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Abstract

We have recently developed a method for verification of source
code transformations applied on array-intensive programs typically
found in signal processing and high performance computing applica-
tions. The method is based on checking the equivalence of the origi-
nal and the transformed programs belonging to a decidable class that
is still of practical interest. In this report, using a prototype imple-
mentation, we demonstrate the applicability of the method in prac-
tice by verifying transformations on fragments of source codes from
several real-life applications. Since most of such application codes do
not, at first, lie within the class of programs that our method allows,
we make use of some code pre-processing methods, the most impor-
tant among them being the dynamic single-assignment conversion
method, and discuss implications of their use on the transformation
verification problem.



1 Introduction

Source code transformations are increasingly becoming necessary while pro-
gramming for high performance and low power computing and communicating
systems. The transformations provide the programmer an opportunity to take
advantage of the algorithm-level knowledge of the program and apply global
optimizations that are usually not in the scope of present day optimizing com-
pilers. In the domain of embedded-processor systems the application of code
transformations is particularly common and has been widely advocated as in-
deed essential (cf. [3, 4, 5, 9, 19]).

This trend, though positive as far as developing better optimized programs
is considered, has on the flip side increased the burden on verification of correct-
ness of the transformed program. This is because, the transformations, though
complex and subtle, are usually applied manually or, at best, using ad-hoc trans-
formation tools and, needless to say, such application is often prone to errors.
Programmers have responded to this by increasing stress on simulation-based
testing of the transformed programs. Since testing is time-consuming, inconclu-
sive and lacking in automatic debugging support, there is a need for automatic
verification of the transformed program with respect to the original program.

We have developed a method [13, 14] to address this need in the context
of optimization of code kernels of DSP applications targeted to low power
embedded-processor based systems where transformations are mainly applied
in order to optimize references to data memory. The method is based on check-
ing the equivalence of the original and the transformed programs and where the
decidability is ensured by restricting the programs to a class, that is defined
by the common code characteristics found in the application domain of our in-
terest. The class of programs that our method can handle have the following
properties:

1. Dynamic single-assignment: Every memory location is written only once.
Optimizing compilers use the static single-assignment (SSA) form [6] to
facilitate optimizations which still can write the same array element several
times. This is not the case with dynamic single-assignment (DSA) form;
it eliminates all false dependencies. Methods for conversion to DSA are
described in [10, 17]. We also require that functions are free from side-
effects.

2. Piecewise-affine expressions: Subscripts in the arrays and expressions in
the bounds of the for-loops are all piece-wise affine in the iterator vari-
ables of the enclosing for-loops. Additionally, the expressions can also
include operators like mod, div, max, min, floor and ceil. This allows
representing the addressing relationships between elements of arrays as
affine inequalities in integers and makes it possible to use well-understood
dependence tests (for example, the Omega test [12]) to solve those systems.

3. Static control-flow: There are no data-dependent while-loops in the pro-
grams. We assume that data-dependent while-loops have been converted
to for-loops with worst-case bounds and a global if-condition on its body;
and the data-dependent if-conditions in the program have been converted
into data dependencies by using if-conversion [2].

4. No pointer references: Programs are free from pointer references. Pointer-
to-array conversion methods (for example, [15]) can be used here.

The class is not unduly restrictive for the application domain. In fact, it is
advantageous to bring programs into such a form before applying global trans-
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formations as this form creates more freedom for the transformations and the
tools used for guiding the transformations can do a better job [5].

For original and transformed programs lying in the allowed class, our method
is able to prove equivalence of programs that are related through any combina-
tion of transformations from the categories below:

• Loop transformations: both, structure preserving and modifying,

• Expression propagations: compiler optimizations like invariant code mo-
tion, copy/constant propagation, common sub-expression elimination/ in-
troduction (when it is less expensive to recompute than to fetch), etc.;
and

• Algebraic transformations: those relying on the algebraic properties of
fixed-point data-types (ignoring overflow) like, associativity, commutativ-
ity, etc.

1.1 Equivalence Checking Method in Brief

The equivalence checking method that our tool implements is presented in [13,
14]. Here we provide only a brief overview. The tool essentially checks the
sufficient condition for the equivalence of the two ADDGs. Based on pairs of
corresponding data dependence paths in the two ADDGs, it has two parts, viz.,
the two paths have (1) identical computation; and (2) identical relationship
between the elements of the output and the input arrays that are at the either
end of the paths. The tool identifies corresponding paths on the fly by way of a
synchronized traversal of the two ADDGs. During the traversal, the operators
in the computation provide points of synchronization and relationship from the
elements of the output array to the point is kept updated. When the traversal
successfully reaches an input array on a path, the computation on the two paths
is guaranteed to be identical (modulo algebraic transformations) and all that
remains is to check the relationship between the elements of the output and the
input arrays for that path. If this holds, the traversal proceeds to check the
remaining paths, until all the possible corresponding paths are exhausted. Due
to algebraic transformations, it is possible that a legal transformation still has a
mismatch at an operator. Then appropriate operations are invoked in order to
reduce the ADDGs to a normal form at that operator. Also, an ADDG can have
cycles, they correspond to recurrences. When a cycle is detected, an operation
is invoked that avoids stepping through the cycle.

2 Tool Flow

Our prototype program equivalence checking tool implements the scheme shown
in Fig. 1. The programs are first subject to a pre-processing stage which chains
tools as shown in Fig. 2. This involves: (1) conversion to dynamic single assign-
ment form, i.e., removal of all false dependencies; (2) if-conversion, i.e., removal
of any data-dependent control-flow; and (3) in-lining of functions in order to
handle inter-procedural transformations.

We take the original and the transformed program pairs from real-life ap-
plication design context and discuss the scheme for checking their equivalence
using our method.

The equivalence checking scheme is as shown in Figure 1. The input to the
checker are the texts of an original program and a program obtained by applying
one or more of loop and data-flow transformations on it, called the transformed
program. The checker also allows an optional set of inputs. These help either
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Figure 1: The verification and debugging scheme.
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reduce the work for the checker by providing the focus of interest or supply it
with additional information to handle algebraic transformations. The following
specific options are allowed by our current implementation:

1. output variables, and optionally, their definition domains,
2. declaration of some of the intermediate variables as input variables,
3. whether statement-level or operator-level transformations have been ap-

plied, and
4. declaration of arithmetic properties of the operators in the input programs

(only if algebraic transformations have been applied).

The first two options help focus the equivalence checking in reducing its work
and the third option indicates to the checker that it can use the less expensive
method that is applicable for only loop and data-reuse transformations. The
last one provides the additional information required by the checker when cer-
tain properties have been assumed for algebraic transformations over specific
operators appearing in the programs.

We have discussed that our program equivalence checking method requires
that the original and the transformed programs belong to the allowed class
of programs. However, the original and the transformed programs may not
belong to the class of allowed programs to start with. In such a case, source
code pre-processing tools are used in order to translate them to a form that is
acceptable. We discuss this further in Section 3. Once the two programs have
been pre-processed, we use an ADDG extractor that we have implemented in
order to represent them as ADDGs. Central to this extractor is per [7, 8], a
tool that provides various polyhedral domains used in constructing an ADDG.
Our equivalence checker takes the two ADDGs as input and applies the method
we discussed in Section 1.1. The checker either terminates with a successful
completion of the traversal proving the two programs to be functionally input-
output equivalent or produces diagnostic information in the case of a failure.

3 Pre-processing the Source Code

Typically, as can be expected in practice, the original and the transformed
program pairs do not fall in the class of allowed programs that we have assumed
for our method, at least not in all respects. But several crucial restrictions
can be relaxed by using source code pre-processing tools. They are used to
pre-process the initial and the transformed programs separately, before passing
them to our equivalence checker. We use four specific source code pre-processors
in our tool chain and they are user-demand driven. The sequence of tools in the
chain are as shown in Figure 2. They are – (1) selective in-lining of functions in
order to handle inter-procedural transformations (2) if-conversion, i.e., removal
of any data-dependent control-flow; (3) conversion to dynamic single assignment
form, i.e., removal of all false dependencies; and (4) DEF-USE checking that
validates the schedule of reads and writes. Once a program is pre-processed, the
true data dependencies between the variables and the operators in the program
is represented as an array data dependence graph (ADDG). The constructed
ADDGs of the two programs are input to the equivalence checker. In this
section, we discuss each of the individual source code pre-processors.

3.1 Selective Function-Inlining

As discussed earlier, our checker functions intra-procedurally. But it is quite
possible, for instance, that in the transformed program a program function has
been inlined at its call-site and its internal loops exposed for transformations
with other loops in the calling function. In order to handle such transformations,
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source code 
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if-conversion

DSA-conversion

function-inlining

Figure 2: Chaining available code pre-processing tools.

we use a function inlining tool [1] that selectively inlines all functions that are
called by the root function that provides scope for application of global loop
and data-flow transformations.

3.2 If-Conversion

A data-dependent control-flow arises when there are if-statements or while-
loops with references to variables in their conditional expressions1. It imposes
additional dependence constraints on the execution of assignment statements in
the program and hinders its analyses and transformations. This is particularly
so for analyses that are primarily based on reasoning on the data-flow of the
program. For such analyses, it is convenient if there is a possibility of encoding
the control-flow as a data-flow. An example for such an encoding is the well
known if-conversion [2] that removes data-dependent control dependencies in
the program by converting them into data dependencies.

Our equivalence checking method is based on reasoning on the data depen-
dencies and the ADDG representation that it uses is able to capture only data
dependencies. Hence, it becomes necessary that a program is free from all data-
dependent control dependencies before it can be represented as an ADDG. For
every assignment statement in the program within the body of the if-statement,
if-conversion introduces into the data-flow an if-operator. The operator has two
operands, viz., (1) a conditional expression and (2) the righthand-side expres-
sion of the assignment statement. We use an if-conversion tool that has been
developed in-house in order to achieve this [11]. Once if-conversion has been
applied on a program, its representation as an ADDG is straightforward. The
if operator is treated in the same way as any other operator.

The examples that follow show the basic cases of program codes with if-
statements. Figure 3 shows a program function with a simple data-dependent
if-statement on a single assignment statement and its ADDG representation.

When the if-statement also has an else-body, the assignment of values is
controlled by the negation of the predicate in the condition of the if-statement.
The natural candidate for representing an if-then-else-statement, is by adding
another if-operator for the else-body with a logical negation operator inserted
before the condition. Figure 4 shows an example program in this representation.

1Data-independent control-flow is based on conditional expressions on the iterators.
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#define N 1024

foo(int A[], int B[], 
    int C[])
{
    int k;

    for(k=1; k<=N; k++)
       if (A[k] > B[k])
s1:        C[k] = p(B[k]);

}

>

C

BA

1 2

s1

p
1 2 1

if

Figure 3: An example program function with a data-dependent if-statement
and its ADDG obtained by if-conversion.

#define N 1024

foo(int A[], int B[], 
    int C[], int D[])
{
    int k;

    for(k=1; k<=N; k++)
       if (A[k] > B[k])
s1:        C[k] = p(B[k]);
       else 
s2:        D[k] = q(B[k]);

}

>

C

BA

1 2

s1

p
1 2 1

if

D
s2

q

if

1 2

1

1

:

Figure 4: An example program function with a data-dependent if-then-else-
statement and its ADDG obtained by if-conversion.

#define N 1024

foo(int A[], int B[], 
    int C[])
{
    int k;

    for(k=1; k<=N; k++)
       if (A[k] > B[k])
s1:        C[k] = p(B[k]);
       else 
s2:        C[k] = q(B[k]);

}

>

C

BA

1 2

s1

p
1 2 1

if

s2

q

if

1 2

1

1

:

Figure 5: An example program function with a data-dependent if-then-else-
statement and its ADDG obtained by if-conversion. Here, the statements s1

and s2 do not assign values to mutually disjunct domains of C[].
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The examples that follow in Figures 5-8 show some transformations on pro-
grams with data-dependent if-conditions and the effect they have on the ADDG
representation. The equivalence checker with the knowledge of the algebraic
properties of the logical operators invokes the flattening, some normalizing re-
ductions and matching operations in identifying corresponding traversal paths.

   for(k=1; k<=N; k++)
      if (A[k] > B[k])
s1:      Z[k] = p(B[k]);

>

Z

BA

1 2

s1

p
1 2 1

if

   for(k=5; k<=N+4; k++)
      if (B[k-4] < A[k-4])
s1:      Z[k-4] = p(B[k-4]);

<

Z

BA

1 2

s1

p
2 1 1

if

Figure 6: An example function pair where the relational operator < in the
original has been replaced with its dual in the transformed program. In the
ADDGs, the position labels on the operator account for the transformation.

3.3 DSA-Conversion

We require that input programs be in dynamic single assignment (DSA) form,
that is, other than iterator variables, all variables in the program are written
only once during program execution. When the original and the transformed
programs are not in DSA form we first apply DSA-conversion to them. This is
achieved by using a prototype tool that implements a generic and CPU-efficient
(scalable to real-sized programs) method that is described in [16].

3.4 DEF-USE Checking

We assume that the input programs have a valid memory access schedule, that is,
all reads from a memory location occur only after writing to the location. This
helps our method by easing the verification, since commutativity of statements
need no longer be checked. Before invoking our equivalence checker, we validate
the assumption of a valid schedule, by using an independent DEF-USE checker,
that is available in a tool-suite for application of loop transformations [18].

This helps in easing the verification, since commutativity of statements need
no longer be checked. Once a program is pre-processed, the true data depen-
dencies between the variables and the operators in the program is represented
as an array data dependence graph (ADDG). The constructed ADDGs of the
two programs are input to the equivalence checker.
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   for(k=1; k<=N; k++)
      if (A[k] > B[k])
         if (B[k] > C[k])
s1:         Z[k] = p(C[k]);

>

Z

BA

1 2

s1

p
1 2

1

if

   for(k=1; k<=N; k++)
      if (B[k] > C[k])
         if (A[k] > B[k])
s1:         Z[k] = p(C[k]);

C

>
1 2

1 2^
Z

1 2

s1

p1

if

2 1^
>

BA

1 2

C

>
1 2

Figure 7: An example function pair where the if-conditions have been com-
muted. The ∧-operator is commutative, therefore, matching-operation has to
be invoked.

   for(k=1; k<=N; k++)
      if (A[k] > B[k])
s1:      Z[k] = p(C[k]);
      else
s2:      Z[k] = q(C[k]);

   for(k=1; k<=N; k++)
      if (A[k] <= B[k])
s1:      Z[k] = q(C[k]);
      else
s2:      Z[k] = p(C[k]);

>

Z

BA

1 2

s1

p
1 2 1

if

s2

q

if

1 2

1

1

c

:
Z

BA

1 2

s1

q
1 2 1

if

s2

p

if

1 2

1

1

c

:�

Figure 8: An example function pair where the bodies of the then-part and
else-parts of the if-statement are swapped, with a corresponding replacement
of the relational operator > with its complementary operator ≤.
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4 Case Studies

In this section, we report our experience with the current version of the equiv-
alence checker tool on some kernels taken from actual applications in practice.
In Section 4.1 we note the limitations of the tool, in Section 4.2 we compile the
characteristics of the application programs that reflect their code complexity
and in Section 4.3 we report the results of our experiments with the tool.

4.1 Implementation Characteristics

At present, we have implemented our formal equivalence checking methods in
proof-of-concept prototype tools. Therefore, their capabilities are rather lim-
ited. Moreover, the formalization of the algorithms that we have discussed
have evolved since the implementation of the prototype tool. In terms of func-
tionality, it does not handle algebraic data-flow transformations and recurrence
handling is limited. Also, it does not include the tabling mechanism and han-
dling of the reconvergent paths. In terms of scalability, the implementation is
able to handle modest size programs. Scalability to larger programs is however
achievable by extending the techniques with better heuristics, for example, to
handle recurrences. Future work will have to address this.

4.2 Application Characteristics

The code kernels that we have used from different applications and represen-
tative measures of their complexity is as shown in Tables 1 and 2. Note that
in the case of GaussBlur and USVD, we have increased the dimensions of the
array variables and created additional versions to check their impact on the time
required for verification.

4.3 Verification Characteristics

The verification of the original and the transformed versions of the programs
required times in the order of a few seconds as show in Tables 3 and 4. It also
includes versions of the transformed code with errors introduced in them. As
can be noted, the time required for verification does not degrade in the presence
of errors. Also, as shown by verification of versions with higher dimensions of
arrays, the impact on the time required for verification is negligibly small.

5 Summary

In this report, we have discussed the code pre-processing tools that are required
in order to use our method in practice. With some modest experiments we have
shown the feasibility of the method when applied to code kernels taken from
some representative applications. However, further work is required to address
some of the issues related to the implementation of our method in order to scale
it to larger applications.
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