximate
value of N for which the handler below resulted in stack overflow for resp. JCHR and SWI when
called with initial query stack(N); ∞ indicates the program ran in constant space, and ±∞
indicates the only limit was available (virtual) memory.

Even though similar tail call optimizations are possible in imperative host languages (see e.g.
[Pro01]), in practice, most compilers for imperative languages do not perform them, or only in
certain situations. The GCC C compiler [Fre08], for instance, only optimizes tail calls in specific
cases [Bau03]. Implementations of the Java Virtual Machine [LY99], including Sun’s reference
implementation HotSpot [Sun08], typically do not perform tail call optimizations at all8. Indeed,
in practice, we observe that the traditional compilation schema for Java overflows the execution
stack very quickly. For C the situation is only slightly better.

Empirical Verification

To test the limits on recursion we used the following simple CHR handler:

stack(0) <=> true.
stack(X) <=> stack(X-1).

We compared JCHR with CCHR [WSD07], and the K.U.Leuven CHR system [SD04, Sch05a]
implementation for SWI-Prolog [Wie03, SWD05] and YAP Prolog [SC+]. YAP Prolog is a more
efficient Prolog system, but the YAP port uses an older version of the K.U.Leuven CHR system.
The results9 are given in Table 2.2.

Clearly, the second rule of the above handler contains a tail call. For all systems but JCHR,
including CCHR, the host language compiler or runtime was able to perform the required tail call
optimizations to run the program in constant space. Executing the compiled JCHR handler with
the HotSpot Client JVM [Sun08], however, rapidly resulted in stack overflow. For the JRE 1.5
version stack overflow occurred for N equal to 35,900, for JRE 1.6 the situation even worsened.

We then altered the second rule to use non-tail recursion by adding an instruction after the
recursive call. The results are shown in the second row of Table 2.2. The results for JCHR
remained unchanged. For both SWI Prolog and CCHR, the native call stack has a static upper
bound. For CCHR, the test resulted in stack overflow after around half a million recursive calls,
for SWI after around 3.3 million. YAP Prolog’s call stack grows dynamically, so YAP is only
limited by available (virtual) memory.

We also tested the limits for different more realistic CHR benchmark programs. The results10

can be found in Table 2.3. The numbers confirm the traditional compilation scheme is ill-suited
for compiling CHR to Java. Due to the lack of tail call optimizations and the limited size of
the call stack, stack overflows occur unacceptably fast when executing recursive JCHR programs.
Depending on the version and platform, this can already be after a few thousand recursive calls.
As most CHR programs contain some form of recursion, this problem is particularly severe. The
next chapter proposes a new compilation scheme that completely solves these stack overflow issues.

8 Java folklore suggests that supporting tail call optimization would interfere with Java’s stack walking security
mechanism (though this has recently been challenged in [CF04]).

9 The tests of Table 2.2 were performed on a Intel R© CoreTM 2 Duo 6400 system with 2 GiB of RAM. SWI-Prolog
5.6.50 and YAP 5.1.2 were used. All C programs were compiled with GCC 4.1.3. K.U.Leuven JCHR 1.6.0 was
used, and the generated Java code was compiled with Sun’s JDK and executed with HotSpot JRE.

10 The benchmarks of Table 2.3 were performed on a Intel R©Pentium R©4 CPU 2.80GHz with 1GiB of RAM.
K.U.Leuven JCHR 1.6.1 and SWI-Prolog 5.6.55 were used. The Java code was compiled with Sun’s JDK 1.6.0 and
executed with HotSpot JRE 1.6.0.
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JCHR SWI Description
beer(N) 3,500 ∞ Sing the well-known ‘N Bottles of Beer’ song.

The original program by Jon Sneyers was taken
from http://99-bottles-of-beer.net/.

dijkstra(N) 2,100 ∞ Using Dijkstra’s algorithm to find the shortest
path in a sparse graph with 16,384 nodes and
65,536 edges. A Fibonacci heap, also imple-
mented in CHR, is used to obtain the optimal
complexity (see [SSD06a] for a description of the
Dijkstra and Fibonacci heap handlers).

fibbo(N) 1,800 timeout Bottom-up computation of the N first Fibonacci
numbers (origin: [Frü05]; see also [VW08c]).

gcd(N) 4,300 4.5M Compute the greatest common divisor of N and 2
using Euclid’s algorithm (classical example found
on [CHR08]).

primes(N) 4,800 ∞ Determine all primes numbers up to N using the
Sieve of Eratosthenes (classical example found on
[CHR08]).

primes swapped(N) 4,800 3.4M Variant of the previous handler, where non-tail
recursion is used instead of tail recursion.

ram fib(N) 300 20,000 Calculating N Fibonacci numbers using the
RAM simulator (origin: [SSD05b]; see also
[VWWSD08, Appendix A]), with the addition
replaced by a multiplication to avoid arithmetic
operations on large numbers (when using multi-
plication all Fibonacci numbers are equal to one).

Table 2.3: Limits for different CHR benchmark programs. The numbers in the second and third
column indicate the approximate value of N for which the benchmark results in stack overflow for
resp. JCHR and SWI; ∞ indicates the benchmark ran in constant stack space, and was thus only
limited by heap space (none of the benchmarks reached this limit before timing out).
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Chapter 3

Improved Compilation Scheme

This chapter introduces a new and improved compilation scheme for compiling CHR to Java. It
is used by more recent versions of the K.U.Leuven JCHR system. In the traditional scheme for
compiling CHR (cf. previous Chapter), the activation stack A corresponds to Java’s implicit call
stack. The direct adaption of the traditional compilation scheme to Java frequently leads to stack
overflows, as seen in Section 2.3. The compilation scheme presented in this chapter overcomes this
important issue by more explicitly maintaining the activation stack.

The structure of this chapter is analogous as before: building on the compilation scheme of
Chapter 2, Section 3.1 presents a basic compilation scheme, which is subsequently optimized in
Section 3.2, and evaluated in Section 3.3.

3.1 Basic Compilation Scheme

3.1.1 The Handler class

The Handler class (cf. Section 2.1.1) obtains the extra responsibility of managing a continuation
stack. The abstract Handler is therefore extended with the code listed in Listing 3.1. Each handler
implements the obvious push and pop methods to manipulate the continuation stack (lines 10–11).
The Continuation class itself is a simple abstract class1 (lines 1–3), with a single method call().

1 The reason it is not an interface is that in Java all methods of an interface are necessarily public. By making
the call() method protected, some form of encapsulation is obtained: user code is never supposed to call the
call() method. Also, Java folklore suggests calls to interfaces are slower than regular calls.

1 public abstract static class Continuation {
2 protected abstract void call();
3 }
4

5 protected void call(Continuation continuation) {
6 push(null);
7 do { continuation.call(); } while ((continuation = pop()) != null);
8 }
9

10 protected void push(Continuation continuation) { ... }
11 protected Continuation pop() { ... }

Listing 3.1: Code managing the continuation stack in the generated Handler classes.
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Example 3.1 Each Constraint class is a Continuation. Calling a Constraint continuation
corresponds to calling the activate() method (cf. Chapter 2). In other words, a Constraint

class overrides the abstract call method as follows:

@Override
protected void call() { activate(); }

The loop on line 7 of Listing 3.1 now governs the control flow of a constraint handler. The
enclosing call(Continuation) method (lines 5–8) is called with an initial continuation, typically
a new constraint told from user code. First, null is pushed on the continuation stack, and then
the initial continuation is called. During the execution of a continuation, other continuations may
be pushed on the continuation stack. The loop on line 11 keeps popping and calling continuations,
until the null value pushed on line 6 is reached. If this occurs, all work required for the initial
continuation is done, and the method returns.

Example 3.2 The tellC(args) method for a constraint c(args) is implemented as follows:

public void tellC(args) {
call(new CConstraint(args));

}
Calling the activate() method is no longer done immediately, as was the case in Section 2.1.1,
page 8. Instead, this is delegated to the call(Continuation) method (see Example 3.1).

In general, it is possible that multiple null continuations appear on the continuation stack.
This occurs for instance if a host language statement executed by the handler as part of a body
adds new constraints to this handler using its tell methods. The continuation stack therefore
actually represents multiple stacks, where each null value represents a stack’s bottom.

3.1.2 The Constraint classes

In this section, all simple optimizations of Section 2.2 (except Inlining) are always applied imme-
diately. Also the activate() method used in Example 3.2 is thus the version of Listing 2.5.

The basic compilation scheme for occurrence methods remains very similar to the scheme
of Chapter 2 (Listings 2.2, 2.3, and 2.6). The main difference resides in the execution of (non-
empty) rule bodies. To avoid problems with recursive stack overflows, instead of using the implicit
JVM call stack, the continuation stack maintained by the enclosing Handler class is used. The
scheme for Simplify transitions is discussed first (Section 3.1.2.1), followed by the slightly more
complicated scheme for Propagate transitions (Section 3.1.2.2). These first two subsections
furthermore assume bodies consist of CHR constraints only. Sections 3.1.2.3 and 3.1.2.4 then
extend the scheme to deal with built-in constraints and host language statements respectively.

3.1.2.1 Simplify transitions (CHR constraints only)

Figure 3.1 illustrates the basic idea behind the new compilation scheme for Simplify transi-
tions. Figure 3.1(a) recalls the relevant part of the compilation scheme of Chapter 2: all body
conjuncts are called in conjunction, after which false is returned (see Sequential Control Flow,
Section 2.2). Figure 3.1(b) illustrates what the stack-based JVM runtime actually does: before
calling the first conjunct, a frame is pushed on a stack. After the execution of the first conjunct,
this stack frame will be popped and called, executing the remainder of the body in the same man-
ner. Calling a conjunct may of course push more frames on the call stack. In Java, this rapidly
results in call stack overflows, certainly in the case of recursive CHR programs.

To solve this problem, the scheme in Figure 3.1(c) is used: instead of calling the first remaining
conjunct, this conjunct is also pushed onto the continuation stack. The main control loop of
Listing 3.1 will then pop this continuation and call it. After the execution of the first conjunct is
completed, the continuation for the remainder of the body will be popped and called. By always
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...
b1;
b2; ...; bnb

;

return false;

. .
.

...
push (〈b2,...,bnb

〉);
call (b1);

return false;

. .
.

...
push (〈b2,...,bnb

〉);
push (b1);

return false;

. .
.

(a) (b) (c)

Figure 3.1: Pseudo-code compilation scheme for the execution of a body of a Simplify transition:
(a) the original scheme (cf. Listing 2.3); (b) an illustrative scheme, faithfully simulating stack based
execution; and (c) the actual (unoptimized) compilation scheme.

...
push(new Ci_ji_2(#vars(〈b2,...,bnb

〉)));
push(new #constraint_type(b1)(#args(b1)));

return false;
}

. .
.

Listing 3.2: Compilation scheme for a Simplify transition. This scheme replaces the corre-
sponding code from Listing 2.3, as outlined in Figure 3.1 (if nb > 0).

returning to the main control loop of Listing 3.1, recursion is essentially turned into iteration, thus
solving the call stack overflow issues of the traditional compilation scheme.

Moving from the pseudo-code of Figure 3.1(c) to actual code is straightforward. For empty
bodies the scheme of Listing 2.3 is simply kept, but for a non-empty body b1,...,bnb

, the scheme
listed in Listing 3.2 is used. The following pseudo code operators are used:

• #vars: returns the variables used in an expression, in this case the variables used in the
remainder of the body;

• #constraint type: returns the name of the constraint class for the given constraint conjunct
(recall that all body conjuncts, for now, are assumed to be CHR constraints); and

• #args returns the arguments of a constraint conjunct.

protected final class Ci_ji_k extends Continuation {
...

@Override
protected void call() {

push(new Ci_ji_〈k+1〉(#vars(〈bk+1,...,bnb
〉)));

push(new #constraint_type(bk)(#args(bk)));
}

}

Listing 3.3: Compilation scheme for the continuations of Listings 3.2 and 3.5 in case k ≤ nb.
The class also contains a constructor whose arguments are the variables used in the remainder of
the body, and a series of member fields to store these variables after construction.
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protected final class Ci_ji_〈nb+1〉 extends Continuation {
@Override
protected void call() { }

}

Listing 3.4: Compilation scheme for the last continuation of a Simplify transition.

1

...
2 reactivated = false;
3

4 store();
5

6 push(new Ci_ji_2(#vars(〈b2,...,bnb
〉), oldGeneration));

7 push(new #constraint_type(b1)(#args(b1)));
8

9 return false;
10 }
11 . .

.

Listing 3.5: Compilation scheme for a Propagate transition, replacing the corresponding code
of Listing 2.6 (if nb > 0).

The remainder of the body is executed in a similar fashion. For k ≤ nb, the Ci_ji_k class
(inner class of the CiConstraint class) implements the continuation for the remainder of the body
starting with the k’th conjunct. The scheme for k ≤ nb is shown in Listing 3.3; Listing 3.4 lists
the trivial case for k = nb + 1.

3.1.2.2 Propagate transitions (CHR constraints only)

The compilation of Propagate transitions is only slightly more complicated. After the execution
of the body of the applied rule, more matching constraint combinations may have to be searched
for that same rule (more precisely: for the same occurrence). If the body of the rule is empty, the
old compilation scheme for Propagate transitions, Listing 2.6, remains unchanged for now. For
non-empty bodies though, the scheme is adapted. The result is shown in Listing 3.5. The most
important changes with Listing 2.6 are:

• Firstly, the body is of course executed using the explicit continuation stack. The basic
compilation scheme for the continuations remains the same as for Simplify transitions, i.e.
Listing 3.3. Only for the final continuation, Listing 3.4 is replaced with Listing 3.6. After
the stepwise execution of the body, and if the active constraint is still alive (the constraint
could have been removed indirectly by the execution of the body), Listing 3.6 resumes calling

1 protected final class Ci_ji_〈nb+1〉 extends Continuation {
2 @Override
3 protected void call() {
4 if (isAlive() && !reactivated && ci ji() && ci+1 ji+1() && ... && cni

jni
())

5 store();
6 }
7 }

Listing 3.6: Compilation scheme for the last continuation of a Propagate transition.

25



the different occurrence methods (line 4). The sequence of occurrence methods called starts
with the same occurrence method that was just applied. This guarantees that all matching
constraint combinations will be found before advancing to the next occurrence (i.e., before
a Default transition occurs). Recall that the propagation history will prevent the same
constraint combination from being applied twice. Note that the Drop after Reactivation
optimization of Section 2.2 is easily implemented as well (line 4).

• Secondly, even though it is not a dead continuation, the method returns false instead of
true (Listing 3.5, line 9). The correspondence between the boolean that is returned, and
the fact that the active constraint is alive or not, is thus lost. The interpretation of this
boolean becomes as follows: true means the calling activate() or reactivate() method
should continue with the next occurrence method (if there is one), and false means it should
instead return to the outer control loop.

3.1.2.3 Built-in constraints

So far, the compilation scheme assumed bodies consisted of CHR constraints only. If the k’th
body conjunct is a built-in constraint, the line:

push(new #constraint type(bk)(#args(bk)));

in Listings 3.2, 3.3, and 3.5 is replaced with a call to a method of a built-in constraint solver.
This causes the reactivate() method of all constraints that observe the variables involved to be
called. Without proper care, this may cause stack overflows: these Reactivate transitions may
cause more Solve transitions, which in turn may trigger more Reactivate transitions, and so on.
The solution is to use the continuation stack for Reactivate transitions as well: all constraints
that have to be reactivated are pushed on the continuation stack (recall that each constraint is
a continuation). This way, the actual reactivation is postponed until the continuation is popped
from the stack and called, thus avoiding stack overflows. Note though that this reverses the order
in which constraints are reactivated. Indeed, the constraint that is pushed on the stack last is
reactivated first. Reversing the reactivation order is allowed though, as the refined operational
semantics does not determine the order in which constraints are put on the activation stack at a
Solve transition.

The resulting code is shown in Listing 3.7:

Lines 1–8: By pushing the constraints to be reactivated on the continuation stack, reactivation
is no longer performed by the reactivate() method, but through the call() method. For
the Drop after Reactivation optimization of Section 2.2 to work, the reactivated flag has
to be set to true after a constraint’s reactivation. Note that the flag only has to set at a
Drop transition, i.e. if all occurrences are traversed (lines 6 and 15). Because a reactivation
may also end after a series of continuations, Listing 3.8 adds an extra line to Listing 3.6’s
compilation scheme for the last continuation of a Propagate transition.

The extra liveness test of line 3 is necessary because constraint could be terminated by
reactivated constraints that were put on the stack later.

Lines 11–19: JCHR constraint solvers are supposed to be incremental. The expected seman-
tics therefore entails that, immediately after a constraint is added, the previous solution is
adapted to take into account the newly told constraint. A problem could occur when built-in
constraints are told from host language code, be it as part of the initial query, or told during
the execution of some host language statement in a rule’s body. As incremental adaptation
is expected, simply pushing the reactivations on a stack is then not acceptable. Indeed: the
control would return to the host language code without reactivating any JCHR constraints,
they would simply be pushed on some stack. Therefore, two modes are distinguished: if in
host language mode, constraint reactivations are performed eagerly (lines 14–15), otherwise
the constraints are pushed on the continuation stack (lines 16–17).
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1 @Override
2 public void call() {
3 if (alive) {
4 if (occurrences()) {
5 store();
6 reactivated = true;
7 }
8 }
9 }

10

11 @Override
12 public void reactivate() {
13 if (inHostLanguageMode()) {
14 if (occurrences())
15 reactivated = true;
16 } else {
17 push(this);
18 }
19 }

Listing 3.7: Reactivation of constraints through the continuation stack. This code replaces the
reactivate() method of Listing 2.5. The liveness test on line 3 is required in case of a reactivation
(an earlier reactivation may have terminated the constraint).

1 protected final class Ci_ji_〈nb+1〉 extends Continuation {
2 @Override
3 protected void call() {
4 if (isAlive() && !reactivated && ci ji() && ci+1 ji+1() && ... && cni

jni
()) {

5 store();
6 reactivated = true;
7 }
8 }
9 }

Listing 3.8: Updated compilation scheme for the last continuation of a Propagate tran-
sition (replaces Listing 3.6).

protected void call(Continuation continuation) {
setHostLanguageMode(false);
push(null);
do { continuation.call(); } while ((continuation = pop()) != null);
setHostLanguageMode(true);

}

Listing 3.9: During CHR derivations the host language mode is, by default, switched off.
This version of the call(Continuation) method replaces the one in Listing 3.1.
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Initially, the constraint system is in host language mode. This is necessary for the initial
query. During CHR derivations, the host language mode is, by default, switched off: see
Listing 3.9. Only when control returns to host language code, the mode is set back to host
language mode. This is explained further in Section 3.1.2.4.

3.1.2.4 Host language code

CHR rules can contain arbitrary host language statements. During the execution of such a state-
ment, built-in or CHR constraints may be called from host language code. Recursion where CHR
code is interleaved with host language code cannot be fully eliminated for incrementally adapting
constraint solvers. As already seen in the previous subsection, this property implies constraints
added from host language code should immediately adapt the solution, i.e., before returning from
the method call. As this execution may recursively call the same host language statement, the
only possibility to safeguard against stack overflows is to abandon incrementality.

By default, JCHR constraint solvers remain incremental, and stack overflow could occur as
outlined above. However, JCHR offers the possibility to turn incrementality off. All built-in and
CHR constraints told in host language mode are then queued, and pushed on the continuation
stack in reversed order once control returns to the JCHR runtime.

If the k’th body conjunct is a host language statement, the line:

push(new #constraint type(bk)(#args(bk)));

in Listings 3.2, 3.3, and 3.5 is thus replaced with:

setHostLanguageMode(true);
bk;
setHostLanguageMode(false);
push(getQueue());

The queue is shared between all JCHR constraint handlers and built-in constraint solvers
belonging to the same constraint system. This concept is introduced in the next section:

3.1.2.5 Constraint Systems

Because all built-in solvers and JCHR handlers need to be able to enqueue constraints added
when in host language mode, some shared state is required. All cooperating solvers and handlers
therefore are part of a constraint system. Built-in or CHR constraints must only range over either
fixed values, or variables belonging to the same constraint system. This shared ConstraintSystem
object manages the following state:

1. The constraint system’s mode (i.e. host language mode or not, incremental mode or not).
The different methods that inspect or modify this mode in a JCHR handler thus delegate
to the handler’s constraint system.

2. The constraint queue. The tellC methods responsible for adding constraints to a JCHR
handler (cf. Example 3.2), as well as all procedures that add built-in constraints, have to
be adjusted to queue constraints if the constraint system is in host language mode. The
former adjustments are shown in the next subsection, the latter are outside the scope of this
document.

3. The continuation stack: a set of related handlers also share a single continuation stack. Any
stack-related method introduced in 3.1.1 thus delegates to the handler’s ConstraintSystem
as well. Section 3.1.2.6 will clarify why this is necessary.

3.1.2.6 JCHR handlers as built-in solver

JCHR allows to use a JCHR handler as a built-in solver for another JCHR handler These built-in
constraints can then only be told (i.e. used in a body), and not asked (used in a guard). This
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may cause recursive relations between JCHR handlers. By definition these constraint handlers are
part of the same constraint system (cf. previous subsection), and thus share the same continuation
stack. This allows the last remaining risk of stack overflows to be avoided by replacing the tellC
methods of Example 3.2 with:

public void tellC(args) {
if (inHostLanguageMode()) {

if (incrementalMode())
call(new CConstraint(args));

else
enqueue(new CConstraint(args));

} else {
push(new CConstraint(args));

}
}

A constraint system is not in host language mode if a built-in constraint is called. If therefore a
built-in constraint is implemented by a JCHR handler, this constraint activation is pushed onto
the shared continuation stack, thus avoiding call stack overflows due to recursive calls between
JCHR handlers.

3.2 Optimizations

This section lists several optimizations applicable to the basic compilation scheme of the previous
section. All optimizations of Section 2.2 are already applied. The optimizations introduced here are
mostly aimed at reducing the constant time overheads incurred by creating explicit continuation
objects and pushing them on a stack.

3.2.1 Trampoline Style Compilation

This important compilation scheme optimization is named after a popular technique to eliminate
tail calls [TLA92, SO01]. A trampoline compilation scheme employs of an outer loop which
repeatedly calls inner subroutines. Each time an inner subroutine wishes to tail call another
subroutine, it does not call it directly, but simply returns a continuation to the outer loop, which
then does the call itself. Tail recursive subroutines are therefore executed in constant stack space.

The compilation scheme presented here is similar, but more general: it also eliminates stack
issues for non-tail calls. The optimized scheme nevertheless behaves exactly as a trampoline
for bodies consisting of a single JCHR constraint—that is: tail recursive rules are guaranteed
to execute in constant stack space. The analogy is strengthened further by other optimizations
subsequent sections: the stack should only be used when really necessary, otherwise a trampoline
style execution is used.

Trampoline Style Control Flow

In the stepwise execution of the body of the basic compilation scheme (cf. Listings 3.2–3.3,
and 3.5) continuations are frequently popped immediately after they have been pushed. This is
illustrated in Figure 3.2 to the left: right before the occurrence method or continuation call exits,
the first conjunct of a remaining body is pushed onto the continuation stack. Immediately there-
after, that continuation is popped by the outer control loop. The Trampoline Style Compilation
optimization aims at avoiding these superfluous (and relatively costly) push and pop operations.

The general idea, illustrated in Figure 3.2 to the right, is to return the next continuation directly
to the outer control loop, instead of passing it via the continuation stack. For this purpose, the
code in Listing 3.10 replaces the corresponding code in Listing 3.1. Calling a Continuation
now always returns the next Continuation to call (line 2). The main control loop is adjusted
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...
push(〈continuation 〉);
push(〈first conjunct 〉);
return ...;
...
pop();  〈first conjunct 〉
...

=⇒
...
push(〈continuation 〉);
return 〈first conjunct 〉;
...

Figure 3.2: In the basic compilation scheme (Listings 3.2–3.3, 3.5), illustrated to the left, the
first conjunct of the body is typically pushed, and then immediately popped again. The Tram-
poline Style Compilation optimization, illustrated to the right, solves this frequently recurring
phenomenon by returning this continuation directly, instead of via the continuation stack.

1 public abstract static class Continuation {
2 protected abstract Continuation call();
3 }
4

5 protected void call(Continuation continuation) {
6 setHostLanguageMode(false);
7 push(BOTTOM);
8 while ((continuation = continuation.call()) != null);
9 setHostLanguageMode(true);

10 }
11

12 private final static Continuation BOTTOM = new Continuation() {
13 @Override
14 public Continuation call() { return null; }
15 };

Listing 3.10: Trampoline style compilation scheme: main control loop (cf. Listings 3.1 and 3.9).
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1 @Override
2 protected Continuation call() {
3 if (alive) {
4 Continuation continuation;
5 if ((continuation = c_1()) != null) return continuation;
6 ...
7 if ((continuation = c_n()) != null) return continuation;
8 store();
9 reactivated = true;

10 }
11 return pop();
12 }

Listing 3.11: The call() method of a constraint c with n occurrences using trampoline style
control flow. This version replaces the one in Listing 3.7.

accordingly (line 8). Also, instead of pushing null to indicate the bottom of a (virtual) stack (cf.
Section 3.1.1, page 23), a special BOTTOM continuation is used (lines 7, 12–15). The reason for this
will be clarified shortly. As this BOTTOM continuation is the only continuation that is allowed to
return null when its call() method is invoked, the main loop can still easily detected when the
bottom of a stack is reached.

The call() method of a constraint becomes implemented as in Listing 3.11. Note that the
activate() now is no longer used, and can be removed. The compilation scheme combines the
ideas of trampoline style control flow with those of the sequential control flow introduced in
Section 2.2. As before, all occurrence methods are called in sequence. Only, instead of returning
a boolean, occurrence methods now return a Continuation. Instead of returning false, the next
continuation to execute will be returned. If this continuation is a conjunct of the body, which is
the most common case, this saves pushing the continuation on the stack first (cf. Figure 3.1). This
was the central idea of this optimization. If the there is no remaining body conjunct, the same
two cases as before are considered:

Dead Continuations If a Drop transition occurs (line 9), or similarly at the end of a Simplify
transition (Listing 3.2(c)), the next continuation is popped from the continuation stack and
returned.

Live Continuations To indicate the next occurrence method should be tried, null is returned
instead of true. This is why the BOTTOM continuation was introduced before: it allows to
distinguish between a live continuation (null), and the case where the bottom of the stack
is reached (BOTTOM).

Note that line 7 of Listing 3.11 implements the Late Storage optimization, and line 8 is required
for the Drop after Reactivation optimization (as in Listing 3.7).

The compilation schemes for the occurrence methods and their associated continuation classes
is listed in Listing 3.12. As in Section 3.1, this scheme deals with bodies consisting of CHR
constraints only. The next subsection addresses built-in constraints and host language statements.

Built-in Constraints and Host Language Statements

Built-in Constraints If the k’th body conjunct is a built-in constraint, the compilation scheme
proposed in Section 3.1.2.3 is:

...
push(new Ci ji 〈k+1〉(#vars(〈bk+1,...,bnb

〉), ...));
bk();
return false;
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...
push(new Ci_ji_2(#vars(〈b2,...,bnb

〉)));
return new #constraint_type(b1)(#args(b1));

}
. .
.

(a) The above, left scheme replaces Listings 3.2 and 3.5 for
a non-empty body. For an empty rule body, Listing 3.2
for Simplify transitions is replaced with the top right
scheme, and Listing 3.5 for Propagate transitions with
the bottom right one.

...
return pop();

}
. .
.

...
continue label cr jr;

}
. .
.

protected final class Ci_ji_k extends Continuation {
...

@Override
protected Continuation call() {

push(new Ci_ji_〈k+1〉(#vars(〈bk+1,...,bnb
〉)));

return new #constraint_type(bk)(#args(bk));
}

}
(b) Scheme for continuations with k ≤ nb (replaces Listing 3.3).

protected final class Ci_ji_〈nb+1〉 extends Continuation {
@Override
protected Continuation call() { return pop(); }

}
(c) Scheme for the last continuation of a Simplify transition (replaces Listing 3.4).

protected final class Ci_ji_〈nb+1〉 extends Continuation {
...

@Override
protected Continuation call() {

if (isAlive() && !reactivated) {
Continuation continuation;
if ((continuation = ci ji()) != null) return continuation;
if ((continuation = ci+1 ji+1()) != null) return continuation;
...
if ((continuation = cni

jni
()) != null) return continuation;

store();
reactivated = true;

}
return pop();

}
}

(d) Scheme for the last continuation of a Propagate transition (replaces Listing 3.6).

Listing 3.12: Trampoline style compilation scheme: optimizations of Listings 3.2–3.6.
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Firstly, this scheme has to be adapted to the trampoline style compilation scheme introduced
by the previous optimization. Secondly, a further optimization is possible. The built-in constraint
call ‘bk();’ does not always push reactivations onto the stack. In that case creating, pushing and
popping the Ci ji 〈k+1〉 continuation, as well as the possible overhead of resuming the search for
partner constraints, may be avoided.

The resulting compilation scheme for a series of built-in constraint calls is listed in Listing 3.13.
The swap(Continuation, int) operation replaces the continuation on a given stack depth, and
returns the continuation formerly on that depth. This way, the first reactivation pushed is called
first (and the others are called in reverse order, cf. Section 3.1.2.3). Note that this scheme also
deals with built-in constraints implemented using JCHR, as described in Section 3.1.2.6.

Host Language Statements The compilation scheme for host language statements is similar.
The original scheme, introduced in Section 3.1.2.4, is as follows:

...
push(new Ci ji 〈k+1〉(#vars(〈bk+1,...,bnb

〉), ...));
setHostLanguageMode(true);
bk();
setHostLanguageMode(false);
push(getQueue());
return false;

However, even if incrementality is turned off (cf. Section 3.1.2.4), the queue will mostly be empty.
So there is normally no reason to push and return after each host language statement. The
optimized scheme for a series of host-language statements bk, bk+1, ..., bκ−1 is listed in List-
ing 3.14. The convenience method dequeue(Continuation) performs the following steps:

1. it sets the host language mode to false;

2. it pushes the provided continuation;

3. it pushes all but the first queued continuation onto the stack, in the reverse order in which
they were queued; and

4. it returns the continuation that was queued first.

Interleaving Of course, built-in constraints and host language statements can be interleaved
arbitrarily. Combining the compilation schemes proposed in Listings 3.13 and 3.14 for the cases
where the first part of the (remaining) body is an interleaving of built-in constraints and host
language statements is straightforward. The main idea is that the creation of continuations, and
the use of the continuation stack, is avoided as much as possible.

3.2.2 Generic Optimizations

This section presents a series of generic optimizations. Optimizations that are specific to Simplify
and Propagate transitions are considered in Sections 3.2.3 and 3.2.4 respectively.

Drop before Reactivation

Section 3.1.2.3 explained that if a Solve transition triggers Reactivate transitions, corresponding
reactivate continuations are pushed onto the continuation stack. During the execution of one of
these continuations, more reactivation continuations may be pushed onto the stack. This way, it
is possible that there are multiple reactivation continuations on the stack for a single constraint.
Following the same reasoning (and proof: cf. [Sch05a]) as with the Drop after Reactivation opti-
mization of Section 2.2, only the top most of these reactivations has to be executed. Therefore, the
scheme of Listing 3.11 is replaced with that of Listing 3.15 (the only difference is the additional
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1 ...
2 final int SS = getStackSize();
3 bk();
4 if (getStackSize() != stackSize)
5 return swap(new Ci_ji_〈k+1〉(#vars(〈bk+1,...,bnb

〉)), SS);
6 ...
7 bκ−1();
8 if (getStackSize() != stackSize)
9 return swap(new Ci_ji_κ(#vars(〈bκ,...,bnb

〉)), SS);
10 push(new Ci_ji_〈κ+1〉(#vars(〈bκ+1,...,bnb

〉)));
11 return new #constraint_type(bκ)(#args(bκ));
12 . .

.

Listing 3.13: Optimized, trampoline style compilation scheme for bodies containing built-in con-
straints. This scheme replaces the corresponding code in Listing 3.12(a)–(b) if the first conjuncts
of the (remaining) body are built-in constraints bk, bk+1, ..., bκ−1, with κ > k the index of
the first JCHR constraint in the body after bk. If there is no such JCHR constraint left in the
body, one option would be to replace lines 10–11 with “return new Ci ji 〈nb + 1〉();”. As this
continuation is actually unnecessary (recall the goal of this optimization is to reduce the number
of continuations and stack operations), the body of its call() method is simply inlined instead:
see Listing 3.12(c) or (d), depending on whether it concerns a Simplify or Propagate transition.

...
setHostLanguageMode(true);
bk();
if (hasQueued())

return dequeue(new Ci_ji_〈k+1〉(#vars(〈bk+1,...,bnb
〉));

...
bκ−1();
if (hasQueued())

return dequeue(new Ci_ji_κ(#vars(〈bκ,...,bnb
〉));

setHostLanguageMode(false);
push(new Ci_ji_〈κ+1〉(#vars(〈bκ+1,...,bnb

〉));
return new #constraint_type(bκ)(#args(bκ));

. .
.

Listing 3.14: Optimized, trampoline style compilation scheme for bodies containing host lan-
guage code. This scheme replaces the corresponding code in Listing 3.12(a)–(b) if the first con-
juncts of the (remaining) body are a series of host language statements bk, bk+1, ..., bκ−1,
with κ > k the index of the first JCHR constraint in the body after bk. Analogously to the
scheme in Listing 3.13, if there is no such JCHR constraint left in the body, lines 10–11 are re-
placed with the body of the call() method of either Listing 3.12(c) (for a Simplify transition)
or Listing 3.12(d) (for a Propagate transition).
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1 @Override
2 protected Continuation call() {
3 if (alive && !reactivated) {
4 Continuation continuation;
5 if ((continuation = c_1()) != null) return continuation;
6 ...
7 if ((continuation = c_n()) != null) return continuation;
8 store();
9 reactivated = true;

10 }
11 return pop();
12 }

Listing 3.15: The call() method of a CConstraint class after the Drop before Reactivation
optimization. This version replaces the one in Listing 3.11 (the only difference is the additional
test on line 3).

test on line 3). Analogously to the earlier Drop after Reactivation optimization, this optimization
is again only applied if at least one of the occurrences in the rule’s head may be reactivated.

Eager Pushing

The stepwise execution of the body in the basic compilation scheme is illustrated in Figure 3.3
to the left. At lines 2a, 7a, and 12a, special continuation objects are created to represent the
remainder of the body, and pushed on the stack. However, as illustrated to the right, it is often
possible to push the different conjuncts of the body eagerly at the moment the body is first applied
(line 2b), thus saving the creation of the latter continuation objects (the constraint objects pushed
on line 2b have to be created anyway, namely on lines 8a and 13a). Less Continuation classes
have to be generated as well. Some more method calls are avoided by generating specialized push
operations for pushing multiple continuations at once (line 2b).

This optimization is not always applicable. If for instance some conjunct requires the execution
of a previous conjunct to ground a variable (this depends on the type or mode declaration of the
constraints), it is not be possible to create and push the former before the latter is executed.

Traditional Compilation

If it can be shown that calling a certain constraint can never overflow the call stack, the scheme
of Chapter 2 can safely used. This will most likely improve performance, since maintaining the
call stack explicitly will always involve some constant time overhead (see also Chapter 3.3).

The problem at hand is thus to show that activating a constraint only requires a small, fixed
number of stack frames. This is clearly the case if the activation of this constraint never, directly or
indirectly, encounters recursive constraint calls. One technique that can be used is the computation
of the transitive closure of a constraint call graph. More advanced analysis techniques, such as
abstract interpretation (see [SSD05a]), can also be used. Details are outside the scope of this
paper.

3.2.3 Optimizing Simplify Transitions

For a Simplify transition the active constraint is terminated. Consequently, after the body is com-
pletely executed, no more work needs to be done2. Nevertheless, in the basic compilation scheme,

2 If functional dependency or set semantics information is available (see e.g. [HGSD05, DS05]), kept occurrences
for which all partner constraints are unique may be treated analogously to removed occurrences.
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1a ...
2a push(new Continuation〈b2, b3〉);
3a return b1;
4a ...
5a return pop();  〈b2, b3〉
6a ...
7a push(new Continuation〈b3〉);
8a return b2;
9a ...

10a return pop();  〈b3〉
11a ...
12a push(new Continuation〈〉);
13a return b3;
14a ...
15a return pop();  〈〉
16a ...

=⇒

... 1b

push(b2, b3, new Continuation〈〉); 2b

return b1; 3b

... 4b

return pop();  b2 5b

... 6b

return pop();  b3 7b

... 8b

return pop();  〈〉 9b

... 10b

Figure 3.3: The Eager Pushing optimization: by eagerly pushing the conjuncts of the body
(line 2b), less continuation objects have to created (lines 2a and 7a). The illustrated example is
for ‘b1, b2, b3’, a body with three JCHR constraint conjuncts.

trivial continuations are pushed for this (see Listings 3.4 and 3.12(c), and also the illustration in
Figure 3.3). In the optimized scheme, these ‘empty’ continuations are not pushed.

A similar optimization is also possible in the compilation schemes for built-in constraints and
host language statements presented earlier in this section. For Simplify transitions, if a built-in
constraint is the last conjunct of the body, pushing a continuation is again pointless, as no more
work needs to be done for the active constraint. Consequently, the stack size does not have to be
compared. The ‘return pop();’ operation that follows suffices, even if reactivations were pushed
on stack by the last conjunct. Similarly, if the last conjunct of a Simplify transition is a host
language statement, the statement following this host language statement becomes:

return hasQueued()? dequeue() : pop();

3.2.4 Optimizing Propagate Transitions

Resuming the Search for Partner Constraints

After the (non-empty) body of a Propagate transition is completely executed, Listing 3.12(d)
starts by calling the same occurrence method again. Because either one or more partner constraints
is removed (simpagation rules), or it is prevented by the propagation history (propagation rules),
a rule will never be applied with the same constraint combination more than once. Nevertheless,
each time all iterators of the nested loops are restarted, generally recomputing the same partial
joins again as before3, up to the point where the last Propagate transition was applied. In other
words: a significant amount of redundant work is done over and over again during a consecutive
series of Propagate transitions.

The solution is to include all iterators in the continuation, and use them to resume the search
for partner constraints directly at the point where the search was interrupted. We first consider
Propagate transitions with simpagation rules. Afterwards, the scheme is easily adjusted for
propagation rules.

3 Often even additional, redundant (partial) joins are computed, as executing the body may have added matching
constraints. As these have already been active, they will most likely not match again.
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1

...
2 push(
3 new #constraint_type(bk+1)(#args(bk+1)),
4 ...,
5 new #constraint_type(bk+l)(#args(bk+l)),
6 new Ci_ji_〈k+1〉(
7 #vars(〈bk+l+1,...,bnb

〉),
8 c1 j1, c1 j1 iter, ..., cr−1 jr−1, cr−1 jr−1 iter, cr jr iter
9 )

10 );
11 return new #constraint_type(bk)(#args(bk));
12 }
13 . .

.

Listing 3.16: Compilation scheme for a Propagate transition with a multi-headed simpaga-
tion rule (for which nb > 0), after application of the Eager Pushing and Live Continuations
optimizations. This scheme replaces the corresponding code in Listing 3.12(a) ( k = 0), and
Listing 3.12(b) ( 0 < k ≤ nb).

Simpagation Rules Listing 3.16 lists the compilation scheme for pushing the continuations for
Propagate transitions with a simpagation rule. We assumed the first remaining body conjunct,
bk, is a JCHR constraint. If this is not the case, the scheme is adjusted as shown earlier in
Listings 3.13 and 3.14. We furthermore assumed the l conjuncts after bk are JCHR constraints
that can be pushed eagerly (see the Eager Pushing optimization), though l may be zero. Next, a
continuation is pushed. The arguments passed to it on lines 7–8 are:

• The variables used in the remainder of the body.

• The different iterator objects needed to resume the search for partner constraints after the
body if fully executed. Only the iterators of the kept occurrences are passed, as well as
the iterator of the first removed occurrence. This is because the latter is the iterator that
has to advanced next (cf. the Explicit Backjumping optimization in Section 2.2). Any more
deeply nested iterators will then be reinitialized, so there is no need to pass them to the
continuation.

• The current partner constraints for all kept occurrences, as these may be required for prop-
agation histories or testing for mutually different partner constraints (cf. for instance line 34
in Listing 2.2).

The Ci ji 〈nb+1〉 continuation class, i.e. the class for the last continuation of a Propagate
transition, is adjusted as shown in Listing 3.17. Instead of calling the same occurrence method
again, as in Listing 3.12(d), a special occurrence method is invoked with the necessary arguments
(lines 9–11). The compilation scheme of this method is sketched in Listing 3.18, and is similar
to that of an ordinary occurrence method (cf. Listing 2.2). A boolean first is used though to
ensure the search is resumed correctly. In the most common case—ignore lines 7, 13, and 17
for now—the search is resumed by advancing the iterator of the first removed occurrence. On
line 6, the boolean first is initialized to true. This boolean is used to ensure that the first time
none of the outer iterators are advanced (lines 9, 15, and 19), and that none of the more outer
iterators are reinitialized (lines 11 and 21). The first iterator that is advanced is the one for the
first removed occurrence, on line 25. Afterwards, the nested loops continue as before, since the
first boolean is always true after line 22 is reached the first time. Note that if there is only one
partner constraint, there is no need to introduce the boolean first, as the search will always have
to resume by advancing the first iterator.
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1 protected final class Ci_ji_〈nb+1〉 extends Continuation {
2 ...
3

4 @Override
5 protected Continuation call() {
6 ...
7 if (isAlive() && !reactivated) {
8 Continuation continuation;
9 if ((continuation = ci ji_〈nb+1〉(

10 c1 j1,c1 j1 iter,...,cr−1 jr−1,cr−1 jr−1 iter,cr jr iter
11 )) != null) return continuation;
12 if ((continuation = ci+1 ji+1()) != null) return continuation;
13 ...
14 if ((continuation = cni jni()) != null) return continuation;
15 store();
16 reactivated = true;
17 }
18 return pop();
19 }
20 }

Listing 3.17: Compilation scheme for the last continuation of a Propagate transition with
the Live Continuations optimization applied. This scheme replaces Listing 3.12(d). Both the
constructor and the member fields are extended to incorporate the iterators and current partner
constraints required on line 10. If the last part of the body consists of built-in constraints or
host language statements, line 6 contains the execution of these body conjuncts (following the
compilation scheme of Listings 3.13 and 3.14).
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1 private final Continuation ci ji_〈nb+1〉(
2 #constraint type(c1) c1 j1, Iterator<#constraint type(c1)> c1 j1 iter, ...,
3 #constraint type(cr−1) cr−1 jr−1, Iterator<#constraint type(cr−1)> cr−1 jr−1 iter,
4 Iterator<#constraint type(cr)> cr jr iter
5 ) {
6 boolean first = true;
7 if (!c1 j1.isAlive()) first = false;
8 while (first || c1 j1 iter.hasNext()) {
9 if (!first) c1 j1 = c1 j1 iter.next();

10
...

11 if (!first) c2 j2 iter = lookupC2();

12
...

13 if (!c2 j2.isAlive()) first = false;
14 while (first || c2 j2 iter.hasNext()) {
15 if (!first) c2 j2 = c1 j1 iter.next();

16
. . .

17 if (!cr−1 jr−1.isAlive()) first = false;
18 while (first || cr−1 jr−1 iter.hasNext()) {
19 if (!first) cr−1 jr−1 = cr−1 jr−1 iter.next();

20
...

21 if (!first) cr jr iter = lookupCr();
22 else first = false;

23
...

24 while (cr jr iter.hasNext()) {
25 #constraint type(cr) cr jr = cr jr iter.next();

26
...

27 Iterator<#constraint type(cr+1)> cr+1 jr+1 iter = lookupCr+1();

28
. . .

Listing 3.18: Resuming the search for partner constraints after a Propagate transition for a
simplification rule with more than two heads. Only the code relevant to the search for partner
constraints is shown. The remaining code is compiled analogously to ordinary occurrence methods
(including all applicable optimizations). Note that the scheme contains the equivalent of the
Backjumping optimization of Section 2.2 (lines 7, 13, and 17).
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The equivalent of the Backjumping optimization of Section 2.2 is incorporated as well. As
already explained, by default, the iteration of the first removed partner is resumed first. The
Backjumping optimization though requires the search to be resumed in a more outer loop if the
corresponding partner constraint was terminated by executing the body in the previous Propa-
gate transition. This is implemented by lines 7, 13, and 17: by setting first to false early, the
more outer loops are resumed if necessary.

The scheme of Listing 3.18 only shows the parts relevant to resuming the search for partner
constraints. The remaining code is analogous to that for regular Propagate transitions. One
observation though: as this continuation continues after the application of an earlier Propagate
transition, late storage no longer has to be applied, as the active constraint will have been stored
prior to the earlier rule application. In other words, line 4 of Listing 3.16 can be omitted in the
remainder of Listing 3.18.

Propagation Rules Listings 3.16–3.18 only showed the case for simplification rules. The scheme
is easily adjusted to propagation rules though:

• The case of single-headed propagation rules is treated in the next optimization.

• In case of a propagation rule with more than two heads, first is set to false right before
the last kept partner (instead of before the first removed partner). In Listings 3.16–3.17,
all iterators are passed, and all current partner constraints except the last partner (as this
iterator will be advanced immediately).

Next Occurrence

By the previous optimization, a continuation is pushed to resume the search for matching con-
straint combinations after a Propagate transition. For single-headed propagation rules, no part-
ner constraints have to be searched4, and Listing 3.18 reduces to a trivial method with body
‘return null;’. The push statement on lines 2–10 of Listing 3.16 can therefore be replaced with:

push(
new #constraint type(bk+1)(#args(bk+1)),
...,
new #constraint type(bk+l)(#args(bk+l)),
new Ci 〈ji+1〉(#vars(〈bk+l+1,...,bnb

〉))
);

Here C 〈j+1〉 is a new Continuation class, very similar to the C j 〈nb+1〉 class of Listing 3.17.
The only difference is that, after executing the remainder of the body (if present), C 〈j+1〉 starts
with calling the 〈ji + 1〉’th occurrence method. If there is no 〈ji + 1〉’th occurrence, the above
push statement can further be simplified to:

push(
new #constraint type(bk+1)(#args(bk+1)),
...,
new #constraint type(bk+l)(#args(bk+l))

);
store();
reactivated = true;

Note that the last two lines are executed now a bit sooner then before, but this is no per-
fectly allowed. Analogous optimizations are also applied for the compilation schemes of built-in
constraints and host language statements in the body of rules (cf. Listings 3.13 and 3.14).

4 If information on set semantics is available (see [HGSD05, DS05]), the Next Occurrence optimization can also
be applied if all partners of the kept occurrence are known to be unique.
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Early Testing

For kept occurrences with only a single partner constraint5, resuming the search for partner
constraints may sometimes be avoided. If partner iter, the constraint iterator for the single
partner constraint, is known never to return constraints added after its creation (recall from
Section 2.1.1, page 8, that this is allowed), the push statement on lines 2–10 of Listing 3.16 can
be replaced with:

if (partner iter.hasNext())
push(

new #constraint type(bk+1)(#args(bk+1)),
...,
new #constraint type(bk+l)(#args(bk+l)),
new Ci ji 〈k+1〉(

#vars(〈bk+l+1,...,bnb
〉),

c1 j1, c1 j1 iter, ..., cr−1 jr−1, cr−1 jr−1 iter, cr jr iter
)

);
else

push(
new #constraint type(bk+1)(#args(bk+1)),
...,
new #constraint type(bk+l)(#args(bk+l)),
new Ci 〈ji+1〉(#vars(〈bk+l+1,...,bnb

〉))
);

The push statement in the else-branch is analogous to the one proposed in the Next Occurrence
optimization. So, if there is no 〈ji + 1〉’th occurrence, the else-branch can again be simplified as
indicated there.

Suppose partner iter.hasNext() returns true, and a continuation is pushed. If analysis
shows that executing the body cannot remove constraints of the partner constraint’s type, resuming
the search for partner constraints afterwards does not have to start with a call to hasNext(). In
other words: the while loop of Listing 3.18 can be replaced with a do-while loop.

Lazy Popping

This last subsection introduces yet another optimization for non-removed active constraints
that only look up a single partner constraint. The optimization is illustrated in Figure 3.4. If the
body consists of a single JCHR constraint (bx in Figure 3.4), an identical continuation is pushed
over and over again, once for each Propagate transition (lines 2,9,16,. . . in the figure).

In the optimized compilation scheme, this continuation is only pushed once (line 2). The
remaining push operations are replaced with undoPop operations (lines 9,16,. . . ). The undoPop
operation restores the stack to its state prior to the previous pop, i.e. re-adds the previous con-
tinuation to the stack. As it is sufficient that one pop operation can be undone, the undoPop
operation can be implemented very efficiently. This optimization saves the creation of many
identical continuation objects.

The optimization remains applicable if the body also contains built-in or host language state-
ments, as long as these do not cause other continuations to be pushed.

3.3 Evaluation

To verify our implementation’s competitiveness, we benchmarked the performance of some typical
CHR programs using sever state-of-the-art CHR implementations (the same as used in Section 2.3).

5 The optimization can be generalized if set semantics information is derived (see [HGSD05, DS05]): Early
Testing can then also be applied if there is only one non-unique partner constraint.

41



1 ...
2 push(new Continuation〈vars , partner iter〉);
3 return bx;
4 ...
5 return pop();  〈vars , partner iter〉
6 ...
7 // resume search for partner constraint + fire again with different partner

8 ...
9 push(new Continuation〈vars , partner iter〉); =⇒ undoPop();

10 return bx;
11 ...
12 return pop();  〈vars , partner iter〉
13 ...
14 // resume search for partner constraints + fire again with different partner

15 ...
16 push(new Continuation〈vars , partner iter〉); =⇒ undoPop();

17 return bx;
18 ...
19 return pop();  〈vars , partner iter〉
20 ...

Figure 3.4: The Lazy Popping optimization: the last continuation popped is remembered, and
can be restored with the undoPop() operation.

tak(500, 450, 405) dijkstra(16, 384) leq(100) ram fib(N)
N = 25k N = 200k

YAP 2,310 (100%)
3,930 (170%)

48 (2.1%)
183 (7.9%)
10 (0.4%)
11 (0.5%)

44,000 (100%)
6,620 (15%)
1,170 (2.7%)

704 (1.6%)
-
-

4,110 (100%)
17,800 (433%)

189 (4.5%)
68 (1.7%)
2 (.05%)
2 (.05%)

1,760 (100%)
1,000 (57%)

416 (24%)
157 (8.9%)
1.3 (.07%)

2 (.11%)

15,700 (100%)
stack overflow

3,540 (23%)
1,714 (11%)
12.7 (.08%)

16 (.10%)

SWI
CCHR
JCHR

C
Java

Table 3.1: Benchmark comparing performance in some typical CHR programs in several sys-
tems. The average CPU runtime in milliseconds is given and, between parentheses, the relative
performance with YAP Prolog as the reference system.

Execution times for native implementations in C and Java were added for reference. The results6

are found in Table 3.1. The dijkstra and ram fib benchmarks were described earlier in Table 2.3.
The tak benchmark evaluates the well-known Takeuchi function (with tabling), and the leq(N)
benchmark is a classic CHR benchmark that solves a circular list of N less-or-equal constraints.

As seen in Section 2.3.1, the SWI runtime does not perform the necessary tail call optimizations
for the ram fib benchmark. For 200k Fibonacci numbers, this benchmark therefore results in
a stack overflow. Both JCHR and CCHR use the optimized compilation scheme presented in
this chapter. Recall from Section 2.3.1 that, using the traditional compilation scheme, JCHR
already incurred call stack overflows for dijkstra(2,100) and ram fib(300). Using the optimized
compilation scheme, recursive JCHR handlers become only limited by available heap space. From
Table 3.1 it is clear that this more than sufficient.

The imperative CHR systems are significantly faster than both Prolog systems, up to one or
6 Benchmark results of Table 3.1 are taken from [VWWSD08]. The benchmarks were performed on a

Intel R© CoreTM 2 Duo 6400 system with 2 GiB of RAM. SWI-Prolog 5.6.50 and YAP 5.1.2 were used. All
C programs were compiled with GCC 4.1.3. K.U.Leuven JCHR 1.6.0 was used; Java code was compiled with
Sun’s JDK 1.6.0 and executed with HotSpot JRE 1.6.0. The source code of the benchmarks used is available at
http://www.cs.kuleuven.be/∼petervw/bench/lnai2008/
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Traditional Improved scheme
scheme unoptimized optimized

beer(2,000) 7,553 7,341 (-3%) 7,058 (-7%/-4%)
bool(1,000,000) 4,106 5,216 (+27%) 4,914 (+20%/-6%)
dijkstra(5,000) stack overflow 1,230 1,065 (-13%)

fib(33) 9,366 12,816 (+37%) 10,934 (+17%/-15%)
gcd(64,000,000) stack overflow 5,529 5,519 (-0%)

leq(300) 3,821 5,537 (+45%) 4,309 (+13%/-22%)
mergesort(100,000) 10,581 12,262 (+16%) 11,310 (+7%/-8%)

primes(10,000) stack overflow 4,991 4,396 (-13%)
union(210,000) 2,637 2,685 (+2%) 2,637 (+0%/-2%)

ram fib(150,000) stack overflow 3,144 2,991 (-5%)

Table 3.2: Empirical comparison between the different compilation schemes. The first column
gives timings (in average milliseconds) when using the traditional compilation scheme of Chapter 2.
For the remaining columns, this chapter’s compilation scheme was used. The second column gives
the results when the optimizations of Section 3.2 were not applied7, the fourth when they were.
The percentages between parentheses give the relative difference with the traditional compilation
scheme (if applicable), and in the case of the last column, also the relative difference between the
unoptimized and the optimized version of the improved compilation scheme.

two orders of magnitude, depending on the benchmark. This is partly due to the fact that the
generated Java and C code is (just-in-time) compiled, whereas the Prolog code is interpreted.
The native C and Java implementations remain two orders of magnitude faster than their CHR
counterparts. The main reason is that these programs use specialized, low-level data structures,
or exploit domain knowledge difficult to derive from the CHR program. The Dijkstra algorithm
was not implemented natively.

Finally, we ran a number of benchmarks to compare the optimized compilation scheme against
the traditional one, and to evaluate the optimizations listed in Section 3.2. The results8 are listed
in Table 3.2. It is clearly seen that the improved compilation scheme no longer results in stack
overflows. Explicitly maintaining the call stack, however, is probably inherently more expensive in
Java than relying on the JVM’s implicit call stack. It is therefore to be expected that the improved
compilation scheme is less efficient than the traditional one, provided the latter does not result in
a stack overflow. The results in Table 3.2 confirm this. The optimizations of Section 3.2, however,
are capable of considerably reducing the stack’s overhead. The optimized improved compilation
scheme is never more than 20% slower than the traditional scheme, and in many cases it becomes
equally fast, or just a few percent slower. For one benchmark, the improved scheme is even faster
than the traditional one.

The benchmark results thus show that, for compiling CHR to imperative languages, and in
particular to Java, our new, improved compilation scheme is superior to the traditional one. All
stack overflow issues are resolved, and our optimizations reduce the overhead to an acceptable
level.

7 Trampoline style compilation (Section 3.2.1) is always used, and iterators are always included in the contin-
uations for resuming the search for partner constraints (Section 3.2.4). These only listed as optimizations in this
report for presentation purposes, and cannot be switched off in the current implementation.

8 The benchmarks of Table 2.3 were performed on a Intel R©Pentium R©4 CPU 2GHz with 1GiB of RAM.
K.U.Leuven JCHR 1.6.1 and SWI-Prolog 5.6.55 were used. The Java code was compiled with Sun’s JDK 1.6.0
and executed with HotSpot JRE 1.6.0.
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Chapter 4

Conclusions

In this report, we reconstructed the compilation scheme used by the K.U.Leuven JCHR system
[VSD05, VW08a] to compile CHR handlers to efficient Java code. Starting from basic compilation
schemes, we gradually introduced several important optimizations performed by the compiler.

Two compilation schemes are presented. The traditional scheme, used by earlier versions
of JCHR [VW05], is a relatively straightforward adaptation of the compilation scheme used by
most Prolog embeddings of CHR. Practice, however, revealed that this scheme is less suited for
imperative host languages. The reason is that imperative languages, such as Java, commonly do
not perform the necessary recursion optimizations required to avoid call stack overflows. Executing
CHR programs compiled using the traditional CHR compilation scheme therefore frequently results
in fatal call stack overflows.

We therefore designed a new and improved compilation scheme, that explicitly manages a
continuation stack. Using the new compilation scheme, CHR handlers no longer cause stack over-
flows. Next, we introduced several optimizations to reduce the inherent constant time overhead.
We implemented the new compilation scheme, which is now the standard compilation scheme used
by the JCHR compiler. Empirical evaluation reveals that the new compilation scheme is superior
to the traditional one.

The detailed descriptions of the compilation schemes and optimizations presented in this report
can readily be used for the compilation of CHR and related rule based languages to any imperative
target language. In fact, the new compilation scheme has already successfully been ported to
CCHR [WSD07], the C embedding of CHR.

A companion article of this work appears in [VWWSD08]. This report focused on the com-
pilation scheme of JCHR, and gave more details concerning the new compilation scheme and its
optimizations. The companion journal article generalizes the compilation schemes presented here
to arbitrary imperative target languages, and provides a thorough discussion on other challenges
when embedding CHR in an imperative host language.
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In Frühwirth and Meister [FM04], pages 13–32.

[Sun08] Sun Microsystems, Inc. Java SE HotSpot at a glance. http://java.sun.com/
javase/technologies/hotspot/, 2008.

[SVWSDK08] Jon Sneyers, Peter Van Weert, Tom Schrijvers, and Leslie De Koninck. As time
goes by: Constraint Handling Rules – A survey of CHR research between 1998 and
2007. Submitted to Journal of Theory and Practice of Logic Programming, 2008.

[SWD05] Tom Schrijvers, Jan Wielemaker, and Bart Demoen. Poster: Constraint Handling
Rules for SWI-Prolog. In A. Wolf, Th. Frühwirth, and M. Meister, editors, W(C)LP
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