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Technical report. Recently, declarative process languages are gaining
ground as the procedural way of capturing activities in a fixed work-
flow is deemed to be inflexible. Declare, one of the prime languages of
the declarative process modeling paradigm, is composed of logic-based
activity constraints which are event-driven. In this paper, a template-
based conversion is proposed of every Declare constraint into a single
Petri net fragment with weighted, reset and inhibitor arcs, i.e. a weighted
R/I-net. As such, a formalization of the execution semantics of Declare is
obtained, similar to linear temporal logic or regular expressions, but now
expressed in the form of Petri nets. Equivalence of Declare constraints
and the respective Petri net templates are analyzed at the theoretical
level and by means of a simulation experiment.
Keywords: Declare, conversion, weighted R/I-nets, formalization, exe-
cution semantics, reset arcs, inhibitor arcs

1 Introduction

Petri nets are a widely used language to express concurrent systems [27]. They
are highly expressive and have a clear execution semantics due to sound math-
ematical underpinnings, which results in a wide availability of robust analysis
techniques. Therefore, in the context of business processes, Petri nets are exten-
sively used for model design and verification [2], so that even more user-centric
languages such as Business Process Modeling and Notation (BPMN) [11] and
Event-driven Process Chains (EPCs) [1] are frequently converted to some form
of Petri net for checking model properties such as soundness [2, 17].

The need for flexibility in business processes, however, has led to an increase
in popularity of declarative models. Approaches found in literature include De-
clare [28], pockets of flexibility, [32], workflows mixed with data rules [22], and
worklets [7]. A comprehensive overview can be found in [20]. Most notably, De-
clare has become the de facto standard for modeling flexible workflows by using
an event-driven, constraint-based approach. Mixed forms of both paradigms are
also gaining ground. YAWL [4], a language which extends Petri nets with more



flexible constructs such as resetting capabilities, can include Declare constraints
in subworkflows [3], a more advanced version of ad-hoc subprocesses in BPMN.
A real mix of state-spaces of Petri nets and Declare is proposed and implemented
in [37].

This paper presents a template-based technique that converts every Declare
constraint into a weighted R/I-net, i.e. a Petri net with weighted, reset and
inhibitor arcs. This conversion results in a formalization of Declare, similar to
Linear Temporal Logic (LTL) [13] or regular expressions [38], but one expressed
with Petri nets. As such, we obtain a Petri net template lexicon that expresses
the same behavior as the collection of Declare constraints originally described
in the seminal work of Pesic [28].

The conversion of Declare models to Petri nets has been touched upon in [18],
proposing R/I-net constructs for a subset of DecSerFlow constraints [5], the
predecessor of Declare. Also, the synthesis to a Petri net without R/I-constructs
is proposed in an example. Our approach differs by putting forward a full lexicon
of conversions and a thorough analysis of their applications. A full synthesis
approach is proposed in [30], where Declare constraints are redefined as regular
expressions, converted to finite state machines and finally synthesized into Petri
nets with the theory of regions [12]. While the conversion strategy in [30] is
interesting, our approach yields several benefits. First, while the automata of
the regular expressions need to be multiplied for Declare models consisting of
multiple constraints before synthesis, our technique works with separable Petri
net templates (thus regions), which makes converting a full Declare model a
simple addition of templates. Second, synthesis will provoke duplication of tasks
(i.e. transitions with the same label) which results in (i) nets that are arguably
even harder to read than automata, (ii) increased complexity for analysis tasks
such as conformance checking, and (iii) impediments for straightforward plugging
of Petri net fragments that could be obtained by synthesizing every constraint
separately with the technique presented in [30]. Third, the use of inhibitor arcs
to withhold an ending activity from firing when a constraint is violated as done
in this work makes the specification and keeping track of violation easier. In
addition, every violation can be traced back to a certain place and activity.

The remainder of this paper is structured as follows. First, the preliminaries
section contains a description of the semantics of both Declare (in LTL and regu-
lar expressions) and weighted R/I-nets. Section 3 describes in full the conversion
lexicon of all Declare constraints into Petri net constraints. Section 4 contains
an analysis of equivalence and empirical validation, followed by the conclusion.

2 Preliminaries

This section provides a brief overview of concepts and definitions used through-
out the paper.



2.1 Declare

Declare [28] is a framework that was originally proposed by [29]. The framework
consists of a declarative process language called ConDec [5], which itself is based
on Linear Temporal Logic, and a model checking framework for rule verifica-
tion [36]. ConDec lists a number of constraints, which are usually categorized
into seven groups, i.e. the Unary, Binary existence, Simple ordered, Alternating
ordered, Chain ordered, Negative, and Choice constraints. A full overview of all
constraints can be found in Table 1.

In order to execute Declare models, i.e., a set of declarative constraints, the
constraints are converted to Büchi automata [33]. This conversion is valid, as
long as the LTL constraints are insensitive to infiniteness. This has been proven
in [14] for all Declare constraints but one, Not chain succession, which originally
has been formulated incorrectly. In this work, we interpret the constraint here
as the correct, finite variant, i.e. as �(A ⇒ ¬(⃝B)).

Next, by taking the product of all separate automata (one for each con-
straint), a full executable model is obtained, which can then be applied to detect
satisfying, temporal, and permanently violated states when replaying words over
them [25].

In recent work, a shift towards expressing Declare constraints by means of
regular expressions (as opposed to LTL formula) is witnessed in works such
as [16, 38]. Both deem LTL unfit to express finite traces and hence redefine De-
clare in finite state machines (although a formal proof of similarity between the
behavior expressed in the FSMs and Büchi automata is as of yet not provided).

2.2 Weighted R/I-nets

In this paper, we propose a formalization to express Declare constraints in the
form of weighted Petri nets with reset and inhibitor arcs. Petri nets [27] are a
mathematical modeling language to describe distributed, concurrent systems. A
weighted Petri net with reset and inhibitor arcs is a directed graph, expressed as a
tuple, PN = (P, T, F,R, I,W ), with P a finite set of places (visually represented
as circles), T a finite set of transitions (visually represented as boxes) with P ∩
T = ∅, and F ⊆ (P × T )∪ (T × P ) the set of normal arcs (shown as arcs with a
single arrow). Let W : F → N determine a weighting function which associates
a weight to each arc. Let R : T → P(P ) define the reset places (with P(P ) the
powerset of P ) and I : T → P(P ) the inhibitor places for each transition, which
also implicitly define the reset arcs (shown as an arc ending with double arrows)
and inhibitor arcs (shown as an arc ending with a circle) respectively. The set
of input nodes of a node x ∈ P ∪ T is denoted as •x = {(y ∈ P ∪ T |(y, x) ∈
F ) ∨ (x ∈ T ∧ y ∈ R(x) ∪ I(x))}, and the output nodes similarly as x•.

The state of a Petri net is called marking M ∈ P → N, indicating the
number of tokens contained in each place. A transition t is said to be enabled,
denoted as M [t⟩, iff M(p) > 0, ∀p ∈ •t : [(p, t) ∈ F ∨ p ∈ R(t)] ∧ M(p) =
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0,∀p ∈ I(t). Firing an enabled transition results in a new marking M ′ so
that M ′(p) = M(p) − (M(p) iff p ∈ R(t),W (p, t) iff (p, t) ∈ F, 0 otherwise) +
(W (t, p) iff (t, p) ∈ F, 0 otherwise). That is, tokens are removed from input
places according to arc weights. Places which act as reset places for a fired
transition are emptied completely. Next, the token count of output places is in-
cremented according to arc weights to obtain the new marking. We refer to [27]
for more details.

3 Conversion of Declare Constraints to Weighed R/I-nets

This section describes the conversion of each Declare constraint into their dedi-
cated weighted R/I-nets. It also provides a section on equivalence analysis along
with an empirical evaluation thereof.

3.1 Conversion templates

Since the purpose of the conversions is to capture constraints which are usually
expressed in (Büchi) automata that yield (ω-)regular languages, we seek to con-
struct Petri nets which produce regular languages. This is the case when the
net is in clean standard form [21]. Hence, the following guiding principles are
followed.

For every letter in the Declare template/model alphabet, we define one in
the Petri net alphabet ΣPN = ΣDec ∪ {λInvisible, λStart, λEnd}, with labeling
function δ : T → ΣPN . As such, PN has a non-lamda free language Lλ. We
use invisible transitions (labeled λInvisible) for two constraints and will refer to
λStart and λEnd as Start and End respectively. We refer to their corresponding
nodes as tsource and tsink with δ(tsource) = λStart and δ(tsink) = λEnd. tsource is
used to start the net by filling helper places used for the constraints, which need
tokens to inhibit constraints which are (temporarily) violated by default. For
example, an Existence(A,n) constraint puts the model in a temporarily violated
state when initialized, only to reach an accepting state after activity A has fired
at least n times. tsink empties the net completely and functions as an indicator
for the state of the net as well. If tsink is enabled, this means the net is in an
accepting state, otherwise, there are places tied to constraints inhibiting it from
firing. The end transition empties all places upon firing by using reset arcs, leav-
ing the net in its final marking, comprising of only one token in the final place
psink. Hence PN has an L-type ending. According to [21], as all template nets
are in clean standard form, they yield a regular language. Indeed, unless the net
is in a violated state (marking) which cannot reach an accepting state anymore
(permanent violation), there exists a firing sequence reachable from that mark-
ing which ends with the sink transition. tsink empties the net and is the sole
terminal on the right hand side of that marking. Also, since none of the binary
constraints contain any cardinality-based execution patterns, none of the Declare
Petri nets need context-free grammar constructs such as anbn. The R/I-net con-
structs for each template can be found in Table 1. In the construct templates,



it is assumed that T = {tsink, tA(, tB , tC), tsink}, tC = T \ {tA, tB , tsource, tsink},
P = {psource, psink, p1(, p2, p3, p4)}, and F = {(psource, tsource), (tsink, psink)}.

Note that the Init and Last constraints cannot be substituted by tsource
and tsink, unless the activities these constraints refer to also have to execute
exactly once. Otherwise, they would recreate the initial marking over and over
again (Init, as tsource initializes the net), or be inhibited from firing multiple
times (Last, as tsink empties the net). As such, Init(A) is instead modeled as a
fragment containing a single place which is filled by tsource and inhibits every
transition but tA. The Last(A) constraint is enforced by a single place which
gets filled by tA and is reset by all the other transitions but tA.

Many helper places are introduced which are used to enforce and indicate
the state of the constraints in a one-to-one fashion. This means that one can
trace back every constraint in the net to a certain Declare template. This is not
possible for example, in the approach of [30], but yields benefits for, e.g., model
and conformance checking, where in an execution the violation can be traced
back to a certain constraint and the activities involved.

Figure 1 provides an example of converting a full Declare model in standard
notation to its converted Petri net counterpart after applying our formalization.
For this purpose, we included a Declare model with three unary and three binary
constraints. Deposit money is executed first, and at least once. Request credit
card can only occur exactly afterwards Deposit money and exactly once. Deposit
money precedesWithdraw money. Every new occurrence of Print statement must
be preceded by at least one new occurrence of Withdraw money. Note that
opportunities exist for simplifying the resulting Petri net model, which was not
done here for the sake of understandability of the separate converted constraints;
in the following paragraphs, we discuss the conversion of each of the Declare
constraint types to their corresponding Petri net templates and how to create a
model out of a full Declare model (a set of constraints). Note that we will refer
to the activities involved in binary constraints as antecedent (A) and consequent
(B).

Unary Constraints. Unary constraints (shown in Figure 2) focus mainly on the
enforcement of cardinalities of the activity involved. In these scenarios, the source
and sink transitions prove useful already. Existence(A,n) requires an activity A
to be executed at least n times. Therefore, a helper place p1 is installed, that can
only fire after n tokens are collected in p1, by introducing an arc with weight n
connected to tsink.

Absence(A,n) translates into putting n − 1 tokens in p1, which will prevent
the activity from firing n or more times. The Exactly(A,n) constraint is similar,
but p1 inhibits tsink from firing until the activity has happened at least n times.

Binary Existence Constraints. These constraints (shown in Figure 3) are the
hardest to capture in a Petri net template, as they require some sort of memory
to keep track of the fact whether the antecedent and consequent have occurred
before. For Responded existence, the net cannot end before a first occurrence
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Fig. 1. Simple Declare model containing 3 unary and 3 binary constraints to the left
and the converted net to the right. The net contains 7 places (besides psource and psink)
of which 6 are used for the constraints and one, p5, which adds a self-loop for Deposit
Money. p1 is used for Exactly(Request credit card,1), p2 for Init(Deposit money), p3 for
Precedence(Deposit money, Withdraw money), p4 for Chain precedence(Deposit money,
Request credit card), p6 for Alternate precedence(Withdraw money, Print statement),
and p7 for Existence(Deposit money,1). Many reset arcs are connected from these places
to tsink to empty the net upon firing this transition.
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Fig. 2. The mapping of unary constraints Existence(A,n), Absence(A,n), and Ex-
actly(A,n). Note that the tsource and tsink transitions (labeled Start and End) are
only shown when necessary in this and following figures.

of the consequent when the antecedent fires. The net thus has to keep track
whether the consequent has fired already, in case a termination is sought for
after the firing of the antecedent. For this purpose, an invisible activity is used
which, when fired, leaves no transition enabled but the last one, acting as a
placeholder for tsink. The same principle can be applied for Co-existence, which
is the two-way version of Responded Existence.

Simple Ordered Constraints. Response requires a helper place that inhibits
tsink as long as the consequent of the constraint is not fired after an occur-
rence of the antecedent. Precedence also needs an additional input place for the
consequent, which serves to enabled it after the firing of the antecedent. Af-
terwards, the consequent keeps itself enabled indefinitely. Succession is, similar
to the LTL formula, the combination of both constraints. The constraints are
shown in Figure 4.
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Fig. 3. The mapping of the binary existence constraints Responded, and Co-existence.
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Fig. 4. The mapping of the simple ordered constraints Response, Precedence, and Suc-
cession.

Alternating Ordered Constraints. Alternating constraints (shown in Figure
5) are an LTL-based way to express loops. Modeling Alternate response is some-
what tedious. First of all, two helper places need to be introduced, p1 and p2. p1
is an input place of tsource, resulting in an initial marking of 1. Next, it serves
both as an input for the antecedent, and also a reset place. The consequent can
fire any time, but whenever the antecedent is fired, tsink is inhibited until the
occurrence of the consequent, which frees p2 with a reset operation. Also, the
consequent delivers a new token to the input place of the antecedent. Alternate
precedence is much more straightforward. Whenever the consequent is fired, it
resets its input place, which models the fact that it can only occur after any
new occurrence of the antecedent. Again, Alternate succession is a combination
of the two, but can be reduced to a smaller mapping. Two places are required,
one as an input place for the antecedent, enabled by default (marking of 1), and
another one serving as an input place for the consequent, which will also inhibit
tsink, avoiding a violation of the rule.
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Fig. 5. The mapping of the alternating ordered constraints Alternate response, prece-
dence, and succession. Start is omitted, but provides the initial marking of the helper
places (e.g. one token in p1 for Alternate response).

Chain Ordered Constraints. The chain constraints (shown in Figure 6) ex-
tensively make use of the next LTL operator. To incorporate the setup in which
whenever the antecedent is fired, the consequent needs to be next, a helper place
is introduced which inhibits every other activity in the net but the consequent.
The other activities (besides the antecedent) are indicated in Figure 6 as C. The
chain precedence constraint in its turn requires a helper place that inhibits the
execution of the consequent, which can only fire after the antecedent, which frees
the inhibiting place with a reset arc and gets filled by any other activity. The
combination of both constraints allows only the execution of the antecedent, and
afterwards inhibits every other activity but the consequent, resulting in a strict
ABAB... pattern.

Negative Constraints. The negative constraints (shown in Figure 7) also use
inhibitor places to model violation. Not co-existence uses two helper places,
one for each activity, which, when containing a marking, block the execution
of the other activity. Not succession uses one place to inhibit the consequent
from executing after the antecedent is ever fired. Not chain succession inhibits
the consequent from happening exactly after the execution of the antecedent.
Again, all the other activities need to be connected to the inhibiting place with
a reset arc, freeing the consequent from the marking imposed by the antecedent.

Choice Constraints. The simple Choice template inhibits tsink as long as
not one of the two involved activities have fired, modeled with two reset arcs,
linking both activities to the place. The Exclusive choice, is similar to the Not
co-existence constraint, but inhibits tsink from firing as long as not one of the two
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Fig. 6. The mapping of the chain ordered constraints Chain response, precedence, and
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Fig. 7. The mapping of the negative constraints Not co-existence, succession, and chain
succession.

(which is the only possibility) has fired. The helper places in both constraints
are marked with a token by default, and are linked to tsource. The constraints
are shown in Figure 8.

Merging Constraints into a Model. As indicated previously and as shown
in the example model (Figure 1), it is possible to merge a set of constraints,
having converted these to separate Petri net templates, into one single model as
follows. First, note that since the constraints are modeled as separate regions,
the overlap of places is void. Second, transitions, are merged so that the input
and output arcs for each transition forms the union of all input and output arcs
in the separate templates respectively. Third, activity transitions that do not
have an input place with corresponding input arc (not a reset or inhibitor arc)
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Fig. 8. The mapping of the choice constraints Choice, and Exclusive choice.

after performing the steps above, are connected with tsource with an extra place,
which also keeps these transitions enabled after firing by means of a self-loop (i.e.
an arc from the transition to this extra place is also added). When tsink does not
have an input place, the same rule applies (i.e. also connected with tsource, but
without a self-loop. Fourth, a unique source and sink place, psource and psink,
are added, and every place in the model except psource and psink are reset by
firing tsink (by adding reset arcs). Note that these steps also need to be performed
when only dealing with the conversion of one single Declare constraint. For the
sake of clarity, however, the adding of these extra constructs is not shown in the
separate constraints listed above, but is done in the example model in Figure 1.

An additional example of how a sole constraint fits into a model is given in
Figure 9. The constructs used for the Response(A,B) constraint are depicted in
black and are supplemented by p0, tsource, pA and pB which act as the self-loops
places of A and B, and the input place pE1 and output place pE2 of End. These
constructs are indicated in gray and are only used once, even when merging
multiple constraints between A and B, while the constructs indicated in black
are specific to Response(A,B). Two reset arcs are connected to the self-loop
places to empty the net after firing tsink.

Response
p0

1

pA

pE1

pB

pE2

A B A B

End

Start

Fig. 9. Example of the Response constraint in a model. The constructs specific to the
constraint are in black, the ones used for the model are in gray.



n-Ary and Target-Branched Declare Constraints. Some Declare con-
straints, such as Choice, have multiple variants such as Choice1of3(A,B,C),
Choice2of3(A,B,C), etc. These variants can be easily expressed in R/I-nets as
well. One has to simply add multiple transitions to p1 in Figure 8, one for every
activity. Choice2of3 can be modeled with two places, etc.

Target-branched constraints, Declare constraints for which the consequent
consists of a set, can also be modeled with R/I-nets. We do not elaborate on this
for every constraint but rather give an example in the form of Response(A,B,C).
The addition of C would simply require an extra reset arc from p1 to tC .

4 Equivalence Analysis

4.1 State Spaces and Automata

A Petri net’s reachability graph, which is an exhaustive enumeration of all states
in the net, can be defined as a Kripke structure. We define such structures as
follows. A Kripke structure is a tuple KS = (S, I,R, L) with

– S a finite set of states
– I ⊆ S a set of initial states
– R ⊆ S×S the transition relations which are left-total (∀s ∈ S ∃ s′ such that

(s, s′) ∈ R)
– L a labeling function L : S → P(AP ) for alphabet AP .

Fig. 10. To the left, the state space for the Not co-existence Petri
net template is depicted with S = {S1, S2, S3, S4, S5}, AP =
{Begin,A,B,C,END}, R = {(S1, S2), (S2, S3), (S2, S4), (S3, S5), (S4, S5)}, L =
{(S1, {BEGIN}), (S2, {A,B,C,END}), (S3, {A,C,END}), (S4, {B,C,END}), },
and I = {S1}. To the right, the equivalent FSA is given.

Translated to a Petri net, every state s ∈ S is a marking in the net, S =
M , with an outgoing arc for every enabled transition in that marking. Hence
AP = ΣPN , L : M → P(ΣPN ). Since we use a dedicated source place and
transition, I = M0 with M0(psource) = 1. We use C to represent all other



activities Σ \ {A(, B), λStart, λEnd}, of which the latter are indicated as Begin
and End.

In order to match this with Declare automata, we convert the reachability
graph of every Petri net to a finite state automaton. Since the constraints yield
regular languages and are closed for certain properties, this conversion yields a
regular language model when combining constraints as well. The automaton is
defined as a tuple, FSA = (Q,Σ,Q0,∆,A) with:

– Q the finite set of states

– Σ the finite alphabet

– Q0 ⊆ Q the initial states

– ∆ ⊆ Q× σ×Q the transition rela-
tions

– A ⊆ Q a set of accepting states.

Then:

– Q = M ∪ I
– Q0 = I
– Σ = ΣPN

– ∀s, s′ ∈ Q, a ∈ Σ : (s, a, s′) ∈
∆ ⇐⇒ L(s′) = a ∧ (((s, s′) ∈
R) ∨ (s = si ∧ s′ = s0))

– ∀a ∈ A, λEnd ∈ a.

This can be done for every Petri net template included in the previous con-
version and can also be done for Büchi automata, used in [25]. An example
is included for the Not co-existence template in Figure 10, which displays the
state-space to the left, and the corresponding finite state automaton to the right.
Every automaton includes all the accepting and temporarily violated states in
the Declare automata, as for example included in [38]. Hence, the Petri nets’
languages are equal to the Declare automata’s languages. The other templates
are included below in Figures 11 to 17.

Fig. 11. Existence1, Absence, and Exactly1 constraints.



Fig. 12. Responded, and Co-existence constraints.

Fig. 13. Response, Precedence, and Succession constraints.

4.2 Empirical Validation by Simulation

We have discussed the validity of the conversion in the previous section. We
now show how the conversions can be used in a practical setting by means
of simulation as follows. First we simulate traces from all the different Petri
net templates separately and mine them with a Declare process miner (traces
generated from R/I-net mined to Declare model), next we simulate traces from



Fig. 14. Alternate response, precedence, and succession constraints.

Fig. 15. Chain response, precedence, and succession constraints.

different Declare constraints and replay them over the corresponding Petri net
conversions (direction: Declare model traces replayed over Petri net). We assume
that the finite state and Büchi automata yield the same language over finite
traces.

The basic setup for the first direction (traces generated from R/I-net mined
to Declare model) is performed by constructing a regular Petri net with a simple
sequential process placed in a loop, which is then supplemented by one or two



Fig. 16. Not co-existence, Not succession, and Not chain succession constraints.

Fig. 17. Choice, and Exclusive choice constraints.

activities (unary vs. binary) that are constrained by a chosen Petri net template
following a Declare conversion. The same considerations are used to create the
model, i.e., tsource, tsink and self-loops are added. CPN Tools [35] is used to
produce models, simulate them, and create an event log, similar to [15]. An
example for simulating Alternate response(B,Z) is given in Figure 18, in which
a straightforward loop is supplemented with the matching Petri net template.
The places used for the self-loops input the trace ID with a colored token and
the trace identifier is incremented every time tsink is fired. Every simulated
event log contains 100.000 traces. The resulting log is then mined with Declare



Miner1 [24] afterwards. We expect that, for each of the Petri net templates, the
corresponding Declare constraint was found by the miner to be either present
and supported 100%, or exhibiting a confidence of 100% [24], thus confirming
the validity of our technique for this direction.

INT INT INT INT INTINT

1`1
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C D EStart
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i i ii ii
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i
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Fig. 18. Example of the verification simulation for Alternate Response(B,Z). The tran-
sition actions for writing the log are omitted for clarity. Note that, again, Start and End
serve the purpose of tsource and tsink respectively, while also supporting the simulation
by initiating and ending a new trace.

Next, we simulate the other way around (Declare model traces replayed over
Petri net). A regular expression simulator is used, which uses the expressions in
Table 1, in which the . is substituted by C. The simulated traces are then replayed
over the Petri net conversions in ProM using the conformance checking plugin
used in [8]. When no tokens need to be inserted, the net is not too restrictive
for discovering a certain Declare constraint.

Both simulation strategies yield positive results. Declare Miner indeed re-
ported a confidence of 100% for every process log generated from the conversions,
making sure that they are at least as strict as their Declare counterparts. The
replaying algorithm could fittingly execute every single trace generated for the
Declare constraints over the Petri net conversions, proving that the conversions
are not looser (resulting in more behavior) than their Declare counterparts. The
simulated Declare constraints could be replayed over the Petri net conversions
without violation and token inserts, which means the conversions are not stricter
than their regular expression counterparts. All the data generated and models
used for the simulation have been made available online2. They are pluggable
and can be used in different settings.

1 Declare Miner is available in the ProM process mining framework, see:
http://www.processmining.org/

2 http://j.processmining.be/dec2pet



5 Conclusion

This paper presents a template-based conversion of every Declare constraint into
a single weighted R/I-net. As such, a formalization of the execution semantics
of Declare is obtained, similar to LTL or regular expressions, but now expressed
in the form of Petri nets. Equivalence of Declare constraints and the respective
Petri net templates is analyzed at the theoretical level and with a simulation
experiment, which shows that the Petri net templates are at least as strict as
their Declare constraint counterpart, while the templates are not stricter than
the regular expressions that go with each Declare constraint.
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